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Preface

We are delighted to present the proceedings of the 16th International Symposium on
Advanced Vehicle Control (AVEC’24), held from September 2–6, 2024, in Milan, Italy.

AVEC boasts a long and distinguished tradition dating back to 1992, when it was ini-
tiated by theVehicle Dynamics Technical Committee of the Society of Automotive Engi-
neers of Japan (JSAE). The symposium’s founding vision was to bridge the gap between
academia and industry, fostering a platform for leading international experts to exchange
ideas and shape the future of vehicle control theory, design, and implementation.

This year’s symposiumonce again provided a vibrant forum for the exchange of ideas
on a broad range of topics critical to the future of vehicle dynamics and control. These
topics are not only of significant academic interest but also hold immense relevance for
the automotive industry and society.

The presented papers cover a wide spectrum of topics, including:

• Vehicle Dynamics Theory: Fundamental aspects of vehicle dynamics modeling and
analysis form the bedrock for designing and optimizing control systems that ensure
safe, stable, and predictable handling characteristics.

• Steering, Brake, Tire, and Suspension: Advancements in these core subsystems play a
crucial role in enhancing vehicle responsiveness, maneuverability, and overall safety.
Optimizing these elements leads to increased fuel efficiency, reduced wear and tear,
and ultimately, a lower environmental impact.

• Chassis Control & Powertrain: Integration of powertrain and chassis control sys-
tems allows for the development of vehicles with superior handling, improved fuel
economy, and smoother power delivery. This contributes to a more comfortable and
efficient driving experience.

• Electrified Vehicles: Electric and hybrid vehicles become increasingly important as
the automotive industry transitions towardsmore sustainable transportation solutions.
NewPowertrainmanagement and efficient control systems are crucial formaximizing
the range and performance of these vehicles, ultimately promoting wider adoption of
electric mobility.

• Active Safety Systems &ADAS: The design and implementation of advanced driver-
assistance systems (ADAS) are vital for enhancing vehicle safety and reducing the
number of traffic accidents. These advancements directly contribute to saving lives
and creating a safer driving environment for all road users.

• Stability Enhancement Systems (ABS, TCS, ESC): Continued development and opti-
mization of stability control systems like ABS, TCS, and ESC play a critical role
in preventing vehicle loss of control and mitigating the severity of accidents. This
directly translates to a reduction in road fatalities and injuries.

• Driver–Vehicle Systems: Understanding the interaction between driver and vehicle
is essential for designing the vehicle and active control systems, resulting in more
intuitive and responsive vehicles, and providing the driver with a higher sense of
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control. This leads to improved driver engagement and reduced fatigue, promoting
safer and more enjoyable driving.

• Automated Driving Systems: Control strategies and technologies for autonomous
vehicles represent the future of transportation. Advancements in this field hold the
potential to revolutionize mobility, enhancing accessibility, safety, and efficiency on
our roads.

• Modeling: Development and validation of accurate vehicle dynamics models are
crucial for designing and testing vehicles and control systems in a virtual environ-
ment before real-world implementation. This translates to faster development cycles,
reduced costs, and improved overall system performance.

• Sensors and Actuators: Advancements in sensor and actuator technologies are essen-
tial for enabling the development of increasingly sophisticated and responsive vehi-
cles. These advancements are key to achieving the goals of enhanced vehicle safety,
efficiency, and performance.

• Testing and Validation: Robust methodologies for evaluating the performance of
vehicle control systems ensure their effectiveness and reliability in real-world driving
conditions. This is critical for ensuring the safety and functionality of vehicles on the
road.

• Driving Simulator Dynamics and Control: Driving simulators provide a valuable
tool for testing and refining vehicle and control systems in a safe and controlled
environment. This allows for a more efficient development process and contributes
to the creation of robust and reliable control strategies.

The high quality of the submitted papers reflects the ongoing dynamic nature of
the field of vehicle control. We are grateful to all the authors who contributed their
research to AVEC’24 and to the reviewers who provided valuable feedback that ensured
the scientific merit of the proceedings.

We extend our sincere appreciation to those who supported and helped to organize
the conference. We would like to thank the authors who contributed to a very successful
conference. We look forward to continuing this important dialogue at future AVEC con-
ferences, building upon this 16-edition legacy of fostering collaboration and innovation
in the field of vehicle control.

Giampiero Mastinu
Federico Cheli

Sergio M. Savaresi
Francesco Braghin

Matteo Corno
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Dersu Çeliksöz, İsmail Göçer, and Kerim Arda Gülseren

A Study on the Control of Handling and Stability of a Four Wheel
Independent Steering Electric Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Zhihao Wu, Ning Zhang, Pu Li, Zihong Li, and Jianrun Zhang

Using a Smartwatch to Evaluate Subjective Ratings of Driving Functions . . . . . . 434
Panzer Anna, Lausch Hendryk, Iatropoulos Jannes, and Henze Roman



Contents xv

Speed Profile Generation for a Dual Motor Equipped Electrified Series
Hybrid Tracked Vehicle Through Dynamic Programming Based Energy
Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Ismail Gocer and S. Caglar Baslamisli

Energy and Time Optimal Control of Autonomous Vehicles by Using
Frenet Frame Modelling and over-Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Wenliang Zhang, Lars Drugge, Mikael Nybacka, Jenny Jerrelind,
Derong Yang, Rudolf Reiter, Jonathan Frey, and Annika Stensson Trigell

Robust 3D On-Road Object Detection and Distance Estimation for Active
Vehicle Control Systems Based on Monocular Camera Image Data . . . . . . . . . . . 454

Xingguo Zhang, Daiki Ikami, and Pongsathorn Raksincharoensak

Occluded Area Detection Based on Sensor Fusion and Panoptic
Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Hiroshi Yoshitake, Jinyu Gu, and Motoki Shino

Temporal and Frequency Analysis with Empirical Mode Decomposition
for Vehicle Vibration Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Makoto Masuda and Taichi Shiiba

Dynamical Behaviours of the Nose Landing Gear with Freeplay
and Stochastic Disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Xiaolei Du and Yong Xu

Tuning Time Delays to Improve the Performance of a Steering Controller . . . . . 481
Jialin Li, Denes Takacs, Jianwei Lu, Illes Voros, and Gabor Stepan

Vehicle Teleoperation: SRPT Approach Resilience to State Estimation
Errors Through Simulation Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Jai Prakash, Michele Vignati, and Edoardo Sabbioni

Advancing Autonomous Driving Safety Through LLM Enhanced
Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Qian Cheng, Xinyu Jiao, Mengmeng Yang, Mingliang Yang, Kun Jiang,
and Diange Yang

Self-tuning of the Virtual-Bike Control for a Human-Powered Electric
Bike with Series Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Stefano Radrizzani, Giulio Panzani, and Sergio Matteo Savaresi



xvi Contents

Cooperative LiDAR-Aided Self-localization of CAVs in Real Urban
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Akif Adas, Luca Barbieri, Pietro Morri, Simone Mentasti,
Satyesh Awasthi, Stefano Arrigoni, Edoardo Sabbioni, and Monica Nicoli

Subjective-Objective Assessment of Different Torque Vectoring Control
Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Michele Asperti, Michele Vignati, and Edoardo Sabbioni

Retaining Cornering Performance and Reducing Energy Consumption
with Torque Vectoring and Suspensions Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Michele Asperti, Michele Vignati, and Edoardo Sabbioni

Enhancing Steer-by-Wire Systems with an Integrated E-Motor
and MR-Brake Actuator – Feedback Control Strategy . . . . . . . . . . . . . . . . . . . . . . . 533

Matthias Niegl, Johannes Hendewerk, Matthias Becker,
Stefan Battlogg, and Peter Pfeffer

A Rule-Defined Adaptive MPC Based Motion Planner for Autonomous
Driving Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Mohammed Irshadh Ismaaeel Sathyamangalam Imran,
Satyesh Shanker Awasthi, Michael Khayyat, Stefano Arrigoni,
and Francesco Braghin

Towards Friction Potential Estimation for Motorcycles . . . . . . . . . . . . . . . . . . . . . . 550
Florian Klinger, Christoph Ott, Agnes Poks, Johannes Edelmann,
and Manfred Plöchl

On the Stability of the Closed-Loop Teleoperated Vehicle and Teledriver
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Ypti Hossain, Mathias Metzler, Johannes Edelmann, and Manfred Plöchl

Increasing Performance of Differential Braking as Steering Backup Using
Combined Slip Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Leon Salzwedel, Christian Frohn, Cedric Heise, Jannes Iatropoulos,
and Roman Henze

Laboratory Abrasion Tester to Estimate Tyre Grip and Cornering Stiffness . . . . . 571
Francesco Colombo, Samuel Sonnino, Federico Mantovani,
Andrea Ronchi, Luca Michielan, Michele Vignati, and Edoardo Sabbioni

Indoor Tyre Tread Wear Testing Driven by Outdoor Data Clustering . . . . . . . . . . 578
Lorenzo Maglia, Davide Fantin, Stefano Pontoglio, Matteo Stella,
and Edoardo Sabbioni



Contents xvii

Trailer Reversing Supported by Steer-by-Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Chang Liu, Jakob Roempke, Matthijs Klomp, and Lars Drugge

A Yaw Rate Based Stability Control Tuning via Virtual Methods . . . . . . . . . . . . . 597
Luca D’Avico, Fabio Carbone, Lucas Baudry, Fabrizio Forni,
Pietro Caresia, and Gerardo Amato

Optimal Braking and Steering Control Under Split Friction on Curved
Roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Ektor Karyotakis, Derong Yang, Mats Jonasson, and Jonas Sjöberg

AFallback Approach for In-Lane Stop on Curved Roads Using Differential
Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Jihoon Sung, Seungwon Choi, and Kunsoo Huh

Steering Noise Cancelling for Drift Assist Control . . . . . . . . . . . . . . . . . . . . . . . . . 618
Yiwen Sun, Efstathios Velenis, and Ajinkya Krishnakumar

A Decoupling Control Scheme for Path Tracking with Model Predictive
Path Integral and Output Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Hang Wan, Hui Liu, Shida Nie, and Lijin Han

A Learning-Based Model Predictive Contouring Control for Vehicle
Evasive Manoeuvres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

Alberto Bertipaglia, Mohsen Alirezaei, Riender Happee,
and Barys Shyrokau

Predictive Braking on a Nonplanar Road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
Thomas Fork, Francesco Camozzi, Xiao-Yu Fu, and Francesco Borrelli

Variable-Step-Length Hybrid A* Based on Dichotomy Optimization
for Path Planning of Autonomous Mining Trucks* . . . . . . . . . . . . . . . . . . . . . . . . . 646

Yichen Zhang, Yafei Wang, Mingyu Wu, and Ruoyao Li

Study on Continuous Road Friction Measurement Under Various
Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Ichiro Kageyama, Atsushi Watanabe, Yukiyo Kuriyagawa,
Tetsunori Haraguchi, Tetsuya Kaneko, and Minoru Nishio

Observer Design for Estimating Road Elevations at All Tire Contact
Patches Using Only an Inertial Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Hosik Choi and Juhui Gim



xviii Contents

Physics-Informed Neural Network for Mining Truck Suspension
Parameters Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Mingyu Wu, Yafei Wang, Yichen Zhang, and Zexing Li

Point Cloud Interpolation by RGB Image to Estimate Road Surface Profile
for Preview Suspension Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

Masato Inoue, Yosuke Kawasaki, Takuma Suzuki, Yuta Washimi,
Tsutomu Tanimoto, and Masaki Takahashi

Gain-Scheduled Bicycle Balance Controller Based on System Identification . . . 679
Yixiao Wang, Fredrik Bruzelius, and Jonas Sjöberg

Investigating Reversing Motion of Truck-Semitrailer Along Clothoid Curve . . . 686
Levente Mihályi and Dénes Takács

A Way Beyond Drifting: Cornering at the Unexploited Region of Dynamics . . . 693
Hangyu Lu, Xiaodong Wu, and Liang Yan

Design and Implementation of a Slip Control for Electric Formula Student
Vehicle Using Sliding Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

Ádám Alföldi, Dániel Fényes, and Péter Gáspár

Long Combination Vehicles Reverse Strategies Based on Articulation
Angle Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

Zhaohui Ge, Fredrik Bruzelius, and Bengt Jacobson

A Comparative Study of Discomfort Using Electrical and Friction Braking
at Low Speed Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

Samira Deylaghian, Mats Jonasson, and Petri T. Piiroinen

Deriving Models from Field Test Data to Forecast Brake System Limits
in Fuel Cell Heavy-Duty Trucks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Seongjae Mun, Jinhui Park, Hongwoo Lee, and Changsun Ahn

Numerical Study on Vibration Characteristics of Non-pneumatic Tire
Coupled with Quarter-Car Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

Yuta Washimi, Takuma Suzuki, Toshihiko Okano, and Kensuke Sasaki

Study on the Effects of Long-Term Vibration and Visual Tasks on Visual
Acuity in the Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

Masateru Amano, Aya Kubota, Hiroyuki Yamaguchi, Yuji Muragishi,
and Yoshikazu Hattori



Contents xix

Human-Centered Collaborative Decision-Making and Steering Control
with Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

Liang Yan, Xiaodong Wu, and Hangyu Lu

A Study on Giant Magnetostrictive Actuator Used in Active Noise Control
System for Ultra-compact Electric Vehicles (Analytical Consideration
on Output Performance of the Actuator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

Taro Kato, Ryusei Naganuma, Koki Bando, Ikkei Kobayashi,
Jumpei Kuroda, Daigo Uchino, Kazuki Ogawa, Keigo Ikeda,
Ayato Endo, Xiaojun Liu, Hideaki Kato, Takayoshi Narita,
and Mitsuaki Furui

Collision Prediction for a Mining Collision Avoidance System . . . . . . . . . . . . . . . 756
J. C. van Aswegen, H. A. Hamersma, and P. S. Els

Interactive and Robust Prevention of Lane Departure . . . . . . . . . . . . . . . . . . . . . . . 763
Syouma Edamoto, Shuuji Kimura, Tsutomu Tamura, Richard Gao,
and Robert Fuchs

Effect of Control Laws for Torque-Vectoring Systems on Steady-State
Cornering in Race Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

Ikkei Kobayashi, Fumiya Yoshida, Liting Fu, Yusuke Ebashi,
Hayato Yamada, Jumpei Kuroda, Daigo Uchino, Kazuki Ogawa,
Keigo Ikeda, Taro Kato, Ayato Endo, Mohamad Heerwan Bin Peeie,
Hideaki Kato, and Takayoshi Narita

Mapping and Localization Method for Autonomous Vehicles on Roads
Using Environmental Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Kyoya Ishii, Keisuke Shimono, Yoshihiro Suda, Takayuki Ando,
Hirotaka Mukumoto, and Kazuo Urakawa

Consideration of Restoration in Yaw Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
Hideki Sakai

Testing Urban Interaction Scenarios Between Automated Vehicles
and Vulnerable Road Users Using a Vehicle-in-The-Loop Test Bench
and a Motion Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

Michael Kaiser, Lisa Marie Otto, Steffen Müller, André Hartwecker,
and Christian Schyr

Robust Inverse Vehicle Map Regression Based on Laplace Distribution . . . . . . . . 798
Maxime Penet and Gaetan Le Gall



xx Contents

Energy-Efficient Optimal Torque Vectoring for a Four-Motor
High-Performance Electric Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

Mattéo Prost, Ivan Cvok, and Efstathios Velenis

A Lateral Control Based on Physics Informed Neural Networks
for Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
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Abstract. As articulated heavy vehicles are over-actuated, achieving
a safe control allocation is crucial to ensure stability. This study intro-
duces a machine learning model developed to identify unsafe behaviours
and modes, such as jack-knifing and trailer swing, enabling the control
scheme to prioritize stability. High-fidelity simulations, focusing on high-
risk scenarios, generate data for training the machine learning model.
This model is integrated into the control scheme to predict safe brak-
ing allocations and prevent unsafe vehicle modes during real-time driv-
ing scenarios. Initial tests showed promising results regarding prediction
accuracy and a safety margin that can be implemented to further ensure
that safe vehicle motion is achieved.

Keywords: Control allocation · articulated heavy vehicles · machine
learning · yaw instability

1 Introduction

Articulated heavy vehicles (AHVs) have proven to be excellent candidates for
road transportation due to their significant positive impact on environmental
and economic efficiency [1,2]. However, concerns remain regarding their stabil-
ity, including risks like jackknifing and trailer swing. The electrification of trucks
introduced the concept of distributed propulsion across different vehicle units.
To maximize power regeneration, braking with the propelled vehicle units and
axles is preferred, which might cause instabilities such as jackknifing [3]. Dis-
tributed propulsion in AHVs adds another layer of complexity, impacting these
vehicles which are already dynamically complex due to over-actuation and their
articulation joints. Therefore, achieving a safe control allocation (CA) is crucial
to ensure stability while maximizing the regenerated energy [4].

Using machine learning (ML) in the automotive industry is growing as a
strong technique, bringing several benefits such as improved safety measures,
enhanced vehicle efficiency, and better performance (e.g., [5–7]). To the best of
our knowledge, there has been no work done to use ML in the control allocation
c© The Author(s) 2024
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of forces in heavy vehicle applications. In this study, ML is applied to heavy
vehicle applications to identify unsafe behaviours for a tractor-semitrailer vehicle
combination, specifically yaw instabilities. This enables the control scheme to
maintain the vehicle within safe operating conditions by requesting safe braking
allocation, ensuring no unsafe modes will appear.

2 Machine Learning Model Development

To predict safe allocations, a high-fidelity vehicle model, referred to as Volvo
Transport Model (VTM) [8], was used to perform simulations, collecting data
on factors contributing to the unsafe behaviour of the tractor-semitrailer vehi-
cle combination. Multiple simulations were performed focusing particularly on
high-risk environmental and operational conditions such as low friction and high
lateral acceleration on a circular track for different radii.

Approximately 25,000 uniformly random distributed simulations were per-
formed for a range of brake-in-turn manoeuvres, varying parameters such as the
initial velocity at which braking begins, friction, radius of the turn, load on the
trailer, and braking allocations. The simulation was initialised during steady-
state cornering of the vehicle, and data samples were collected until the vehicle
either reached a standstill or an unsafe mode occurred. To differentiate between
safe and unsafe modes, criteria were checked during the entire simulation on
important vehicle states to monitor the state of the vehicle and classify the sim-
ulation as safe or unsafe. The criteria used were based on the value of the side-slip
angle rate of the vehicle combination, as discussed in [9]. This metric captures
whether the truck or trailer exhibits a fast change in yaw angle within a short
amount of time, indicating unsafe behaviour in the form of either jack-knifing
or trailer swing. The chosen thresholds to limit the side-slip angle rates of the
tractor and trailer were set at 6 deg/s. This threshold value was validated with
VTM and found to be effective in identifying yaw instabilities.

From these simulations, 20% were used for test data and 80% for training
data. Each simulation yielded about 25 data points by sampling the vehicle state
throughout the manoeuvre, resulting in around 625,000 data points overall. This
extensive dataset was obtained with a total simulation time of about 275 h.

During each simulation, data was collected about the most informative states
of the vehicle from a vehicle safety perspective. The selected states were used
as features for the ML model, with labels classifying the state as feasible or
infeasible. Using this labelled dataset, an ML model could be trained offline to
be used as an online prediction tool within the control scheme. The chosen state
vector as the features of the ML model included road friction, steering wheel
angle, brake force of the tractor, brake force of the trailer, longitudinal velocity,
side slip angle of each unit, side slip angle rate of each unit, articulation angle,
articulation angle rate and axle loads of each axle, i.e. a total of 17 features. Con-
sidering the high dimensional inputs of the problem with these many features, it
is too intricate to determine the safe allocation with simple boundaries and any
analytical solution. Therefore, ML is a good tool to address this complexity.
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Fig. 1. Control scheme overview

Several ML models were evaluated on the dataset, including decision trees,
random forest and neural networks. Among these, neural networks proved to
be the most accurate with a training and validation accuracy of around 97%.
The models were trained using the MATLAB classification learner app with
default values for the hyperparameters not explicitly mentioned in this paper.
The chosen model was a neural network consisting of three layers, each with 12
nodes. A higher cost was assigned to false positives since it is crucial for a safety
critical system to accurately predict all unsafe points, even if it allows some error
in predicting safe points.

3 Machine Learning Based Control Allocation Strategy

The control system is divided into a three-part process, as illustrated in Fig. 1. It
begins by reading the vehicle state and brake request from the vehicle. This infor-
mation is then used to calculate a set of potential braking allocations. The brak-
ing request, Frequest, represents the total force request and is divided between
the tractor and the trailer as Frequest = Ftractor + Ftrailer. From this set, 100
allocations are uniformly sampled that fulfil the total braking request, as illus-
trated by the points in Fig. 2a. All forces are normalised and therefore varying
between 0 and −1, where −1 corresponds to the maximum possible braking
that each unit can achieve given the current friction, µ. This normalization is
expressed as F ∗ = F/(Fz · µ) for each unit, where Fz is the unit normal force.
These points together with the vehicle state are then inputted to the ML model,
which predicts the safety of each allocation, distinguishing between safe (green)
and unsafe (red) points as in Fig. 2a. The predictions are performed assuming
the driver input to the vehicle is kept constant until standstill. Lastly, a decision
is made to select one of these safe allocations, as indicated by an orange circle
in the last plot of Fig. 2a.

The decision of which allocation to choose provides considerable flexibility. As
the ML model assigns labels to each point, this part becomes modular, allowing
for an easily interchangeable strategy without affecting the overall design. This
paper will not present any optimal solution to this, instead showing multiple
viable options are possible, and that the safety prediction is reliable. For a given
state, the predictions are similar to what can be seen in Fig. 2a (steps 2 and
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Fig. 2. Illustrations of the control allocation and the implemented safety margins.

3), demonstrating that extreme choices, braking only with the tractor or trailer,
are the most unsafe, while intermediate options are safe. This is consistent with
findings from previous research [3].

The proposed strategy was tested by picking an allocation that brakes as
hard as predicatively possible with the tractor and with some safety margin.
This corresponds to, for example, the orange circled point in “step 3” of Fig. 2a.
However, when implementing this strategy, the edge can change rapidly due to
the changing state of the vehicle. This is unwanted and could lead to unsafe
behaviour of the vehicle combination. To accommodate this issue, a low-pass
filter was added to the output of the CA. In Fig. 3a, the CA for the tractor
is shown in one of these cases. The important observation here is that the CA
varies rapidly and discretely. Figure 3a illustrates how the CA appears without
a filter, while Fig. 3b shows the same scenario with the filter activated. It can be
seen that the filter improves the allocation by eliminating these very fast changes
in the CA.

Fig. 3. Illustrations of force allocation for the tractor in the scenario with parameters:
vx = 43 kph, µ = 0.3, R = 72 m, F ∗

request = −0.6.
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4 Validation of Proposed Control Allocation Strategy

Simulations were conducted to validate these predictions and ensure the con-
troller functions as intended. During these simulations, a safety margin of 5 and
10% of the total amount of sampled allocations was applied around the pre-
diction border, with simulations running on points from both safe and unsafe
margins (see Fig. 2b). The safety margin addresses uncertainties and inaccura-
cies in vehicle parameters, modelling simplifications, etc. Ideally, selecting a safe
point should result in a safe simulation, and choosing an allocation predicted as
unsafe should lead to an unsafe outcome. Doing this verifies that the estimation
of the prediction border is accurate. This was done for a number of test sce-
narios that were divided into edge and normal cases. Edge cases are defined as
scenarios where the vehicle is in an initial state close to where the vehicle can
no longer operate without showing unsafe behaviour. Normal cases are further
from an unsafe initial state than edge cases which still contain control inputs
that can result in unsafe modes.

The system was tested by running 26 cases, 13 normal and 13 edge cases,
of the above mentioned cases. Table 1 illustrates the success rate (whether the
prediction matches the simulated outcome) for different margins. Throughout
the simulations, it was assumed that the tractor is electric with a conventional
trailer, prioritizing tractor braking for enhancing energy regeneration. Besides
testing with constant steering and perfect knowledge about the state (as during
training), the system was also tested with disturbances. An active path-follower,
emulating a driver trying to stay on the road (marked by “steering” in Table 1),
was introduced. The system was also tested under “wrong friction” conditions,
where friction measurement was intentionally increased to simulate a misestima-
tion. During these tests, the steering input was kept constant. Additionally, all
other parameters remained the same as the initial test case.

Table 1. Prediction accuracies for different cases (%)

Case Unsafe 10% Unsafe 5% Safe 5% Safe 10% Safe 15% Safe 20%

Normal 100 69.23 92.31 100 100 100

Edge 84.62 61.54 61.54 92.31 100 100

Steering normal 76.92 46.15 84.62 100 100 100

Steering edge 92.31 92.31 92.31 100 100 100

Wrong friction normal 100 100 7.69 53.85 84.62 100

Wrong friction edge 100 100 7.69 15.38 69.23 76.92

The controller accurately predicted safety and responded well, with high
accuracy rates, particularly for the normal cases and a slight decrease for edge
cases. A margin of 10% from the predicted edge gave results close to 100%,
while a 5% margin resulted in accuracy ranging from 60–95%, depending on the
cases. The controller and ML model performed well when a path controller was
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active during braking, despite all training data being conducted under constant
steering conditions.

5 Conclusion

This paper introduces a novel method of predicting the yaw instability in a
tractor-semitrailer vehicle combination using machine learning. Additionally, it
allocates the driver’s brake request to individual vehicle units to avoid such yaw
instability. To enhance the overall performance of the controller including ML,
different ML models were tested and strategies were developed for allocation.
The neural network classification model was found to outperform other models,
even when integrated with the controller during random test manoeuvres in
real time. The controller proved to be accurate at predicting the safety and
responding accordingly. Accuracies were high, especially for the normal cases,
but dropped somewhat for edge cases. The controller and ML model worked well
when a path controller was active during braking, even though all training data
was obtained with constant steering. This paper has shown that it is possible
to predict safe allocations using a data-driven ML model, specifically a neural
network model.
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Abstract. This work is the development of a Model Predictive Con-
troller (MPC) for the integrated control of lateral and longitudinal
dynamics of a high-performance autonomous car, which follows a given
trajectory on a racetrack. The MPC model is based on an Affine-Force-
Input single-track nonlinear bicycle model that accounts for actuation
dynamics and delays. The MPC problem is formulated as a quadratic
problem, enabling efficient real-time solution with a specific quadratic
programming (QP) solver. The controller is implemented in C++ and
tested in a real-time hardware-in-the-loop (HIL) simulator, showing
excellent tracking performance up to 280 km/h.

Keywords: high-performance autonomous driving · real-time model
predictive control · trajectory tracking · vehicle dynamics control

1 Introduction

In recent years, the field of autonomous vehicle technology has expanded into
motorsport, with racing competitions like the Indy Autonomous Challenge and
the Abu Dhabi Autonomous Racing League demonstrating the capabilities of
these vehicles in extreme scenarios and serving as a challenging technology devel-
opment platform. A critical aspect in the evolution of autonomous vehicles is the
control of vehicle dynamics at the limit of handling, especially in high-speed and
complex driving conditions that exceed the capabilities of average drivers.

Current literature in vehicle dynamics control predominantly focuses on lat-
eral dynamics due to its significant impact on vehicle stability, particularly for
commercial vehicles.

This study has been supported by MOST - Sustainable Mobility National Research
Center and received funding from the European Union Next-GenerationEU (PIANO
NAZIONALE DI RIPRESA E RESILIENZA (PNRR) - MISSIONE 4 COMPONENTE
2, INVESTIMENTO 1.4 - D.D. 1033 17/06/2022, CN00000023). This manuscript
reflects only the authors’ views and opinions, neither the European Union nor the
European Commission can be considered responsible for them.
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Most relevant works [1–3] focus on simple feedforward and feedback steering
controllers, which guarantee the tracking of a reference path and the damping of
yaw oscillations. For instance, in [1] feedback corrections are applied according
to the slip of the wheels, while in [2] the feedback is computed as a desired front
steering force and then converted to a steering angle through the inversion of
the tire force model. A different approach is followed by [3], which is to impose
the tangency of the vehicle sideslip to the reference trajectory.

More advanced lateral controllers are proposed in [4–6], mainly based on
optimal control and Model Predictive Control (MPC), devoted to the stabiliza-
tion of vehicle at the limit of handling and intended for collision avoidance and
driver assistance systems. Control algorithms for combined lateral and longitu-
dinal dynamics are presented in [7,8], addressing the case of high-performance
applications. These two studies present a hierarchical control structure with two
optimization-based algorithms that addresses both the planning of the trajectory
and the control of the vehicle. The higher-level controller computes the optimal
path and speed profile, while a lower-level MPC optimizes the actual control
actions online over a shorter horizon with a more complex vehicle model.

In this paper, an MPC controller for trajectory tracking of high-performance
autonomous vehicles is presented. The algorithm is designed for controlling both
the lateral and longitudinal dynamics of the vehicle on a racetrack, following a
given path and speed profile. These are assumed to be provided by an external
planner or available from a precomputed database. The controller is also able to
manage actuation dynamics and delays. Finally, the algorithm is implemented
in real time and its simulation results are briefly discussed in Sect. 4.

2 Control-Oriented Vehicle Model

Fig. 1. Force-input bicycle model in Frenet frame.

The vehicle model implemented in the controller must achieve a delicate bal-
ance between accuracy and low complexity to ensure the feasibility of real-time
solution of the MPC optimization problem.
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The chosen model is based on an Affine-Force-Input (AFI) single-track non-
linear bicycle model, inspired by [9]. The inputs of the model (i.e. the outputs of
the MPC optimization) are the forces at the wheels, which are used to compute
the actual vehicle inputs, as explained in Sect. 3. This method removes the tire
force nonlinearities from the vehicle model, thus reducing the complexity of the
MPC optimization.

The position of the vehicle is expressed in a Frenet frame centered on the
closest point of the reference path, while the velocities are expressed with respect
to the vehicle local reference frame, as shown in Fig. 1. The inputs of the model
are the longitudinal tire forces Fx,f , Fx,r and the lateral force generated by the
front tires Fy,f .

The final equations of the vehicle model read as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ =
1

1− nk

[
vx cos(μ)− vy sin(μ)

]
,

ṅ = vx sin(μ) + vy cos(μ),

μ̇ = r − k

1− nk

[
vx cos(μ)− vy sin(μ)

]
,

v̇x =
1
M

(
Mvyr + Fx,f + Fx,r − Fdrag

)
,

v̇y =
1
M

(
−Mvxr + Fy,r + Fy,f

)
,

ṙ =
1
Jz

(
−lrFy,r + lfFy,f

)
,

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

where, the curvature of the path k(s) is available from the knowledge of the
reference trajectory. The lateral force on the rear tire Fy,r is modeled using
Pacejka’s Magic Formula [10], while the drag force Fdrag and the downforce are
expressed as quadratic functions of the longitudinal speed.

3 MPC Implementation

The complete architecture of the controller consists of the following components:

– The input interface computes the initial conditions of the MPC problem,
starting from the global position of the vehicle, the information on the refer-
ence trajectory and the last solution of the optimization problem.

– The Model Predictive Controller implements the vehicle model presented in
Sect. 2, linearized around the operating point of the previous solution, and a
first-order approximation of the actuators’ dynamics. It computes the opti-
mal inputs which minimize a given cost function, while satisfying a set of
constraints.

– The output interface converts the optimal control actions computed by the
MPC, which are expressed in terms of forces, into real vehicle inputs that
can be actuated on the car, i.e. throttle, brake and steer commands. This
is achieved by inverting the engine map, the brake characteristics and the
nonlinear tire model, respectively.
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Fig. 2. Overall architecture of the controller.

3.1 Actuation Delays Compensation

The MPC implements a delay-free first-order approximation of the actuators’
dynamics. However, the actuators may also present not negligible time delays.
To account for them, a simple compensator is implemented as follows.

Let τ be the actuation time delay. At every iteration of the controller, instead
of initializing the MPC problem with the measured state x(t), the initial state is
set to x̂(t+ τ), which is obtained with an open loop integration of the nonlinear
model described by Eqs. (1a)–(1f), from the measured state x(t). Hence, the first
element of the resulting MPC optimal solution contains the actuator reference
signals that compensate for time delays.

3.2 MPC Optimization Problem

The MPC optimization is formulated as a separable multistage quadratic prob-
lem, where the optimization variables are a set of N vectors, each one corre-
sponding to a single time step in the prediction horizon.

min
z1,...,zN

N∑

k=1

1
2
zTk Hkzk + fT

k zk (2)

Each component of the sum involves quadratic penalties on the lateral error,
the lateral error derivative and the control action variations, while a negative
linear term maximizes the vehicle speed.

Maximum values for the lateral error and the input forces are imposed
through lower and upper bound constraints. The adherence of the state vari-
ables to the model dynamics and the maximum absolute speed are represented
by nonlinear constraints, which are linearized around the predicted operating
points of the last MPC solution and implemented as linear inequalities.

4 Real-Time Simulation Results

The presented controller is implemented in C++, using OSQP [11] as the solver
for the optimization problem, and tested within a real-time hardware-in-the-
loop (HIL) simulator, conducting autonomous laps around various racetracks,
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adhering to a predetermined racing line and speed profile. The simulated vehi-
cle is a Dallara AV-21, a 470-horsepower autonomous racecar derived from the
single-seater Dallara IL-15, designed for the Indy Lights championship. Its most
relevant geometric parameters are reported in Table 1.

Table 1. AV-21 parameters.

Parameter Symbol Value

Total mass M 780 kg
Yaw inertia Jz 1170 kg m2

Front axle distance from COG lf 1.65 m
Rear axle distance from COG lr 1.35 m

The real-time implementation of the algorithm enables its execution on a
standard high-end Linux laptop with a 6-core 2.2GHz CPU and 16 GB of RAM.
The computation time during the simulations is always below 40 ms, allowing a
prescribed execution rate of 25Hz, with N = 30 steps in the prediction horizon.
As in Fig. 3, the results of the simulations at the Monza Circuit show excellent
tracking performance, achieving less than 0.6m of lateral error, while reaching
speeds up to 280 km/h and lateral accelerations up to 1.7 g.

Fig. 3. Lateral and longitudinal tracking performance, lateral acceleration and actua-
tors usage during a HIL simulation at the Monza Circuit.
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5 Conclusions

This paper presents a MPC controller for the integrated control of lateral and
longitudinal dynamics of a high-performance autonomous vehicle. The accuracy
of the vehicle model allows to achieve excellent results in a realistic simulation
environment, even in demanding scenarios such as driving at the limit of han-
dling. Also, the feasibility of a real-time implementation is demonstrated by the
low execution time of the algorithm on standard hardware. Future work will
focus on the experimental validation of the controller on a real-world setup.
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Abstract. Toenhance internal combustion engineperformance, this study focuses
on developing an electric valve drive systemutilizing linear actuators for intake and
exhaust valve control. The linear actuator, comprising a movable coil and a fixed
permanent magnet, operates based on the principle of the Lorentz force. Unlike
traditional magnetic circuits, this actuator employs five permanent magnets with
different magnetization directions to concentrate the flux on the coil. In this study,
multiple models with varying ratios of these permanent magnets were created
and analyzed using finite element analysis conducted with the JMAG software
to investigate the thrust characteristics during the reciprocating motion of the
actuator. The vector plot of the magnetic flux density shows that the magnetic
circuit is predominantly composed of permanent magnets. The average thrust at a
10mmdisplacement was approximately 107N in the largest model. Future studies
will aim to design actuators with increased thrust capabilities.

Keywords: Linear Actuator · Lorentz Force ·Magnetic Circuit · Engine · Intake
and Exhaust System · Electromagnetic Field Analysis

1 Introduction

The electrification of automotive powertrains is actively promoted from the perspec-
tive of reducing environmental impact. Nevertheless, internal combustion engines are
expected to continue to be used, including those utilizing biofuels or hydrogen, and
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those incorporated in hybrid vehicles. Therefore, improvements in engine performance
are necessary. Furthermore, to improve the aerodynamic performance of the entire vehi-
cle, compactness of the powertrain is increasingly required. However, enhancing perfor-
mance requires improving the combustion conditions of the engines. The combustion
state of an engine is influenced by multiple parameters of the valve-train system. Engine
valves operated by cam mechanisms can significantly affect fuel efficiency and power
output depending on the operating conditions. To address this issue, variable valvemech-
anisms have been developed [1–3]. However, conventional variable valve mechanisms
face technical challenges in achieving direct control at all engine speeds. Therefore, this
study proposes an electromagnetic valve drive system. This system employs a linear
actuator to drive the valve, allowing for continuous variations in valve lift and timing.
Consequently, the valve control can be optimized according to the engine speed, thereby
enhancing the environmental performance of the engine and suppressing backfire in the
manifold of hydrogen engines. Other studies have proposed actuators for intake and
exhaust systems. However, the seesaw-type electromagnetic valve drive proposed by
Fuse et al. has significant issues such as the inclusion of large armatures and springs,
leading to increased complexity and mass [4, 5]. Similarly, Okazaki et al. proposed a
solenoid method that did not use permanent magnets. However, when coils are used in
a stator, electrical resistance increases during high-speed motion, resulting in increased
power requirements in high-speed engines [6]. Furthermore, the linear actuator pro-
posed by Uchida et al. controls a valve with stator coils, making it disadvantageous for
high-speed motion [7]. Thus, existing linear actuators face challenges related to their
increased size, complex structure, and insufficient thrust. In light of these issues, we
propose a voice coil motor-type linear actuator utilizing the Lorentz force [8–10]. This
actuator simplifies the structure using a coil in the mover and achieves high responsive-
ness through operation at low AC frequencies. The voice coil motor type is particularly
suitable for position control, enabling highly precise operation. The motion of the valve
being a short reciprocating movement, the influence of the coil wiring on the movement
of the mover is considered minimal. Moreover, a direct-drive system facilitates precise
operation. This study focuses on the issues of actuator enlargement and the associated
increases in volume and mass that arise when generating the thrust necessary for engine
valve operation.Automotive engines face significant spatial constraints, necessitating the
use of small actuators to drive the valves. To address this problem, we aimed to enhance
the thrust per unit volume of the actuator at the foundational stage and prototype three
models. These models vary the ratio of the permanent magnets within the actuator to
examine their impact and evaluate the thrust characteristics through electromagnetic
field analysis.

2 Enhancing Thrust Density with Dual Halbach Array

We applied a dual Halbach array to the linear actuator to enhance the thrust per unit
volume. Figure 1 shows a schematic of the configuration of a dual Halbach array. This
figure depicts the arrangement of the permanent magnets and coils, with the magnetiza-
tion directions represented as N-S. By placing permanent magnets as shown, a magnetic
circuit can be formed solely with permanent magnets, avoiding the generation of large
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external magnetic fields. This configuration reduces the yoke volume required for the
magnetic circuit formation, thereby decreasing the overall volume of the actuator. Previ-
ous studies conducted electromagnetic field analyses onmodelswith dualHalbach arrays
using three-dimensional computer-aided design software to investigate themagnetic field
and thrust characteristics. The magnetic flux generated by the permanent magnets did
not sufficiently intersect the coils orthogonally, resulting in a thrust of approximately
48.8 N, thereby limiting the performance of the actuator to low engine speed operations
[11]. To address this, we developed three new models, maintaining the same external
dimensions as the previous model (100 mm in diameter and 100 mm in height), but
varying the ratio of the permanent magnets. Figure 2 shows a schematic of the newly
prototype linear actuator. These actuators consist of permanent magnets and coils, with
the coils serving as the mover and the permanent magnets serving as the stator. When
electric current passes through the coils, the Lorentz force drives the coils in the axial
direction, as indicated in the figure. Five permanent magnets magnetized in the same
direction but with different orientations were arranged to concentrate the magnetic flux
on the coils. Figure 3 shows a cross-sectional view of the actuator. As shown, the widths
of the permanent magnets on either side of the coil (W1) and the outermost permanent
magnets (W2) varied. W2 was reduced from 10 mm to 0 mm in 5 mm increments, with
a corresponding increase in W1’s width. The dimensions for each model are: Model A
with W1:9.5 mm, W2:10 mm; Model B with W1:12 mm, W2:5 mm; and Model C with
W1:14.5 mm,W2:0 mm. The three models were compared and analyzed. The analytical
conditions are listed in Table 1. We used a neodymium-sintered magnet, NMX-S52, for
permanent magnets, and the temperature was set at 20 °C. The displacement of the coil
(mover) was set to 10 mm, with a displacement of 1 mm every 0.1 s, resulting in one
reciprocating motion over 2 s. The coil windings were set at 461 turns to maintain a fill
factor below 45%, and the coil resistance was set to 1 � with a power supply voltage
of 5 V, ensuring a current density below 10 A/mm2. We applied 5 V from 0 to 1 s to
measure the thrust during the upward movement from 0 to 10 mm, and −5 V from 1.1
to 2 s to evaluate the thrust during the downward movement from 10 to 0 mm. Based
on these conditions, we conducted a transient response analysis using the finite element
method. We used the electromagnetic field analysis software JMAG to investigate the
thrust characteristics during the reciprocating motion of the mover.

Fig. 1. Dual Halbach array applied to linear actuators.
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Fig. 2. Schematic of the linear actuator.

Table 1. Analysis conditions.

Parameters Values

Voltage 5 V

Coil Resistance 1 �

Displacement per step 1 mm

Mover displacement 10 mm

Number of coil turns 461

Copper wire diameter 0.8 mm

Fig. 3. Linear actuator dimensions

3 Lorentz Force Density and Thrust Analysis Results

The contour plot of the axial Lorentz force density acting on each model’s coil and the
vector plot of the magnetic flux density over the entire actuator are shown in Fig. 4. The
axial Lorentz force density on the coil increased from model A to model C. Comparing
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the magnetic flux near the coil, model A exhibited a predominantly axial flux, whereas
model C showed an increase in flux intersecting the coil vertically.

Consequently, the Lorentz force density reveals that while most of the coil in model
A experiences a Lorentz force density of 0.5 × 106 N/mm2, regions indicating a 1.5 ×
106 N/mm2 Lorentz force density increase inmodelsB andCas themagnet ratios change.
Figure 5 shows the average thrust of the moving coil for each model, with the vertical
axis representing the average thrust and the horizontal axis denoting the model names.
The coils, which are the movers in eachmodel, ascend from the 0mm point to the 10mm
point, stop at the 10 mm point, and then descend back to the 0 mm point. Figure 5 shows
the average absolute values of each displacement point during this reciprocating motion.
Notably, model A exhibited an average thrust of approximately 68.6 N, while models
B and C yielded approximately 84.8 N and 107 N, respectively, indicating a difference
of approximately 38.4 N between models A and C. This discrepancy is attributed to
the flux density being perpendicular to the current flowing through the coil, resulting
in a low Lorentz force density in Model A. By eliminating the permanent magnets at
the ends of the dual-Halbach array (as shown in Fig. 1) and increasing the volume of
the permanent magnets sandwiching the coil, we achieved an improved thrust per unit
volume. At a cam actuation angle of 250° and a displacement of 10 mm, the engine
rotational speeds corresponding to the thrust of models A, B, and C were approximately
5987, 6351, and 6838 rpm, respectively. Despite having the same volume, adjusting the
permanent magnet ratios resulted in a maximum difference of 851 rpm in the engine
rotational speeds each model could accommodate.

Fig. 4. Plot of Lorentz force density vs. magnetic flux density.
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Fig. 5. Average thrust of each model.

4 Conclusion

In this study, we developed three linear actuator models with varying ratios of permanent
magnets by applying a dual Halbach array to improve the thrust per unit volume. These
models were compared and analyzed using electromagnetic field analysis. The results
revealed that reducing the permanent magnets at both ends of the dual Halbach array and
increasing the volume of the other permanent magnets effectively enhanced the thrust.
Specifically, the maximum thrust was achieved by eliminating the permanent magnets
at both ends and increasing the number of permanent magnets at the ends of the coil.
Future investigations will focus on further enhancing the thrust by exploring different
ratios of permanent magnets. When we are able to prototype a more efficient actuator,
we plan to make a detailed comparison with standard valve and cam mechanisms to
determine their performance and energy-saving advantages and limitations.
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Abstract. This paper presents a comprehensive analysis of experimen-
tal data on drifting maneuvers, using vehicle data collected by Stanford
University with a professional driver. Vehicle dynamics during drifting,
characterised by high sideslip angles and countersteering, are examined.
By using a nonlinear single track model with nonlinear tires, this study
compares real-car data to simulated models within a phase-plane frame-
work. It also explores the application of saddle-node bifurcation theory
to understand the abrupt changes in vehicle behaviour during drifting.

Keywords: vehicle dynamics · drifting · phase-plane · experiments

1 Introduction

The study and analysis of drifting maneuvers gives relevant information about
vehicle attitude when negotiating a turn in the nonlinear range of tyre charac-
teristics. Drifting is commonly referred to as an unstable cornering condition,
associated to large vehicle sideslip angles and countersteering [1]. Maintaining
the control of the car in such situations is very challenging, so that only profes-
sional drivers are able to cope and even manage this vehicle behaviour. Among
others, the saddle-node bifurcation theory - often applied in nonlinear dynamics
and mathematics - is a useful tool to examine the sudden and abrupt changes
in vehicle behavior during drifting maneuvers [2].

Several papers deal with vehicle drifting and focus on control strategies to
stabilise it [3]. Voser et al. [4] propose a steering controller for autonomously
performing high sideslip manoeuvres through a nonlinear single track model-
based controller. Stanford University’s vehicle dynamics group combines drifting
control, path tracking and brake-based speed control [5]. Edelmann et al. [6]
develop a driver model able to compute the necessary driver inputs to keep the
vehicle in a large sideslip manoeuvre.

This work aims at giving a thorough and exhaustive analysis of experimen-
tal data concerning drifting manoeuvres, performed by professional driver Ken
Gushi and collected by Stanford University, using the electric DeLorean proto-
type MARTY [7]. Real-car data are compared to a simple nonlinear single track
model, by visualising vehicle states in a phase plane framework. Moreover, the
relationship between drift and saddle-node bifurcation phenomenon is discussed.
c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 22–28, 2024.
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Fig. 1. (a) Schematic of the single track model. β is the vehicle sideslip angle. (b) Axle
characteristics, with the rear one depicted for different values of Fxr.

Table 1. Main vehicle and tire parameters.

Parameter Symbol Value Parameter Symbol Value

Mass m 1700 kg Front cornering stiff. Cαf 75 kN/rad

Yaw moment of inertia Izz 2385 kg m2 Rear cornering stiff. Cαr 275 kN/rad

COG to front axle dist. a 1.392 m Front friction coeff. μf 0.95

COG to rear axle dist. b 1.008 m Rear friction coeff. μr 0.85

2 Vehicle and Tire Model

Figure 1a shows the used 3-degree-of-freedom (dof) single track model. The vehi-
cle state includes longitudinal velocity, u, lateral velocity, v, yaw rate, r:

u̇ =
1
m

[
−Fyf sin(δ) + Fxr

]
+ vr (1)

v̇ =
1
m

[
Fxf sin(δ) + Fyf cos(δ) + Fyr

]
− ur (2)

ṙ =
1

Izz

[
a
(
Fxf sin(δ) + Fyf cos(δ)

) − bFyr

]
(3)

where Fyf and Fyr are the front and rear lateral forces, Fxr is the rear lon-
gitudinal force, δ is the steering angle at wheel. Since the experimental vehicle
MARTY is rear wheel drive and the driver does not brake, the front longitudinal
force Fxf = 0. Symbols and values of other relevant parameters are in Table 1.
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Fig. 2. v-r-u phase portrait. Purple and red curves are trajectories of the 3-dof and 2-
dof systems, respectively. Blue and black arrows are vectors tangent to the trajectories
of the 3-dof and 2-dof systems. Yellow diamonds are unstable equilibria for the 2-dof
system, for various u. The yellow triangle is an unstable equilibrium of the 3-dof system.

Lateral forces are modelled using the slip Fiala tire model. For a generic tire:
⎧
⎪⎨
⎪⎩

Fy = Cα tan α − C2
α

3Fy,max
| tan α| tan α +

C3
α

27F 2
y,max

tan3 α, |α| ≤ αs

Fy = Fy,maxsgn(α), otherwise
(4)

where Cα is the axle cornering stiffness and Fy,max is the maximum available
axle lateral force, calculated using the friction circle theory:

Fy,max =
√

(μFz)2 − F 2
x (5)

where Fz is the vertical load and μ the friction coefficient. Kinematic equations
define front and rear tire slip angles αf = δ−arctan

(
v+ar

u

)
, αr = − arctan

(
v−br

u

)
,

while αs is the maximum slip angle beyond which the tire starts to slide: αs =
arctan

( 3Fy,max

Cα

)
. The axle characteristics are shown in Figure 1b.

3 Phase Plane and Space Representation

The dynamics of the vehicle model may be effectively represented via three-
dimensional u-v-r phase portrait. The derivatives of the state variables are com-
puted point-wise from equations of motion (1) (2) and (3). Hence, for each
point (u0, v0, r0) a vector t composed by the three state derivatives is associ-
ated, t = v̇ v̂+ ṙ r̂+ u̇ û, where v̂, r̂ and û are the unit vectors of the three axes
of the graph. t defines the direction of vehicle state’s time evolution. The same
may be done for the 2-dof case, obtaining a 2-dimensional vector t2 defined by v̇
and ṙ for a given u. Since in both 2 and 3-dof systems v̇ and ṙ are computed by
solving equations (2) and (3), the projections of 3D vectors t on a v − r plane
coincide with the directions of 2D vectors t2. This is in line with the results in
[8]. In this work equilibrium curves may be distinguished in a v − r − u phase
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Fig. 3. (a) Trajectory and wheel orientation; (b) Time history.

space, Fig. 2, which are composed by the equilibrium points of v−r phase planes
computed at every vehicle speed (for fixed driver inputs). One relevant conse-
quence is that equilibria of the 3-dof system are located on equilibrium curves,
since they are constrained by the same lateral and yawing motion equations.
Moreover, even if 2D equilibria cannot be classified as equilibria of the 3-dof
system as well, v̇ and ṙ are zero in correspondence of equilibrium curves, and
2D and 3D trajectories behave similarly in their neighborhood.

On this basis, both 3D and 2D portraits are exploited for analysing experi-
mental data and relate actual vehicle states to the studied vehicle model.

4 Experimental Data and Drift Phases

For space constraints, a single representative maneuver is analyzed. Figure 3
shows the vehicle path and the orientation of the wheels, along with relevant
data. Graphs are split in 3 phases: preparation, transient and drift. As soon
as the driver countersteers (end of the preparation phase) vehicle states evolve
(transient) to reach the condition of a (quasi) steady-state manoeuvre (drift),
with large β, steering angle oscillating around 25 deg and longitudinal force
around 5.6 kN. It is interesting to note that: i) while the steering angle sign
changes, the sign of the yaw rate does not; ii) both lateral velocity and yaw
rate are kept almost constant by the driver, justifying the hypothesis of (quasi)
steady-state; iii) the longitudinal velocity is also almost constant, even though,
as discussed in previous section, that is not strictly required to drift.

5 Drift Equilibrium Analysis

Figure 4a presents the actual vehicle state in a 3D phase space fashion. It is
compared to saddle equilibria of the 2D system, computed for steering angle
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Fig. 4. (a) 3D portrait of the actual vehicle state evolution; (b) v-r phase plane (top)
just before saddle-node bifurcation and (bottom) at the beginning of controlled drift.

and rear traction force equal to their mean values in the drift phase. It can be
appreciated that the driver actively controls the vehicle stability and, in doing so,
he keeps the vehicle in the neighborhood of the black curve. Figure 4b compares
the phase plane of the system just before bifurcation [1] (4.056 s, three equilibria)
and at the beginning of the controlled drift (6.000 s, only one equilibrium). The
actual state of the vehicle is close to the stable-normal turn equilibrium [1] in
the preparation phase, while it gradually moves toward drift after bifurcation.

Figure 5 shows that the time instant of bifurcation and the one the driver
countersteers are very close, endorsing the goodness of the nonlinear single track
model. When the steering rate changes sign (beginning of the transient), the
driver has quickly brought rear traction to the limit, and he then maintains it
for a while. This is probably done by the driver to maximise the yaw moment
resulting on the vehicle, favouring the entrance in a drifting condition (with
pretty much all the grip used longitudinally, equation (5) is ≈ 0). The procedure
followed by the driver in the transient is then dictated by the need to stabilise
the vehicle and it has a similar pattern to the one described in [9].

Another relevant insight is that yaw rate of the controlled drift is comparable
to the one at the beginning of transient. Since it is a quasi-steady-state condition,
the manoeuvre can be classified as an almost constant radius one. An important
application of this would be autonomous drifting, where a vehicle is asked to
carry out a turn of predetermined cornering radius , or the implementation of
drift as a strategy to minimise lap-time (e.g. in Rally).
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Fig. 5. Analysis of the drifting procedure. v and r are compared to 2D equilibria at
each time instant with the nomenclature in [1], note the trends before/after bifurcation.

6 Conclusion

The paper provided a comprehensive understanding of the dynamics involved in
vehicle drifting manoeuvres, emphasizing the critical role of saddle-node bifur-
cation theory in interpreting these complex scenarios. The proposed analysis,
grounded in both experimental data and simple yet insightful models, highlights
the intricate interplay between vehicle control, tire dynamics, and driver inputs
during drifting. This could lead to innovations in vehicle safety and performance.
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Abstract. It is known that the rolling resistance decreases with increas-
ing tire temperature. If the tires could be heated to a high temperature,
the rolling resistance’s energy loss could be reduced. The question arises
whether the reduced rolling resistance energy consumption overcomes
the energy required to heat the tire.

This paper investigates the effects of external heating and improved
tire insulation theoretically. The results indicate that external tire heat-
ing can be beneficial only if the heat used is waste heat, generated from
a heat pump or similar with a coefficient of performance greater than
one or taken from the grid.

Keywords: Rolling resistance · Tire temperature · Modeling

1 Introduction

Rolling resistance is impacted by the tire temperature mainly through the hys-
teresis losses that occur during the repeated compression-decompression of the
rubber in a rolling tire. This loss energy will end up as heat in the tire. As the
tire’s temperature increases, the rolling resistance decreases. Rolling resistance
is defined as the amount of mechanical energy converted into tire heat for a unit
distance, according to [1]. From a tire perspective, this is a convenient definition
since tire temperature can be measured and easily quantified. However, from a
vehicle energy consumption perspective, this definition is not always adequate
since there exist more energy losses related to a rolling vehicle, such as displace-
ment of snow or water on the road, compression of soft road surfaces, and losses
in suspension due to road unevenness.

This paper investigates the impact of tire temperature on rolling resistance in
general and the potential energy consumption gains from external tire heating in
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particular. To analyze the effect on rolling resistance energy consumption from
tire heating, a dynamic model is needed. Nielsen et al., [2], has developed such a
model for the rolling resistance. This model uses a function of the tire tempera-
ture and a deviation between the current vehicle speed and a steady-state vehicle
speed to determine the rolling resistance. The tire temperature is dynamically
modeled, with the change rate being linear in the deviation between the current
temperature and a steady-state temperature. From [2], it can be deduced that
tire temperature is a key parameter for determining rolling resistance. Another
interesting finding by [3] is that the shoulder temperature in steady state is
close to the inflated air temperature within the tire. In [2], where their model
is shown to perform well for tests a given truck in given conditions. This fact is
used to motivate only one lumped state to describe the tire temperature. This
radically simplifies the model. Furthermore, in [4,5], a relation between rolling
resistance and tire temperature is established. However, there are no attempts
to investigate if external heating of tires would be beneficial.

The main scope of this paper is to use a simplified dynamic tire temperature
and rolling resistance model to investigate the impact of external tire heating
and if pre-heating of truck tires can be used to extend vehicle driving range. The
rolling resistance models are based on the works of [2,4], and the definition of
rolling resistance from [1] is used.

2 Method

2.1 Effects from Tire Heating on Rolling Resistance

The hysteresis loss of a tire, the main contributor to rolling resistance, is highly
dependent on the tire temperature. In [4], the rolling resistance coefficient, Crr,
is described as being an exponential function of the tire temperature, Tt. The
dependency on the vehicle speed, vv, is described as a shift in Tt while the
dependencies on other parameters like tire pressure, Pt, road surface roughness,
rr, and tire wear, Wt, are not explicitly described. In our work, Crr is modeled
in the same way, i.e.:

Crr(Tt) = c0 + c1e
− Tt+ΔTt(vv)

c2 , (1)

where c0, c1 and c2 are constant coefficients and

ΔTt(v) = Th + (T0 − Th)(2 − 2
1 + e−c3vv

), (2)

describes the shift in Tt as a function of vv, where c3 is a constant coefficient, Th

the tire temperature shift at infinite vehicle speed, and T0 the tire temperature
shift at zero vehicle speed.

With the chosen definition of rolling resistance, [1], the tire heat power gen-
erated by the rolling resistance, Prr, at time t can be described by:

Prr(t) = FzCrr(t)vv(t), (3)
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where Fz is the total normal force of all tires, and vv is the vehicle speed.
Since this is the total tire heat generated from the rolling resistance, a dynamic
temperature model (similar to [2]) can be developed according to:

dTt

dt
=

Prr(t) − Pdiss(t) + Pext(t)
mtct

, (4)

where Pdiss is the heat dissipation from the tire to the ambient air, road surface,
and rim, mt is the tire’s mass, ct the heat-specific capacity of the tire material,
and Pext is externally added heat power.

Assuming that the rim, the road surface, and the ambient air all have the
same temperature, Ta, the heat dissipation can be described as:

Pdiss = cd(Tt(t) − Ta(t)), (5)

where cd is a coefficient determining the total heat dissipation of the tire.

2.2 Tire Temperature and Rolling Resistance Coefficient over Time

Equations (3), (4) and (5) can be used together with the current tire temperature,
Tt(0), to predict the tire temperature going forward, Tt(t):

Tt(t) = Tt(0) +
∫ t

0

Prrh(τ) − Pdiss(τ) + Pext(τ)
mtct

dτ (6)

A possible way of solving (6) is to discretize the problem into N , sufficiently
small steps, which gives:

Tt,0 = Tt(0), (7a)

Tt,N = Tt(t), (7b)

ts =
t

N
, (7c)

Tt,i+1 = Tt,i + ts
Prr(Tt,i) − Pdiss(Tt,i) + Pext(τ)

mtct
, (7d)

Tt,N = Tt,0 +
N∑
i=0

ts
Prr(Tt,i) − Pdiss(Tt,i) + Pext(τ)

mtct
. (7e)

Equation (7) can now be used in a forward simulation to predict Tt(t). By
inserting Tt(t) into (1), Crr(t) is given which is needed to compute the next value
of Prr(Tt,i). The parameter values used for the rolling resistance coefficients are
taken from [4]. All parameter values are given in Table 1.
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Table 1. Parameter values

Parameter Value Parameter Value Parameter Value

c0 3.09 [kg/ton] c1 15.21 [kg/ton] c2 0.0243 [◦C−1]

c3 0.0232 [h/km] T0 69.2 [◦C] Th −25.7 [◦C]

m 40000 [kg] g 9.81 [N/kg] mt 600 [kg]

ct 1880 [J/(kg◦C)] cd 1320 [W/◦C]

3 Results

In Fig. 1a, the rolling resistance power, Prr(Tt) is plotted towards Tt using Eq. 1
when running in 80 km/h together with heat dissipation power curves for four
different ambient temperatures. The crossings between the Prr curve and the
heat dissipation curves give the steady-state rolling resistance power and steady-
state Tt. This shows that one of the main reasons why rolling resistance tends
to increase when the ambient temperature is decreased is that the tires will be
colder.

In Fig. 1b, the effect on steady-state rolling resistance from different cd is
shown. It should be noted that a lower cd gives lower steady-state rolling resis-
tance. This means that running on road material with low heat conductivity, like
packed snow, may give lower rolling resistance than running on road material
with high heat conductivity. It also means that if tires can be heat insulated, it
is likely to result in a significant reduction in Prr.

Fig. 1. Rolling resistance and heat dissipation power.

The vehicle speed dependency in the used model is described as a shift in
tire temperature. Figure 2a illustrates how Crr is changing with tire shoulder
temperature for three different vehicle speeds. The black stars denote steady-
state points when cd is high, and the green stars do the same thing but when
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cd is low. The speed dependency of rolling resistance in steady-state seems to
decrease with decreasing cd.

In Fig. 2b, Crr as function of Tt is plotted for three different values of vv
together with heat dissipation curves for high and low values of cp. The depen-
dency on Tt for Prr is reduced with vv which also means that the impact from
cd on steady-state rolling resistance increases with vv.

Fig. 2. Crr and rolling resistance power at different vehicle speeds

The total vehicle range is affected by the tire temperature at the start of a
trip. If assuming that the vehicle has a total of 100 kWh of battery capacity that
is dedicated to rolling resistance energy consumption, the vehicle range can be
computed from forward simulations of the rolling resistance energy consumption
from (6). In Fig. 3a, the vehicle range for different initial tire temperatures are
plotted for three different cd at Ta = 20◦C. The solid lines denote the gross
effect of tire heating, i.e., the range if the tires are pre-heated using grid energy.
The dashed lines denote the net effect, i.e., if the tires are heated using battery
energy of the vehicle. As can be seen, vehicle range is always benefiting from
pre-heating from the grid. The effect is, however, not so large that it overcomes
the loss in the range from using battery energy for the tire heating, which can
be seen from the fact that the range for the net curves decreases with tire start
temperature. This figure also shows that vehicle range is highly affected by cd.

In Fig. 3b, the effect of tire heating at different ambient temperatures is
illustrated. The lines are almost parallel, which means that tire pre-heating is
likely to be as effective independently of ambient temperature. However, the
curves are not completely linear. The vehicle range is growing slightly slower
than linear in tire start temperature which means that tire pre-heating will be
a little bit less effective for each degree Tt is increased.

4 Discussion and Conclusions

Overall, the benefit of adding external tire heat in terms of decreased rolling
resistance energy will always be positive since rolling resistance energy con-
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Fig. 3. Vehicle range dependency on initial tire temperature

sumption decreases monotonically with tire temperature. However, the gain
in decreased rolling resistance energy consumption from external heating will
always be smaller than the amount of external heat needed since some of the
external heat will be dissipated to the surroundings. This means that external
tire heating will never be beneficial unless the energy used comes from waste
heat or is generated from a heat pump with a coefficient of performance greater
than one. Tire pre-heating may still be e a good idea when the vehicle is plugged
into the grid utilizing cheap electricity or if vehicle range is vital to fulfill a
transportation mission. To be able to avoid an extra charging stop is often more
valuable than the cost of extra energy needed for tire heating. Note, though,
that all computations are based on the assumption that the tires can be heated
without any loss in energy, which is unrealistic. Hence, in reality, the dashed
lines of Fig. 3 will be pointing even steeper downwards indicating higher total
net energy loss.

Tire heating may be beneficial if there is a surplus in electric power, for
example, when going downhill with a full battery, if waste heat can be utilized
for heating the tires, or if using heat from a heat pump with a sufficiently high
coefficient of performance.
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Abstract. Towards the transition to automated driving, lateral stability of the
vehicle represents a key requirement to guarantee the safety of passengers and
vulnerable road users, especially during emergency operating conditions where
nonlinearities arise. The present paper aims at investigating the effect of road
banking angle on vehicle plane motion stability. To perform this analysis, a pure
lateral nonlinear double track model is numerically derived for an oversteering
vehicle. Lateral load transfer and its distribution among the axles are included
for exploiting the tyre saturation region. The stability analysis is conducted by
searching for the vehicle steady-state conditions and deriving the linearised equa-
tions around the equilibrium points. Moreover, the phase-plane plot is adopted
to draw the states trajectories and to identify potential unstable regions. Finally,
the bifurcation analysis as function of the road banking angle is investigated to
highlight possible change of the phase portrait topology. The results show that a
saddle-node bifurcation may occur when the vehicle is negotiating a certain level
of bank road angle, affecting the vehicle yaw stability region.

Keywords: Stability analysis · nonlinear vehicle dynamics · bifurcation ·
phase-plane analysis

1 Introduction

Road safety represents a primarily concern when dealing with the standard and auto-
mated driving. Reducing dangerous situations for passengers and vulnerable road users
is strictly related to understanding the vehicle limits and its stability, especially when
the vehicle is engaged in an emergency manoeuvre. The analysis of vehicle stability
under nonlinear operating conditions is a well-established topic: many authors have
investigated the limit conditions due to different inputs (such as the vehicle speed, the
steering wheel angle, the road friction) or vehicle parameters (such as the influence of
the position of the centre of mass or the front/rear roll stiffness distribution) [1–3]. As
shown in these works, the main cause of vehicle instability lies in the saturation of the
rear axle cornering characteristics, which is a typical behaviour of oversteering vehi-
cles. This condition leads to the presence of a couple of unstable equilibrium points,
which can be clearly highlighted on a phase-plane plot. Most previous articles focus
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their analysis on the vehicle alone, adopting the single- or double-track models, while
the authors of [4, 5] extend the analysis including driver dynamics in the set of equations
of motion governing vehicle dynamics. In particular, the authors demonstrated that, for
an understeering vehicle, the coupling of vehicle and driver dynamics can result in a
stable and unstable limit cycle above a critical speed. The attempt to extend the classic
two-states phase-plane approach is performed by the authors of [6] where they proposed
an enhanced three-state model which accounts for the longitudinal vehicle motion and
the effect of the tyre slip combination on the system stability. The phase-plane plot is an
effective tool, commonly used to investigates nonlinear systems, which allows possible
unstable regions to be described through the phase-portrait. This approach makes it pos-
sible to determine the stability boundary of the vehicle, which can be proficiently used
to set constrains for control purposes, as done by the authors of [7] where phase-plane
analysis is used to define the boundary of stability, in term of sideslip angle and sideslip
velocity. Moreover, different phase-plane types have been used throughout the literature,
as well-explained by the survey on lateral stability criterion presented in [8], where a
classification of the different phase-plane types is presented and qualitatively evaluated
in terms of measurability, relevance, sensibility, and controllability.

Nevertheless, the main literature studies are limited to bifurcation analysis on flat
and horizontal road surfaces, whereas the effect of the banking of the road on stability
is not deeply investigated. Thus, this paper aims at exploring the effects of the road
banking angle in the nonlinear operative conditions, searching for possible stability limits
and bifurcations through a classic phase-plane analysis on the yaw rate and sideslip
angle plane. The paper is divided as follows. In Sect. 2 the vehicle model and the
main hypothesis are presented. Moreover, the methodology to determine the presence
of fixed points is discussed. Section 3 depicts the phase-portrait starting from the a grid
of initial conditions to the vehicle subject to different levels of bank angle. Finally, some
conclusion of bifurcation analysis are derived in Sect. 4.

2 Model and Test Workflow

2.1 Vehicle Model

In this paper, a nonlinear vehicle model negotiating banked turns is under investigation.
The model is a double-track vehicle (see Fig. 1) which is characterised by two degrees
of freedom (lateral and yaw motion). The following assumption are made:

• The vehicle body is assumed to be rigidly connected to the axles, thus roll and pitch
motion are neglected.

• Vehicle velocity V is considered constant and the effect of tyre longitudinal forces
on vehicle dynamics is neglected.

• Lateral load transfers, i.e. the variation of the vertical tyre forces while cornering, are
modelled considering a constant distribution factor kF/R between the front and rear
axle is assumed equal to 40:60.

• The wheels are always in contact with the ground; thus the rollover dynamics is
neglected.
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• The effect of road banking is modelled as a constant component of the weight force
acting along the vehicle y-axis direction and applied to the centre of gravity. At the
same time, the component of the weight force in the direction perpendicular to the
road plane is reduced.

• The driver dynamics is not included in the set of equation of motion thus, the analysis
is conducted at fixed steering angle.

• Tyre-contact forces are computed using the semi-empirical steady-state Pacejka Tyre
Magic Formula [9]

Fig. 1. Double-track nonlinear vehicle model scheme: on the left xGyG plane, on the right YZ
plane.

2.2 Equilibrium Points Search and Discussion

This section presents the method used to search for and discuss the presence of single
or multiple steady-state conditions and the bifurcation analysis. From the theory of the
nonlinear dynamics, a generic nonlinear system may exhibit more than one equilibrium
point (or fixed point). In the specific case of vehicle plane motion (without considering
the driver dynamics), the presence of more than one fixed point deals with oversteering
vehicles [3].

Figure 2 synthetizes the adopted workflow to find and to discuss the model steady-
state conditions. The procedure has been entirely developed inMATLAB/Simulink envi-
ronment by exploiting the FSOLVE function, which has the objective of searching for the
stationary solutions. A nonlinear vehicle Simulink model is set with the initial condition
guess point x0,start and the input parameters (vehicle velocity V , steering wheel angle
δsw, friction coefficient μ and bank angle αT ). The tyre lateral forces are gathered from
the simulation results to a set of nonlinear equation ofmotion checking the presence of an
equilibrium condition on lateral and yawmotion. If a solution x0 = [β0, r0] is found, the
equations of motion are linearised around that equilibrium point, and, to assess stability
in its neighbourhood, the trace and the determinant of the Jacobian matrix are com-
puted. This procedure allows to classify the nature of the fixed point and to determine
its stability.

The bifurcation analysis on road banking angle is performed by repeating the
workflow on the following set of banking angles: [−45°, 45°].
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Fig. 2. Adopted workflow for the steady-state solutions and stability discussions.

3 Phase Plane Numerical Results

In this section the results from the bifurcation analysis and the numerical integration
of the equation of motion of the model are presented. In this analysis an oversteering
vehicle model is tested in all its operative working range, using the phase-plane (β − r)
diagram. The states are represented by the vehicle sideslip angle β and the yaw rate r.
The vehicle geometrical and inertial properties are listed in Table 1.

Table 1. Vehicle data

Parameter Value

Mass [kg] 1600

Yaw moment of inertia [kgm2] 2860

Wheelbase [m] 2.6

Front axle distance to CoG [m] 1.56

Rear axle distance to CoG [m] 1.04

Front and rear trackwidth [m] 1.54

Stiffness distribution factor kF/R [-] 40:60

The model is numerically integrated to draw the phase-portrait at a set velocity V ,
steering wheel angle δsw and banking angle αT . The proposed analysis investigates the
steady-state solution when the vehicle is running on a banked road at 100 km/h with
steering wheel angle null. The vehicle model is integrated by setting a grid of initial
conditions (β0, r0) with a span of 5°/s for the yaw rate and 5° for the sideslip angle
respectively. In the following results the vertical load acting on each wheel is always
higher than zero, thus rollover issues are not triggered.

Figure 3 depicts the phase-portrait obtained from the numerical simulationwith three
different levels of banking (0°, 20°, 41°). The blue lines represent the states trajectories
while the red circle, diamond and star are the three steady-states solutions obtained with
the explained workflow. The circle is a stable focus, while diamond and star are two
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saddle-points. It is worth noting that by increasing the road banking angle, the unstable
node approaches the stable one: after 40° of lateral slope a saddle-node bifurcation
occurs: beyond this value no more stable region is available.

Fig. 3. Phase-portrait on β − r plane of the nonlinear vehicle model running at 100 km/h with
null steering wheel angle and three different level of banking angle (0°, 20°, 41°).

Figure 4 depicts the states trajectories obtained for a value of αT equal to 20° in
combination with a third axis represented by the Load Transfer Ratio (LTR), which is a
quantity used to detect and predict the rollover risk [10]. LTR is defined as the relative
vertical force on tyres between the right side (Fz,R) and left side (Fz,L) of a vehicle
(Eq. 1):

LTR = Fz,R − Fz,L

Fz,L + Fz,R
(1)

Values lower than one indicates a normal force greater than zero for all the wheels.
In this condition, tyres are always in contact with the ground.

Fig. 4. Phase-plane using a third axis represented by the LTR values.

The numerical results show the presence of a clear bifurcation at a certain lateral
slope value αT .

It should be noted that the angle of banking that corresponds to the bifurcation is
well above the common values encountered when a vehicle is travelling on normal roads.



Bifurcation Analysis of a Nonlinear Vehicle Model on Banked Road 41

However, looking at the distance between the stable equilibrium point (circle in Fig. 3)
and the point closest to the stability boundary (star) in the phase plane graph, it can
be seen that the progressive increase in transverse road inclination reduces the stability
margin of the vehicle.

4 Conclusion

The conducted analysis of the vehicle stability in its nonlinear working points is crucial
to define possible avoidable conditions, such as unstable steady state turning conditions.
Albeit the bifurcation due to the steering angle and velocity is well established in the
literature the analysis on lateral slope is not well investigated. To this aim, a nonlin-
ear double track model has been developed and tested in different banked roads. The
developed methodology revealed to be well suited to find the steady-state equilibrium
conditions and, after the linearisation process, their stability discussion. A saddle-node
bifurcation appears at certain level of lateral slope angle, since stable and unstable mani-
folds collides into a saddle-point. Further improvements will be devoted to the inclusion
in the set of the equation the driver dynamics, roll dynamics and the wheel detachment
dynamics.
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Abstract. This paper presents a novel Regenerative Brake Blending
(RBB) strategy for an electric hypercar, framing it as a multi-objective
problem. These include thermal and lifespan management of various
components plus maximizing energy recovery. We begin by mathemati-
cally modelling each subsystem of the RBB layout. Then, we define an
acausal offline optimal control problem to establish a benchmark solu-
tion; subsequently we propose a causal real-time control strategy inspired
by the Equivalent Consumption Minimization Strategy (ECMS). The
proposed real-time strategy shows a performance loss of 1.6% com-
pared to the benchmark underscoring the efficacy of the proposed RBB
strategy in maximizing energy recuperation while considering for brake
temperatures.

Keywords: Regenerative Brake Blending · Pontryagin’s Minimum
Principle · ECMS · Electric Vehicles

1 Introduction

Efficient energy management in electric vehicles (EVs) is essential for enhancing
performance and extending range. Regenerative braking, which captures kinetic
energy during deceleration and converts it into electrical energy, is a promising
solution. This technology is especially critical for electric hypercars with large
power outputs, requiring advanced strategies to manage energy recovery and
optimize dynamical performance of the overall vehicle.

Regenerative Brake Blending (RBB) consists in the allocation of the braking
force between electric motors and friction brakes. The allocation impacts several
and conflicting aspects: energy recuperation, battery stress, and friction brakes
temperature, to name the most important ones. RBB usually encompasses two
primary allocation levels: first-level allocation, typically front/rear-based to com-
ply with European ECE regulation 13H [1], and wheel-level allocation, aiming
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to optimize energy, thermals, degradation considerations (for both brake and
battery) in a blended strategy.

RBB at wheel level can be categorized into two main types: static and
dynamic allocation methods. Static strategies, such as the serial blending strat-
egy, rely on instantaneous efficiency maps of motor, inverter, battery and consist
in instantaneously allocating all braking force to the electric motor (to maxim-
ixe energy recuperation) and fullfilling the braking request (if necessary) with
the friction brakes; these methods have been widely explored in literature and
industrial applications [4,7] and represent the state of the art. However, they are
based on heuristic-driven approaches, often resulting in suboptimal outcomes.

In contrast, dynamic strategies incorporate predictive aspects and multi-
objective functions, allowing for global optimality and the integration of con-
straints, system dynamics, and predictive features. Dynamic strategies have
found application in the dual problem of optimizing power split between internal
combustion engine and electric motors in hybrid vehicles [2,6,8]: acasual meth-
ods (like dynamic programming or Pontryagin’s Minimum Principle (PMP)) or
casual ones like Equivalent Consumption Minimization Strategy (ECMS) have
yet to be explored for RBB optimization in both literature and industrial prac-
tice.

Section 2 analyses the benchmark solution based on an acasual offline optimal
control problem. Section 3 introduces a real-time implementation based on the
ECMS principle and a comparitive analysis with the acasual method and the
baseline heuristic will be carried out. Finally, Sect. 4 draws conclusions about
the aforementioned RBB strategy.

2 Benchmark Regenerative Brake Blending

Theis strategy is based on a control oriented model validated on real data. The
model, schematically represented in Fig. 1, considers the main components of
the powertrain: the battery, the power electronics, motor and friction brakes.
The battery state of charge and thermal dynamics (Tbatt) are modeled [10].
Friction brakes thermal dynamics are captured with a lumped model [3] which
consists of two separate elements (disks - Td - and pads - Tc - ). Last, the electric
motor and transmission have been included in the formulation via efficiency
maps based on test bench data. Since the RBB strategy does not influence the
longitudinal dynamics, the problem can be studied with the backward facing
model approach [5].

Fig. 1. Regenerative brake blending layout.
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Given a predefined driving cycle, the brake blending problem can be framed
as an constrained minimization problem of the following cost function:

J =
∫ tf

t0

(
w1(Tbatt) + w2(T{c,d},f ) + w3(T{c,d}r) + w4(Preg)

)
dt (1)

where the optimization variables are the four braking torques (electrical front
and rear and friction front and rear). The constraints are summarized as follow:

ẋ = f(x(t), u(t), t), (2)

x ∈ [Xmin,Xmax], (3)

u ∈ [Umin, Umax], (4)

T front
req + T rear

req = T total
req , (5)

T front
req,EM ≥ T front

min,EM, T rear
req,EM ≥ T rear

min,EM, (6)

T front
req,EM + T front

req,FB = T front
req , T rear

req,EM + T rear
req,FB = T rear

req , (7)

2T front
req,EM · ωmot · ηfront + 2T rear

req,EM · ωmot · ηrear ≥ P batt
min (T ◦

batt), (8)

where (2) represents the system dynamics, (3) and (4) are the constraints on
the states and control variables, equation (5) satisfy the total negative torque
request (front plus rear), (6) limits the regenerative torque based on motors
mechanical limits, (7) fullfill the brake request at wheel level (friction brake plus
electric motor) and finally (8) limits the maximum regen torque based on battery
derating.

In J (1), the weighting functions w are used to balance the conflicting objec-
tives and to consider the nonlinear effect that temperature has on the life of
the components. By changing the shape of the weights one can give priority
to some aspects rather than others. Figure 2 shows the state trajectories for a
state-of-the-art baseline (sequential blending) and two possible tunings of the
weights: recovered energy optimization priority and battery temperature mini-
mization. The optimal control strategy outperforms the baseline serial blending
(black dotted), even when the request is to maximize energy recovery and mini-
mize brake and battery temperatures. Note that regenerative braking has a low
impact on battery temperature and that the main tradeoff is between harvested
energy and brake temperatures. This information will be used to simplify the
optimal control problem and make it implementable in real-time.
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3 Real Time Implementation

The previous optimal problem formulation assumes a known driving cycle and
is not therefore implementable on the vehicle. To address this, we took inspi-
ration from the Equivalent Consumption Minimization Strategy (ECMS) [9].
ECMS transforms a dynamic constrained optimization problem into a static
constrained optimization problem by introducing equivalence factors, which rep-
resent a trade-off between different energy sources.

Fig. 2. State trajectories comparing the results of the offline optimal problem, for
different weights, and the state-of-the-art sequential blending.

In the dual problem of power split (between internal combustion engine and
electric motors) in hybrid vehicles, the generic formulation of ECMS involves
minimizing a cost function that combines fuel consumption and electrical energy
usage. The cost function is defined as:

J = mf (t) +
∑
i

si · Pi(t) (9)

where mf (t) is the instantaneous fuel consumption, Pi(t) are the electrical power
demands, and si are the equivalence factors that convert electrical power into an
equivalent fuel consumption. To make this approach implementable on a vehi-
cle, we propose a method to tune the equivalence factors based on the co-states
behavior in a Pontryagin’s Minimum Principle (PMP) formulation [6]. By ana-
lyzing the behavior of the co-states, we can adjust the equivalence factors to
ensure that the ECMS closely approximates the optimal solution given by the
PMP. This tuning process allows the ECMS to dynamically adapt to varying
driving conditions without requiring a pre-defined driving cycle, making it prac-
tical for real-world vehicle implementation.
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Starting from the PMP insights, a formulation of the ECMS for the regen-
erative brake blending problem can be derived:

min
u

J = −Pregen(x, u) + s2 · Ṫc,front(x, u) + s3 · Ṫd,front(x, u)

+s4 · Ṫc,rear(x, u) + s5 · Ṫd,rear(x, u), (10)

subject to constraints (5, 6, 7, 8); u are the control variables (i.e., T front
req,FB and

T rear
req,FB) and si are the equivalence factors. The practical implication of the

aforementioned ECMS formulation is that whenever the vehicle applies the fric-
tion brakes for slowing down, in subsequent instances, it will utilize the electric
motors, and so the battery, to cool them instead and recharge the battery.

The qualitative results depicted in Fig. 3a show the ECMS can closely repli-
cate the offline optimal solution. The dataset used consists in two flying laps
of the Nordschleife circuit. In terms of harvested energy, the improvement with
respect to the serial blending is just 1.6%. This is an expected outcome, since the
sequential blending only aim is to maximize energy recovery. However, if we look
at the brake thermal management, we can notice that the ECMS outperforms the
state-of-the-art solution thanks to an optimal allocation of regenerative power
between electric and friction brakes. This allows to maintain the front brakes
(the most stressed ones) under the critical threshold of 750◦C even in two con-
secutive pushalaps of the Nordschleife. The pareto front illustrated in Fig. 3b
shows the quantitative results of the aforementioned results.

Fig. 3. Real-time implementation performance assesment.
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4 Conclusions

In this paper, we introduced a novel Regenerative Brake Blending (RBB) strat-
egy for electric hypercars, framing it as a multi-objective problem. The acausal
offline optimal control problem provided a benchmark solution, against which the
proposed real-time strategy, based on the Equivalent Consumption Minimization
Strategy (ECMS), was evaluated. Despite a minimal performance loss of only
1.6% compared to the benchmark, the real-time strategy demonstrated signifi-
cant efficacy in maximizing energy recuperation while managing brake temper-
atures. This underscores the potential of advanced RBB strategies in enhancing
energy efficiency and performance in high-performance electric vehicles.

Acknowledgments. We would like to thank Gianluca Savaia for his technical contri-
butions and Rimac Technology for providing the data used in this research.
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3. Göltz, S., Sawodny, O.: Simplified disc brake modeling, identification, and valida-
tion focusing on temperature influences. In: IECON 2020 The 46th Annual Con-
ference of the IEEE Industrial Electronics Society, pp. 2063–2068 (2020). https://
doi.org/10.1109/IECON43393.2020.9254389

4. Heydari, S., Fajri, P., Rasheduzzaman, M., Sabzehgar, R.: Maximizing regenerative
braking energy recovery of electric vehicles through dynamic low-speed cutoff point
detection. IEEE Trans. Transp. Electrif. 5(1), 262–270 (2019). https://doi.org/10.
1109/TTE.2019.2894942

5. Mohan, G., Assadian, F., Longo, S.: Comparative analysis of forward-facing models
vs backwardfacing models in powertrain component sizing. In: IET Hybrid and
Electric Vehicles Conference 2013 (HEVC 2013), pp. 1–6 (2013). https://doi.org/
10.1049/cp.2013.1920

6. Onori, S., Serrao, L., Rizzoni, G.: Hybrid electric vehicles energy management
strategies. Springer (2016)

7. Pennycott, A., De Novellis, L., Gruber, P., Sorniotti, A.: Optimal braking force
allocation for a four-wheel drive fully electric vehicle. Proc. Inst. Mech. Eng., Part
I: J. Syst. Control Eng. 228 (2014). https://doi.org/10.1177/0959651814531124

8. Pozzato, G., Formentin, S., Panzani, G., Savaresi, S.M.: Least costly energy man-
agement for extended-range electric vehicles: an economic optimization framework.
Eur. J. Control. 56, 218–230 (2020). https://doi.org/10.1016/j.ejcon.2020.01.001

9. Radrizzani, S., Brecciaroli, L., Panzani, G., Savaresi, S.M.: An efficiency based
approach for the energy management in hevs. IFAC-PapersOnLine 55(24), 167–
172 (2022). https://doi.org/10.1016/j.ifacol.2022.10.279, 10th IFAC Symposium on
Advances in Automotive Control AAC 2022

10. Sabatini, S., Corno, M.: Battery aging management for fully electric vehicles. In:
2018 European Control Conference (ECC). pp. 231–236 (2018).https://doi.org/10.
23919/ECC.2018.8550592

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:42023X0401
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:42023X0401
https://doi.org/10.1109/TCST.2017.2661824
https://doi.org/10.1109/IECON43393.2020.9254389
https://doi.org/10.1109/IECON43393.2020.9254389
https://doi.org/10.1109/TTE.2019.2894942
https://doi.org/10.1109/TTE.2019.2894942
https://doi.org/10.1049/cp.2013.1920
https://doi.org/10.1049/cp.2013.1920
https://doi.org/10.1177/0959651814531124
https://doi.org/10.1016/j.ejcon.2020.01.001
https://doi.org/10.1016/j.ifacol.2022.10.279
https://doi.org/10.23919/ECC.2018.8550592
https://doi.org/10.23919/ECC.2018.8550592


Regenerative Brake Blending 49

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


AMethod for Obtaining Reference Friction
Values for Validation of Road Friction

Estimation Algorithms

Mattias Hjort1(B), Fredrik Bruzelius2, Sogol Kharrazi1, and Derong Yang3

1 VTI, Swedish National Road and Transport Research Institute, 581 95 Linköping, Sweden
mattias.hjort@vti.se

2 Department of Mechanics and Maritime Sciences, Chalmers University of Technology,
41296 Gothenburg, Sweden

3 Department of Vehicle Motion and Control, Volvo Car Group, 418 78 Gothenburg, Sweden

Abstract. Data-driven development of friction estimators for passenger vehicles
is becoming popular. They rely mainly on training data to obtain an accurate esti-
mate of the current road conditions. However, reference or training data for natural
conditions containing available friction is sparse. This limits the development of
data-driven approaches for friction estimation. The current paper presents progress
in a project devoted to developing a method to use standard equipment for road
monitoring to acquire reference data for friction estimation, relevant to specific
tyres and operating conditions. Results show how amapping between existing test
equipment readings and the real experienced coefficient of friction of a car tyre
can be made.

Keywords: Tyre-to-road friction · friction measurement · friction reference
value

1 Introduction

The available tyre-to-road friction limits the motion envelope of any road vehicle and is
a hard constraint on all vehicle motion control functionality such as ABS, ESC, etc. For
autonomous vehicles, this is even more pronounced and a correct prediction of friction
ahead of the vehicle is a necessity to ensure safe operation. The current state-of-the-
art friction estimation approaches use physical models. These approaches give correct
estimates point-wise, and require special conditions to operate, leading to low data
availability (see e.g. [1] and references therein). A current trend to solve the availability
problem is to make use of data-driven approaches and machine learning. These types of
approaches rely on available training data for all conditions the car is intended to operate.
The availability of such data is currently very limited, which constrains the development
of such algorithms and ultimately also the development of autonomous vehicles. A
commonproblem is that there exists no goodmethod to continuouslymeasure a reference
value of the tyre-road friction for a car. On test tracks, with large surfaces of uniform
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friction, a full ABS brake test can be used for determining the friction. On real roads,
however, where the surface conditions may be rapidly changing, such a measurement
is in most cases impossible due to road curvature, and even more importantly, traffic
safety.

Measuring the road surface is an ongoing activity for most road administrators. The
main objective of such measurements is to monitor the conditions of road segments
and to use this information for decision-making of road maintenance. Recently, the
use of vehicles in a fleet as probes to a centralized cloud for this purpose has been
investigated.However, the establishedmethod for these types ofmeasurements is through
dedicated devices attached to a vehicle. An example of such devices can be an extra tyre
with a fixed slip ratio and a force sensor. A common aim with all these measurement
techniques, including the cloud-based ones, is to monitor the road conditions. Hence,
standard methods with special tyres are typically used.

In the current paper, the aim is to develop ameasuringmethod for the vehicle industry
that can provide them with the required reference friction data using the devices used
typically by road administrators. The use of standardized methods with measurement
devices cannot be applied directly to the problem that the vehicle industry is facing.
The friction measurements need to reflect the friction level and conditions a car would
experience to be relevant. Hence, translations between the readings from the device and
the car friction level need to be developed throughmeasurement campaigns. The purpose
of this project has been to develop a method to derive this translation with a focus on
minimizing the required measurements and additional sensors required.

2 Methodology

A commercial road friction measurement device that VCC has acquired (see Fig. 1a)
was used via test track measurements to establish the correlation between friction values
from this device and a few Volvo passenger cars on different road friction conditions. By
driving in a caravan with a car, denoted the target vehicle, the continuously measured
road friction values can then via the known correlation be transformed into reference
friction values representative of the target vehicle. Wireless communication between the
road friction device (RFD) and a target vehicle (TV) has been set up so that the reference
friction can be logged synchronously together with other sensor data in the car.

The RFD is a trailer from the Norwegian producer ViaFriction, and this particular
model is commonly used for routine friction assessment of winter roads in Sweden,
carried out by the Swedish Transport Agency. It is equipped with two measurement
wheels, one in each wheel track. Test tyres of type Trelleborg Unitester 520 were used,
which is the standard test tyre to be used for winter road frictionmeasurements according
to the method description prescribed by the Swedish Transport Agency. The wheel
load is set to 1000 N, and the measurement is supposed to be carried out at a fixed
brake slip value of 20%. Commonly, road friction equipment of this type, measuring
the longitudinal friction for a braked wheel, uses a mechanical gear system to provide a
very stable wheel slip value regardless of the road friction. This particular RFD however,
instead uses an electrical motor for each test wheel that continuously regulates the wheel
slip. It was found that the wheel slip in many cases was unstable and care had to be taken
to assure that obtained measurement data fulfilled the wheel slip requirement.



52 M. Hjort et al.

The available friction for a target vehicle equipped with specific tyres would most
easily be determined from straight brake tests on a test trackwith a homogeneous surface.
In this project therewas an opportunity to alsomeasure the available friction for a specific
tyre by using VTI’s tyre test equipment BV12. The BV12 (see Fig. 1b) is a mobile
equipment for tyre friction characterization, which can measure both longitudinal and
lateral friction slip curves of the tyres to determine the peak friction at various operating
conditions. In theory, friction models based on slip curves measured at different wheel
loads could be applied to different target vehicleswhich use the same tyre, thus expanding
the use cases for a specific tyre mapping.

To limit the number of measurements it was decided to focus only on longitudinal
brake friction. The BV12 brake slip curves are measured at constant speed, just as the
RFD friction, while a brake test with a car will comprise a speed interval. Twoweek-long
measurement campaigns were carried out on snow and ice tracks in Northern Sweden.
The three equipment were driven consecutively, laterally displaced on the test tracks to
avoid each other’s wheel paths. Measurements carried out within a time frame of 5 min
were considered to be pairwise comparable.

Three different winter tyres for the target vehicle, a Volvo XC60, were used: a
Europeanwinter tyre, aNordicwinter tyre, and a studdedwinter tyre. The test trackswere
prepared so that friction levels with the RFDwere within 0.05–0.45.Measurements were
carried out to allow for mappings at different vehicle speeds, wheel loads and inflation
pressures. An optical sensor from Teconer [2] was also used for distinguishing between
ice and snow surface in case this information would be necessary for the mapping.

The test tracks were rectangular, typically 20 m wide with a length of 600–1000 m.
The Snow tracksweremade available by the tyremanufacturer Pirelli, andwere prepared
according to their expertise to allow for repeatable tests. Tracks with different hardness
of snow were used in the purpose of covering a range of available friction. Still, snow
on these kind of tracks is generally much harder than conditions often found on the
roads, and consequently exhibit quite high friction levels. The snow hardness was in the
range of 82–90 CTI units (see ref [3] for a definition of snow hardness), and the ambient
temperature ranged from+2 to−6 °C, with the snow temperature a few degrees colder.
The RFD measured friction values varied between 0.28–0.44.

Fig. 1. The Volvo road friction device (a) and VTI BV12 tyre test equipment (b)
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The ice tracks were divided into parallel corridors, 3 m wide and 300 m long, which
could be prepared differently to allow for different preparation. A special ice-rugging
trailer with 10 studded tyres rolling with large slip angles was constructed in order to
transform a smooth ice with low friction, to rugged ice with different friction levels. In
combination with large weather variations ice surfaces with RFD friction levels in the
range of 0.05–0.45 were obtained.

3 Results

To obtain a functional translation of a brake slip curve on snow to the average friction
obtained from full ABS braking with a passenger car, unprocessed data from a previous
project [4]was analyzed. Brake tests on snowcarried outwith bothBV12 and a passenger
car for more than 40 different tyres indicate a close correlation between the slip curve
peak friction and the average ABS retardation as shown in Fig. 2a. A linear fit suggests
that the obtainable ABS friction is 85% of the peak friction of the brake slip curve on
this type of hard packed snow surface. This relation was used in the analysis of the
current study, and a generally good agreement between BV12 and XC60 results indicate
that it works well, despite a different car and different snow tracks. Since slip curves
on snow are quite flat, as shown in Fig. 2b, it is not surprising that the peak value is a
good indicator of the attainable ABS brake friction. Slip curves on ice generally show
a quite marked peak at low brake slip values, where the friction decreases significantly
at higher slip. To estimate the ABS brake friction on ice, the integral of the slip curve
within a fixed slip interval was used. As a starting point, the interval 5–55% was used,
with the possibility to tune the interval according to comparisons with the XC60 results.

Data from the two campaigns is presented in Fig. 3, where the average RFD friction
value of both wheel tracks is compared to the BV12 and the XC60 results.

(a) (b)

Fig. 2. Correlation between slip curve peak friction and ABS brake friction on snow (a) Typical
brake slip curves on ice and snow for the European winter tyre (b)

Initial measurements were carried out at both 30 and 50 km/h, but since no clear
difference was observed at these speeds, the majority of the measurements were then
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done at 50 km/h. Most data was collected for the Nordic winter tyre, for which both
BV12 and XC60 show a similar picture. The RFD underestimates the available friction
at very slippery ice as well as for packed snow, while it provides a good estimate at
intermediate ice friction levels. The data for the European winter tyre shows a similar
behavior, but the European winter tyre has lower performance on slippery ice compared
to the Nordic tyre, leading to a good correspondence with the RFD also at low friction.

Fig. 3. RFD friction values compared to estimated brake friction from BV12 measurements and
brake tests with the XC60.

An interesting anomaly for ice with very high friction is observed for the BV12 data
This particular ice track was covered with a layer of frost resulting in extremely high



A Method for Obtaining Reference Friction Values for Validation 55

RFD values, which clearly overestimated the brake friction for the European tyre. Unfor-
tunately, the XC60 was not available for measurements with this tyre at this condition,
but results for the studded tyres shows a similar behavior for both BV12 and XC60 on
this high friction ice. As expected, the studded tyre generally provides increased ice grip
level compared to the other tyres (as well as the RFD) on all other ice surfaces, while
performing on par with the studless tyres on snow.

Two different mappings seem to be needed at RFD friction levels above 0.3 - one for
snow and one for ice. Thus, information about the road conditions would be necessary.
A technology using an optical sensor to discriminate between ice and snow has been
tested in this project, and while the results on homogenous test tracks are promising,
further testing is needed to conclude its effectiveness on real winter roads.

Measurements at different wheel loads (±50%) with the BV12 showed a very small
effect on the brake friction. As did changes of the inflation pressure.

Comparison with the RFD driven straight and along a slalom pattern resulting in a
lateral acceleration of 0.1 g indicated that the RFD friction value is decreased by 10%
when measuring in a curve.

4 Conclusions

The results of elaborate field tests on ice and snow demonstrate that a dedicated road
friction device can be a useful tool for continuously measuring available brake friction
on winter roads for a specific vehicle and tyre, however the measured friction level by
RFD should be adjusted for different tyre types. The data indicates that a model with
piecewise linear mappings could be used, but additional information regarding the road
surface conditions at RFD friction levels above 0.3 would be needed.

Acknowledgements. The authors would like to thank Sweden’s innovation agency, Vinnova,
for funding this project (grant number 2020-02910). The authors are also grateful to Pirelli for
allowing us to use their snow and ice tracks for one of the measurements campaigns.
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Abstract. While race car drivers speak often on racing lines, data
reveals they do not follow consistent paths lap over lap. Furthermore,
autonomous racing controllers designed to track optimal paths fail to
keep pace with the best professional drivers. In this paper, we assess the
importance of the racing line from an optimization perspective by eval-
uating its dynamic sensitivity to lateral perturbations. After applying
the method to the Laguna Seca Raceway, we find that there is in fact a
family of trajectories that are significantly different in path but similar
in lap time. This finding is consistent with prior experimental work and
indicates that extracting the peak dynamic performance from a vehicle
may require reasoning through this whole family of solutions—instead of
tracking a single line—to operate the vehicle at its true limits.

Keywords: vehicle racing · sensitivity analysis · human racing
behavior

1 Introduction

The vehicle control community has long looked at human racing for inspiration
in designing autonomous control for limit maneuvering to improve vehicle safety.
One concept that emerges from this analysis is the notion of a racing line, which
defines a minimum-time trajectory through the track. Researchers have leveraged
this concept in formulating controllers for extreme maneuvering, largely due to
its amenability with path-planning and tracking paradigms popular in control
systems [2]. And indeed, recent work has confirmed the efficacy of this approach,
with Kegelman et al. demonstrating that a racing line-based vehicle controller
could beat a skilled amateur racecar driver on a closed course [5].

While these results present a major achievement, the authors importantly
noted that their controller could not beat a professional human driver. And
more recently, comparisons to human data by Hermansdorfer et al. reached a
similar conclusion [4]. This difference between automated control and profes-
sional drivers indicates that state-of-the-art controllers may not be extracting
all of the vehicle’s dynamic potential; this observed performance gap has thus
continued to motivate research.

In order to address this difference, additional literature has focused on study-
ing the human racing style, instead of purely the performance, in more detail.
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In a related study, Kegelman et al. instrumented human-driven racecars at the
Laguna Seca Raceway and observed that human drivers, in actuality, do not
track a static line when driving [6]. Instead, they appear to anchor their racing
line on certain parts of the track, such as apexes, but drive more freely between.
This statistical finding is consistent with some engineering handbooks on racing
strategy (e.g. Smith [8]) and broaches whether a path planning and tracking
paradigm is the most effective way to extract peak performance from a vehicle.

While this empirical compliance of the racing line has been observed and
quantified, it has not yet, to the best of the authors’ knowledge, been rationalized
from an optimization point of view. In this paper, we assess the importance of
the racing line by delineating the set of near-optimal solutions from a standard
minimum-time trajectory optimization. We find, perhaps intuitively, that the
basin of near-optimality is wide, indicating that there is a family of vehicle
trajectories that are all competitive. This suggests that what might separate the
best autonomous controllers from professional drivers is not a difference in ability
to track a predefined trajectory, but rather an ability to constantly operate
the vehicle at its limits in a meaningful way. These results have implications
for more general vehicle control that demands extreme maneuvering capability,
motivating the potential of alternate control paradigms that can better extract
the most performance out of the vehicle.

The rest of this paper is structured as follows. First, we briefly review the
phenomenon observed in Kegelman et al.; namely, human drivers’ apparent con-
sistency in lap time but variance in trajectory. We then set out to understand
this phenomenon better using the language of trajectory optimization. In Sect. 3,
we build a minimum-time trajectory optimization to find a racing line; then, in
Sect. 4, we present a technique to compute the maneuvering time sensitivity to
lateral variations. In Sect. 5, we analyze the results of this method when applied
to the Laguna Seca Raceway, which shows consistency with the work presented
in [6]. Lastly, we offer concluding thoughts in Sect. 6.

2 Observations from Human Driving

As mentioned previously, observations from human racing behavior indicate that
humans do not place a uniform weight on tracking a predefined racing line. Kegel-
man et al. quantified this by instrumenting a racecar and collecting data from
skilled human drivers [6]. As depicted in Fig. 1, the drivers exhibited significant
path deviation lap-over-lap, on the order of one meter. This deviation was cor-
related to the track geometry, however, appearing tightest near the apexes and
widest on the straight sectors. Remarkably, despite the variance in driven trajec-
tories, the recorded mean lap times across drivers were extremely consistent—
within 0.5%.

3 Minimum-Time Trajectory Optimization

To better comprehend this observation, we evaluate the compliance of a racing
line from an optimization point of view. The first step in this process is to solve
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Fig. 1. Left: A visualization of the mean absolute dispersion in lateral position from
the skilled human driver’s trajectories around the Laguna Seca Raceway studied in
[6]. Right: The lap time sensitivity analysis proposed in this paper identifies a similar
trend in lateral position compliance, suggesting that there is a tube of solutions that
exhibits varying degrees of dispersion at different points along the track.

for a minimum-time line. In this section, we accomplish this using standard
trajectory optimization techniques [9]. To simplify the analysis, we model the
vehicle as a friction-limited point mass using parameters derived from the Grand
Sport Corvette instrumented in [6].

The point mass’s state is characterized by its longitudinal velocity vx, lat-
eral velocity vy, track centerline progress distance s, and lateral position to the
centerline e. We assume direct force control over the point mass’s motion in
the longitudinal and lateral directions (Fx and Fy). To facilitate straightforward
slew rate constraints on the force inputs, we define the control vector as the force
derivatives and the actual force inputs are appended to the state vector. The
resulting state vector is thus defined as x := (vx, vy, s, e, Fx, Fy) with the control
vector as u := (Ḟx, Ḟy). The state evolution is given by

v̇x = (Fx − Fd,x)/m + rvy ṡ = vx/(1 − κe) Ḟx = Ḟx

v̇y = (Fy − Fd,y)/m − rvx ė = vy Ḟy = Ḟy,

where m is the mass and κ is the local centerline curvature. The drag terms
Fd,{x,y} model the effects of aerodynamic resistance, and we assume a simplified
model of drag which is quadratic in velocity.

In this derivation, we have added a notion of directionality to the point
mass. This better facilitates encoding the difference between lateral force con-
straints (due to the friction circle) and longitudinal force constraints (due to
the engine power limit and rear-wheel drive) in the trajectory optimization. The
point mass’s xy-frame is here assumed to align with the local centerline’s se-
frame; hence, the rotation rates r of these frames is given by κṡ.



60 R. K. Aggarwal and J. C. Gerdes

The racing line optimization is now defined as

minimize
x0:N ,u0:N

(tN )2 (Final time) (1a)

subject to hdyn(xi,ui, si,

xi+1,ui+1, si+1) = 0 (Dynamics collocation) (1b)
|ej | ≤ (w/2) (Track width limits) (1c)

(Fxj
)2 + (Fyj

)2 ≤ (μmg)2 (Friction circle limit) (1d)
Fxj

vxj
≤ Pmax

eng (Power limit) (1e)

|Ḟxj
|, |Ḟyj

| ≤ Fmax
{x,y} (Force slew limit) (1f)

Fxj
≤ FRWD

x,max (Rear axle force limit), (1g)

where i = 0, . . . , N − 1 and j = 0, . . . , N . The trajectory is discretized into
(N + 1) stages with the sole objective to minimize the total maneuvering time.
We approximate the system’s dynamics with a trapezoidal integration function
hdyn that uses a spatial reformulation of the dynamics as described in [9]. The
final constraint imposes a drive traction limit on the Fx input, which incorporates
the limits of the vehicle’s rear-wheel drive and the effects of steady-state load
transfer. This maximum traction force FRWD

x,max is defined as

FRWD
x,max := μ (Fz,r,static + ΔFz,long) = μ

(
a

a + b
mg +

Fxhcom

a + b

)
.

4 Computing the Sensitivity of the Racing Line

Given a baseline racing line, we now investigate its lap time sensitivity to lateral
perturbations. In principle, the solution gradients from Opt. 1 could be assem-
bled to obtain a sensitivity at each position along the racing line. While these
gradients generally provide useful information, in the context of a dynamical
system, it is not immediately clear how to extract the absolute spread of trajec-
tories from them. An impulse change in the lateral position e at one spatial index
is nonphysical, as the vehicle’s dynamics require time to develop and transition.

To address this, we explore a related method that is more dynamically con-
sistent. The core idea is to construct optimization-based subproblems around
the baseline solution, whose objectives are to delineate the boundary of the ε-
suboptimal level set. Skaf and Boyd [7] provide an excellent discussion on this
concept for the general optimization setting; below, we formulate an extension
of this approach to the racing problem.

The main strategy is to convexify the original optimization problem around a
solution and then batch solve for dispersion-maximizing subtrajectories subject
to a time suboptimality constraint. For a given index-of-maximization k, the
resulting subproblem is as below:
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maximize
δx0:N ,δu0:N

± (δek) (Path dispersion) (2a)

subject to hdyn, lin(δxi, δui, si,

δxi+1, δui+1, si+1) = 0 (Dynamics collocation) (2b)
Convexified con. (1c)-(1g) (2c)
δtN ≤ ε · t∗N (Time subopt). (2d)

The constraints are nearly identical to those in Opt. 1 apart from the added
time suboptimality limit (2d). This subproblem relies on the linearized dynam-
ics hdyn,lin about a solution from Opt. 1 using perturbational states δx and
inputs δu. The constraints (2c) are convexified versions of constraints (1c)-(1g)
using these perturbational quantities. The resulting trajectories are hence locally
dynamically feasible and better reflect the system’s dynamics than pointwise
sensitivities.

5 Results for Laguna Seca and Human Data Comparison

After solving for a baseline racing line at Laguna Seca, we now solve the
dispersion-maximizing subproblems at nsp evenly spaced indices to produce a
bundle of ε-suboptimal trajectories. The optimization problems are constructed
and solved with the CasADi and CVXPY packages [1,3]. Table 1 lists further param-
eters.

Figure 1 indicates that the lateral spread of suboptimal trajectories is not
uniform across the whole track, appearing tightest in the corners and widest
on the straights. This observation is consistent with the conclusion in [6] that
driven trajectories “anchor” at the apexes and flow more freely in between.
Figure 2 plots the lateral deviance against the path curvature showing that the
basin of suboptimal solutions is narrowest at high curvature. These data suggest
that the variability displayed by human drivers is not tracking error on an ideal
line but instead may correspond to the selection of a nearly optimal solution
most suited to the track and car conditions at that moment.

Fig. 2. Lateral path deviation plotted against the local curvature. Our analysis, right,
reveals a similar inverse relationship as observed in the human data from [6], left.
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Table 1. Vehicle and optimization parameters

Description Variable Value Units

Vehicle mass m 1014 kg

Center of mass (c.o.m.) height hcom 0.5 m

Distance from c.o.m. to front, rear axle a, b 1.20, 1.29 m

Drag coefficient Cd 0.4 N/(m/s)2

Friction coefficient μ 0.90 [-]

Maximum engine power Pmax
eng 361 kW

Maximum force slew rate Ḟmax
{x,y} 10. kN/s

No. of discretization steps, no. of subproblems N, nsp 1000, 1000 [-]

Time epsilon ε 0.1 %

6 Conclusion

While the racing line’s compliance has been described qualitatively in handbooks
on racing and quantified with analysis of instrumented race cars, in this paper we
aimed to validate this phenomenon using mathematical optimization. Our results
are consistent with prior observations and suggest that there is a tube of solutions
that achieves the minimum-time objective. Automated vehicles tracking a fixed
line have no guarantee that their closed-loop trajectory, inclusive of corrections,
falls into this tube. This analysis motivates investigating control schemes that
move beyond path-planning and tracking to consider optimality of the closed-
loop trajectories.

References

1. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a soft-
ware framework for nonlinear optimization and optimal control. Math. Prog. Comp.
11(1), 1–36 (2019)

2. Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl, M., Krovi, V., Mang-
haram, R.: Autonomous vehicles on the edge: a survey on autonomous vehicle racing.
IEEE Open J. Intell. Transp. Syst. 3, 458–488 (2022)

3. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex
optimization. JMLR 17(83), 1–5 (2016)

4. Hermansdorfer, L., Betz, J., Lienkamp, M.: Benchmarking of a software stack for
autonomous racing against a professional human race driver. In: Intl. Conf. on Eco.
Veh. and Ren. Ener, pp. 1–8. IEEE, Monte-Carlo, Monaco (2020)

5. Kegelman, J.: Learning from professional race car drivers to make automated vehi-
cles safer. PhD Dissertation, Stanford University (2018)

6. Kegelman, J.C., Harbott, L.K., Gerdes, J.C.: Insights into vehicle trajectories at the
handling limits: analysing open data from race car drivers. Veh. Syst. Dyn. 55(2),
191–207 (2017)

7. Skaf, J., Boyd, S.: Techniques for exploring the suboptimal set. Optim. Eng. 11(2),
319–337 (2010)



Compliance of the Racing Line 63

8. Smith, C.: Drive to Win: The Essential Guide to Race Driving, 1st edn. Carroll
Smith Consulting Inc., Rolling Hills Estates, California, USA (1996)

9. Subosits, J.K., Gerdes, J.C.: Impacts of model fidelity on trajectory optimization for
autonomous vehicles in extreme maneuvers. IEEE Trans. Intell. Veh. 6(3), 546–558
(2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


State Estimation and Sensorimotor Noise
in a Driver Steering Model with a
Gaussian Process Internal Model

Harry Fieldhouse(B) and David Cole

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

hamf2@cam.ac.uk

Abstract. Refinements to a mathematical model of human drivers’
steering control incorporating driver learning are reported. State esti-
mation and realistic sensorimotor noise sources are introduced to the
driver model to better represent neural processes. It is found that the
driver model exhibits the expected learning behaviour in terms of esti-
mation and control performance. Further work is planned to validate the
model experimentally.

Keywords: Driver Modelling · Human Learning · State Estimation ·
Gaussian Process · Model Predictive Control

1 Introduction

Realistic mathematical driver steering control models are useful tools for devel-
oping driver assistance systems such as stability control and lane-keeping assis-
tance. Driver models allow the vehicle design space to be explored safely and at
low cost.

State of the art driver models typically use optimisation-based predictive
control algorithms. These require a prediction model, which in a human context
is known as the internal model, and represents the human understanding of
the vehicle dynamics. The internal model is often assumed to be an accurate
deterministic representation of the vehicle dynamics. However, it seems likely
that in many cases a driver has an inaccurate and uncertain understanding of
the vehicle dynamics, particularly in unfamiliar nonlinear regimes of operation.

Recently, a new approach has been taken by the authors, using Model Pre-
dictive Control (MPC) with a Gaussian Process (GP) providing a data-driven
internal prediction model of the vehicle dynamics [4]. The motivation for using a
GP is that it represents more closely the experience-based learning process and
prediction uncertainty of the human driver. This approach was inspired by the
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‘predictive processing’ hypothesis which has gained traction in several academic
communities [2].

An example of a partially learnt GP model of nonlinear lateral-yaw vehicle
dynamics is shown in Fig. 1, predicting the mean and variance of the vehicle
lateral velocity state at the next time step given current vehicle states (here all
zero) and steering angle input (on x-axis). The learning behaviour of the driver
model is apparent in Fig. 2, which compares the RMS path error with RMS
handwheel velocity (akin to control effort) over the course of twelve successive
avoidance manoeuvres (elk or moose test).

Fig. 1. Part-learnt GP model of nonlinear
lateral-yaw vehicle dynamics [4]. Solid blue line
is the mean prediction, light blue shaded area
is the 95% confidence interval.

Fig. 2. RMS path error against
RMS handwheel velocity for a sim-
ulated driver performing twelve
successive avoidance manoeuvres.
The smallest circle is the first
manoeuvre and the largest is the
twelfth. The dashed line is a diag-
onal regression.[4].

It is reported in [4] that the simulated learning behaviour seen in Fig. 2 is
similar to that measured in some of the human test subjects that performed the
manoeuvres in a real vehicle on a test track. The behaviour can be described as
‘cautious’, where control activity increases and path error decreases with succes-
sive manoeuvres. Some other drivers in the experiment displayed ‘adventurous’
behaviour, characterised by control activity and path error decreasing with suc-
cessive manoeuvres.

The MPC+GP driver model architecture described in [4] is shown in Fig. 3,
with additional elements introduced in the present work shown in orange and
grey to be described in the next sections. The model includes additive memory
data noise but no sensory measurement noise. The GP internal model gener-
ates predictions. Control actions are optimised to minimise a cost function that
penalises predicted lateral and yaw deviations from a previewed target path,
together with other penalties on GP internal model prediction variance and the
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first and second derivatives of steering angle with respect to time. Cautious and
adventurous steering behaviours are generated by adjusting the penalty on GP
internal model prediction variance [4].

The aim of the work in this paper is to improve the MPC+GP driver steering
model by sensory noise and state estimation. Based on experimental observations
in the field of computational neuroscience, it is believed that human sensory mea-
surement noise is signal-dependent, where the noise is proportional to the signal
being measured [7]. In human control, there is evidence that state estimation
is performed by the brain in a probabilistically optimal, Bayesian manner [3,5],
using internal model predictions to improve the accuracy of the state determi-
nation and mitigate effects of sensory noise. In the present paper the existing
MPC+GP driver model is extended to include realistic sensorimotor noise and a
state estimator that uses the GP for the state prediction step. The performance
of the model is then investigated.

Fig. 3. Driver model architecture from [4] with new elements shown in orange and
elements used solely for analysis shown in grey.

2 Noise Model and State Estimation

Signal-dependent noise sources are added to represent measurement noise and
control (or process) noise, as shown in orange in Fig. 3. The noise is modelled as
shown in Fig. 4, with constant signal to noise ratio (SNR) and a noise floor to
represent sensory perception threshold.

With reference to the variables in Fig. 3, measurement variance is diago-
nal, with (Σm)k,k = max((zi,j)

2
k(sm)−1

k , (nm)k), and control variance, σc =
max(δ2i s

−1
c , nc). Here zi,j is the state vector at the ith timestep of the jth

manoeuvre, sm is the measurement SNR for each state dimension, nm is the
measurement noise floor, δi is the planned control action for the ith timestep, sc
and nc are the control SNR and noise floor.
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Fig. 4. Measurement variance rel-
ation to signal power for approxi-
mation used [6].

Physiologically plausible values for SNRs
and noise floors can be ascertained from
the literature on sensory thresholds and just
noticeable differences (JNDs), for example
[3,6,7]. SNRs are typically in the region of
unity; a value of 1.6 is used for the results
in the present paper.

The State Estimation block (Fig. 3) is
implemented as a Kalman Filter. The state
estimation process uses the GP Internal Model
to predict the next state of the vehicle given
the current state and control input. From this,
with the predicted state, the measured state
and the variances of each, Kalman Filtering is
used to update the state estimate probabilistically. This state estimate is then
used as the believed current state from which to predict future states when opti-
mising the control action. The equations for the Kalman Filter prediction and
update are implemented as follows, based on [1]:

Prediction Step: x̂k|k−1 = GP Prediction (x̂k−1|k−1, uk−1Pk−1|k−1)
Pk|k−1 = GP Variance (x̂k−1|k−1, uk−1, Pk−1|k−1)

Update Step: Kk = Pk|k−1H
T (HPk|k−1H

T + Rk)−1

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)
Pk|k = (I − KkH)Pk|k−1

where x̂k|k−1 and Pk|k−1 are the GP model predicted current state mean and
covariance, x̂k−1|k−1 and Pk−1|k−1 are the previous state estimate mean and
covariance and uk−1 is the previous control input.

The Kalman filtered state estimates are not used in the memory dataset for
training the GP internal model. This is because the Kalman filtering introduces
a bias to the data towards the errors in the learnt model, so the use of this filtered
data significantly reduces the learning rate. Instead, the GP internal model is
trained on the raw measured data, and the Kalman Filter is used only for state
estimation during the control optimisation process. As the GP internal model
improves and the state estimate becomes more accurate, better predictions of
future states can be made leading to better control performance.

3 Simulation Results and Discussion

In this section simulations were performed with the control noise in Fig. 3 set to
zero. The measurement noise was set to give an SNR of 1.6. Simulations were
initially performed with the Deterministic Internal Model block shown in grey
in Fig. 3 switched in and data noise set to zero. This enabled the effect of GP
learning on state estimation to be investigated separately from the GP’s effect
on control optimisation. The GP was initialised with fifty data points randomly
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distributed within the vehicle’s operating envelope. The driver steering model
was then run to perform twelve successive elk avoidance manoeuvres, with the
memory dataset and the GP updated after each of the twelve manoeuvres. For
the purpose of determining statistically reliable results, the sequence of twelve
manoeuvres was repeated one hundred times, each time with different uncorre-
lated noise signals.

The performance of the state estimator in each of the twelve manoeuvres
was quantified by calculating the ratio of the variance of the true state to the
variance of the state estimation error. This ratio is also denoted as a SNR.
However, to avoid the calculated SNR being dependent on the performance of
the controller in each manoeuvre, the vehicle states during each manoeuvre were
not used in calculating the estimator’s SNR. Instead, a set of 2000 independent
randomly generated starting states with measurement noise of SNR=1.6 was
used to evaluate the performance of the state estimator, using the GP internal
model from each of the twelve manoeuvres. The SNR of the estimator was also
calculated for multiple timesteps beyond the starting state.

It can be seen in Fig. 5 that the SNR of the estimate of lateral velocity
improves over the course of the twelve manoeuvres as the GP internal model
learns the vehicle dynamics. The SNR reduces as more timesteps are advanced,
converging to an SNR of around 3 for the first manoeuvre and 10 for the final
manoeuvre, which is significantly improved from the measurement SNR of 1.6
and confirms the effectiveness of the estimator.

Fig. 5. Plot of the median SNR of state esti-
mates to true states against manoeuvre num-
ber. The SNR is calculated over one hundred
repeats of twelve elk test manoeuvres on a
test set of 2000 randomly generated starting
states. Different lines are plotted for additional
timesteps advanced from the starting states.

Fig. 6. Conflict plot showing RMS
path error against RMS handwheel
velocity for the MPC+GP driver
model with sensory noise and state
estimation.

Another simulation was run with the prediction model switch (Fig. 3) set to
use the GP internal model for control optimisation as well as for state estimation.
Figure 6 shows the RMS path error against RMS handwheel velocity over twelve
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elk avoidance manoeuvres. The control performance and learning behaviour of
the new model are similar to that of the earlier model seen in Fig. 2, and therefore
similar to the measured behaviour of human test subjects reported in [4].

The work reported in this paper contributes increased realism of driver mod-
els for use in virtual vehicle development. Work is planned to add visual and
vestibular sensory dynamics to the driver steering model, and to validate fur-
ther the model against experiments with human test subjects.

4 Conclusion

– There is a need for realistic mathematical driver steering control models that
represent human learning behaviour.

– Recent work by the authors has combined MPC with a GP internal model.
– The present work adds signal-dependent sensorimotor noise and state esti-

mation to the MPC+GP driver model.
– Simulation results show that the state estimator with a GP internal model

exhibits the expected improvement in estimation accuracy with successive
manoeuvres.

– The results also show that control performance and learning behaviour are
similar to measured human behaviour reported recently.

– Further work is planned to extend the model to include visual and vestibular
sensory dynamics, and to perform more experimental validation.
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Abstract. The four-wheel independent steering and drive autonomous
vehicle is a typical over-actuated system. The complexity of controlling it
is increasing with the number of actuators. Since the model-based app-
roach can solve the constrained multiple output problem, it is mostly
utilized in the existing works. However, they usually investigate a single
objective optimization, while employing simplified prediction models to
relieve computational burdens. In this case, the robustness of the con-
troller will inevitably suffer from model mismatch, which makes it hard
to fulfill the various demands of autonomous driving. This work pro-
poses a multi-objective control framework, which optimizes stability and
energy efficiency simultaneously. Furthermore, robust model predictive
control is introduced to address the model mismatch. Compared with
the state-of-the-art, the effectiveness of the proposed approach has been
validated by hardware-in-the-loop tests. Under the double lane change
Maneuver, the longitudinal speed is maintained 1.7% higher. The vehicle
stability is enhanced, while the motor energy loss and tire slip energy are
reduced by 23.3% and 8.3%, respectively.

Keywords: multi-objective optimization · tube-based robust model
predictive control · stability · energy efficiency

1 Introduction

With the development of automotive intelligence and electrification, the require-
ments for autonomous electric vehicles (AEVs) are expanded from safety to
energy efficiency. Four-wheel independent steering and drive (4WIS-4WID) tech-
nologies are the current hotspots. Their prominent advantage is flexible control,
which can further enhance stability when reasonably allocating torque vector-
ing and steering [1]. However, improper allocation may result in tire wear and
additional energy consumption, thus reducing stability and energy efficiency.

In existing works, MPC has shown remarkable superiority in solving AEV
stability control problems with multiple constraints [2]. However, it is always
affected by discrepancies between actual vehicles and models, which always
appear in practice and impact vehicle safety [3]. To address this issue, Tube-based
RMPC is proposed to satisfy the original constraints under the worst conditions
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and shows outstanding robustness [4]. Besides stability, EVs also have a critical
issue of energy efficiency. Reducing motor energy consumption and tire energy
dissipation are the main approaches [5]. The UniTire model is widely applied
to calculate tire slip power because of its accuracy and simplicity. To optimize
energy efficiency while enhancing stability simultaneously, hierarchical control is
a common approach [6]. The stability is ensured in the upper layer, and the lower
layer controls actuators while reducing energy consumption. However, objectives
are not optimized together in these works, causing suboptimal results.

Reviewing the state-of-the-art, the impacts of excessive tire slippage on sta-
bility and energy consumption are rarely considered while designing a path track-
ing strategy. In addition, most hierarchical approaches construct single-objective
optimization problems in each layer, which may lead to underperformance. To
reduce the computational burden, simplified models are typically used to predict
vehicle states, inevitably leading to model mismatches that affect the robustness
of the MPC controller. To address the problems above, we propose an RMPC-
based multi-objective path tracking strategy in this work. The original contri-
butions are: 1) An integrated path tracking framework is proposed, which real-
izes steering and torque vectoring while simultaneously considering stabilization,
motor power loss, and tire slip power. 2) To ensure performance despite model
deviations, an RMPC-based controller is designed to address the tire stiffness
error of the model.

The rest of this paper is organized as follows. In the second section, the
models built for multi-objective control are introduced. The RMPC-based inte-
grated path tracking framework is proposed in the third section. Additionally,
the performance of the proposed strategy is verified in the fourth section by
hardware-in-the-loop (HIL) tests. Finally, conclusions are presented in the fifth
section.

2 System Modeling

The 4-degree-of-freedom (4DOF) vehicle dynamic model is shown in Fig. 1. Its
lateral, longitudinal, yaw, and roll dynamics equations are given as (1), where ms

represent the sprung mass, respectively, hs represents the height of the sprung

Fig. 1. 4DOF dynamics model.

m(V̇x − Vxβr) + Fa =
∑

Fx, (1a)

mVx(β̇ + r) + mshsφ̈ =
∑

Fy, (1b)

Iz ṙ − Ixzφ̈ =
∑

Mz, (1c)

Ixφ̈ − Ixz ṙ =
∑

Mx. (1d)
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mass, Iz, Ix and Ixz represent the moment and product of inertia, respectively.
β is the sideslip angle, r is the yaw rate, φ is the roll angle. Fa donates the air
resistance, ΣMz, and ΣMx donate the combined moments, respectively.

The tire model utilized in this work is linear. Its rotational dynamics equation
is derived as:

Jwω̇i = Tm,i − Tr,i − Tb,i − RwFx,i, (2)

where Jw and Rw donate the wheel rotational inertia and effective radius, respec-
tively. ωi represents the rotational speed. Tm,i and Tb,i are the driving and brak-
ing torques, Tr,i is the rolling resistance torque, and Fx,i is the longitudinal
driving force, where i = {fl, fr, rl, rr} represents the wheel location.

A UniTire semi-empirical model is employed to accurately calculate the tire
slip power, which calculates slip force and velocity by analyzing forces between
slip regions and adhesion in the tire contact patch as follows:

Vsj,i = − sj,i

1 − sj,i
· Vj,i · cos αi, Fsj,i = Fs,i · sj,i√

s2j,i + s2j,i

, (3)

where Fs,i is the resultant slip force, j = {x, y} is the direction of force.
The power of tire slip Ps,t is given as follows:

Ps,t =
∑

i=fl,fr,rl,rr

Fsx,iVsx,i + Fsy,iVsy,i. (4)

The power loss generated by the in-wheel motor Pml,t can be fitted by a
cubic polynomial:

Pml,t =
∑

i=fl,fr,rl,rr

a(ni)Tm,i
3 + b(ni)Tm,i

2 + c(ni)Tm,i + d(ni), (5)

where a, b, c, and d are fitted coefficients determined by motor speed ni.
Applying the Taylor expansion and zero-order hold (ZOH) methods to lin-

earize and discretize the dynamics equation as follows:
{

x(k + 1) = Ākx(k) + B̄k1u(k) + B̄k2w(k) + dt1

y(k) = Ctx(k) + Dtu(k) + dt2

, (6)

where the state vector x = [Vx, Y, β, r, ϕ, φ, φ̇, sx,fl, sx,fr, sx,rl, sx,rr]T , the con-
trol vector u = [Tm,fl, Tm,fr, Tm,rl, Tm,rr, δf,l, δf,r, δr,l, δr,r]T , the output vector
y = [Vx, Y, β, ϕ, r, Pml,t , Ps,t]T , and w = [Cx,f , Cx,r, Cα,f , Cα,r]

T represents the
bounded disturbance.

3 Controller Design

As shown in Fig. 2, a multi-objective controller framework is proposed. To handle
multiple objectives in a single layer, an integrated tube-based RMPC is designed,
which includes contractive constraints and multi-objective cost functions. The
motion states constraints are set to ensure vehicle stability. However, under
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Fig. 2. Framework of the multi-objective integrated path tracking controller.

aggressive driving scenarios, changes in cornering or longitudinal stiffness will
cause bounded disturbances to the system.

Equation (6) can be rewritten as a nominal system without disturbance in
the actual system. The state variable is donated by z and satisfies z(0) = x(0),
while the control variable is represented by v and the output by η = y. Therefore,
the state error between the actual system and the nominal system is calculated
as e(k) = x(k) − z(k). The RMPC introduces a linear state feedback for e(k) to
compute the control u(k) = v(k)+Ke(k), where the feedback gain K is designed
to satisfy |eig(Āt − B̄t1K) < 1|, thus AK = Āt − B̄t1K is Hurwitz.

Since the disturbance w ∈ W is bounded, it is proven to exist a robust
positively invariant set AKΓ ⊕ W ⊂ Γ, where ⊕ is Minkowski sum. Therefore,
contractive constraints of the state and control for the nominal system are given
as Z ∈ X � Γ,V ∈ U � KΓ, where � is Pontryagin difference, X and U are
the polyhedron of the state and control constraints. The cost function of the
multi-objective optimization problem is given as:

JMPC =

Np∑

i=1

‖η(i) − ηzref (i)‖2
w + ‖z (Np) − zref (Np)‖2

P +

Nc−1∑

i=0

Δv(i)2R (7)

where, Np and Nc donate the prediction and control horizon. w, P ,and R rep-
resent weight matrices. Therefore, the nominal MPC problem is designed as:

min
Δu

JMPC , (8a)

s.t. z(k + 1) = At(k)z(k) + Bt1(k)v(k) + dt1, (8b)
|Δv| ≤ Δvmax, (8c)

zi ∈ Z, ∀i ∈ [0, Np − 1] , (8d)
vi ∈ V, ∀i ∈ [0, Np − 1] , (8e)

zNp ∈ Zf , (8f)

where Zf is set to ensure asymptotic stability and recursive feasibility. A
quadratic programming problem (QP) is built, while the active set method is
utilized to generate the real control input u∗ = v∗ + K (x − z∗).
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4 HIL Test Results

Considering driving safety under high-speed conditions and the reliability of the
steer-by-wire system (SBW), HIL tests are employed to evaluate the performance
of the proposed strategy. A double lane change (DLC) case is designed. The
friction coefficient of the road is 0.85, the target speed is 100 km/h. Optimiza-
tion objectives include vehicle stability (VS), tire slip energy (TSE), and motor
energy loss (MEL). The state-of-the-art approaches are compared to show the
advantages of the proposed method: 1) Hierarchical MPC (HMPC), a hierarchi-
cal control strategy introduced in [7]; 2) Single-layer MPC (SMPC), a strategy
that employs a single layer instead of a hierarchical structure; 3) Single-layer
robust MPC (SRMPC), the strategy proposed in this work.

Fig. 3–5 shows the inputs and outputs. Under aggressive maneuvers, the
HMPC tends to input higher torques and track the reference path better. How-
ever, its speed-holding ability and energy efficiency are underperformed. In con-
trast, the single-layer strategies input smaller torques due to the optimization
of multiple objectives and reduce more energy consumption. Additionally, the
approach proposed in this work shows the best performance. Compared with the
other strategies, it maintains longitudinal speed 2.8% and 1.7% higher, reduces
43.3% and 23.3% motor energy loss, 12.4% and 8.3% tire slip energy dissipation.
Meanwhile, as shown in Fig. 5(b)–(d), the vehicle applying the proposed method
has the best stability. This is achieved by effectively addressing the model mis-
match shown in Fig. 5(g)–(h).

Fig. 3. Comparison of torques and steering angles under DLC case. (a)–(d) each wheel
torque; (e)–(h) each wheel steering angle.

Fig. 4. Comparison of reference path tracking errors under DLC case.



76 Z. Tian et al.

Fig. 5. Comparison of the results under DLC case. (a) longitudinal speed; (b) side slip
angle; (c) yaw rate; (d) sideslip angle rate - sideslip angle phase diagram; (e)–(f) energy
consumption; (g)–(h) tire stiffness changes.

5 Conclusion

In this work, an RMPC-based integrated multi-objective path tracking frame-
work is devised and validated in HIL. Experiment results demonstrate that
the proposed strategy can effectively enhance vehicle stability while improv-
ing energy efficiency. Compared with the state-of-the-art, the longitudinal speed
is maintained 1.7% higher, while the motor energy loss and tire slip energy are
reduced by 23.3% and 8.3% under the DLC case, respectively. HIL test shows
that the designed RMPC-based controller can address the model mismatch well
and further enhance vehicle performance. In the future, the proposed strategy
will be verified under more complex maneuvers.
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Abstract. In the context of urban smart mobility, automated vehicles communi-
cating with each other, surrounding infrastructure, and other traffic participants
yield the use for cooperative driving in urban environments. This, alongside an
increase in safety and comfort, can help to reduce fuel and energy consumption
individually and with regard to the cooperative vehicle cluster. In this paper we are
addressing the impact urban cooperative driving has on the energy consumption
of electric vehicles and further investigate the impact on drive systems and their
layout, as well as the impact different control strategies of the cooperative network
and scenarios with varying vehicles densities have. In order to evaluate the impact,
defined driving profiles from a graph based optimization for cooperation networks
are evaluated with regard to their energy consumption. Based upon the results the
overall energetic impact of different intersection approaching strategies as well as
the drive system impact are discussed.

Keywords: Automated driving · electric drive systems · energy consumption
reduction · cooperative driving · drive system optimization · graph optimization

1 Introduction

In the context of urban smart mobility networks, it is essential for vehicles to establish
communication links with one another, the surrounding infrastructure, and fellow traf-
fic participants. Through the implementation of Vehicle2X (V2X) communication, the
exchange of crucial data such as the vehicles’ positions, driving dynamics and intentions
becomes feasible and yield the extension of the complexity of automated driving func-
tions, such as cooperative driving in complex urban scenarios [1]. This paper utilizes
a methodology for the cooperative driving of automated vehicles in mixed traffic sce-
narios. This methodology applies V2X-communcation and a graph-based cooperation
algorithm to optimize urban cooperative intersection scenarios with regard to overall
time and energy efficiency [2]. The resulting vehicle-individual trajectories can be fur-
ther utilized by optimizing dedicated battery electric vehicles (BEV) drive systems with

© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 78–84, 2024.
https://doi.org/10.1007/978-3-031-70392-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70392-8_12&domain=pdf
http://orcid.org/0009-0002-7577-9074
http://orcid.org/0009-0001-9460-984X
http://orcid.org/0000-0003-1974-2592
https://doi.org/10.1007/978-3-031-70392-8_12


Profile Generation of Cooperative Driving in Urban Intersections 79

consideration of the automated driving system [3]. The impact of automated driving
systems on the layout of drive systems and fuel and energy consumption was analyzed
previously [4, 5]. Within this paper, the impact of connected driving on the dimension-
ing of the drivetrain and the energy consumption is analyzed in comparison to customer
operation.

2 Methodology and Approach

The urban traffic scenarios analyzed in this paper are representative excerpts from an
urban traffic simulation applied to the research intersection in Braunschweig. These
scenarios are derived from real world measurements by a test vehicle equipped with
LIDARs. The scenarios involve various (BEV) vehicles in a complex urban environment,
as shown in Fig. 1.

Fig. 1. Research intersection in Braunschweig with marked traffic rules and the resulting SUMO
Simulation

These vehicles form a cooperative network with each other. The trivial approach of
solving the conflicts inherent in such a network are traffic lights with fixed time control.
Alternatively, in the absence of traffic lights, a trivial “first come first serve” approach,
where every vehicle is driving in the order it arrived at the intersection is applied. Both
these approaches can be optimized with regard to overall time and energy efficiency by
taking advantage of the possibility to communicate within this network. Therefore, the
real world traffic scenarios are transferred to a graph based structure in order to optimize
the cooperative network. Hereby, the graph is defined by a fixed set of rules:

Rule 1: Every traffic participant is a node in the graph.
Rule 2: Every traffic participant has a characteristic driving maneuver after whose
execution the traffic participant is no longer relevant for the situation and vice-versa.
Rule 3: Every traffic participant’s characteristic maneuver may block and may be
blocked by another traffic participant. The execution time after which participant A
clears the path for traffic participant B is the weight of the directed edge connecting the
two corresponding nodes.
Rule 4: If a traffic participant’s characteristic maneuver does not block another traffic
participant, the weight of the connecting edge is 0.
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These rules can be applied to any traffic scenario, resulting in a graph with a corre-
sponding adjacency matrix, as shown exemplarily in Fig. 2. By formalizing the coop-
erative networks in a graph structure, it is possible to optimize the driving order of the
vehicles by interpreting it as a traveling salesman problem. By visiting every node of
the graph exactly once, a unique optimized driving order is calculated. Additionally, it is
possible to define a set of prioritization rules, granting right of way to public transport,
goods transportation or emergency vehicles by visiting these nodes first. According to
the driving order calculated by this methodology, the vehicles adapt the speed curve of
their individual trajectories according to a pre-defined safety distance of 2 s. Even though
this approach can be calculated decentralized, this paper focuses on the calculation by a
centralized cooperation infrastructure.

Fig. 2. Transfer of driving scenario to graph structure and adjacency matrix

By comparing the trajectories of cooperative networks with different vehicle densi-
ties in both conventional fixed time traffic light control and the cooperation optimization
algorithms, the impact of the control algorithm on the energy consumption is estimated.
As shown in Fig. 3, the resulting trajectories are optimized towards the energy consump-
tion and drivetrain topologies of the connected vehicles, further optimizing the overall
network regarding its efficiency. Themethodology is explained in detail in anotherAVEC
paper.

Fig. 3. Overall methodology with scenario generation & optimization, requirement engineering
und drivetrain optimization
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The simulated scenarios contain 6 D-segment vehicles with the trajectories and
vehicle parameters shown in Fig. 4. For the V2X-hardware and auxiliary components,
an additional consumption of 15W andmass of 2 kg is assumed for each vehicle. In total,
these vehicles are applied to 7 scenarios in 3 groups. First and second, the fixed time
traffic light control (FTTL) and the “first come, first serve” approach, each with safety
distances of 0, 1 and 2 s. Third, the cooperative algorithm by graph based optimization
described beforehand. In both the FCFS scenarios and the cooperative scenario, the
vehicles are connected with each other and the intersection via V2X.

Fig. 4. Vehicle parameters and trajectories in the simulated scenarios

3 Result Discussion and Outlook

The results of the simulation toolchain are compared regarding their overall improvement
towards time and energy consumption in an average traffic scenario with 6 vehicles.
Hereby, the cooperative driving algorithm with a safety distance of 2 s between the
vehicles is compared to a fixed time traffic control (FTTL) and the trivial “first come first
serve” (FCFS) approach, each with safety distances of 2, 1 and 0 s. A safety distance of
0 smeans, that there is no safety distance at all, the vehicles are driving immediately after
each other. The metric to evaluate the overall time efficiency of the cooperative driving
maneuver is the overall execution time, which is the sum of the times each vehicle takes
to finish the scenario. The results shown in Fig. 5 indicate, that there is only slight to no
gain in time efficiency when decreasing the safety distances for either fixed time traffic
control and “first come first serve”, with the latter being slightly more efficient overall.
The cooperative algorithm increases the overall time efficiency, as previously shown
in [2]. When applied to these urban scenarios, the cooperation algorithm optimizes the
overall execution time of the scenario by 38% compared to the conventional fixed time
traffic light control and by 15% compared to the “first come first serve” approach, while
simultaneously keeping the same safety distance between the vehicles.

When analyzing the optimized trajectory and drivetrain adaption with regard to
the resulting overall energetic optimization, Fig. 6 shows the gain in efficiency when
comparing two different drivetrain topologies (1 & 2 speed transmission BEV) in each
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Fig. 5. Summed overall execution time of each scenario

driving scenario. Hereby, the drive system topology has no significant impact on the
energy demand, mainly due to the short scenarios and the low velocity profiles with a
high share of acceleration operations. Aside from the drivetrain topology, the overall
energy consumption decreases as the total scenario execution time decreases, mainly
because of the reduced energy consumption of the auxiliary consumers and the reduced
conversion losses in the drivetrain due to fewer driving operations. This results in a
reduction in energy demand of 14%when comparing fixed time traffic light control with
the cooperation algorithm and 7% in comparison to the “first come first serve” approach
while keeping the same safety distances. Figure 6 shows, that in order to be comparable
to the cooperation algorithm with regard to overall energy consumption, FTTL would
need to be applied with no safety distances at all, thus making in impractical in real
traffic applications.

Fig. 6. Overall energy consumption of each scenario with optimized drivetrains, each with 1 and
2 speed transmissions (1 gear/2 gear)
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4 Conclusion and Outlook

Within this paper, we investigated the impact of cooperative driving on the example
of urban intersections with regard to the overall time and energy efficiency. Therefore,
based on measurements in real world traffic, seven different intersection scenarios were
generated, ranging from fixed time traffic light control, the original measurements were
based on, to varying complexities of cooperative algorithms. Based on the resulting
swarm trajectories, a drive system simulation of 1 and 2 speed transmission BEV con-
cepts was applied. Hereby, the drive system topology has no significant impact on the
energy demand, mainly due to the short scenarios and the low velocity profiles with a
high share of continuous accelerations. When looking at the overall energy consump-
tion, this investigation showed, that cooperative functions enable energy consumptions
reduction of up to 14% in such urban scenarios, while simultaneously optimizing the
overall time efficiency up to 38%.

For future research, there are various potentials to optimize the energy and time
efficiency of suchmulti vehicle systems further. By applyingmulti-criteria optimization,
the overall scenario can be optimized with regard to both overall execution and time and
energy efficiency. Furthermore, expanding the scenarios to a larger inner-urban scale and
optimizing the drive systems within each scenario in order to identify the optimal drive
system parameters for the overall lowest energy consumption are future expansions of
the presented method to investigate additional potentials.
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Abstract. The use of automated driving and connectivity can be an additional
lever to reduce fuel and energy consumption in real driving and has an impact on
the drive system and its dimensioning as well. In this paper we are addressing the
impact urban cooperative driving on the energy consumption of electric vehicles
and investigate further the impact of the drive system and their layout. To this
end, a concept study is being conducted for a D-segment vehicle and two battery
electric powertrains. In order to evaluate the impact, defined driving profiles from
a connected intersection are used for simulation. Based upon the results the overall
energetic impact of different intersection approaching strategies aswell as the drive
system impact are discussed. It showed that a cooperative intersection scenario
leads to an energy reduction of 14% and first come first serve scenarios to an
energy reduction of 7%.

Keywords: Automated driving · electric drive systems · energy consumption
reduction · cooperative driving · drive system optimization

1 Introduction

Vehicle development is currently driven and influenced by the topics of electrification,
digitalization, automated driving and mobile services. These trends influence each other
and impact all aspects of the vehicle and especially the drive system. Drive system
electrification is the biggest lever for fuel and energy reduction, especially considering
battery electric vehicles (BEV). The savings potentials depend on the drive system layout
itself, the operation strategy and also the optimization regarding driving operations. In
particular changed driving profiles due to automated and connected driving require a
different drive layout, compared to customer driving. Especially cooperative adaptive
cruise control (CACC) and adaptive cruise control (ACC) [1–3] are subject of many
studies and research projects regarding their impact on fuel consumption and improved
traffic flow. In a previous investigation [4] the impact of automated driving on the drive
system dimensioning and fuel and energy consumption especially for a highway pilot
was analyzed. Within this paper we want to elaborate on the impact of connected driving
on the drive system and the energetic impact in comparison to customer operation.
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2 Methodology and Approach

The overall approach is a connected approach and is shown in Fig. 1. For the concept
tool one input is the relevant vehicle and drive data and underlying boundary conditions.
By means of an urban traffic simulation representative driving profiles are generated for
different approach strategies of an intersection, which are the second input to the tool.
Those profiles are the basis for the drive simulation with the developed concept opti-
mization process. The concept optimization process consists in itself of four different
modules and is explained in detail in [4]. The processes are a drive dimensioning, where
the drives are dimensioned according to the underlying requirements. Furthermore, this
module parametrizes the subsequent backwards simulation. The results of the simulation
are the performances and efficiencies of each drive systemwith the corresponding aggre-
gate operation points at each timestep of the cycle. Those results are the input for the
evaluation module, where all concepts are assessed in detail. Furthermore, multi-criteria
optimizations can be carried out as well.

Fig. 1. Cooperative approach for drive system and energy consumption analysis, divided into the
inputs to the concept optimization, the cooperative intersection simulation and the input data and
requirement-engineering

The investigation is carried out for a D-segment vehicle, with the corresponding
vehicle parameters in Table 1. For the additional connectivity elements an additional
auxiliary consumption of 15 W and mass of 2 kg is assumed for each vehicle.

The investigated drive systems are a one-speed transmission (1G) and a two-speed
transmission (2G). The drive layouts are displayed in Fig. 2. The 1G concept has a fixed
transmission ratio i1 = 7 and an electric machine (EM) power PEM = 220 kW. The
2G concept has the ratios i1 = 9 and i2 = 4 and an EM power PEM = 180 kW. Both
variants are requirement sufficient and allow a maximum velocity vmax = 180 km/h and
an acceleration time t0–100,el. Below 6 s.

3 Result Discussion

In total seven different intersection scenarios are investigated. Three scenarios are fixed
time traffic light control (FTTL) with vehicle safety distances of 2 s, 1 s and 0 s. Three
other scenarios are a first come first serve (FCFS) with safety distances of 2 s, 1 s and 0 s.
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Table 1. Vehicle parameters of the investigated D-segment vehicle

Vehicle parameter Value Unit

Mass without powertrain 1250 kg

Drag coefficient * frontal area 0.62 m2

Rolling resistance coefficient 0.008 -

Rotational mass factor 1.03 -

(chassis) Friction resistance 40 N

Wheel radius 0.31 m

Adhesion coefficient 1 -

Auxiliary consumption 350 W

Connectivity auxiliary consumption 15 W

Additional mass for connectivity 2 kg

Fig. 2. Drive system layout for one-speed transmission BEV 1G on the left side and two-speed
transmission BEV 2G on the right side, both concepts are rear wheel drives (RA)

The seventh scenario is a cooperative scenario (Coop), where the traffic flow is optimized
while having a safety distance of 2 s. In all FCFS scenarios and the cooperative scenario
the vehicles are connected to the intersection via Vehicle2X (V2X). For each intersection
scenario the trajectories of a total of eight vehicles are simulated. Figure 3 shows the
range of energy consumption of the battery EBattery of all eight vehicles with 1G and 2G
concept for each investigated scenario.

When assessing the total energy consumption for each scenario, it is clear that the
crossing strategies lead to different energy consumption. In particular, the consumption
range of all vehicles differs significantly between the scenarios. The differences between
the 1G and 2G concepts are small and do not show a significant impact on the energy
consumption. Especially due to the low speeds and short distances, the transmission
losses in the 1G concept are high and comparable to the 2G concept.

The average energy consumption for each scenario is shown in Fig. 4 for each
scenario in dependency of the overall scenario execution time. As the total scenario
execution time decreases, the energy consumption decreases. This is mainly due to the
reduced energy consumption of the auxiliary consumers and also due to the reduced
conversion losses especially in the EM from fewer driving operations.

The FTTL scenario with a safety distance 0s is an exception in terms of execution
time, due to the fact, that one vehicle is stopping. The energy reduction potential caused
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Fig. 3. Energy consumption of the Battery EBattery for the investigated scenarios for the 1G and
the 2G concept

Fig. 4. Average energy consumption of each scenario in dependency of the overall scenario exe-
cution time for the 1G concept, grey, and the 2G concept, blue, on the left-hand side, right-hand
side relative energy consumption of the 1G and 2G concept in the different scenarios (Color figure
online)

by the optimized driving profiles result in lower total absolute driving resistances and
thus to lower overall drive system energy consumption. The additional energy required
to operate the V2X functionality for the cooperative and FCFS scenarios is overcom-
pensated by the reduction of the driving operation and thus also conversion losses. The
cooperative scenario allows a 14% reduction in energy consumption compared to a FTTL
with the same safety distance of 2 s, while the FCFS scenario leads to a 7% reduction in
energy consumption with the same safety distance. The Coop scenario with a safety dis-
tance of 2 s achieves a similar consumption to the FTTL scenario with a safety distance
of 0 s.

Figure 5 shows the vehicle energy demand and losses for each vehicle in three differ-
ent scenarios for the 1G concept. The energy demand and losses are divided into driving
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resistances, transmission losses, EM losses and other energy losses and consumers.
These include wheel slip losses, mechanical brake losses, auxiliary energy demand as
well as drag and inertia losses. The highest energy demand is caused by the driving
resistances. The sum of driving resistance energy demand does not change significantly
throughout the different scenarios, although the scenario and driving operations are sig-
nificantly longer. The energy demand displays the sum of driving resistances, whereby
the deceleration phases reduce the overall driving resistances. The higher driving oper-
ations lead to increased conversion losses of the EM and also to increased mechanical
brakes losses, due to the reached recuperation criterion of a minimum speed of 7 km/h.
Vehicle 5 highlights this behavior.

Fig. 5. Energy demand for 1G concept from driving resistances, EM losses, transmission losses
and other energy losses during the scenarios FFTL 2s, FCFS 2s and Coop 2s for each of the eight
simulated vehicles in each scenario

Another major share make up the EM losses, which differ significantly between
the different scenarios, mainly caused by the extended driving operation and multiple
energy conversion, also during recuperation. The transmission losses of all scenarios are
mostly similar for each vehicle and scenario. Only in some instances (e.g. vehicle 1)
the transmission losses are significantly higher caused by multiple starting maneuvers
from standstill. The differences for the remaining losses are mainly attributed to braking
losses during deceleration maneuvers and are secondarily attributed to minor changes
in wheel slip losses.

4 Conclusion and Outlook

Within this paper we investigated the energetic impact of cooperative driving on the
example of intersections. Therefore, seven different intersection scenarios were gener-
ated and the resulting profiles were the basis for drive system simulation of a 1G BEV
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concept and a 2G BEV concept. The assessment of the results showed, that the drive
system topology has no significant impact on the energy demand, mainly due to the short
scenarios and the low velocity profiles with a high share of acceleration operation.When
looking at the overall energy consumption, this investigation showed, that cooperative
functions enable an energy consumption reduction of up to 14% in a cooperative scenario
and an energy consumption reduction of up to 7% for first come first serve scenarios
with a safety distance of 2 s.

In further investigations we want to emphasize two aspects. On the one hand, we
want to optimize the drive systems within each scenario in order to identify the optimal
drive system parameters for the overall lowest energy consumption. Furthermore, the
vehicle individual optimal drive system, thus the lowest overall energy consumption
for each scenario would be interesting. On the other hand, further investigations will
focus on the scenario definition and expanding the scope of the scenario across the
intersection. The definition of a fixed range before the intersection will also allow further
scenario investigations when considering the profiles of each vehicle within the defined
investigation window.
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Abstract. The paper compares two optimal control methods — Rein-
forcement Learning and Model Predictive Control — for adaptive speed
control in the presence of road obstacles to enhance ride comfort. Both
methods use a model for training or prediction and a reward or cost func-
tion to achieve a desired control objective. Using the same quarter-car
model and objective function for both methods, differences in planned
speed profiles, optimality of the control objective, and differences in com-
putational time are analysed through simulations over a series of cosine-
shaped road bumps.

Keywords: Model Predictive Control · Reinforcement Learning ·
Longitudinal Control · Ride Comfort

1 Introduction

The automotive industry is moving towards fully self-driving vehicles by
automating both lateral and longitudinal driving tasks. To achieve this, vehicles
have to respond to road obstacles using preceding road information. Two key
methods for the control task are Reinforcement Learning (RL) and Model Pre-
dictive Control (MPC). RL has gained significant interest for its ability to learn
optimal policies directly from environmental interactions, enabling robust con-
trol of complex systems. Although training is computationally expensive, evalu-
ating the trained models is fast. MPC is an established optimal control method
that, like RL, uses model information to predict future system behaviour and
optimise actions over a defined horizon. While MPC is fast to deploy, its online
computational requirements increase significantly with system complexity [1].

This paper presents a comparative study of RL and MPC on a novel control
problem. It introduces a speed planner for the coupled problem of vertical and
longitudinal dynamics when traversing road obstacles to improve ride comfort,
specifically road bumps by controlling the vehicle’s longitudinal motion. Improv-
ing ride comfort through suspension control using classical control methods [2]
c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 91–97, 2024.
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and RL [3,4] has been extensively studied in the literature. However, optimising
ride comfort via speed planning is an emerging topic [5].

2 Problem Description and Methods

To maximise ride comfort over a given road segment within the preview distance
lprev, it is crucial to select the optimal vehicle speed v. This decision takes into
account the current vehicle state x, the speed limits vmax and lower vmin, and
the acceleration limits amax and amin. The control architecture is illustrated in
Fig. 1a, while the quarter-car model is shown in Fig. 1b.

Fig. 1. Optimal longitudinal motion control using either MPC or RL on the left. Both
methods are based on the quarter-car model shown on the right.

2.1 Vehicle Model

RL and MPC share similarities in their approach, utilising the same quarter-car
model in Fig. 1b for prediction or training. The governing equations of motion are
taken from [6]. The spring force Fc,s is modelled by an air suspension model based
on [7]. The damper force Fk,s is represented by piecewise linear damper charac-
teristics with distinct high and low-speed damping for compression and rebound.
Additional end-stops for rebound and compression are included. The tyre load is
modelled by a linear spring ct and damping coefficient kt. The quarter-car state
is x =

[
ζ − zW , żW , zW − zB, żB, v

]T with road elevation ζ, wheel travel zW ,
sprung-mass travel zB and vehicle speed v = ṡ. The nonlinear continuous-time
equations are transformed into the space domain, similar to [6].

2.2 Model Predictive Control

The Optimal Control Problem (OCP) for the MPC is formulated as a nonlinear
static optimisation with CasADi1 and solved with IPOPT2. The continuous-
space dynamics are discretised using an implicit Euler integration scheme. The
1 web.casadi.org.
2 github.com/coin-or/Ipopt.

https://web.casadi.org/
https://github.com/coin-or/Ipopt
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road is represented by the change in road elevation ζ ′ = dζ
ds at discrete points

along lprev = 40 m with step size Δs = 5 cm. The OCP is expressed as the
following multishooting problem:

min
X , a

N∑

k=1

Qz̈B

(
z̈B,k

g

)2

+ Qz̈W

(
z̈W,k

g

)2

︸ ︷︷ ︸
Jheave,k

+Qa

(
ak

g

)2

︸ ︷︷ ︸
Jlong,k

+Qv

∣
∣
∣
∣
vk − vref

vref

∣
∣
∣
∣

︸ ︷︷ ︸
Jspeed,k

(1a)

s.t. xk+1 = xk + fquarter-car (xk+1, ak, ζ ′
k) , x1 = x(t), (1b)

vmin ≤ vk ≤ vmax, amin ≤ ak ≤ amax, (1c)

where k ∈ {1, 2, . . . , N} with N = lprev
Δs . Jheave,k compromises ride comfort

through z̈B,k and dynamic wheel load through z̈W,k. The sprung mass mB

is 567 kg. The unsprung mass mW is 60 kg. Longitudinal comfort and control
input ak are considered via Jlong,k. Reference speed vref tracking is managed by
Jspeed,k. By suitably weighing these criteria through Qv = 1, Qa = 1, Qz̈B

= 50
and Qz̈W

= 0.5, the ride comfort is improved while maintaining swift passage of
the obstacle. g is the gravitational acceleration.

2.3 Reinforcement Learning

Assuming a Markov decision process (MDP) that, starting from an initial state
x0, forms a trajectory τ of states, actions and rewards. RL aims for the optimal
control policy π∗(a|x) that solves the optimization problem

π∗ = arg max
πθ

E
τ∼π

[
−

∑∞
k=0

γkRk(ok)
]

(2)

with discount factor γ ∈ [0, 1), step reward Rk and observations ok.

Observation Space and Action Space. The list of observations visible to
the agent comprises the necessary information to learn an optimal policy and
pose a subset of the vehicle state and road. The observation space ok is defined
by

ok =
[
vk, ak, z̈B,k, z̈W,k, zW,k − zB,k, dsb,k, hsb,k, lsb,k, vref,k

]T
. (3)

While vk, ak describe the longitudinal motion of the vehicle, the vertical move-
ment is observed by z̈B,k, z̈W,k and zW,k − zB,k. The agent sees the upcoming
road obstacle via the longitudinal distance between the current vehicle position
and the peak position of the obstacle dsb,k, the obstacle’s maximum height hsb,k,
and the obstacle length lsb,k. With vref, the agent is aware of the current refer-
ence speed. The agent controls the longitudinal motion of the vehicle by setting
ak. The choice of the interval of possible acceleration values is motivated by the
system limitations of a real-world adaptive cruise control system.

Reward Function. The reward function encourages or punishes an agent’s
behaviour by defining favourable environment states. To ensure comparability,
the step reward function Rstep is based on (1a):
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Rk = Jheave,k + Jlong,k + Jspeed,k + Jvmin,k + Jstep,k. (4)

To enforce the lower speed limit, an additional speed cost Jvmin,k is added when
the agent drops below vmin. For numerical reasons, a step reward Jstep,k =
−0.05 is added to encourage progress along the road. Additionally, to penalise
premature termination of an episode, such as when the vehicle speed drops below
1 km/h, a large cost of Jtermination = 5000 is added.

Training and Network Architecture. The RL agent is trained using Stable
Baselines3’s implementation of the Proximal Policy Optimization (PPO) algo-
rithm3. It utilises a multilayer perceptron (MLP) with two hidden layers of 128
neurons each and is optimised with the Adam optimiser using a learning rate
of 3 × 10−4 and a discount factor of 0.999. Each training episode begins with
a randomly initialised road, with all training roads having a length of 100 m.
The obstacle’s dimensions and position vary for each road, with the obstacle
height hsb and length lsb ranging between [0.03 m, 0.08 m] and [0.65 m, 2 m],
respectively. The obstacle is positioned between [40 m, 80 m]. The vehicle’s ini-
tial v0 and reference speeds vref are set between [10 km/h, 50 km/h] and [25 km/h,
50 km/h], respectively. During training, all values are sampled from a uniform
distribution within specified bounds. To ensure robust training, there is a ten
percent chance that no obstacle will be present, which enforces the training of
reference speed tracking. Each training episode consists of 10,000 steps. The
policy is evaluated based on a predefined set of roads and velocities.

3 Comparison Between MPC and RL

Both approaches are compared by simulation when crossing over three consecutive
cosine-shaped bumps of varying heights and lengths. The first bump is at 50 m
with a length of 1 m and height of 5 cm, the second bump at 90 m with a length of
0.75 m and height of 3.5 cm, and the third bump at 100 m with a length of 0.65 m
and height of 7.5 cm. The preview distance lprev for both methods is 40 m. The
admissible speed range is 5 to 50 km/h, with a reference speed of vref of 50 km/h.
The longitudinal acceleration limits are amax = 2.5 m/s2 and amin = −3.7 m/s2.
Note, that this scenario exceeds the training dataset of the RL agent.

Planned Speed and Acceleration Profile. Figure 2 illustrates the planned
speed and acceleration profiles for both MPC and RL. RL is represented in
red, while MPC in blue. For the first bump, the MPC reduces the speed to
approximately 20 km/h, whereas the RL slows down to about 6 km/h. As bump
heights increase and length decreases, the MPC approaches the lower speed limit
as well. Acceleration profiles show the MPC with a linear increase in braking
and acceleration, while the RL prefers constant braking and acceleration. The
MPC utilizes the entire available acceleration band, while the RL only uses the
maximum acceleration. Reference speed tracking is achieved at the start and
end for both methods.
3 stable-baselines3.readthedocs.io.

https://stable-baselines3.readthedocs.io/
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Fig. 2. Speed profiles v for MPC and RL running over consecutive cosine-shaped bumps
with road elevation ζ on the left. Longitudinal acceleration a on the right.

Optimality. Figure 3 provides a detailed breakdown of the planned speed pro-
files’ differences. The top row displays Jheave for each bump, followed by the
speed cost Jspeed in the second row, and the longitudinal cost Jlong in the last
row. When observing Jheave for the three bumps in the top row, it becomes
evident that the RL approach enhances the ride comfort criterion more notably
on the first and second bump due to its lower transition speed than the MPC.
This improvement comes with the drawback of ocurring larger costs in Jspeed.
Overall, the total cost is primarily influenced by Jspeed. While the RL approach
significantly outperforms the MPC w.r.t Jheave, its cummulative cost or optimal-
ity w.r.t. the cost function is worse, with a score of 7045 for the RL approach
compared to 5762 for the MPC.

Fig. 3. Cost terms for the simulation running over three consecutive cosine-shape
bumps. Total accumulated cost: JMPC = 5762, JRL = 7045.
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Computational Demand. The calculations were performed on consumer-
grade laptops, with several runs averaged. The average computation time for
the MPC was around 380 ms, with peaks of 1700 ms, compared to an average
time of 0.15 ms with peaks of less than 1 ms for the RL approach.

4 Summary and Outlook

This study compared RL and MPC in speed control to improve ride comfort
when crossing road obstacles. Both methods utilised the same quarter-car model
and cost function for control decisions. While RL learnt optimal policies directly
from interactions, MPC used model-based predictions to optimise upcoming
behaviour. Through simulations of running over cosine-shape road bumps, the
study compared their performance in planned speed profiles, optimality, and
computational efficiency. Results showed that the RL outperformed the MPC
regarding improved ride comfort, albeit with increased speed costs, resulting in
a less optimal solution. The computational demands varied significantly, rais-
ing concerns about MPC’s suitability for vehicle application in this case. RL
demonstrated potential in chassis control application, particularly in planning
tasks, but further exploration is needed. Future research should focus on opti-
mising hyperparameters and exploring alternative learning algorithms. The road
embedding method used in this study should be extended to a more generic
approach. For MPC, computational efficiency can be enhanced by adopting a
different road embedding method and employing variable space discretisation to
reduce the number of free variables in the OCP.
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Abstract. This paper presents a design optimization framework that
jointly optimizes battery size with the geometric dimensions of the elec-
tric motor for a family of battery electric vehicles, with global optimality
guarantees. As opposed to conventional models, we devise a quasi-static
model of the motor internal losses as a function of both its geometry and
operating points, using a convex surrogate modeling approach. Specifi-
cally, we implement a low-level motor scaling, capturing the impact on
performance and losses of changing the motor geometry in axial and
radial directions. Hence, we leverage the framework to solve a concur-
rent optimization problem and identify the optimal module sizing for a
family of electric vehicles. Finally, we test our framework on a benchmark
problem where we jointly design motor and battery for three different
types of vehicles (a city car, a compact car, and a cross over), whereby the
prediction efficiency is in line with the high-fidelity modeling software.

Keywords: Electric powertrain design · Electric Motor Modeling ·
Concurrent Design Optimization · Surrogate Modeling · Convex
Optimization

1 Introduction

In the last decade, the passenger vehicle market has witnessed a significant
increase in its share of electrified variants. However, widespread adoption is still
hindered by the relatively high price and short range of these vehicles, compared
to their conventional, fossil-fuel-powered counterparts [1]. A few researchers
have addressed this problem by developing holistic and system-level optimiza-
tion methodologies to lower the electric vehicles’ price while preserving perfor-
mance [2,3]. Although these approaches appear intriguing, their main limitation
is that the optimal design is inherently influenced by the accuracy of the models
employed in the framework, causing unreliable results and a lower fidelity in the
design. In this paper, we overcome the shortcomings owing to the motor model
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presented in a previous paper [4], where we considered the motor peak power
to stretch the efficiency map linearly. Against this backdrop, we devise a low-
scale, quasi-static state model of the electric motor as a function of its geometry
and operations, leveraging a convex surrogate modeling approach. Ultimately,
we leverage our framework to jointly design battery size and motor low-scale
dimensions for three different vehicle types: a city car, a compact car, and a
cross over.

Related Literature The topic of this paper relates to the design optimization
of electric vehicle powertrains. An overview of system-level perspectives of this
problem can be found in [5], where authors generally choose simplified models
for components, together with derivative-free [6] or convex optimization [7–9]
algorithms. Relevant advances have been made in powertrain design using more
detailed component models, for instance in [10] and [11]. However, the former
does not guarantee global optimality, whereas the latter makes assumptions to
pre-compute the required mechanical electric motor power. Therefore, we deem
the powertrain models used in these optimization frameworks to date unsuitable
to represent the system behavior for different geometrical scalings and opera-
tions.

Statement of Contributions In this paper, we present a concurrent design
optimization framework that jointly optimizes the size of the battery with the
geometric dimensions of the electric motor for a family of electric vehicles, with
global optimality guarantees. Specifically, we developed an electric motor model
to estimate with a high degree of fidelity the motor’s internal power losses as a
function of its dimensions (axial and radial scaling factors, kax and krad respec-
tively), and the vehicle’s operations (motor power Pm and speed ωm), using a
surrogate modeling approach. Finally, compared to our previous work in [4],
this framework makes it possible to consider a transmission, in this case a Fixed
Gear Transmission FGT, thanks to the novel Electric Motor EM model and cen-
tral drive/axle motors. In conclusion, here we contribute by jointly optimizing
the design of the powertrain of a fleet of electric vehicles with global optimal-
ity guarantees, whilst including the transmission ratio and accounting for the
low-scale design of the electric motor.

Organization This paper is organized as follows: Sect. 2 presents the frame-
work’s methodology, including vehicle and powertrain component models and
the optimization problem. In Sect. 3, we showcase the optimization framework
with a numerical study on designing a fleet of electric vehicles. The conclusions
are drawn in Sect. 4, together with an outlook on future research.

2 Methodology

This section presents a convex optimization framework to design a family of
Battery Electric Vehicles BEVs, with particular attention to low-level motor
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geometry effects on performance and losses. First, we describe the set of equa-
tions constituting the vehicle model, then we frame the optimization problem.
We finalize this section with a discussion of the assumptions and limitations of
the approach.

2.1 Longitudinal Vehicle Dynamics

For every vehicle i out of N we aim to co-design, we can compute the required
power at the wheels Pv,i(t) as

Pv,i(t) = v(t)
(

mia(t) +
1
2
ρ cd,iAf,iv(t)2 + mig(sin α(t) + cr,i cos α(t))

)
, (1)

where v(t), a(t), and α(t) are the velocity, acceleration and road inclination given
by the selected drive cycle as a function of the time t, respectively; mi, cd,i, and
Af,i are the total mass, the aerodynamic drag coefficient, and the frontal area
of vehicle i, respectively. Moreover, ρ is the density of air, g is the gravitational
constant, and cr,i is the rolling resistance coefficient. From this point onward,
we will drop the time dependence on the variables whenever it is clear from the
context.

2.2 Mass

We consider the effect of weight introduced by powertrain components’ sizing in
the vehicle mass mi equation. Therefore, we account for the glider mass mg,i,
the driver mass md, the payload mass mpl,i, the total mass of the Nm,i motors
mm,i, and the Nb,i battery packs mb

mi = mg,i + md + mpl,i + mm,i + mb,i. (2)

2.3 Transmission

We model the FGT as an efficiency ηgb, in line with common practice in the
field [12]. Hence, we write the output mechanical power of each motor Pm,i

following the convex relaxation introduced by [13]

Pm,i ≥ Pv,i
1

ηgbNm,i
, (3)

Pm,i ≥ Pv,iηgb
rb,i

Nm,i
, (4)

where rb,i is the regenerative braking fraction, depending on whether vehicle i
is equipped with a front-wheel or all-wheel drive. Hereby we assume that both
motors mounted on each axle in an all-wheel drive configuration are operated
identically. The transmission has a fixed ratio γ, such that

ωm,i = γ
v

rw,i
, (5)

where ωm,i is the mechanical speed of the motor and rw,i is the radius of the
wheels.
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2.4 Electric Motor

We devise a model of the electric motor as a function of its dimensions and
operating point, whereby we take inspiration from the surrogate modeling app-
roach in [11] and the scaling in [14]. The design variables are the scaling factors,
which uniformly scale all inner and outer dimensions of the motor in axial and
radial direction, increasing the supplied current but keeping the voltage equal.
Assuming a constant density of the motor, the mass of the motor mm,i is then
given by

mm,i = mm,okaxk
2
rad,

where mm,o is the mass of the reference motor and kax ∈ [kax, kax] and
krad ∈ [krad, krad] are the axial and radial scaling factors, respectively. In order
to maintain convexity, we rewrite this expression as

mm,iksh ≥ mm,ok
2
rad, (6)

where ksh = 1
kax

is defined as the motor shortness scaling factor or, in other
words, the reciprocal of the axial scaling factor. Hence, the mass relation in
Eq. (6) can be rewritten as a convex second-order conic constraint [15]. In this
framework, we conduct a Latin Hypercube experimental design with the electric
motor design software Motor-CAD [16]. For a given transmission ratio we can
pre-compute the motor speed through Eq. (5). Then, similarly to [11,17], we
create a model of the power losses Pm,loss,i for multiple levels of motor speed j,
which is equal to

Pm,loss,i ≥ x�
m,iQm,j(t)xm,i + qm,j(t)xm,i + qm0,j(t) ∀j ∈ {1, ..., Nω}, (7)

where Nω is the number of motor speed fitting levels, and xm,i is a vector con-
sisting of convex functions of the model inputs

xm,i =
[|Pm,i|, P 2

m,i, P
4
m,i, ksh, k

2
sh, k

4
sh, krad, k

2
rad, k

4
rad

]�
.

Fig. 1. The EM AC power NRMSE
values of each sample in the design
space, for both the training and test
set.

Fig. 2. The training and testing data
and predictions, along with the model
over the full design space.
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The fitting parameters Qm,j(t), qm,j(t), and qm0,j(t) are pre-computed at each
time step, whereby we linearly interpolate the fitting parameters between sam-
pled speed levels. We ensure that the motor model is convex by imposing the
following conditions on the coefficients: every Qm,j is positive semi-definite, and
the elements of all qm,j and qm0,j should be non-negative [18,19]. To the end of
retaining the problem’s convexity, we relax Eq. (7) to

Pm,loss,i ≥ x+�
m,iQm,j(t)x+

m,i + qm,j(t)x+
m,i + qm0,j(t) ∀j ∈ {1, ..., Nω}, (8)

Pm,loss,i ≥ x−�
m,iQm,j(t)x−

m,i + qm,j(t)x−
m,i + qm0,j(t) ∀j ∈ {1, ..., Nω}, (9)

where
x+
m,i =

[
Pm,i, P

2
m,i, P

4
m,i, ksh, k

2
sh, k

4
sh, krad, k

2
rad, k

4
rad

]�
, (10)

x−
m,i =

[
(−Pm,i), (−Pm,i)2, (−Pm,i)4, ksh, k2

sh, k
4
sh, krad, k

2
rad, k

4
rad

]�
, (11)

following a lossless epigraphic relaxation of the constraint [18]. Due to the par-
ticular problem structure, the constraint will always hold with equality for the
optimal solution. In fact, assuming any value higher than the strict necessary
would be sub-optimal as it entails a higher energy consumption. The electrical
input power Pac,i is given by

Pac,i = Pm,i + Pm,loss,i. (12)

As shown in Figs. 1 and 2, we train our models on a training set and evaluate the
quality of our models on a test set, which is also synthesized using a Latin Hyper-
cube design of experiments. We obtain a Pac,i normalized root-mean-squared
error (NRMSE) of 0.19% and an adjusted R2 = 0.92 for the full test set. Finally,
we display the efficiency maps of the test set alongside the model’s predictions
in Fig. 3.

To approximate the torque and power limits, Tm,i and Pm,i, respectively, we
use linear regression models that are equal to

Pm,i ≤ βp,0 + βp,1ksh + βp,2krad, (13)
Pm,i ≥ − (βp,0 + βp,1ksh + βp,2krad) , (14)
Pm,i ≤ ωm,i (βt,0 + βt,1ksh + βt,2krad) , (15)
Pm,i ≥ −ωm,i (βt,0 + βt,1ksh + βt,2krad) , (16)

where all β{.} are fitting parameters. Finally, we pose performance constraints
on the electric motor, so that all vehicles are able to drive at a certain maximum
velocity v, to launch from standstill at a certain road inclination α, and to drive
at a constant velocity vα at the same road inclination. These constraints are
written as

Pm,iηgb ≥ 1
2
ρ cd,iAf,iv

3, (17)

Tm,iηgb ≥ mig sinα
rw, i

γi
, (18)

Pm,iηgb ≥ mig sinα vα. (19)
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2.5 Battery

In order to compute the battery output power Pb,i, we consider a fixed inverter
efficiency ηinv and constant auxiliary power Paux, such that

Pb,i ≥ Pac,i
Nm,i

Nb,iηinv
+ Paux, (20)

Pb,i ≥ Pac,i
Nm,iηinv

Nb,i
+ Paux, (21)

after convex relaxations similar as in [13]. We find the internal battery power
Pi,i using the the short-circuit power Psc,i, representing a variable efficiency
depending on the losses, approximated with a piece-wise affine model [4]

Pi,i ≥ Pb,i +
1

Psc,i
P 2
i,i. (22)

The energy dynamic of the battery is influenced by Pi,i through

d
dt

Eb,i = −Pi,i. (23)

Hence, the energy capacity limit of the full battery pack Eb,i scales with the size
Sb and number Nb,i of battery modules respect to the reference battery energy
capacity Eb,o as

Eb,i = Eb,oSbNb,i. (24)

We set limits on the State-of-Charge SOC ξ by

Eb,i ∈ [
ξEb,i, ξ Eb,i

]
, (25)

where Eb,i is the battery State-of-Charge SOE, ξ and ξ are the minimum and
maximum SOC levels, respectively. The mass of the full battery pack is equal to

mb,i = mb,oSbNb,i, (26)

where mb,o is the mass of the reference battery. Since we consider a variable
efficiency of the battery through Psc,i, we include a constraint to ensure that
the operations are conducted around the half-capacity level of the battery by
averaging the maximum capacity at the start and the minimum capacity at the
end of the driving cycle

Eb,i(0) + Eb,i(T ) = Sb

(
ξ + ξ

)
Eb,oNb,i, (27)

where T is the total duration of the drive cycle. Additionally, we require that
the range d of the vehicle is larger than the minimum requirement dr,i on one
fully-charged battery by

ΔEb,i ≤ (
ξ − ξ

)
Eb,i

d

dr,i
. (28)
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Finally, we write the objective function of the optimization problem as

Jo =
N∑

i=1

(Eb,i(0) − Eb,i(T )) ,

where Jo is the family energy consumption during the driving cycle.

2.6 Optimization Problem for a Family of Vehicles

Summarizing, to obtain the optimal powertrain component sizing for a family
of electric vehicles minimizing energy consumption, we solve a convex optimal
design problem, considering given γi, Nm,i, Nb,i, and rb,i. The design variables
of the modules, shared by the whole family, are p = {ksh, krad, Sb}, whereas the
only state variable is x = Eb,i, which is different for every vehicle.

Problem 1 (Electric Vehicle Family Design): The optimal powertrain design
for a family of electric vehicles to minimize the total energy consumption is the
solution of

min
x,p

Jo

s.t. (1) − (6), (11) − (28), ∀i ∈ {1, .., N},

(9), (9), ∀i ∈ {1, .., N} ∀j ∈ {1, ..., Nω},

p = {ksh, krad, Sb}.

Fig. 3. The efficiency maps of the test
set, both from Motor-CAD, denoted
with “Sample”, and the predictions,
denoted with “Pred.”

Fig. 4. The efficiency maps of the
optimized motor obtained with the
high fidelity tool Motor-CAD [16] (left)
alongside the model predictions (right).

Since the constraint set and the cost function are convex, we ensured that our
problem is fully convex and therefore we can compute the globally optimal solu-
tion [18] with standard nonlinear programming methods.
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2.7 Discussion

A few comments are in order. First, the electric motor model has been trained
on samples for design variables in a range of ±20% with respect to the refer-
ence motor. Outside this interval, we cannot ensure an accurate representation
of the losses. Second, while the identification process has been based on an inte-
rior permanent magnet synchronous machine, the methodology can be readily
adapted to other technologies. Third, we do not consider any thermal effects, as
they have little influence on the motor operations of conventional vehicles [20].
Moreover, we scale the battery size only by acting on the number of cells in par-
allel, thus changing its energy without altering the battery voltage. Concerning
the numerical solution of Problem 1, we use standard nonlinear programming
methods, even though the problem is a semi-definite program (convex) due to
the fact that standard convex solvers are not able to work with the higher-order
input functions of our electric motor model. Finally, it is important to underline
that, in our framework, only scaling factors are optimization variables, whilst
the modules’ multiplicities are given parameters. This limitation could be read-
ily overcome by solving a sequence of problems in a combinatorial manner, yet
this is beyond the scope of the present paper.

3 Results

In this section, we showcase our framework on the simultaneous design of a
city car, a compact car, and a cross over. The general parameters are reported
in Table 1, while the vehicle-specific parameters are given in Table 2. In our
case study, we consider the Class 3 Worldwide harmonized Light-duty vehicles
Test Procedure (WLTP), discretizing with a sampling time of 1 s and the for-
ward Euler method. Finally, we solve the problem using the nonlinear solver
IPOPT [22] in 120s after parsing it with CasADi [23] in 58s. The results of our
case study show the design of single-sized components able to serve a diverse
family of vehicles. We can observe the optimization output and the vehicles’ per-
formance in Table 3. In Fig. 4, we compare the efficiency maps of the motor with
optimized axial and radial geometrical dimension obtained through the high-
fidelity modeling software Motor-CAD [16] (left) and our model’s predictions
(right). In this specific case, the motor map of the optimal geometrical design
presents two high-efficiency regions, virtually introducing higher efficiencies in
the low-torque low-speed region. Since this region contains operating points com-
mon to all the vehicles, a map of this type is favored in the simultaneous design
over the ones with a single high-efficiency region located in the middle shown in
Fig. 3. However, this behavior could be avoided by adding regularization terms
in the identification of the fitting parameters Qm,j(t), qm,j(t), and qm0,j(t) at
the cost of a slight reduction in overall accuracy. Compared to the high-fidelity
software, the NRMSE for the motor losses Pm,loss is 5.7%, while it equals 0.33%
for the overall electrical power Pac,i.
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Table 1. General Param-
eters.

Parameter Value

Eb,o 84.53 MJ
ρ 1.25 kg/m3

k{ax,rad} 1.2
k{ax,rad} 0.8

vα 15 km/h
α 25 %

ξ 0.8
ξ 0.2

mb,o 138.6 kg
ηinv 96 %
ηgb 98 %
mm,o 50.7 kg
md 80 kg
g 9.81 m/s2

dr,i 300 km

v 130 km/h

Table 2. Vehicle Parameters [21].

Parameter City Car Compact Car Cross Over

Af,icd,i (m2) 0.69 0.5589 1.1997
cr,i 0.01 0.008 0.02
Nm,i 2 2 2
Nb,i 1 1 2
rw,i (m) 0.3498 0.3594 0.3630
mg,i(kg) 850 1250 2000
γ 8 8 8

Table 3. Optimization results for the concurrent design.

Vehicle Fv (Wh/km)ksh krad Sb Mi (kg)d (km)Pm (kW)Eb (kWh)
City Car 191.86 0.93 0.85 3.171439 310 224 74
Compact Car188.93 0.93 0.85 3.171839 315 224 74
Cross Over 396.99 0.93 0.85 3.173028 300 224 148

4 Conclusions

This paper presented a design optimization framework featuring a geometric
model of the EM that allows for joint design of the EM low-scale dimensions and
battery sizing with global optimality guarantees, for a family of battery electric
vehicles. We identified the fitting parameters with an average normalized root
mean squared error of 0.19% and an adjusted R2 value of 0.92 for the full test
set. Finally, we determined the optimal joint design of the motor and battery
from the perspective of using the components on every vehicle in the family,
composed of a city car, a compact car and a cross over. The results display a
normalized root mean squared error of 0.33% for the motor power in the motor
map of the optimal geometrical design found.

Future Work: This work opens the field for the following extensions: We aim to
sophisticate the model by incorporating the gear ratio and powertrain topology
(layout of components) among the design variables, and jointly optimizing the
multiplicity of components within each vehicle.

Acknowledgment. We thank Ir. J. van Kampen, Ir. L. Pedroso, Dr. D. Herceg, and
Dr. I. New for proofreading this paper.
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Abstract. Differential braking offers a promising approach to ensure lateral con-
trol of automated vehicles in the event of steering actuator failure. Braking inter-
ventions induce longitudinal forces on the wheel, which influence the vehicle’s
yaw motion and thus enable lateral control along a given trajectory. Within the
scope of this paper, a road friction adaptive system for lateral vehicle control by dif-
ferential braking on a dry, wet, snow- and ice-covered road is derived simulatively.
The investigated friction coefficient adaption is implemented by a variable path
planning and calculated on the basis of an estimated road friction coefficient. The
driving situation considered is based on the severe lane-change maneuver accord-
ing to ISO 3888-2 for the investigation of vehicle dynamics and road-holding
ability. The limitation of the trajectory results from the maximum yaw rate and
expands the trajectory’s length for the different road friction coefficients.

Keywords: differential braking · lateral vehicle control · road friction · fallback
level

1 Introduction

After the steering system, the use of braking systems offer a high potential for the lateral
control of a vehicle [1]. In the event of a failure in the steering system (e.g. Steer-by-
Wire system) official standards describe potential redundancies [2]. With the help of
a functional redundancy in form of the brake system already present in the vehicle, a
fallback level can be created. This allows actuators already installed in the vehicle to be
used and saves costs in the manufacturing process. Wheel-specific braking interventions
generate longitudinal forces that influence the yaw moment of the vehicle and thus
influence lateral control of an automated vehicle along a given trajectory (Steer-by-
Brake, SbB). In order to continue to ensure driving safety in road traffic despite a potential
steering failure, the functionality of such a SbB system can be used. In critical situations
the fallback system could just function like an automated emergency brake. But if the
collision-avoiding braking distance exceeds the last possible avoidance distance, there is
only the possibility to steer the vehicle to take evasive action along a calculated trajectory.

© The Author(s) 2024
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Under these conditions, a collision could potentially be avoided. The potential of braking
interventions for lateral control of automated vehicles has already been discussed in
several publications. The majority of the investigations have taken place in simulative
environments studies [3], but some publications also validate their results experimentally
using real driving tests [4, 5]. The investigations in [5] have shown, that the road friction
coefficient is a relevant influencing variable. In order to continue to ensure driving safety
in road traffic despite a potential steering failure, the functionality of such a SbB system
can be adapted to the road friction coefficient. The focus of the investigations in this
paper is not on the possibilities of measuring or estimating the road friction coefficient,
but rather on the effects of the SbB function being able to calculate and adapt to the road
friction coefficient.

2 Method

The usedmethodology takes into account the true road friction coefficientµR and an esti-
mated valueµE of the road friction coefficientwhich are integrated into the SbB function.
This method is already used in [6] to investigate the road friction coefficient sensitivity
and adaption of automatic emergency braking (AEB) [7] and lane keeping assist (LKA).
In this paper, the road friction sensitivity and the friction coefficient adaption for the
four classes of a dry, wet, snow- and ice-covered road are simulatively investigated. The
four classes of road friction are assigned to four representative characteristic parameters
(Table 1).

Table 1. Representative road friction coefficients.

Road condition class Dry Wet Snow Ice

Road friction coefficient 1.0 0.6 0.3 0.15

3 Function

The trajectory used by the SbB function is calculated depending on two input parameters:
the lateral offset ye which should be achieved and the predefined maximum yaw rate
ψ̇max. With these two parameters an optimizer is minimizing the best fitting trajectory,
so that it achieves the lateral offset and is not exceeding the maximum yaw rate during
the maneuver. The y-coordinates y(x) of the trajectory are calculated by a polynomial
of the seventh degree [8], the lateral offset ye which should be achieved and the evasive
trajectory length xe.

y(x) = ye

[
−20

(
x

xe

)7

+ 70

(
x

xe

)6

− 84

(
x

xe

)5

+ 35

(
x

xe

)4
]

(1)
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The curvature of the trajectory is determined by the first and second derivatives of
the coordinates x and y(x) in relation to the arc length s.

κ(s) = ẋ(s) · ÿ(s) − ẍ(s) · ẏ(s)(
ẋ(s)2 + ẏ(s)2

)3/2 (2)

The yaw rate ψ̇(s) of the trajectory is calculated by the curvature κ(s) and the initial
driving speed v0.

ψ̇(s) = κ(s) · v0 (3)

The maximum yaw rate ψ̇max of the evasive trajectory is derived by the context from
the kamm’s circle, which in this paper is based on the assumption that at the friction limit
the same amount of force can be applied in the lateral direction as in the longitudinal
direction. As a result, the maximum possible yaw rate ψ̇max of the trajectory is calculated
depending on the acceleration of gravity g, the constant road friction coefficient μR, a
scaling factor k, which describes the ellipse of the kamm’s circle and takes the value 0.9
in this investigation and the initial driving speed v0 [9].

ψ̇max =
√

(μR · g)2 − (μR · g)2

2 · k2 /v0 (4)

4 Driving Maneuver

The driving maneuver under investigation (Fig. 1) corresponds to an evasive maneuver
with a safety distance of 2.5 m between the vehicles center of gravity (CoG). In this
case, a stationary vehicle is approached at initial driving speed v0 of 80 km/h. Compared
to the evasive test according to the standard [10], the lateral safety distance is chosen
to be smaller in order to investigate an emergency avoidance maneuver. The test is
performed with a non-functioning steering system and the driver does not apply any
steering torque during the test procedure. In the beginning the initial lane is driven
through a constant driving speed and then changed to a second lane with an offset which
is achieved exclusively via differential braking.

Two characteristic parameters are used to investigate the road friction coefficient
sensitivity (Fig. 1). The first parameter describes the lateral offset dY that is reached at
the end of the evasive trajectory, while the second parameter describes the additional
distance �dE if the vehicle moves out too early due to an incorrectly estimated road
friction coefficient μE .

The road friction sensitivity and adaption are simulated using a validated dual-track
model. In the dual-track model there is a validated steering-model and a Magic Formula
tire model of Version 5.2 with the measured parameters of a current winter tire.
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Fig. 1. Driving maneuver of an emergency evasion with differential braking and associated
characteristic parameters.

5 Road Friction Coefficient Sensitivity

To find out the sensitivity of differential braking, the road friction coefficient between the
selected classes (Table 1) is reduced step by step and the selected characteristic parameter
of the lateral offset dY is calculated. At the beginning, an SbB function without friction
coefficient adaption is examined. This is calculated by the friction coefficient of a dry
road surface. It can be seen that the evasive trajectory on the dry road with a road
friction coefficient of 1.0 can be driven on with the SbB function, but if the road friction
coefficient is now reduced, the evasive action is taken too late on the wet, snow- and
ice-covered road and the required lateral offset dY can no longer be maintained. Table 2
contains the characteristic parameters of the road friction coefficient sensitivity. It can
be seen that the SbB function can only generate the required lateral offset on a dry road,
in all other cases it leads to a collision with the target vehicle due to non-compliance
with the lateral offset dY = 2.5m. The analyses show that the SbB function is very
sensitively influenced by the road friction coefficient. In order to nevertheless ensure
vehicle safety, the SbB function is to be implemented in a friction-adaptive manner in
the further course.

Table 2. Characteristic parameters for road friction coefficient sensitivity of a SbB function.

Road condition class Dry Wet Snow Ice

Road friction coefficient 1.0 0.6 0.3 0.15

Lateral offset dY 2.5 m 2.0 m 1.2 m 0.7 m

6 Road Friction Coefficient Adaption

The road friction coefficient adaption replaces the previously constant parameter of the
road friction coefficient μR in the calculation of the maximum possible yaw rate ψ̇max

of the evasive trajectory with the estimated value μE . This estimated value can take the
road friction coefficient of a dry, wet, snow- or ice-covered road. The maximum yaw
rates to be maintained are now calculated for the evasive trajectories on the various road
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friction coefficients according to the following correlation.

ψ̇max =
√

(μE · g)2 − (μE · g)2

2 · k2 /v0 (5)

Figure 2 shows four different evasive trajectories that are calculated with the esti-
mated value of a dry, wet, snow-covered or ice-covered road. It can be seen that all
calculated trajectories achieve the desired lateral offset dY = 2.5m. To guarantee this,
the evasive trajectories are lengthened as the estimated value decreases, so that the SbB
function evades at comparatively large relative distances to the target vehicle.

Fig. 2. Evasive trajectories of the SbB function for the road friction coefficients of a dry, wet,
snow- and ice-covered road for a vehicle with winter tires.

Due to the correlations, the evasive trajectory of the dry road has the largest and
the trajectory of the ice-covered road has the smallest maximum yaw rate ψ̇max that the
vehicle must withstand in order to negotiate this path. In the following, the described
friction coefficient adaption is examined for an initial driving speed v0 of 80 km/h. For
this purpose, the selected driving maneuver is repeated for the friction coefficients of a
dry, wet, snow- or ice-covered road as well as for the estimated values of these classes.
The characteristic parameters of the friction coefficient adaption of each individual
combination are then calculated and shown inTable 3. It can be seen that the characteristic
parameters of the first row correspond to the characteristic parameters of the road friction
coefficient sensitivity. For the characteristic parameters of the other rows, the distances
of the evasive maneuver were adapted to the estimated values of a wet, snow- or ice-
covered road. If the estimated value μE corresponds to the true road friction coefficient
μR, the required lateral offset dY can always be maintained. The same applies if the
estimated value μE is smaller than the true road friction coefficient μR. Although the
lateral offset can be achieved in this case, the SbB function deviates too early by the
distance �dE . If the estimated value μE is greater than the true road friction coefficient,
the required lateral offset dY = 2.5m is not reached.
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Table 3. Characteristic parameters for road friction coefficient adaption of a SbB function.

Road friction coefficient μR

1.0 0.6 0.3 0.15

Estimated road
friction
coefficient μE

1.0 dY = 2.5m dY = 2.0m dY = 1.2m dY = 0.7m

0.6 �dE = 11.78m dY = 2.5m dY = 1.6m dY = 1.1m

0.3 �dE = 32.94m �dE = 21.16m dY = 2.5m dY = 1.7m

0.15 �dE = 62.78m �dE = 51m �dE = 29.83m dY = 2.5m

7 Conclusion

The simulation results show, that the evasion test can be passed even on snow- or ice-
covered roads. The prerequisite for this is an adaption of the SbB system with regard
to an estimated road friction coefficient µE. With this method, the required accuracy
of the friction value estimation can be determined and also information regarding the
driving strategy (e.g. limitation of the maximum speed) can be generated in the event
of a steering failure. It can also be seen that a mistake from wet to dry road does not
lead to the required lateral offset dY = 2.5 m, but to a lateral offset of 2 m. This means
that the safety distance of 0.5 m between the target and the ego vehicle can no longer
be maintained, but a collision with the target vehicle is basically avoided. If the SbB
function is compared with that of an AEB, it can be seen that in the event of a steering
error on a dry road, the triggering of an AEB is sufficient. However, if the road friction
coefficient is reduced, the strengths of the SbB function come into play. In this case, the
length of the avoidance distance is shorter than the required braking distance of an AEB,
so that potential collisions due to faults in the steering system can be avoided.
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Abstract. This paper presents a technique for automated reversing con-
trol of articulated vehicles. Reversing articulated Heavy Goods Vehicles
(HGVs) can be a challenging and time consuming task for a human
driver, sometimes requiring multiple forward and backward motions to
reduce errors. Here, the aim is to automate the task to provide high
levels of precision using Artificial Flow Guidance (AFG). AFG uses sim-
ple geometry to define a spatially distributed motion reference, requir-
ing only short-range error corrections and possessing global conver-
gence properties. AFG has previously been applied to rigid and artic-
ulated vehicles in forward motion, with demonstrable benefits in terms
of tracking precision and robustness. Here results focus on the tractor-
semitrailer, but the AFG approach is equally applicable to the reversing
of longer combination vehicles.

Keywords: Automated Reversing · Articulated Vehicles

1 Introduction

Efficient goods transportation is vital to smart manufacturing, industrial
automation and commerce in general. HGVs, which are popularly used for goods
transportation [11] can however pose stability issues, especially when docking or
reversing as the open-loop system is unstable [2,3]. The problem is three-fold:
(i) the system is unstable and require the driver feedback to stabilise the vehicle
[2] (ii) the trailer moves in the opposite direction to the steering applied at the
lead vehicle unit and [5] (iii) the driver cannot always see the rear end of the
vehicle, which makes it harder to track the vehicle state as it reaches its control
limit [5].

Thus, automated reversing control of articulated vehicles is an active field of
research. Notable publications include [2,3,12,13] among others. In [12] a state
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feedback controller was designed based on a linear dynamic model. The controller
was seen to provide good path-tracking performance for vehicles formed of one to
three trailers. Altafini et al. [2] also used linear state feedback, a switching logic
was applied to allow the multi-unit vehicle to drive forward when at the risk of
jackknifing. Yue et al. [13] used a kinematic model to form a Model Predictive
Control (MPC) which provides path tracking for both forward and backward
direction. In [3] Pure Pursuit was combined with a hitch angle compensator to
provide stable reversing on tractor-semitrailers. Again a kinematic model was
used. While several other methods have also been successful in providing motion
control for reversing, this reliance on vehicle modelling is a common feature.
Moreover, prior research have often used optimal or predictive control, which
increases design complexity and the number of tuning parameters.

Artificial Flow Guidance (AFG) is a general motion planning method that
uses a spatial distribution of desired motion vectors in place of an explicit target
path [7,10]. AFG has minimal tuning parameters and does not rely on detailed
vehicle modelling [11]. The method has previously been used for path-tracking
in forward motion for a conventional car [7], 4-wheel-steering car [6] and multi-
axle steered articulated HGVs [10,11]. In [9] experimental tests were carried
out on a full-size articulated HGV. This showed that AFG can provide precise
path-tracking and is feasible for real-time applications [9].

While previous research have demonstrated a number of advantages for AFG
in forwards motion, it has not been applied to the reversing of articulated
vehicles. Here, for simplicity, we focus on designing a reversing controller for
a tractor-semitrailer combination.

2 Artificial Flow Guidance

Individual 2D vectors in the AFG field are calculated using simple geometry
and a reference path – see Eq. 1 and Fig. 1(a) respectively. Here, R is a tracking
point on the vehicle intended to follow the flow vectors and hence converge to
the target path. P is a preview point and Q is the nearest point to R on the
desired path. Unit vectors t̂1 and t̂2 are tangents at points Q and P , respectively,
and t̂3 is a unit vector at R which points towards P ; 2θ is the angle between
tangents t̂1 and t̂2 [11]:

w =

{
t̂3 + t̂1−t̂2

2 cos θ , if |Sy| ≥ Sy0

[cos Γ sin Γ ]T , otherwise
(1)

Γ = Γ0 +
( |Sy|

Sy0

)
Γb (2)

The flow is modified in the immediate vicinity of the target path in the form
of a ‘boundary layer’, where flow angle Γ is interpolated from the exterior flow
Γb at the boundary – see Fig. 1(b). Sy is the lateral distance between points R
and Q, and Sy0 is half of the width of the boundary layer. This boundary layer
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improves the uniformity of the flow in the presence of sharp curvature changes
[11]. Also, imposing a constant magnitude for Γb, global convergence is assured
provided local tracking errors are bounded [11].

Fig. 1. The AFG vector w is calculated based on the path geometry. A 0.1 m boundary
is imposed around the desired path to improve the tracking performance.

The distance between Q and P is the preview distance, L:

L = v̄

√
|Sy|
2a

(3)

where v̄ is the vehicle speed. There are just two tuning parameters: a = 0.2 m/s2

is a flow acceleration parameter, and the boundary-layer half-width Sy0 =
0.05 m.

3 Controller Design

We chose the rear end of the semitrailer as the tracking point, for which the AFG
vector is found from Eqs. 1–3. The longitudinal component of all velocity vectors
on the trailer centre-line are equal, and normalized to unity for interpolation.
The AFG vector is also normalised to give ŵT as the reference (see Fig. 2a).

For low-speed motion we assume zero-sideslip at the 2nd axle on the
trailer. In terms of the trailer yaw angle ψ2, its normalized velocity is v̂z =
[cos ψ2 sin ψ2]T . From this and ŵT , the interpolated velocity at the hitch is
found:

V d
H = −xT

L2
ŵT +

(
1 +

xT

L2

)
v̂z (4)

Here, xT is the distance between the 2nd axle on the trailer and the tracking
point, and, L2 is the trailer wheelbase as shown in Fig. 2(a). The lower-level
controller (shown in Fig. 2b) converts this to a yaw rate motion reference using
the following:

rref
1 = −K(ψ1 − φ) + rref

2 (5)

Here, φ is the angle of the velocity reference at the hitch point with respect
to the global X-axis and rref

2 is the reference yaw rate for the trailer, calculated
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by considering the desired lateral velocity at the tracking point VT using rref
2 =

VT /xT . We assume that the hitch point coincides with the zero-sideslip point on
the tractor. This means, lateral velocity at the hitch point cannot be controlled
directly, and the tractor must be aligned with φ to give the correct directional
motion. Thus the feedback control aims match the tractor yaw angle ψ1 to φ.
K = 10 is a proportional gain.

Fig. 2. The lower-level controller uses vehicle kinematics to align the tractor to the
direction of the desired velocity vector at the hitch point.

This method also works for cases where the hitch point may be in front of
the zero-sideslip point (such as in a 2-axle tractor) but this introduces some
tracking error. Finally, the steering angle at the front axle δ is calculated using
Ackermann as shown in Eq. 6. Here, U1 and L1 are the longitudinal velocity and
the effective wheelbase of the tractor, respectively.

rref
1 =

U1 tan δ

L1
(6)

Furthermore, the steering angle is saturated within −π/4 ≤ δ ≤ π/4. This
also limits the articulation angle to prevent jackknifing [8].

4 Results and Discussion

All simulations were carried out in TruckMaker, which is a commercial simulation
software with a library of high-fidelity models. Here, a 6x4 tractor and a 3-axle
semitrailer are chosen. The performance of the controller is tested using two
maneuvers: (i) a 450◦ roundabout of radius 20 m and (ii) a 20 m lane change
formed using a cosine (equivalent radius is 250 m). The longitudinal velocity is
kept constant at −1 m/s for both cases – note that this method also works for
variable speeds provided slip angles at the tyres remain small. Figures 3 and
4 shows the results. Here, offtracking is defined as the lateral offset from the
desired path.

For the roundabout maneuver shown in Fig. 3, maximum offtracking at the
tracking point is 10 cm. This occurs when the vehicle is exiting the roundabout
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due to the large change in curvature experienced. With a single steered axle,
AFG can only control a single point – this is the rear end of the trailer. The rest
of the vehicle follows this point passively.

Figure 4 shows the lane change, maximum offtracking is only 1 cm at the
tracking point. For both cases, the vehicle remains stable throughout with the
articulation angle staying within 21.2◦ for the roundabout and 1.7◦ for the lane
change.

Fig. 3. Simulation results for the roundabout maneuver. Here, 1st axle is the front axle
on the tractor and the 6th axle is the rearmost axle on the trailer.

Fig. 4. Simulation results for the lane change maneuver. Here, 1st axle is the front axle
on the tractor and the 6th axle is the rearmost axle on the trailer.

5 Conclusion

Reversing HGVs can be a time consuming and challenging task for the human
driver. Automating this process can improve supply chain efficiency and con-
tribute positively towards smart manufacturing. AFG was used to design a con-
troller for automated reversing control on tractor-semitrailers. A simple lower-
level controller is used to convert the velocity reference at the rear end of the
trailer to a yaw rate reference at the fifth wheel.
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Simulations rendered in TruckMaker show good tracking performance at the
rear end of the semitrailer. For the maneuvers tested, the rear end of the trailer
stays within 10 cm of the desired path, even during large changes in path cur-
vature. These results are comparable, if not better than recent publications on
reversing control of tractor-semitrailers [1,4]. This, combined with the simplicity
of the control method makes this an attractive solution to the reversing problem.
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Abstract. The nonlinear dynamics of towed two-wheeled trailers is
investigated using a spatial, 4-DoF model. Namely, the yaw, pitch, and
roll motions are all taken into account. Geometrical nonlinearities and
the non-smooth characteristics of the tire forces are considered. A lin-
ear state feedback controller with feedback delay is designed to enhance
the stability performance of the trailer. Numerical bifurcation analysis
is performed to investigate the large amplitude vibrations and unsafe
(bistable) zones, where the stable rectilinear motion and the stable limit
cycle coexist with each other. The effects of the control gain and the
feedback delay of the controller are presented on bifurcation diagrams.
It is shown, that with appropriately chosen control gains, the size of the
bistable region can be limited.

Keywords: towed two-wheeled trailer · stability control · nonlinear
analysis · feedback delay

1 Introduction

Vehicle handling and stability are critical factors in road transportation; hence,
they became relevant research topics a long time ago, see e.g. [1–4]. Unfor-
tunately, several road accidents happen due to the not appropriately chosen
amount of payload or payload position, which easily leads to the so-called snaking
and rocking motions of trailers. Most of the previous studies are limited to lin-
ear stability analysis and are based on single-track (in-plane) models. In this
study, we focus on the nonlinear dynamics of two-wheeled trailers, using a spa-
tial mechanical model.

2 Mechanical Model and Control Design

The applied spatial, 4-DoF mechanical model is shown in Fig. 1(a). The trailer
is towed with constant towing speed v. For the sake of simplicity, the towing
car is imitated by a lateral spring and damper at the kingpin A. The motion of
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the system can be described with the yaw angle ψ, the pitch angle ϑ, the roll
angle ϕ, and the lateral displacement of the king pin u. Details of the derivation
of the governing equations can be found in [5]. Here, we only present the different
sources of the relevant nonlinearities and non-smoothness.

Figure 1(b) shows the non-smooth characteristics of the suspension forces.
A piecewise smooth formula is introduced for the right FR = Fs(dR) and the
left FL = Fs(dL) suspension forces, where dR is the distance measured between
the points R and R′, and dL is the distance measured between points L and
L′, see panel (a) of Fig. 1. We take into account that the right or left tire can
detach from the ground, and the related vertical load NR or NL becomes zero.
We neglect the effect of the unsprung mass by considering zero masses for the
wheels. Hence, zero normal load corresponds to zero suspension forces in our
model. In Fig. 1(b), Lmax relates to the maximal length of the suspension, i.e.,
where the suspension is fully expanded. In addition, for d < Lmin, we consider
higher stiffness and damping for the full compression case.

Fig. 1. (a) The towed two-wheeled trailer with the braking force at the right wheel,
(b) the schematic non-smooth characteristic of the suspension forces

The effect of the tires is taken into account by means of the lateral tire forces
only, which are calculated based on Pacejka’s Magic Formula [6]:

μ(α) = D sin (C arctan (Bα − E (Bα − arctan(Bα)))) , (1)

where B, C, D and E are semi-empirical factors, and α is the side slip angle of
the right (αR) and the left (αL) wheel. With these, the tire forces are

F tire
R = NR μ(αR) , F tire

L = NL μ(αL) . (2)

Namely, we assume that the lateral tire forces depend linearly on the vertical
loads. In addition, we neglect the dependencies of the factors of the Magic For-
mula on the static and dynamic coefficients of friction, the temperature, and the
camber angle.

To control the snaking motion of the trailer, we design a linear state feedback
controller, which operates with the braking forces applied to the right and the
left wheels, see Fig. 1(a). We consider braking forces proportional to the yaw
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rate ψ̇ and take into account the deadzone 2ψ̇0 of the controller, where no braking
force is actuated. Furthermore, we consider the feedback delay τ of the controller.
Thus, the non-smooth characteristics of the right and left braking forces can be
formulated as

F brake
R =

{
D(ψ̇(t − τ) − ψ̇0) , if ψ̇(t − τ) > ψ̇0 ,

0 , if ψ̇(t − τ) < ψ̇0 ,
(3)

F brake
L =

{
−D(ψ̇(t − τ) + ψ̇0) , if ψ̇(t − τ) < −ψ̇0 ,

0 , if ψ̇(t − τ) > −ψ̇0 ,
(4)

where D is the control gain. The non-smooth characteristics of the tire forces
and the braking forces are handled by a smoothed Heaviside-function in our
numerical investigation, see, e.g. [5]. Since we investigate the straight running of
the two-wheeled trailer, the reference yaw rate is set to zero in this study.

For the sake of simplicity, we do not implement the combined slip in the
model. However, we pay attention to the relation between the longitudinal forces
(i.e., the braking forces), the lateral tire forces, and the vertical loads. Namely,
we define the required coefficients of friction μreq,R and μreq,L as

μreq,R =

√(
F brake
R

)2 +
(
F tire
R

)2
NR

, μreq,L =

√(
F brake
L

)2 +
(
F tire
L

)2
NL

. (5)

3 Nonlinear Stability Analysis

Nonlinear bifurcation analysis is carried out with DDE-BIFTOOL [7]. The stable
and unstable periodic solutions are depicted in bifurcation diagrams, in the plane
of the towing speed v and the maximum amplitudes of the yaw angle ψ, the pitch
angle ϑ, the roll angle ϕ, and the lateral displacement of the king pin u, see Fig. 2.
Based on the continuation, one can observe that the pitch motion is asymmetric.
Thus, both the max/min values of the periodic solutions are illustrated for ϑ. The
results are shown for parameter values described in [5], but for vertical payload
position of h = 0.27m. The half-width of the deadzone was ψ̇0 = 0.1 rad/s in
this study.

In the bifurcation diagrams, dashed red lines and solid blue lines refer to
unstable and stable motions, respectively. For every branch point of the periodic
solutions, the required coefficients of friction of Eq. (5) are calculated. During
the continuation of the bifurcation branch, if μreq,R and/or μreq,L reaches the
pre-defined threshold μcr = 1, we define the corresponding branch point as the
limit of validity. The remaining segment of the bifurcation branch is plotted thin
and gray, namely, we consider it invalid.

The bifurcation diagrams in Fig. 2 are constructed for the delay-free case
(i.e., τ = 0) for different control gains. For the uncontrolled case (i.e., D = 0),
a relatively wide bistable region is present, where the stable rectilinear motion
coexists with unstable and stable periodic solutions. It is considered an unsafe
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zone since the global stability of the rectilinear motion is not ensured in this
linearly stable towing speed range, and large enough perturbations may lead to
unwanted large amplitude vibrations of the trailer. By increasing the control
gain, the width of the unsafe zone and the amplitudes of the vibrations are
decreased.

Fig. 2. Bifurcation diagrams with respect to the towing speed v for the delay-free
controller (τ = 0) and for different control gains: a) D = 0, b) D = 5000 Ns, c)
D = 10000 Ns

In Fig. 3, numerical results are presented for points P1 and P2 of Fig. 2(b).
Namely, the periodic solutions for the normal loads, the tire forces, the braking
forces, and three of the generalized coordinates (ψ, ϕ, and u) are plotted for
one period T of the oscillation. Point P1 corresponds to the point of the stable
branch with smaller amplitudes and towing speed of v = 47.22m/s. As can be
observed in Fig. 3(a), no loss of contact of tires happens for this point, i.e., no
rocking motion occurs. In addition, the tire forces, the braking forces, and the
amplitudes of the vibrations remain moderate. Point P2 corresponds to the point
of the stable branch with larger amplitudes and towing speed of v = 50.35m/s.
Both full compression and full expansion of the wheel suspension happen, and
loss of contact of tires also occurs, see Fig. 3(b). Furthermore, the tire forces,
the braking forces, and the amplitudes of the vibrations are remarkably larger.

The effect of the feedback delay τ is shown in the bifurcation diagrams of
Fig. 4 for a fixed value of the control gain D = 5000Ns. As shown, it significantly
affects the nonlinear stability properties. The unsafe zone is narrower, and the
amplitudes of the corresponding periodic solutions are smaller for larger feedback
delay values. This is a counterintuitive result since it suggests that the feedback
delay can be beneficial. Of course, a very large delay (i.e., τ ≥ 0.2 s) degrades
the performance of the controller.
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Fig. 3. Numerically determined time histories of the normal loads, the tire forces, the
braking forces and the generalized coordinates ψ, ϕ, and u, for control gain D = 5000 Ns
and feedback delay τ = 0. Panels refer to the points marked in Fig. 2(b).

Fig. 4. Bifurcation diagrams with respect to the towing speed v for fixed control gain
(D = 5000 Ns) and for different feedback delays: a) τ = 0, b) τ = 0.05 s, c) τ = 0.1 s
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4 Conclusions

In this study, we performed nonlinear stability analysis of the spatial mechanical
model of towed two-wheeled trailers. A linear state feedback controller with feed-
back delay was designed to reduce the unwanted vibrations of snaking trailers.
The deadzone and the feedback delay of the controller were taken into account.
For the uncontrolled case, a considerably wide unsafe zone (a so-called bistable
region) can be observed. It was shown that this unsafe zone can be reduced by
applying braking forces to the wheels. In addition, some feedback delays may
have some beneficial effects on global stability.
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Abstract. Articulated heavy vehicles (AHVs) face yaw instabilities, especially
under extensive propulsion or regenerative braking force on the driven axles,
risking their directional stability and potentially leading to jackknifing. Hence,
safe operating envelopes (SOEs) are essential for allocatingpropulsion andbraking
forces among different units. This study proposes a novel approach to ensure yaw
stability by reducing longitudinal slip limits of the electric motors (EMs) based
on side-slip, enhancing stability and acceleration performance. Validation through
simulations and real vehicle tests shows promising results.

Keywords: Safe Operating Envelope · Slip Polytope · Jackknifing · Articulated
Heavy Vehicles · Slip Controller · Yaw Stability

1 Introduction

Electrification affects both trucks and trailing units like trailers and dollies.Withmultiple
units propelled, AHVs face increased risk of yaw instabilities. Regenerative braking by
tractor’s EMs without braking semitrailer can cause jackknifing, while braking only
semitrailer’s EMs with an unbraked tractor can lead to trailer swing [1]. The same
problems may also occur during propulsion. Hence, safe motion control of AHVs is
crucial while maintaining the highest energy efficiency. While previous research defines
SOEs in wheel force domain [1, 2], side-slip angle vs. side-slip angle rate [3], lateral
velocity vs. yaw rate [4] or side-slip angle vs. yaw rate [5], this study forms a SOE
in the longitudinal slip vs. side-slip angle domain. Advanced EMs in modern AHVs
offer new opportunities for ensuring yaw stability. While slip controllers usually have
rather constant longitudinal slip limits, it is a well-known fact in vehicle dynamics that
high longitudinal slip reduces lateral force generation for a given lateral slip [6]. Thus,
an advanced slip control strategy, rather than fixed slip limits, is needed to ensure yaw
stability.

This study investigates an electric tractor and conventional semitrailer combination,
introducing a new slip control strategy. Longitudinal slip limits of EMs vary based on
side-slip angle deviation from an estimated reference value at the driven axle. This
approach ensures adequate lateral force capability and yaw stability, tested first through
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simulations, and then validated with a real test vehicle on a circular snow/ice test track,
at Colmis Proving ground in Northern Sweden.

2 Reference Side-Slip Ange Estimation

A reference side-slip angle for the vehicle is obtained with an estimator incorporating a
single-track vehicle model. The free-body diagram of the tractor is shown in Fig. 1. The
lateral force and the yaw moment equilibria around the center of gravity (CoG) for the
tractor are expressed as:

m1 · (
v̇1y + ω1z · v1x

) = cos (δf ) · F1fyw + F1ry + P1cy

J1 · ω̇1z = F1fy · l1CoG − F1ry · (L1 − l1CoG) − P1cy · (l1c − l1CoG)
(1)

The compatibility equations are derived as:

v1fy = v1y + ω1z · l1CoG,

v1ry = v1y − ω1z · (L1 − l1CoG),

v1fxw = v1x · cos(δf
) + v1fy · sin(δf )

v1fyw = −v1x · sin(δf ) + v1fy · cos (δf )
(2)

Fig. 1. Free body diagram of the tractor

The lateral axle slips and the lateral tire forces are defined as:

s1fy = v1fyw∣∣v1fxw
∣∣ , s1ry = v1ry

|v1x| (3)

F1fyw = −C1f · s1fy · F1fz, F1ry = −C1r · s1ry · F1rz (4)

Here, the tractor yaw acceleration, ω̇1z , is assumed to be zero for model simplicity.
As longitudinal speeds are always positive, the absolute signs in (3) are omitted. All
longitudinal wheel forces are set to zero, meaning the reference side-slip angle is cal-
culated for a quasi steady-state turning maneuver without braking or propelling. The
longitudinal vehicle speed, v1x, and the steering angle, δf , are known inputs to the esti-
mator. Furthermore, the lateral coupling force, P1y, is considered known, simplifying
the estimator and avoiding the semitrailer equations. A total of 10 equations can be
solved for 10 unknowns: ω1z , F1fyw, F1ry, s1fy, s1ry, v1fyw, v1ry, v1fxw, v1fy, v1y. The vehi-
cle parameters are given in Table 1. This open-loop estimator calculates the reference
lateral axle slip, s1ry, as a side-slip angle (βref ) at the tractor drive axle. Its accuracy,
validated against VTM (Volvo Transport Model) high-fidelity model [7] simulations,
reaches approximately ± 0.1° for various maneuvers.
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Table 1. Tractor vehicle parameters for reference side-slip angle estimation

Parameter Explanation Value Unit

F1fz , F1rz Front and rear axle normal loads 67689, 91741 N

C1f , C1r Normalized front and rear axle cornering stiffnesses 6 N/N/rad

L1 Tractor wheelbase 3.8 m

l1CoG , l1c Tractor CoG and coupling distance to the front axle 1.351, 3.225 m

m1 Tractor mass 9000 kg

3 Simulation Tests

In this section, the performance of two slip controllers are compared: one with a fixed
longitudinal slip limit and another one with an adaptive longitudinal slip limit based
on the side-slip angle, using the VTM. In the first controller, Slimx is set at + 10% for
propulsion and−7.5% braking. In the second controller, Slimx decreases for any deviation
from βref (estimated via the estimator explained in Sect. 2), on the tractor drive axle,
as shown in Fig. 2. Slimx is linearly decreased and set as 0 for ± 1° deviation from βref .
This would provide more lateral force capability for the tires to maintain yaw stability at
high side-slip angles and high lateral accelerations. The resultant shape of the slip limits
is a 2-dimensional polytope.

Fig. 2. Tractor EM slip limit. Case a: fixed (orange), Case b: adaptive (blue).

βref is estimated using the estimator for a quasi-steady-state maneuver as explained
in Sect. 2. Inputs to the estimator, (v1x, δf , and P1y), are extracted from the VTMmodel.
Figure 3 illustrates a propel-in-turn maneuver performed on ice (with 0.1 friction coef-
ficient, μ) on a reference path with a 115 m turning radius. The vehicle combination
accelerates to 25 km/h with a rather low, 40% friction utilization (3670 N axle force).
Here, the friction utilization is defined as Fx/(μFz), where the Fx and Fz are the longitu-
dinal and normal forces on the wheels. When the vehicle reaches 25 km/h (indicated by
a black vertical line), the tractor drive axle propulsion forces are increased from 3670 N
to 9170 N, reaching full (100%) friction utilization. Slip controllers control wheel slips,
with oneEMequippedwith a slip controller per drivenwheel.A simple PID controller for
path-following steers the vehicle. The vehicle equipped with a fixed slip limit controller
(case a) experiences jackknifing, with the speed, Vx reaching a maximum of 26.3 km/h.
The vehicle equipped with more advanced slip controller with an adaptive Slimx (case b),
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on the other hand, can accelerate smoothly and stably up to 34 km/h. During maneu-
ver b, longitudinal slip, Sx; side-slip angle, β; and steering wheel angle, δ, are kept at
reasonable values.

In Table 2, simulation results for four maneuvers are presented, comparing con-
stant and adaptive slip limits. Previous results are related to maneuver 1. Two friction
coefficients are tested: μ = 0.1 for ice, and μ = 0.3 for snow. Four turning radii, R,
with various initial speeds, Vinitial , and target speeds, Vtarget , are examined. Vinitial is
the speed at which the longitudinal force corresponding to full friction utilization is
applied, indicated by solid vertical lines in Fig. 3. In Table 2, additionally, normalized

lateral acceleration values,
V 2
target/R
μ·g , for the given friction coefficients and turning radii,

are included. These values, ranging between 0.7 and 0.8 for all maneuvers, signify the
aim for high lateral accelerations by the end of the maneuvers.

Fig. 3. Simulated test state plots for constant (a) and adaptive (b) slip limits

Table 2. Simulation test results

Man-
euver

μ R [m] Vinitial [km/h] Vtarget [km/h]
V 2
target/R
μ·g a: Constant Slimx b: Adaptive Slimx

Vmax [km/h] Jack-knifing Vmax [km/h] Jack-knifing

1 0.1 115 25 34 0.79 26.3 Yes 34.0 No

2 0.1 160 30 40 0.79 31.1 Yes 40.0 No

3 0.3 70 35 44 0.73 37.5 Yes 44.0 No

4 0.3 137.5 50 61 0.71 52.0 Yes 61.0 No

All maneuvers employing slip controllers with fixed slip limits result in jackknifing,
with the vehicle’s maximum reachable speed, Vmax, only a few km/h higher than Vinitial .
This indicates that applying a high propulsion force with a fixed slip limit on the slip
controller leads to instability and jackknifing, as shown in the path plots in Fig. 4.
Conversely, the vehicle equipped with slip controllers with adaptive slip limits can reach
Vtarget , without encountering stability problems.

4 Real Vehicle Tests

The test vehicle accelerates from 25 km/h to 40 km/h on an ice surface (μ ≈ 0.1) along
a circular track with a radius of 115 m, with a high propulsion force corresponding to
full friction utilization. The slip controller for the tractor’s EM is activated, while the
electronic stability controllers are turned off. Side-slip angles are accurately measured
using a global navigation satellite system/inertial navigation system.
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Fig. 4. Path plots of the maneuvers

Fig. 5. State plots for real vehicle test with default slip controller

With the default slip controller (constant 10% slip limit), depicted in Figs. 5 and 7,
the longitudinal slips remain under 10%. However, despite significant counter-steering
effort by the driver (up to -15° road wheel angle), the side-slip angle grows to significant
values (up to 18°). The vehicle fails to accelerate up to 40 km/h even in 53 s. The vehicle
motion is quite unstable and always has large yaw dynamics.

The test results with the adaptive slip limit are shown in Figs. 6 and 7. βref is set
at + 1°, which represents the observed quasi-steady-state β for the maneuver, without
using the βref estimator as in the simulated tests. However, the side-slip angle margin
remains at ± 1°, consistent with the simulated tests. With this strategy, the vehicle
reaches a speed of 40 km/h in just 17 s, as shown in Fig. 6. Moreover, this is achieved
with minimal side-slip angles (always below 2°) and without requiring additional driver
counter-steering effort from the driver. The driver can easily follow the lane with a very
reasonable (approximately) 1.5° road wheel angle.

Fig. 6. State plots for real vehicle test with slip controller with adaptive slip limits
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Fig. 7. Longitudinal slip vs. side-slip angle scatter plot for two types of controllers

5 Conclusion

This study introduces a side-slip angle estimator and a slip controller incorporating an
adaptive longitudinal slip limit based on lateral slip and compares it against the default
slip controller through both simulations and real vehicle tests. Simulation results demon-
strate the superior performance of adaptive slip limits over fixed slip limits for various
maneuvers on ice and snow, and for different turning radii. In real tests, the superior
performance of the adaptive slip limits is validated when the driver is in the loop. The
study shows that adaptive slip limits not only ensure yaw stability but also improve
acceleration performance. The slip polytope used in this study is two-dimensional, con-
straining longitudinal slip as a function of the tractor’s side-slip angle. However, it is
envisioned that the polytope can have more dimensions, such as side-slip angles of the
trailing units, and yaw rates. A reference side-slip angle estimator for a well-performing
quasi-steady-state turning maneuver is presented. Additionally, this estimator can also
estimate the reference yaw rate, which can be employed in the safety polytope. A signifi-
cant advantage of this method is that friction estimation is not required although it could
improve the reference side-slip angle estimator. Even though this paper focuses on a
tractor and a semitrailer combination, the adaptive slip limits are applicable to passenger
cars and single unit heavy vehicles as well.
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Abstract. Advanced Driver Assistance Systems (ADAS) in passenger cars, such
as Adaptive Cruise Control (ACC) and Lane Keeping Assist (LKA), have recently
been widely deployed. However, these systems are not designed for high-risk situ-
ations, yet some drivers over trust the system and engage in secondary tasks. These
behaviours may lead to serious accidents. On the other hand, it has been reported
that the use of ACC reduced approximately half of the collision rate on highways
based on public road data. This study aims to clarify the mechanism how ADAS
affects driver behaviour and enhances accident prevention performance. Specif-
ically, the focus is on the forward collision risk and the driver’s brake operating
behaviour. Through the analysis using a driving simulator, this study compared
driver behaviour in high collision risk situations in the case with andwithout ACC.
The analysis of subject drivers’ internal parameters confirmed the driver behaviour
that avoided a collision by using ADAS to take over control and brake earlier.

Keywords: Adaptive Cruise Control · Driving simulator · Driver-vehicle
system · Distracted driving · Highway safety

1 Introduction

Advanced Driver Assistance Systems (ADAS), such as Adaptive Cruise Control (ACC)
and Lane Keeping Assist (LKA), have recently become widespread. These systems are
designed to reduce the driver’s workload. Consequently, these systems cannot handle
high accident risk situations. However, some drivers over trust ADAS and this results
in distracted driving. Several serious accidents have occurred when using ADAS due
to driver overconfidently trusting the system and sometimes lead to fatal accidents [1,
2]. On the other hand, Otsuki et al. reported that the ratio of collisions on highways is
reduced to less than half with the use of ACC [3]. These facts indicate that although
ADAS alone do not have high accident-avoidance performance, ADAS can avoid acci-
dents by influencing on driver before the accident risk increases. The accident reduction
mechanism has not been quantitatively clarified yet.
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This research aims to quantitatively clarify the mechanism by which ADAS influ-
ences driver behavior and enhances accident-avoidance performance before accident
risk increases. To clarify driver behavior when using ADAS, experiments with sub-
ject drivers were conducted using a driving simulator. Two experiments, gaze movement
during distracted driving and driver collision avoidance behavior, were examined respec-
tively under two conditions, with and without ADAS. This analysis was based on the
hypothesis that active deceleration intervention andwarning of ADAS hasten the driver’s
perception of forward risk even though ADAS induce forward inattention. This paper
focuses on acceleration and deceleration support in the front and rear directions and
verifies the hypothesis using the situation where the preceding vehicle suddenly brakes
in distracted driving.

2 Driving Simulator Experiment

2.1 Experiment Overview

Two experiments were conducted for monitoring eye movement and driver risk-
avoidance behavior respectively. A motion-based driving simulator with four electric
actuators, which conduct motion cueing in the pitch and roll directions, was used. The
main task of the subject driver during the experiment was to follow a preceding vehicle
traveling at varying speeds of 80–100 km/h on the highway. In addition, as a subtask to
replicate distracted driving, the participants were instructed to answer simple questions
on a fixed smartphone within designated sections. This task was designed to imitate
operating a car navigation system. The subtask sections appeared several times on the
driving course. The driving simulator was also equipped with ACC and LKA to mimic
the commercial Level-2 ADAS. Before starting the test, the experiment participants
agreed to give informed consent and practiced using the driving simulator to familiarize
themselves with the simulator environment. These experiments were approved by the
Ethical Review Committee of the Tokyo University of Agriculture and Technology.

2.2 Gaze Movement

In order to quantify the forward inattention state during doing the subtask, all participants
put on glasses-type eye tracker, Tobii pro Glasses 2. The setting of the experiment is
shown in Fig. 1. These test runs were conducted for each subject under two conditions:
ACC ON and ACC OFF, with LKA always activated to reduce the driving burden. The
order of testing was changed for each half to account for order effects. 24 subjects who
hold driving licenses participated in the experiment. Their average age was 26.1 years
(range: 21–54). To guarantee uniformity in the risk perception for the preceding vehicle
even without the activation of ACC, zones indicating the recommended maximum and
minimum headway distances were displayed in the driving sections without secondary
task execution.
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Fig. 1. The setting of driving simulator experiment using eye tracker.

2.3 Driver Risk-Avoidance Behavior

In order to evaluate the collision risk and quantify the driver’s brake stepping behavior,
the preceding vehicle suddenly braked at the end of the final subtask section. This
emergency scenario could not be avoided solely by relying on ACC and the drivers were
not informed about it before the test. These test runs were conducted for each subject
under two conditions: ADAS ON (ACC and LKA were activated) and ADAS OFF
(manual driving). 7 subjects who hold driving licenses participated in the experiment.
Their average age was 29.7 years (range:21–49). Considering the physical workload
experienced by the participants and the impact of familiarity to the driving scenario,
every trial was carried out with a gap of more than one week between each trial.

3 Driver Behavior Analysis

3.1 Gaze Movement Analysis

To ascertain whether the driver’s visual focus was on the preceding vehicle or not, a
bounding box was assigned to the preceding vehicle on the front display, followed by
the computation of the distance to the viewpoint coordinates. If the calculated distance
was smaller than the threshold value, the viewpoint was considered to be close to the
preceding vehicle and the driver was considered to be gazing at the preceding vehicle.
Although there are various definitions for the size of the visible range, an effective field
of view (within approx. 15 deg to the left and right, 8 deg above and 12 deg below) [4]
was defined as the range within which the behavior of the preceding vehicle was visible
in this experiment, where information could be gazed at using only eye movements and
information was instantly visible. If this range is applied to the simulator environment,
it corresponds to a range of approximately 11 m to the left and right of the preceding
vehicle, and a size of 300 pixels of the front display. Thus, the threshold of the distance
between the preceding vehicle and the gaze point was defined as 300 pixels, which
defined the state of gazing at the preceding vehicle in this experiment. An example of
the range of the preceding vehicle’s viewable area on the front display is shown in Fig. 2.
The preceding vehicle’s bounding box is a yellow frame, and if the gaze coordinates are
within a blue range of 300 pix from its boundary, it was judged that the driver is in the
state of gazing at the preceding vehicle.
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Fig. 2. Example of possible surroundings for preceding vehicle on front display.

As the set Time Headway(Thw) of ACC was 1.8 s, each forward gaze duration (eye
point is within the blue area) and looking away duration (eye point is out of the blue
area) were calculated for the subtask section where the average Thw was within 1.8 ±
0.3 s, respectively. When using ACC, the average forward gaze duration is a little shorter
than when not using ACC as shown in Fig. 3-a. Moreover, when using ACC, the average
looking away duration is quite longer than when not using ACC and there is a significant
difference(*p < 0.05) as shown in Fig. 3-b. These results indicate that drivers who are
using ACC tend to overtrust the system and fall into an inattentive state when doing
distracted driving.

a. Average forward 
gaze duration.

b. Average looking
away duration.

*

Fig. 3. Average duration time of each subject compared between ACC ON and ACC OFF.

3.2 Collision Risk

The collision risk in the scene of the preceding vehicle’s sudden braking was quantified
using iTTC [s−1], which is defined as the inverse of the Time-To-Collision (TTC). This
iTTC indicates a higher collision risk for larger values and a lower collision risk for
smaller values. Figure 4 shows an example of a collision risk reduction result when
using ADAS. In the case of ADAS OFF, this driver did not step on the brake pedal in
time for a collision, while the risk of collision increased. On the other hand, in the case
of ADAS ON, the increased risk of collision was reduced, thus avoiding a collision.

In summary, in the experiment, 4 out of 7 participants had a smaller maximum iTTC
in ADAS ON than in ADAS OFF, reducing the collision risk as shown in this example.



Study on Accident-Avoidance Mechanism in Driver-Vehicle System 141

Fig. 4. Time history of inverted Time-To-Collision iTTC from the time instant that the preceding
vehicle started sudden braking.

3.3 Brake Pedal Operation Behavior

To find out why the collision risk became lower when using ADAS, the driver brake
pedal operation behavior was modeled by considering the driver reaction delay from
the sudden braking initiation of the preceding vehicle as the dead time, and the driver
brake pedal stroke as the first-order delay system. Figure 5 shows the block diagram
of brake stepping behavior. In the case of ADAS ON, ACC deceleration control was
activated, and the driver can easily perceive forward risk through the posture change by
deceleration and the alert. Three parameters, Reaction delay τ [s], Time constant Tb [s],
and Gain Hb [-], after the sudden braking of the preceding vehicle were identified for
each participant and compared depending on with or without ADAS.

Fig. 5. Block diagram of driver-vehicle braking behavior model.

Figure 6 shows the relationship between the amount of brake pedal stroke and each
parameter. The vertical axis shows the amount of driver’s brake pedal stroke, which was
calculated by defining the time from the start of emergency braking by the preceding
vehicle until the driver started to brake as the reaction dead time τ , the maximum amount
of brake operation by the driver as the gain Hb, and the time from the start of driver
braking until the value of 63.2% (= 1–e−1) of gain Hb was reached as the time constant
Tb was defined and calculated.

The result was that all 4 participants, who reduced the collision risk in ADAS ON
compared to ADAS OFF, had a shorter reaction delay when using ADAS. Furthermore,
these 4 participants braked after ACC deceleration had started but before the collision
alert sounded. Thus, when the preceding vehicle conducted sudden braking, it was con-
firmed that the use of ADAS with ACC deceleration enabled the driver to avoid the
risk of collision by bringing the driver back to primary driving task more quickly than
without ADAS, even though ADAS alone could not avoid the risk.
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Fig. 6. Relationships of braking behavior parameters

4 Conclusion

This paper conducted quantitative analyses of the change in driver’s eye movement and
driver’s behavior in the high collision risk situation, depending on whether ADAS was
used or not. The following two findings were identified.

A) When using ADAS, drivers tend to overconfidently trust the system and lose focus
on the risk ahead when they are distracted while driving.

B) The use of ADAS with active deceleration intervention enabled drivers, who tend to
be more distracted, to bring the drivers back to primary driving task more quickly
and improved their performance in avoiding critical accidents.

The subsequent stage involves the clarification of how drivers perceive ACC decel-
eration and its impact on collision avoidance actions. The findings from experimental
study will contribute to the design of next-generation ADAS to enhance safety for unsafe
drivers who tend to drive while distracted.
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Abstract. This paper considers the coordinated chassis control of a
6 × 4 HGV tractor unit using a multivariable nonlinear controller for
a transient handling manoeuvre under friction-limited conditions. The
controller’s performance is evaluated through simulation. It receives Cen-
tre of Gravity (CG) longitudinal and lateral acceleration targets, corre-
sponding to curvature and longitudinal acceleration requests, and aims
for the CG to track the target accelerations. It employs the Modified
Hamiltonian Algorithm (MHA) to generate steering and braking com-
mands for the tractor. A combined-slip Magic Formula tyre model used
within the algorithm allows for simultaneous stability control and path
tracking, even in scenarios where the vehicle is operating at the limits of
tyre adhesion. The manoeuvre is an autonomous obstacle avoidance on
a packed snow. Results show the advantages and possible limitations of
tracking acceleration targets for integrated chassis control.

Keywords: Vehicle Control · Handling Limits · Autonomous Obstacle
Avoidance

1 Introduction

Heavy goods vehicles (HGVs) are an essential part of modern society for the
transportation of goods. Despite their widespread and long-established use,
heavy vehicles contribute significantly to severe accidents, necessitating a con-
tinuing focus on safety enhancement [1].

Future vehicle advancements and increasing availability of actuators such as
independent wheel braking control and steer-by-wire can improve vehicle safety.
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Various chassis control algorithms - including optimization-based control alloca-
tion algorithms, such as Model Predictive Control (MPC), and Nonlinear MPC
(NMPC), have been explored in the literature to realize these improvements [2].
These approaches typically reference a suitable desired motion path, which can
be undesirable when reaching the limits of adhesion. The selected path may be
too conservative or not achievable, as this depends on the details of the vehicle
dynamics, the control actuators and the road surface. In other approaches, a CG
acceleration reference is determined [3,4] (e.g. using a simple particle model).
Assuming the acceleration target has been appropriately defined, e.g., to follow a
collision-free path within the capabilities of the vehicle and the road surface, the
key question is the vehicle’s performance in tracking that reference. Acceleration
magnitude will be set according to the adhesion limits of individual tyres, so the
vehicle will normally be in a condition where it needs to maximize the available
CG acceleration in the desired direction.

The main focus of this paper is on maximising the available CG acceleration
in a direction that is computed by the algorithm. The general approach, as well
as the use of acceleration targets, was developed from the more formal optimal
control-based method of QLOC [3] while avoiding any significant optimization
or nonlinear simulation within the control loop.

MHA has previously been shown to be a robust motion control methodol-
ogy for light vehicles, operating effectively up to the friction limits [4], and the
present paper makes a contribution towards its development as a control method
for HGVs. It includes a high-level reference generator, as well as a low-level
control allocator. Indeed MHA splits the motion control problem into parallel
sub-problems, to be solved locally for each wheel. This is achieved based on
Pontryagin’s minimum principle [5], with control signals being obtained by min-
imization of a linear Hamiltonian function. The general control architecture is
shown in Fig. 1.

Fig. 1. MHA controller structure.
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We consider an emergency lane-change scenario from two perspectives. In
the first case, the acceleration request is pre-computed and does not change
during the manoeuvre (open-loop). The second case uses an updating reference
(closed-loop) obtained from a particle subject to sliding mode control - see [3,7,8]
for details. Furthermore, in the MHA algorithm, the tracking performance is
strongly influenced by the lambda adaptation gain, K, [4] with larger values
of K being beneficial during severe transient demands. we will investigate this
through simulation results for an open-loop case.

2 Scenarios

This section examines both open-loop and closed-loop scenarios for an evasive
lane change, with control performance evaluated in simulation. It makes use of a
high-fidelity truck model ( Volvo Transport Models - VTM [9]) for a 6× 4 Volvo
FH tractor. In all cases a low-friction surface is assumed, representing packed
snow and with µ = 0.3.

2.1 Scenario 1 - Simulated Open-Loop Evasive Lane-Change

The chosen manoeuvre assumes a desired lateral acceleration of 2.5 m/s2 occur-
ring from 5 to 6.5 s, followed by a rightward desired lateral acceleration of −3
m/s2 from 6.5 to 9.5 s.

Fig. 2. Top: lateral acceleration tracking performance in vehicle coordinates. Bottom:
yaw moment performance diagnostics. Red: desired Blue: from simulation Black: MHA
internal estimation
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The initial speed is set at 80 km/h, and a PID speed controller is used to
maintain this speed before the manoeuvre begins, while it is deactivated during
and after the manoeuvre. This open-loop desired acceleration vector roughly
emulates an obstacle avoidance lane change. The lateral acceleration tracking
performance in vehicle coordinates is shown in Fig. 2. It is seen that lateral
acceleration targets are tracked well, though with some delay due to the yaw
dynamics being required to establish slip angles at the rear tyres. The yaw
moment plot is to confirm that MHA drives the yaw dynamics in a suitable way.
This provides a diagnostic check on the algorithm, in which precise tracking of
Mz is neither expected nor required.

2.2 Scenario 2 - Simulated Closed-Loop Evasive Lane-Change

Here, a closed-loop lane change is executed, with a target window of three sec-
onds, where a Sliding Mode Controller approach is used to provide a lateral
acceleration reference based on a predefined path [7]. Pure Pursuit is employed
before and after the lane change manoeuvre as a steering controller [8]. The ref-
erence speed is 50 km/h and again the speed control is disconnected at the start
of the manoeuvre. Figure 3 shows time histories for the vehicle speed, lateral
acceleration tracking, vehicle sideslip angle and CG lateral offset.

Fig. 3. Lateral acceleration and vehicle motion variables. Red: desired blue: from
simulation

Even though the target acceleration request is purely lateral, the vehicle
speed is seen to reduce due to the use of differential braking for yaw control.
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Note that MHA effectively controls the rear lateral tyre forces via yaw moments
and body sideslip corrections.

3 Impact of λ Updating Gain (K) on MHA Performance

Referring to Fig. 1, parameter lambda is adjusted in real-time to control the yaw
dynamics, while parameter K controls the speed of response of this parameter.
Here we briefly investigate the effect of K on acceleration tracking, and for
simplicity, the open-loop manoeuvre of scenario 1 is used. Results are shown in
Fig. 4.

Fig. 4. Lateral acceleration in vehicle coordinate and yaw moment diagnostic plots.
Blue: from simulation Black: MHA internal estimation Red: desired

It is seen that the larger value of K is required to achieve the speed of response
necessary for tracking highly transient lateral acceleration demands. Moreover,
the yaw moment diagnostic curves are more convergent in the case where K is
larger, indicating the overall satisfactory performance of the algorithm. Further
increases in K is however not desirable because of a tendency towards high-
frequency chattering in the actuator commands.
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4 Conclusion

This paper considered the coordinated chassis control of a 6 × 4 HGV tractor
using MHA to control transient manoeuvres under friction-limited conditions. It
is understood that the control of lateral acceleration is crucial in these kinds of
scenarios, with the speed of its tracking response being equally vital during eva-
sive lane change manoeuvres. By examining the MHA internal diagnostic plots,
we could assess the controller’s performance and how it was realized from the
vehicle’s perspective. We also found that while MHA is effective for integrated
chassis control, the parameter K needs to be adjusted and tuned. Additional
experimental results, obtained using a lower K value, closely matched the simu-
lation results; however, due to space constraints, these details were not included
in this paper. Although MHA was applied to a three-axle HGV tractor, it can be
easily adapted for use in two- or four-axle vehicles and deals with such changes
in a straightforward manner.
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Abstract. The potential of additional steering possibilities (like rear-
wheel or all-wheel steering) is analyzed for critical situations to inves-
tigate possible safety improvements. For this purpose, a dynamic opti-
mization problem is formulated to find the best possible maneuver. The
optimization criterion is to maximize the entry speed into a constant
radius 90◦-curve. The optimization problem is solved for different steer-
ing topologies, and the results quantify the increase in maximum entry
speed, highlighting the potential for safety improvements. Further, the
optimal steering strategies are determined, and they show interesting
characteristics like initial diagonal driving or, in other cases, a transition
from initial out-of-phase steering to in-phase steering.

Keywords: Optimal maneuvers · Safety-critical handling · Dynamics

1 Introduction

Rear-wheel steering is available and has demonstrated improved performance
in maneuverability at low speeds and driving stability at higher speeds [1,2].
Further, even more rear-wheel steering capability has been introduced, e.g., in
vehicles such as the GMC Hummer or the Hyundai Ioniq 5 with diagonal driving.
These new developments in rear-wheel steering may also be used for increased
safety, and the potential for this is the research question of this paper.

Dynamic optimization has been used to study critical vehicle maneuvers in
at-the-limit driving to find control principles and devise control schemes [3–5].
To specifically study safety, recent articles have used the optimization criterion
of maximum entry speed into a scenario (e.g., a constant radius 90◦-curve) [6,7].
By definition, this computation gives the maximum speed that can still be han-
dled when entering a situation. Furthermore, it has been used to analyze safety
potential using data from crashes [8], and for developing control principles and
schemes [7]. This paper uses this methodology to investigate the characteristics
and opportunities of adding rear-wheel steering capabilities.
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Fig. 1. The studied driving scenario, the optimization formulation, and the vehicle
dynamics model for the scenario, [5].

2 Steering Topologies, Scenarios, and Optimization

Here, critical cornering at the limit of friction is studied for different steering
topologies with varying amounts of steering capability and different curve radii.
The vehicle is described by a double-track dynamics model as depicted in Fig. 1.
The dynamic equations and parameters are the same as in [5], with fixed dis-
tribution between rear and front braking based on the proportional weight on
each axle, hence one control input for the total amount of braking. The steer-
ing topologies studied are the traditional front-wheel steering (FWS), rear-wheel
steering (RWS), all-wheel steering (AWS), and individual-wheel steering (IWS).
The difference between the two latter is that in AWS, wheels on the same axle
have the same steering angle, whereas in IWS, the steering angle is individually
controlled for each wheel. The front-wheel steering angle is, for all cases, limited
to a standard ±30◦. However, the study varies the rear-wheel steering capability
by examining maximum rear steering angles with 0, 1, 3, 5, 7, 10, 15, 20, 30, 40,
and 50◦, respectively. Also, [9] studied different steering architectures in combi-
nation with differential braking for a lane-change maneuver. The scenarios here,
all consist of a constant radius 90◦-curve as shown in Fig. 1, and it is studied
for the curve radii 10, 20, 30, 50, and 70 m. The maximum entry speed that
can be managed for these vehicles and scenarios is computed. This computation
is based on dynamic optimization as shown in Fig. 1, where the optimization
formulation, the modeling used, and the numerical solution principles follow the
methods described in [5–7].

3 Results

It turns out that the most interesting results from this research are about the
initial driving strategy to avoid going off-road. Therefore, for Figs. 2, 3 and 4,
the focus is on the first part of the constant radius 90◦-curve.
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3.1 FWS, RWS, AWS, and IWS

For the same case as in Fig. 1, i.e., a curve with a radius of 30 m, the first part
of the optimal solutions are presented in Fig. 2 for the four steering topologies
FWS, RWS, AWS, and IWS. The first part of the curve is shown in the top left
plot. The lane’s width indicates the allowed area for the vehicle’s CoG, and the
box’s width indicates the vehicle’s track width (tire-to-tire). The angle of the
vehicle box shows the vehicle’s orientation.

It is seen that for this scenario and these parameters (with a maximum rear
steering angle of 5◦), the rear wheels change δ3, δ4 from negative to positive,
which means that the optimal strategy for both AWS and IWS is to change
from out-of-phase steering to in-phase diagonal driving. This will be studied in
more detail in Sect. 3.2. Another major conclusion from Fig. 2, and in other
performed computations, is that the difference between AWS and IWS is minor.
Thus, the following will only present detailed results for AWS.

Fig. 2. Optimal solutions for FWS, RWS, AWS, and IWS. The first row shows initial
paths (left) and velocities (right). The second row shows the individual steering angles,
the third row the heading, the total longitudinal and lateral forces on the vehicle,
and the total moment acted on the vehicle. All variables are presented in the vehicle
coordinate system, referring to the notation in Fig. 1.
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3.2 Characteristics for Different δmax and R

For AWS, wheels on the same axle have the same steering angle, so δ1 = δ2
with maximum ±30◦ and δ3 = δ4 with maximum denoted δmax. As pointed out
in Fig. 2, there is a shift from out-of-phase steering (where δ1, δ3 have differ-
ent signs) to in-phase diagonal driving (where δ1, δ3 have the same sign). It can
also be seen (top left) from the vehicle orientation that AWS prioritizes diag-
onal driving compared to FWS. To study these aspects more in detail, Fig. 3
presents the optimal solutions for R = 30 m and for maximum rear-wheel steer-
ing capability δmax = 0, 1, 3, 5, 7, 10, 15, 20, 30, 40, and 50◦. As before,
the case of δmax = 5◦ leads to a shifting strategy in the rear-wheel steering,
whereas for δmax = 30◦, the strategy is diagonal driving during the whole start
of the maneuver. Thus, it seems advantageous to start rotating the vehicle for
less steering capability of the rear wheels. Still, for larger steering capability, it
seems better to move sideways directly and then rotate in the turn when the
critical part is cleared. This is manifested in the top left part of Fig. 3, where
it can be seen that 10 m into the curve, the vehicle rotates less when δmax is
increased, and thus, has focused more on diagonal driving than rotation. Con-
cerning the shifting in steering strategy, Fig. 4 shows the rear-wheel steering
solutions for the curve radii R = 10, 20, 30, and 50 m. The sharper the curve,
i.e., the smaller the R is, it is natural that there is more out-of-phase steering
on the rear wheels to get the vehicle to rotate. The switching point from out-
of-phase steering (δ3 < 0◦) to in-phase steering (δ3 > 0◦) depends on the curve
radius. For R = 10 m, the switching point comes earlier with smaller δmax. On
the other hand, for R ≥ 20 m, the switching point comes later with smaller δmax.

Fig. 3. Initial paths, velocities, and steering angles for AWS (for R = 30 m) with
different maximum rear steering angles, δmax. FWS corresponds to δmax = 0◦.
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Fig. 4. Rear steering angle for FWS and AWS for different radii R. The color coding
for δmax is the same as in Fig. 3.

3.3 Improved Safety

Having observed interesting steering behaviors in the previous subsection, the
next question is what crash avoidance or mitigation could mean regarding saved
lives and reduced injury for increased traffic safety. As seen in the top right of
Fig. 2, higher entry speeds can be handled when using rear-axle steering in AWS
or IWS, which is an indicator of improved safety. To provide more details, the left
plot in Fig. 5 shows the maximum entry speed as a function of δmax and R. Recall
that δmax = 0◦ corresponds to the regular FWS, so the curves in the left plot show
the improvement in maximum entry speed compared with FWS as an evaluation
of safety. When it comes to saved lives and mitigated injuries, a full analysis of
crash databases could be made [8]. However, a simple way to get a first estimate
is to compare the kinetic energy, which is made in the right plot of Fig. 5, where
the relative improvement in terms of kinetic energy, Δv2/v2, is plotted. Compared
to regular FWS, being the origin, the improvement is almost linear when adding
just some steering capability in terms of δmax for the rear wheels, but then it flat-
tens out. Using this simple way would indicate a safety improvement in the order

10
20
30
50
70

Fig. 5. Left: Maximum entry speed for different maximum allowed rear-steering angles
and curve radii. Right: The relative difference in kinetic energy for different maximum
allowed rear-steering angles and curve radii.
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of 10 % already for δmax = 7◦, and then it starts to flatten out at δmax = 20◦ to
eventually reach about 20 %. Another observation that was not foreseen is that all
curves in the right plot of Fig. 5 are so similar, except for R = 10 m.

4 Conclusions

The steering capabilities of the rear wheels are introduced mainly to improve
maneuvering or stability. Still, here, they are investigated in terms of improved
handling of critical situations even at the limit of friction. The main takeaways
are as follows. It was shown that already small steering capabilities on the rear
wheels could give significant safety improvements, e.g., for seven degrees as the
maximum rear-wheel steering angle it provides in the order of approximately
10 %, and for additional steering capability, it gives approximately double. Inter-
estingly, the initial steering strategy for avoiding going off-road depends on the
steering and scenario parameters and varies from initial out-of-phase steering
(to achieve vehicle rotation) to initial in-phase steering (parallel driving) to get
the vehicle away from the critical road border.
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Abstract. For autonomous driving in urban areas higher accuracy
requirements for localization of surrounding traffic participants become
apparent. The use of cost-efficient camera sensors shows potential for
a performant depth estimation and can supplement perception sys-
tems to achieve redundancy. Current research focuses on improving the
algorithms towards better performance whereas the application-oriented
analysis of present estimation errors in relation to urban traffic sce-
narios is often neglected. Based on stereo and mono camera images, a
benchmark analysis of rule- and deep learning-based depth estimation
approaches is conducted in this work. The error-prone estimation results
are then analyzed against braking distances of urban traffic scenarios
simulated by a two-track model to analyze the criticality of different
depth estimation approaches. The application-oriented evaluation shows
that current approaches could already be used in real automated driving
systems and enable the definition of requirements.

Keywords: Automated Driving Systems · Sensors and Actuators ·
Identification and Estimation

1 Introduction and Framework

In this work, the focus is set on depth estimation of binocular and monoc-
ular camera systems for autonomous driving in urban areas. For monocular
systems with a single input image the issue persists that depth estimation
leads to ambiguous results. To overcome this issue predictive models can be
used to learn the relationship between images and depth [5]. In stereo vision,
two rectified input images provide a remedy for the issue as epipolar geome-
try can be used to generate disparity maps. The disparity map can than be
transferred into depth maps by the given geometric camera relation. Predic-
tive models are capable of learning the stereo matching in an end-to-end fash-
ion while increasing accuracy [6]. Two predictive models define key points of
this work. Monodepth2 [5] represents the mono camera-based model whereas
2D-MobileStereoNet (2D-MSNet) [6] is the chosen model for stereo matching.
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Both models are characterized by low hardware requirements and are therefore
suitable for vehicle-related application. The baseline of the analysis is a geomet-
ric approach which uses camera extrinsics and inverse projection to determine
metric object depth [3]. For all depth estimation approaches we use a Python
Framework, the original algorithm repositories and the Kitti tracking multi-
object dataset [4] as image source. The 2D object detection information is taken
from the dataset and used to locate and classify a filtered object class subset
consisting of vehicles, pedestrians and bicycles.

2 Methodology

To infer metric object depth, any lens distortion must be removed from input
images. Afterwards the image is processed by the stated depth estimation algo-
rithms in Sect. 1. As an evaluation basis, we use trained models. For Monodepth2
the model “mono+stereo 640 × 192” is selected and for 2D-MSNet the model
“SF + DS + KITTI2015”. The resulting disparity maps from the deep-learning
models are converted to metric depth maps by scaling known from the cam-
era setup. The given ground truth object detection results are used in parallel
to generate a list of reference points and bounding box properties per image.
Using these object reference points as index for depth maps results in metric
depth per object. Figure 1 visualizes exemplary inference output for both deep-
learning based approaches and details the the different referent points chosen.
The lower reference point is only used for the rule-based inverse perspective
mapping (IPM) since the used algorithm projects the pixel coordinates into the
camera reference frame. The assumption that each reference point is located on
the road plane solves the ambiguity of the inverse projection. Since the rule-
based distance estimation is affected by the vehicles dynamics, we use the given
pitch and roll angles by the dataset to compensate vehicle movement [3]. After
depth estimation for each of the 21 data splits, we filter truncated and occluded
objects and calculate the absolute error based on ground truth LiDAR depth
maps per chosen distance intervals.

The simulated braking distances represent an automatic emergency brake
(AEB) in Euro NCAP Car-to-Pedestrian Nearside Adult (CPNA) [2] and Car-
to-Car Rear stationary (CCRs) [1] test scenarios with a maximum velocity of
50 [km/h]. The simulation is based on a two-track model of the institute of
Automotive Engineering which is statistically validated with real driving data.
A Magic Formula tire model of Version 5.2 with parameters of current summer
and winter tires and road friction coefficients of μR = 0.3, 0.6, 1 for snow, wet and
dry road conditions are considered. The trigger distance is set to the braking
distance to fulfill the collision unavoidable criteria [7]. Both the performance
measures of the depth estimation and the results of the two-track model form
the basis for the evaluation. Whereas current publications focus strongly on
optimization, the outlined methodology closes the gap between the algorithmic
evaluation on depth metrics and real applications like autonomous driving in
urban scenarios. The results enable the definition of accuracy requirements and
the impact assessment of estimation errors.
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Fig. 1. Depth map samples for image number 150 of split 20 in the Kitti Tracking
dataset [4]. Above the depth map of the Monodepth2 inference is shown, below the
results of the 2D-MSNet. A ground truth bounding box is highlighted with both refer-
ence points (center: Monodepth2 and 2D-MSNet, center bottom: IPM). In both color
variations, darker colors represent distance. Lighter colors emphasize proximity.

3 Evaluation

For the full training dataset and the object classes car, van, cyclist and pedes-
trian mean absolute error values of the metric depth are given per ground truth
distance intervals of 10 m in Fig. 2. Exemplary objects evaluated with the IPM
algorithm have a mean abs. error of 14.96 [m] for the interval which spans from
40 [m] to 50 [m]. The corresponding number of estimations (images × objects) is
detailed on the right. As the distance towards the objects increases, the number
of objects decreases which reflects the extra urban and urban environments of
the data set. In summary the 2D-MSNet shows the lowest error values across all
data, as the image data from the left and right cameras are used to solve the
correspondence problem. Both monocamera-based approaches have comparable
error values up to 30 [m]. Whereas the error value of the IPM approach stagnates
from a distance interval of 50 [m] at approx. 15 [m] under the conditions used,
the error values of Monodepth2 continue to increase.

In regards to the application of autonomous driving, depth underestimation
leads to an earlier braking event, overestimation means a late event. The for-
mer can cause self-inflicted rear-end collisions, the latter is safety-critical for
front collisions. Considering the collision unavoidable criteria for autonomous
emergency braking, full braking triggers when the metric object depth corre-
sponds to the required braking distance [8]. Hence absolute error statistics must
be added to braking distances and lead to a collision with a simulated collision
velocity vCollision. Figure 3 shows the simulated velocity profile over the braking
distance sB for a road friction coefficient of μR = 0.3 and winter tires. The brak-
ing distance shifted by the 75% error qunatile sB + εsB ,q0.75 is detailed for the
Monodepth2 algorithm. The quantile is calculated based on a narrower distance
interval which spans over the simulated braking distance of 35.9 [m] with a tol-
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erance ±1 [m]. The added error leads to a simulated collision velocity vCollision

of 23.55 [km/h]. Based on the ISO/DIS 26262-3 standard and severity levels
of an automotive safety integrity level classification, this qualifies as a severity
level S2 (< 40 [km/h], severe injuries). Furthermore, the given speed limits of
the standard can be used to calculate the required error reduction ΔsB ,S for
the next lower severity level depending on the tire type and the road friction
coefficient. For the parameters of Fig. 3 the severity level can be reduced to S1
(vSeverity = 20 [km/h]) if the εsB ,q0.75 is reduced by ΔsB ,S = 2.22 [m]. The
simulated braking distance with applied error reduction sB + εsB ,q0.75 − ΔsB ,S

is visualized with a dashed line. Since the standard does not detail the collision
velocity for a severity level S0, the level is only achievable if a crash is prevented.
So the required error reduction equals the qunatile εsB ,0.75 for S0.

Table 1 summarizes simulations results for all parameter combinations and
algorithms as well as the requirements for error reduction. The lower error values
of the 2D-MSNet over the entire data set are reflected in the resulting severity
classes.

Fig. 2. Mean absolute error per distance interval is shown on the left side. On the right
number of estimation per distance interval is shown.

Fig. 3. Simulated velocity profile over braking distance sB and braking distance shifted
by error qunatile sB + εsB ,q0.75 for winter tires and a road friction coefficient of μR = 0.3
(condition class: snow). The 75% quantile is based on the Monodepth2 algorithm.
Collision velocity borders per severity level are indicated by horizontal lines.
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Table 1. Accuracy requirements formulated as ΔsB ,S for the resulting severity class
for selected depth estimation algorithms. Lowest absolute error quantiles and delta
values given in bold over all algorithms per tire type.

2D-MSNet Monodepth2

summer tires winter tires summer tires winter tires

μR [−] 0.3 0.6 1 0.3 0.6 1 0.3 0.6 1 0.3 0.6 1

sB [m] 53.78 18.25 9.4 35.9 17.9 11.2 53.78 18.25 9.4 35.9 17.9 11.2

εsB,q0.75 [m] 10.39 1.33 1.35 4.85 1.30 1.29 20.56 2.93 1.67 7.94 2.84 1.72

vCollision [ km
h

] 16.66 16.64 18.31 18.41 12.81 15.49 28.14 20.07 20.59 23.55 19.64 18.2

Severity [−] 1 1 1 1 1 1 2 2 2 2 1 1

vSeverity [ km
h

] 0 0 0 0 0 0 20 20 20 20 0 0

ΔsB,S [m] 10.39 1.33 1.35 4.85 1.30 1.29 7.95 0.17 0.85 2.22 2.84 1.72

IPM

summer tires winter tires

μR [−] 0.3 0.6 1 0.3 0.6 1

sB [m] 53.78 18.25 9.4 35.9 17.9 11.2

εsB,q0.75 [m] 18.92 2.76 1.29 10.29 2.53 1.40

vCollision [ km
h

] 26.76 19.41 17.93 26.86 18.44 16.26

Severity [−] 2 1 1 2 1 1

vSeverity [ km
h

] 20 0 0 20 0 0

ΔsB,S [m] 6.32 2.76 1.29 4.57 2.53 1.40

4 Conclusion and Future Work

The proposed evaluation method of depth estimation algorithms as a function
of real applications shows based on low severity levels that depth estimation
of the 2D-MSNet algorithm can already be used in real driving scenarios. The
IPM results motivate further usage for the road condition classes “dry” and
“wet”. Moreover accuracy requirements for achieving a lower severity level can
be formulated based on collision velocity limits given by standards as shown
in Table 1. These detail an application-based foundation for further algorithm
optimization and self-trained neural networks. A decisive factor of the proposed
methodology is the assumption that a braking event is triggered as soon as
a collision can no longer be prevented. Future analysis will target the impact
on comfort-oriented braking systems. Since the used training dataset does not
incorporate the weather conditions of the simulated braking distance and chosen
road friction coefficients in image data, future work will take into account the
impact of weather conditions on the depth estimation and object detection.
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Abstract. Accurately predicting the trajectories of other vehicles is
crucial for autonomous driving to ensure driving safety and efficiency.
Recently, deep learning techniques have been extensively employed for
trajectory prediction, resulting in significant advancements in predictive
accuracy. However, existing studies often fail to explicitly distinguish
the impact of historical inputs at different time steps and the influence
of surrounding vehicles at distinct locations. Moreover, deep learning-
based approaches generally lack model interpretation. To overcome the
issues, we propose the Spatial-Temporal Attention Guided Social GAN
(STS-GAN). In the generator, we proposed a spatial-temporal attention
mechanism to guide the utilization of trajectory features and interaction
of the target vehicle with its surrounding vehicles. The spatial attention
mechanism evaluates the importance of surrounding vehicles for predic-
tions of the target vehicle, while the temporal attention mechanism learns
the significance of historical trajectory information at different historical
time steps, thereby enhancing the model interpretation. A convolutional
social pooling module is employed to capture interaction features from
surrounding vehicles, which are subsequently fused with the attributes
of the target vehicle. Experimental results demonstrate that our model
achieves competitive performance compared with state-of-the-art meth-
ods on publicly available datasets.

Keywords: autonomous driving · trajectory prediction ·
spatial-temporal attention mechanism

1 Introduction

Recently, vehicle trajectory prediction has garnered significant attention due to
its critical applications in autonomous driving [1,2]. However, predicting the tra-
jectories of social vehicles is not trivial due to the inherent uncertainty variability
in the motion patterns of objects [3].

Benefiting from the potent deep learning, pioneering work in vehicle trajec-
tory prediction has addressed some of the above challenges. Variational Autoen-
coders (VAE) [4], Generative Adversarial Networks (GAN) [5], and Graph Neural
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Fig. 1. Overview of proposed STS-GAN.

Networks (GNN) [6] have been utilized to learn trajectory representations and
generate multiple possible trajectory samples, effectively capturing multimodal
features. These techniques model the complex relationships between vehicles and
capture social interactions, leading to more accurate trajectory predictions.

Despite significant progress, existing vehicle trajectory prediction methods
struggle with interpretability, especially concerning long-term historical data and
nearby vehicle information. Questions about which parts of historical trajecto-
ries or nearby vehicle positions influence future motion and how to quantify this
influence remain unanswered. To address this, we introduce a spatial-temporal
attention mechanism in our STS-GAN model. This approach matches the pre-
diction accuracy of state-of-the-art techniques and enhances interpretability by
highlighting the influence of historical trajectories and nearby vehicles through
attention weights. Our main contributions are:

1) Proposing a spatial-temporal attention-guided social GAN model for vehicle
trajectory prediction;

2) Developing a temporal attention mechanism to identify the importance of
historical trajectories at different times for predicting future behavior;

3) Designing a spatial attention mechanism to quantify the influence of nearby
vehicles on the trajectory prediction of the target vehicle.

2 Methods

The overall network architecture is shown in Fig. 1. To better understand the
importance of different vehicle locations for prediction, similar to research [7],
we define a 3 × 13 spatial grid around the predicted vehicles (Fig. 1).

LSTM Encoder. We first use a single-layer fully connected (FC) network to
embed the position of each vehicle xi

t, obtaining the vector ee,i
t . Then, the LSTM

encoder processes these embedding vectors for each vehicle i over time steps
t = 1, ..., h.
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Temporal Attention. The hidden states of vehicle v in the LSTM encoder are
denoted as He,v

t = {he,v
t−h, ..., he,v

j , ..., he,v
t }. Subsequently, the temporal attention

weights are computed as follows:

Av
t = softmax(tanh(WαHe,v

t )). (1)

Next, the hidden states He,v
t and temporal attention Av

t are combined
through a weighted processing, resulting in:

Hv
t = He,v

t (Av
t )� =

t∑

j=t−h

αv
t he,v

t . (2)

Spatial Attention. Each cell on the grid is denoted as Gt = {G1
t , ..., G

N
t }. N

is the total number of grid cells, which can be calculated as follows

Gn
t =

{
Hv

t , if any vehicle v locates at grid cell n

0 ∈ R
d×1, otherwise

(3)

The spatial attention weights for all vehicles at time step t, denoted as Bt =
{β1

t , ..., βn
t , ..., βN

t }, are calculated as follows:

Bt = softmax(tanh(WβGt)), (4)

where Wβ is learnable weights matrix. Finally, we combine all of the historical
information from its surrounding vehicles as follows:

Vt = Gt(Bt)� =
N∑

n=1

βn
t Gn

t . (5)

LSTM Decoder. After concatenating the nearby vehicles’ spatial-temporal
feature vectors, and their social context vectors, we use an LSTM layer followed
by a FC layer to predict the future trajectory.

Discriminator. The discriminator evaluates the accuracy of the predicted and
actual trajectories

hD,i
t+1 = LSTM(hD,i

t , xD,i
t ;WD,encoder), (6)

sD,i
t+1 = Sigmoid(FC(hD,i

t+1;WD)). (7)

3 Datasets and Experiments Setup

STS-GAN is trained and evaluated using the Next Generation Simulation
(NGSIM) ([8]) US-101 and I-80 datasets, each containing 45-min vehicle tra-
jectories split into six 15-min segments. These segments are further divided
into training, validation, and test datasets in a 0.7 : 0.1 : 0.2 ratio, resulting
in 5, 922, 867 training entries, 859, 769 validation entries, and 1, 505, 756 test
entries.
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Table 1. Performance Metrics (ADE/FDE) Comparison with Other Methods

Models Prediction Horizons

1s 2s 3s 4s 5s

CS-LSTM 0.339/0.579 0.632/1.267 1.065/2.107 1.599/3.181 1.922/4.512

STA-LSTM 0.296/0.456 0.526/0.969 0.797/1.605 1.114/2.396 1.485/3.379

ST-GAN 0.286/0.445 0.513/0.953 0.782/1.581 1.095/2.360 1.463/3.339

SS-GAN 0.286/0.452 0.517/0.957 0.783/1.571 1.092/2.345 1.455/3.309

TS-GAN 0.273/0.439 0.500/0.931 0.761/1.536 1.065/2.293 1.422/3.248

STS-GAN0.264/0.423 0.493/0.926 0.754/1.531 1.059/2.289 1.414/3.221

The Average Displace Error (ADE) and the Final Displacement Error (FDE)
are employed as the performance metrics to evaluate the prediction accuracy,
defined as:

ADE =
∑n

i=1

∑t+p
T=t+1 ||xi

T − x̂i
T ||

np
,

FDE =
∑n

i=1 ||xi
t+h − x̂i

t+h||
n

,

(8)

where n represents the number of predicted samples. x̂i and xi are the predicted
and true trajectories of group i data, respectively. The batch size is set to 128,
the optimiser used is Adam with a learning rate of 0.001, and the number of
training epochs is 10.

To verify the effectiveness of STS-GAN in vehicle trajectory prediction, we
compare several state-of-the-art methods. Additionally, to validate the effec-
tiveness of the network structure and the proposed spatial-temporal attention
mechanism, we also design ablation experiments. Specifically, we evaluate: 1)
CS-LSTM [7], an LSTM encoder-decoder model using a convolutional pool-
ing layer; 2) STA-LSTM [9], a trajectory prediction model that incorporates
spatial-temporal attention mechanisms in LSTM networks; 3) ST-GAN, a
GAN-based network for spatial-temporal attention mechanisms, but without the
introduction of convolutional social pooling; 4) SS-GAN, a GAN-based network
that incorporates convolutional social pooling and spatial attention mechanisms,
but without temporal attention mechanisms; and 5) TS-GAN, a GAN-based
network that incorporates convolutional social pooling and temporal attention
mechanisms, but without spatial attention mechanisms.

4 Results and Analysis

Table 1 compares the ADE/FDE of different models over prediction horizons
from 1 to 5 s. STS-GAN outperforms other models across short-term, and long-
term predictions, showcasing its superior predictive capabilities. Specifically,
CS-LSTM performs the worst due to the absence of attention mechanisms,
resulting in higher errors. STA-LSTM, despite incorporating spatial-temporal
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Fig. 2. The average weights of the six adjacent time steps calculated using the six
subsets of data, with weights for moments before t− 5 ignored.

attention mechanisms, lacks social pooling and generative adversarial mecha-
nisms, leading to lower predictive accuracy. ST-GAN, an ablation study without
social pooling, exhibits decreased accuracy compared to STS-GAN, emphasizing
the importance of considering social interactions. SS-GAN, focusing on tempo-
ral attention, shows slightly lower accuracy than STS-GAN, suggesting limited
improvement from the temporal attention mechanism. TS-GAN, concentrating
on spatial attention, also demonstrates slightly lower accuracy than STS-GAN
but still outperforms models lacking spatial attention.

We calculate the average weights for the last 15 time steps (from t − 14 to t)
within each interval. Figure 2 displays these weights from time t − 5 to t due to
smaller weights before t − 5. The results reveal that the weight is highest at the
current time step t, indicating that the future trajectory of the target vehicle is
primarily influenced by its recent trajectory and those of nearby vehicles. This
finding aligns with human cognition.

We further analyze the spatial attention mechanism and observe that the spa-
tial attention weights of the predicted vehicle are highest within the grid space.
Combined with the earlier analysis of temporal attention, this suggests that the
future trajectory of the predicted vehicle is largely influenced by its own driv-
ing state.To illustrate the distribution of attention weights of nearby vehicles, we
select two typical scenarios. We then normalize and plot the remaining attention
weights on a 3×13 grid, excluding those of the predicted vehicle. In Fig. 3(a), we
depict a common driving scenario where the predicted vehicle primarily focuses
on the vehicle ahead in the same lane, with relatively high weights (e.g., 28.4%,
16.3%, 17.9%), while the weights in other grids are relatively low. Notably, the
weight of the grid directly in front of the predicted vehicle is low, possibly due
to the typically large following distance for driving safety, resulting in the grid
directly ahead often being unoccupied. Figure 3(b) illustrates the spatial weight
distribution in a left lane-changing scenario. Unlike the common driving sce-
nario, the predicted vehicle does not focus as much on the vehicle ahead in the
same lane but instead pays more attention to vehicles in the target lane, both in
front and behind. This observation aligns with human driving experience, where
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Fig. 3. The distributions of spatial attention weights in two driving scenarios.

drivers assess lane change opportunities by observing the behavior of vehicles in
the target lane.

5 Conclusions

This paper presents STS-GAN, a spatial-temporal attention guided social GAN
model for vehicle trajectory prediction. The temporal attention mechanism high-
lights significant time points in historical trajectories, while the spatial attention
mechanism measures the influence of nearby vehicles. Key findings from ablation
experiments and comparisons with state-of-the-art models include: 1) STS-GAN
achieves state-of-the-art prediction accuracy, 2) recent historical trajectory seg-
ments are sufficient for accurate predictions, and 3) although the accuracy of
STS-GAN is similar to that of ST-GAN and SS-GAN, it offers better inter-
pretability through its spatial-temporal attention weights.
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Abstract. Byvirtue of recent development in automated parking system, there has
been growing interest in tractor-trailer automated parking application (TTAPA).
However, there are two major obstacles when developing TTAPA. The one is
low maneuverability of reversing a tractor-trailer vehicle (TTV), caused by hitch
angle steering characteristic, and the other is heavy computational cost from non-
linearity of model. This paper considers an autonomous parking system (APS) for
a TTV. To achieve successful autonomous parking under various circumstances,
this system adopts nonlinear model predictive control and LQR as path planner
and path tracking controller, respectively. To validate the proposed APS for TTV,
the system is implemented and evaluated in MATLAB/Simulink and TruckSim
co-simulation environment. From simulation results, it is shown that the proposed
APS can achieve parking scenario goal with good performance for a TTV.

Keywords: Tractor-trailer vehicle · Path tracking control · Automated parking
system · Path planning

1 Introduction

Parking a tractor-trailer vehicle (TTV) is different fromparking a single tractor or a single
vehicle in that a trailer is steered via hitch angle when driving backward. For the reason,
reverse driving of a TTV heavily depends on the driver’s skill level and an unskilled
driver has a hard time parking a TTV [1]. To solve the problem, various path planning
and path tracking algorithms for automatic parking of TTVs have been proposed to date
[2–4]. In addition to hitch angle steering characteristics, reversing control of a TTV has
various difficulties such as high nonlinearity of the system, constraint on control input
and state resulting from mechanical factors [5].

To cope with the difficulties, several methods such as adaptive neuro-fuzzy infer-
ence system (ANFIS) [6] or model predictive control (MPC) [7–9] have been applied
to date. However, those methods require a large amount of computation time and, as
a result, are hard to be implemented in a real TTV [10]. For the reason, it is neces-
sary to develop a system for the purpose of reducing excessive computational cost and
conducting path planning and path tracking control that matches with actual parking sce-
narios for a TTV. For the purpose, nonlinear model predictive control (NMPC) and linear
quadratic regulator (LQR) are adopted as a path planner and path tracking controller or
path tracker, respectively, in this paper. To validate the proposed system, simulation via
MATLAB/Simulink and TruckSim is conducted.
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G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 171–177, 2024.
https://doi.org/10.1007/978-3-031-70392-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70392-8_25&domain=pdf
http://orcid.org/0009-0005-5975-8523
http://orcid.org/0000-0001-9482-6281
https://doi.org/10.1007/978-3-031-70392-8_25


172 J. Kim and S. Yim

2 Design of Automated Parking System

2.1 Kinematic Model for Tractor-Trailer Vehicle

Figure 1 shows the kinematic model of a TTV [11]. The angle α denotes front steering
angle for the tractor and the angles β and θ denote the global yaw angles of the tractor
and trailer, respectively. Because parking scenarios for a TTV are usually conducted in
low speed, under the assumption that there are no tire slips, the kinematic model for a
TTV can be obtained as Eq. (1), where v is the longitudinal velocity.

⎡
⎢⎢⎣

ẋ
ẏ
θ̇

β̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

v cosβ
(
1 − h/

b · tan β tan α
)
cos θ

v cosβ
(
1 − h/

a · tan β tan α
)
sin θ

v
(
1/
b · sin β + h/

ab · cosβ tan α
)

v
(
1/
a · tan α − 1/

b sin β − h/
ab · cosβ tan α

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

a
b

h
x

y

Fig. 1. Kinematic model of tractor-trailer vehicle

2.2 Design of Path Planner with NMPC

In this paper, the path planner is designed with NMPC [12]. With the kinematic model
given in Eq. (1), NMPC solves a trajectory optimization problem. The longitudinal
velocity, v, and steering angle, θ, are set to be both control inputs and regulated output
at the same time. To consider the restrictions on states and regulated outputs, several
constraints are derived from a geometry of a TTV and collision avoidance objective.

In the previous work, MPC has been widely adopted as a path tracker [13]. However,
it requires a large amount of computation time. For the reason, it is not easy to implement
MPC in a real TTV. Instead of MPC, LQR is adopted as a path tracker to reduce the
computation time for real-time application [14]. For LQR in path tracking stage, addi-
tional considerations are required in planning stage. More specifically, additional strict
constraint on hitch angle is applied in NMPC in order to minimize the possibility of
jackknifing and cost function, which is needed to reduce transition of driving directiion.

To define a parking scenario, initial and target states of TTV and global positions of
obstacles are required. By applying NMPC in a constrained circumstance, an optimal
state sequence, i.e., optimized path and pose from initial state to final state, is obtained
as a result.
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2.3 Design of Path Tracker with LQR

By setting the lateral error e, the trailer yaw error θe, and the hitch angle error βe as the
error state from the kinematic model Eq. (1), the error dynamics is derived as Eq. (2),
where κref is the curvature of the reference path and βref is the reference hitch angle. In
Eq. (2), the steering angle α is the control input.

⎡
⎢⎣

ė
.

θe
.

βe

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

v cosβ
(
1 − h/

a · tan β tan α
)
sin θe

v
(
1/
b · sin β + h/

ab · cosβ tan α − κref cos θe
/(
1 − ėκref

))

v
(
1/
a · tan α − 1/

b · sin β − h/
ab · cosβ tan α

)
− .

βref

⎤
⎥⎥⎥⎦ (2)

Under constant speed assumption and small-angle approximation, the error model
Eq. (2) is linearized around an equilibrium point or an origin. With the linearized model,
LQR path tracker is designed [15].

TheLQcost function J is defined as Eq. (3)with theweightsρi, which are determined
by Bryson’s rule [16]. In Eq. (3), the maximum allowable values on each error state
were selected by considering the fact that hitch angle tracking performance is critical
for preventing jackknife. Afterwards, with the selected weights and linearized model,
the controller gain KLQR was calculated by solving a corresponding Riccati equation.

J =
∫ ∞

0

(
ρ1e

2 + ρ2θ
2
e + ρ3β

2
e + ρ4α

2
)
dt (3)

2.4 Design of Path Tracker with NMPC

As a baseline, NMPC path tracker is designed to compare with the proposed LQR one
in terms of the performance and computation time. The designed NMPC path tracker
has identical constraint and cost function from NMPC path planner.

3 Simulation of Automated Parking System

3.1 Simulation Environment

To validate the proposed APS, simulation was conducted in a co-simulation environment
with MATLAB/Simulink and TruckSim. Both of path planner and trackers were imple-
mented on MATLAB/Simulink. As a plant model, 2-axle tractor 1-axle trailer model
with fifth wheel hitching was selected from TruckSim. The vehicle speed was set to
18 km/h in both of forward and backward directions. The tire-road friction coefficient
was set to 0.85, which means dry asphalt road surface.

3.2 Result of NMPC Path Planner

Figure 2a shows the initial and final states of the parking scenario for NMPC. From
these states, optimal state sequence is obtained from NMPC path planner. As shown in
Fig. 2b, optimal state sequence was obtained without jackknifing.
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(a) initial and final states of parking scenario    (b) optimal path obtained from NMPC
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Fig. 2. Initial and final states for NMPC and optimal path from NMPC

3.3 Results of NMPC and LQR Path Trackers

Simulation results of NMPC and LQR path trackers are shown in Fig. 3. As shown in
Fig. 3, NMPC path tracker shows satisfactory performance without obstacle collision
within 0.37 m of lateral offset, 0.6° of trailer yaw error and 1.4° of hitch angle error.
LQR path tracker shows also satisfactory performance within 0.12 m of lateral offset,
1.1° of trailer yaw error and 1.6° of hitch angle error.

(a) NMPC                                            (b) LQR
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Fig. 3. Trajectories of TTV from NMPC and LQR path trackers

The lateral offset, the trailer yaw and hitch errors are given in Fig. 4. As shown in
Fig. 4, LQR path tracker followed the reference path with smaller lateral offset but larger
yaw and hitch errors compared to NMPC path tracker. This is caused by the fact that the
plant model used for designing LQR path tracker is linearized at the equilibrium point,
i.e., the origin. On the contrary, NMPC path tracker linearizes the given plant model at
each sequence.

3.4 Comparison of Computation Time Between NMPC and LQR

To compare the computation times of the LQR andNMPCpath trackers, the computation
time per simulation loop was logged during the simulation. From the simulation results,
the computation time of NMPC path tracker is much larger than that of LQR path tracker.
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Fig. 4. Simulation results of NMPC and LQR path trackers.

For instance, NMPC path tracker requires 93 ms on average per 1 ms simulation loop
calculation (SLC). On the contrary, LQR path tracker requires 0.12 ms on average per
1 ms SLC. From these results, it was shown that LQR path tracker is much faster than
NMPC one. For the reason, LQR is recommended as a path tracker for a TTV, instead
of MPC or NMPC.

4 Conclusion

In this paper, the automatic parking system for a tractor-trailer vehicle was proposed
with NMPC path planner and LQR path tracker. The kinetic model was selected as a
vehicle one for a tractor-trailer vehicle. To validate the proposed APS, simulation on
MATLAB/Simulink and TruckSim was conducted. The performance and computation
time of LQR and NMPC path trackers was compared. From the simulation results, it
was shown that NMPC and LQR path trackers show equivalent performance and that the
proposed APS with LQR path tracker can park the tractor-trailer vehicle with smaller
error and much smaller computational cost, compared to NMPC.

Acknowledgement. This work was supported by the Ministry of Education through the
National Research Foundation of Korea (NRF) under Basic Science Research Program (NRF-
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Abstract. We propose a forward-gazing model for path planning (Preview Path-
Planningmodel) as the most basic model that provides insight to people who share
the paradigm of human-like path-planningmodeling. The basic concept is to apply
a low-pass filter to changes in forward curvature. In addition, the phase delay due
to the low-pass filter is compensated by forward gaze. We also report the results
of determining the longitudinal motion by applying the GVC technology to the
situation in which the vehicle could run perfectly along the path.

Keywords: Vehicle Dynamics · Driver Model · Motion Control · Jerk ·
G-Vectoring Control

1 Introduction

To determine lateral motion, both “path planning” and “path following” are necessary.
The most fundamental model for human “path following” is Kondo’s forward-looking
model (Preview path-following model) [1]. Defining a fundamental model for human
“path planning” remains a challenge, with existing methods lacking intuitive clarity.

The paper introduces a foundational model aligned with human-like “path planning”
the Preview path-planning model. It aims to provide insights for those modeling human-
like path planning. Additionally, the paper reports applying GVC technology [2] in
scenarios where driving along the proposed path is achieved, showcasing the integration
of lateral motion.

2 Information and Planning Guidelines for Path Planning

This chapter explores drivers’ considerations in path planning, assuming a target course
centerline in the middle of the drivable area. Drivers aim to optimize their route, consid-
ering factors like shortcuts and avoiding abrupt curvature changes. The use of Tangent
Points aids in understanding the target course centerline’s curvature. To control lateral
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Table 1. Example of Waypoint data

i X-Position
x(i)

Y-Position
y(i)

Curvature
κorg(i)

Direction
θ(i)

1 0 0 0 0

: : : : :

sve x (sve) y (sve) κo (sve) θ (sve)

: : : : :

spv x(spv) y(spv) κo (spv) θ(spv)

: : : : :

N x(N) y(N) κo (N) θ(N)

Fig. 1. Image of Curvature
Smoothing

acceleration, the chapter proposes a path planning guideline: derive a smoothed curvature
(κp) from the original curvature (κo) by reducing its maximum value and minimizing
the time rate of change, ensuring it fits within the lane width.

3 Implementation of Path Planning Using Forward Info.

3.1 Reduction and Smoothing of Curvature Maximum

Considering the application of path planning guidelines from the previous chapter, Way-
point information for the centerline is crucial. If this data list, containing coordinates,
curvature, and orientation information, is available, the vehicle’s current position (ve-th)
and forward-looking point (pv-th) data can be referenced. An example Waypoint data
table (Table 1) is introduced. The blue line in Fig. 1 represents the original curvature (κo)
of the centerline. Applying the path planning guideline involves deriving a smoothed
path (κp, orange line) to reduce the maximum curvature and its time variation, realiz-
ing a smoother path planning. The orange line (κp) is a result of applying a first-order
low-pass filter to the original curvature (κo).
3.2 Phase Lag Compensation

To address phase lag introduced by the low-pass filter, the chapter incorporates forward-
looking information and Taylor expansion. Anticipating future curvature based on cur-
rent and forward-looking data compensates for phase lag, resulting in a simplified
expression (Eq. (1) for the smoothed path planning (κp).

κp(sve) = κo(sve) − Cκ

(
κo(spv) − κo(sve)

)
V (1)

3.3 Waypoint Offset Strategy for Path Planning

This section describes a specific method for path planning, which involves offsetting the
X-Y coordinate information of the waypoints on the original centerline to create new
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path planning waypoints. The waypoints are recorded for each unit arc length parameter
s (Eq. (2)). The waypoint L meters ahead of the i-th waypoint is the i + L -th waypoint.

√
(Xo(i) − Xo(i − 1))2 + (Yo(i) − Yo(i − 1))2 = 1 (2)

For the i-th data point, the process is simplified as shown in Eq. (3).

κp(i) = κo(i) − κd (i) (3)

Here, κd(i) is redefined as follows:

κd (i) = Cκ(κo(i + L) − κo(i))V (4)

Using Fig. 2, which shows continuous waypoints representing the centerline in the
Cartesian coordinate system, the method for setting new path planning waypoints is
illustrated. Let the coordinates of the (i − 1)-th waypoint on the centerline be [Xo(i −
1), Yo(i − 1)] with an orientation angle θo(i − 1). Since the arc length parameter s is 1,
the angle changes when advancing by an arc length of 1 is κo(i − 1) (the lengths of the
red and blue lines in the figure are 1).

θo(i) = θo(i − 1) +
∫ 1

0
κ0(i − 1)ds = θo(i − 1) + κo(i − 1) (5)

Therefore, the orientation angle θp(i) of the new path planning waypoint () is:

θp(i) = θo(i) − κd (i − 1) (6)

The XY coordinates can be geometrically determined. Since the arc length parameter
is 1, the distance from the coordinates of the (i)-th waypoint on the centerline (red )
[Xo(i),Yo(i)] to the new path planning waypoint (blue ) [Xp(i),Yp(i)] is approximately
κd(i − 1) (green line ). Using this relationship and the relationship with θo(i):

[
Xp(i)
Yp(i)

]
=

[
Xo(i)
Yo(i)

]
+

[
sin θo(i)

− cos θo(i)

]
κd (i − 1) (7)

Thismeans the new path planningwaypoint is offset from the centerline by a distance
κd(i − 1) to the left or right, rather than altering the curvature. Reformulating it this way,
the path planning strategy can be described as: “Path planning offsets the centerline to the
left or right (outside or inside) by a value proportional to the gain Cκ , the current speed
V, and the difference between the current curvature and the forward-looking curvature.”
This simple strategy allows easy management of how far the vehicle can move relative to
the lane width using the gain Cκ in Eq. (4). Qualitatively, this strategy can be expressed
as a straightforward driver behavior: “Path planning involves anticipating the amount
of curvature ahead and adjusting the line to swell slightly to the opposite side. “This
scenario is illustrated in Fig. 3. This model is referred to as the Preview Path-Planning
Model (PPPM).

However, even if a path planning instructs the vehicle to move laterally by κd , the
vehicle cannot move sideways. Therefore, when adopting the online PPPM for motion
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control, it is necessary to calculate κ ′
d for a forward distance of L′ [m], generate a

target path L′ [m] ahead, and detect the lateral displacement of the vehicle and the
deviation ε’ from the target path after a time of L′/V, similar to Kondo’s forward-
looking path-following model [1]. Feedback control can then be implemented based on
this deviation.

Fig. 2. Continuous Waypoints Fig. 3. Preview Path-Planning Model

4 Verification by Numerical Calculation

To purely verify the “validity of the target path” generated by the Preview Path-Planning
Model (PPPM), any tracking error caused by the vehicle model or the path-following
model may introduce noise. Therefore, we generated a path using the PPPM and eval-
uated the path followed perfectly by the vehicle’s center of gravity without any lateral
slip (the velocity vector of the center of gravity always aligns with the tangent direction
of the path). Specifically, we assessed the path, yaw rate (calculated from the velocity
and curvature), lateral acceleration, jerk, and the integral of the squared jerk.

4.1 Verification by Pseudo Lane Change (Constant Speed)

As the simplest example, we created a crank (pseudo lane change) course as shown in
Fig. 4. The vehicle’s center of gravity moved from left to right at a constant speed of
40 km/h. The approximate lane change width is 5.2 m, and the lane transition distance
is about 40 m. For the PPPM, the forward-looking time was set to 1.8 s (L = 20 m) with
a gain of Cκ = 20.

As seen in Fig. 4, the PPPM generates a path offset from the center line (Normal) of
the crank course. Moreover, before the Normal path curves to the right, it initially swells
to the left (outside) and then exits the course in a straight line.

The initial outward swell in the opposite direction resembles a “counter-steering”
maneuver. Assuming the vehicle follows such a path and aligns with the direction of
travel, at the intersection point [X, Y ] = [25 m, 0 m] where the Normal and PPPM lines
cross, the vehicle positions for both paths are identical. However, it should be noted that
while the yaw angle is zero for the Normal line path, a yaw angle towards the direction
of travel has already developed for the PPPM line. Figures 5 and 6 compare the yaw rate
and lateral acceleration.
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Fig. 4. Result of applying PPPM to a Lane-change-like course

Fig. 5. Comparison of yaw rate Fig. 6. Comparison of lateral acc.

4.2 Verification on a Complex Course (Speed Planning with GVC)

In addition to the path planning by PPPM, we applied GVC and demonstrated the results
of moving the vehicle’s center of gravity based on the speed plan. When applying the
G-Vectoring Control (GVC) associated with lateral motion, the longitudinal acceleration
Gx of the vehicle can be expressed using the lateral acceleration Gy and gain Cxy, as
shown in Eq. (8) (the sign function and first-order lag element [2] are omitted).

Gx = −CxyĠy (8)

The vehicle’s center of gravity accelerates or decelerates solely based on the com-
mand of Eq. (8). Now, if the initial speed is V, and the speed changes by ΔV as the vehi-
cle’s center of gravity moves along the path, this change integrates to the acceleration
and deceleration commands, resulting in

�V =
∫ t

0
Gxdt = −Cxy

∫ t

0
Ġydt = −CxyGy (9)

Therefore, by determining the initial speed and calculatingΔV at each computational
step,we can determine the speed profile (speed design) [3]. Additionally, the longitudinal
and lateral accelerations at that time will form an arc in the “g-g” diagram, exhibiting
the unique longitudinal and lateral motion coupling characteristics of GVC.

Figure 7 depicts the paths of the set course’s center (Centerline: Normal) and PPPM,
comparing scenarios with and without GVC application, each with deceleration gain of
0.03 and acceleration gain of 0.015, as in the previous section (initial speed 40 km/h,
counterclockwise, preview time 1.8 s (L = 20 m), PPPM gain Cκ = 50). Figures 8 and 9
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compare longitudinal and lateral accelerations, while Figs. 10 and 11 illustrate the “g-g”
diagram and the velocity of the center of gravity’s movement.

In Fig. 10, for both Normal and PPPM without GVC (blue and red lines), the longi-
tudinal accelerations remain constant with speed, overlapping on the lateral acceleration
axis. In contrast, with GVC applied (yellow and purple lines), longitudinal accelera-
tions vary smoothly in conjunction with lateral acceleration, depicting a smooth arc-like
change.

Observing Fig. 11, while the addition of GVC to the Normal line results in a slight
reduction in speed compared to PPPMwith GVC, the latter exhibits less speed reduction
(moves faster). Nonetheless, despite this, the integration of the squared values of longitu-
dinal and lateral jerk over one lap (cost function) as depicted in Fig. 12 and Fig. 13 shows
that PPPM with GVC yields the smallest value. Thus, the effectiveness of the combined
PPPM and GVC for autonomous driving route and speed planning is confirmed.

Fig. 7. Result of applying PPPM to a Combined course

Fig. 8. Long. acc. Fig. 9. Lateral acc. Fig. 10. “g-g” diagram
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Fig. 11. Moving velocity Fig. 12. 0.5 × (Jx2 + Jy2) Fig. 13. 0.5 ×∫
(Jx2 + Jy2)dt

5 Conclusion

In this paper, a forward-lookingmodel termed the PreviewPath-PlanningModel (PPPM)
is formulated, capable of computing a route (Xp,Yp) similar to that performed by humans
based on the target course centerline (Xo, Yo, θo) (where the forward-looking distance
is denoted as L [m]).

[
Xp(i)
Yp(i)

]
=

[
Xo(i)
Yo(i)

]
+

[
sin θo(i)

− cos θo(i)

]
Cκ(κo(i + L) − κo(i))V (10)

Subsequently, the results of driving a lane-change course at a constant speed using
PPPM and determining the speed with GVC applied to the planned route by integrat-
ing the squared values of jerk (cost function) are evaluated. The findings confirm that
improved ride comfort can be achieved compared to driving along the target course
centerline at a constant speed.
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Abstract. The advent of autonomous racing events, such as Formula
Student Driverless Cup, requires online motion planning algorithms that
push the vehicle to its limits while ensuring vehicle stability and prevent-
ing road departure. A popular method to find the optimal control input
to drive at the limits of the car is Nonlinear Model Predictive Control
(NMPC). However, when NMPC is used, often a trade-off has to be made
between performance, accuracy, and computational complexity. In this
manuscript, the principle of cascading different vehicle models is used
to construct the prediction horizon. Initially, a two-track model opti-
mizes steering and motor input, utilizing torque vectoring benefits. The
horizon is then extended with a single-track model, and a lower fidelity
point mass model, effectively reducing computational complexity. Fur-
thermore, by adopting a curvilinear reference frame, a transformation
towards the spatial domain is obtained, which allows us to use time as
an optimization variable. A simulation study is performed for varying
prediction horizon lengths which show the advantages of the cascaded
vehicle model, achieving an 86% reduction in computation time with
comparable lap times.

Keywords: Nonlinear Model Predictive Control · Motion Planning ·
Autonomous Racing

1 Introduction

To be the fastest on track, the car has to drive on the performance limits. In
autonomous racing, this requires a combination of optimal path planning and
motion control that also guarantees safe driving and vehicle stability. Nonlin-
ear Model Predictive Control (NMPC) is a popular method for solving both
path planning and motion control, where a trade-off has to be made between
performance, accuracy, and computational complexity.

In [1], a hierarchical motion planning strategy combines offline path opti-
mization and online reference tracking using NMPC. Consequently, [2] extends
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this work by integrating the low-level vehicle control for Torque Vectoring
(TV). Good performance gains are obtained, however, path planning is com-
puted offline due to computational complexity. Computational complexity can
be reduced by exploiting Linear Parameter Varying (LPV) models. For exam-
ple, in [3] an LPV model is used to implement a similar control strategy as
[1], or in [4] where an LPV model is used to implement online path planning.
However, using an LPV model requires linear tire dynamics, limiting the per-
formance and accuracy. As an alternative to hierarchical methods, single-layer
control structures are developed to prevent infeasible trajectories between dif-
ferent controllers at the cost of increasing model complexity. In [5] both online
path planning and motion control are solved using a single-layer NMPC. The
problem is solved using a cascaded vehicle model where a bicycle model’s predic-
tion horizon, including nonlinear tire dynamics, is extended with a point mass.
Using lower fidelity models reduces computational complexity, allowing for an
increased prediction horizon therefore increasing performance. The controller
concept is proven to work on a full-scale racing car, excluding TV.

In this manuscript, we want to exploit that race cars are equipped with
four in-wheel motors, as seen in Formula Student Driverless cars, developed by
student teams like University Racing Eindhoven [6]. Using a two-track model to
solve the NMPC provides the performance gains from TV [1,2], while using a
cascaded vehicle model to reduce computational complexity [5].

2 Cascaded Prediction Horizon

In the single-layer NMPC for autonomous racing, there are two objectives; 1)
motion control, and 2) path planning. The former requires a highly non-linear
vehicle model to predict vehicle behavior, describing the longitudinal, stiff lat-
eral, and stiff yaw dynamics. The latter requires a sufficiently long prediction
horizon to determine an optimal path to avoid road departure and a safe velocity
profile, which can be performed with a lower-fidelity vehicle model. As suggested

Fig. 1. Cascaded vehicle model horizon, consisting of a two-track model, single-track
model, and a point-mass model.
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in [5], these control objectives do not necessarily have a constant level of rele-
vance or criticality throughout the prediction horizon. Therefore, the principle
of cascaded vehicle models in a single planning horizon is introduced.

2.1 Vehicle Models

At first, a high-fidelity model is required to perform motion control. Therefore,
we adopt a two-track model for the first part of the planning horizon to include
TV in the NMPC, then extend the horizon with a single-track model. The two-
track and single-track models, as depicted in Fig. 1, are characterized by the
same states, namely; vx,i|k, vy,i|k, and ωi|k represent the longitudinal, lateral,
and yaw velocity, respectively, δi|k the steering angle, ey,i|k and eψ,i|k repre-
sent the lateral and heading difference between the vehicle and the reference
path, and si|k the curvilinear coordinate along the reference path. We obtain
the following two state-vectors xi|k = [vx,i|k, vy,i|k, ωi|k, δi|k, ey,i|k, eψ,i|k, si|k]�,
and x̃ = [ṽx,z|k, ṽy,z|k, ω̃z|k, δ̃z|k, ẽy,z|k, ẽψ,z|k, s̃z|k]�, for the two-track and single-
track model, respectively. Here i ∈ {0, 1, ..., N} and z ∈ {0, 1, ...,H} represent
the prediction steps at iteration k with horizon length N and H.

The difference in the vehicle models is the required number of inputs, namely,
the two-track model utilizes the four in-wheel motors by modeling the four lon-
gitudinal tire forces Fx,a,i|k, a ∈ {1, 2, 3, 4}, whereas the single track model only
considers the total longitudinal force input F̃x,z|k. To enhance TV, a TV moment
M̃TV,z|k is considered an input in the single-track model. At last, the steering

rates δ̇in,i|k, and ˙̃
δin,z|k are considers input.

Secondly, a low-fidelity model is used for path planning, namely a planar
point-mass model as depicted in Fig. 1. Here V̄j|k denotes the resulting velocity,
ēy,j|k and ēψ,j|k the lateral distance to the path and the heading difference
between the velocity vector and the reference path, respectively, and s̄j|k is the
curvilinear coordinate along the reference path. We obtain the state vector x̄ =
[V̄j|k, ēy,j|k, ēψ,j|k, s̄j|k], where j ∈ {0, 1, ...,M} represent the prediction steps,
with horizon length M . As the point-mass model does not require a tire model,
the total longitudinal force F̄x,j|k and total lateral force F̄y,j|k are considered
inputs. Due to the low-dimensional model, excluding stiff dynamics, a larger
look-ahead distance is obtained at a low computational cost.

The presented vehicle models combined form the cascaded vehicle model with
horizon length N + H + M . Due to space restrictions, the reader is referred to
[7, Section 2] for the corresponding dynamic models.

2.2 Mapping

The first step in serially cascading different vehicle models is carefully defining
a mapping where the final state of one vehicle model propagates towards the
initial state of the following vehicle model. Since the same states describe the
two-track model and the single-track model, the two-track states at prediction
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N define the initial state of the single-track model for z = 0, yielding

ṽx,0|k = vx,N |k, ṽy,0|k = vy,N |k, ω̃0|k = ωN |k, δ̃0|k = δN |k (1a)
ẽy,0|k = ey,N |k, ẽψ,0|k = eψ,N |k, s̃0|k = sN |k. (1b)

The mapping between the single track and point-mass model is defined dif-
ferently, as the point-mass does not consider yaw dynamics and only a single
velocity vector, and is adopted from [5]

V̄0,k =
√

ṽ2
x,H|k + ṽ2

y,H|k, ēy,0|k = ẽy,H|k, (2a)

ēψ,0|k = arctan
(

ṽy,H|k
ṽx,H|k

)
+ ẽψ,H|k, s̄0|k = s̃H|k. (2b)

Combining the mappings (1) and (2) with the corresponding dynamics provides
the cascaded vehicle model, which can be used to predict the vehicle behavior.

3 Optimization Problem

The optimization problem formulation used in this manuscript is an extension of
the work presented in [5], but then applied to a four-wheel drive vehicle. There-
fore, due to the extensive expressions, only the changes and newly introduced
objectives and constraints are discussed in this section. For the overall problem,
the reader is referred to [7, Section 4.2].

3.1 Objective

The goal of the NMPC is to minimize the objective function,

min
Xk Uk

t̄M + JM + JU + JΔU + Je + Jα + Jβ + Jtr, (3)

which is the sum of seven different terms. At first, the primary objective is to
minimize the lap time, hence minimizing the required time for the point-mass to
reach the end of the planning horizon, denoted by t̄M . The cost JM denotes the
terminal cost, which controls the horizon to a safe terminal set. In path planning,
the velocity, and lateral and heading deviation from the reference path define
the safe terminal set and are penalized as such

JM = Wēy,M ē2y,M |k + Wēψ,M ē2ψ,M |k + WV̄M
V̄ 2

M |k, (4a)

WV̄M
=

{
WV̄M

, if V̄M |k ≥ V̄safe,

0, otherwise,
(4b)

where Wēy,M and Wēψ,M are static weights, and WV̄M
is a dynamic weight only

to penalize the horizon velocity when it exceeds a velocity that could result in
road departure. In Formula Student, the track layout is unknown, however, the
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smallest radius is defined beforehand. Therefore, a safe horizon velocity can be
defined assuming steady-state cornering and using the tire characteristics

V̄safe =
√

DyR
m , (5)

with Dy the tire force peak factor according to a simplified Pacejka tire model
[8] and R denotes the track radius. This cost forces the NMPC to slow down
such that enough lateral grip is available to make the smallest turn.

In (3), JU and JΔU represent a penalty on the input and change in input,
respectively, Je penalizes the lateral and heading deviations of the vehicle models.
Furthermore, Jα and Jβ represent a penalty on the tire slip and vehicle side
slip angles. The former is already introduced in [5] to prevent excessive tire
slip, whereas the latter is newly introduced. As the NMPC pushes the vehicle
towards the limits, there is a chance the vehicle will start drifting. Since this is at
the vehicle handling limit, any model mismatch can result in vehicle instability.
Therefore, a penalty on excessive vehicle side slip angle β is applied at the point
where gripping can not be guaranteed, yielding

Jβ = Wβ0

N∑
i=0

{
(|βi|k| − βmax)2, if |βi|k| ≥ βmax

0, otherwise.

+ Wβ0

H∑
z=0

{
(|β̃z|k| − βmax)2, if |β̃z|k| ≥ βmax

0, otherwise.
,

(6)

where βmax depends on many non-linear terms and usually is hard to predict,
but the results in [9] indicate that it is between 5◦ and 7.5◦.

Lastly, Jtr penalizes a non-smooth longitudinal and lateral forces transition,
where Jtr = JF |F̃ + JF̃ |F̄ , JF |F̃ is the penalty on the transition between the
two-track and single-track vehicle model, and JF̃ |F̄ the penalty on the transition
between the single-track and point-mass model [7, Equation 4.28].

3.2 Constraints

The newly introduced TV moment M̃TV should not exceed the maximum
moment a two-track model can generate. Therefore, it is constrained by the
resulting moment when all four wheels use their longitudinal peak force Dx,a, a ∈
{1, 2, 3, 4} to rotate the vehicle, resulting in

|M̃TV | ≤ wf

2 (Dx,1 + Dx,2) + wr

2 (Dx,3 + Dx,4). (7)

The two-track and single-track vehicle models use a simplified Pacejka tire model
for the lateral tire forces and consider the longitudinal tire force as input. The
tire friction ellipse is applied as a constraint to couple the lateral and longitudinal
tire forces. Since the single-track model only considers a single longitudinal force,
the distribution between the front and rear axles has to be defined. The grip
of the axle scales with the vertical load acting on the axle, therefore, a fixed
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longitudinal force distribution between the front and rear axle is defined by the
weight distribution wdis, providing the following constraints

(
wdisF̃x

D̃x,f

)2

+
(

F̃y,f

D̃y,f

)2

≤ 1,
(

(1−wdis)F̃x

D̃x,r

)2

+
(

F̃y,r

D̃y,r

)2

≤ 1, (8a)
(

Fx,a

Dx,a

)2

+
(

Fy,a

Dy,a

)2

≤ 1, ∀a ∈ {1, 2, 3, 4}. (8b)

The point-mass force inputs F̄x and F̄y are also constrained via the friction
ellipse, as described in [7, Equation 4.49]. The following section illustrates the
advantages of a cascaded horizon via a simulation study.

4 Results

The influence of the cascaded vehicle model is evaluated through a simulation
study comparing different horizon lengths. As baselines, the presented optimiza-
tion problem is executed using a two-track and single-track model. The track
layout, vehicle specifications, and cost weights are adopted from [7, Chapter 5].

In the left figure in Fig. 2, the lap times are compared with the average
computation time of one iteration. Results from the single-track and two-track
models are depicted in black and magenta, respectively. These results show the
benefits of using TV, as the two-track model outperforms the single-track model
by several seconds for every horizon length. However, the baselines also show a
rapid increase in average computation time for longer prediction horizons.

It can be observed that the cascaded vehicle model not only improves lap
time but also significantly reduces the average computation time. The point-mass
model’s non-stiff dynamics allow for a larger discretization step, which increases
the look-ahead distance. Comparing the two-track model (with N = 130) to the
cascaded vehicle model (with N = 10, H = 10, M = 30), both achieve a lap
time of 22.8 s. However, the average computation time is reduced from 3.24 s to
0.46 s, marking an 86% reduction.

The GG-diagram in Fig. 2 shows that the use of TV results in faster corner-
ing, evident from the increased lateral acceleration. The cascaded vehicle models
obtain similar performance in terms of g-forces as the two-track baseline. Addi-
tionally, the single-track model does not push the vehicle to its full limits, as it
underperforms in terms of g-forces.
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Fig. 2. Left) Computation time vs lap time. Right) GG-diagram.

5 Conclusion

A popular method to find the optimal control input to drive at the limits of
the car is nonlinear model predictive control (NMPC). However, when NMPC
is used, often a trade-off has to be made between performance, accuracy, and
computational complexity. The results in this manuscript highlight the com-
putational benefit that can be obtained by utilizing a cascaded vehicle model,
reducing the trade-off between computational complexity and performance.
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Abstract. In recent years, with the development of wheel-side motors
and hub motors, distributed electric drive vehicles, gradually enter the
electric vehicle market.Tire force are often derived from rule-based model
in the past. However, distributed electric drive vehicles have a higher
degree of freedom put forward new control requirements. This puts for-
ward higher requirements for the accuracy of the tire force model. Rule-
based model cannot meet the requirements quite well. Because of this,
our study established a tire force residual correction framework for dis-
tributed electric drive vehicles. The framework consists of a neural net-
work model (MLP, MLP-seq, and MLP-mixer) and a physical rule-based
model. The framework was proved in the study to output a more accurate
force estimation which will help dynamic modeling and control tasks.

Keywords: distributed electric drive vehicles · tire force estimation ·
neural network · residual correction framework

1 Introduction

With the development of electric motor technology, the power density of electric
motors has increased sharply. This helps develop a new form of power drive
vehicles: distributed-drive. Distributed electric drive vehicles have a high degree
of freedom in control and a high complexity in the physical modeling of the
vehicle.

Vehicle state estimation, a technique for inferring the dynamic state of a
vehicle from sensor data and mathematical models, provides accurate informa-
tion about the vehicle state, such as vehicle position and tire force [3]. The state
estimation is the foundation of the vehicle control, which directly affects the
accuracy of the downstream control tasks.

Most of the tire force state estimation methods that have been studied are
based on physical rule models [4]. Under the trend of increasing control complex-
ity and more complicated feasible working conditions in distributed electric drive
vehicles, the accuracy of these traditional models seems limited [7]. Therefore,
establishing a more accurate model for estimating the vehicle tire force state
c© The Author(s) 2024
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is the starting point of this study. As the requirements for autonomous driving
tasks become more complex, the limited capabilities of traditional rule models
are being recognized by the industry. The attempts to use neural networks have
started to increase gradually these years.

Some researchers employed a neural network for the modeling problem com-
pletely [5]. In 2019, an article published in Science Robotics used a pure neural
network to achieve lateral trajectory tracking control of vehicles [8]. The other
researchers did not abandon the original physical rule model. They combined
the neural network model and rule-based model [1,6]. This kind of modeling
idea is a kind of affirmation of the information processing and output ability of
the rule model. It will reduce the training difficulty of the neural network model
theoretically.

Some articles present a theory of building neural networks which incorporates
Lagrange’s theorem [2,6]. A 2023 study used these ideas by proposing a neural
network DNN. Combined with the tire magic formula, the DNN network was
trained to estimate the parameters in the magic formula. After that, the tire
force can be calculated [1].

The contributions of our study are as follows:
1) We proposed a combination of the two to build a tire force residual cor-

rection framework (TF-RCF) to improve the accuracy of vehicle tire force esti-
mation.

2) In TF-RCF, we built the magic formula tire force model to have an initial
estimation. The study used three neural networks, MLP, MLP-seq and MLP-
mixer, to fit the residuals between the rule-based model outputs and the actual
observations.

3) We tested the accuracy and the generalization ability of the TF-RCF.
Results showed that the mean error is reduced from 134.9 N to 21.2 N. Mean-
while, the neural network had a good performance on the validation datasets.

2 Tire Force Residual Correct Framework

Fig. 1. Tire Force-Residual Correction Framework (TF-RCF)
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2.1 Tire Force Residual Correction Framework (TF-RCF)

Our study built a residual correct framework for tire force estimation. As shown
in Fig. 1, the framework is constructed mainly by a rule-based tire force model
and a neural network model. The rule-based model consists of a dual-mass vibra-
tion system with a magic formula. The neural network is based on the MLP,
MLP-seq and MLP-mixer model. We trained the neural network to learn the
residual between the real forces (derived from Carsim) and the rule-based model
output forces. Finally the trained neural network can output the residual to
correct the rule-based output.

In the TF-RCF, we added the 12-dimensional tire force information output
from the rule-based model as the neural network model input. The experiment
shows that this can reduce the training difficulty of the neural network and
improve the residual estimation accuracy of the neural network.

2.2 Tire Force Model Based on Magic Formula

H.B. Pacejke tire model (magic formula) [4], is based on a large number of data
summarized by the empirical tire model. Because only a uniform set of formulas
is needed for the expression of tire forces, the magic formula has been adopted
by a large number of tire manufacturers.

The general expression for the tire magic formula is1:

Yx = D − sin[C − arctan(B − x − E(B − x − arctan(B − x)))]) (1)

Yx denotes the lateral force, longitudinal force, or backward correcting
moment of the tire. The independent variable x is the lateral deflection angle or
the longitudinal slip rate of the tire, respectively.

Our study used the two-mass vibration system for the wheels’ vertical loads.
The vertical motion of the body, tire and ground are represented by z, zt and
zr. They satisfy the following differential equation:

mz̈t = kt(zr − zt) + k(z − zt) + c(ż − żt) (2)

2.3 Neural Network Model Based on MLP, MLP-seq
and MLP-Mixer

MLP, MLP-seq and MLP-mixer are used as the neural network model [9,10].The
detailed struture information of networks that used in the experiments is as
follows: Input dimension: 26 and 38 (2 types). Output dimension: 12. Hidden
dimensions: 1024. Hidden layers: 4. Sequence length: 3. MLP-mixer channels:
128. MLP-mixer layers: 4. The neural network was trained in Pytorch 1.12.1
and miniconda3. We used two loss functions: MAE (Mean Average Error) and
variable weighted multi-task loss function. Adam is the optimizer. The learning

1 The coefficients B,C,D are related to the vertical load and camber of the tire.
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rates for the weights of network and multitask loss are 1e-3 and 1e-5, respectively.
The training batch size is 4 and the maximum epoch is 256.

Multitaskloss =
4∑

i=1

∑

j=x,y,z

exp(−wi,j) · |δFi,j − ˆδFi,j | + wi,j (3)

3 Experiments and Results

3.1 Experiment Setup

Our study used two methods to obtain data2:

1) Specific working conditions 1˜6 (30000 sets): Design corresponding control
sequences for different working conditions. These specific conditions are
selected for the distributed electric drive vehicles, such as front and rear
wheels rotating in the same direction and opposite directions.

2) Randomized control conditions 1˜5 (21000 sets): Input random control
sequences to the simulated vehicle. Our study set the random seed of the
Gaussian random module for torque and angle control.The maximum fre-
quency of the random control is 3Hz. In order to keep the vehicle stable, we
set the front and rear wheels rotating in opposite direction.

We used two ways to divide the acquired data into training and validation
datasets:

1) For data [t, t−Δt, t− 2Δt], data [t−Δt, t− 2Δt] is divided into the training
set and the rest is divided into the validation set. The ratio of training and
validation data is 2:1.

2) Classify the first 70% of the condition data as the training set and the last
30% as the validation set.

3.2 Performance Without Rule-Based Forces as Input

MLP, MLP-Seq and MLP-Mixer Performance. The mean loss value of
the original Condition 1 data is 289.10 N. The best validation loss value for MLP
(256 epochs), MLP-seq (256 epochs), MLP-mixer (128 epochs) is 3.3 N, 3.8 N,
1.3 N. The accuracy of the tire force prediction is significantly improved. Also,
we found that network’s performance for XYZ forces is different, which indicates
the importance of using the variable weighted loss function.

We also obtained the original data of the carsim output. The network was
also used to directly fit the original tire data. And the result show that the
network trained with the residual dataset has better correction results than the
original data in most cases. More specific results are shown in Table 1. In the
Table 1, R means residual data and O means original data.

2 Co-simulation of Carsim2020.0 and MATLAB2023b/Simulink
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Performance with Rule-Based Forces as Input. During the experiments,
we found that the MLP-mixer network is significantly overfitted in data of condi-
tion 1. To solve the overfitting problem of the network, we added the rule-based
model output to the input of the neural network. Adding the rule forces to the
network reduces the learning pressure of the network and the network’s difficulty
in extracting the input information.

Our study set five comparison experiments for condition 1˜5 (MLP-mixer):
1). 12d rule force+18d state+8d control, BAE: 4.3 N 2). 12d rule force+8d con-
trol, BAE: 5.4 N 3). 12d rule force+18d state, BAE: 7.2 N 4). 12d rule force,
BAE: 5.3 N 5). 18d state+8d control, overfit. Results show that the neural net-
work perform better after adding the rule force. There is no overfitting any more.
Meanwhile, the comparison experiments further illustrate that the addition of
rule forces as network inputs is responsible for the increase in the accuracy of
the neural network.

Generalization Ability. Our study tested the generalization ability of net-
work by random control data. Each the working condition data was divided
into training and validation sets according to the first 70% and the last 30%.
The sequence length was adjusted to 10. We applied the MLP-mixer network
(38d). A dropout layer was also added to strengthen network’s stability. The
dropout value is 0.3. Fig. 2a and 2b show the training and validation results
of the network for random working conditions 1 to 5. The mean value of the
original residual force in the validation set is 134.9 N and the best MAE on the
validation set is 21.2 N. Due to the random control, the validation datasets are
totally unseen for the network. The result can show a good generalization ability
of the network.

Table 1. Detailed results for vehicle condition 1

Best Loss F1x F1y F1z F2x F2y F2z F3x F3y F3z F4x F4y F4z mean

MLP (1-frame) R-256 0.807 4.127 5.068 0.436 3.965 4.186 0.763 4.672 5.499 0.683 5.304 4.931 3.3702

MLP-seq (3-frame) R-128 0.604 4.563 7.488 0.468 4.594 5.686 0.720 5.377 8.080 0.685 6.052 8.404 4.3933

MLP-seq (3-frame) O-128 7.283 23.629 14.12 9.802 33.28 7.853 7.993 19.999 9.596 9.726 24.31 8.041 14.6358

MLP-seq (3-frame) R-256 0.570 4.566 5.347 0.783 5.369 4.935 1.081 4.979 6.46 0.623 5.138 5.267 3.7598

MLP-mixer (3-frame) R-64 0.271 3.556 2.911 0.212 2.788 2.725 0.185 4.346 4.093 0.263 3.608 5.144 2.5086

MLP-mixer (3-frame) O-64 0.896 11.97 3.835 0.893 7.716 4.266 0.309 6.416 3.273 0.775 4.665 4.464 4.1236

MLP-mixer (3-frame) R-128 0.106 1.094 2.013 0.123 1.156 1.782 0.179 1.531 3.373 0.082 1.495 2.710 1.3036
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Fig. 2. MLP-mixer Performance in Random Control Conditions

4 Conclusions

The study proposes a tire force residual correction framework (TF-RCF) con-
sisting of a neural network model and a magic formula rule force model. The
accurate tire force estimation can be used to build a more accurate dynamic
model, which helps improve the accuracy in vehicle control scenarios. Our study
has shortcomings: We haven’t obtain real vehicle tire force data at present. So
we lack strong evidence to prove the TF-RCF can fit the data from the real car.
This is a continuing direction for our study. In the acquisition of datasets, the
specific working conditions and random control conditions set by our study still
lack some systemic and rationality. In the future, we will improve the network
architecture and obtain datasets in a quicker and more reasonable way.
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Abstract. The influence of the drive torque distribution of an AWD
vehicle with individual motors at the front and rear axles on the han-
dling and stability properties is investigated. By applying bifurcation
analysis methods, different types of loss of stability at combined longi-
tudinal and lateral acceleration are identified. The impact of the drive
torque distribution on the stability boundaries in the GG diagram is
examined, and the related stable acceleration envelope is compared to
the envelope derived from applying optimisation methods. Representa-
tive corresponding handling characteristics are compared and discussed.

Keywords: Handling Characteristics · Stability · Bifurcation · Drive
Torque Distribution · Optimisation · AWD Vehicle

1 Introduction

Drive train architectures of electric vehicles, often equipped with more than
one electric motor, allow both to ‘stabilise’ and to make the vehicle’s motion
‘more responsive’ but also require a profound understanding of its influence on
stability and handling to ensure safe operation. Depending on the longitudinal
acceleration and drive train configuration, the handling behaviour and respective
passive stability properties of the vehicle can significantly change [1,5,6]. To
study these characteristic properties, a quasi-steady-state description is derived,
where the state of a vehicle accelerated in longitudinal direction is transformed
to a mechanically equivalent steady-state [1,6].

Bifurcation analysis is frequently used to find stability boundaries [10]. In
[3], Della Rossa et al. analyse the stability properties of a vehicle with different
tyre configurations and demonstrate that various types of loss of stability may
appear. Horiuchi et al. use a quasi-steady-state description to model transient
states to investigate the loss of stability for a longitudinally accelerated vehicle
c© The Author(s) 2024
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with fixed drive torque distribution in [5]. Lenzo et al. analyse the handling
characteristics for different drive concepts and present the relation between yaw
torque and understeer coefficient [7].

This paper investigates the impact of the drive torque distribution of an
AWD vehicle with individual motors at the front and rear axles on the transient
handling and stability properties. The vehicle state is transformed to a mechan-
ically equivalent quasi-steady-state to apply linear stability theory and to utilise
bifurcation and continuation algorithms. For various drive torque distributions,
different types of bifurcations are found and discussed. The stable acceleration
envelope is compared to the solution found by optimisation, and differences are
discussed.

The paper is structured as follows: In the next Section, the vehicle and tyre
models are addressed. In Sect. 3, the applied methods are briefly described. In
the following Sect. 4, the impact of the longitudinal acceleration on the han-
dling characteristics is shown. The stability boundary found with the bifurca-
tion method is presented in the GG diagram and compared to the optimised
acceleration envelope in Sect. 5.

2 Vehicle Model

A nonlinear four-wheel vehicle model with 10 degrees of freedom, as introduced
and described in [4] and illustrated in Fig. 1, is considered in this study. The
rigid vehicle body is modelled with 6 degrees of freedom, (longitudinal velocity
vxB, lateral velocity vyB , vertical velocity vzB, roll angle ϕB , pitch angle θB and
yaw rate ψ̇B ), and one rotational degree of freedom is considered for each wheel,
ωi (i = 1, 2, 3, 4). Input quantities are the drive torques at the individual wheels,
T1 = T2 and T3 = T4, and the steering angle δ, where δ1(δ) and δ2(δ). The
Magic Formula [9] is used to model the combined tyre force characteristics. In
the subsequent figures, the vehicle states are represented in the x-y-z-coordinate
frame depicted in red colour in Fig. 1.

For vehicle parameters, governing equations and tyre force characteristics,
please refer to [4].

Fig. 1. Schematic illustration of the vehicle model



202 M. Eberhart et al.

3 Methods

To apply continuation methods for the nonlinear stability analysis, the combined
accelerated manoeuvre (an �= 0 and at �= 0) is transformed to a quasi-steady-
state, mechanically equivalent state, which approximates the combined accelera-
tion manoeuvre well [2,5]. In this paper, similar to [5], an equivalent force in the
direction of the velocity vector is applied at the centre of gravity of the vehicle.
This system adaption considers both the load transfer and the mutual influence
of the longitudinal and lateral tyre forces. Yaw acceleration ψ̇, derivative of the
vehicle sideslip angle β̇, and the derivatives of the other states are set to zero to
fulfil the steady-state condition.

Once equivalent equilibrium solutions are found, linear methods are applied
to analyse stability properties. For that purpose, the equations of motion are lin-
earised with respect to the equilibrium solutions, Δẋ = AΔx+BΔu. Lyapunov’s
first method implies that an equilibrium solution is stable if all eigenvalues λi

from (A − λiI)pi = 0, with the right eigenvector pi, have negative real parts
[10].

With the help of a path continuation algorithm [10], solution paths are found
by varying parameters and inputs. A more detailed description of the used
method is given in [4]. Moreover, optimisation techniques are applied to find
the maximum possible acceleration envelope [8]. The result is compared to the
stable acceleration envelope found with bifurcation analysis.

4 Handling Characteristics at Longitudinal Acceleration

The handling diagram for the considered vehicle with drive torque distribu-
tion γ = 1, i.e. rear-wheel-drive (RWD), and zero tangential acceleration shows
understeer handling characteristics and limit understeer behaviour, see Fig. 2
(blue line). The respective vehicle configuration with γ = 0, i.e. front-wheel-
drive (FWD), shows qualitatively the same characteristics and is not depicted.

Increasing the vehicle tangential acceleration, e.g. to at = 4 m/s2, results in a
qualitative change to limit oversteer behaviour of the vehicle with γ = 1 (Fig. 2,
orange line). In contrast, no qualitative change may be observed for γ = 0 (not
depicted) and an all-wheel-drive (AWD) configuration with a certain portion of
drive torque at the front axle (e.g. γ = 0.7, green line).

Evaluating the eigenvalues for γ = 1 at at = 4 m/s2 indicates a Hopf-type
loss of stability (◦ in Fig. 2), characterised by a conjugate complex pair of eigen-
values with zero real part. For decreased parameter γ the Hopf point moves to
higher normal accelerations an (black line) while the imaginary part of the Hopf
eigenvalue λI decreases and finally results in two zero eigenvalues, Fig. 2 black
×, called Takens–Bogdanov bifurcation. Further decrease of the drive torque dis-
tribution γ leads to limit understeer behaviour. The torque distribution at the
Takens–Bogdanov point, γTB ≈ 0.86 for a tangential acceleration of at = 4 m/s2,
characterises the change from limit understeer to limit oversteer behaviour and
vice versa. The Takens–Bogdanov solution for various γ and at is depicted in
Fig. 2 (red line).
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Fig. 2. Steering angle δ and vehicle sideslip angle β for different drive torque distri-
butions γ at tangential acceleration at. Quasi-steady-state solutions for vehicle veloc-
ity v = 20 m/s2.

5 Takens–Bogdanov Point as Design Criteria

The corresponding ax–ay diagram (GG diagram) depicted in the left graph of
Fig. 3 includes two coloured lines: the maximum lateral acceleration for the
considered vehicle with γ = 1 (blue line) that shows limit understeer behaviour
up to a longitudinal acceleration of ax = 2.6 m/s2, followed by the Takens–
Bogdanov solution for higher longitudinal accelerations (red line). In the right
graph of Fig. 3 (red line), the respective torque distribution γ for the Takens–
Bogdanov solution is plotted over the longitudinal acceleration ax.

In addition, the numerically optimised GG diagram that represents the max-
imum acceleration envelope for the considered vehicle and the resulting optimi-
sation parameter γ are plotted in Fig. 3 (black lines).

In the left graph, it can be seen that the solutions from bifurcation analysis
and optimisation are almost equal. Nevertheless, at small longitudinal acceler-
ations ax < 2.5 m/s2 the maximum lateral accelerations ay from the optimised
drive torque distribution γ are slightly superior. Inspecting the respective drive
torque distributions γ, right graph in Fig. 3, shows that an AWD configuration
is beneficial in this regime.

Fig. 3. Comparison of Takens–Bogdanov solution and optimised solution: Acceleration
envelope ax–ay and drive torque distribution γ.
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Considering the graph of the optimal drive torque distribution γ, at ax ≈ 2.5
m/s2 a discontinuity can be noticed. Evaluating the stability properties of the
steady-state solutions derived with the optimisation technique reveals a qual-
itative change from stable conditions (black solid line) to unstable conditions
(black dashed-dotted line) at ax > 2.5 m/s2, whereas the Takens–Bogdanov solu-
tion characterises the stability boundary in the ax–ay-envelope. This can also be
seen in Fig. 4 where handling curves for three constant tangential accelerations
at = 1, 3, 5 m/s2 are plotted for the respective optimal and Takens–Bogdanov
quasi-steady-state solutions, and corresponding constant drive torque distribu-
tions γopt and γTB, respectively.

The handling curves for at = 1 m/s2 show that the maximum normal accel-
eration an of the optimised solution is superior compared to the γ = 1 configu-
ration. For at = 3 m/s2 the optimal solution is found for γopt < γTB after loss of
stability (Fold bifurcation). The Fold bifurcation occurs after limit understeer
behaviour and can be attributed to the saturation of the longitudinal tyre forces
at the inner rear wheel (i = 3). The behaviour then changes to an unstable
oversteer behaviour where the optimal solution is found.

At tangential acceleration at = 5 m/s2 the torque distribution of the opti-
mised solution is a little larger than the torque distribution of the Takens–
Bogdanov point (γopt > γTB) and a slightly higher normal acceleration an is
achieved. The optimised quasi-steady-state solution is again unstable following
a Hopf bifurcation.

Fig. 4. Detail of handling diagram for different constant tangential accelerations at

and drive torque distributions γ.

6 Conclusions

The transition between limit understeer and limit oversteer behaviour due to
the change of the drive torque distribution at longitudinal acceleration in quasi-
steady-state condition was investigated. It was shown that the Takens–Bogdanov
solution characterises both the change from limit oversteer to limit understeer
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behaviour and the change of the type of loss of stability from Hopf to Fold
bifurcation.

A Takens–Bogdanov solution was identified by Della Rossa et al. in [3] by
studying a pure lateral vehicle model with the same maximum friction potential
of the tyres at the front and rear axles. In this study, it was shown that a similar
behaviour may result from the mutual influence of longitudinal and lateral tyre
forces at a vehicle accelerated in longitudinal direction.

The Takens–Bogdanov solution seems to be a reasonable design criterion for
the drive torque distribution of an AWD vehicle since, for a given longitudinal
acceleration (or an equivalent drive torque demand), almost the maximum nor-
mal acceleration may be achieved without ‘early’ limit understeer or oversteer
behaviour. This may improve the vehicle’s safety and manoeuvrability during
combined manoeuvres. In addition, the Takens–Bogdanov solution represents
the acceleration envelope near the optimal (maximal) envelope. In contrast to
the latter, which includes unstable solutions, the Takens–Bogdanov solution may
be of more practical relevance, since the solutions are stable. However, potential
practical implications have to be investigated thoroughly. The impact of relevant
system parameters like tyre–road friction potential and different vehicle param-
eters have to be considered, and their influence on the shown method should be
analysed.

Further investigations on the drive torque distribution to generate yaw torque
to modify the handling behaviour and stability boundaries appear to be reason-
able. This will be studied in more detail in a forthcoming paper.
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Abstract. The characterization of component losses is typically conducted on
dedicated test benches with the objective of enhancing component efficiency.
Nevertheless, obtaining precise measurements of the actual loss contributions
of components during real-world vehicle operations is often challenging. This
challenge particularly pertains to wheel bearings, whose loss characteristics are
efficiently delineated through the generation of efficiency maps on test benches at
the Institute of Automotive Engineering. This submission presents a methodology
for establishing these efficiency maps and introduces a developed methodology
that enables the transfer of loss behavior from the component test into real-world
driving conditions. Subsequently, the power losses are quantified across distinct
driving domains, including urban, rural, and highway conditions. The outcomes
of this methodology are contrasted with the losses observed on the test benches
in order to identify potential avenues for reducing the losses of wheel bearings.
Furthermore, the methodology is applied to homologation-relevant vehicle test
benches with the objective of comparing the power losses under these conditions
with real-world vehicle operations.

Keywords: Testing and Validation · Suspension · Powertrain · Energy losses

1 Introduction

1.1 Motivation

Increasingly stringent emission standards and the growing shift towards electricmobility
are driving automotive manufacturers to focus on optimizing the efficiency of individ-
ual components within the powertrain. This also includes wheel bearings, crucial for
supporting the rotational movement of wheels and transferring associated forces to the
vehicle body. The resulting losses significantly affect the powertrain efficiency, lead-
ing to a reduction in overall efficiency [1, 2]. The presented methodology enables the
determination of losses in real-world driving conditions and helps to identify deviations
from homologation-relevant vehicle test benches. This is particularly important because
analyzing the loss characteristics of wheel bearings in real-world vehicle operation is
complex and expensive.
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1.2 Test Bench Setup

The schematic representation of the component test bench for determining friction losses
of wheel bearings is depicted in Fig. 1. The bearing is mounted using two adapters within
a climate chamber to maintain consistent ambient temperature conditions. An electric
motor with dynamic control capabilities drives the bearing, while a load unit applies
axial and radial loads. A sensor setup within the illustrated measurement unit captures
the resulting friction losses of the measured bearing. Furthermore, various parameters,
including ambient temperature, bearing temperature, and rotational speed, are recorded
throughout the test.

Adapters

Load unit Wheel bearing

Speed sensor

Measurement

unit

Climate chamber

Electric motor

Fig. 1. Test bench setup to determine the friction losses of wheel bearings.

2 Methodology

The methodology aims to assess the losses experienced by wheel bearings under real-
world driving conditions and identify deviations from homologation-relevant complete
vehicle test benches. To achieve this, the methodology is divided into four distinct parts:
acquiring real-world driving data, generating efficiency maps, validating the efficiency
maps, and simulating and comparing the losses.

2.1 Measurement of Vehicle Data

To generate representative real-world driving data, a vehicle is equipped with measure-
ment technology to record variables that affect friction losses, including wheel speed,
ambient and bearing temperature. The static wheel loads, which influence the friction
losses, are measured with wheel load scales [3, 4]. Figure 2 illustrates the measuring
points using the example of the rear left wheel. The data is collected in urban, rural and
highway environments in order to analyze diverse driving domains for identical driven
bearings on the left side of an all-wheel-drive vehicle’s front and rear axle.
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Measured values:
1. Ambient temperature

2. Speed (Velocity)

3. Wheelhouse temperature

4. Bearing temperature

5. Static radial load

Vehicle CAN

Thermocouple

Wheel load scale

Fig. 2. Overview of the measuring positions of the test vehicle for the rear left wheel bearing.

2.2 Determination of the Efficiency Maps

The friction losses of the bearings are determined by means of measurements conducted
on the friction torque test bench. A measurement cycle developed at the Institute of
Automotive Engineering is employed to ascertain the losses occurring at the relevant
operating points in accordance with the velocity and temperature for the front and rear
left bearing of the test vehicle at different levels of radial wheel loads. The cycle effec-
tively identifies the necessary operating points, thereby minimizing the time required
for measurements. Figure 3 illustrates the efficiency maps for both bearings, which are
dependent on the different applied radial wheel load levels.
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Fig. 3. Determined efficiency maps for the front left bearing a) and rear left bearing b) as a
function of velocity, temperature, and radial wheel loads.

The analysis indicates that the bearings experience their most significant friction
losses under conditions of low temperatures and high velocities. This is primarily due to
the increased viscosity of the lubricant, which hinders the formation of a lubricating film
and leads to increased friction losses, particularly at high rotational speeds. Furthermore,
the material behavior at lower temperatures and the consistency of the lubricant affect
the bearing rolling element’s mobility, contributing to higher losses [5, 6]. The front
left bearing (Fig. 3a) also exhibits higher friction losses in comparison to the rear left
bearing (Fig. 3b). This can be attributed to the higher applied radial loads during the
measurements, which are a consequence of the differing levels of wheel loads of the
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vehicle. To illustrate the influence of the radial load, Table 1 presents the maximum
friction losses at the operating point at 20 °C and 140 km/h, as well as the arithmetic
average losses over the total efficiency maps for both bearings.

Table 1. Maximum friction losses at the operating point at 20 °C and 140 km/h and the arithmetic
average friction losses for the total efficiency map of the front and rear left bearing.

Front left Rear left

Maximum Ø Maximum Ø

Losses [W] 243.25 86.73 187.51 68.87

[Nm] 1.98 1.25 1.52 0.99

The increased radial load intensifies the pressure on the contact surfaces between
the rolling elements and the raceway. Furthermore, elevated loads induce elastic defor-
mation, which alters the shape of the contact surfaces and reduces the thickness of the
lubricating film. This results in an average increase in friction losses, as observed in
the efficiency map of the front left bearing, which can be up to 20% depending on the
lubrication, bearing geometry and sealing type [5, 6].

2.3 Validation of the Efficiency Maps

Additional measurements are performed on the friction torque test bench to verify the
accuracy of the efficiency maps. During this process, the losses determined from the test
bench are compared with the simulated losses. The velocity profile used for validation is
based on two WLTC cycles and the measured bearing temperature, as shown in Fig. 4a.
Figure 4b compares the losses measured on the test bench with those calculated for
the front left bearing. Additionally, it illustrates the cumulative deviation of the friction
energy between the measurement and the simulation.

The quantitative results of the friction losses determined using the efficiency map are
in good agreement with the values measured on the test bench. However, a correlation
analysis revealed an increasing qualitative discrepancy in losses, particularly at lower
temperatures and velocities. This discrepancy arises because fewer operating points are
available for modeling the efficiency maps at lower temperatures compared to higher
temperatures. One reason for the reduced availability is that the bearings heat up rapidly
during the efficiency map measurements at lower temperatures due to friction. Overall,
the average friction losses per revolution for the complete cycle differ by 1.64%, and the
cumulative deviation of the friction energy is 1.74 Wh.
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Fig. 4. Validation of the efficiency map depending on velocity and bearing temperature a) for the
front left bearing with measurement on the test bench and simulating friction losses b).

2.4 Determination of the Friction Torque and Comparison

In the final step, the friction losses are simulated based on real-world driving operation
data bearing temperatures and velocities, which were determined in Sect. 2.1 by using
the test vehicle for urban, rural, and highway driving domains, to assess their contribu-
tion to drivetrain losses. Furthermore, the losses are calculated based on data recorded
on a homologation-relevant vehicle dynamometer to illustrate differences between mea-
surements on the dynamometer and real-world driving conditions. Figure 5a displays
the velocity profile for real-world driving operation and dynamometer testing, bearing
and wheel housing temperatures for the front left bearing for the rural driving domain.
Figure 5b illustrates the friction losses simulated with the help of the recorded measure-
ment data and using the efficiency map, to compare the conditions for real-world driving
operations and dynamometer testing.

The temperature difference in the wheel housing between the data for real-world
driving conditions and dynamometer testing is significant, mainly attributable to reduced
airflow through the dynamometer’s air blower. This notably affects the heat convection
of the bearings to the environment, especially at higher velocities. In this instance, a
growing disparity in bearing temperature is evident from a time of 500 s due to this
phenomenon. Consequently, the bearing experiences a greater temperature increase on
the dynamometer, resulting in a reduction of friction losses. This results in a cumulative
deviation of the friction energy over the rural cycle of 8.18 Wh. Figure 6 presents
the average friction losses per revolution for all driving domains and both bearings in
comparison between real-world driving and dynamometer conditions. The overview
indicates that the front left bearing consistently experiences elevated friction losses
across various driving domains, which is approximately 20% higher than for the rear
left bearing. This is primarily attributed to the increased wheel load.



212 L. Hartmann et al.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time [s]

0

20

40

60

80

100

120

140

160
V

el
o
ci

ty
[k

m
/h

]

20

30

40

50

60

T
em

p
er

at
u
re

[°
C

]Velocity

Temp. bearing road

Temp. housing road

Temp. bearing dyno

Temp. housing dyno

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time [s]

0

0.5

1

1.5

2

2.5

F
ri

ct
io

n
lo

ss
es

[N
m

]

0

2

4

6

8

10

C
u
m

u
la

te
d

d
ev

ia
ti

o
n

[W
h
]

Friction losses road

Friction losses dyno

Deviation

Ø Friction losses road: 1.318 Nm

Ø Friction losses dyno: 1.211 Nm

a.)

b.)

Fig. 5. Comparison of friction losses for the front left bearing b) for rural driving domain
calculated with the efficiency map for real-world driving conditions and dynamometer testing
a).

1.36
1.32

1.21

1.31

1.21

1.09
1.06 1.06

0.96

1.03

0.94

0.85

Highway Rural Urban

Driving domain [-]

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

A
v

e
ra

g
e

lo
ss

e
s

[N
m

] Front left road

Front left dyno

Rear left road

Rear left dyno

Fig. 6. Comparison of the average friction losses per revolution for the front and rear left wheel
bearing between real-world driving operations and dynamometer testing data.

Furthermore, the varying friction losses resulting from declining average velocities
across highway, rural, and urban driving domains are discernible. Additionally, discrep-
ancies between real-world driving conditions and dynamometer testing data results are
evident. In particular, real-world conditions indicates losses up to 12% higher due to
improved heat dissipation from the airflow compared to the dynamometer.

3 Conclusion

The results presented in this study demonstrate the friction losses associated with the
wheel bearings in the drivetrain across various driving domains and influencing param-
eters. They also illustrate the discrepancies between real-world driving operations and
dynamometer testing due to varying temperature conditions, which can present chal-
lenges in conducting real driving emissions cyclemeasurements. Furthermore, analyzing
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the differences in wheel loads between real-world driving operations and dynamometer
testing in the future would be beneficial for further investigating these variances. This
approach can be applied to other components, allowing for the evaluation of component
behavior in real-world vehicle operations.
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Abstract. We present a prediction based controller for heterogeneous
platoons with actuation delay. By using a prediction of the ego vehicle’s
acceleration and compensating the ego vehicle’s influence on the error
dynamics, we obtain a controller that achieves input-to-state stability
(ISS) with respect to the preceding vehicle’s acceleration. The result is
a controller that does not require driveline information of the preceding
vehicle, which enables platooning in a heterogeneous setting. An analysis
is presented of the string stability properties of the system with both
actuation and communication delays. The effectiveness of the controller
is shown in simulation.

Keywords: Cooperative Adaptive Cruise Control · Delay · Prediction

1 Introduction

Cooperative Adaptive Cruise Control (CACC) utilizes vehicle-to-vehicle (V2V)
communication and on-board sensors like a radar to maintain a desired headway
to the preceding vehicle. CACC’s ability to maintain short following distances
while attenuating disturbances through the vehicle string (string stability) can
enhance traffic flow and safety [5]. To enable adoption of the technology, the
controller should be able to deal with heterogeneities in the platoon. Further-
more, actuation delays of the ego vehicle can be detrimental to the performance
of controllers that are designed without taking into account this delay [2].

In this paper, we present a prediction based control approach to enable con-
trol of heterogeneous platoons where the ego vehicle experiences a delay in the
driveline. We use a prediction of the (effects) of the ego vehicle’s acceleration
(on the error dynamics) to obtain a controller that is ISS with respect to the
preceding vehicle’s acceleration.

The outline of the paper is as follows. The controller design is presented in
Sect. 2. An analysis of the string stability of the system, taking into account
actuation and communication delays, is presented in Sect. 3. To validate the
controller, simulations of a platoon employing the controller are presented in
Sect. 4. Finally, the conclusions and recommendation for future research are
presented in Sect. 5.
c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 214–220, 2024.
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2 Controller Design

Consider a heterogeneous string of n vehicles as depicted in Fig. 1, where each
vehicle’s dynamics are described by

q̇i(t) = vi(t)
v̇i(t) = ai(t) i = 1, 2, ..., n (1)

ȧi(t) = − 1
τi

ai(t) + 1
τi

ui(t − φi).

Here, qi, vi, ai denote the position, velocity and acceleration of vehicle i
respectively, for the platoon of length n ∈ N

+ vehicles. The desired acceleration
ui is considered the input to the system, and τi > 0 and φi ≥ 0 are a time con-
stant and actuation delay associated with the driveline of vehicle i respectively.

The vehicle-following objective, i.e, follow the predecessor at constant head-
way hi > 0, can be captured in the error definition

ei(t) = qi−1(t) − qi(t) − hivi(t) − ri − Li, (2)

where ri ≥ 0 is a constant to account for a certain distance at standstill, and Li

is the length of vehicle i.

Fig. 1. Heterogeneous string of vehicles equipped with CACC.

2.1 Controller Design

Defining the coordinate transformation along the lines of [3]

x1(t) = ei(t) = qi−1(t) − qi(t) − hivi(t) − ri − Li

x2(t) = ėi(t) = vi−1(t) − vi(t) − hiai(t) (3)
x3(t) = vi−1(t) − vi(t),

the error (2) and its dynamics are given by

ẋ1(t) = x2(t)

ẋ2(t) = ai−1(t) − hi−τi
hiτi

[x2(t) − x3(t)] − hi

τi
ui(t − φi) (4)

ẋ3(t) = 1
hi

x2(t) − 1
hi

x3(t) + ai−1(t).
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We propose a prediction based control law for vehicle i, given by

ui(t) =
[
1 − τi

hi

]
âφi

i (t) + τi
hi

ai−1(t) − τi
hi

ūi(t), (5a)

with âφi

i (t) = exp
(
−φi

τi

)
ai(t) +

∫ t

t−φi

1
τi

exp
(
− t−σ

τi

)
ui(σ)dσ (5b)

and ūi(t) = − [
kp kd

]([
1 φi

0 1

] [
x1(t)
x2(t)

]
+

∫ t

t−φi

[
t − σ

1

]
ūi(σ)dσ

)
, (5c)

where kp and kd are controller gains. To compensate for the delay φi, the inputs
ui and feedback-control actions ūi over the past φi seconds are used to construct a
prediction âφi

i of the acceleration ai and evolution of the system (4). Applying the
prediction based controller (5) on the system (4), results in closed-loop dynamics

ẋ(t) =

⎡
⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣

0 1 0
−kp −kd 0
0 1

hi
− 1

hi

⎤
⎦

⎡
⎣

x1(t)
x2(t)
x3(t)

⎤
⎦ +

⎡
⎣

0
w(t)

ai−1(t)

⎤
⎦ , (6)

where

w(t) = ai−1(t) − ai−1(t − φi) − kp

∫ φi

0

σ[ai−1(t − σ) − ai−1(t − φi − σ)] dσ

− kd

∫ φi

0

[ai−1(t − σ) − ai−1(t − φi − σ)] dσ.

The closed loop system (6) is input to state stable (ISS) with respect to the
predecessors acceleration ai−1(t) for kp > 0, kd > 0. That is, x(t) remains
bounded for bounded ai−1(t), and x(t) converges to zero when ai−1(t) converges
to zero. It is worth to note that including the preceding vehicle’s future acceler-
ation, ai−1(t+φi), in the control action (5a) instead of the current acceleration,
ai−1(t), would eliminate the disturbance w(t). However, the future acceleration
of the preceding vehicle is generally not available. Instead, a prediction of the
preceding vehicle’s future acceleration âi−1(t + φi) could be used to improve
performance. Constructing such a prediction is considered outside the scope of
this paper and left for future research.

3 String Stability

The attenuation of disturbances through the vehicle string is an important
design objective of vehicle platoons. To analyze the string stability of the system
employing controller (5) we adopt the notion of L2 string stability [4]. To this
end, we define the transfer function relating the velocity of (a preceding) vehicle
k to the velocity of vehicle i > k, referred to as the String Stability Complemen-
tary Sensitivity (SSCS), as Γ k

i = vi(s)
vk(s)

, where vi(s) is the Laplace transform of
vi(t). The platoon is L2 string stable if [4]

‖Γ k
i (s)‖H∞ = sup

ω∈R

|Γ k
i (jω)| ≤ 1, (7)
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Fig. 2. Minimum required headway hi for (9) to satisfy (7) given kp, kd with φi =
0.15 s, θi = 0.02 s.

where ‖ · ‖H∞ denotes the H∞ norm. Note that the SSCS for the string of
vehicles starting at index k and ending with index i is equal to the product of
the SSCS of the individual vehicles with respect to their direct predecessor: Γ k

i =∏i
j=k+1 Γ j−1

j . Consequently, if each individual vehicle i satisfies condition (7)
with respect to its direct predecessor i−1, it implies (7) is satisfied for the entire
platoon. Therefore, we focus the analysis of string stability on an individual
vehicle with its direct predecessor, for which condition (7) should hold.

3.1 String Stability with Communication Delays

The control action (5) requires the preceding vehicle’s acceleration ai−1, which
cannot be directly measured with sensors on-board of vehicle i. This means that
in practice V2V communication is used to obtain this information. Including a
communication delay θi ≥ 0 in the control action (5a) gives

ui(t) =
[
1 − τi

hi

]
âφi

i (t) + τi
hi

ai−1(t − θi) − τi
hi

ūi(t). (8)

The closed-loop system (6) employing (8) results in the SSCS as

Γ i−1
i (s) =

(s2 + kds + kp)e−θis + [(kd + kpφi)s + kp]
[
1 − e−(φi+θi)s

]
(his + 1)(s2 + kds + kp)

e−φis.

(9)
The SSCS (9) can be used to determine appropriate controller gains kp and kd to
satisfy (7), given the actuation and communication delays, φi and θi respectively.

4 Tuning and Simulation

We experimentally validated the discrete time equivalent of the CACC controller
with a platoon of two full-scale vehicles in [1]. There, we show that the closed-
loop response of the vehicle employing controller (5) indeed behaves according
to (6). In this section, we consider the tuning of the controller with respect to
string stability and illustrate the results with time-domain simulations.
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4.1 Tuning for String Stability

To determine an appropriate tuning for the controller that achieves string stabil-
ity, given the characteristics of the experimental vehicle from [1] (time constant
τi = 0.067 seconds, actuation delay φi = 0.15 seconds and a communication
delay θi = 0.02 seconds), we use a bi-section algorithm to numerically determine
the minimum required headway hi for which condition (7) is satisfied for (9)
for a grid of kp and kd. The resulting Fig. 2 shows the minimum headway that
can be achieved, greatly depends on the choice of controller gains. Especially kd

should be chosen sufficiently large to be able to employ small headways.

4.2 Simulation

To illustrate the effectiveness of the prediction based controller, we consider a
heterogeneous platoon of n = 6 vehicles, with the parameters as listed in Table 1.
Here, vehicle 2 and 3 have the characteristics of the experimental vehicles from
[1] and [4] respectively. The leader vehicle is modeled without actuation delay,
to illustrate the effectiveness of the controller in a setting where the preceding
vehicle does not experience a delay. The communication delay θi = 0.02 seconds
is assumed to be identical for all vehicles. Furthermore, all vehicles use the same
tuning of the feedback controller with kp = 1 and kd = 4. At the adopted
headway hi = 0.5 seconds, the string stability condition (7) is satisfied for each
vehicle in the platoon, as can be seen in the magnitude plot of the SSCS in
Fig. 3a.

Table 1. Vehicle parameters of the platoon used in the simulation.

Vehicle index i 1 2 3 4 5 6

Driveline constant τi [s] 0.05 0.067 0.1 0.04 0.09 0.12

Actuation delay φi [s] 0 0.15 0.2 0.12 0.13 0.16

Fig. 3. Magnitude of SSCS (9) and time domain velocity response of the platoon of six
vehicles (black - light gray: i = 1, 2, ..., 6) with distinct τi and φi as listed in Table 1,
employing (5).
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Figure 3b shows a time domain simulation of the platoon employing the dis-
crete time equivalent of (5), obtained by discretizing system with ZOH at a sam-
ple time Ts = 0.01 seconds as described in [1]. The leader vehicle is prescribed
an acceleration step of u1 = 1 m/s2 for t ∈ [5, 10], followed by a negative step
u1 = −1 m/s2 for t ∈ [15, 20]. No velocity overshoots are observed, indicating
the platoon indeed exhibits string stable behavior.

5 Conclusion

In this paper, we present a prediction based control approach for platoons with
actuation delay. The controller does not require any information of the drive-
line dynamics of the preceding vehicle, making it suitable for platoons that are
heterogeneous with respect to both the driveline time constant and actuation
delays. An analysis of the string stability properties considering both actuation
and communication delays is presented, which shows the controller is able to
achieve string stability at short headways (smaller than 0.5 seconds), given the
properties of the experimental setup. A simulation confirms the effectiveness of
the controller.

The presented prediction based controller only considers the predicted states
of the ego vehicle and uses the current (communicated) state of the preceding
vehicle. Consequently, a disturbance acts on the system which is a function of
the preceding vehicle’s acceleration. Although the system is ISS with respect to
this disturbance regardless of the size of the actuation delay, a certain minimum
headway time is required for string stability. Future research entails including
the preceding vehicle’s acceleration in a different manner in the control action
to decrease or eliminate the minimum headway required for string stability. For
instance, by predicting the preceding vehicle’s future acceleration. Finally, in
this paper only simulations are used to demonstrate the efficacy of the controller.
For future research, we plan to conduct experiments with full-scale vehicles to
validate the performance with respect to string stability.
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Abstract. In this paper, the effects of adding a tire actuator to a vehi-
cle with active suspension and preview control are studied. For the con-
troller, the LQR method is used. The dual actuator system with preview
control is compared to other conventional systems to determine the per-
formance gain. The results show a gain of 182.3% in comfort compared
to the passive suspension. The dual actuator system with preview con-
trol outperforms systems with fewer actuators and is less affected by the
trade-off between handling and comfort.

Keywords: Active vehicle suspension · Preview control · Active tires

1 Introduction

For an optimal experience and maximum safety while driving a vehicle, comfort
and road holding are important factors. The suspension has a large impact on
both comfort and road holding [2]. In a regular passenger car the suspension typ-
ically consists of a spring and a damper. By adding an actuator to the suspension
(active suspension), comfort and road holding can be improved even further [5].
An active suspension typically acts upon the measured sprung acceleration and
suspension travel and is therefore reactive [7]. To improve performance, a preview
controller can be used that uses information about the road ahead.

Little research has been done on active tire control. D’Ambrosio [1] introduces
Active Tire Pressure Control (ATPC), aimed at improving the fuel consumption,
safety, and drivability of a car. However, the system is rather slow. Nandikolla [6]
introduces a deformable smart tire with the use of SMA springs. By heating and
cooling the SMA springs, the shape of the smart tire switches between two
states: circular and square. Even though not a road vehicles, Maglev trains can
be modeled in a similar way as a car. Maglev trains offer the opportunity to
actively control the interaction between track and unsprung mass of the train,
thereby adding the equivalent of a tire actuator. This leads to the open research
question of determining the performance gain in terms of handling and comfort
achievable with a dual actuator system with preview control over conventional
and active suspension.

The outline of this paper is as follows, in Sect. 2 the quarter car model is
introduced. Using this model, the controller is derived in Sect. 3. The effects
of preview time and a comparison with existing controllers is shown in Sect. 4.
Finally, conclusions are drawn in Sect. 5.
c© The Author(s) 2024
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2 Vehicle Model

In this research the standard quarter car model [7], shown in Fig. 1, is used. Here
ms represents the sprung mass and mu unsprung mass, which are connected via
a spring (ks) and damper (ds). Furthermore, the tire is modeled as a spring
with stiffness kt. The actuator force between the sprung and unsprung mass
is represented by Fs and the tire actuator by Ft. Finally, the preview time is
indicated by tp. The parameters of the quarter car model are given in Table 1.
The equations of motion are given as

msz̈s = −ks(zs − zu) − ds(żs − żu) − Fs (1)
muz̈u = ks(zs − zu) + ds(żs − żu) − kt(zu − zr) + Fs − Ft. (2)

For controller implementation, these equations of motion have been put into a
linear state-space form

ẋ = Ax + B1u1 + B2zr (3)
y = Cx + D1u1 + D2zr (4)

with state space matrices A, B1, B2, C, D1, and D2 denoting the state transi-
tion matrix, actuator force and disturbance input matrix, state to output matrix,
force input to output matrix and disturbance to output matrix respectively.

The main purpose of a suspension is to provide comfort to the driver and
keep the tires in contact with the road, which is important for vehicle handling.
These objectives can be captured in the vertical acceleration of the sprung mass,
z̈s, which is a good measure of comfort, and in the dynamic tire compression,
zu − zr, which is a good measure of handling [7]. For both quantities, the RMS
value is used. In addition to that, suspension travel, zs − zu, is typically limited.

Fig. 1. Schematic representation of the quarter car model with suspension actuator,
tire actuator, and preview control, adapted from [7]

3 Controller Design

Given the system dynamics with multiple control objectives and two actuators,
a control method that can generate the optimal input for both the actuators
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Table 1. System Parameters

Symbol Value Unit Description

ms 400 kg sprung mass

mu 40 kg unsprung mass

ks 25000 N/m suspension stiffness

kt 200000 N/m tire stiffness

ds 2000 Ns/m damping coefficient

has to be designed. Assuming that the full state can be measured, an LQR is a
suitable candidate. The cost function to be minimized is defined as

J =
1
2

∫ t+tp

t

(yTQy + uT
1Ru1)dτ ; (5)

Q = QT ; Q ≥ 0; R = RT ; R > 0,

where Q is a positive semidefinite weighting matrix on the output vector and R
is a positive definite matrix on the force inputs. They can both be chosen such
that the aforementioned performance metrics can be individually emphasized
(comfort or handling), while taking into account suspension travel and actuator
load. The input u1 that minimizes J is determined as

u1 = −V−1(BT
1P + DT

1QC)x + V−1BT
1 r, (6)

which has both a state feedback part and a feedforward part based on the future
response of the system r. The matrix V is defined as

V = DT
1QD1 + R; V = VT ; V > 0, (7)

and P is the solution of the Algebraic Ricatti Equation (ARE) [4]

FTP + PF + G − PHP = 0. (8)

In the Ricatti equation, the following matrices are defined

F = A − B1V−1DT
1QC, (9)

G = CT (Q − QD1V−1DT
1Q)C, (10)

H = B1V−1BT
1 . (11)

Road preview requires knowledge of the road disturbances up ahead. For
now, it is assumed that this knowledge is available, either through, for example,
detailed maps or a sensor on the vehicle that can measure the height of the road
disturbance up ahead. In (6), the future response of the system, r, was intro-
duced. The upcoming section will discuss how the upcoming road disturbance is
captured in r.
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First, the states of the system at the end of the preview time tp, x(t + tp),
are determined, which will be used as a boundary condition in the next step.
The calculation strategy for x(t + tp) is suggested by Huisman [3]. Secondly,
the response of the system over the preview distance is determined by backward
integrating of

ṙ(t∗) = −Ag
T r(t∗) + Ph(t∗); r(t + tp) = Px(t + tp), (12)

over the preview time tp. Here h(t∗) defined as

h = B2u2, (13)

and Ag as
Ag = F − HP. (14)

To perform the backwards integration, the approach of [4] is followed, where the
substitution r(t) = s(t + tp − t∗) is made, such that

ṡ(t) = Ag
T s(t) + PB2zr(t + tp − t); s(0) = r(t + tp). (15)

The states of the system, x(t), can be determined as

ẋ(t) = Agx(t) + Hr(t) + h(t); x(t) = x(t − Δt). (16)

Finally, the optimal input u1 over the interval [t, t + tp] can be determined by
substituting x(t) and r(t) in (6).

4 Results

To achieve good comfort, the weighting matrices introduced in (5) have been
chosen as

Qcomfort =

⎡
⎣22 0 0

0 1 0
0 0 1

⎤
⎦ ; Rcomfort =

[
1 0
0 1

]
, (17)

thereby emphasizing the sprung acceleration, z̈s, over the dynamic tire com-
pression and suspension travel. Below, first the influence of preview time on
the performance of the dual actuator system is shown. Secondly, the frequency
response of the proposed controller will be compared to a one actuator system
with and without preview as well as the two actuator case without preview.

4.1 Influence of Preview Time

In this section, the effect of preview time for the dual actuator system is investi-
gated. As input a 0.05 m step input is used. The preview times shown range from
0.1 to 1 s, with a step of 0.1 s. In Fig. 2, the results of the look-ahead time for a
comfort-oriented controller are shown. The handling-oriented controller results
are not shown here but show similar results in terms of the influence of the
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look-ahead time. From Fig. 2, it can be noted that the using road preview has
the largest impact on the sprung acceleration and the suspension travel. Further-
more, the lines are converging with increasing preview times, which indicates the
presence of an asymptote in performance. This is even more apparent from the
fact that the controllers with larger preview time hardly show any movement of
the suspension travel before 0.7 s. Changing the preview time shows little effect
on the tire compression when the controller is tuned for comfort. In the next
section the dual actuator controller is compared to other controllers, for this, a
look-ahead time of 0.125 s will be used.

Fig. 2. Influence preview time on a dual actuator suspension with preview and comfort-
oriented control with a step input of 0.05 m

4.2 Frequency Response

In this section, the frequency response of the two actuator controller with preview
is compared with various other controllers. Figure 3 shows that the two actuator
solution shows better comfort over the whole frequency range compared to the
passive system and also the system with a single actuator (both with and with-
out preview). In addition to that, it also shows that the two actuator solution
with preview performs better than a dual actuator without preview. Both dual
actuator systems also show that the comfort invariant point no longer exists for
this setup.
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Fig. 3. Frequency response of systems with a comfort-oriented controller on a road
disturbance

5 Conclusion

A quarter car model with an LQR and a preview strategy is developed to deter-
mine the comfort gain achievable with a dual actuator suspension with preview
control. The performance gain is measured by three metrics: sprung accelera-
tion, tire compression, and suspension travel. The weighting matrices are tuned
so that maximum comfort or handling can be achieved within the limits of
the constraints. The simulation results show that an improvement of 182.3% in
sprung acceleration can be achieved on a 0.05 m step input.

References

1. D’Ambrosio, S., Vitolo, R., Salamone, N., Oliva, E.: Active tire pressure control
(ATPC) for passenger cars: design, performance, and analysis of the potential fuel
economy improvement. SAE Int. J. Passenger Cars Mech. Syst. 11(5), 321–339
(2018)

2. Hac, A.: Optimal linear preview control of active vehicle suspension. Proc. IEEE
Conf. Decis. Control 5, 2779–2784 (1990)

3. Huisman, R.G.M., Veldpaus, F.E., Voets, H.J.M., Kok, J.J.: An optimal continuous
time control strategy for active suspensions with preview. Vehicle Syst. Dyn. 22(1),
43–55 (1993)

4. Huisman, R.G.M.: An investigation into the theoretical feasibility of active suspen-
sions with preview. Master’s thesis, Eindhoven University of Technology, Eindhoven
(1992)

5. Huisman, R.G.M.: A controller and observer for active suspensions with preview.
Ph.D. thesis, Eindhoven University of Technology, Eindhoven (1994)



Vertical Dynamics Control Using Active Tires and Preview 227

6. Nandikolla, V.K., Costa, M., Boyd, N., Rosales, G.: Design of a deformable smart
tire using soft actuator. In: Proceedings of the ASME 2019 International Mechanical
Engineering Congress and Exposition (2019)

7. van der Sande, T.P.J., Besselink, I.J.M., Nijmeijer, H.: Rule-based control of a semi-
active suspension for minimal sprung mass acceleration: design and measurement.
Veh. Syst. Dyn. 54(3), 281–300 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Time-Optimal Learning-Based LTV-MPC
for Autonomous Racing

Zijun Guo , Huilong Yu(B) , and Junqiang Xi

Beijing Institute of Technology, Beijing, China
huilong.yu@bit.edu.cn

Abstract. Autonomous racing is a time- and accuracy-critical applica-
tion of vehicle motion planning and control techniques. Despite being
promising for its ability to handle constraints, model predictive control
(MPC) for autonomous racing is limited by the relatively low computa-
tional speed and the problem of model mismatch. In this work, we present
a time-optimal linear-time-variant-MPC (LTV-MPC) that incorporates
a min-time objective function, the friction ellipse constraint, and the
successive linearization over the prediction horizon to improve compu-
tational speed and prediction accuracy. To tackle model mismatch, the
proposed LTV-MPC is further combined with Gaussian process regres-
sion to learn the lateral tire force error. Compensation for the error is
implemented over the prediction horizon and on the friction ellipse con-
straint. This work presents simulation validation on the racing track of
Formula Student Autonomous China (FSAC) and experimental valida-
tion on a self-designed track. We show that compared with nonlinear
MPC, the proposed LTV-MPC reduces the average computation time
from 66 ms to 2.5 ms with a 0.6% increase in lap time. With learned tire
force error, a 2% reduction in lap time can be achieved.

Keywords: Autonomous racing · Autonomous driving · Model
predictive control · Gaussian process regression

1 Introduction

Model predictive control (MPC) is a suitable tool for autonomous racing due
to its ability to handle constraints like vehicle dynamics and track boundaries.
However, the time-optimal control problem for autonomous racing is nonlin-
ear [5]. The direct use of nonlinear MPC (NMPC) leads to high computation
time that is undesirable for racing [3], and the use of linear or adaptive MPC
fails to accurately incorporate nonlinear objectives and constraints. Although
linear-time-variant-MPC (LTV-MPC) can strike a balance between computa-
tional speed and accuracy, it is mainly used in trajectory tracking tasks and its
application to autonomous racing is scarce in the literature.

Another limitation of MPC is model mismatch, which occurs when the control
model differs from the actual plant, causing the degradation of control perfor-
mance. Several techniques, e.g. error observers and Gaussian process regression
c© The Author(s) 2024
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(GPR) [2], are adopted to tackle this issue. However, linear models like error
observers omit the nonlinear portion of the error, and the learning-based method
in [2] that learns the error of all state variables lacks interpretability and hinders
further analysis of model mismatch.

To address the aforementioned problems, this work presents a time-optimal
LTV-MPC with its min-time objective function and friction ellipse constraint
successively linearized over the prediction horizon, and a GPR-based lateral tire
force error model to adjust the control model and friction ellipse constraint.

2 Time-Optimal LTV-MPC Formulation

2.1 Vehicle Control Model

A 3-DOF single-track rear-wheel-drive vehicle dynamics model is adopted:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̇x

v̇y

ψ̈
ṡ
ṅ
χ̇

Ṫ

δ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f(x,u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Fx − Fy,f sin δ) /mt + ψ̇vy

(Fy,f cos δ + Fy,r) /mt − ψ̇vx

(Fy,f lf cos δ − Fy,rlr) /Iz
vx cosχ−vy sinχ

1−nκ(s)

vx sinχ + vy cosχ

ψ̇ − κ(s)ṡ
Trate
δrate

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where there are eight state variables x = [vx, vy, ψ̇, s, n, χ, T, δ]� and two control
variables u = [Trate, δrate]�, vx, vy, and ψ̇ denote longitudinal velocity, lateral
velocity, and yaw rate in vehicle coordinate frame, s, n, and χ denote vehicle
pose in curvilinear coordinate frame, T and δ denote torque on the rear wheel
and front-wheel steering angle. The above variables are depicted in Fig. 1.

Fig. 1. 3-DOF single-track vehicle model in curvilinear coordinate frame.

In (1), κ(s) is the road curvature at progress s, lf and lr denote the location
of the center of gravity (CoG) behind the front axle and location of CoG in front
of the rear axle, mt and Iz are the total mass of the vehicle and the vehicle
inertia about z axis, Fx = T/R is the longitudinal force of the rear wheel, R is
the tire radius, Fy,i, i = {f, r} are the lateral forces of the front and rear wheels.
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The longitudinal force of the front wheel is assumed to be zero. The lateral forces
are calculated as

Fy,i = fMF,i(αi) = μcFz,iDy sin [Cy atan {Byαi − Ey (Byαi − atan (Byαi))}] ,
(2)

where Fz,f = mtglr/l, Fz,r = mtglf/l, μc is the road adhesion coefficient of
the control model, By, Cy, Dy, and Ey are parameters of the magic formula
(MF) tire model, l is the wheelbase, αf = atan((vy + ψ̇lf )/vx) − δ and αr =
atan((vy − ψ̇lr)/vx) are the slip angles of the front and rear wheels.

2.2 Problem Formulation

The objective function of the time-optimal LTV-MPC is given as

ηtr =
[

1−nκ(s)
vx cosχ−vy sinχ , ψ̇

]�
, ηref = [0, 0]�, (3)

where ηtr is the controlled output vector, ηref contains the desired output values.
The first element in ηtr equals 1/ṡ, which means the time required to progress
1 m in curvilinear coordinate frame. Therefore, its 0 reference value serves the
min-time purpose. The second element in ηtr serves to enhance vehicle stability.

The friction ellipse constraint is formulated as a hard constraint:

ηc =
[

Fx

μcDxFz,r

2
+ Fy,r

μcDyFz,r

2
]�

, (4)

where ηc is the hard constrained output vector, Dx is a parameter of the MF
model. Due to the symmetry of the friction ellipse, the linearized hard con-
strained output is limited between -1 and 1.

The velocity and track constraints are formulated as soft constraints to pre-
vent problem infeasibility when the constraints are temporarily violated by vehi-
cle sensor noise. The soft constrained output vector is given as ηsc = [vx, n]�.
Similar to the curvature κ, the upper and lower bounds for n are functions of s.

The final output vector is the concatenation of controlled, hard constrained,
and soft constrained output vectors η = h(x) = [ηtr,ηc,ηsc]�. For the k-th
(k = 1, · · · ,H) discrete time step in the prediction horizon, the system equation
ẋ = f(x,u) and output equation η = h(x) are linearized at a reference point
[x̂k, ûk]. In this work, it is assumed that the difference between the solution of one
control step and its subsequent (1/f s later, where f is the control frequency) is
small. Therefore, the solution of the last control step is used as the linearization
reference point at the current step. After linearization, the system is discretized
using the explicit fourth-order Runge-Kutta method. We refer the readers to [4]
for further formulation of the LTV-MPC problem.

3 GPR-Based Lateral Tire Force Error Learning

GPR is a non-parametric machine learning method suited for small datasets.
From the data collected when racing with LTV-MPC, the lateral forces Fy,i can
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be solved from two linear equations with two unknowns, extracted from (1):
{

v̇y = (Fy,f cos δ + Fy,r) /mt − ψ̇vx

ψ̈ = (Fy,f lf cos δ − Fy,rlr) /Iz

. (5)

We choose to learn the dimensionless lateral tire force error with features
[|T |, |α|]� ∈ R

2. The absolute value is taken to form a denser dataset. The
corresponding dataset output is calculated as [(|Fy,r,true|−|Fy,r,pred|)/Fz,r] ∈ R

1,
where Fy,r,true is solved based on vehicle states from sensors, Fy,r,pred is solved
based on predicted states from LTV-MPC. The predicted mean dimensionless
error from GPR is denoted as g. The predicted variance is omitted. It is assumed
that the characteristics of the front and rear tires are the same. Consequently,
the error model learned from the rear tire is also applied to the front tire:

F k
y,f = fMF,f (αk

f ) − Fz,f
g(0,|α̂k|)

α̂k
f

αk
f ,

F k
y,r = fMF,r(αk

r ) − Fz,r
g(|T̂k|,|α̂k|)

α̂k
r

αk
r ,

(6)

where T̂ k and α̂k
f are reference points at which to evaluate error compensation at

the k-th discrete time in the prediction horizon. Same as linearization, these ref-
erence points are calculated from the solution of the last control step. The slope
of the learned dimensionless error is multiplied by the slip angle to establish a
linear-time-variant relationship between error compensation and state variables.
If the compensation is only added as a constant, its effect will be mitigated after
linearization. For reference slip angle smaller than 0.0025, the error compensa-
tion is set to zero.

The friction ellipse constraint is adjusted in (7) based on the predicted dimen-
sionless error at zero torque and maximum slip angle. Negative signs in (6) and
(7) before g are because Dy has a negative value. For faster prediction, sparse
GPR is adopted in this work. We refer the readers to [6] for more details.

ηc =
[

Fx

μcDxFz,r

2
+ Fy,r

(μcDy−g(0,|α̂max|))Fz,r

2
]�

. (7)

4 Algorithm Validation

4.1 Simulation and Experimental Setup

The simulation is performed on the racing track of Formula Student Autonomous
China (FSAC) and executed on a laptop with an i7-12700H CPU and 32 GB
RAM. We use a 7-DOF vehicle dynamics model [7] for simulation. The experi-
ment is performed on a self-designed thin track with a steer-by-wire and drive-
by-wire electric chassis and executed on a Jetson AGX Xavier with Carmel CPU.
The directions of both tracks are clockwise. The following parameters are set to
be the same for both the simulation and experiment: discretization step Δt = 34
ms, prediction horizon H = 60, and control horizon Hc = 30. Limited by the per-
formance of Carmel CPU, the control frequency f is set to 100 Hz for simulation
and 50 Hz for experiment.



232 Z. Guo et al.

4.2 Results

In the simulation, the proposed LTV-MPC is compared with an NMPC imple-
mented using CasADi [1] with identical parameters. The NMPC also uses iden-
tical objectives and constraints (both nonlinear). The comparisons are plotted
in Fig. 2, which shows the accuracy and improved computational speed of the
proposed LTV-MPC. The lap time is 44.57 s for LTV-MPC and 44.29 s for
NMPC (a slight increase of 0.6 %). The average computation time is 2.5 ms for
LTV-MPC and 66 ms for NMPC (96 % reduction).

Fig. 2. Comparisons between the proposed LTV-MPC and NMPC on simulation tra-
jectory, friction ellipse constraint violation, and computation time.

The robustness of the proposed LTV-MPC is validated in real-world exper-
iments. The experiment data are exhibited in Fig. 3. The maximum velocity is
set to 4 m/s and small adhesion coefficients are chosen for safety concerns.

Fig. 3. Experimental trajectory and vehicle state plots with two different µc.

With μc set to 0.3, two simulation scenarios are used to validate the learning-
based LTV-MPC: low adhesion (true adhesion coefficient is also 0.3 but with tire
combined slip property not modeled in LTV-MPC) and higher adhesion (true
adhesion coefficient is 0.7). The corresponding GP error models and the effects in
mitigating model mismatch are shown in Fig. 4. The lap time in the low adhesion
scenario is 44.57 s without GPR and 44.64 s with GPR (safer after learning the
combined slip property). The lap time in the higher adhesion scenario is 44.16 s
without GPR and 43.23 s with GPR (2% faster after learning).
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Fig. 4. GPR error models and the effects in mitigating model mismatch.

5 Conclusions

This work first presents a time-optimal LTV-MPC with min-time objective func-
tion and friction ellipse constraint. The proposed LTV-MPC is further combined
with GPR to learn the lateral tire force error.

The efficiency, accuracy, and robustness of the proposed LTV-MPC are val-
idated in simulation and experiment. The GPR error model successfully learns
from the simulation data and improves the control performance. Experimental
validation of the learning-based LTV-MPC will be performed in our future work.
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Abstract. The latest advancements in vehicle automation have revealed
significant potential for enhancing traffic management via Advanced
Driver Assist Systems (ADAS), benefiting both safety and environmental
considerations. Green Light Optimal Speed Advisory (GLOSA) systems
represent a significant application in the Cooperative-Intelligent Trans-
portation System (C-ITS) field adopting Vehicle-to-Everything (V2X)
communication technology. The literature nowadays addresses quite
extensively the GLOSA, and C-ITS in general, for conventional vehi-
cles like cars. At the same time, there is emerging research starting to
involve also the public transportation vehicles within this framework.
The focus for buses is typically posed either on the comfort and regular-
ity of the service for passengers or on the energy consumption which is
reduced by adopting suitable speed profiles for the vehicle, thus avoid-
ing unnecessary stops. This work presents a statistical analysis based on
experimental data collected in real-world urban scenarios over one entire
year. The outcome of this analysis allows the design of speed profiles
typical for a public transportation vehicle, accounting for features such
as the bus stop station for getting passengers off and on.

Keywords: Bus · GLOSA · statistics · ITS · speed profile

1 Introduction

The latest advancements in vehicle automation have revealed significant poten-
tial for enhancing traffic management via Advanced Driver Assist Systems
(ADAS), benefiting both safety and environmental considerations. Green Light
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Optimal Speed Advisory (GLOSA) systems represent a significant application
in the Cooperative-Intelligent Transportation System (C-ITS) field adopting
Vehicle-to-Everything (V2X) communication technology [9]. Specifically, Green
Light Optimal Speed Advisory (GLOSA) systems present an opportunity by
providing real-time speed recommendations to vehicles, aiming to synchronize
their movement with traffic light timings. This synchronization not only reduces
fuel consumption, emissions, and travel time but also improves overall traffic flow
[1,8]. However, current GLOSA implementations predominantly target private
vehicles, lacking the necessary customization to deal with urban bus peculiarities
and its interaction with the infrastructure.

The literature nowadays addresses quite extensively the GLOSA, and C-ITS
in general, for conventional vehicles like cars. At the same time, within this frame-
work, there is emerging research starting to involve also the public transportation
vehicles. The focus for buses is typically posed either on the comfort and reg-
ularity of the service for passengers [6] or on the energy consumption which is
reduced by adopting suitable speed profiles for the vehicle, thus avoiding unnec-
essary stops [7]. [13] introduced an eco-driving strategy tailored for connected
electric buses at signalized intersections, incorporating bus stops to underscore
the advantages of multi-objective optimization in reducing energy consumption.
In [3] energy-saving profile planning for connected and automated electric buses
is addressed, leveraging non-linear programming techniques to optimize speed
profiles while considering motor characteristics. Beyond adjusting vehicle speed
via GLOSA systems, alternative approaches like Transit Signal Priority (TSP)
systems aim to extend traffic light green times and reduce red times during bus
intersection negotiations [11]. Additionally, the concept of Green Light Optimal
Dwell Time Advisory (GLODTA) suggests increasing bus dwell time at stops
[2]. Many studies advocate for a combined approach [5,10,14], aiming to harness
the comprehensive benefits of multiple systems.

In terms of modeling bus trajectories, [7] distinguishes between the impact
areas of bus stops and signalized intersections, ultimately formulating an opti-
mization problem aimed at minimizing energy consumption through the use of
the Dijkstra algorithm. The authors in [13] provide instead a comprehensive
description of the bus stop negotiation process, taking into account the nec-
essary time required for the vehicle to decelerate approaching the stop and to
accelerate upon resuming its journey. All these studies showcase the increasing
interest and progress in refining speed advisory systems for urban buses, high-
lighting the importance of customized strategies to enhance energy efficiency as
well as passengers’ comfort within public transportation networks.

This work presents a statistical analysis based on experimental data collected
in real-world urban scenarios over one entire year. The outcome of this analysis
allows the design of speed profiles typical for a public transportation vehicle,
accounting for features such as the bus stop station for getting passengers off
and on. The main contributions of the paper are the following:

• Report real-world statistical data in terms of dwell time at different bus stops
for different clusters based on the day of the week and time of the day.
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• Define a set of suitable speed profiles for GLOSA implementation on buses (B-
GLOSA), based on real vehicle parameters such as acceleration/deceleration
as well as dwell time available from the statistical analysis.

The remainder of the paper is organized as follows: after the description in
Sect. 2 of the experimental setup used for the data acquisition during the regular
service of the bus, the statistical analysis of the collected data is presented in
Sect. 3. Section 4 is then devoted to proposing different possible speed profiles
for GLOSA implementation as in [4] that can be designed based on the afore-
mentioned statistical analysis. Finally, Sect. 5 concludes the work and indicates
possible future developments.

2 Experimental Data Acquisition

This section presents the experimental setup for data acquisition during the vehi-
cle’s regular passenger service on the road. In particular, the vehicle shown in
Fig. 1 is equipped with a Global Positioning System (GPS), an Inertia Measure-
ment Unit (IMU), and the connection with the CAN-bus is established to read
information coming from ECU such as vehicle speed and doors status. These
data are used for vehicle localization presented in [12], as ego-vehicle position is
then used to identify the bus stops present on the path. As far as the data acqui-
sition is concerned, the following elements have been enclosed into a compact
architecture: (a) a computational unit (Intel NUC Core i7 1165G7), operating
on a soft real-time-based architecture using Robotic Operating System (ROS);
(b) a 4 TB hard disk for data storage; (c) a 5G modem for internet connection;
(d) a multi-port switch for the connection with sensors. All these devices, as well
as the sensors, are powered by the 24 V battery module for auxiliaries existing
on the vehicle.

Fig. 1. Schematics of the sensor and data acquisition setup on the vehicle.
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3 Statistical Analysis

The present section is intended to report the results of the statistical analysis
conducted on the basis of the data collected throughout the whole year. Indeed,
the focus is on the dwell time the vehicle spends in correspondence with the 16
bus stops along the considered route (i.e., a portion of the route followed by the
circular trolley-bus line 90/91 which goes around the city of Milan). Thanks to
vehicle localization and the date-time reconstruction from recorded timestamps,
it was possible to identify the bus stops along the path and cluster the dwelling
times. It is worth mentioning on the one hand that the stop condition is detected
by the combined matching of the following three conditions: (1) vehicle position
located in the ±20 m around the bus stop position; (2) null vehicle speed and
(3) opening of at least one of the four doors for passengers. On the other hand,
samples associated with a stop duration shorter than 5 s and longer than 30 s are
discarded, as they most likely are either not significant or affected by external
factors.

As mentioned, the data are categorized according to the day of the week and
the time of the day. In particular, the weekdays are divided into the following
four clusters: (1) h 7-10; (2) h 10-16; (3) h 16-19; (4) h 19-7. These clusters
are associated with different peak and off-peak hours for workers and students.
During the weekend days, the day hours are divided just for the morning (i.e., h
7-13) and the afternoon (i.e., h 13-19), keeping the same cluster for the night
hours (i.e., h 19-7). Each cluster is then fitted using a Generalized Extreme
Value (GEV) distribution, described by a mean value μ and a standard deviation
σ. As an example, Fig. 2 reports the distributions for each cluster of one of the
most crowded stops along the path (i.e., in correspondence of the central railway
station).

Fig. 2. GEV distribution fitting for different clusters at bus stop number 10 (i.e.,
central railway station).
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Table 1 summarizes the results of the measured dwelling time for the clus-
ters mentioned above, for all the 16 bus stops considered, reporting the mean
of the dwelling time, as well as its standard deviation. It is worth specifying
that for some bus stops, especially when dealing with the weekend clusters, the
data are not reported as the number of significant samples was limited or badly
distributed, making the GEV fitting unreliable. As can be observed from the sta-
tistical data, some trends with the time of the day can be barely inferred. Indeed,
the central hours of the day (i.e., h 10-16) are characterized by a higher flow
of passengers, making the dwelling time longer on average. On the other hand,
there seems to be a not-so-evident difference between week-days and weekend-
days, as the route is part of a quite busy portion of the city with a considerable
amount of passengers throughout the whole day.

Table 1. Dwell time statistical data for different clusters.

Week Weekend

h 7-10 h 10-16 h 16-19 h 19-7 h 7-13 h 13-19 h 19-7

μ [s] σ [s] N μ [s] σ [s] N μ [s] σ [s] N μ [s] σ [s] N μ [s] σ [s] N μ [s] σ [s] N μ [s] σ [s] N

Stop 1 12 4 97 13 4 175 14 3 121 13 3 105 14 4 61 14 4 46 13 4 28

Stop 2 11 4 110 14 4 175 14 4 108 12 4 92 12 4 59 13 4 46 13 4 29

Stop 3 14 4 92 14 4 135 13 3 98 12 3 96 12 3 57 12 3 44 13 4 29

Stop 4 12 4 103 12 3 143 12 3 106 11 3 93 11 3 49 12 3 35 12 3 28

Stop 5 14 5 95 16 4 159 16 4 104 15 4 94 17 4 50 - - 34 15 5 27

Stop 6 12 4 92 12 4 122 12 4 72 11 3 66 11 3 36 14 4 40 - - 9

Stop 7 14 4 119 15 4 190 13 3 117 13 4 96 15 4 42 16 5 36 14 4 21

Stop 8 11 3 114 10 3 153 10 3 106 10 2 83 9 2 38 10 2 43 11 3 15

Stop 9 12 3 98 14 4 154 12 4 103 11 3 97 11 3 46 13 4 52 11 3 26

Stop 10 13 4 117 16 4 125 15 4 83 14 3 77 15 3 40 16 5 23 14 5 21

Stop 11 11 3 104 13 3 175 12 4 102 11 3 82 13 4 46 13 4 32 13 3 25

Stop 12 15 4 94 14 4 78 13 3 73 14 4 75 13 3 44 14 4 40 12 2 22

Stop 13 11 3 99 12 3 152 11 3 113 10 3 92 10 3 47 11 3 47 10 2 17

Stop 14 13 5 100 16 5 123 16 5 92 17 5 72 - - 36 14 6 35 - - 16

Stop 15 11 3 108 10 2 157 10 2 111 9 2 91 9 2 43 10 2 47 10 2 24

Stop 16 12 3 108 12 4 139 11 3 107 11 3 77 11 3 48 10 2 44 12 4 20

Mean 12 4 13 4 13 3 12 3 12 3 13 4 12 3

4 Speed Profile Definition

As reported in the previous section, the information about the dwell time for
every bus stop as a function of the date-time opens the possibility of designing
speed profiles suitable for GLOSA implementation of public transport vehicles
such as buses (B-GLOSA). In this case, the vehicle motion optimization has
to consider that it is going to stop for sure at a given known point. Moreover,
common GLOSA algorithms typically look for an optimal speed allowing the
vehicle to cross the upcoming intersection with the green light is on. Within
this process, the dwelling time of the bus is an additional variable to be taken
into account when dealing with B-GLOSA design. As a result, having on this
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quantity a robust statistics to rely on, allows simplifying the modeling taking as
a reasonable assumption a known constant dwelling time.

In this paper, four different possible speed profiles are proposed to address
the B-GLOSA implementation. For the speed profile design, these quantities
are assumed to be known: initial vehicle state (i.e., location along the path and
speed), traffic light phases (i.e., minimum and maximum time available to reach
the intersection with green light), bus stop location and corresponding dwell time
(i.e., coming from statistics presented in Sect. 3), vehicle speed and acceleration
limits (i.e., for both passengers safety and comfort issues). As far as the most
suitable speed profile is concerned, it can be split into two sections: an initial
one from the initial point to the bus stop and a final one from the bus stop up to
the upcoming intersection. Each of these two sections is assumed to be either a
simple uniformly accelerated motion or a uniformly accelerated motion followed
by a constant speed motion. As a result, combining these options together, the
four possible speed profiles shown in Fig. 3 are:

• P1: uniform acceleration - brake - dwell - uniform acceleration;
• P2: uniform acceleration - brake - dwell - uniform acceleration - constant

speed;
• P3: uniform acceleration - constant speed - brake - dwell - uniform accelera-

tion;
• P4: uniform acceleration - constant speed - brake - dwell - uniform accelera-

tion - constant speed.

It is worth highlighting that, since the acceleration for the second section of the
profile (i.e., from stop to intersection) is fixed, the whole section is constrained
by the geometric characteristic of the path (i.e., the distance between stop and
traffic light). As a consequence, depending on this information the chosen profile
(in terms of final speed va) will either have a constant speed part (i.e., P2/P4)
or not (i.e., P1/P3) as described in the flowchart in Fig. 4a, being the speed
limit set to 40 km.h−1 for safety reasons.
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Fig. 3. Designed possible speed profiles.

Fig. 4. Speed profile choice flowcharts.

Besides the topology of the route, the most affecting parameter is the time
available to reach the intersection within the green light phase. In fact, to prior-
itize travel time reduction, the profile is designed so that the vehicle reaches the
intersection at the switching time from red to green. The process followed for the
timing choice is detailed in the flowchart reported in Fig. 4b, being constrained
the deceleration (i.e., −1 m.s−2) and the acceleration of the final section (i.e.,
−1 m.s−2). As a consequence of these assumptions, the remaining free variable
for the speed profile design is the acceleration a1 in the initial stage from the
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initial condition to the start of the braking manoeuvre. To calculate the start
acceleration a1 and the start speed v1 reached in the first section of the profile,
the set of equations related to the uniformly accelerated motion is solved. As a
first step, to minimize the travel time the system is calculated with the minimum
traffic light time available tTL = tmin. Otherwise if the speed and acceleration
limits are not respected the maximum time available is considered.

5 Conclusion

This research paper presented a robust statistical analysis based on real-world
data collection throughout an entire year from an instrumented trolley bus dur-
ing its regular passenger service. The outcome of these statistical results in terms
of average dwelling time at the bus stop represented the basis for the speed pro-
file definition when dealing with the implementation of a Green Light Optimal
Speed Advisory system applied to local public transportation vehicles. In par-
ticular, four different speed profiles have been proposed leveraging topographic,
vehicle performances, and timing constraints. The availability of such a great
amount of data from a bus real service allows to perform further and deeper
analysis of the data collected on the road, thus representing a straightforward
future development for this activity. On the other hand, the implementation and
testing, both numerical and experimental, of a GLOSA system based on the pro-
posed speed profiles would give the possibility to assess them from a quantitative
point of view.
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Abstract. This paper presents a longitudinal control concept for automated vehi-
cles in stop-and-go situations that enables the optimization of driving behavior in
terms of occupant comfort and traffic efficiency. In a simulative validation based on
real driving data, different variants are evaluated on the basis of objective criteria
and an optimal functional behavior is derived.

Keywords: longitudinal control · stop-and-go · occupants comfort · traffic
efficiency · adaptive cruise control · AD parametrization

1 Introduction

There has been great technical progress in automated driving. In terms of user acceptance,
the question of optimum functional behavior is increasingly being raised, with the focus
largely on occupant comfort [1, 2].

Using the example of stop-and-go situations, it is shown that the entire 3D parameter
space [3] (driver, driven vehicle, driving environment) should be taken into ac-count
when designing automated driving behavior. Therefore, a follow-up driving controller is
presented that can be optimized both in terms of occupant comfort and traffic efficiency
in stop-and-go situations. Different variants of the controller are analyzed objectively
and a recommendation for an optimal functional behavior is derived.

2 Stop-and-Go Follow-Up Control

The following vehicle controller is designed on the basis of findings from 20 h of real
driving data in stop-and-go traffic and relates to the longitudinal control of an ego vehicle
behind an object vehicle in front.

2.1 Follow-Up Concept

The basic idea behind the following distance control for automated vehicles in stop-
and-go situations presented here is, to soften the conventional adaptive cruise control
(ACC) follow-up concept with the aim of maintaining a constant time gap in favor
of larger absolute distances, depending on the driving situation. These are used in the
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further course of the journey to compensate higher object dynamics, by allowing the ego
vehicle to approach a more decelerating object vehicle with less deceleration instead of
also decelerating sharply immediately.

With further increasing distances or large relative velocity of the object vehicle,
an increase in ego dynamics ensures that the absolute object distance does not exceed
selectable limits, which benefits overall traffic efficiency [4].

2.2 Follow-Up Control Using MPC

The tracking controller is based on an MPC acceleration controller, that was param-
eterized very defensively with the help of auxiliary conditions that mainly concern a
reduction of the longitudinal acceleration of the ego vehicle. The parameterization of
the dynamic MPC model is based on [5] and is completely unchanged for different
function variants.

With the relative speed �vx between object and ego vehicle and the distance error
�d, which describes the deviation between the current and desired distance based on
safety distance and time gap (Eqs. 1, 2), the driving state under consideration is obtained
according to Eq. (3).

�vx = vobject − vego (1)

�d = d − tgap ∗ vego + d0 (2)

�x =

⎡
⎢⎢⎣

�d
�vx
aego
vego

⎤
⎥⎥⎦ (3)

Since the desired acceleration of the follow-up controller aego,MPC does not affect the
vehicle directly, the longitudinal dynamics are approximated by a first-order delay with
the proportional factor KL and the time constant TL, so that the state equation is summa-
rized according to Eqs. (4) and (5). For use in real-time simulation, the continuous-time
state equation is discretized using Euler forward method [6].

�̇x(t) =
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⎤
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0
0
0

⎤
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⎢⎢⎢⎣
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vego(t)

⎤
⎥⎥⎥⎦ +
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/
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0

⎤
⎥⎥⎥⎦aego,MPC(t) +

⎡
⎢⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎥⎦aobject(t)

(4)

�y(t) = I4 ∗ �x(t) (5)
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2.3 Target Velocity Depending on Driving Status

The different driving behavior of various function variants is realized exclusively by
the target speed setting; the MPC controller and the associated auxiliary conditions and
factor weightings remain constant.

In contrast to conventional ACC, the target velocity is not selected by the driver but
according to the driving situation (Fig. 1). The evaluation of 20 h of real stop-and-go
situations on German highways, including the ego driving behavior as well as target
object data, has shown that the average speed is less than 3.24 m/s in 75% of cases
and less than 11.58 m/s in 90% of cases. On this basis, the maps shown in Fig. 1 were
generated.

Fig. 1. Defensive (v1) and dynamic (v2) map for selecting target speed

The target velocity for the MPC longitudinal controller is selected depending on the
distance and relative speed to the object vehicle in front. Figure 1 shows the limit curves
between the target velocity ranges. These are mathematically formulated in such a way
that different characteristic maps and thus different ego behavior can be achieved by
adjusting five parameters. In principle, an increase in the ego dynamics requires a shift
of the limit curves in the direction of smaller abscissa and/or ordinate values.

3 Validation

The longitudinal controller presented here is validated on the basis of several objective
criteria for occupant comfort and traffic efficiency. The simulations are carried out on
the basis of real measured object vehicle speeds in stop-and-go traffic.

Figure 2 shows an example of the simulated driving behavior for a defensive and
a dynamic parameterization of the target speed map. It becomes clear that there is a
trade-off between high comfort (low ego dynamics, v1) and high traffic efficiency (good
following behavior, low object distances, v2).
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Fig. 2. Defensive (v1) and dynamic (v2) configuration of the longitudinal controller

3.1 Evaluation Criteria

Evaluation criteria are defined below for further objective analyses of the longitudinal
controller. These are based on the longitudinal dynamics of the ego vehicle and the
following behavior in relation to the object vehicle in front. This addresses occupant
comfort and energy consumption of the ego vehicle on the one hand and traffic efficiency
on the other, adding aspects from all areas of the 3D parameter space [3].

Based on the relationship between the longitudinal acceleration and the energy con-
sumption of the ego vehicle [7], the parameter AENERGY is calculated as a measure of
energy efficiency according to Eq. (6):

AENERGY = ∫ |aego|dt
tSZENEARIO

(6)

According to an internal evaluation of real driving data in the low speed range up
to 60 km/h, the probability of incoming vehicles in the front area increases significantly
if the distance to the object vehicle in front exceeds 45 m. An incoming vehicle in the
front area leads to a deceleration of the ego vehicle and thus possibly to reduced driving
comfort and reduced traffic efficiency [4, 8]. The integral of critical distances DCUT IN
is therefore calculated according to Eq. 7:

DCUTIN = ∫(d ≥ 45m)dt

tSZENEARIO
(7)

For the objective analysis of driving comfort, critical [9, 10] accelerations and decelera-
tions are integrated in ACOMFORT (8) and the overall jerk of the ego vehicle in JCOMFORT
(9):

ACOMFORT =
∫
(
aego ≥ 0, 14 m

s2

)
dt + ∫

(
aego ≤ −0, 25 m

s2

)
dt

tSZENEARIO
(8)

JCOMFORT = ∫ |jego|dt
tSZENEARIO

(9)

3.2 Evaluation of Variants

For the objective evaluation of the functional variants presented, a representative scenario
is derived from the 3D real driving data in the form of an acceleration curve of the object
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vehicle in front, which was calculated from the relative velocity from the real driving
data. The ego behavior in this scenario was then simulated.

For better comparability, the calculated parameters are normalized according to
Eq. (10). By subtracting the normalized parameter value from 1, the normalized
parameter xSCALED is maximized for results to be evaluated as positive.

xSCALED = 1 − x − xmin
xmax − xmin

(10)

The results are shown in Fig. 3. The subjective trade-off between high comfort
and high traffic efficiency from Fig. 2 is also objectively significant. Three functional
variants are compared with each other and with human driving behavior from the above-
mentioned database. The human behavior represents a comparison option and is not
necessarily representative of all drivers since it is a random sample. In addition to the
parameters above, the driving behavior is evaluated with consideration of the maximum
object distance (dMAX) and the absolute number of stops (NSTOPS).

Fig. 3. Relative objective comparison of different function parameterizations

The human driving behavior shown has the worst energy efficiency and the lowest
driving comfort.With regard to the number of stops and the object distance, the evaluation
is best compared to the automated driving function.

Compared to the comfort-oriented variant of the automated driving function (v1),
the dynamic variant (v2) shows a 21.2% reduction in jerk-related comfort and a 46.5%
reduction in acceleration-related comfort. In contrast, the evaluation of the object dis-
tances is better with the dynamic variant. The maximum distance is 31.6% less and
the time share of critical distances over 45 m is 61% less. The energy efficiency of
the dynamic variant is 52.2% lower than that of the comfort-oriented driving strategy.
Finally, it can also be observed that the dynamic driving strategy results in a higher
number of standstills of the ego vehicle.
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Overall, the ability of humans to only have to stop completely rarely even with small
object distances is obvious. This is achieved by overall higher accelerations,which in turn
result in poor energy efficiency. The automated driving strategy presented shows a trade-
off between ego acceleration (comfort) and object distances (traffic efficiency). This can
be adjusted with the help of the target speed maps presented, so that an (individually)
good compromise is achieved. Furthermore, higher energy efficiency can be realized.

4 Conclusion

This paper presents the concept for a follow-up control system for automated vehicles
in stop-and-go situations. The driving strategy is based on a defensively parameterized
MPC acceleration controller. The desired speed, depending on the distance and relative
velocity to a leading object vehicle, is used to parametrize different function variants. It
is shown that objectively significant differences in the following behavior for automated
vehicles in stop-and-go situations can be achieved with this strategy.

However, it must be taken into account that the available database of 20 h is not yet
large enough to be considered fully representative, so that this publication focuses on
the basic methodology as well as the controlling concept and further work in terms of
parametrization is necessary.

In the further work on the controller shown, also the user acceptance for the function
variants presented is recorded by subjective evaluations within a subject study.
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Abstract. In this paper, a method is presented to determine the individual tire
slippages and wheel circumferential forces/torques for vehicles with individually-
driven wheels. The method is based on a system of parameters of individual
wheels mathematically linked to the vehicle generalized parameters. The paper
demonstrates an inverse approach on how the generalized parameters can be used
to determine individualwheel parameterswhen the vehicle generalized parameters
are given for a single, generalized wheel, whose kinematics and dynamics are
equivalent to those of the vehicle. The method can be applied to improve terrain
mobility and energy efficiency of autonomous ground vehicles, including planet
roverswhose guidance systems donot take into consideration that the tire slippages
and circumferential forces are different or should be different by determining
individual parameters of the e-motors to provide maximum mobility or energy
efficiency in a straight line motion.

Keywords: Vehicle Dynamics · Individual Drives · Mobility

1 Introduction

The distribution of forces among the wheels of has a critical impact on the performance
of multi-wheel drive vehicles, especially off-road where terrain conditions under the
wheels may be very different. For vehicles with a mechanical driveline system, the
configuration of the driveline determines the nature of the power split. In electric vehicles
with individual wheel motors, the power split is determined by control of the wheel
motors. Different methods have been studied for such control, based on factors such as
stability, reducing battery usage, and utilizing most efficient regions of the motor [1–4].

However, navigation and guidance systems of autonomous vehicles (including planet
rovers) usually do not take in consideration that the tire slippages and wheel circumfer-
ential forces are different or should be different and therefore treat a vehicle as a single
wheel. For application to such systems, this paper’s approach is to consider that single
wheel as the generalized wheel in a system of generalized parameters, and then splits
the given generalized parameters into individual parameters of the wheels with e-motors
to provide max mobility or energy efficiency. The method is designed to be applied as
part of a two-step process in which a vehicle’s navigation system determines an assigned
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velocity and the generalized parameters are used to determine an optimal split of wheel
forces which provide the best mobility or energy efficiency while fulfilling the required
vehicle straight line motion. Therefore, an inverse scenario is simulated where the vehi-
cle velocity or acceleration is assigned, and the wheel forces and tire slippages need to
be computed.

Generalized parameters represent a reduced set of parameters or time-variant states
taking the place of and replacing those of individual wheels for a group of wheels or the
entire vehicle [5]. The generalized parameters include various properties of the wheel
dynamics such as tire slippage and rolling radii. Each driving wheel (i.e., a wheel loaded
with torque) has a theoretical velocity Vt which is lower than its actual velocity Vx

because of the tire slip sδ:

Vx = V
′(′′)
ti

(
1 − s

′(′′)
δi

)
(1)

Here, ‘ and ‘’ indicate left and right wheels and i indicates a pair of left and right wheels
(i = 1, n). The theoretical velocity for a wheel is determined from its angular velocity
ωw

V
′(′′)
ti = ω

′(′′)
wi r

0′(′′)
wi (2)

where r0w is the tire rolling radius in the driven mode (at zero wheel torque) which
depends on the tire inflation pressure and normal reaction, which can influence the
theoretical velocities at different wheels of a vehicle. Slippages of different tires at the
left and right wheels can be different due to the different terrain conditions and driveline
system characteristics. However, as seen from Eq. (1), Vx in Eq. (1) is the same for
all the wheels and known as the actual vehicle velocity. Similarly to the tire slippages,
the vehicle generalized slippage sδa characterizes the velocity drop from the vehicle’s
theoretical velocity, Va, to Vx, which as mentioned earlier is the same for all wheels

Vx = Va(1 − sδa) = ω0r
0
a(1 − sδa) (3)

where r0a is rolling radius of a hypothetical/generalized wheel in the driven mode. The
generalized wheel has actual linear velocity Vx and rotates with angular velocity ω0.
A set of mathematical equations based on the vehicle’s driveline system outline can be
derived to link the generalized parameters of the vehicle to their individual wheels. For
example, for a 4× 2 vehicle in straight line motion with a mechanical driveline using an
open differential and without wheel hub gears, the generalized slippage of the drive axle
can be derived from the following equations. Equations (1) and (2) can be re-written as

Vx = ω
′′
wr

0′′
w

(
1 − s

′′
δ

)
= ω′

wr
0′
w

(
1 − s′δ

)
(4)

which leads to

ω′
w

ω
′′
w

=
r0

′′
w

(
1 − s

′′
δ

)

r0′
w

(
1 − s′δ

) (5)
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The relationship between angular velocities of the three links of the open differential
is

ω0 = ω′
w + ω

′′
w

2
(6)

Here, ω0 is the angular velocity of the differential’s case that is the same as the rotational
speed of the generalized wheel. Thus, the generalized wheel is reduced to the case of
the axle’s differential. Equations (5) and (6) result in

ω
′′
w = 2ω0

r0
′

w

(
1 − s′δ

)

r0′
w

(
1 − s′δ

) + r0′′
w

(
1 − s

′′
δ

) (7)

Using Eqs. (3), (4) and (7), the axle generalized slippage is derived as

sδai = 1 −
(
r0

′′
w + r0

′
w

)(
1 − s′δ

)(
1 − s

′′
δ

)

r0′
w

(
1 − s′δ

) + r0′′
w

(
1 − s

′′
δ

) (8)

Similar analysis can be used to derive generalized slippage of the vehicle and gener-
alized parameters for other driveline configurations. The generalized parameters math-
ematically link kinematics of the wheels through the generalized wheel to that of the
vehicle. By combining the individual wheels-generalized wheel kinematics equations
with vehicle dynamics equations, the wheel and vehicle dynamics can be studied by
analyzing and optimizing driveline systems for vehicle mobility and energy efficiency.

This paper introduces generalized parameters for an electric vehicle with individual
wheel motors and develops amethod to split vehicle generalized parameters modeled for
the overall vehicle into parameters of individual wheels. The generalized vehicle param-
eters are mathematically linked to the individual wheels through introduced distribution
factors. The split of individual wheel parameters is based on criteria for maximizing
mobility or energy efficiency which can then be applied as reference signals to control
the wheel motors.

2 Generalized Parameters of Individual Drives

Slippage proportional factors γ are introduced in Eq. (9) to link the vehicle generalized
slippage to individual tire slippages.

s
′(′′)
δi = γ

′(′′)
i sδa (9)

Tire slippages are related to their circumferential forces Fx through Eq. (10) [6]

F
′(′′)
xi = μ

′(′′)
pxi R

′(′′)
zi

{
1 −

(
s
′(′′)
δci /2s

′(′′)
δi

)[
1 − exp

(
−2s

′(′′)
δi /s

′(′′)
δci

)]}
(10)

where μpx is the peak friction coefficient, sδc is a characteristic slippage past which
the slippage becomes increasingly nonlinear, and Rz is the wheel normal reaction.
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Circumferential forces Fx are produced by the wheel torques Tw and are related by
Eq. (11).

T
′(′′)
wi = F

′(′′)
xi r

0′(′′)
wi (11)

The circumferential force distribution factor υ is introduced to characterize the
distribution of the total circumferential force among the driving wheels.

F
′(′′)
xi = ν

′(′′)
i Fx� = ν

′(′′)
i Rm� (12)

Rm� is the total resistance to motion which includes forces such as rolling resistance,
grade resistance, inertia force, and air drag that impede vehicle motion. The sum of
circumferential forces Fx� must equal the sum of motion resistance Rm� for the vehicle
to maintain its assigned speed. Factor ν is introduced to connect the tires’ rolling radii
in the driven mode to the vehicle generalized rolling radius r0a , derived by relating the
sum of wheel torques to the overall resistance to motion multiplied by r0a .

r0a =
∑

ν
′(′′)
i r

0′(′′)
wi (13)

Using the above-introduced equations, an inverse approach to vehicle simulation
is considered in this paper. Vx is assigned and generalized slippage can be computed
using the actual and theoretical velocities and ground conditions. In this paper, the
generalized slippage is treated as a given input generated without individual wheel
control. Figure 1 shows generalized slippage for a 5482 kg 4 × 4 vehicle moving on
stochastically generated terrain in an offline simulation at a constant speed of 10 mph.
The terrain is a sandy loam field with naturally packed soil after tilling with a moisture
content of about 10% and is generated to fit the exponential function in Eq. (10). Left and
right terrain conditions are the samewhile the front and rear differ due to soil compaction.

Fig. 1. Generalized slippage and total circumferential force on stochastic terrain.

Equations (9–13) split the generalized slippage into individual tire slippages which
can be optimized for improved performance. Two optimal slippage configurations are
considered in this paper, an optimal mobility case and optimal energy efficiency case.
Slip energy efficiency is evaluated using Eq. (14); the slip efficiency of a 4×4 vehicle
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was demonstrated to be maximum when the slips of the front and rear wheels are equal
[5].

ηδ = Fx�

Fx� + ∑n
i=1

(
F ′
xs

′
δi

1−s′δi
+ F

′′)
x s

′′
δi

1−s
′′
δi

) (14)

The vehicle’s mobility, considered as the conversion of the potential of the wheel
loads into traction, occurs at a different combination of wheel traction forces than the
maximum energy efficiency. Equation (15) is a Vehicle Mobility Performance index
which was introduced to evaluate mobility relative to a hypothetical case where the
complete potential of the wheel load can be converted into traction without any loss of
velocity [7].

VMP =
∑n

i=1 F
′
xiVx + F

′′
xiVx∑n

i=1 R
′
ziV

′
ti + R

′′
ziV

′′
ti

, i = 1, 2 (15)

Lagrangian optimization was used to determine the optimal slippages [7]. The opti-
mal slippages and Fx forces with their corresponding circumferential forces are shown
in Fig. 2. When the slippages are optimized for energy efficiency, it yields a different
combination of circumferential forces than is needed for optimal mobility. Circumfer-
ential force distribution factors ν and slippage proportional factors γ from Eq. (9) and
Eq. (12) needed for the optimal tire slippages are shown in Fig. 3.
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Fig. 2. Optimal slippages and circumferential forces for mobility and energy efficiency.

Compared to an equal torque split, the mobility-based power splits results in a mean
VMP increase of 0.84% and the energy efficiency-based power split increases slip effi-
ciency by 1.32% averaged over 10 simulation runs, which is a considerable improvement
of mobility and energy efficiency.
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Fig. 3. Optimal ν and γ factors for mobility and energy efficiency.

3 Conclusion

In this paper, an inverse dynamics-based approach was presented which uses a system
of generalized parameters to split a given generalized vehicle parameter into individ-
ual wheel parameters. The method is designed for optimizing the distribution of wheel
forces when the vehicle motion is assigned without consideration of individual slip-
pages (treating the vehicle as a single wheel). By applying conditions for optimal energy
efficiency or mobility, the slippage proportional factors and circumferential force distri-
bution factors can be computed which correspond to an optimized distribution of wheel
forces and tire slippages that fulfils the assigned motion requirements of the vehicle. The
generalized parameters for individual drives will be developed into reference signals for
assigning e-motor wheel torques.
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Abstract. Various control methods have been proposed that aim to improve steer-
ing response, disturbance stability, and stabilize steering characteristics by dis-
tributing drive force to eachwheel. Conventionally, controls have been constructed
by combining those control methods and tuning gains for each control. However,
such control design methods require a huge amount of man-hours, and besides,
it is not clear which states are optimal. Therefore, in this paper, we first focused
on the mechanism of tire lateral force. In general, vehicles can run stably against
disturbances without implementing any feedback control. It was clarified that this
is because the tire lateral force plays the role of a skyhook damper installed hori-
zontally on the side of the vehicle. Therefore, we proposed a control method that
brings out the maximum potential of tires based on the idea that tire longitudinal
force should have the same function as tire lateral force.

Keywords: Vehicle Dynamics · Driving Force Control · Electric Vehicles · Tire
workload

1 Background

Many researchers have been working on vehicle motion control by distributing driving
force to each wheel for a long time. However, realizing the control requires a com-
plex control device to distribute the driving force, so it has not yet become widely used
for mass-produced vehicles. A movement that may change this situation is “electri-
fication”, which is currently occurring. Unlike internal combustion engines, multiple
electric motors can be installed in a vehicle, making it easier to implement driving force
distribution control.

The driving force distribution controls that have been proposed so far have various
aims, such as stabilizing steering characteristics, improving steering response, equalizing
tire workloads, and improving disturbance stability [1–6]. All of those are important
target characteristics, however there are still questions in control development, such as
which combination of them is optimal, whether there are any that act redundantly, and
whether the control gain has no choice but to rely on tuning. This paper discusses a
method to uniquely derive the ideal driving force control logic.
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2 Effect of Tire Lateral Force Restrained by Steering Angle

Focusing on vehicle motion control methods that use tire longitudinal forces, in most
cases control commands are based on the yaw moment generated by the difference
in driving force between the left and right wheels. In other words, control using tire
longitudinal forces is generally performed by force (moment) control. On the other
hand, tire lateral force is generally controlled not by force but by steering angle. In this
chapter, in order to clarify the dynamic characteristics of the tire lateral motion, the
function of lateral force is analyzed and discussed using equations of motion.

The lateral and yaw motion equations of a general bicycle model are shown in Eqs.
(1) and (2), and the front and rear tire slip angles αf , αr are shown in Eqs. (3) and (4).

mV
(
r + β̇

) = −2Kf αf − 2Krαr + Fyd (1)

Izṙ = −2Kf αf lf + 2Krαrlr (2)

αf = β + lf r

V
− δf (3)

αr = β − lrr

V
− δr (4)

where, m is the vehicle mass, V is the vehicle speed, r is the raw rate, β is the slip angle
at the CoG (center of gravity), Kf , Kr are the cornering stiffness of the front and rear
tires, Iz is the yaw inertial moment, lf , lr are the distance from the CoG to front and rear
axles, δf , δr are the front and rear steer angles, and Fyd is the lateral disturbance force.

Focusing on the lateral motion of the vehicle, the slip angle β for the steering input
and lateral disturbance force is derived from the above equations. And it is expressed as
Eq. (5), where, in order to roughly understand the principle, terms with high orders of s
are deleted. This is also represented by the block diagram shown in Fig. 1.

β(s) ≈
1
2 − V 2

lCrg(
1+Izn
2

)
V
Cag

s + 1 + AV 2
δf +

1
2Ca(

1+Izn
2

)
V
Cag

s + 1 + AV 2

Fyd

mg
(5)

Fig. 1. Block diagram representing vehicle lateral motion.
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where, l is the wheelbase, Cf , Cr are the normalized cornering stiffnesses, Ca is the
reciprocal of the sum of reciprocals of Cf and Cr , Izn is the normalized yaw inertial
moment, A is the stability factor, g is the gravitational acceleration, and s is the Laplace
operator.

This system uses tire cornering stiffness Ca as a control gain to reduce the error
between the target steady slip angle and the actual slip angle due to steering angle input,
while also compensating for external lateral disturbance force. It can be understood that
it has the function of a skyhook damper installed on the lateral side of the vehicle. This
is why it is effective in stabilizing the vehicle against disturbances without applying any
feedback control.

3 Proposed Driving-Force-Control Method Acting as a Lateral
Force

When a tire is moved laterally due to disturbance, lateral force is generated to resist it.
However, such a reaction force does not occur in the tire longitudinal direction unless
some kind of control is applied. This is because tires roll in the longitudinal direction.
This is the reason why the right side of the equation of motion in Eqs. (1) and (2) consists
only of the lateral-force elements of the tires.

Here, it is assumed that such geometric anisotropy in the longitudinal and lateral
directions of the tire does not exist, and that force is generated in the longitudinal direction
of the tire by the samemechanism as in the lateral direction. Then, themodified equations
of motion are expressed as shown in Eqs. (6) and (7). The third and fourth terms on the
right side of Eq. (7) are due to longitudinal force, and are defined to have the same
structure as the first and second terms.

mV
(
r + β̇

) = −2Kf αf − 2Krαr (6)

Iz ṙ = −2Kf αf lf + 2Krαrlr + 2Kxlsxl
t

2
− 2Kxrsxr

t

2
(7)

where, Kxl, Kxr are the driving stiffnesses, sxl, sxr are the slip ratios at the left and right
wheels, and they are defined by Eqs. (8) and (9) so that they have the same configuration
as the slip angles in Eqs. (3) and (4).

sxl = sd −
vwr−vwl

2

V
+

t
2

V

V

l

1

1 + AV 2

(
δf − δr

)
(8)

sxr = sd +
vwr−vwl

2

V
−

t
2

V

V

l

1

1 + AV 2

(
δf − δr

)
(9)

The first term sd is the slip ratio due to the driver’s acceleration request, the second
term is the slip ratio for the yaw rotation detected by the difference between the left and
right wheel speeds vwl and vwr , and the third term is the slip ratio for the target yaw
rate due to the driver’s steering input. Here, if the slip ratio difference sxz between the
left and right wheels caused by yaw motion is defined by Eq. (10), Eq. (7), which is the
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equation of motion for yaw, can be transformed into Eq. (11), and the third and fourth
terms on the right side explains that the tire longitudinal force can be expressed in terms
of translational slip and rotational slip.

sxz
def= sxr − sxl

2
=

vwr−vwl
2

V
−

t
2

V

V

l

1

1 + AV 2

(
δf − δr

)
(10)

Iz ṙ = −2Kf αf lf + 2Krαrlr + 2(Kxl − Kxr)sd
t

2
− 4Kxsxz

t

2
(11)

where, the Kx is the average value of left and right wheel driving stiffness Kxl and Kxr .
In order to further transform the equations, 2Kxl and 2Kxr are expressed as Eqs. (12)

and (13).

2Kxl = Cx

(
mg

2
− may

h

t

)
(12)

2Kxr = Cx

(
mg

2
+ may

h

t

)
(13)

where, the Cx is the normalized driving stiffness, ay is the lateral acceleration, h is the
CoG height, and t is the track at the front and rear. Here, we focus on the third term on
the right side of Eq. (11). By substituting Eqs. (12) and (13) into the third term, it can
be transformed into Eq. (14) by ignoring the driving resistance and assuming that Cxsd
is equal to longitudinal acceleration ax/g.

2(Kxl − Kxr)sd
t

2
= − Cxmayhsd

= mgh
ax
g

ay
g

(14)

The above equation is the yaw moment that occurs when the driving force is dis-
tributed in proportion to each wheel load. This is the so-called ideal driving force dis-
tribution. It is known that in the linear region of tires, the yaw moment theoretically
cancels out changes in steering characteristics due to longitudinal load transfer during
turns [7]. Here, Eq. (11) can be rearranged as Eq. (15).

Izṙ = −2Kf αf lf + 2Krαrlr + mgh
ax
g

ay
g

− 4Kxsxz
t

2
(15)

Considering themeaning of the derived longitudinal force term in the above equation,
first, the third term on the right side means that the driver’s required driving force is
distributed in proportion to each wheel’s load. Translating this into lateral motion, it
corresponds to the generation of tire lateral force proportional to the load on each wheel
during turns. As can be seen from Eq. (10), the fourth term plays the role of feedback
compensation when an error occurs in the yaw rate estimated from the left and right
wheel speed difference with respect to the target steady yaw rate determined from the
driver’s steering input. A schematic diagram of this is shown in Fig. 2, which shows that
for yaw motion, skyhook dampers are applied in the direction of rotation.
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This function attempts to maintain the left and right wheel speed difference at a
certain target value in response to the driver’s steering input. Translating this into lateral
motion, it corresponds tomaintaining the steering angle difference between the front and
rear wheels at a certain value in response to steering input. Since this control theory was
derived by isotropicizing the longitudinal and lateral characteristics of tire, it is called
as “Tire Isotropic Control (TIC)”.

Fig. 2. Schematic diagram of Tire Isotropic Control (TIC).

4 Verification Using a Full Vehicle Simulation Model

The vehicle model has six degrees of freedom on its sprung mass, as well as degrees of
freedom for each wheel to move up and down, rotate, and steer, and is equipped with
suspension and tires with nonlinear characteristics. The yaw moment due to the tire
longitudinal force shown in Eq. (15) is commanded by each wheel driving force.

Figure 3 shows the yaw rate, lateral acceleration, tire lateral and longitudinal forces,
and tire workloads when a stepped steering is input at a speed of 80 km/h, and then a yaw
moment disturbance is input. It can be confirmed that by applying longitudinal forces

Fig. 3. Effect of TIC on steering response and yaw disturbance.
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to each wheel appropriately, steering response and disturbance stability are improved
while suppressing the tire workloads. This is the most efficient state in which the forces
of each wheel do not cancel each other out, and it is possible to use the tire friction
circles efficiently to the limit.

5 Conclusions

Conventionally, designing driving force distribution control has involved adjusting
appropriate control gains through trial and error. In this paper, we proposed an orig-
inal control method that generates longitudinal force that imitates tire lateral force,
inspired by the mechanism of tire lateral force generation. As a result, it was shown
that it is possible to use the tire friction circle without wasting it with a simple control
law, and because the control gains are derived from the equation, the work of trial and
error is freed. It was also clarified that this control method enables steering response and
disturbance stability to be achieved as if the tire cornering stiffness has been increased.

In this paper, we focused on vehicles that can independently control the driving force
of the four wheels, but in the actual market, few vehicles equipped with four motors are
produced. In the future, we plan to study how to apply this control method to more
realistic two-motor or three-motor vehicles, or vehicles equipped with brake actuators
for each wheel.
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Abstract. This paper proposes a novel vibration suppression control method,
which suppresses the torsional resonance of the drive shaft caused by motor
torque change in the general drivetrain structure of automobiles. For realizing
the method in the simplest and most prospective way, the proposed method cal-
culates the feedback torque from the difference between the motor speed and
the tire speed multiplied by a proportional gain, with estimating the tire rotation
speed by an observer. In addition, a backlash compensation method is developed
to reduce noise and vibration in gear retightening in the backlash region. The
method observes the fluctuation of the motor speed after the torque zero-crossing
and determine the motor torque so that the motor rotation speed returns to the
speed at the entrance of the backlash. The effectiveness of the proposed methods
is verified by simulation and driving test on the experimental vehicle.

Keywords: xEVs · Torque Control · Drivetrain · Vibration · Backlash

1 Introduction

Due to the strong demand for decarbonization toward sustainable society, x-electric
vehicles (xEVs) have been introduced to the global market. On the other hand, it is
known that torsional resonance of the drive shaft caused by motor torque change in the
general drivetrain structure of automobiles in which the drive source is connected to
the left and right wheels via differential gear and drive shafts, as shown in Fig. 1. At
the same time, because of the inevitable gear intervention, there is a dead zone called
backlash, as shown in Fig. 2.

When implementing vibration suppression control in automobiles, it is often neces-
sary to apply control methods that are within the scope of classical control and offer good
visibility and performance. In the past, several vibration suppression control methods
have been reported such as devising classical PI control [1], resonance ratio control using
a disturbance observer [2], etc. These methods are based on the assumption that only
the motor rotation speed is observable. Recently, however, a high vibration suppression
effect by sensing the speed on the tire side has also been reported [3]. The simplest and
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Fig. 1. Control target (drivetrain) Fig. 2. An example of backlash of a gear.

Fig. 3. Block diagram of wheel-speed observer.

most prospective method is to calculate feedback motor torque based on the difference
between motor speed and tire speed multiplied by a proportional gain [4]. In this paper,
therefore, an observer is introduced to estimate the tire rotation speed.

In addition, a backlash compensation method is developed to reduce noise and vibra-
tion in gear retightening in the backlash region. In backlash compensation, a method
to set the torque to zero for a certain period of time at zero crossing has been reported
[5]. This method has the problem that it takes time to pass through the backlash, which
may lead to discomfort for the driver. This paper proposes a new torque compensation
method that can solve this problem.

2 Vibration Suppression Control

2.1 Method

First, this section describes wheel-speed observer. The observer is configured as shown
in Fig. 3 by equating a state equation (ẋ = Ax + Bu, y = Cx) from the motor torque to
the rotation speed of the motor and tires. The load side changes depending on whether
the tire is gripping or slipping, so the tire slip judgment s is included and the A and K
matrices are switched (Agrip ↔ Aslip,Kgrip ↔ Kslip). C and C′ are the matrices that
obtains observed output ωm and ωw respectively from the state vector x.

Figure 4 shows the block diagram of the vibration suppression control method. The
method obtains estimated tire speed ωw

∧

from the observer and feed-backs motor torque
by the difference from the motor speed ωm. The observer parameters are switched by
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the tire slip judgement s. The difference between the motor speed and the estimated tire
speed is then calculated considering the reduction-gear ratio.

Fig. 4. Block diagram of speed difference feedback with observer.

Fig. 5. Experimental result of vibration suppression on high-μ road.

2.2 Experimental Validation

The effectiveness of the vibration suppression control is verified through driving tests
on an experimental vehicle. In the driving test, acceleration was applied by an external
step-shape acceleration command from the creep driving on high-μ surface. Figure 5(a)
shows the motor torque, and acceleration started at the 0.5 s. Compared to the case
without control (blue dot line), the proposed method (orange solid line) generates a
torque modification to reduce vibrations in the motor rotation speed. The motor rotation
speed at that time is shown in Fig. 5(b). While vibration occurs without control, the
vibration is reduced by the proposed method. However, there is one fluctuation in the
motor rotation speed right after 0.5 s, which is due to backlash.

Next, constant acceleration of 50 Nm was applied on low-μ (slippery) surface.
Figure 6(a) shows the motor torque. Figure 6(b) shows the motor rotation speed, the
tire rotation speed and observer output, which are converted to motor rotation shaft. In
this test, the drive wheels started to slip at just before 1.8 s. When the tire slip started,
there is an unexpected spike in the output of the observer (yellow solid line). To prevent
the affect of this spike, the vibration suppression control was stopped for 0.2 s after the
start of tire slip and restarted just before 2.0 s. Compared with the case without control
(1.8–2.0 s), the vibration of motor speed is reduced after 2.2 s as shown in Fig. 6(b).
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These results indicate a damping effect in both tire gripping and slipping condi-
tions, and remaining issues with backlash-induced vibration and observer switching.
The method for reducing vibration caused by backlash is presented in the next section.

Fig. 6. Experimental result of vibration suppression when tire slips.

Fig. 7. Simulation result of backlash compensation method.

3 Backlash Compensation

3.1 Method

This section describes a backlash compensation method. Figure 7 illustrates the concept
of the control method. In this figure, the torque command value from a driver’s gas-pedal
operation (dashed line) changes from a negative value to a positive value (zero crossing)
at time 1. The proposed method stores the value of the motor speed at time 1 as the
reference motor speed. Then time 2 is defined as the time when the difference between
the motor speed and the reference speed exceeds a predetermined value. At time 2, the
compensation torque is calculated based on the backlash width that is known in advance,
so that the motor speed at the exit of the backlash is the same as at time 1. After time 2,
the torque command value is replaced by the compensation torque.
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3.2 Simulation Analysis

First, the effectiveness of the proposed method is verified through simulation. The upper
figure of Fig. 8 shows an example of motor speed fluctuation when passing through the
backlash, and the lower figure shows themotor torque. Themotor speedswere calculated
by a vehicle plant model with the input of motor torque. The blue dot lines show the
conventional methodwithout torque compensation, while the orange solid lines show the
results with the backlash compensation method. In this test, the vibration suppression
control shown in the previous section was not combined to confirm the effectiveness
of the backlash compensation method alone. The vibration (collision) at the end of
the backlash occurs with an amplitude of 8.5 rad/s with the conventional method. On
the other hand, the proposed method reduces the amplitude to 3.0 rad/s (about 65% of
reduction compared with the conventional method), confirming the effectiveness of the
proposed method.

Fig. 8. Simulation result of backlash compensation method.

3.3 Experiment

Second, the effectiveness of the proposed method is also verified through driving tests
on an experimental vehicle, with the same test procedure as simulation. In the driving
test, acceleration was applied by an external ramp-shape acceleration command from the
creep driving. The upper figures of Fig. 9 show themotor speed (dashed line as command
value and solid line as actual value), and the lower figures show the motor torque.
Figure 9(a) illustrates the result of conventional method without backlash compensation
while Fig. 9(b) is the result of proposedmethod. In Fig. 9(a), there is no deviation between
the dashed and solid lines except for a slight delay, while in Fig. 9(b), torque change due
to the proposedmethod can be seen at 0.75 – 0.79 s. The vibration (collision) at the end of
the backlash occurs with an amplitude of about 16.3 rad/s with the conventional method
(Fig. 9(a)). On the other hand, the proposed method (Fig. 9(b)) reduces the amplitude
to about 5.7 rad/s (about 65% of reduction compared with the conventional method),
confirming the effectiveness of the proposed method.
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Fig. 9. Experimental result of backlash compensation method.

4 Conclusion

This paper proposed a vibration suppression control that suppresses the torsional reso-
nance of the drive shaft caused bymotor torque change in the general drivetrain structure
of automobiles. The proposedmethod calculates the feedback torque from the difference
between the motor speed and the tire speed multiplied by a proportional gain, with esti-
mating the tire rotation speed by an observer. The effectiveness of the proposed method
was verified through driving tests, which confirmed a damping effect in both tire gripping
and slipping conditions. This paper also proposed a backlash compensation method for
reducing noise and vibration in gear retightening in the backlash region. The method
observes the fluctuation of the motor speed after the torque zero-crossing and determine
the motor torque so that the motor rotation speed returns to the speed at the entrance of
the backlash. The effectiveness of the proposed method was verified through simulation
and driving tests, which confirmed 65% reduction of vibration at the end of backlash.
The future works will be to improve the accuracy of the observer behavior at the start of
tire slip, and to combine the vibration suppression and the backlash compensation.
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Abstract. This paper introduces an adaptive lane-keeping control strat-
egy that adapts to varying cornering stiffness while ensuring robustness
against uncertainties. The system consists of three blocks: an Interacting
Multiple Model (IMM) cornering stiffness estimator, a cornering stiff-
ness uncertainty estimator, and a Robust Model Predictive Controller
(RMPC). Improvements in estimation accuracy are achieved through a
novel IMM probability derivation method, and the uncertainty estima-
tor utilizes the IMM probability matrix to obtain reliable uncertainty
boundaries. Real-time cornering stiffness estimations are integrated into
the RMPC for adaptive model predictions. Uncertainty boundaries pro-
vide robustness against estimation error in the RMPC by constraint
tightening and smoothing techniques. The performance of the estimator
and controller is validated in simulations, where the overall control per-
formance is compared to that of the Model Predictive Control (MPC)
based on static cornering stiffness.

Keywords: Automated Driving Systems · Lane Keeping System ·
Cornering Stiffness Estimation · Parameter Uncertainty · Robust
Model Predictive Control

1 Introduction

Vehicle automation and driver assistance systems are pivotal advancements in
modern vehicles, overseeing safety, performance, and driver comfort. The Lane
Keeping System (LKS), a fundamental technology for path tracking and lateral
control, necessitates a robust control strategy as well as accurate knowledge of
the vehicle’s lateral dynamics characteristics.
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Cornering stiffness, defining a tire’s resistance to lateral deformation under
lateral forces, is a critical parameter in vehicle lateral dynamics. Due to its sig-
nificance and challenges in estimation, cornering stiffness estimation has been
extensively studied. Multiple estimation techniques have been tested for corner-
ing stiffness estimation [1,2]. Notably, an estimator utilizing a KF-based IMM
shows rapid responsiveness and smoothness in output [3] but is limited by model
selection and computational load. This study builds upon this technique for a
more robust and cost-effective estimation.

Aside from estimator inaccuracy, measurement signal errors contribute to
estimation errors. While some studies propose estimation methods without using
lateral speed, these techniques often lead to under-determined systems or lim-
ited usage due to extensive assumptions [4,5]. In this study, a cornering stiffness
uncertainty estimator is developed to compensate for such inevitable estima-
tion errors. The obtained estimation uncertainty boundaries are coupled with
an RMPC, utilizing real-time cornering stiffness estimations and uncertainty
boundaries. The effectiveness of the RMPC under parametric uncertainty is
demonstrated well in [6]. In summary, this paper presents an adaptive control
algorithm resilient to estimation errors, contributing:

1. A novel probability calculation method in the IMM for reduced estimation
bias.

2. Development of a cornering stiffness uncertainty boundary estimator.
3. A robust lane-keeping RMPC controller utilizing real-time cornering stiffness

estimations and uncertainty boundaries.

2 Cornering Stiffness Estimation

2.1 Estimator Vehicle Model

This section outlines the vehicle dynamics model used in the IMM’s Kalman
Filters, based on a simplified 2-DOF bicycle model [7], assuming small slip angles
and constant longitudinal speed.

m(v̇y + γvx) = Cfαfcosδ + Crαr, Iz γ̇ = lfCfαfcosδ − lrCrαr (1)

m, Iz, lf , lr, Cf , Cr are vehicle parameters; αf and αr are front and rear tire slip
angles; γ denotes the yaw rate, with δ representing the front wheel steering angle.
Front and rear tire slip angles are determined using vehicle geometry.

Cornering stiffness is represented by a modified linear tire model. The fluctu-
ations and variations of the cornering stiffness Cf , Cr are denoted as a sum of its
respective base values Cf,base, Cr,base and candidate variance values ΔCf ,ΔCr,
allowing for estimations in the tire’s nonlinear regions.

IMM accuracy is often linked with model selection. To enhance filter robust-
ness and reduce reliance on model selection, a novel Approximate IMM (AIMM)
is introduced in this study. As long as the cornering stiffness variance values
encompass the potential range of cornering stiffness, the base and variance cor-
nering stiffness values can be flexibly chosen.
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2.2 Approximate IMM-KF

The IMM filter assesses multiple model filter estimations to derive probabilities
for each model and a combined output. The IMM is selected for its rapid respon-
siveness, smooth output, and capability to integrate multiple vehicle models. For
this study, 5 candidate cornering stiffness variance values of each front and rear
tire are combined into a total of 25 filter models employed in the IMM.

Despite its advantages, the traditional method of probability calculation in
the IMM is found to introduce estimation bias under certain conditions. Below
are the modifications implemented in the IMM to mitigate bias and enhance
consistency.

Min-Max Scaled Probability Calculation. In the traditional IMM, the
range of probability distribution differs upon the excitation of the system. High
excitation leads to large estimation errors and extreme probability gaps, while
low excitation yields indistinct probability distributions. Min-max scaling is
implemented in probability calculations to ensure that probability distributions
are independent of system excitation and accurately represent model feasibility.

Approximate Probability Calculation. In IMM model filters comprising
two or more varying parameter values, erroneous combinations of parameter val-
ues can lead to low estimation errors, thereby yielding falsely high probabilities.
The approximate method calculates each parameter’s probability individually,
by fixing all other parameters as their approximate values. Subsequently, these
calculated probabilities are combined to form the complete probability matrix
for all model filters. In each subsequent cycle, previous approximations of each
parameter are replaced with newly estimated parameter values, facilitating a
gradual convergence toward the true value.

3 Cornering Stiffness Uncertainty Estimation

In this section, a novel strategy is introduced to isolate only the cornering stiff-
ness uncertainty values from a basic disturbance observer. The proposed uncer-
tainty estimator utilizes the probability distributions of each model from the
AIMM to assess relative estimation certainty and determine upper and lower
uncertainty proportions. A concentrated probability distribution indicates high
estimation certainty, while a dispersed distribution suggests the opposite. The
upper base uncertainty boundaries for each front and rear wheel are derived as
the sum of products of positive cornering stiffness variance values and their cor-
responding probabilities, with similar construction for lower boundaries using
negative variance values. Since the base uncertainty boundaries are proportional
values, definitive uncertainty boundaries are expressed as the product of base
uncertainty values Δ ˜Cf,base,Δ ˜Cr,base and their respective weight factors ρ1, ρ2,



Lane Keeping Control 275

Weight factors are determined through the integration of front and rear
dynamics equations. The disturbance observer with the denotation of uncer-
tainties is described below. Cornering stiffness uncertainty is denoted using base
uncertainty values and weight factors, while lateral speed and force disturbances
are denoted by k.

Fyf (1 + kf ) = (δ − Vy(1+kv)
Vx

− lfγ
Vx

)( ̂Cf + Δ ˜Cf,base ∗ ρ1) (2)

Fyr(1 + kr) = (−Vy(1+kv)
Vx

− lrγ
Vx

)( ̂Cr + Δ ˜Cr,base ∗ ρ2) (3)

Because the errors in Fyf and Fyr are caused mostly due to changes of vehicle
mass, coefficients kf and kr can be assumed to be of equal size. Dividing Eq. 2
by Eq. 3 gives us:

Fyf

Fyr
=

(αf − Vy

Vx
kv)( ̂Cf + Δ ˜Cf,base ∗ ρ1)

(αr − Vy

Vx
kv)( ̂Cr + Δ ˜Cr,base ∗ ρ2)

(4)

because |αf | , |αr| >>
∣

∣

∣

Vy

Vx
kv

∣

∣

∣, the equation can be simplified to reveal the rela-
tionship between front and rear uncertainty boundaries. From where the weight
factors and definitive uncertainty boundaries can be derived.

̂Cf + Δ ˜Cf,base ∗ ρ1
̂Cr + Δ ˜Cr,base ∗ ρ2

=
Fyfαr

Fyrαf
(5)

4 Controller

The proposed lane-keeping system is controlled through a robust model predic-
tive controller (RMPC). The vehicle model used for model prediction is identical
to the bicycle model used in the estimation phase. Estimated cornering stiffness
is fed to the controller to update the vehicle model. The cornering stiffness uncer-
tainty boundaries are implemented into the RMPC via constraint tightening and
smoothing techniques. The cost function comprises the steering input derivation
and lateral error with its respective weight factors for optimal control input.

5 Simulation

The CARMAKER software is used to validate estimator and controller perfor-
mance. The vehicle is driven on a clothoid-shaped path with the turning radius
decreasing from 50 m to 20 m, designed to induce decreasing cornering stiffness
and test path tracking abilities.
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5.1 Estimator Performance

The cornering stiffness estimation accuracy is tested by comparing it with the
true value, while the uncertainty boundary’s capability to encapsulate error is
evaluated. As depicted in Fig. 1, the cornering stiffness is estimated with an aver-
age error of 9.5% in the front and 13% in the rear tires. While the result shows
reliable accuracy and tracking capabilities, some errors are evident. However, the
uncertainty boundaries effectively encapsulate the true value even under these
errors, expanding during periods of low certainty and contracting during high
certainty.

Fig. 1. Cornering stiffness estimation with uncertainty boundaries

5.2 Control Performance

The control performance of the proposed system’s RMPC is contrasted with that
of a basic MPC lane-keeping system that shares the same vehicle model and cost
function. However, the MPC model relies on a constant cornering stiffness value.

Fig. 2. LKS lateral deviation and steering angle
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Figure 2 shows that the standard MPC deviates from the required curve at 12
seconds, while the RMPC maintains stability until 14 s due to accurate corner-
ing stiffness updates. From 14 s onwards, the RMPC approaches the cornering
stiffness uncertainty boundary constraints, prompting the generation of more
aggressive control actions to sustain stability, as evidenced by the steering angle
graph.

6 Conclusion

This paper presents the development of a robust Lane Keeping System (LKS)
control system, integrating cornering stiffness estimation and uncertainty. The
developed AIMM demonstrates reliable estimation capabilities, while the uncer-
tainty estimator effectively compensates for potential estimation errors. Corner-
ing stiffness values are utilized to update the vehicle model, while uncertainty
boundaries serve as constraints in the RMPC, resulting in an adaptive and robust
lane-keeping control system.

Simulation tests against a standard MPC underscore the proposed con-
troller’s ability to maintain stability in tight corners. The results show that
combining the uncertainty estimator with RMPC forms an effective control
framework, adept at handling parameter uncertainty and estimation errors. This
suggests potential for future research to explore applying this framework in var-
ious vehicle control systems, enhancing robustness against diverse parameter
uncertainties.
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Abstract. Vehicle sideslip angle has always been of interest for stabil-
ity controls enhancing vehicle safety. As well-known, measuring sideslip
is impractical and expensive, motivating techniques to estimate it using
already-available vehicle sensors. This paper proposes a new methodol-
ogy to estimate sideslip angle, separating kinematic and dynamic sideslip
angle contributions with the idea that the former is straightforward and
the latter may be obtained with a lateral-acceleration-based interpola-
tion. The proposed approach is validated through experimental data on
a passenger vehicle.

Keywords: vehicle dynamics · sideslip angle · estimation · dynamic
sideslip angle · kinematic sideslip angle

1 Introduction

The rising interest in autonomous and semi-autonomous mobility has con-
tributed to forging brand new research paths, aiming to improve vehicle handling
and safety. When it comes to vehicle stability control, a key step is to identify
meaningful vehicle states able to offer insight into the stability conditions of the
vehicle. The existing literature on lateral stability controllers recurrently lists
vehicle sideslip angle, β [1]. β is defined as the angle between the orientation
of the centre-of-mass velocity vector and the longitudinal axis of the vehicle [2].
Despite knowledge of the sideslip angle being pivotal, it is a difficult quantity to
monitor in real-time, as commercially available sensors are bulky and expensive.
Alternatively, estimation techniques exist, which typically rely on model-based
estimators, such as Kalman filters [3], or neural networks [4]. Such approaches
have their own benefits and disadvantages and, to date, there is no “ultimate”
solution.
This paper proposes a parametric estimation of the sideslip angle. The estimator
features an interpolation-based formulation providing the dynamic sideslip angle
component, while the kinematic component is provided as the result of kinematic
steering. The entire strategy relies only on measurements coming from the vehicle
Inertial Measurement Unit (IMU).
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Fig. 1. Single-track model showing the kinematic sideslip angle.

2 Sideslip Angle Estimation

According to [5], β may be split into a kinematic component, βkin, an intrinsic
geometrical feature, and a dynamic component, βdyn, arising as a result of tire
slip:

β = βkin + βdyn (1)

2.1 Kinematic Sideslip Angle Estimate

Remarks on kinematic phenomena within this paper all refer to the single-track
model [6]. Looking at Fig. 1, in kinematic conditions:

tan(δw) =
a + b

R
≈ δw, tan(βkin) =

b

R
≈ βkin (2)

where a and b are the front and rear semi-wheelbases and R the (kinematic)
turning radius, δw the wheel steering angle. By eliminating R:

βkin ≈ δw
b

a + b
(3)

In actual driving conditions, this expression only approximates the kinematic
sideslip angle [5], yet it is used in this paper as it does not require an estimation
of vehicle longitudinal speed - e.g. through wheel speed sensors.
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2.2 Dynamic Sideslip Angle Estimate

As seen above, the kinematic sideslip angle contribution at any point of the
vehicle longitudinal axis depends on the distance between the rear axle and the
point of interest - for the centre of mass, such distance is b.
Very interestingly, [5] shows that the dynamic sideslip angle contribution instead
does not depend on the position along the vehicle longitudinal axis. The idea is
then to find the dynamic sideslip angle contribution at the rear axle, which is
easier, and that shall be the dynamic sideslip angle also at the vehicle centre of
mass, to be used in Eq. 1.
The kinematic contribution at the rear axle is exactly 0. So, the overall sideslip
angle at the rear axle is only made of the dynamic sideslip angle contribution -
at least, for a non-rear-wheel steering vehicle. Since the rear steering angle is 0,
the congruence equation [7] δ = α + β reduces to −βR = αR, where α denotes
tire slip angle and the subscript R refers to the rear axle. And because at the
rear axle there is no kinematic contribution, then

βdyn = −αR (4)

Below, a procedure is proposed to determine αR based on lateral acceleration,
ay, which is readily available at the IMU of any passenger vehicle.
The key idea is that αR depends on the rear axle lateral force, which in turn is
a linear function of ay [7]. So any constitutive relationship between lateral force
and slip, such as the well-known Magic Formula, would approximate (only at
steady-state the rear axle lateral force is just proportional to ay) the relationship
between ay and αR = −βdyn. This needs to be inverted, to provide αR = −βdyn

as a function of ay. Classical tire models are difficult to invert or piecewise
defined. Here, we adopt the Root-Rational tire model [8], which is easy to invert,
leading to:

βdyn =

⎧
⎪⎨

⎪⎩

c3ay

c1 − c2ay
if ay < 0

c3ay

c1 + c2ay
if ay ≥ 0

(5)

Interpolation coefficients c1, c2, c3 are retrieved by solving a non-linear least
squares problem on suitable vehicle data sets. Once both components are known,
the full sideslip angle β is reconstructed using Eq. (1).

3 Results

Interpolation is performed using dataset groups [9,10], herein respectively
referred to as D1 and D2. Coefficient values for both datasets are reported in
Table 1, with Fig. 2 showing an overlap between original and interpolated data.
The validity of the estimation strategy can be assessed by comparing its out-
come against the measured signal: Fig. 3a–3b display the estimation outcome on
a portion of data within D1 and D2 respectively.
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Table 1. Interpolation parameters using dataset D1 and D2.

Dataset c1 c2 c3

D1 33901.36 1737.77 5580.54

D2 48585.36 2507.95 12949.62

Fig. 2. Interpolation outcome on available datasets.

The numerical performance assessment is done through computing the Root-
mean-square error (RMSE). The resulting validation RMSEs on four different
runs belonging to datasets [9,10] are listed in Table 2 and Table 3, with the
RMSE generally around 0.5 deg.
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Fig. 3. Estimation outcomes from D1 (a) and D2 (b).

Table 2. Validation outcomes for four different datasets within D1.

Validation dataset RMSE (◦)

20130223 01 02 03 grandsport 0.415

20130222 01 01 03 grandsport 0.367

20130222 01 02 03 grandsport 0.342

20130222 02 01 03 grandsport 0.434
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Table 3. Validation outcomes for four different datasets within D2.

Validation dataset RMSE (◦)

20140222 01 01 03 250lm 0.539

20140221 03 02 03 250lm 0.375

20140221 04 01 03 250lm 0.541

20140221 03 03 03 250lm 0.502

4 Conclusions

A parametric approach was proposed to tackle the challenge of estimating the
vehicle sideslip angle. The estimation task was split in two sub-tasks, aiming
to extract: i) the kinematic sideslip angle, as a result of kinematic steering; ii)
the dynamic sideslip angle as a parametric approximation based on affinity with
principles regulating tire models. Results both in terms of RMSE and normalised
error distributions show there is little discrepancy with respect to the measured
counterpart, hence encourage further studies.
Future work will include exploring this approach within larger sets of data and
for different vehicles, and an on-vehicle implementation.
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Abstract. This paper investigates real-time optimal control for an auto-
mated vehicle. The model predictive control that generates the optimal
trajectories has found wide applications in recent years due to increased
computational performance. Numerical simulations of the full-vehicle
model investigate the applicability of a path generator embedded model
predictive control for the vehicle in the general shape road. The path
generator is constructed by deep learning using the multiple open-loop
optimal control problem solutions as the training dataset. Results demon-
strate that the sequentially calculating optimal control command has the
potential for real-time optimal control in the presence of the obstacle.

Keywords: Real-time optimal control · Trajectory generation · Full
vehicle model · Deep-learning neural network

1 Introduction

Advanced safety technologies have become increasingly important with the real-
ization of automated or unmanned vehicles. In such a requirement, a real-time
optimal control (RTOC) system that can improve efficiency becomes available
due to the increased computing power. A model predictive control (MPC) [1]
is the most widely used RTOC algorithm that can optimize the cost value sub-
ject to constraints, including nonlinearity. The problem formulation is one of the
crucial points for rapid convergence because the controller iteratively solves the
optimal control problem. Thus, we have proposed the path generator embedded
model predictive control (PG-MPC) approach, effectively reducing the compu-
tational burden [2]. However, the utility of the PG-MPC is not verified for the
full-vehicle model environment.

This study applies the PG-MPC to the full-vehicle model simulation to evalu-
ate its performance. The embedded path generator is constructed by deep learn-
ing [3] using the multiple open-loop optimal control problem solutions as the
training dataset. The numerical simulation in the general layout course with the
presence of the obstacle demonstrates the utility of the PG-MPC.
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2 Vehicle Dynamics Model

A full-vehicle model is used for the numerical simulation, whereas an equivalent
two-wheel model is used for the dynamics of each optimal control problem for
open-loop optimal solutions and MPC to reduce the computational burden [4].
Equation (1) shows the equations of motion for the equivalent two-wheel model
described in course coordinates with constant speed V . The vehicle state and
control variables are X = [ β r ψ xs ys δf ]T and U = [δfc].

Ẋ = f(X,U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(Cf + Cr)
mV

β −
(

1 +
2(Cf lf − Crlr)

mV 2

)
r +

2Cf

mV
δf

−2(Cf lf − Crlr)
Iz

β − 2(Cf l2f + Crl
2
r)

IzV
r +

2Cf lf
Iz

δf

r
1

1 − ysκ
V cos (ψv)

V sin (ψv)
1
Td

(δfc − δf )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Where β is the vehicle side slip angle; r is the yaw rate; ψ is the yaw angle;
xs and ys are positions; δf and δfc are the front wheel steering angle and its
command value; lf and lr are distance from the mass center and front and rear
axel; Cf and Cr are the cornering power of the front and rear wheels; and Iz is
the yaw moment of inertia. The relative yaw angles to the course center line are
ψs(= ψ − θ) and ψv(= ψs + β), where θ is the course tangent angle and κ is the
curvature, which are functions of position xs.

3 Optimal Path Generator Embedded MPC

3.1 Architecture of PG-MPC

The MPC architecture generally consists of the main frame and the optimization
frame executed parallel during control, requiring information transfer between
the frames. The optimization frame generates the optimal control input from
the given information primarily through an iterative algorithm, which solves the
optimal control problem in the optimization frame using the states and the refer-
ence path information from the main frame. However, generating the reference
path while considering the target course and obstacle avoidance increases the
computational burden of the main frame. Thus, in previous work, we proposed
a PG-MPC algorithm in which the prescribed function provides the reference
path directly during the iterative optimization computation.

Figure 1 shows the operation procedure of the PG-MPC for the vehicle in
the course coordinate. The PG-MPC solves the nonlinear programming prob-
lem, which minimizes the cost function subject to the discretized dynamics,
the initial conditions, and the path constraints. The prescribed function gives
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Fig. 1. Inner loop part of PG-MPC
algorithm.

Fig. 2. Construction of optimal path gen-
erator using deep learning.

the reference value ysci for each discrete point i, which works as the embedded
path generator in the MPC algorithm, and its arguments use modest informa-
tion from the main frame, which can reduce the computational burden of each
frame. The primary key to this idea is to design an appropriate optimal path
generator(OPG) function.

3.2 Construction of Optimal Path Generator

Figure 2 shows the construction of the OPG using the deep learning framework.
Using a deep-learning neural network, we construct the nonlinear function that
generates the optimal reference path. The multi-layer neural network function
generated by the supervised deep learning algorithm approximates the nonlinear
relationships of multiple open-loop optimal solutions, considering various situ-
ations, such as lateral displacement from the reference path and the relative
position to the obstacles. The optimal solution is calculated numerically using
an optimization method based on the pseudospectral (PS) method [5]. In addi-
tion, the time-axis folding method [6] is used to spread the dense discretization
nodes around the obstacle. Optimal control solutions in the feasible region used
for the training dataset are obtained by the following cost function, Eq. (2).

J =
∫ tf

t0

q1Δy2
s + q2δ̇

2
f + q3ÿ

2
s + q4(ee

−Wh(xs(t),ys(t)) − 1)dt (2)

The first three terms in the Lagrange cost evaluate the position error(Δys =
ysobs − ysc), the steering angular velocity(δ̇f ), and the lateral acceleration(ÿs)
respectively to follow the target course while moderating control input. The
fourth term gives a risk potential value that increases the cost function J when
the vehicle is close to the obstacle [7].

h(xs(t), ys(t)) =
(xs(t) − xsobs

a

)p

+
(ys(t) − ysobs

b

)p

− rp (3)

Where a, b, p, r,W determines the shape of the obstacle and xobs, yobs determines
the position of the obstacle in the xs and ys axes.
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Fig. 3. Open-loop optimal trajectories
used for a training dataset.

Fig. 4. Function value of OPG around
obstacle.

Figure 3 shows the obtained discretization nodes of the open-loop optimal
solution for the 220 cases used for the training dataset. The lateral distance
increases to avoid the obstacle where the relative distance is near the obstacle;
otherwise, the vehicle takes straight trajectories. By using this training dataset
to obtain the OPG, several pairs of the number of hidden layers (HD) and the
number of neurons (ND) were tried, and we found HD=4 and ND=14 minimize
the average absolute error.

Figure 4 shows the function value of constructed OPG for domain around
the obstacle. The reference command ysc increases when the relative distance is
close to the obstacle. The function is smooth, and there is no outlier value.

4 Numerical Simulation

This section demonstrates a numerical application of the PG-MPC developed in
previous sections. The utility of the PG-MPC is evaluated by comparing it with
the results of the standard MPC. A full-vehicle model of the middle-sized sedan
runs in a general shape layout course consisting of straight and curved sections.
Three obstacles on the course are assumed to be detected by sensors, and their
relative position and speed can be used as information for controller inputs.

Table 1 shows the parameters of the numerical simulation. The cost function
for both controllers is Eq. (2), but the standard MPC must consider the fourth
term to avoid the obstacle, while the PG-MPC does not need this term because
it only follows the reference path generated by the OPG. For this reason, the
standard MPC requires large horizon parameters, Hp and Hu, to obtain a stable
trajectory, which increases the computational burden.

Figure 5 shows the trajectories obtained by the full-vehicle model simulation,
including the overall result and details around the obstacles. Both controllers
successfully run around the overall course. However, the standard MPC takes
inward avoidance trajectories at the obstacle xs = 950, which runs off the course.
Thus, an additional constraint is required to keep the vehicle inside the course.

Figure 6 shows the states variables, the G-G diagram, and computation time.
It is clear that the PG-MPC runs a smoother trajectory and uses less G-force



290 T. Sago et al.

Table 1. Parameters used for numerical simulation.

States Standard MPC PG-MPC

q1, q2, q3, q4 0.7, 0.001, 0.01, 5.0× 104 1.0, 0.2, 0.05, 0.0

Horizon and Control StepsHp = 40, Hu = 21 Hp = 10, Hu = 6

Obstacle positions (xsobs1 , xsobs2 , xsobs3) = (450, 950, 1350), ysobs = 1.8

Fig. 5. Overall trajectory around the course, obstacle avoidance trajectory, and exsam-
ple scene.

Fig. 6. States variables, G-G diagram, and computation time.
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for comfortable driving. The computation time history shows that the appear-
ance of the obstacle varies the evaluation character of the cost function, which
increases the computational burden of the standard MPC. On the other hand,
the PG-MPC has a level computation time because it follows the path generated
by the OPG. Therefore, the PG-MPC can be applied to the full-vehicle model
environment.

5 Conclusion

The model predictive control that sequentially generates the optimal trajectories
has found wide applications in recent years. In previous studies, we have pro-
posed the path generator embedded model predictive control approach, effec-
tively increasing the performance. In this study, numerical simulations of the
full-vehicle model investigate the applicability of the controller for the vehicle
in the general shape road. The path generator is constructed by deep learning
using the multiple open-loop optimal control problem solutions as the training
dataset. Results demonstrate that the sequentially calculating optimal control
command has the potential for real-time optimal control in the presence of the
obstacle. Furthermore, the path generator embedded model predictive control
has a level computation time because it only follows the smooth reference path.
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Abstract. Hydroplaning plays a crucial role in road safety. The water layer
wedged between the tires and the road reduces the capability of the vehicle to
respond to the driver’s inputs. Factors like vehicle speed, water layer thickness,
tread pattern, and tire wear affect hydroplaning onset. Based on the technical lit-
erature and experimental tests, the research developed a tire model to simulate
hydroplaning effects. Scaling factors were added to the MFTyre model to repro-
duce the changes in cornering stiffness, relaxation length, friction coefficient, and
motion resistance. Then, a control logic to counteract hydroplaning was designed
and implemented on a 14-dof vehicle model. As last, the effectiveness of the
control logic was assessed through a series of indoor tests on a dynamic driving
simulator.

Keywords: Hydroplaning · Tyre model · 14-dof model · Control Strategy ·
driving simulator

1 Introduction

Hydroplaning is a critical factor for road safety, as underscored by alarming statistics on
road accidents. According to [1], adverse weather conditions contribute to 10% of fatal
road accidents, with 3% occurring on icy or snow-covered roads and the remaining 7%
on wet roads. The phenomenon’s evolution was initially described by [2]. Tyre design,
including tread grooves and sipes, plays a pivotal role in addressing hydroplaning by
expelling water from the contact area and channeling it away. This design facilitates the
tire’s ability to maintain direct contact with the road surface, thereby minimizing the
risk of hydroplaning.

According to the definition in [3], hydroplaning speed is the velocity corresponding
to the contact patch detaching from the ground; it is determined by factors such as
water film depth, tread pattern design, and tire wear. The research [4] emphasizes the
adverse impact of hydroplaning on vehicle responsiveness, caused by the wedge of
water formed between the tire and the road surface. Previous research, including studies
by [5] and [6], investigated hydroplaning’s effects on tire properties such as cornering
stiffness, relaxation length, and friction coefficient. Road texture’s influence has also
been examined by [7] and [8].
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Furthermore, [9] explores how tread design affects a tire’s maximum volumetric flow
rate, while [10] investigates the relationship between groove pattern and hydroplaning
speed. The findings reported in [11] confirm that rear wheels develop tangential forces
even when the front ones experience hydroplaning due to the cleaning effect of front
tires.

Given the dangers associated with hydroplaning, various studies have sought to
address it. The work [12] presents a control system based on a linear single-track model,
while [13] suggests mitigating hydroplaning risk by using air streams to remove water
ahead of the front tires. Detection of hydroplaning onset is crucial for activating control
measures, as proposed by [14] through measurement devices and techniques.

Drawing from technical literature and experimental tests, researchers have developed
a tyre model to simulate hydroplaning, incorporating scaling factors into the MFTyre
model [15]. This model aims to replicate hydroplaning onset on a dynamic driving
simulator [16] to evaluate a control logic designed to assist drivers in such hazardous
situations.

2 Tyre Model Development

A tire model able to simulate hydroplaning was developed. Based on technical data, four
scaling factorswere introduced in theMFTyremodel [15] to adapt the nominal conditions
to the wet environment. The scaling factors modify cornering stiffness, longitudinal
stiffness, relaxation length, and friction coefficient. They are obtained from experimental
data available in [5, 6] as a function of the speed, considering specific tire dimensions
and a 5mm-deep water layer (Fig. 1a).
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Fig. 1. Technical data used to modify the MF model: (a) scaling factor obtained from [5, 6], (b)
hydroplaning speed vs tire characteristics obtained in [4]

To extend the range of possible scenarios, it is mandatory to relate the scaling factor
with the maximum volumetric flow rate the tire can drain out. The research [3] provides
the critical hydroplaning speed for different water layer depths and different tread tire
characteristics (Fig. 1b). Thus, knowing the current tire and road condition and vehicle
speed, it is possible to define an equivalent speed to be used in the experimental curves.
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Moreover, themodel includes the “cleaning effect” of the front tires: part of the water
film is drained out by the front tires based on the maximum volumetric flow rate they can
process. This phenomenon increases the critical hydroplaning speed for the rear axle.
Research [11] relates the wedge of water under the front tires with the wedge of water
under the rear tires, as a function of the speed. Knowing the speed, tire characteristics,
and the amount of water, it is possible to scale the Pacejka’s curves also for the rear axle.

The proposedmodel was verified by comparing the outcomes of a sine sweepmaneu-
ver performed in [5]. Both sources exhibit similar trends in lateral forces. Figure 2
shows that the hydrodynamic interaction between the tyre and water leads to a more
pronounced load shift asymmetry during turns, emphasizing the influence of the scal-
ing factor on normalized cornering stiffness. The relaxation length significantly delays
lateral force development, revealing a notable decrease in lateral force even at relatively
low frequencies such as 2 Hz.
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Fig. 2. Time histories of lateral force and slip angle during swept sine at 85 km/h.

3 Off-Line Development of Control Strategy

A control strategy, aimed at enhancing safety, has been developed to counteract the
hydroplaning phenomenon. The working principle is based on the reduction of the vehi-
cle’s speed below the critical threshold to restore contact between tires and the road.
Therefore, taking advantage of the cleaning effect, braking torque is applied to the rear
axle.

Concerning Fig. 3, the control logic activates independent braking of the rear tires
taking advantage of the cleaning effect of the front ones; a yaw moment is generated,
helping the driver to complete the maneouvre. The yawmoment depends on the steering
wheel angle δ required by the driver. If the absolute value of δ crosses a given threshold
and the car is not turning, the logic applies a different braking torque at the rear wheels
(Mbr,l and Mbr,r). Lastly, activation of the logic is triggered assuming to use sensorized
tires, able to detect hydroplaning onset.

The effectiveness of the logic was assessed through offline simulations and driving
simulator tests. A double-lane-change maneouvre was considered and developed. It is
typical of highways when it is necessary to move on the adjacent lane and come back
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Fig. 3. ADAS logic scheme.

to the original one and it can become dangerous if water is present on the ground
and the speeds are high. The scenario has been simulated according to the scheme of
Fig. 4a: cones were distributed over an artificial pool of water. Many tests with different
conditions of water and speed have been considered to tune and calibrate the logic gains.
Therefore, firstly, offline simulation with the ideal driver has been tested. For seek of
brevity, a test characterized by 8-mm water film depth and 90 km/h speed is reported, to
emphasize the effect of hydroplaning and evaluate the effectiveness of the control logic
in a critical scenario. Results show the power of the control logic; the ADAS helps the
driver stay focused on obstacles without worrying about reducing speed, as the system
handles it for him.

(a) (b)

Fig. 4. Double-Lane-Change offline simulation, 90 km/h and 8-mm water depth: (a) comparison
of the vehicle trajectories, (b) steering wheel angle asked by the ideal driver with ADAS on and
off.

Figure 4a highlights the improvement in the vehicle’s trajectories when the ADAS
is activated, while Fig. 4b shows the steering wheel angle asked by the ideal driver. With
ADAS off, he saturates the maximum angle available.

Figure 5 shows the braking force on the rear axle, applied by the ADAS. First, the
vehicle must turn to the left, thus a larger torque is applied to the rear left tire. In the
second phase, the driver must turn to the right to avoid the second row of cones, coming
back to the original lane. In this phase, a larger torque is applied by the logic to the rear
right tire. Interesting to notice that the torque value starts oscillating; the vehicle speed
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Fig. 5. Double-Lane-Change offline simulation, 90 km/h and 8-mm water depth: braking torque
applied by the logic to complete the maneouvre.

is across the critical hydroplaning one, leading to ON-OFF the logic depending if the
speed is lower or larger than the critical one. Finally, the torque value on the rear left tire
becomes once again larger, since the driver is turning on the left again to get the original
lane straight line.

(a) (b)

(c) (d)

Fig. 6. Double-Lane-Change offline simulation, 90 km/h and 8-mm water depth, lateral forces:
(a) front left tire, (b) front right tire, (c) rear left tire, (d) rear right tire.

Figure 6 shows the evolution of the lateral forces exchanged by the tires with the
ground, on each corner. Without the control, front tires saturate the maximum lateral
force exchangeable with the ground, colliding with the cones. Rear tires, thanks to the
cleaning effect, can exchange larger amounts of force, but due to the presence of water
and the loss of grip on the front axle, they undergo a delay, leading to a further decrease
in the vehicle controllability.
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4 On-Line Testing on the Driving Simulator

After completing the offline tuning, the model was implemented on the dynamic simula-
tor of the Politecnico di Milano [6]. A panel of 37 volunteers (9 female and 28 male) was
involved in an experimental campaign to assess the efficacy of the control logic. Users
with different experiences, risk-taking attitudes, and genders had to drive the double lane
change. This operating condition is rather typical when running on motorways. Tests
were repeated changing the extension of the hydroplaning area, thus affecting the time
of intervention of the control before the execution of the manoeuvre. Drivers were asked
to control the vehicle with and without the assistance of the active control. The success
rate in completing the manoeuvres determined the effectiveness of the proposed logic.
The next figures compare the outcomes with and without the control logic. Figure 7
reports the average trajectory and the dispersion of trajectories (±1σ) considering all the
37 drivers. Drivers were asked to maintain a speed of 120 km/h while approaching the
pool of water. A 5-mm water depth was assumed.

(a) (b)

Fig. 7. Vehicle trajectories (average and dispersion) in double lance change at 120 km/h and
5-mm water layer: control logic OFF (a) and ON (b)

Figure 7 clearly shows that the logic improves the possibility of avoiding the cones.
More specifically, the success rate can be summarized as follows: without the assistance
of the ADAS, none of the drivers was able to close the maneouvre without hitting the
cones. With the assistance of the ADAS, 67% of the drivers were able to complete the
maneouvre without contacting the cones, 15% of the drivers failed the test on the first
lane change, while 18% failed the test on the second lane change. These two percentages
are mainly associated with the lack of confidence of the drivers, depending on whether
they experienced hydroplaning firstly without the logic or with the logic active. Drivers
who tested firstly without logic had a delay in applying the right steering wheel angle,
leading to manage to steer, but touching the cones. Nevertheless, all of them were able
to steer during hydroplaning conditions.

5 Conclusions

The research yielded intriguing insights into the behavior of everyday drivers encoun-
tering hydroplaning. An innovative tire model was developed and integrated with a
14-degree-of-freedom vehicle model to replicate hydroplaning effects. Additionally, an
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ADAS system was designed to assist drivers in maintaining vehicle control. An offline
simulation helped in tuning and calibrating the ADAS, and choosing the right gains.
The results of the offline tests show that the developed system improves the vehicle’s
drivability, allowing the ideal driver to avoid obstacles without knocking over the cones.
Finally, the effectiveness of this control logic was evaluated using the dynamic driving
simulator at the Politecnico di Milano. A critical highway scenario involving a 5-mm
water layer during an overtaking maneuver was designed and tested, revealing that most
drivers struggled to maintain control without ADAS assistance. The findings demon-
strated that such a control system could greatly enhance vehicle controllability. Finally,
the potential of the driving simulator was highlighted; it allows for a deeper study of envi-
ronmental phenomena like hydroplaning, aiding in the improvement of ADAS systems
by examining tire behavior, and facilitates an in-depth analysis of human reactions to
hazardous conditions in a controlled environment, essential for developing autonomous
driving systems.
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Abstract. Planning of charging stations is becoming increasingly prevalent. Con-
sequently, it is of paramount importance to assess their impact on traffic flow and,
subsequently, their optimal positioning. To identify these optimal positions,micro-
scopic traffic flow simulations represent an efficacious tool. Different positions can
be trialed until an optimal solution is identified. The open-sourcemicroscopic traf-
fic flow simulation tool SUMO would be an optimal choice for this purpose, but
does not yet offer the possibility of efficiently implementing charging stations in
its traffic networks. As part of a current research project, a novel method for imple-
menting charging stations at their real location within the SUMO environment is
presented. Exemplary locations are selected in the German city of Essen.

Keywords: modeling · traffic flow simulation · electric vehicles · charging
infrastructure

1 Introduction

Global warming is largely the result of carbon dioxide emissions, so minimizing emis-
sions of this gas is a widely recognized goal. Transportation in particular is responsible
for a large proportion of these emissions, and great effort is being put into reducing
emissions further. Replacing internal combustion engine vehicles with electric vehicles
(EVs) is currently being pursued as a way to reduce emissions. EVs do not produce
local emissions and, depending on the production of electrical energy, lower global
emissions in terms of CO2 equivalents. However, they also present new challenges [1].
Conventional EVs typically store energy in batteries that need to be recharged. This
can be done either at a private charging point, such as a wallbox, or at public charging
stations. The use of a private wallbox is not a viable option in densely populated areas,
nor are other forms of private charging points. Therefore, there are plans to expand the
public charging infrastructure throughout Germany. The German government has set a
target of one million public charging points by 2030 [2]. To implement a strategically
appropriate expansion of the charging infrastructure, it is essential to consider the actual
traffic flows. To realize that during the planning process, an approach is presented here
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that integrates the charging infrastructure into a traffic flow simulation. This way, the
impact on traffic flows can be determined and optimized in advance when planning a new
charging station. However, before the simulated planning of new charging stations can
begin, there must be a way to implement charging stations into the simulation environ-
ment. Therefore, this research paper presents the implementation of all existing public
charging infrastructure of a given area into a traffic flow simulation. The traffic flow
simulation software used is SUMO (Simulation of Urban MObility), developed by the
German Aerospace Center (DLR), an open-source simulation software for large-scale
microscopic traffic flow simulation [3]. To consider charging stations in the simulation
scenario, an algorithm was developed to automatically import and position the charging
stations within the simulation as close as possible to their real geographic coordinates.
The fundamental principles of this import algorithm can also be used to import planned
future charging stations, which are to be analyzed in a simulation environment first.
This analysis allows urban and transport planners to assess the impact of the location
of charging stations on traffic flow and their future use during the planning process for
public charging infrastructure, thereby identifying the optimal location.

2 Database

Charging stations in public places in Germany can be found in the so-called charging
station register (CSR) [4]. The charging stations of various operators are listed there, but
this is not mandatory, so completeness is not always guaranteed. The register is freely
available and serves as a database within this research paper. The data for each charging
station includes the name of the charging station operator, the street, and house number
where the charging station is located, as well as the postcode, city, and district. The
longitude and latitude of the location, which are crucial for accurate placement within
the simulation environment, are also provided for precise localization. Additionally,
supplementary information regarding the charging capabilities is included. Furthermore,
map data from OpenStreetMap (OSM) is used to describe the road network [5]. The
map contains data on roads, railways, waterways, forests and buildings. These two
databases are used to create the foundation of the traffic flow simulation. To complete
the simulation, a description of the traffic demand is required, e.g. based on origin-
destination (OD) matrices. Among others, a vehicle model for EVs is available that
shows characteristic driving and charging behavior of common EV. Figure 1 shows a
part of the German city of Essen, which is used here and serves as an exemplary region
in the following. The area under consideration is the postcode area 45145 within the
district of Frohnhausen with a size of around 3.6 km2 and a population of around 33,200
[6]. The area under consideration in the figure has already been realized in SUMO and
integrated into the appropriate image section of Google Maps [7] as an orientation.

3 Methodology

Currently, charging stations in SUMO are implemented as inductive loops embedded in
road segments [8]. These inductive charging areas do not sufficiently reflect common
charging options. The charging infrastructure mainly consists of charging stations with
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Fig. 1. Area under consideration (45145, Germany), in sumo-gui and Google Maps©

multiple charging points. In reality, public charging stations are typically located in
parking lots specifically designed for charging EVs. This behavior has to be mapped in
SUMO. To represent this, a combination of inductive charging areas and parking lots
can be used. An inductive charging area is placed on a lane, which is specified by the
framework conditions in SUMO, and a parking lot is provided next to it on the roadside.
In the simulation, the parking lot and the charging area are linked so that vehicles parked
in the parking area can charge even though they are not placed directly on the inductive
charging area. Even if the representation of the charging points deviates somewhat from
reality due to this adjustment, the deviation between simulation and reality will be
minimized when positioning the existing public charging stations correctly.

In order to import the public charging infrastructure into the simulation environment,
an algorithm has been developed, which is visualized in Fig. 2. The first step is the user
input. This includes OSM data of the road network to be simulated. The OSM-data
serves as a fundamental component of the simulation, providing the road network (net-
file) through an import process. The data required also includes the CSR. In order to
import the charging stations from theCSR that are located in the area under consideration,
it is necessary to specify the area to be simulated. This can be done either by the city
name or by the postcode area. The input acts as a filter to identify the relevant charging
stations. After all user inputs have been defined, the required information is extracted
from the net-file and the CSR. Each individual edge, which represents a road section of
the road network, is identified. The edges and their associated parameters are then stored.
Of particular importance is the shape attribute of each edge, from which longitude and
latitude of the edges can be determined.

The charging stations in the specified area are then selected from the CSR. Various
information about the charging stations is taken into account, such as the geocoordinates,
the provider, the charging power, and the number of charging points at the charging
station. The power of the charging station and the number of charging points are used to
calculate the power of each charging point. Once all the necessary information has been
retrieved, the positioning of the charging stations begins. To do this, the nearest edge
allowing car traffic (road edge) in the net-file must be found for each of the charging
stations located in this area. For each station, the distance to all road edges is determined
using geodetic distance. The charging station is placed at the edge with the shortest
distance to it. It is important to note that only one corner of the edge is described by
geocoordinates in the shape attribute of the edge. Therefore, the exact geocoordinate
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of the charging station cannot be found, so the charging station is always placed at the
beginning of the edge, resulting in a deviation between the positions from the CSR and
the charging station in the simulation. A parking lot is placed next to each charging point
as described above. All relevant parameters are determined for each charging point, such
as the ID, the ID of the lane where the charging station is located, the available power,
and the efficiency.

Fig. 2. Algorithm for the automated import of charging stations

4 Results

Once the algorithm has been executed, the charging stations are imported into the road
network. An individual charging point always consists of an inductive charging area
and a parking lot. The simulation software extracts all information from the data file to
graphically represent the charging point and parking lot in the simulation environment,
as shown in Fig. 3. As can be seen here, the orange-colored inductive charging area only
affects the connected parking lot. The green outlined parking lot with the EV indicates
that this parking lot is occupied and the charging process is currently in progress. To
validate the algorithm, the area mentioned above was selected. The algorithm identifies
six charging stations in this area, each with two charging points that need to be placed
within the road network.

Fig. 3. Charging EV in a parking lot

The placement follows the procedure described above and is evaluated here. For the
evaluation, the algorithm calculates the deviation between the real geocoordinates of
the charging station taken from the CSR and the geocoordinates at which the charging
station is to be placed in the simulation. The deviation is given in meters and is shown
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in Table 1 for all six charging stations. The table shows that the maximum deviation is
90.71 m. The average deviation is 35.11 m. This deviation is inherent to the placement
method used. Based on the available edge data, the charging stations are always placed
at the start of the edge.

Table 1. Difference in location between real infrastructure and placement in simulation

charging station id distance between actual and SUMO geocoordinates [m]

cs7270_Allego GmbH 7.58

cs7271_Allego GmbH 90.71

cs7272_Allego GmbH 15.66

cs7273_Allego GmbH 36.61

cs7274_Allego GmbH 23.06

cs7277_E.ON Drive Infrastructure 37.05

In reality, the charging station can be placed anywhere along the road. This can be
seen in Fig. 4. In the simulation, the center of the road is the given geocoordinate. There-
fore, the enlarged view in Fig. 4 shows, that the charging station was to be positioned in
the center of the road.

actual geocoordinates

geocoordinates in SUMO

100 m

15m

actual geocoordinates

geocoordinates in SUMO

100 m

15 m

Fig. 4. Comparison of the actual geocoordinates and the geocoordinates in the simulation
environment SUMO in the area under consideration of all six documented charging stations

The location of the charging station within the simulation differs from that of the
intersection. Rather, it is situated at the beginning of the edge, with the parking lot
situated adjacent to the edge. This configuration results in a smaller deviation of the
final charging stations’ locations than calculated above.
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5 Conclusion

The algorithm for automatically importing charging stations into a traffic flow simula-
tion in the SUMO simulation environment facilitates the configuration of a simulation
with electric vehicles (EVs). The manual effort of placing charging points in the right
locations is no longer necessary. In addition, the accuracy of the automated placement
method is so high that no traffic impact is to be expected due to inaccuracy. To further
increase the placement accuracy of the charging infrastructure, a logical next step could
be to determine the geocoordinates over the entire length of the edges to enable more
differentiated placement. In further steps the automated import routine can also be used
to place additional charging points into a traffic flow simulation. The desired geocoor-
dinates can be specified in a way that the algorithm can place the charging stations at
desired locations. The placement could be derived from an analysis of the traffic flow
in a simulation, for example on busy roads or avoiding them respectively. It would then
be possible to evaluate how the additional charging points affect the traffic flow in the
simulated area. Conclusively, the goal is to support urban planning by using simulative
methods to place charging stations more efficiently for future construction projects and
to reduce inner-city traffic overall.
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Abstract. Global warming and air pollution are the main factors influencing
international, national, and local strategies for the transition towards clean tech-
nologies to reduce polluting and climate-altering emissions. A further reduction
of the latter can be achieved, with the same powertrain technology, by reducing
vehicle consumption. One technique is to lighten the vehicle. The goal of this
feasibility study is to act on the battery thermal management system to achieve
vehicle lightweighting. Specifically, a sedan car with active-cooled batteries was
considered as a reference case, and primary lightweighting was achieved through
the use of passive cooling methods, i.e., air and Phase Change Material (PCM)
cooling systems, followed by secondary lightweighting to re-establish the target
range of the reference vehicle by downsizing the batteries. The air-cooled system
leads to greater lightweighting, but its field of application is limited to vehicles
operating in fleets; this obstacle can be overcome by using a PCM.

Keywords: Vehicle Lightweighting · Secondary Lightweighting · Traction
Battery Thermal Management System · Energy Consumption · Electric Vehicle;
PCM (Phase Change Material)

1 Introduction

Today, the topic of environmental sustainability is very important, in fact the reduction
of polluting and climate-altering emissions is the main factor influencing international,
national, and local strategies for the transition towards clean technologies. In addi-
tion to adopting more sustainable powertrains, such as electric ones, a further emission
reduction can be achieved, with the same powertrain technology, by reducing vehicle
consumption. The reduction in consumption can be achieved in various ways, such as
through appropriate regenerative braking logics [1, 2], through the improvement of the
power management logics (in particular regarding hybrid electric vehicles [3–5]), but
also through the lightweighting of the vehicle [6, 13].

The battery pack plays an important role regarding environmental sustainability [7],
Therefore, the study proposed here involves the analysis of different battery thermal
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management strategies to achieve both primary lightweighting, which will lead to a
reduction in consumption and a consequent increase in the vehicle’s range, and secondary
lightweighting by reducing the number of cells in the battery pack, and thus its capacity,
to restore the initial range of the reference vehicle. This work consists of a feasibility
analysis rather than a precisemodelling of the thermal management system of the battery
pack. For the study, an active cooling system (with a total weight of 88.84 kg and
an average power consumption of 815.5 W) was compared with two passive cooling
systems: air and PCM (Phase Change Material) cooling systems.

2 Materials and Methods

The SedanCar from VI-CarRealTime, a consolidated state-of-the-art vehicle dynamics
simulation tool, was chosen as a basis for the reference vehicle: an all-wheel-drive,
electric passenger car equipped with two electric motors, one for each axle, with a total
mass of 1986.6 kg. For this reference vehicle, a total consumption of the auxiliaries
of 1500 W was also considered, including consumption related to the battery active
thermal management system. The latter and the battery pack are those considered in
studies [8–10]. In particular the battery pack is made up of 5664 cells of the NCA-18650
type, in 96S59P configuration (96 cells in series and 59 in parallel), with a capacity of
approximately 56 kWh (162 Ah), an optimal operating temperature of approximately
20 °C and a maximum operating temperature of 60 °C. The active cooling system
considered has a total weight of 88.84 kg, an average power consumption of 815.5 W,
and it is sized to maintain an average refrigerant temperature of approximately 20 °C.
Through VI-CarRealTime simulations, the torque and angular velocity time histories of
the electric motors were obtained onWLTC (class 3b) driving cycle, which is considered
the reference cycle. These outputs were then used as inputs for the TEST (Target-speed
EV, Electric Vehicles, Simulation Tool) model described in [11], customized for this
purpose, enabling to obtain the power demand that the vehicle system requires from the
battery pack. Finally, this power demand has been used as input for a Simulink model,
that simulate the battery pack and its thermal management system performance [8, 9].

The thermally managed battery pack model is simplified, in fact the aim of the work
is a feasibility study and not an accurate thermal management modelling. It contains the
“Datasheet Battery” model of the Simulink “Library Browser” [12]. This model takes
as input the battery current, temperature, number of cells in parallel and in series in
the battery pack, the rated capacity of a single cell, the cell open circuit voltage as a
function of the battery State of Charge (SOC), the cell internal resistance, and the initial
battery capacity. The outputs are instead the following: battery voltage, battery SOC,
battery power (and power loss), and cell energy. The following equations were used for
the battery pack thermal management model, where Eq. (3) is valid only if σ ≤ 1, and
(4) is valid for σ > 1.

QCP = KCP · (Tbat_prev − TCP) (1)

Tbat = (Qbat − QCP) · dt/(ρbat · vbat · cp,bat) + Tbat_prev (2)
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Ch =
(
2.04 · σ 2 + 2.79 · σ

)
/100 (3)

Ch = (3.97 · lnσ + 4.83)/100 (4)

QCP is the cooling heating power of the cooling plate of the thermal management
system,Qbat is the heat generated by the batteries and it is calculated asCh multiplied by
the battery power, Tbat is the average battery pack temperature, Tbat_prev is the average
battery temperature relative to the instant of calculation preceding the one considered,
TCP is the average temperature of the refrigerant flowing in the heat exchangers, KCP is
the heat conductance at the cooling plate, ρbat is the average battery density, cp,bat is the
specific heat capacity of the battery, vbat is the total volume of the batteries, and, finally
σ is the ratio between the battery power (expressed in kW) multiplied by 1 h and the
battery power storage (expressed in kWh). QCP is imposed equal to zero for passive air-
cooling system. Null is also imposed for PCM cooling systems until the melting point
temperature of the PCM is reached, after that, the battery pack temperature remains
constant until the heat generated by the battery pack does not reach the maximum heat
absorbable by the PCM during the change of state, then the batteries temperature starts
to grow again as in the initial phase.

Different sets of simulations are performed, composed of the repetition of WLTC
cycles (class 3b), starting from SOC equal to 100% until the SOC drops below 20%,
considering a simulation sample time equal to 0.01 s. The simulation sets are repeated
with different battery pack initial temperatures.

3 Results

The study led to the choice of two materials as PCM: glycerol (C3H8O3), with a melting
point at 26 °C; and stearyl alcohol (C18H38O, 1-octadecyl alcohol), with a melting point
at 57 °C.

Figures 1, Fig. 2, and Fig. 3 show, in the top, the trend of the battery State of Charge
(SOC) with the succession of repeated WLTC cycles, respectively for the vehicle with
passive air-cooled battery pack, passive glycerol PCM, and passive stearyl alcohol PCM
cooled battery pack, starting from different battery pack temperature. In particular, in
each graph, the vertical red lines separate one WLTC cycle from the next, and the
horizontal green line represents the 20% of SOC. Similarly, the bottom of the figures
shows the trend of the average temperature of the battery pack, and, in each graph, the
vertical red lines separate one WLTC cycle from the next, and the dotted horizontal red
line represents the maximum temperature limit, equal to 60 °C. As can be seen from
Fig. 1, for an initial temperature of the battery pack from −20 to approximately 30 °C
the limiting aspect for the vehicle is the capacity of the battery pack, i.e. the achievement
of the SOC equal to 20%. Starting from 40 °C, however, the limit temperature of 60 °C
was reached, in these cases it is therefore not possible to use the entire SOC range
consecutively, it will be necessary to take a pause for cooling. As can be seen from
Fig. 2, the behaviour of the vehicle with a glycerol PCM-cooled battery pack is similar
to that found for the vehicle with passively air-cooled batteries.
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Fig. 1. Battery State of Charge (top), and battery pack average temperature (bottom). Passive
air-cooled battery pack, in configuration 96S59P.

Fig. 2. Battery State of Charge (top), and battery pack average temperature (bottom). Passive
glycerol PCM cooled battery pack, in configuration 96S59P.

Finally, as can be seen from Fig. 3, the stearyl alcohol PCM allows the vehicle to
exploit the entire SOC range consecutively on the WLTC cycle, also starting from a
battery pack temperature of 57 °C, the melting point temperature of this PCM.
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Fig. 3. Battery State of Charge (top), and battery pack average temperature (bottom). Passive
stearyl alcohol PCM cooled battery pack, in configuration 96S59P.

As a secondary weight reduction measure, reducing the parallel cells of the battery
pack from 59 to 54 was enough to achieve a range comparable to the one of the reference
vehicle, for both air and PCMs cooled vehicles. This means removing from the battery
pack 480 cells, for a total of 22.56 kg.

Table 1 resume the main results obtained in the study.

Table 1. Cooling system weight; primary and secondary lightweighting; and performance, in
terms of energy consumption and vehicle range, on WLTC (class 3b) driving cycle.

System Cooling
system
weight
[kg]

Mass of
cells
removed
[kg]

Primary
lightweighting
[kg]

Secondary
lightweighting
[kg]

Energy
consumption
[kWh/100km]

Range
[km]

Active
cooling

88.84 - - - 35.13 149.0

Air
cooling

- 22.56 88.84 22.56 31.96 149.9

Glycerol 57.02 22.56 31.82 22.56 32.39 147.9

Stearyl
alcohol

36.77 22.56 52.07 22.56 32.23 148.6
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4 Conclusions

The air-cooled battery thermal management system is the simplest possible and leads
to great potential for weight savings. However, it can be unsuitable for high starting
temperatures of the battery pack. This issue also applies to the glycerol PCM-cooled
system, which has however the added benefit of allowing the battery pack to operate
near its optimal operating temperature for a longer time, thanks to its 26 °C melting
point. Both systems suffer from the risk of excessive battery temperature rise but are
suitable for vehicles operating in fleets with predefined and programmable missions.
Finally, the stearyl alcohol PCM system is suitable for private use i.e. for less repetitive
mission profiles and for varied driving styles, owing to its 57 °C melting point, although
it sacrifices the ability to keep the batteries at an optimal operating temperature for longer
periods.
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Abstract. Residual range estimation plays a crucial role in route selec-
tion and the trust of electric vehicles (EVs). With inspiration from lon-
gitudinal vehicle dynamics, a simple and computationally efficient model
for traction power is presented. Such a model has the advantage of being
exclusively based on vehicle exogenous parameters. The model allows for
insight into variations in power usage along a transport operation and
separation of power losses originating from air drag, rolling resistance,
hill climbing, and inertial forces. A model of this structure can handle
regenerative braking and estimate service brake usage as an additional
feature. Also, it treats the inherent truncation bias resulting from trun-
cating a stochastic process. Evaluation of the performance is presented
using Monte Carlo simulations, comparing the estimation error against
a simple benchmark model and vehicle log data.

Keywords: Range estimation · Energy consumption · Truncation

1 Introduction

Electric vehicles (EVs) are an attractive medium of transportation, with excel-
lent performance. The possibility of zero-emission fuel makes them a cornerstone
in reaching the climate goals set by the European Commission. The vehicle indus-
try’s objective to meet climate goals typically translates into increasing sales of
EVs. In 2023, the worldwide sales of electric cars almost reached 14 million and
have seen an exponential increase in sold units over the recent year. However,
the number of electric trucks sold remains small in 2023, resulting in about 54
thousand units sold [2].

In line with the sale numbers, electric trucks suffer from the lack of charging
infrastructure, low power delivery at the connector, and yet small battery sizes.
As a result, the feasibility of using an electric truck varies from operation to
operation. The uncertainty the driver experiences posed by the variation is typ-
ically referred to as range anxiety, halting haulage from transitioning to electric
c© The Author(s) 2024
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vehicles. Hence, a logistical effort targeting the variation in operations would
benefit the rate of electrification. The foundation of such logistic effort is a good
residual range estimate or energy prediction. The former is the distance until
empty, and the latter is the energy consumed up to a distance ahead.

The vast literature covering residual range estimation can be divided into
model-free approaches and model-based approaches. The model-free approach is
generally based on the assumption that energy consumption is linearly increasing
with traveled distance. The slope of the linear trend is the average specific energy
consumption (SEC), typically calculated as a moving average of past driving,
imposing similarities in future driving to that of the past. In [5], a model-free
approach is presented, fitting SEC values to specific driving patterns. The model
clusters regions of similar driving patterns based on average speed and average
power and fits an SEC value to each cluster that matches the data. The model
received an average relative error of 9 % when validated against log data from a
BMW i3. However, the model is yet to be tested for heavy vehicles.

In [9], a semi-physical model, calculating the energy consumed over each road
segment as the sum of energy losses due to road grade, air drag, change in kinetic
energy, and a cruise penalty is presented. In this model, energy consumption is
assumed to be constant over a road segment but allowed to vary from segment
to segment, thus capturing the slow dynamics tide to the geometrical space, but
not the fast dynamics and phenomena tide to other entities such as traffic. Also,
the performance of the model is yet to be evaluated.

In a model-based approach, the main energy consumers are divided into
the auxiliary load (air conditioner, displays, battery thermal management, and
more) and propulsion load (energy consumed to propel the vehicle). In combi-
nation with a powertrain and an energy storage model, one can predict the total
energy consumption of any vehicle, including internal combustion engine vehi-
cles (ICEVs), and EVs. Hence, in the model-based approach, authors can make
minor improvements to the whole model by studying the auxiliary or propulsion
load in isolation. In this article, a traction force estimator derived from longitu-
dinal vehicle dynamics is presented under Sect. 3. The model is complemented
by a constrained Kalman filter state estimator, see Sect. 2, and a truncation
bias correction method, see Sect. 4. In Sect. 5, the propulsion energy estimator
is compared against vehicle log data and a simple benchmark model based on
SEC.

2 State Estimation

A vehicle’s longitudinal position, velocity, and acceleration, are integral parts
to propulsion energy estimation. To estimate the states using a Kalman filter, a
motion, and measurement model should be decided on. The measurement model
uses vehicle wheel speed and odometer sensor measurements. To keep it simple,
a kinematic motion model, namely the constant acceleration motion model (CA)
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(CA)

xk =

⎡
⎣

1 T 1
2T 2

0 1 T
0 0 1

⎤
⎦ xk−1 + qk−1, with qk−1 ∼ N (0,Qk−1),

yk =
[
1 1 0

]
xk + rk, with rk ∼ N (0, σ2

r),

(1)

is used. The process noise covariance matrix Qk−1 =
∫ T

0
eÃτ Q̃eÃ�τdτ is the

analytical solution to the discretization of the continuous-time CA model with
jerk modeled as a Gaussian white noise process. The measurement noise rk is
uniformly distributed around the CAN bus rounding error. To facilitate the
assumption of normally distributed noise, the best approximation of the uni-
form distribution U(a, b) is the normal distribution N (a+b

2 , (a−b)2

12 ). In addition,
the speedometer cannot measure negative velocities, which excludes reversing
maneuvers. The Kalman filter is hence modified to facilitate the inequality con-
straint xk(2) ≤ 0. The constrained solution to the Kalman filter is obtained by
projecting the unconstrained a posteriori state estimate to the constrained space
[6,7]:

minimize (x − x̂k|k)�W−1
k (x − x̂k|k),

subject to x(2) ≥ 0.
(2)

A solution to the quadratic programming (QP) problem (2) is found by applying
the active set method

x̂P
k|k = x̂k|k − Υ(Ax̂k|k − b), Υ = W−1

k A�(AW−1
k A�)−1, (3)

with weighting matrix Wk being the inverse of the covariance matrix, A =
[0, 1, 0], and b = 0. The same method is also applied for the a priori state
estimate allowing the Kalman filter to do better predictions.

The yaw angle must also be estimated since it affects the air drag through the
attack angle. Another kinematic motion model is used to estimate the yaw angle
in the world frame, namely the coordinated turn (CT) motion model. Since the
procedure is similar, no further explanation is provided.

3 Traction Force Estimation

At any time k, the total traction force Ft,k for a road vehicle is a linear combina-
tion of five forces: rolling resistance force Frr,k, air drag force Fad,k, hill climbing
force Fhc,k, translational inertial force Fit,k, and rotational inertial force Fir,k,

Ft,k = Frr,k + Fad,k + Fhc,k + Fit,k + Fir,k. (4)

Rolling resistance force is the resistive force associated with a tire rolling
under vertical load. In this paper, only the linear relationship between the nom-
inal rolling resistance coefficient (Cr) and the vehicle’s vertical load is modeled:

F̂rr,k = Crmkg cos (ϕk) + err,k, (5)
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where the error err captures model inaccuracies coupled with using a simplified
model that does not consider the temperature and pressure dependency of Cr.
In [4], the mean relative error of a constant Cr over a certain driving cycle was
found to be 12.9%. In this paper, the error is assumed to be normally distributed
with zero mean and variance, σ2

rr,k = (mkgCr · 0.1)2.
Aerodynamic drag force is the resistive force acting on an object moving

in air and in this paper, model 1 [1] is used. The model is based on the state-of-art
model:

F̂ad,k =
1
2
ρCDAp(θk)(vx,k + vwx,k)2 + ead,k, (6)

in which the air density ρ and the drag coefficient CD are constants. The rela-
tive longitudinal velocity experienced by the vehicle is the sum of the longitudi-
nal vehicle vx,k and wind vwx,k speed. Additionally, the projected frontal area
Ap(θk),

Ap(θk) = Afcos(θk) + As,ksin(θk), θk = arctan
|vwy,k|
vx,k

, (7)

is a function of the attack angle θk, a constant front area Af, and a varying
side area As,k, which is allowed to change between two discrete values repre-
senting with and without a trailer. The model has a root mean squared error
RMS(yk − CDAp(θk)) = 1.19 when compared against CFD simulation results
using a tractor with a semi-trailer. In this paper, the error is assumed to be nor-
mally distributed with zero mean, and variance, σ2

ad,k = (1.2 1
2ρ(vx,k +vwx,k)2)2.

Hill climbing force is the gravitational force parallel to the road slope ϕk,

Fhc,k = mkg sin(ϕk). (8)

Inertial force consists of a translational and a rotational force. The trans-
lational inertial force is associated with longitudinal acceleration and the rota-
tional with acceleration of the powertrain. They can be coupled by introducing
the equivalent mass m∗:

F̂it,k + Fir,k = m∗
kak + ei,k, m∗

k = mk + I
G2

k

ηgr2
. (9)

Here G is the gear ratio, I is the moment of inertia of the rotor, ηg is the gear
efficiency, and r is the tire radius. Thus, a model for gear selection is required.
A simple switch algorithm based on vehicle longitudinal speed is used.

The normally distributed acceleration estimation error propagates to the
inertial force and hence, is the inertial force error ei,k normally distributed with
zero mean, and variance, σ2

i,k = (m∗σa)2.

4 Propulsion Power

The traction force Ft is the force applied at the wheel to propel and brake
the vehicle. A negative traction force corresponds to braking, and a positive to
propelling the vehicle. The propulsion power is thus:
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Pp,k = max(0, Ft,kvx,k). (10)

But since Ft is unknown, the traction force estimate F̂t has to be used. However,
truncating a random variable will move the mean resulting in a truncation bias
in the model. First, the traction force estimation error,

et,k = Ft,k − F̂t,k, et,k = err,k + ead,k + ei,k, (11)

is a linear combination of random normal distributed variables with zero mean.
The error ead comes from simplifications in Ap,k(θ)Cd, err from simplifica-
tions in cr, and ei,k from kalman filter uncertainties in the acceleration. Since
none of the errors is a function of the same variable, one can claim indepen-
dence resulting in a zero mean, normally distributed variable with variance,
σ2
t,k = σ2

rr,k + σ2
ad,k + σ2

i,k. The author acknowledges that the errors are likely
auto-correlated, but are here regarded as time-independent. The traction power
estimate P̂t,k is thus also normally distributed with mean μk = Ft,kvx,k and
variance σ2

k = v2
x,kσ2

t,k. Now, consider the truncated traction power estimate, i.e.
the propulsion power estimate P̂p,k = max(0, P̂t,k), corresponding to a lower-tail
truncation at 0 with α = −μk

σk
= −Ft,k

σt,k
and β = ∞. The probability density func-

tion and the cumulative distribution function evaluated in β are thus ϕ(β) = 0
and Φ(β) = 1. The first moment of the propulsion power estimate can now be
expressed as:

E(P̂t,k|P̂t,k > 0) = E(P̂p,k) = μk + σk
ϕ(α)

1 − Φ(α)
(12)

5 Result

The model presented under Sect. 2, 3, and 4 is now to be evaluated under real
operating conditions. That is, using vehicle log data from a single heavy vehicle
operating all over Sweden, mainly transporting gravel. The vehicle log data is
complimented with road [3] and weather [8] data from 3rd party data suppliers
and the estimated propulsion power is compared against the on-board torque
estimate, P = Tω. The original validation data set is composed of 86 transport
operations, typically 8–10 hours each, and after removing transport operations
shorter than 10 km, the total number was now reduced to 59. As a reference,
a primal history-based benchmark model is designed. It predicts today’s (i)
energy consumption Ei based on today’s total travel distance di, and the previous
transport operations’ SEC value, fi−1,

Ei = fi−1di. (13)

The benchmark model, although simple, is built on the same postulate that was
discussed in Sect. 1. That is, the near future is likely to be similar to the near
past.

In Fig. 1, the x-axis represents the relative error Ê−E
d which has the same

unit as SEC, kWh km−1, and the y-axis, the represent the probability density
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of a certain error. The figure has two histograms, the benchmark error (orange),
representing the difference in SEC comparing transport mission k and k−1, and
the model error (blue). On top of the histograms, two normal distributions are
drawn, the the model error pdf (green) has a mean μm = −0.01 and standard
deviation σm = 0.40, and the benchmark error pdf (red) has a mean μB = −0.02
and standard deviation σB = 0.52. Hence, for each 100km driven, with 68%
certainty, the benchmark error is smaller or equal to

[−54 50
]

kWh and the
model rror is smaller or equal to

[−41 39
]

kWh.

Fig. 1. The model (blue), and benchmark (orange) represent the relative error when
compared against vehicle log data. Two normal distributions fitted using the model
error (green), and benchmark error (red) are drawn on top. (Color figure online)
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Abstract. Black ice is a deadly hazard on the road because it is visually trans-
parent and difficult to identify by driver’s naked eye while driving. Because tire
friction on a black icy road surface is obviously smaller than normal road, the
braking distance significantly increases and leads to severe traffic accidents. Road
hazard detection such as black ice has been actively attempted so far, usually
focusing on methodology using intelligent vision systems (e. g., cameras). How-
ever, current image-based methods are prone to reduced low accuracy due to their
susceptibility to vibrations transmitted from road surfaces to vehicles. In addi-
tion, incorporating cameras and light detection and ranging sensors increases the
complexity and computational burden, especially when extending their function-
ality to include road surface classification. Therefore, we investigate the potential
of new road surface classification based on vehicle longitudinal velocity and tire
effective radius estimation from vehicle longitudinal model. This study explores a
sensor-fusion type indirect road surface classification algorithm based on Kalman
filtering.

Keywords: Black Ice Detection · Extended Kalman Filter · Vehicle
Longitudinal Velocity · Tire Effective Radius · Wheel Slip Ratio

1 Introduction

Black ice is a deadly hazard on the road because it is visually transparent and difficult to
identify by driver’s naked eye while driving. The braking distance significantly increases
and leads to severe traffic accidents because tire friction on a black icy road surface is
obviously smaller than normal road [1]. Road hazard detection such as potholes and
black ice has been actively attempted so far, usually focusing on method-ology using
intelligent vision systems (e. g., cameras). However, current image-based methods are
prone to reduced low accuracy due to their susceptibility to vibrations transmitted from
road surfaces to vehicles. In addition, incorporating cameras and light detection and
ranging (LiDAR) sensors increases the complexity and computational burden, especially
when extending their functionality to include road surface classification. The information
of road conditions detected from smart tire sensors can be shared through a cloud server
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when the first vehicle encounters the road hazards. This approach seems to be promising
because subsequent vehicles can use this shared information to navigate and avoid road
hazards such as potholes, potentially reducing computational demands and enhancing
efficiency, as shown in Fig. 1. Considering that tires are the only components of the
vehicle system in direct contact with the road surface, they inherently possess high
potential for detecting road hazards such as black ice. The sensor fusion-based indirect
method then can be effective supplement system to smart tire sensors or act as a fail-
safe system where smart tire sensors may not function properly because sensor fusion-
based indirect method through CAN bus is currently being effectively utilized in various
real-time vehicle control systemswith a relatively high sampling frequency (e. g., 1 kHz).

Fig. 1. Schematic overview of the proposed road surface classification both smart tire sensor built
in pneumatic tires (direct, low sampling frequency) and sensor fusion based tire friction coefficient
estimation (indirect, high sampling frequency) [2]

In this study, we explore new approach to achieve new cost-effective means of clas-
sifying road surface (i.e., tire friction coefficient) by measuring (or estimating) slip ratio
and tire tractive force in real time, as shown in Fig. 2 This indirect sensor fusion method
can compensate the accuracy of road surface classification in situations where smart tire
sensors face limitations.

2 Slip Ratio and Vehicle Longitudinal Velocity Estimator

2.1 Vehicle Longitudinal Model

In this study, thewheel rotation dynamicmodel and vehicle longitudinalmodel of electric
vehicles is used to estimate vehicle longitudinal velocity and the tire effective radius [3].
Assuming that the vehicle is driving on flat road (θ = 0) and the braking force is inactive,
the vehicle driving model in longitudinal direction can be governed by

Iωω̇ = Tm − RFx − RCrrmg (1)

γmmv̇x = Fx − 0.5ρCdAf v
2
x − Crrmg (2)

where Iω denotes the roll inertia, ω denotes the wheel angular velocity, Tm denotes the
motor output torque, R denotes the tire effective radius, Fx denotes the tractive force,Crr

denotes the rolling resistance coefficient, m denotes the vehicle mass, γm represents the
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Fig. 2. Tire tractive force vs slip ratio showing road surface-dependent tire friction coefficient

mass factor, vx denotes the vehicle longitudinal velocity, ρ denotes the air mass density,
Cd represents the aerodynamic drag coefficient, and Af represents the vehicle frontal
area. Compared to conventional vehicles with internal combustion engines combined
with multi-stepped automatic transmissions, the tractive force of electric vehicles can
be easily determined by converting motor output torque as

Fx = TmGη

R
(3)

where G denotes the reduction gear ratio, and η denotes the mechanical efficiency.
Introducing the additional assumption that the tire effective radius is in a quasi-static

state (Ṙ ≈ 0), the state space equation can then be expressed as Eq. (4).

ẋ = f (x) =
⎡
⎣
ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎢⎣

Tm
Iω

− TmGη
Iω

− RCrrmg
Iω

TmGη
γmmR

− ρCdAf
2γmm

v2x − gCrr
γm

0

⎤
⎥⎦

x = [
x1 x2 x3

]T = [
ω vx R

]T
, y = [

ω ax
]T

(4)

Consequently, slip ratio λ is derived from the estimated vx and R using Eq. (5) [4]

λ = vw − vx
vx

= Rω

vx
− 1 (5)

3 Design of Extended Kalman Filter

The nonlinear systemmodel Eq. (4) is linearized using the Jacobian respect to the defined
state variables and is discretized usingEuler’smethod for being applicable to the discrete-
time extended Kalman filter (EKF). To design EKF, we discretized the continuous-time
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state equation as follows [5]:

xk+1 = fk(xk) + wk

yk = hk(xk) + vk
(6)

where wk is a system-noise vector and vk is a measurement noise vector. The extended
Kalman filter assumes the differentiability of the state-change function instead of the
linearity of the model. The nonlinear system model was linearized using a Jacobian
matrix as follows:

Ak = ∂fk
∂x

∣∣∣∣
xk−1

, Hk = ∂hk
∂x

∣∣∣∣
x̂k

(7)

Matrices A and H of the system model were linearized using Eq. (7) are expressed
as follows:

Fk = ∂f

∂x
=

⎡
⎢⎣
0 0 −Crrmg

Iω

0 −ρCdAf x2
γmm

− TmGη

γmmx23
0 0 0

⎤
⎥⎦, Hk = ∂h

∂x
=

[
1 0 0

0 −ρCdAf x2
γmm

− TmGη

γmmx23

]
(8)

The overall estimation process using the EKF algorithm represents as follow [5].

1) Initial estimation

x̂0 = E[x0] (9)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(10)

2) Prediction

x̂−
k = fk−1(x̂k−1) (11)

P−
k = APk−1A

T + Q (12)

3) Kalman-gain calculation

Kk = P−
k H

T
(
HP−

k H
T + R

)−1
(13)

4) State correction

x̂k = x̂−
k + Kk

(
yk − h

(
x̂−
k

))
(14)

Pk = P−
k − KkHP

−
k (15)
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4 Estimation of Tire Friction Coefficient

Based on two estimated variables (slip ratio and vehicle longitudinal velocity), tire
friction coefficient was estimated. The simulation of the integrated vehicle model is
performed assuming a scenario of a vehicle driving on four types of roads: icy, snowy,
wet, dry. We assumed the tire friction coefficients for each type of road (icy, snowy,
wet, dry) to be 0.1, 0.2, 0.4, and 0.8 respectively. The proposed estimation algorithm
was implemented in MATLAB®. A classification algorithm is additionally required to
classify road surface conditions based on the estimated vehicle longitudinal velocity and
the tire effective radius. Deep learning model (e. g., support vector machine) is one of
the methods to design the algorithm.

To evaluate the estimation performance, the simulation of the vehicle model was
performed in a scenario that the vehicle accelerates from a standstill. The vehicle lon-
gitudinal velocity and the tire effective radius estimation results of performing the sim-
ulation are shown in Fig. 3 (a) and (b). It can be observed that the vehicle longitudinal
velocity was correctly estimated compared to the measured values. A peak point in the
tire effective radius is observed during the initial acceleration phase, and as the vehicle
longitudinal stabilizes, the tire effective radius also remains constant. The same simu-
lation was performed for each tire friction coefficient (μ = 0.1, 0.2, 0.4, 0.8). With
the assumption of motor output torque as the known input, tractive force is calculated
by substituting the tire effective radius into Eq. (3). The estimated vehicle longitudinal

Fig. 3. Simulation result of estimation; (a) vehicle longitudinal velocity at μ = 0.1, (b) Tire
effective radius at μ = 0.1, (c) Calculated tractive force vs estimated wheel slip ratio
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velocity and the tire effective radius were substituted into Eq. (5) to calculate the slip
ratio. The variations in tractive force concerning the variations in slip ratio for each tire
friction coefficient are shown in Fig. 3 (c). It is observed that the shape of the graph varies
for each tire friction coefficient. This variation can be used to classify the road surface
conditions. However, in a range with a small slip ratio, it is challenging to classify wet
and dry roads, as shown in Fig. 3 (d). Also, there are technical limitations to utilize such
smart tire sensors capable of measuring the tire friction coefficients. Smart tire sensors
typically have a low sampling frequency (e. g., 1 Hz) to save the life time. Given the
vehicle’s movement per second (e. g., at a speed of 50 km/h, driving 14 m per second),
this low sampling frequency is not suitable for road surface classification. Moreover,
high-frequency sensors based on smart tires, developed to address this issue, are facing
challenges in commercialization due to battery life and durability concerns.

5 Conclusions

In this study, we proposed new method of estimating tire friction coefficient based on
rigorous slip ration estimation enabled by tire effective radius and longitudinal vehicle
velocity estimation using extendedKalman filtering. The estimated slip ratio and tractive
force are used to estimate tire friction coefficient. The proposedmethod offers advantages
in terms of cost and computational aspects compared to image-basedmethods. However,
at a certain level of tire friction coefficient (e. g., μ = 0.4, 0.8) the variations of the slip
ratio versus tractive force are not clearly distinct. Additionally, this study did not reach
the stage of designing classification algorithms. For future direction, we will design
classification algorithm such as support vector machine (SVM).
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Abstract. This paper explores the effects ofDirectYawControl (DYC)ondriver’s
maneuverability feeling and vehicle dynamics. DYC is implemented in the experi-
mental vehicle equippedwith four-wheel independent controlled In-WheelMotors
(IWMs). The effects on vehicle dynamics are validated through open-loop testing.
Subsequently, the closed-loop test is conducted to confirm the correlation between
subjective evaluation and Vehicle dynamics data.

Keywords: In-wheel Motor · Torque Vectoring · Drivability · Comfortable ·
Independent Controlled

1 Introduction

The relationship between torque differentials characteristics on the left and right wheels
by Direct Yaw Control (DYC) and vehicle dynamics has been well-established [1–5].
Less research has been conducted on the correlation between four-wheel independent
yaw moment control and vehicle dynamic characteristics, as well as factors such as the
maneuverability and the passenger lateral ride comfort. This paper presents an inde-
pendent evaluation of a model based, yaw modifying, DYC system on an experimental
vehicle with In-Wheel Motors (IWMs). The coordinate system is defined in Fig. 1.

2 Target Steering Response Using Torque Vectoring Control

2.1 Control Strategy

Torque vectoring systems have been included in production vehicles for more than
20 years. Originally this was achieved by electronic differential or brake control and is
limited to relatively slow control algorithms which modify understeer/oversteer charac-
teristics in near-limit situations. IWMs developments have enabled significantly higher
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Longitudinal

Lateral

Vertical

Yaw

Roll

Pitch

Fig. 1. Coordinate system.

bandwidth control algorithms which can subtly modify the yaw dynamics of the vehicle
to change the feeling of ‘agility’ in sub-limit situations [6]. The experimental vehicle
provided has a model based, agility modifying DYC control system called Torque Vec-
toring Control (TVC), enhancing the vehicle’s response to rapid steering inputs, known
to influence driver ease of maneuver [7].

The control strategy developed is illustrated in Fig. 2. The development is carried
out in three steps:

1) Identify the yaw transfer function of the vehicle from steering wheel to yaw angular
velocity.

2) Identify the yaw transfer function for the vehicle from road wheel torque differential
to yaw angular velocity.

3) Develop a control algorithm such that the overall transfer function from steering
wheel angle (through traditional steering and through wheel torque differential) to
yaw angular velocity matches some ideal characteristic.

The controller development is carried out in the frequency domain as this is a more
natural environment for vehicle agility. Note that final tuning is carried out in the vehicle
to ensure that non-linearities and model errors do not cause poor performance.

2.2 Experimental Vehicle

The experimental vehicle is equipped with the IWMs capable of independent control of
all four wheels. It can switch between with and without TVC. In addition, the driving
force distribution can be adjusted from FWD to RWD, continuously.

2.3 Steering Response Results

The results of the frequency response of lateral acceleration and yaw angular velocity
to the sinusoidal steering inputs using the experimental vehicle are shown in Fig. 3. The
frequency response of lateral acceleration and yaw angular velocity to the sinusoidal
steering inputs clearly shows the improved steering response characteristics achieved by
TVC. The implementation of TVC increased the gain of lateral acceleration and reduced
the phase lag in yaw velocity. These observations indicate an overall improvement in
the vehicle response to a rapid steering inputs.
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Fig. 2. A control block diagram of an experimental vehicle equipped with IWMs on all four
wheels. The base vehicle is controlled to reduce the assumed yaw inertia. Note that the Yaw
angular velocity has been represented to Yaw rate (YR) in this figure.
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Fig. 3. Frequency Response Characteristics to Steering Inputs. Sinusoidal steering inputs at
40 kph constant speed, steering angle ±30° with moderate frequency incrementation ranging
from 0.5 to 2.0 Hz.

3 Evaluation Methods

3.1 Open Loop Test

To clarify the effects of TVC under certain conditions, the angular velocities of the
vehicle pitch, yaw and roll motion, and the lateral acceleration on the front and rear
axles are measured when the driver input is an open loop step of approximately 30°
at a car speed of 40 kph. These measurements are taken under conditions both with
and without TVC activation. Furthermore, similar tests are executed with varying drive
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configurations, specifically FWD and RWD, to elucidate the influence of distinct axes
of TVC implementation on the dynamic behavior of the vehicle.

3.2 Closed Loop Test

To validate the effectiveness of TVC in steering response characteristics, a closed-loop
test was conducted. Ten participants executed an emergency avoidance scenario shown
in Fig. 4, wherein they travel at 35 kph and encounter an obstacle in their lane, and
they move to the opposite lane and immediately return to their original lane to avoid
oncoming vehicle with and without TVC. Subjective evaluations were conducted based
on their individual experiences as both drivers and passengers. Participants were selected
randomly, including both beginner and experienced drivers.

11m

3m

13.5m 12.5m

3m

Fig. 4. The trajectory of the experimental vehicle executing the emergency avoidance scenario.
The spacing between pylons is determined based on the vehicle’s overall length and width, as well
as the real world driving of a skilled driver.

4 Evaluation Results

4.1 Open Loop Test

Experimental results of a 30° step steering maneuver at 40 kph are shown in Fig. 5.
Both the yaw angular velocity and lateral acceleration of the front and rear wheel axles
exhibit quicker responses and increased peak values with TVC activation compared to
when TVC is deactivated. The presence of TVC results in quicker responses and larger
peak values in both yaw angular velocity and lateral acceleration on the front and rear
axles compared to when TVC is deactivate.

Additionally, experiments are conducted with TVC activation in both FWD and
RWD configurations. According to driver feedback, the sensation while driving differs
between FWD and RWD configurations with TVC activation. In the case of FWD,
subjective feelings of being pulled a front toward steered direction are noticed by driver.
On the other hand, in the case of RWD, a feeling of being pushed a rear toward opposite
direction of steering. The comparative results of FWD and RWD are shown in Fig. 6.
However, the lateral acceleration data for both the front and rear axles do not exhibit
significant differences as perceived by the drivers.
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4.2 Closed Loop Test

The subjective evaluation results are presented in Fig. 7. All assessment criteria show
the improvement with TVC. Particularly notable are the ease of avoidance perceived by
drivers and the smoothness of lateral motion experienced by rear-seat passengers.

As representative data, Fig. 8 shows the measured data of steering angle and yaw
angular velocity during the emergency avoidance scenario executed by driver G. TVC
contributes to the reduction in time delay from driver input to vehicle response. Further-
more, it can be read from the Lissajous waveform that the hysteresis of the response has
decreased. These indicate that the response has been improved.
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5 Conclusion

Tests were conducted to validate the effectiveness of steering response enhancement
using TVC with four-wheel independent controlled IWMs. The subjective evaluation
results indicated the improvements in an ease of operation and in a perceived safety
margin during emergency avoidance scenarios with the implementation of TVC. The
improvement in subjective evaluation was proved by the physical data, indicating a
reduction in phase lag and an increase in gain in vehicle yaw angular velocity and lateral
acceleration with TVC under rapid steering inputs.

The vehicle dynamics under rapid steering input was improved by TVC with four-
wheel independent controlled IWMs.

The subjective evaluation of maneuverability by drivers did not yield differences in
data when altering the front-to-rear control distribution of TVC. These investigations
will be the subject of further studies.
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Abstract. Since flexible bushings are used as the interface between the suspen-
sion arms and the chassis, the extra degrees of freedom make the design process
a complex task. While the use of a multi-body model is common practice in the
industry, a dedicated computational tool can be more practical and straightfor-
ward, especially when undertaking the design of a new suspension concept from
the ground up. This paper presents a quasi-staticmethod for calculating suspension
compliance under the action of forces and moments, enabling real-time simula-
tions. The algorithm proposed in this paper was devised with a threefold purpose:
integrating elasto-kinematics into the kinematic design tool previously created by
the authors, integrating real-time vehicle dynamics simulation, and overcoming
the limitations of the traditional approach based on the superposition principle.
Finally, a comparison of the proposed model with one based on the lookup-table
and superposition principle is presented.

Keywords: Suspension · Kinematics · Elasto-kinematics · Bushing ·
Compliance · Simulation · Vehicle Dynamics

1 Introduction

Modern passenger cars require an intensive effort for the design of suspension elasto-
kinematic properties because of their significant impact on ride, handling, stability, and
steering feel. This importance is reflected in the vast engineering literature on the sub-
ject. The use of multi-body models, although the industry standard, is often considered
demanding due to the high level of detail required. Additionally, a multi-body model
is rarely suitable for real-time simulation. Instead, the development and application
of relatively simple, dedicated design and simulation tools are often considered more
practical, especially when designing a new suspension concept from the ground up. In
fact, the proposed methodology is being implemented in the kinematics calculation tool
developed by the authors [1]. This trend is evident in the related literature, where many
publications describe self-developed, specific methodologies that vary in complexity
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and computational approach. A multi-body model is commonly adopted for validation
in these cases. Generally, however, most papers in the literature tend to neglect one or
more factors of real-world design. In particular, they often overlook the non-linearity of
bushings or linearize the suspension within a range of small displacements [2–4].

On the other hand, it is well known that correct modelling of elastokinematics, taking
non-linearities into account, is crucial for several aspects: design [5], for handling [6] and
also for ride & comfort [7]. The integration of models characterizing elastokinematics
in vehicle dynamics simulations is a recurring topic, with the main challenge being the
speed of computation [8].

With regard to real-time simulations, the current trend in the literature shows an
approach based on modeling suspension compliance through artificial neural networks
(ANN) [9]. In this way, it is also possible to consider dynamic effects as opposed to a
quasi-static solver. However, a significant amount of data is needed to train the network,
which can be particularly complicated or even impossible during the design phase. The
purpose of this work is to provide a method for solving the suspension elastokinematic
problem using a general procedure that enables the design of any layout under any
combination of jounce and steering or load. Bushings can be described with real-world,
non-linear stiffness curves for all six degrees of freedom. They can be located on either
side of each suspension arm, i.e., on the chassis side and/or the wheel side. The axial
flexibility of a track rod can also be represented by means of equivalent, non-linear
bushings. The wheel bearing stiffness can be considered as well. Wheel movements,
hence variations of vehicle dynamics-relevant parameters like camber, side view angle,
toe, track,wheelbase, and vertical displacement, can be computed under any combination
of road loads, also considering steering due to rack translation. Loads through suspension
joints, components, and chassis pick-up points can also be computed.

In general, elastokinematics is implemented in vehicle dynamics simulations using
look-up tables, often derived from experimental data obtained through K&C or SPMD,
then applying the superposition principle [10]. This method is characterized by requiring
negligible computational resources.

One of the aims of this work is to show how the superposition principle, which can
work well in some cases, does not allow for a correct characterization of compliance
when large lateral and longitudinal accelerations are involved, as mentioned in [10]. A
comparison, through simulation, with a model based on look-up tables and the super-
position principle is proposed to show how vehicle behavior can change in a test with
large accelerations. The simulation is also carried out to demonstrate the possibility of
using the method proposed in this work in real-time.

2 Methods

Two types of elements are considered in this model, Fig. 1 a). The first type of element is
called “spring rod” and it is composed by a rodwith a given axial stiffness complemented
with a bushing at both ends. The second element is called “rigid element”: it is composed
by a rigid body connected to any number of bushings.

The above elements can be attached to each other or to the chassis. By combining
them it is possible to create any type of independent suspension. For example, in a
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double wishbone both arms will consist of a rigid element connected to the chassis by
two bushings and to the upright by one bushing. The upright will also be a rigid element
with three bushings, two of them are connected to each wishbone and one to the steering
tie rod; this one will instead be modelled using a spring rod element as in Fig. 1 b).

Fig. 1. a) General “spring rod” and “rigid element” of the suspension model. b) Example of a
Double Wishbone suspension built using the general elements.

Each bushing is defined with its position, orientation, and the “Reaction Forces
Vector” containing six functions that correspond to the three reaction forces andmoments
generated by the bushing as a function of the six deformations along or around its local
reference system. A ball joint can be represented by means of a bushing with very high
stiffness values. The suspension model is therefore composed of nonlinear equations
representing the balance of forces andmoments for each element as a function of bushing
deformations. The number of degrees of freedom hence equations is a function of the
type of elements used to compose the suspension: 6 degrees of freedom for each “rigid
element” and 7 for each “spring rod”. The model, solved through the Newton-Raphson
algorithm, enables the computation of the deformed configuration of the suspension as
a function of forces and moments applied at any point on the wheel. It has been fully
validated in [11] (currently under review).

A generic model of a double wishbone suspension was created as in Fig. 1 b), fea-
turing nonlinear, force-displacement bushing characteristics defined with a fifth-degree
polynomial to recreate their typically progressive, stiffening behavior.

The suspension model was implemented as a Matlab® function and transferred to
Simulink®. This second function was then linked to Vi-CarRealTime®. A dynamic
simulation has been carried out as a case study. The simulation is a corner-braking test
where the vehicle starts from a speed of 108 km/h and enters in a cornering with a radius
of 75m.A virtual driver model controls the steering. After 2 s the driver brakes following
a target deceleration of 10 m

s2
.

The purpose is the comparison of the above model with a simpler one based on the
superposition principle, where the effect of each force or moment on the suspension is
considered as orthogonally decomposed. The suspension deflection is calculated as a
simple summation of all effects of each external action.
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A basic vehicle model was therefore used. Using the proposed algorithm, a series
of 3-dimension look-up tables were generated in as a function of wheel travel, steer and
external force, each describing the effect that each external force has on the suspension’s
6 degrees of freedom.

The simulation has been carried out in the Vi-CarRealTime® environment with
Simulink® co-simulation, with an integration step of 0.001 s. Only the compliance of
the front axle was considered. To ensure that the simulation worked in real time, the
algorithm calculating the elastokinematics has been compiled in C and has been run at
500 Hz, assigning the calculation of each wheel in parallel to one core of an Intel® Xeon
Gold 6134 CPU.

Fig. 2. Simulation results for left-handwheelmovements: camber, toe, caster,wheelbase variation
and wheel travel. In red the comprehensive proposed model, in blue the model based on lookup-
table and superposition.

Fig. 3. Steering wheel angle over time in the simulation. In red the comprehensive proposed
model, in blue the model based on lookup-table and superposition.
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Figure 2 shows the simulation results for the movements of the left wheel (i.e. the
most loaded as it is a right-hand bend): camber, toe, caster, wheelbase variation and
wheel travel, comparing the two models.

Figure 3 represents the steering wheel angle over time. This is different between the
two simulations as the test is in closed loop, i.e. virtual driver maintains an imposed
trajectory and target deceleration.

3 Conclusion and Discussion

By using typical, strongly nonlinear force-displacement curves for the bushings, the
difference between the two models becomes particularly apparent, as previously seen
in Fig. 2, where large differences in track variation can be observed, even with opposite
signs. The differences seen in camber, caster, and toe can significantly influence the
handling and performance of the vehicle. This is also reflected in the varying values
of steering angle, which alters the feedback for the driver. The difference in toe angle
is opposite to the difference in steering angle, indicating a different contribution of
elastokinematics in the two models.

Separating the effects of the various actions and combining them through the super-
position principle does not lead to an accurate solution when large deformations occur,
and large forces act on the wheel. In normal driving, the differences between the two
models tend to be negligible. Even when examining the inner wheel during a turn, the
differences are less significant.

For performance applications, the need arises for an appropriate solver to accurately
calculate compliance effects, enabling an effective design and simulation processwithout
limitations. Elasto-kinematic properties can be computed for any combination of wheel
jounce and steering rack position, with the flexibility to change hardpoints or bushing
stiffness curves at any time.

Unlike a multi-body model, the proposed model is a quasi-static solver that is well-
suited for real-time applications, such as in a driving simulator. In this context, each
solution of the problem is close to that of the previous instant, allowing the Newton-
Raphson algorithm to converge in negligible time.

However, compared to a multi-body solver, dynamic features of rubber bushings,
such as damping and hysteresis effects, are not accounted for. Another limitation of this
model is the lack of an anti-roll bar model, which can transfer forces onto the suspension
system and affect its elastokinematics.

In this work, the proposed model has been implemented in the simulation with
its calculation frequency limited to 500 Hz, so that the vehicle model could operate at
1000Hz,which is considered theminimum frequency for real-time. Lowering the update
frequency of the elastokinematics does not significantly influence the vehicle model, as
the dynamic effects of the suspension are not accounted for here. It is expected that
with more powerful hardware, the suspension model frequency can also be increased to
1000 Hz.

In the author’s opinion, an analytical approach suitable for both design and real-time
operation is the best solution in the initial design phase of a vehicle with its suspension
and steering systems. Additionally, with the proposed model, it is possible to calculate
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the constraint reactions on each individual bushing, which is useful for FEM analyses,
for example something that cannot be done with a model based on look-up tables or an
artificial neural network.
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Abstract. The current state of Direct Yaw Control literature has reached an
advanced level, yielding compelling results in stabilizing vehicle behavior, and
enhancing overall performance. However, conventional approaches exhibit limi-
tations in addressing highly transient lateral dynamics, particularly during condi-
tions of rapidly increasing vehicle sideslip angles, leading to poor controllability
and reduced intuition for the driver. This paper introduces a novel extension to
the established yaw rate tracking technique, integrating the trivial yaw rate feed-
back control with a less conventional model-based feedforward term, comple-
mented by an innovative sideslip rate tracking loop. The primary objective of this
term is to smoothen vehicle cornering response, effectively dampening oscilla-
tions in the vehicle’s behavior without compromising time delays to driver inputs.
The intended outcome is not only enhancing safety but also delivering a more
intuitive and enjoyable driving experience. The effectiveness of the approach is
demonstrated by the results obtained through detailed Driver-in-Motion (DiM)
sessions.

Keywords: stability control · torque vectoring · sideslip rate control · driving
feel

1 Introduction

In recent years, the research field of vehicle control algorithms haswitnessed a significant
surge in research endeavors, particularly directed towards enhancing handling, perfor-
mance, and stability. Among the various performance-oriented algorithms, the Torque
Vectoring (TV) stands out as the most widely adopted, whose concept is to impose a
desired vehicle yaw rate (ωz) or sideslip (β), derived from an ideal reference model,
by generating an additional yaw moment (Mz) through proper control of actuators. A
comprehensive coverage on the state-of-the-art feedback (FB) and feedforward (FF)
algorithms is depicted in [1], therefore the authors will refrain from discussing further
references at this stage. This paper proposes a novel approach to TV algorithms, building
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upon the conventional yaw rate tracking method. The proposed method combines com-
monly used yaw rate feedback with a model-based feedforward control module and a
novel damping term aimed at minimizing overshoots of vehicle sideslip rate (β̇) (Fig. 1).
A comparison between the passive vehicle and the controlled one through the proposed
approach highlights how the latter results in a notably better damped and smooth vehicle
response during transient cornering, with significantly reduced overshoot and oscilla-
tions in the closed loop tracking, without inducing any additional delay in the vehicle
response. While discussing such topics, the focus is placed on how such novel algorithm
is specifically designed for production road cars: emphasis is set on debugging efficiency
and calibration simplicity, while ensuring high performance, which are crucial aspects
for the cost-effective development of luxury hypercars.

2 Control Scheme

Fig. 1. Torque vectoring control scheme.

2.1 Reference Model

Aligned with the application efficiency, a simplified nonlinear bicycle model combined
with a 4-parameter Pacejka tire formulation is selected to generate the reference vehi-
cle response, guaranteeing both modeling precision and simplicity. The mathematical
representation of this modeling approach can be described :

ω̇z = 1

Jz

(
Fy,f lf cos δ − Fy,rlr

)
(1)

where Jz is the vehicle rotational inertia around its z-axis, Fy,i the axles lateral force, δ
the wheel steer angle, and li the distance between the axle and the center of gravity.
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It is important to note that due to the presence of the lateral force, estimations of
longitudinal speed (vx), vertical load on the tires (Fz,i), and vehicle sideslip are essential.
While the first two can be estimatedwith reasonable precision using standard algorithms,
accurately estimating sideslip in all driving conditions remains a challenge.

To address this and enhance robustness while minimizing the calibration effort, the
sideslip angle is computed by integrating the vehicle model using measurements of
steering wheel angle and longitudinal speed. The dynamics are then evolved using Eq. 1
combined with the sideslip rate dynamics, derived by:

ay = 1

M

(
Fy,f cos δ + Fy,r

)
(2)

β̇ = 1

vx

(
ay − ωzvx

)
(3)

Here, ay represents the lateral acceleration and M the total mass of the vehicle.
Since the model is based on a non-linear tire formulation, saturation limits are inher-

ently considered, particularly with respect to the peak lateral force. Additionally, to
capture the combined tire behavior, a scaling factor is applied to Fy,i such that when
high slip ratios ki are experienced, the maximum lateral force is significantly reduced.

It is essential to emphasize that these equations describe the vehicle response to
a given input steering wheel angle at a specific longitudinal speed. If the model is
provided with ideal vehicle parameters, used as reference model calibration, it will yield
an idealized transient behavior. Hence, for a specific set of calibration parameters, a
unique model capable of producing a desired yaw rate and sideslip angle response can
be defined, thus covering feedforward modeling and closed-loop reference definition.

At this stage, it is crucial to not introduce any control variables into the formulation,
as this would alter the fundamental behavior, as the goal is to derive an ideal response
that can then be deliver by the vehicle through torque vectoring. Control variables will
be introduced in the next section for computing the feedforward action.

2.2 Feedforward Term

The feedforward action entails estimating the additional yaw torque needed to achieve
the reference behavior in an open-loop manner, relying solely on knowledge of both
the physical vehicle and the reference vehicle. The rationale behind this approach is
to compare the yaw torque produced by the passive vehicle with the yaw torque that
the target vehicle would generate under identical input conditions (such as steering
wheel angle and longitudinal speed). The difference between these values indicates the
adjustment that torque vectoring should apply to achieve the target response.

Enhancing Eq. 1 with the vehicle parameters and incorporating the torque vectoring
contribution, the yaw moment generated by the real vehicle is described by equation:

ω̇z = 1

Ĵz

(
F̂y,f l̂f cos δ − F̂y,r l̂r +Mz,FF

)
(4)
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Alternatively, the ideal vehicle response can be calculated by exclusively evaluating
Eq. 1 with the parameters of the target vehicle:

ω̇z = 1

J z

(
Fy,f lf cos δ − Fy,rlr

)
(5)

The required feedforward action can be computed by equating Eq. 7 and Eq. 8, as:

Mz,FF = Ĵz
J z

(
Fy,f lf cos δ − Fy,rlr

)
− (

F̂y,f l̂f cos δ − F̂y,r l̂r
)

(6)

Most of common state-of-the-art open-loop control methods are derived by mathe-
matically inverting the vehicle model based on a single specific reference variable, such
as yaw rate or sideslip angle. However, direct inversion is not always feasible due to the
transfer function realization matter, typically requiring a simplified tire model. Instead,
the proposed approach does not require model inversion and establishes a law that rep-
resents the response of the target vehicle whilst including multiple reference quantities,
thus allowing for enhanced yet straightforward and intuitive reference calibration.

2.3 Feedback Term

The innovative approach proposed here incorporates a feedback tracking system for the
sideslip rate in conjunction with the feedforward control. The primary advantage of this
method lies in the introduction of a damping element within the loop. This ensures an
improved driving experience for the driver by delivering a smoother transient response,
significantly reducing instances of over- or undershooting of the sideslip angle, as well
as avoiding snappy vehicle responses whilst offering an intuitive driving feeling.

For the sake of illustration, a proportional controller R1 = −|K1| is used. Such a
gain must be negative to ensure asymptotic stability, as it can be proven that the transfer
function between the yaw torque Mz and sideslip rate β̇ has a negative gain, thus:

Mz = −|K1|
(
β̇ref − β̇

)
(7)

Equation 3 and Eq. 7 can be combined to derive a more explicit control law:

Mz = |K1|
(
ωz,ref − ωz

) − |K1|
vx

(
ay,ref − ay

)
(8)

Equation 8 shows how the proposed control approach can be interpreted as a mul-
tivariable control system. The sideslip rate feedback inherently integrates a yaw rate
tracking loop with a lateral acceleration feedback, whose gain dynamically varies with
vehicle speed. However, this term has a negative gain opposing the yaw rate tracking
action, therefore necessitating a tradeoff between yaw rate tracking and the damped
transient responses.

It is crucial to underline that while tracking a reference yaw rate is pivotal for guaran-
teeingperformance, driving feel and safety are equally important. Theproposed approach
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introduces an additional feedback loop that tracks the yaw rate with a positive feedback
gain R2 = |K2|:

Mz,FB = (|K1| + |K2|)
(
ωz,ref − ωz

) − |K1|
vx

(
ay,ref − ay

)
(9)

This additional term serves two purposes: firstly, to introduce feedback robustness
by coping with modeling uncertainties, delays, and noise in the plant, and secondly,
as a means of calibration tradeoff. Indeed, by appropriately scheduling of the feed-
back controllers, more emphasis can be placed on yaw rate tracking during steady-state
conditions, while ensuring a more damped response during highly dynamic maneuvers.

While the first term of Eq. 9 represents a conventional yaw rate tracking loop, it is
the inclusion of this additional term that distinguishes this proposed approach as novel in
the literature. For the sake of illustration, proportional feedback gains and the linear tire
formulation are adoptedhere to derive the proof of asymptotic stability.However, through
extension, it is possible to prove stability for a non-linear model and more elaborate
control algorithms. By linearizing and combining Eqs. 1–3, an extended state-space
system can be derived, whereby the steering effect is considered a disturbance:

[
ω̇z

β̇

]
=

[
a11 a12
a21 a22

][
ωz

β

]
+

[
b1
0

]
Mz (10)

By deriving the sideslip dynamics with respect to time, the state-space system can
be extended to include the sideslip rate as a state variable:

⎡

⎣
ω̇z

β̇

β̈

⎤

⎦ =
⎡

⎣
a11 a12 0
a21 a22 0

a21a11 a21a12 a22

⎤

⎦

⎡

⎣
ωz

β

β̇

⎤

⎦ +
⎡

⎣
b1
0

a21b1

⎤

⎦Mz (11)

The stability condition for the state feedback gains can be derived using the Routh-
Hurwitz criterion applied to the feedback matrix described by Eq. 12, obtained by
substituting the control law Mz = |K2|

(
ωz,ref − ωz

) − |K1|
(
β̇ref − β̇

)
into Eq. 11.

A =
⎡

⎣
a11 − |K2|b1 a12 |K1|b1

a21 a22 0
a21a11 − |K2|a21b1 a21a12 a22 + |K1|a21b1

⎤

⎦ (12)

2.4 Tires Saturation

Although tires saturation has already been addressed in the feedforward modeling, the
feedback term also influences the total yaw torque required.While it is relatively straight-
forward to develop a model-based saturation approach for the first component, deriving
one solely for the feedback loop is not. In the interest of calibration efficiency and
robustness, the total yaw torque is saturated with a calibratable function of tire slip
ratios, steering wheel angle, and combined lateral acceleration vector.
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Fig. 2. NTC handling lap comparison, passive vs active; normalized states and control inputs.

3 Results and Conclusions

The proposed scheme has been very convincingly tested in numerous DiM and Dil-
HiL sessions. Due to the limited space available, the results provided here will not
focus on the comparison between the proposed and conventional approaches in terms of
objective manuevres that can only offer a snapshot of the vehicle envelope. Likewise,
elaborating on the brand’s DNA and its reflection on objective metrics mapped against
our experts’ subjective attributes targets would not be feasible in this limited space.
Instead the results presented (Fig. 2) focus on the benefits of the active vehicle on
outright track performance, an attribute consiously balanced against intuitive dynamc
responses, and benchmarked against the same vehicle optimally setup for track usage.
Given the prerequisites of such a setup, it is evident that the benefits in dynamics and
laptime (–3.1s) is the outcome of improved vehicle control and higher driver confidence.

The reference venue for the results presented is the Handling Track of the Nardo
Technical Centre [2], a fast and highly technical track with a diverse combination of very
high and low curvature corners aswell as challenging elevation variance. The log extracts
highlighting the delta in dynamics responses and driver effort through two particularly
demanding track segments, whereby the dynamic composure achieved as well as the
reference tracking ability of the proposed control scheme are evident.
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Abstract. An autonomous bicycle has been developed for repeatable
active safety tests of Advanced Driver Assistance Systems (ADAS). For
effective interaction with other test objects, precise bicycle trajectory
tracking control is essential. The repetitive nature of these tests suggest
an Iterative Learning Control (ILC) approach.

In this paper, we present a design of an ILC controller tailored for the
trajectory tracking problem of an autonomous bicycle. To illustrate the
performance of the controller, simulations have been conducted.

Keywords: Motion control · Iterative learning control · Trajectory
tracking

1 Introduction

Modern traffic safety is increasingly dependent on Advanced Driver Assistance
Systems (ADAS). Test track testing is required to ensuring effectiveness and
function of these systems. These tests are typically performed by replicating a
real traffic scenario, and may include many actors. For scenarios including bicy-
clists, a bicycle robot is required that can be controlled according to the specific
scenario be a specified trajectory. In response to the complexities of evaluating
ADAS in cycling-related scenarios, we have developed a robotic bicycle equipped
with self-balancing and path-tracking capabilities.

A common nature of ADAS test track test problem is repeatability. In prac-
tice, multiple test objects may be configured to repeat the same motion pro-
file to simulate a traffic situation. However, lackness of prior knowledge about
test uncertainties such as side wind, leaning pavement etc., might influence the
robustness and precision of the test.

The problem formulation fits the framework of iterative learning con-
trol(ILC), where adaptive feed forward is learnt from previous test interactions.
Iterative learning control have been proposed previously in the literature for
vehicles. In Kapania and Gerdes, [3], controllers are proposed for race car driv-
ing, where the lateral control is improved over the laps. Both a PD and an LQ
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controller were proposed. With a similar concept but more innovation, [4] uses
iterative learning scheme to realize an adaptive model predictive controller for
a rover on Mars. The dynamical model of the system is improved after each
iteration for better overall performance. Both of the papers reduce the lateral
errors using ILC controllers.

ILC algorithms acquire information from the previous errors and utilize them
to reduce the errors over iterations. For multiple-input multiple-output(MIMO)
and nonlinear systems, more techniques need to be combined with ILC to guar-
antee convergence. The challenge comes from the coupled dynamics in different
dimensions [5]. In this paper, to track the two-dimensional trajectory represented
in Cartesian coordinates (X(T ), Y (T )), we have decomposed the ILC trajectory
tracking problem into a longitudinal and a lateral motion ILC tracking problems.
This decomposition is based on several underlying assumptions related to lower
level controllers and no tyre side-slip.

Fig. 1. Bike schematics Fig. 2. Schematic Block of the roll tracking con-
troller

2 Method

In this section, we first discuss the problem formulation and setup. Models will
be given to describe the involved dynamics. Then the ILC framework will be
introduced with the aim to reduce the tracking errors for each iteration. A theme
across the approach taken is the separation in the dynamic states such that
simpler control strategies can be applied. We start with the roll dynamics and
its connection to the planar motion of the bicycle.

On the bicycle robot, tracking the planar position (X(T ), Y (T )) can be
achieved by lateral and longitudinal control using steering motor and drive motor
respectively. The lateral control controls the steering angle δ and longitudinal
control controls the rear wheel speed v.

The roll dynamics of the unstable bicycle Gϕδ is given by (16) in [1]

d2ϕ

dt2
=

g

hCM
ϕ +

av sin λ

bhCM

dδ

dt
+

(v2hCM − acg) sin λ

bh2
CM

δ (1)

where g = 9.81 m/s2 and other parameters are detailed in Fig. 1.
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The unstable bicycle is balanced by a cascaded controller, as illustrated in
Fig. 2. The inner balancing loop in Fig. 2 stabilzing the roll dynamics Gϕδ by
controlling the steering angle rate δ̇. The outer loop is a roll angle tracking
controller that tracks a roll angle reference ϕref . There is a physical connection
between the heading direction changes of the bicycle ψ̇ and the leaning angle
ϕ. Hence, the outer loop also influence the orientation of the bicycle. Under the
assumption of fast closed loops in Fig. 2, we may neglect the dynamics from roll
angle reference to heading. The model (1), can be used to obtain a function of a
steering angle δ and a roll angle ϕ in steady state. Hence, the reference steering
angle δref can be translated into reference roll angle ϕref and fed into the control
loop (Fig. 4).

Fig. 3. Tracking error definitions Fig. 4. The bicycle robot

The dynamics of position (X,Y ) relates to the heading ψ and the steering
angle δ:

Ẋ = v cos (δeff + ψ) Ẏ = v sin (δeff + ψ) (2)

To evaluate the tracking performance, tracking errors can be computed in bicycle
local coordinate, resulting in lateral and heading components (e1 and eψ in
Fig. 3):

ė1 = v(δeff + eψ) ėψ = ψ̇ − vK ≈ v(
δeff

b
− K) (3)

de1
dds

= (δeff + eψ)
deψ

dds
≈ (

δeff

b
− K) (4)

In these formulations, δeff = δ sin (λ) represents the effective steering angle ref-
erence δeff computed by the lateral controller, and K the path curvature. ds is
the travel distance, with v = ḋs as its time derivative. A key insight derived from
(4) is that, if the lateral controller only depends on position (X,Y ), or equiva-
lently ds, the lateral and heading errors e1 and eψ are both time-independent.
This is because δeff does not depend on time. This result is based on several
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assumptions on the model (2): non-slip tyre ground contact and ideal control
of steering angle δ. The slip-free assumption accords with the relatively slow
speed (<4 m/s) and the ideal control of steering requires fast enough balancing
and steering control loops, such that the transients can be neglected. We uti-
lized a time-independent controller from [2] to reduce the lateral error, denoted
as Klat(X,Y ). Then the learned ILC feedforward signal KδILC(T ) can be re-
indexed into KδILC(ds), independent of time T or speed v.

As another important factor, the longitudinal control relates to the test
progress. The rear wheel speed v determines how fast the bicycle runs and the
total duration of the iteration. Noticing path length to be roughly unaffected by
the path deviation due to the lateral controller, we assume the speed v is indepen-
dent on the lateral tracking errors e1 and eψ. This assumption allows us to split
the ILC trajectory tracking problem into a lateral ILC and a longitudinal ILC
problem. Integrated into the motor microcontroller, a local speed PID controller
tracks a given speed reference vref . By changing vref , ILC controller influences
the progress indirectly. The propulsion motor dynamics can be modelled simply
as resistor, inductor , voltage source and motor connected in series. The load of
the motor in longitudinal dynamics can be modelled as a Mass-Damping system
and a speed controller integrated in the motor driver tracks a reference speed
vref . A longitudinal controller Kv(X,Y, T ) = v0 + kve2(T ) tracks the progress
with a constant gain kv.

The ILC framework refines feedforward signals for steering angle δ and speed
v over repetitions. As the lateral path is independent of speed variations, the
lateral feedforward signals KδILC(ds) can also be indexed by the travel distance
ds, resulting in,

δref (X,Y ) = Klat(X,Y ) + KδILC(ds) (5)
vref (X,Y, T ) = Kv(X,Y, T ) + KvILC(T ) (6)

where KvILC(T ) is the ILC feedforward for longitudinal speed v. δref is con-
verted into ϕref and fed into the outer loop in Fig. 2 according to (1) in steady
state.

The ILC controllers, KδILC(ds) and KvILC(T ) are chosen to be standard
Proportional-Derivative controllers, as in e.g. [3]:

K+
vILC(T ) = vref (T ) − kvpe2(T ) − kvd(e2(T ) − e2(T − 1)) (7)

K+
δILC(ds) = δref (ds) − kδpe1(ds) − kδd(e1(ds) − e1(ds − Δds)) (8)

ds(T ) =
∫ T

0

vdt (9)

with the superscript + denotes the variable in the new iteration. Δds is a constant
longitudinal step to obtain equidistant samples. k�p and k�d denote the propor-
tional and derivative gains in the dimension � respectively. Zero-phase low-pass
filters have been further added on K+

vILC(T ) and K+
vILC(T ) for robustness. See

(16) in [3] for details (Fig. 5).
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Fig. 5. Control structure of the overall system

3 Result

To assess the effectiveness of the ILC framework (5)(6), we conducted a simula-
tion with the unstable linearized model of the bicycle in (1). A dynamical drive
motor model is also used for longitudinal dynamics, together with the modeling
of road inclinations and uneven road surfaces. Incorporating curves and straight
lines, an infinite-shaped path with equidistant waypoints profile was selected
for the simulation. The ILC speed controller is expected to dynamically adjust
vref to counteract longitudinal speed v variations induced by steering actions δ.
The results visualized in Fig. 6 show a progressive reduction in the root-mean-
square(RMS) error across multiple iterations. Initial offsets in heading ψ and
position (X,Y ) have also been imposed to create initial transients. In 5 itera-
tions, the RMS is reduced from 1.7 m to 0.6 m. The residual errors may be related
to the coupling of longitudinal speed (acceleration) and steering with the lower
level balancing loops (Fig. 2). They are neglected in our previous assumptions
regarding ideal control in (3).

The absolute values of the lateral error e1 and longitudinal error e2 are further
visualized in time domain, shown in Fig. 7. The errors during the beginning of
each iteration (0–10 s) were similar, because of the overwhelming transients of
the balancing and longitudinal speed control loops. While improvements can be
seen after this start-up, where the maximum absolute errors are reduced from
1.49 m to 0.67 m and from 1.55 m to 0.73 m in e1 and e2, respectively.

Fig. 6. Validation tests
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Fig. 7. |e1|, |e2|, δ and v in time domain.

4 Conclusions

This paper presents the design of a MIMO Iterative Learning Controller specif-
ically tailored for the trajectory tracking of an autonomous bicycle. By assum-
ing ideal control over steering and neglectable balancing transients, the task
is effectively divided into longitudinal and lateral sub-problems. The lateral-
longitudinal error separation is the crucial component in this approach. Simu-
lation results demonstrate the effectiveness of this approach. Under the typical
position dependent disturbances from slopes and resistances, the ILC controllers
could reduce the errors over repeated test iterations.

However, the authors see more challenges in real application. Both the steer-
ing ILC controller KδILC and the path-tracking controller [2] are based on lin-
earization and may fail with large e1 or eψ. Moreover, the real roll-longitudinal
coupling may be more complicated than what we have modelled.
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Abstract. We present a novel control-oriented motorcycle model for
nonplanar racetracks and use it for computing racing lines. The pro-
posed model combines recent advances in nonplanar road models with
the dynamics of motorcycles. Our approach considers the additional cam-
ber degree of freedom of the motorcycle body with a simplified model of
the rider and front steering fork bodies. We demonstrate the effective-
ness of our model by computing minimum-time racing trajectories on a
nonplanar racetrack.

Keywords: Vehicle Dynamics · Motorcycles · Road Models

1 Introduction

Control-oriented vehicle models have seen widespread use for trajectory planning
in consumer and motorsport applications. However, many such models have
been limited to simple road geometry. This does not adequately capture vehicle
behavior for safety-critical or high performance maneuvers and these limitations
result from the lack of suitable road models [4].

Early literature [5] developed 3D road models for ribbon-shaped surfaces,
which may curve and twist in 3D but are cross-sectionally linear. These works
focused on four-wheeled vehicles, not motorcycles in part due to their more
complicated dynamics and ability to camber. Later work [3] applied these road
models to motorcycles. In [2] the authors developed a general 3D road model
applied to cars. In this paper we extend our road model to motorcycles. We
develop a procedure to extend [2] to vehicles which do not remain tangent to the
road surface. We apply this to a particular motorcycle model which we use to
compute racelines: periodic minimum-time trajectories around a 3D racetrack.

This paper is outlined as follows: In Sect. 2 we introduce a kinematic motor-
cycle model that allows for extension of our road model. We develop motorcycle
dynamics and complete the motorcyle model in Sect. 3. We provide an example
of the model’s use for raceline optimization in Sect. 4.
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(a) Rear view of motorcycle (b) Side view of motorcycle

Fig. 1. Motorcycle geometry for nonplanar road model.

2 Road Model Extension for Motorcycles

Motorcycles are inherently multi-body systems comprised of wheels, front and
rear suspension, rider, chassis, and more [7]. Control-oriented models invariably
simplify some components to capture controllable behaviour while omitting finer
details. We develop a motorcycle model kinematically similar to [3]. We neglect
suspension motion and assume that there exists an axis fixed relative to the
chassis of the motorcycle which remains a constant distance above the road: the
“camber axis” shown Fig. 1a.

The camber axis will precisely link nonplanar road surface and motorcy-
cle geometry. We use it to introduce a body reference frame along the camber
axis and directly below the center of mass (COM), shown in Fig. 1b with the
orthonormal basis eb1,2,3. Similarly, we introduce a motorcycle frame fixed to the
motorcycle chassis at the height of the COM with basis em1,2,3. We allow the
COM itself to move laterally in the motorcycle frame due to rider motion as
shown in Fig. 1a.

We follow the tire convention of [6] illustrated in Fig. 2. The tire camber
angle ct is the angle between the tire plane of symmetry and the body frame
vertical eb3, and the steering angle γt is the angle between the eb1 direction and
the intersection of the tire plane of symmetry with the eb1 − eb2 plane. These
angles are dependent on camber angle c, rake angle ε, and the steering angle γ
about the steering axis. We use superscripts f and r in place of t for quantities
specific to the front and rear tire respectively.

We assume the rear tire is unsteered, as a result γr = 0 and cr = c. For the
front tire, we have [3]:

cf = sin−1 (sin(c) cos(γ) + cos(c) sin(ε) sin(γ)) (1a)

γf = tan−1

(
cos(ε) sin(γ)

cos(c) cos(γ) − sin(c) sin(ε) sin(γ)

)
. (1b)
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Fig. 2. Tire diagram, with the tire cross-
sectioned through its plane of symmetry.
Tire camber and steering angle ct and γt

are positive as shown, and differ from the
steering angle of the motorcycle steer-
ing assembly and camber angle of the
motorcycle body. Tire forces F t

x,y,z are
discussed in Sect. 3.3.

Fig. 3. Road surface model schematic.
The surface is defined by xp(s, y) and a
vehicle reference location with the basis
eb
1,2,3 is located at a fixed normal offset n

from the surface.

We leverage the 3D road surface model proposed in [2]. With our road model,
vehicle position is described by the surface parameterization xp(s, y) and normal
offset n. Orientation described by angle θs, and this is shown in Fig. 3. The main
results are: [

ṡ
ẏ

]
= (I − nII)−1 J

[
vb
1

vb
2

]
(2a)

θ̇s = ωb
3 +

(xp
ss × xp

s) · epn
xp
s · xp

s
ṡ +

(
xp
yy × xp

s

) · epn
xp
s · xp

s
ẏ (2b)

[−ωb
2

ωb
1

]
= J−1II (I − nII)−1 J

[
vb
1

vb
2

]
(2c)

[−ω̇b
2

ω̇b
1

]
≈ J−1II (I − nII)−1 J

[
v̇b
1

v̇b
2

]
. (2d)

Here vb
i and ωb

i are the ISO body frame components of a vehicle’s linear and
angular velocity. I and II are the first and second fundamental forms of xp,
with partial derivatives of xp denoted by subscripts. J is the Jacobian between
the body frame and xp. Implicit in this road model is that the vehicle remains
tangent to and in contact with the road, for instance that wheelie and stoppie
behaviour of a motorcycle is prevented, and that the curvature of the surface
is gradual relative to the length of the motorcycle. The former is considered
explicitly later in this paper, while the latter is always subjective to the road
and motorcycle considered.
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For a motorcycle, we apply this to the body frame eb1,2,3 of the motorcy-
cle introduced in Fig. 1. However, additional variables c and d are necessary to
describe its motion and behaviour, necessitating additional dynamic considera-
tions compared to [2], which we introduce next.

3 Motorcycle Model

We derive our motorcycle model as follows:

1. Compute the momentum and time rate of change thereof of the system
2. Use 1) and Newtonian mechanics to obtain net force and moment
3. Equate 2) to the force and moment from tire forces, gravity, and drag

This process results in a differential algebraic equation of the form:

ż = f(z, u, a) 0 = g(z, u, a), (3)

where g captures the force and moment equalities of step 3). u is a set of inputs
while z and a are differential and algebraic states respectively. The components
of z, a and u are:

z = {s, y, θs, vb
1, v

b
2, ω

b
3, c, ċ, d, ḋ} (4a)

a = {v̇b
1, v̇

b
2, ω̇

b
3, c̈, F

f
z , F r

z } (4b)

u = {γ, d̈, F f
x , F r

x}, (4c)

where F f
z and F r

z are the front and rear tire normal forces and F f
x and F r

x are
the longitudinal force of the same tires. Equation (2) provides ṡ, ẏ and θ̇s for ż.
Other elements of ż are elements of z, u, or a.

3.1 Net Force from Mechanics

To obtain g we first determine the momentum and rate thereof of the motorcycle,
beginning with the position of the COM relative to our reference location:

rcom = em3 (h − r) + em2 d. (5)

Basis vectors em1,2,3 are related to eb1,2,3 via the camber angle c. Time derivatives
of eb1,2,3 follow from standard rotation theory and ωb

1,2,3. These expressions are
omitted for brevity. As a result, the linear velocity of the center of mass is:

vcom = vb +
d

dt
rcom = vb + ċ∂crcom + ḋ∂drcom +

∑
k=1,2,3

d

dt
(ebk)∂eb

k
rcom, (6)

where the rcom derivative was expanded by using the chain rule.
The net force on the vehicle is then:

F =
d

dt
p = m

d

dt
vcom. (7)

Deriving d
dtvcom involves one more round of differentiation with additional

derivatives of vb
1, vb

2, ωb
3, ċ, and ḋ in the chain rule. The result is a single expres-

sion with terms that include either eb1, e
b
2, or eb3. Grouping all terms that include

ebk then provides the net force on the vehicle in direction ebk.
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3.2 Net Moment from Mechanics

For the angular momentum and net moment on the motorcycle we use a function-
ally identical approach with two main differences: First, we assume the moment
of inertia matrix of the motorcycle and rider remains constant, i.e. rider dis-
placement is small. Second, momentum is contributed by the spin of both the
front and rear tires, approximated as:

lt =
(
ωt

)
Item2 . (8)

As in the previous section, deriving the net moment on the motorcycle involves
derivatives and may be automated using symbolic algebra on a computer.

3.3 Force and Moment Laws

We complete our motorcycle model by considering several force models.
Gravitational forces on the motorcycle are fully determined by the orientation

of the body frame, in turn determined by s, y, θs and found in [2].
Aerodynamic forces are often modeled with steady state equations based on

vehicle speed, which are straightforwards to consider.
We use the tire model proposed in [6, ch. 11]. Full equations and parameters of

the tire model may be found in Equations (11.40) through (11.59) and Table 11.1
of [6]. Longitudinal and normal tire forces are treated as inputs, with lateral tire
force a function of these inputs, camber angle, and slip angle of the tire, which
follow from variables in z, u, and a, with slip angle defined in [6]. Importantly,
the tire forces F t

x,y,z are relative to the road (Fig. 2) and must be transformed
appropriately to the body frame, e.g. the normal force produces a moment about
the center of mass when the motorcycle cambers.

In total, we can compute expressions for the net force and moment as a result
of tires, aerodynamics, and gravity. We obtain g in (3) by equating these to the
force and moment expressions that resulted from mechanics, which completes our
vehicle model. Other sources of force and moment may be seamlessly considered
by adding additional equations which model their effects.

4 Results

The core result of our work is the general road model applicable to motorcycles.
To illustrate its use, we computed a raceline for a motorcycle on a racetrack.
This is a well-studied problem [3] with the key difference being that our road
model allows more general road surfaces to be considered. We set up the surface,
motorcycle model, and raceline problem in CasADi [1], which was solved using
IPOPT [8].

Racetrack and raceline are shown in Fig. 4. The 650 m long track includes
many nonplanar features such as quarter-pipe turns, gullies, and undulating hills.
Our method achieved a lap time of 31.1 s, with 33 s of compute time to converge
to local optimality on an 11th Gen Intel® CoreTM i7-11800H @2.3 GHz.
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Fig. 4. Simulated nonplanar racetrack and motorcycle raceline. The graphical
motorcycle model was made by Sketchfab user nouter2077 and is CC BY 4.0.

5 Conclusion

We extended the interpretation of a general nonplanar road model to apply
it to the dynamics of motorcycles. In the process we added considerations for
motorcycle camber and rider motion, and their impact on motorcycle dynamics.
We discussed how the flexibility of the road model allows more general road
geometry to be considered and used our model to generate time-optimal racelines
on a complex nonplanar racetrack.
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Abstract. This paper investigates potential of energy efficiency improvement for
electric vehicle (EV) equipped with unequal front/rear-axle e-motors and discon-
nect clutches under straight-line driving conditions. First, a static optimization
of front/rear torque distribution is performed for various driving cycles, which
provides insights into energy efficiency gains and optimal powertrain operation
including optimal torque switching curve for two- and four-wheel drive modes.
Disconnect clutches enable inactive motors to be switched off when operating in
the 2WD mode to avoid their drag losses. A dynamic programming (DP)-based
optimization of torque vectoring control trajectories is carried out to find the glob-
ally optimal energy saving potential. For clutch durability reasons, the number
of clutch state changes is minimized along with energy consumption. Finally, a
rule-based (RB) control strategy is proposed and verified against the DP Pareto
optimal frontier benchmark for different certification driving cycles.

Keywords: Electric Vehicles · Four-wheel Drive · Unequal Motors · Disconnect
Clutches · Energy Efficiency · Torque Vectoring · Optimization · Control

1 Introduction

Electric vehicles (EV) can conveniently be realized in multiple e-motor configurations.
These configurations are characterized by control redundancy that can be exploited to
improve vehicle dynamics [1] and reduce energy consumption [1, 2]. For instance, the
energy efficiency can be improved for straight-line driving by using two-wheel-drive
(2WD) mode for low-torque demands, while switching to all-wheel drive (AWD) mode
for mid-high torque demands [1]. Further energy efficiency gains can be achieved by
avoiding the drag losses of inactive motors in the 2WD mode through disconnecting
those motors via dog clutches [3].

EV torque vectoring literature is mostly focused on powertrains with no disconnect
clutches and equal motors [4]. It is analytically proven in [5] that, under those conditions,
the equal front/rear torque distribution is optimal in the AWD mode occurring above
a vehicle velocity-dependent torque demand switching curve. When concerning the
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use of disconnect clutches, the optimization problem becomes dynamic, and a global
optimum can be found offline by using a dynamic programming algorithm [6, 7]. The
DP benchmark can closely be approached by using rule-based (RB) control [6].

When concerning unequal front/rear motors, the optimal control problem becomes
more complex, and it is solved in [8, 9] for the no-disconnect case. The main aim of this
paper is to extend the numerical optimization and RB controller design studies from [6]
to the disconnect case, in order to gain insights into optimal behavior and check the RB
strategy applicability in this more general design task.

2 Model

The considered EVpowertrain consists of two unequal pairs of e-motors (M/G1 of 55 kW
at front axle, and M/G2 of 111 kW at rear axle), which are represented by the efficiency
and maximum torque maps shown in Fig. 1b and c, and adopted from an extended-range
EV from [12]. The motors are connected to wheels via single-speed transmissions and
dog clutches (Fig. 1a).

The EV powertrain is represented by a backward-looking model [6, 11], which
apart from the kinematic relations accounts for the tire and transmission losses. The
front/rear torque distribution is defined by the torque distribution control input σ : τw,f =
στw,t , τw,r = (1 − σ)τw,t, where τw,t is the total torque demand calculated from the
vehicle longitudinal dynamics model fed by the velocity/acceleration profile defined
by a simulated driving cycle. The only dynamics within the model relates to clutch
state equation c(k + 1) = [0 0 0 0]·c(k) + I·cR(k), where c and cR are binary vectors
of clutch state and clutch state reference, respectively, and k is the sampling step. The
model includes c- and cR-related e-drive transient losses corresponding to clutch connect
synchronization and clutch-disconnect motor stopping process [6, 11]. The vehicle mass
is increased compared to model in [6] to account for larger-size rear motors and provide
wider-torque range utilization of motors for given, certification driving cycles.

3 Optimization and Control

The static optimization relies on a search over a grid of σ values, which is aimed at
minimizing the battery power consumption. The results shown in Fig. 2a for the clutch
disconnect case suggest that it is optimal to use the weaker, front motors (σ = 1; FWD) if
the torque demand is lower than the torque switching curve (cyan; cf. EREVoptimization
results in [12]), which is close to the maximum torque curve for the FWD mode (red).
Otherwise, all-wheel drive (AWD) is optimal, where σ mostly takes values in the range
from 0.2 to 0.5, thus meaning that the torque is distributed towards stronger, rear motors.
When not considering the disconnect clutches, the optimized σ-maps turn out to be very
similar to those shown in Fig. 2a. These results contrast with those obtained for equal
motors (M/G1 all; [10]), where equal distribution (σ = 0.5) is optimal for AWD mode
and the torque switching curves are distinctively different depending on whether the
disconnect clutches are used or not. This is partly because the equal torque distribution
is not feasible for high torque demands in the case of unequal motors (those larger than 4
τm,1,maxh1, see Fig. 2a). For instance, the torque distribution ratio at the maximumwheel
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torque demand is determined byσmax = 2τm,1,maxh1/(2τm,1,maxh1+2τm,2,maxh2), which
gives σmax = 0.2317.

Fig. 1. Principal schematic of EV powertrain with unequal front/rear e-motors (a), given by
efficiency maps and maximum torque curves (b, c).

Fig. 2. Optimized torque distribution ratiomap for clutch disconnect case (a) andDP optimization
results corresponding to control setting denoted by orange-circle point in Fig. 4a.

Using the disconnect clutches introduces clutch state dynamics and related transient
losses in the optimization problem. To establish a globally optimal benchmark for control
strategy design and verification, offline optimizations of control trajectories σ (k) and
cR(k) are performed by using the dynamic programming (DP) algorithm from [6, 10]. For
the clutch durability and also drivability reasons, the energy consumption minimization
cost function is extended with a term that penalizes the number of clutch state changes,
with the corresponding weighting factor Ksw [10].

The RB control strategy, which is originally proposed for the powertrain with equal
motors [6, 11], is somewhat adapted for the considered powertrain with unequal motors.
It sets the AWD operating mode with the fixed σ = 0.3 (instead of σ = 0.5) for torque
demands above the torque switching curve (cyan), while setting the FWD (σ = 1), oth-
erwise (see Fig. 2a). The FWDmode is further divided into regions where the opposite-
axle (rear) e-motors are connected (FWD-1) or disconnected (FWD-0), with the note
that unlike in [6, 11] there are no separate switching curves for these two cases. This rule
is motivated by DP optimization results shown in Fig. 2b, which indicate that the RWD
clutches should remain connected in the FWD mode under low-velocity (urban-like)
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condition, in order to reduce the clutch switching frequency including related transient
losses. The FWD-1/FWD-0 boundary curve (τ ∗

b,d ; ; green) has a two-parameter expo-
nential form and it is supplemented with a hysteresis (τ ∗

b,dh; ; magenta) to suppress the
number of clutch state changes [6, 11].

4 Results

Different control strategy variants are simulated over various certification driving cycles
and compared based on the battery energy consumption (Table 1). The baseline strategy
without clutch disconnect functionality, given in the first row of the table, simply iterates
σ over the fine-resolution set {0, 0.01, …, 1} at each simulation time step, to find the
optimal value minimizing the energy consumption. Narrowing σ to only three discrete
values {0, 0.35, 0.97}, selected on the basis of the static optimization results from
Fig. 2a, leads to around only 1% higher energy consumption while simplifying the
implementation. Adding clutch disconnect option within the static optimization in each
simulation time step, and thus enabling FWD-0 and RWD-0 operating modes, improves
the energy consumption up to 6% when compared to the baseline case (the third row
of the table, cf. Similar results given in [10, 11] for the case of equal motors). The DP
optimization accounting for transient losses further improves the results, with the percent
margin shift of up to 2% for dynamic driving cycles (UDDS and US06), and negligibly
(around 0.2%) for quasi-stationary cycles (HWFET and NEDC).

Table 1. Battery energy consumption [kWh] of control allocation and DP for various certification
driving cycles.

METHOD Disconnect WLTP UDDS US06 HWFET NEDC

Control allocation
(σ ∈ {0,0.01, . . . , 1})

No 4.5189
(0%)

1.9941
(0%)

2.8620
(0%)

2.9525
(0%)

1.9178
(0%)

Control allocation
(σ ∈ {0,0.35,0.97})

No 4.5521
(+0.7%)

2.0089
(+1.2%)

2.8949
(+1.2%)

2.9703
(+0.6%)

1.9309
(+0.7%)

Control allocation
(σ ∈ {0,0.35,1})

Yes 4.3777
(−4.1%)

1.9904
(−2.6%)

2.7827
(−2.6%)

2.7827
(−5.9%)

1.8126
(−5.7%)

DP, *Ksw = 0
(σ ∈ {0,0.1, . . . , 1})

Yes 4.3130
(−4.6%)

1.9064
(−4.4%)

2.7547
(−3.7%)

2.7713
(−6.1%)

1.8048
(−5.9%)

* Ksw = 0 relates to case of no clutch switching penalization within DP optimization.

Figure 3 shows the DP Pareto optimal frontiers (blue circles) obtained for σ ∈
[0, 0.1, ..., 1] and a wide range of Ksw values. The same figure shows the Pareto filtered
frontiers corresponding toRBcontrol strategieswith andwithout hysteresis included (see
[6, 11] for methodology details). The battery energy consumptions are expressed relative
to the right-mostminimum-energy Pareto frontier point (Ksw = 0). The number of clutch
state changes can be reduced by up to 80% via increase of Ksw with a minor increase of
energy consumption. Introduction of hysteresis brings consistent improvement of results,
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which is most pronounced for the dynamic driving cycles (UDDS and US06; Fig. 3).
The full-RB vs. DP relative energy consumption increase around the Pareto frontier
knee point (i.e., in the region where the clutch switching frequency is well suppressed)
is typically around 2%. This is somewhat inferior to the performance of the powertrain
with equal motors, where the energy consumption increase margin is around 1% (see
comparative results shown in Fig. 4). This implies that the expected benefit of predictive
control would be higher for the case of unequal motors (see [6, 10, 11] for details of
model predictive control approach and related results).

Fig. 3. Pareto optimal frontiers obtained by DP optimization, and RB control with and without
hysteresis (a realistic non-zero road slope profile α is optionally appended to WLTP cycle).

Fig. 4. DP and RB control Pareto optimal frontiers for powertrains with unequal (Fig. 3) and
equal motors [11] (UDDS driving cycle).

5 Conclusion

An analysis of energy-efficient straight-line driving torque vectoring for electric vehicles
equipped with unequal front/rear e-motors and disconnect clutches has been presented.
The emphasis was on comparison of control strategy specifics and related performance
with respect to the basic case of equal motors.
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Control allocation optimization has revealed that there is an optimal velocity-
dependent and clutch state-unaffected torque switching curve, below which it is optimal
to operate with front (weaker) motors only (front-wheel-drive, FWD), while all motors
are activated, otherwise (all-wheel-drive, AWD). The optimal values of AWD front/rear
torque distribution ratio lie in the range from 0.2 to 0.5 depending on the torque demand
and velocity (unlike the value of 0.5, i.e. equal distribution, in the case of equal motors).
It has been shown that the AWD torque distribution ratio can be fixed to a single value
(0.35 for the particular vehicle) and still approach the optimal results (with the energy
consumption increase margin of up to 1%).When enabling the clutch disconnect option,
the energy consumption can be reduced by up to 6%, which is similar margin as in the
case of equal motors.

Apart from the energy consumption criterion, the number of clutch state changes has
also been considered for clutch durability reasons. Globally optimal and offline-obtained
dynamic programming (DP) results have shown that the number of clutch state changes
can be reduced by up to 80% with negligible influence on energy consumption. The pre-
viously proposed rule-based (RB) control strategy has been adjusted for the powertrain
with unequalmotors. TheRB control performance approaches theDP benchmark energy
consumption within the margin of 1% for a majority of considered driving cycles, while
in the worst-case of UDDS cycle this margin increases to around 2%. Although small,
these values are about doubled when compared with those observed for the powertrain
with equal motors, which leaves a certain room for performance improvement through
applying more sophisticated predictive control strategies.
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Abstract. A safe lane-keeping controller is designed using a control
barrier function (CBF) which ensures that if the vehicle starts between
the lane boundaries then it does not leave the lane. The safety filter is
applied on the top of a nominal path-following controller of the kinematic
single-track model in order to modify the control input when the vehicle
gets close to the boundary of the safe set in state space. Numerical sim-
ulations and phase portraits are used to demonstrate the performance of
the proposed safety-critical controller.

Keywords: Automated vehicles · Control barrier function ·
Lane-keeping control · Safety critical control

1 Introduction

This paper presents the design of a safety-critical lane-keeping controller for
passenger cars, which ensures that the vehicle is able to follow the lane center-
line without leaving the lane boundaries. In order to stabilize the path following,
a simple feedback controller can be set up that will aim to reduce the lateral
position and yaw angle errors of the vehicle with respect to the lane center-line.
However, to ensure that the path following can be achieved without the vehicle
exiting the lane boundaries even in the presence of large initial deviations, the
nominal controller has to be extended with some additional considerations.

In particular, we use a control barrier function (CBF) [1–4] to define a safety
condition of the vehicle staying inside the lane boundaries. Based on this, a safe
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Fig. 1. Kinematic bicycle model with a bounding box excluding the rear overhang.

controller can be designed, which modifies the input of the nominal controller in
a minimally-invasive fashion, in order to keep the system inside the safe set in
state space, thereby ensuring safe lane-keeping of the vehicle.

The rest of the paper is organized as follows: in Sect. 2, the vehicle model and
the nominal stabilizing controller are introduced. In Sect. 3, we present a brief
overview of safe controller design using control barrier functions and define the
safe set used for the lane-keeping problem. In Sect. 4, the resulting safe controller
is analyzed using numerical simulations and phase portraits, highlighting the
improvements over the case when only the nominal controller is used. Finally,
Sect. 5 concludes the paper and gives an outlook for future research directions.

2 Vehicle Model and Nominal Controller

The kinematic bicycle model in Fig. 1 is applied in our analysis (see [5] for
details), with the consideration of a straight-line reference path along the x-
axis. The governing equations of the vehicle model are

ẋR = V cos ψ , ẏR = V sin ψ , ψ̇ =
V

l
tan δs , (1)

where the state vector x =
[
xR yR ψ

]� includes the coordinates of the rear axle
center point xR and yR, and the yaw angle ψ. The vehicle speed V is considered
to be constant and l denotes the wheelbase. We use u = tan δs as the control
input, where δs is the steering angle. This way the system can be written in the
control affine form ẋ = f(x) + g(x)u.

We utilize a nominal steering controller of the form

u = kd(x) = −PyyR − Pψψ, (2)

to stabilize the path-following, where Py and Pψ are the control gains. To ensure
that the vehicle does not leave the lane boundaries, the vehicle model is extended
with the bounding box of width W and length L shown in Fig. 1. For simplicity,
the bounding box includes the wheelbase and the front overhang of the vehicle,
while the rear overhang is neglected. In the next section, we extend the nominal
controller to guarantee that if the bounding box starts inside the lane boundaries
then it stays inside those boundaries.
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3 Safety Filter with Control Barrier Function

In this sections we briefly review the theory behind control barrier functions
(CBFs) and then apply it to the lane-keeping problem.

3.1 Control Barrier Function Background

Following [4], we define a safe set S in the state space X = R
2 × (−π, π) and

define a control barrier function h : X → R such that it is non-negative on S:

S = {x ∈ X : h(x) ≥ 0}, (3)

while we require h(x) = 0 ⇒ ∇h(x) �= 0. Then it can be proven that S is forward
invariant (i.e., ∀x(0) ∈ S ⇒ x(t) ∈ S,∀t ≥ 0), if there exist a class-K function
α : R≥0 → R≥0 such that

sup
u∈U

(∇h(x)f(x) + ∇h(x)g(x)u)
︸ ︷︷ ︸

ḣ(x,u)

≥ −α(h(x)), ∀x ∈ S, (4)

where U denotes the set of available control inputs. To find a controller that devi-
ates from the nominal controller kd(x) as little as possible while still satisfying
the safety condition (4), one may construct a quadratic program (QP):

k(x) = argmin
u∈U

‖u − kd(x)‖2, s.t. ḣ(x, u) ≥ −α
(
h(x)

)
. (5)

Considering a single unbounded input (as in (1) we have u ∈ R ⇔ δs ∈ (−π
2 , π

2 )),
one may obtain an analytical solution to the QP (5) as

k(x) =

⎧
⎪⎨

⎪⎩

min{kd(x), ks(x)}, if ∇h(x)g(x) < 0,

kd(x), if ∇h(x)g(x) = 0,

max{kd(x), ks(x)}, if ∇h(x)g(x) > 0,

(6)

where

ks(x) = −∇h(x)f(x) + α(h(x))
∇h(x)g(x)

. (7)

This is often referred to as a safety filter.

3.2 Safe Boundary

In order to define the safe set for the lane-keeping scenario, we start by consid-
ering lateral position and yaw angle combinations for which the (bounding box
of the) vehicle does not cross the lane boundaries. If we denote the half-width of
the lane with ymax and assume that the yaw angle does not exceed ±π

2 (i.e., the
vehicle is moving to the positive x direction), then the conditions for the front
left and front right corners of the bounding box to stay inside the lane are

yR + L sin ψ ± W

2
cos ψ ≶ ±ymax, (8)
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Fig. 2. Safe set in the plane of the yaw angle and lateral position.

where +ymax denotes the y coordinate of the left boundary of the lane, while
−ymax corresponds to the right boundary of the lane. Similarly, the rear left and
rear right corners of the bounding box stay inside the lane if

yR ± W

2
cos ψ ≶ ±ymax. (9)

We remark that for the kinematic bicycle model (1) without rear overhang, if
the vehicle starts within the lane boundaries, then the condition (9) can only
be violated after the condition (8) has already been violated. Nevertheless, (9)
is still important to ensure that initially the vehicle is located between the lane
boundaries. The contour lines corresponding to the four corners of the bounding
box touching the lane boundaries are plotted in black in Fig. 2 and the safe set
is the area encapsulated by these curves.

However, the non-smooth corners of the resulting safe set make it not suitable
for direct safety filter design. In order to define a smooth CBF over the safe set,
we first linearize the inequalities in (8) and (9) around ψ = 0. This way the
safe set is approximated with a parallelogram in the phase plane, see the blue
parallelogram in Fig. 2. Then we define the safe set to be used for the construction
of the safety filter as the largest ellipse that can be inscribed in this parallelogram
(shown in green in Fig. 2), resulting in a smooth inner approximation of the exact
safe set.

It can be shown that the largest ellipse inscribed in a parallelogram touches
the parallelogram at the midpoints of its edges. This ellipse can be written as

F (ψ, yR) = aψ2 + bψyR + cy2
R + d, (10)

where the parameters a, b, c and d are

a = − (W − 2 ymax)2

4
, b = − (W − 2 ymax)2

2L
, (11)

c = − (W − 2 ymax)2

2L2
, d =

(W − 2 ymax)4

16L2
. (12)

Based on this approximation, the safe set for the design of the safety filter is
defined as

S = {yR ∈ R, ψ ∈ (−π, π) : F (ψ, yR) > 0}, (13)
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Fig. 3. Phase portraits of the controlled vehicle using (a) the nominal controller without
the safety filter and (b) the safety-critical controller.

and the corresponding CBF is

h(x) = F (ψ, yR). (14)

Using h(x) in (14) and the linear class-K function α(r) = γr, the safety filter
can be calculated according to (7).

4 Results and Discussion

Figure 3 shows multiple trajectories starting from different initial conditions in
the (ψ, yR) plane (without and with the safety filter), for parameter values
l = 2.7 m, L = 3.6 m, W = 1.8 m, ymax = 1.75 m and V = 20 m/s. The control
parameters are Py = 0.0068 m−1, Pψ = 0.27 and γ = 5 . Red dashed lines show
the lane boundaries, while the safe set S is bounded by the green ellipse.

It can be seen in Fig. 3(b) that the controller with the safety filter is able to
keep the vehicle within the safe set for all initial conditions that are already inside
the safe set (see the trajectories in black). In addition, even for the trajectories
starting outside of the safe set (colored in gray), the CBF controller greatly
reduces the lateral displacement of the vehicle across the lane boundaries. The
blue curves in Fig. 3(b) show the switching boundaries, where the controller
switches over to the safety filter according to (6). It can be seen that using the
selected control gains, the nominal controller in itself is able to keep a large part
of the safe set forward invariant and the safety filter is only required near the
boundaries of the safe set.

The benefits of the safety filter are further illustrated by the numerical sim-
ulations in Fig. 4(a) and (b) (the corresponding red and green trajectories are
highlighted in Fig. 3), where the nominal controller in itself violates the safety
constraint (panel (a)), while when the safety filter is applied in panel (b), the
vehicle is able to return to the center without crossing the lane boundaries.
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Fig. 4. Numerical simulations (a) without and (b) with the safety filter enabled.

5 Conclusion

A new approach to lane-keeping control by using a safety filter based on con-
trol barrier functions was presented to ensure that the vehicle does not cross
the lane boundaries. A smooth and continuous CBF was derived using the kine-
matic bicycle model and the resulting controller was analyzed using numerical
simulations and phase portraits. Phase portraits in the plane of the yaw angle
and lateral displacement of the vehicle highlighted the improved dynamics of
the controlled vehicle even for large initial conditions, thereby ensuring both
stability and safety of lane-keeping.
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Abstract. Automated drifting presents a challenge problem for vehicle
control, requiring models and control algorithms that can precisely han-
dle nonlinear, coupled tire forces at the friction limits. We present a neu-
ral network architecture for predicting front tire lateral force as a drop-in
replacement for physics-based approaches. With a full-scale automated
vehicle purpose-built for the drifting application, we deploy these models
in a nonlinear model predictive controller tuned for tracking a reference
drifting trajectory, for direct comparisons of model performance. The
neural network tire model exhibits significantly improved path tracking
performance over the brush tire model in cases where front-axle brak-
ing force is applied, suggesting the neural network’s ability to express
previously unmodeled, latent dynamics in the drifting condition.

Keywords: Machine Learning · Tire Modeling · Autonomous Driving

1 Introduction

The maneuvering capability of a vehicle is fundamentally limited by the fric-
tion between the tires and the road. Vehicle operation at the friction limits may
require large lateral and longitudinal tire slip, a regime that can be difficult to
model accurately in the presence of parameter variation [1]. This is due in part
to the many empirically defined characteristics of tire material composition (e.g.
coefficient of friction between tire and road, cornering stiffness of the tire, thermal
properties) and the geometry of tire and suspension subassemblies (e.g. camber,
caster, and toe angles) that can significantly impact the overall vehicle dynam-
ics [2]. The resulting force and moment computations of physics-based models
are sensitive to the precise representation of these dynamic characteristics, par-
ticularly when operating in coupled slip regions at the limits of handling [1].

Recently, autonomous racing and drifting have emerged as challenge problems
for demonstrating precise vehicle control at the friction limits. While interesting
problems on their own, the insights gained from automated racing and drifting
also lay the foundation for future automated systems that could improve safety.
To succeed, controllers must reliably control tire forces in these nonlinear, cou-
pled slip regions. Autonomous drifting, in particular, poses challenges as the
tires are not only operating in these coupled slip regions but also heating and
disintegrating over the course of the test [3].
c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 378–384, 2024.
https://doi.org/10.1007/978-3-031-70392-8_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70392-8_54&domain=pdf
https://doi.org/10.1007/978-3-031-70392-8_54


Neural Network Drifting 379

Many examples in the literature have shown that an autonomous vehicle, with
thoughtful modeling and control design, can drift. Velenis was one of the first
to develop a controller for automated drifting, stabilizing the vehicle around an
unstable cornering equilibrium with a large sideslip angle [4]. Subsequent control
approaches by other authors have extended this result to path tracking and, with
the use of front axle braking, simultaneous velocity control, demonstrated on full
scale test vehicles [5]. The success of these approaches, applied to a variety of
autonomous drifting problems, suggest that automated vehicles could harness
these dynamics for greatly increased maneuverability.

Perhaps surprisingly, front axle braking while drifting poses an even more
difficult modeling problem than the rear axle. Unlike the rear tires, the front
tires are not always saturated and the tires are not coupled through a locked
differential. Front suspension geometry while drifting with large steering angles
further complicates modeling the coupled front tire forces. This is particularly
true with dedicated drifting vehicles such as Takumi, our automated 2019 Toyota
Supra built to Formula Drift specifications. Takumi features a custom front wheel
alignment designed for high-performance drifting (–7 ± 0.3◦ camber and 6 ±
0.3◦ caster at 0◦ steering angle). This setup creates effects in the coupled slip
behavior that can be difficult to model, since the tire contact patch changes size
and location based on steering angle.

Artificial intelligence offers a chance to address some of these challenges. Djeu-
mou et al.. developed front and rear tire force models for drifting using neural
ordinary differential equations and neural-ExpTanh parameterization, ensuring
physical accuracy by constraining predictions to a family of solutions and cap-
turing higher-order effects from vehicle data. Compared to a nonlinear model
predictive controller using the Fiala brush tire model, their models significantly
improved tracking, smoothed control inputs, and sped up computation time in
experiments [6]. Notably, their approach focused on steering and drive torque
and did not include the front axle braking necessary for independent speed con-
trol. Given the particular challenges with modeling front axle tire force genera-
tion under braking, we propose a neural network for predicting front tire lateral
force that makes no prior assumptions about the shape of the resulting tire curve
(or constraining predictions accordingly), relying exclusively on capturing these
dynamics with vehicle data. Comparing the performance to that of the Fiala brush
model in an experimental setup similar to that of Djeumou et al., the learning-
based model achieved significantly better overall trajectory tracking performance
with no increase in computational complexity. Deeper analysis of the results high-
lights the importance of training data coverage of the state space and potential
opportunities for extending this approach to learn higher-order effects.

2 Experimental Setup

2.1 Neural Network Model Development

We structure the input layer of the neural network around the same terms that
define lateral tire force generation within the Fiala brush model, as shown in
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Fig. 1. We label vehicle states (yaw rate, velocity, and sideslip angle) and con-
trol inputs (steering angle and braking force) with raw measurements from the
vehicle. The corresponding normal and lateral forces are labeled with estimates
provided by an unknown input observer.

Fig. 1. Neural network architecture for predicting lateral tire force

The data used to train the neural network features a combination of auto-
mated and manual drifting, amounting to approximately 30 min recorded up to
one month before these comparative experiments took place. One dataset, fea-
turing automated drifting with instances of front axle braking collected the day
before these experiments, is held out of the training data in order to iteratively
tune the hyperparameters of the model including batch size, training epochs,
activation function, and number of hidden elements. The resulting neural net-
work consists of a three-layer feedforward architecture with 8 elements in the
first hidden layer, 16 elements in the second hidden layer and tanh activation
functions in both hidden layers. While quite small by neural network standards,
this model size corresponds to a roughly 35 ms average solve time, approximately
equivalent to that of the physics-based tire model used for comparisons. There-
fore, a model of this size represents a drop-in replacement for a physical tire
model. Training proceeds by cycling through mini-batches of 1000 samples over
1000 epochs, with loss optimization governed by the Adam optimizer and mean
squared error loss function.

2.2 Trajectory Generation

The same tire force observer that generates front tire lateral force labels for the
neural network training assists in fitting front and rear axle tire parameters.
In addition to fully defining the Fiala brush model that served as the point of
comparison for these experiments, these tire parameters and the resulting model
are used in computing the offline reference trajectory, similar in approach to
Weber [7]. This trajectory features a 15 m radius circle path with a constant
sideslip angle of –40◦. By incorporating front axle braking, the target velocity
decreases from the equilibrium value without the use of brakes (Vsol) with each
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revolution of the map (lap 1: Vdes = Vsol, lap 2: Vdes = 0.95 · Vsol, lap 3: Vdes =
0.875 · Vsol), allowing us to compare model performance in the condition of
increasing front axle longitudinal force (lap 1: Fxf,ref = 0 N, lap 2: Fxf,ref =
1000 N, lap 3: Fxf,ref = 2150 N).

2.3 Control Architecture

Nonlinear Model Predictive Control (NMPC) can handle multi-input, multi-
output systems with nonlinear dynamics and constraints on both states and
inputs while predicting future system behavior. These properties are advanta-
geous in trajectory tracking for automated drifting, as exhibited by both Goel
and Weber [5,7]. The implementation of NMPC for these experiments is very
similar to that of the latter contribution, with a similar cost function (reformu-
lated as a velocity tracking problem) and slightly different costs. The baseline
physics-based MPC incorporates a Fiala brush front tire model. The neural net-
work MPC (NNMPC) features an otherwise identical control framework with
the same rear tire model and the learning-based front tire lateral force model as
a drop-in replacement for the Fiala brush tire model.

3 Results and Discussion

Fig. 2. Tire model comparison of tracking performance under braking

While both controllers slightly undershoot desired velocity after initiation,
NNMPC is able to respond to the error more quickly and with less oscilla-
tion, as shown in Fig. 2a. This is consistent throughout the run, whereas the
physics-based MPC tends to respond to changes in desired speed more slowly,
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incurring a higher frequency of large absolute velocity errors in the process. This
hesitation persists in sideslip angle tracking as well, where physics-based MPC
shows some greater deviation from the desired –40◦ sideslip while negotiating
control in the other states, as shown in Fig. 2b. Conversely, NNMPC is able to
more quickly achieve and maintain the desired sideslip angle, leading to higher
frequencies of small absolute sideslip angle errors in the process.

NNMPC’s trend of high performance in the velocity states translates well
to path tracking performance, where it exhibits a relatively low mean and max
absolute lateral error, as shown in Fig. 2c. In contrast, the physics-based con-
trol appears to cause Takumi to slowly slide out from the desired path as the
experiment progresses. This trend is consistent with the fact the tire tempera-
ture increases throughout the experiment and proportionally reduces friction, as
shown by Kobayashi [3]. Conversely, the neural network-based model does not
rely upon explicit tire parameterization for the front axle. The neural network
may potentially be underfitting these temperature-dependent friction dynamics
by generalizing to tire force generation characteristics that are indicative of a
wide range of tire temperatures.

NNMPC’s comparatively strong performance trends in both velocity and
path state tracking appears to yield an overall reduced steering control effort
required to maintain the drift equilibrium throughout the maneuver, as shown
in Fig. 2d. However, if we decompose the stages of this experiment further into
the drift initiation region (s = 90.7:112.5) and steady state equilibrium region
(s = 112.5:435.3), we gain further insights into the advantages and disadvan-
tages of each respective modeling approach-particularly when we focus into the
initiation region dynamics, as shown in the insets of Fig. 2. For example, while
it may appear that NNMPC is outperforming physics-based MPC in the initi-
ation region, the mean absolute errors of velocity, sideslip angle, and steering
angle are higher with NNMPC than with physics-based MPC-and the percent
difference is significant (49%, 31%, and 26%, respectively). This is in stark con-
trast to the steady state equilibrium region of the experiment, where the mean
absolute errors of velocity, sideslip angle, lateral error, and steering angle are
lower with NNMPC than with physics-based MPC, where the percent difference
is significant once again (41%, 46%, 55%, and 53%, respectively). One expla-
nation for this behavior may be found in the way in which the neural network
was trained. Of the approximately 30 min of data used to train the model, less
than 5% can be prescribed to the drift initiation region. This imbalance in data
representation can potentially lead to a bias toward solely capturing the dynam-
ics of the steady state equilibrium region. Since the gradients calculated from
the dominant region will have a greater influence on the network’s parameter
updates, this can cause the model to prioritize minimizing the loss in the steady
state equilibrium region at the expense of capturing the dynamics of the drift
initiation region, further exacerbating the imbalance represented in the data.

Another explanation for this behavior may be rooted in how the features
and targets were labelled and synchronized. Latencies inherent in observers such
as the one used to label tire force targets can cause a temporal misalignment
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between the observed states and the actual system states-impairing the neural
network’s ability to learn the correct temporal patterns and dynamics of the
system. This may be particularly crucial in the drift initiation region, where the
vehicle is highly dynamic, undergoing comparatively far greater velocity state
derivatives (in yaw rate, velocity, and sideslip angle) than those indicative of the
steady state equilibrium region.

4 Conclusion

This investigation presents a novel neural network architecture for predicting
front tire lateral forces as a substitute for traditional physics-based models, with
a specific focus on autonomous vehicle drifting maneuvers. Through comparative
experimentation using a full-scale automated vehicle, we demonstrated that the
neural network model significantly enhances path tracking performance, espe-
cially under conditions involving front-axle braking forces. The implications of
this study are significant for the development of advanced control systems in
autonomous vehicles, particularly those designed to operate in extreme condi-
tions. As we continue to build trust and understanding in machine learning
techniques, we may be able to achieve higher levels of precision and reliabil-
ity in vehicle dynamics modeling, paving the way for safer and more efficient
autonomous driving technologies.

This research may be extended in several ways to ultimately achieve similar
closed-loop performance in trajectories of increasing complexity. Since observer
latency and temporal misalignment of labeled data may have been an issue with
this approach, we are currently investigating approaches with target labeling
that rely solely upon vehicle-collected measurements to potentially eliminate this
behavior. Additional performance enhancements can conceivably be obtained
with the inclusion of additional relevant states as input to the neural network
(e.g. tire temperature, in order to capture temperature-dependent dynamics) or
simply expanding the complexity of the network itself as computational limita-
tions allow.
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Abstract. With the widespread use of steer-by-wire in automobiles, research is
being conducted on high steering gear ratio systems that reduce the burden on
the driver, which enables steering with high sensitivity. However, this decreases
the resolution during steering and worsens operability, making steering operation
more difficult. In addition, if the amount of steering operation and the magnitude
of steering reaction torque are not appropriate for the driver, it may cause operation
errors. In a highly sensitive steering system, a small change in steering reaction
torque has a large potential to affect the driver. The driver’s steering burden varies
depending on conditions, so it is not always possible to reduce the steering bur-
den. Therefore, we evaluated the driver’s steering burden on different days and
examined the effect of steering reaction force torque on the steering burden. The
results confirmed that the deviation of the burden increases as the load increases.

Keywords: Steer-by-wire System · High Gear Steering Ratio · Steering
Operation · Steering Burden · Surface Electromyogram · Steering Burden
Evaluation

1 Introduction

Recent advances in automotive electronic control technology have led to the use of steer-
by-wire systems in steering systems. Using a steer-by-wire system makes it possible to
control the steering gear ratio [1]. Therefore, by setting the steering gear ratio to a high
gear, it is possible to reduce the steering burden. However, the resolution of a steer-by-
wire system with a high gear ratio is reduced, and there is concern that the system’s
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operability will deteriorate. Previously, it has been shown that if the torque is too heavy,
it causes a physical burden, whereas if it is too light, it causes driving difficulties [2].
Therefore, there is also concern that inappropriate steering reaction torque may cause
operating errors.

This research aims to construct a system to control steering reaction torque by eval-
uating parameters for each driver. However, the position of a human driving a car varies
according to the physique of the upper limb in terms of joint angle, position, arm length,
etc., and the moment generated at the shoulder joint differs from person to person. How-
ever, the position of a human driving a car varies according to the physique of the upper
limb in terms of joint angle, position, arm length, etc., and the moment generated at
the shoulder joint differs from person to person. This study proposes a load experiment
in which drivers with different upper limb physiques can produce the same load at the
shoulder joint. In this experiment, we confirmed that we have sufficiently replicated the
burden of the steering operation.

With a high steering gear ratio, it is assumed that small driver inputs have a greater
impact on the vehicle compared to a standard steering system. Therefore, the driver’s
condition is a concern regarding its effects on the vehicle. To address this,wewill conduct
load experiments to examine how the shoulder joint’s burden varies daily.

2 Estimation of Steering Burden Using an Upper Limb Burden
Model

2.1 Calculation of Shoulder Joint Moments Using the Upper Limb Burden
Model

First, using Simscape, an analysis software by MathWorks, we created an upper limb
burden model that reflects the driver’s upper limb physique and replicates the steering
operation (Fig. 1). Previous studies have demonstrated this model to replicate steering
burden sufficiently [3, 4].

The x-axis is defined as the direction perpendicular to the vehicle’s forward direction,
the y-axis as the vehicle’s forward direction, and the z-axis as the vehicle’s vertical
direction. The shoulder joint is denoted as the origin O, the elbow joint as Q, and the
position where the steering wheel is grasped as P. A ball joint is used at the shoulder
joint O and the gripping position P of the steering wheel, while a rotational joint is
used at the elbow joint Q. The moments Mx, My, and Mz around the x, y, and z axes,
respectively, at the shoulder joint O on the steering side, when the steering reaction force
due to the steering torque applied to the steering wheel is applied at the gripping position
P, with the weight of the lower arm and upper arm acting at the centers of mass R and
S, respectively, were calculated using Eq. (1). The moments Mx , My, and Mz at the
shoulder joint O, as shown in Fig. 1, are the moments occurring around the x, y, and z
axes of the shoulder joint O in the upper limb load model. These represent the shoulder
joint moments generated around the x-axis, y-axis, and z-axis, respectively.

Mx = yP · Fz + yR · m1g + ys · m2g (1)
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(a) Steering wheel angle: 0 deg.                      (b) Steering wheel angle: 90 deg.
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Fig. 1. A Simscape-created upper limb burden model.

Fig. 2. Appearance of steering experiment in ultra-compact EV.

The parameters used in Eq. (1) is shown below. yP: y-coordinate of the steering wheel
grip position [m], upper arm’s center of mass position [m], yR: y-coordinate of the upper
arm’s center of mass position [m], yS: y-coordinate of the lower arm’s center of mass
position [m], Fz: z-axis component of the steering reaction force torque [N],m1: mass of
the upper arm [kg], m2: mass of the lower arm [kg], g: gravitational acceleration [m/s2],

2.2 Analysis Condition

In this study, the parameters of a 23-year-old male, as shown in Table 1, were utilized
to reproduce the driving position of the experimental participant when riding in the
ultra-compact EV (Fig. 2). The steering reaction torque was set to 0, 1.0, 2.0, 3.0, 4.0
[N・m]. The steering operation is to turn the steering wheel from 0° to 90° in the left
direction. The shoulder joint can evaluate the steering burden in the opposite side of the
steering direction [5, 6]. Therefore, the maximum shoulder joint moment on the right
side is calculated for each steering reaction torque. Figure 3 shows the shoulder joint
moment Mx calculated at each steering reaction torque. The results show that shoulder
joint moments occur in the range of 10 ~ 23 [N・m].
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Table 1. Parameter of a participant.

Length of upper arm
[m]

Length of lower arm
[m]

Weight of upper arm
[kgf]

Weight of lower arm
[kgf]

0.344 0.315 2.788 2.788
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Fig. 3. The Result of the shoulder joint moment in steering operation.

Fig. 4. The method of load experiment.

3 Variation in the Amount of Steering Burden Caused
by the Driver’s Condition

3.1 Reproduction of Steering Burden by Load Experiment

The load experiment proposed in this paper can be applied mostly to the anterior deltoid
muscle. In addition, the muscle activity of the anterior deltoid is known as a muscle that
can be used to evaluate steering burden [5, 6]. Surface EMG measures muscle activity.
The location of the electrodes for measuring the surface EMG of the anterior deltoid
muscle is shown in Fig. 4 (a). The surface EMGwas amplified using a Bio AmpML132
(AD Instruments), passed through anA/D converter PowerLabML825 2125 (AD Instru-
ments), and recorded at a sampling frequency of 4 kHz. The original measuredwaveform
was smoothed using the root mean square (RMS) every 0.1 s. A comparison of muscle
activity between dynamic steering operations and load experiments was conducted as a
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preliminary experiment. The results confirm that the burden is matched within 10% of
the %MVC of the anterior deltoid muscle.

Table 2. Calculated weight from shoulder joint moment.

Shoulder joint moment [N・m] (Steering
operation)

4.45 7.65 10.86 13.94 16.99 19.99 22.99

Weight [kgf]
(Load experiment)

–1.02 –0.54 –0.06 0.42 0.90 1.38 1.86
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Fig. 5. .

The shoulder joint momentMx calculated by the upper limb burdenmodel during the
steering operation is reproduced in the load experiment. Assuming a load experiment as
shown in Fig. 4 (b), the weight is calculated such that the shoulder joint moment during
steering can be calculated using Eq. (1). The calculated results are shown in Table 2.
The range of shoulder joint moments was also set smaller than the range during steering
operation. In addition, a negative weight is when the weight exceeds the arm’s weight.
Force is applied upward (opposite direction in Fig. 4 (b)).

A load experiment uses weights corresponding to the respective steering reaction
torques. Teach the participant to hold the weights and measure the surface EMG poten-
tials for 5 s. This will be done five times for each weight. This experiment was con-
ducted for five consecutive days to evaluate the driver’s daily burden. The surface EMG
is evaluated using %MVC, expressed as a percentage of the MVC (MaximumVoluntary
Contraction) at maximum effort.

3.2 Experiment Result and Consideration

The average daily %MVC measured for 5 s is shown in Fig. 5. As the shoulder joint
moment increased, the load on the shoulder joint increased, resulting in a trend toward
an increase in %MVC.When the shoulder joint moment was at its lowest, the difference
was about 3% on different days. However, the greater the load on the shoulder joint, the
greater the difference in %MVC. At 23 [N·m], the difference increased to over 10%. An



390 D. Uchino et al.

increase of 10% in load is equivalent to an increase from 14 [N·m] to 23 [N·m] on Day
1. This difference in shoulder joint moment is equivalent to the load difference when
the steering reaction torque in Fig. 3 increases from 1.0 [N·m] to 4.0 [N·m]. Therefore,
depending on the driver’s condition, the burden due to the steering reaction torque may
vary significantly.

4 Conclusion

If drivers are evaluated by their steering operation, the amount of steering burden can-
not be normalized for each driver. Therefore, we proposed a load experiment that can
normalize the steering burden for each driver. The load experiment subjected drivers to
the same steering burden for five consecutive days, and the difference in load increased
as the burden increased. A load experiment subjected the driver to the same steering
burden for five consecutive days.

As a result, the difference in burden increased as the load increased. The load exper-
iments also revealed that the steering reaction torque is felt very differently by drivers
under different conditions. We also showed that the methods in this paper can be used
to evaluate the effect of driver condition on the amount of burden.

However, this paper has not been able to address the causes of driver conditions. In
the future, we are also going to evaluate the driver’s fatigue level at the same time to
examine what conditions affect the steering burden.
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Abstract. A methodology is developed to extract vehicle kinematic
information from roadside cameras at an intersection using deep learn-
ing. The ground truth data of top view bounding boxes are collected with
the help of unmanned aerial vehicles (UAVs). These top view bounding
boxes containing vehicle position, size, and orientation information, are
converted to the roadside view bounding boxes using homography trans-
formation. The ground truth data and the roadside view images are
used to train a modified YOLOv5 neural network, and thus, to learn the
homography transformation matrix. The output of the neural network is
the vehicle kinematic information, and it can be visualized in both the
top view and the roadside view. In our algorithm, the top view images
are only used in training, and once the neural network is trained, only
the roadside cameras are needed to extract the kinematic information.

Keywords: Image processing · Vehicle dynamics · Machine learning

1 Introduction

The detection of vehicles via real-time image processing is a crucial task not just
for autonomous vehicles but also for intersection management systems. However,
identifying bounding boxes and extracting vehicle kinematic data (like posi-
tion, yaw angle, velocity and yaw rate) with satisfying accuracy are challenging
problems. In [2], the problem is approached through object detection and post-
processing with a trained network. The training data is collected through GPS
and LIDAR sensors. As presented in [4], it is also possible to estimate the dis-
tance of an object based on the size of the bounding box. Instead of focusing
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on object classification and tracking (position and speed), we introduce a novel
methodology to extract vehicle kinematic data (position, velocity, orientation
and yaw rate) with the help of a neural network trained on high-precision data.

In our experiments, the vehicle kinematic information is collected at an inter-
section of the Mcity Test Facility at the University of Michigan, Ann Arbor. A
DJI Phantom 4 Pro drone is sent above the intersection, and a standing vehicle
at the intersection equipped with a camera facing forward serves as the roadside
camera. The movement of a truck at the intersection is captured by both the
drone camera (top view) and the roadside camera (roadside view). The exper-
imental setup is detailed in [3]. The ground truth data, i.e., the high-precision
top view bounding boxes, are obtained by classic image processing algorithms
of the drone view recordings, as shown in the top row of Fig. 1.

Fig. 1. Main steps of the kinematic data extraction method and the neural network
training/testing.

2 Neural Network-Based Kinematic Data Extraction

The YOLOv5 [1] convolutional neural network serves as the basis of the proposed
algorithm shown if Fig. 1. The structure of the original YOLOv5 network is mod-
ified to incorporate the discrepancy between the input (roadside view images)
and the output (top view data), and the optimization method is modified to
include kinematic information in the algorithm.

Originally, the YOLO network maps the bounding boxes onto the input
image. Our goal, however, is not to obtain the bounding boxes on the road-
side image but to reconstruct the top view bounding boxes of the vehicles. The
top view perspective can be converted to the roadside view perspective with a
homography transformation matrix, which can be obtained by selecting reference
points from both perspectives. By decoupling the output space of the YOLOv5
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Fig. 2. Sample output grid of the modified YOLOv5 network mapped on the (a) road-
side and the (b) top view. The (a) roadside view is the input of the network.

from the input image and mapping the detection results on the top view, the
network is trained to learn the homography transform connecting the top view
images and roadside view images. We call this modified algorithm YOLOgraphy.

The original YOLOv5 output contains the center point, width, and height of
the bounding boxes, while the orientation of the detected object is missing. To
incorporate this, an additional parameter (representing the yaw angle) is added
to the output of YOLOv5, and the loss function is extended with this parameter.
Similar to the the original YOLOv5 algorithm, we detect the objects on three
different grids (20 × 20, 40 × 40 and 80 × 80). Depending on the size of the
object, the network detects them on different grid layers, larger-sized objects on
the coarser grids and smaller objects on the finer grids. A sample grid (6 × 6) is
shown in Fig. 2. For each grid-cell we have the output

p =
[
p1 bx by wx wy ϕ

]�
, (1)

where p1 ∈ [0, 1] is the confidence of an object being present in the given grid-cell,
bx and by denote the bounding box center point positions within the cell relative
to the top left corner of the grid-cell. For example, bx = by = 0.5 represents the
centerpoint, while bx = by = 1 corresponds to the bottom right corner of the
grid-cell. Outputs wx ≥ 0 and wy ≥ 0 are the width and height of the bounding
box as the scaling factors of the anchor box, and ϕ = ψ/2π ∈ [0, 1] is the newly
introduced output, the normalized yaw angle of the bounding box (vehicle).

Originally, YOLOv5 used different anchor boxes. In many cases, it is optimal
to have horizontal/vertical rectangles and a square as three anchor boxes, for
example, vertical for a pedestrian, horizontal for a vehicle, and square for a cyclist
in side view. In our solution, the introduction of the yaw angle makes such
differentiation of the anchor boxes redundant, namely, horizontal and vertical
rectangles can be transformed into each other by a 90-degree rotation. Hence,
our algorithm is based on a single anchor box.

The loss function in the YOLOv5 training consists of three main parts: the
classification loss (cls_loss), the objectness loss (obj_loss), and the bounding
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box regression loss (box_loss). The classification loss corresponds to the clas-
sification of the detected objects and is excluded from the study at this stage,
although it could be considered in the future. The objectness loss shows the con-
fidence of an object being present in a grid cell and is kept as it is. Lastly, the
bounding box regression is modified to include the yaw angle. Originally, the box
loss was calculated based on the Intersection over Union (IoU) algorithm, which
divided the area of the intersection of the predicted and ground truth bounding
boxes with the area of the union of the two (IoU is 1 if they overlap perfectly).
When the bounding boxes are not aligned horizontally/vertically due to their
non-zero yaw angles, the calculation of the intersection of the boxes is a more
complex geometric problem. Thus, it may be computationally more efficient to
use a simple mean-squared-error-based loss for the regression instead of the IoU.
We introduce the weighted sum of position loss, size loss and the yaw loss as

loss = obj_loss+ α · pos_loss+ β · size_loss+ γ · yaw_loss , (2)

where α, β and γ are tuneable dimensionless hyperparameters, and are chosen
to be 5, 1 and 10, respectively. These hand-tuned parameters and the mean-
squared-error-based loss function perform well for the current experiments (see
Sect. 3), but may be learned and modified. These results provide a proof of
concept that we will extend with additional measurements in the future.

Two recordings (with the corresponding datasets) are used to train the neural
networks separately, as the roadside camera has slightly different perspectives
in the two cases, yielding different homography transformation matrices. For
each dataset, the frames are mixed randomly, with 75% for training, 15% for
validation, and 10% for testing. The neck and heads of the upper layer YOLOv5
network are trained, while the main convolutional layers are frozen during the
training. This way, the network does not need to learn what a vehicle looks like
but only learns how to place it on the top view plane. Overall, the networks
perform well even for the test and validation sets, which were not used during
training. In Fig. 3, the output of one experiment is visualized both in the roadside
view panel (a) and the top view panel (b). The yellow bounding boxes are the
ground truth obtained from drone measurements, and the blue bounding boxes
are the YOLOgraphy output. The trajectory of the center point of the bounding
box is shown in panel (c). The blue curve (network prediction) and the yellow
curve (ground truth) have good agreement, which validates our approach.

3 Data Analysis

We compare the results of the trained YOLOgraphy output with the drone
measurements (ground truth). The positions of one experiment are shown in
Fig. 4(a), where the blue dashed line is the YOLOgraphy output, and the orange
solid line is the ground truth. The two curves overlap with minimal difference
throughout the whole measurement. Note that the visualization includes all the
training, validation, and test frames. The yaw angles are compared in Fig. 4(b).
While the two curves have good agreement, the YOLOgraphy output looks more
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Fig. 3. YOLOgraphy output and its comparison with ground truth data: (a) roadside
view, (b) top view, (c) trajectories.

Fig. 4. Comparison of the drone measurements (ground truth) and the output of the
trained Yolo network. (a) Trajectories, (b) yaw angles, (c) longitudinal velocities and
(d) path curvatures for the rear axle center point (RAC).

noisy. This suggests that the YOLOgraphy struggles more with the prediction
of the yaw angle, which is expected since it is a challenging task to predict the
yaw angle based on the roadside view (cf. Fig. 2 and Fig. 3(a)).

In Fig. 4(c), the speed of the rear axle center (RAC) point is plotted, and since
the RAC’s velocity aligns with the yaw angle, this is referred to as longitudinal
velocity. Between 5 and 6 s, the velocity hits the minimum, which is at the apex
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of the turning. The velocity of the drone measurement and the YOLOgraphy
output show a good agreement. Since we calculate these values with the method
of finite differences, it is expected to amplify the noise.

In Fig. 4(d), the curvature of the rear axle center (RAC) is shown. Assuming
that the RAC’s heading angle is close to the yaw angle, the curvature is calculated
from the yaw angle as κ = Δψ

Δs where Δψ is the change in the yaw angle between
two adjacent frames, and Δs is the distance between two positions. To smooth
the data, a Savitzky-Golay filter is applied. The curvature from YOLOgraphy is
(somewhat surprisingly) smoother compared to the drone measurement.

4 Conclusion and Discussion

This work provides a proof of concept of YOLOgraphy, based on a modified
YOLOv5 neural network. The roadside view images are mapped to the top view,
and the neural network essentially learns the transformation during training.
After training, YOLOgraphy can take the images from a roadside camera as
input and output the kinematic data of vehicles on the top view plane. The
validation results demonstrate the feasibility of the proposed method.

As future work, we plan to extend the dataset by additional measurements
using a fixed-location roadside cameras. With the roadside view angle being more
steep, the robustness of the detection can be potentially increased. Generally,
the higher the camera is positioned, the easier it is to detect the vehicle. We
may face a potential challenge that a large vehicle close to the roadside camera
may obstruct its view. To overcome this issue, we plan to include input images
from multiple roadside cameras from different angles. We also plan to introduce
kinematic vehicle models to filter the results and predict vehicle trajectories.
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Abstract. The aim of this study is to generate a surrogate model of a suspension
system with high stiffness elements for real-time analysis using machine learning.
A Long Short-Term Memory networks was used as a machine learning method
to generate surrogate models for three-degree-of-freedom quarter car model with
a bush element. To evaluate the performance of the machine learning models, the
simulation results and computation time were compared with the 3DOF model.
As a result, it was confirmed that the response of the body acceleration was pre-
dicted with good accuracy by predicting the bush deformation and calculating the
body acceleration based on the prediction results, instead of predicting the body
acceleration directly. It was also confirmed that the machine learning model can
accurately predict the body acceleration in less calculation time than the original
model.

Keywords: Vehicle Dynamics · Suspension ·Machine Learning · Surrogate
Model · Long Short-Term Memory · Real-Time Calculation

1 Introduction

Rubber bushes in suspension systems are used to absorb vibrations from the road surface
and improve the ride comfort of the vehicle. In addition, the deformation of rubber
bushes changes the wheel alignment, which also affects the handling characteristics.
Thus, it is important to consider the characteristics of rubber bushes in the analysis of
a suspension system. Since rubber bushes have high stiffness, a numerical analysis of a
suspension system which considers the effect of rubber bushes requires a small step size
[1]. This increases the computational costs, making it difficult to apply the suspension
model to real-time analysis such as driving simulators. Therefore, the aim of this study
is to generate a surrogate model of a suspension system with high stiffness elements
for real-time analysis using machine learning. The Long Short-Term Memory Network
(LSTM) was used as the machine learning method because it is capable of long-term
time series prediction [2]. The response and computational time of the LSTM suspension
model were evaluated by comparison with those of the quarter car model with a bushing
element.
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Table 1. Model Parameters

Parameters Value

m1 30 kg

m2 300 kg

k1 1.8e5 N/m

k2 3.0e4 N/m

c2 2.5e3 Ns/m

mb 2.0 kg

kb 2.0e6 N/m

cb 1.0 e4 Ns/m

Spring

and

Damper

Body

Bush

Tire

Fig. 1. 3 DOF quarter car
model

2 Analysis Using Suspension Models with High Stiffness Elements

In this study, a three-degree-of-freedom quarter car model with a bush in the lower part
of damper shown in Fig. 1 was created to evaluate the effect of the bush on ride comfort.
The model parameters are shown in Table 1. The parameters were determined based
on actual automobiles. Equations (1), (2) and (3) define the equations of motion for the
quarter car model.

m1ẍ1 = kb(xb − x1)+ cb(ẋb − ẋ1)− k1(x1 − x0) (1)

mbẍb = k2(x2 − xb)+ c2(ẋ2 − ẋb)− kb(xb − x1)− cb(ẋb − ẋ1) (2)

m2ẍ2 = −k2(x2 − xb)− c2(ẋ2 − ẋb) (3)

The quarter car model was subjected to the road surface displacement shown in
Fig. 2a to examine the response of body acceleration when the stiffness values of the
bush was changed. Figure 2b shows the body acceleration during the simulation, and
Fig. 2c shows the deformation of the bush. It was confirmed that the peak value of the
body acceleration increases as the bushing stiffness increases, while the deformation of
the bush became smaller.
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Fig. 2. Simulation results of the bump run using the 3DOF model
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3 Procedure for Generating Surrogate Model

3.1 Construction of Surrogate Models

The objective of this study is to develop a surrogate model that can predict body acceler-
ation, when the stiffness values of the bush was changed. A similar approach was taken
in reference [3], but this study examined three different surrogate modeling methods
as shown in Table 2. The machine learning model 1 predicts the body acceleration for
the road surface inputs. On the other hand, the machine learning model 2 and model 3
predict the response of the bush for the displacement of the unsprungmass. The response
of the body acceleration was calculated based on the machine learning prediction results
and Eq. (3). Equation (2) that defines the equations of motion for the bush has a high
natural frequency, which increases the calculation time of the system. Machine learning
models 2 and 3 were examined to replace equations with a large computational load.
The model 2 predicts the displacement and velocity of the bush, the model 3 predicts
the bush deformation and bush deformation rate. The response of the body acceleration
is influenced by various forces such as those from the spring, damper, and bush. The
changes caused by the effect of the bush on body acceleration are small as shown in
Fig. 2b, so it is difficult to predict the body acceleration directly with machine learn-
ing. It is expected to predict the changes in body acceleration caused by the bush with
good accuracy by predicting bushing deformation and using the equations of motion to
calculate body acceleration.

Table 2. Surrogate Model inputs and outputs

Input Output

ML 1 road surface displacement x0 body acceleration ẍ2

ML 2 displacement of the unsprung mass x1 displacement of the bush xb
velocity of the bush ẋb

ML 3 displacement of the unsprung mass x1 bush deformation xb − x1
bush deformation rate ẋb − ẋ1

3.2 Machine Learning Method

The long short-termmemory network (LSTM)was used as themachine learningmethod,
which can learn long time series data and ensure long-term dependability. Figure 3 shows
the relationship between hyperparameter settings and performance in the machine learn-
ing model 3. The root mean squared error (RMSE) was used as the metric for prediction
accuracy. Figure 3 shows that the machine learning model with a large number of units
and layers makes more accurate predictions, but it also takes more computation time.
The number of hidden layers was set to 2 and the number of units to 40 in each layer from
the perspectives of the computation time and the accuracy. The other hyperparameters
are shown in Table 3.



402 T. Hiraga and T. Shiiba

Table 3. Hyperparameters setting

Parameters Value

Number of Units 40

Number of Layers 2

Initial Learning
Rate

0.001

Batch Size 2^5

Sequence Length 500

Optimizer Adam

State Activation
Function

tanh

Gate Activation
Function

sigmoid
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Fig. 3. Calculation time and RMSE with
hyperparameters

3.3 Preparation of Road Surface Input Data

Two types of random road profiles were generated according to the ISO 8608 standard
as shown in Fig. 4. Figure 4a shows the road surface for machine learning training, and
Fig. 4b shows the road surface used to obtain predict data. Simulationswere conducted on
a quarter-car model, assuming a speed of 60 km/h on these road surfaces. The simulation
results were used as training and predict data for machine learning.
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Fig. 4. Road surface profile used for simulations

4 Surrogate Modeling and Accuracy Validation

Figure 5a shows the calculated body acceleration for machine learning models, and
Fig. 5b shows its power spectral density (PSD). The hyperparameters of each machine
learning model were set to the values shown in Table 3 to align the conditions. Figure 5b
shows that the machine learning model 1 has a lower PSD than the quarter car model
above 100Hz,while themachine learningmodel 3maintains good accuracy in predicting
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body acceleration up to 200 Hz. Figure 6 shows the ratio of the maximum body accel-
eration predicted by each machine learning model to that of the quarter car model for
different bushing parameters. It was confirmed that calculating body acceleration based
on the model 3, which predicts bushing deformation, is more accurate than predicting
vehicle body acceleration based on the model 1.
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In addition, the computational time for the quarter car model and machine learning
model 3 were evaluated on the MATLAB environment on Windows 11. Both analyses
were performed with the fixed-time step solver ode4 (Runge-Kutta). Figure 7 shows
the RMSE calculated for each time step solution against the solution with a time step
of 10e−8 s. RMSE of the body acceleration increases with a large step time setting,
and eventually the solution will diverge. If the stiffness of the bushing is constant at
kb = 2.0e6 N/m, the time step at which the solution diverges depends on the damping
coefficient. On the other hand, the machine learning model was stable, meaning that
the time step of this model can be adjusted according to the purpose. In this study, the
machine learning model was set up with three different time steps of 0.1 ms, 1 ms, and
10 ms. Table 4 shows the computation time for a 5-s simulation for each model. These
results show that even with large time steps, the predictions of the machine learning
model were accurate and computationally fast. In particular, when the time step was
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1 ms or 10 ms, the machine learning model was able to compute faster compared to
the quarter-car model calculated at the maximum time step that can be analyzed with
the settings in Table 1. Thus, for real-time analysis, the machine learning model with
prediction accuracy has an advantage over quarter car model in terms of computational
time.
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Fig. 7. RMSE of the body acceleration when the time step is changed

Table 4. Calculation time and accuracy for each model

3 DOF model LSTM model

Step size (ms) 0.4 0.1 1 10

Calculation time (s) 1.44 3.51 0.59 0.04

5 Conclusion

In this study, the surrogate modeling methods of a suspension system with high stiffness
elements using machine learning was investigated. It was confirmed that the response of
the body acceleration changed depending on the stiffness and damping characteristics
of the bush with a three-degree-of-freedom quarter car model with a bush element.
Three surrogate modeling methods were examined to predict body acceleration. As a
result, it was confirmed that the response of the body acceleration was predicted with
good accuracy by predicting the bush deformation and calculating the body acceleration
based on the prediction results, instead of predicting the body acceleration. It was also
found that the machine learning model was stable and had an advantage over the quarter
car model in terms of computation time.
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Abstract. Traffic safety is one of the vital issues in developing
autonomous and assisted driving systems. To achieve higher level of
driving automation, it becomes necessary to have a reliable Risk Assess-
ment (RA) method that not only responds to current traffic condi-
tions but also anticipates future scenario propagation. Regardless of
the driver intentions, traditional deterministic risk indicators like Time-
To-Collision (TTC) have proven effective but fall short in addressing
the inherent uncertainty in future propagation, especially under conflict
scenarios influenced by interdependent decisions of traffic participants.
Acceleration for Collision Avoidance (ACA) emerges as a flexible risk
criterion adaptable to different collision-avoidance maneuvers. Focusing
on the Left/Right Turn across path conflicts, this work aims to propose
an innovative surrogate risk indicator for collision avoidance with the
combination of ACA criteria and scenario classification using Hidden
Markov Models (HMM). Based on a near-miss video database, we fur-
ther train and evaluate the presented model, supplying interpretability
and adaptability of risk assessment in complex conflict scenarios.

Keywords: Advanced driver assistance systems · Collision avoidance ·
Risk assessment · Surrogate safety indicator · Near-miss database ·
Hidden Markov Model

1 Research Background

In the development of future autonomous and advanced driver assistant systems
(ADAS), a key technology is a reliable risk assessment method, which should
not only react according to the current traffic states but also predict their future
evolution to make appropriate actions.

The deterministic methods usually integrate the simple vehicle model like
the constant yaw rate and acceleration (CYRA) with quantitative index like the
Time-To-X metrics (such as the Time-To-Collision), Post-encroachment time,
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and responsibility-sensitive safety (RSS). These common measures of the colli-
sion risk are proven to be effective in evaluating the severity of conflicts. How-
ever, the deterministic computation methods are inherently unable to reflect the
uncertainty of future traffic evolution. To overcome this limitation, probabilistic
inference methods such as Hidden Markov Model (HMM), Dynamic Bayesian
Networks (DBN), Support Vector Machines (SVM), Recurrent Neural Network
(RNN, include LSTM) are evaluated to be powerful in intention inference or
direct trajectory prediction.

For the risk assessment problem in conflicts, the decision making of traffic
participants are influences by each other, resulting in different near-collision sce-
narios. Therefore, single deterministic matrix usually failed to reflect the actual
severity. Recently, the concept of Acceleration for Collision Avoidance (ACA)
appears as a more flexible risk criterion that can adaptive to various collision
avoidance maneuvers. In this work, we focus on the Left/Right Turn Across Path
(TAP) scenarios and combine the ACA criteria with the scenario classification
based on HMM to propose a new surrogate indicator, which will be verified using
a near-miss video database [1].

2 ACA Indicators in Left/Right Turn Across Path
Conflicts

Figure 1 illustrates the potential ACA risk indicators in the Left/Right turn
across path dilemma which can be divided into two scenarios. In scenario I, the
ego vehicle passes the interaction before the turning vehicle entering the conflict
area, following the driving intention of the ego vehicle driver. In scenario II, the
ego vehicle lets the turning vehicle pass first and carried out a waiting maneuver,
which would lead the vehicle to a complete stop or a relatively slow speed due to
the driver braking maneuver. The calculation of proposed risk indicators based
on the real-time measurements are expressed as follows, respectively.

RTAP
1 = ACATAP

pass (1)

RTAP
2 =

{
ACATAP

yield, if:
(Ve0+Ge0·τ)

ACATAP
yield

+ τ < tout

ACATAP
stop , others

(2)

with ⎧⎪⎪⎨
⎪⎪⎩

ACATAP
yield = Ge0·τ2−2tout(Ve0+Ge0·τ)+2dec

(tout −τ)2

ACATAP
stop = (Ve0+Ge0·τ)2

Ge0·τ2+2Ve0·τ+2(Xe0−dec)

ACATAP
pass = Ge0·τ2−2tin (Ve0+Ge0·τ)+2(dec+Le)

(tin −τ)2

(3)

Where, the real-time measurements include the target vehicle speed Ve0,
acceleration Ge0, displacement from vehicle front side to the cross-point dec,
and the entry/leaving time of the opposite vehicle tin and tout calculated by the
opposite vehicle speed. The target vehicle length is Le and the human response
delay is expressed by τ . Here we note that even though the two scenario can be
clearly identified, e.g., for a sample case from the data-base, its hard to select
the risk indicator according to the real-time interactive situation.
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Fig. 1. Two collision avoidance scenarios and corresponding risk-indicator

Fig. 2. Framework of the proposed risk assessment method

3 Stochastic Risk Indicator

In this work, we propose the conflict scenario prediction method based on
HMM. The process of the presented method is illustrated in Fig. 2. For training
the HMM models representing different conflict scenarios, the trails of mobil-
ity features (e.g., relative position, velocity) of vehicles in conflict situations
are obtained. As the observation probabilistic model, Gaussian mixture model
(GMM) is applied to characterize the continuous mobility features.

With trained HMM models for a given trail observation of the mobility fea-
tures O(t), we propose the stochastic risk indicator under Left/Right turn with
conflicts, expressed as follows

R̂TAP(t) =
∑

i=1,2

ωi · RTAP
i (4)

where, the weighting factor Σωi = 1, i = 1, 2 indicates the predicted probability
of scenario i, which can be calculated by the following logistic function

ω1 =
1

1 + e−(log P (O(t)|λ1)−log P (O(t)|λ2))
, ω2 = 1 − ω1 (5)

The probabilities log P (O(t)|λi) with regard to the observation O(t) under dif-
ferent HMM models λi can be calculated by forward algorithm.
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4 Scenario Prediction with GMM-HMM

Specifically, one particular HMM expressed by the parameter set λi is trained for
each conflict scenario i = 1, 2. Each HMM model λ (index i is omitted) includes
Q possible hidden states H, continuous output set V , state transmission prob-
abilities A = {aq,p}, observation GMM model Θ, and initial state probabilities
π. The trail of each feature is represented by a column vector, expressed as

xn = [xn,1, xn,2, ..., xn,T ]T (6)

where t is the time step index. For each scenario, all the mobility features from
different conflict events are truncated to the same length T , and the set of all
features can be expressed as the following data matrix, i.e.,

X = [x1,x2, ...,xN ] (7)

In this work, we apply the GMM to characterize the continuous mobility
features, together with the training process of the HMM model. Every column in
the data matrix represents the trail of every mobility features whose probability
density can be fit by a super position of M Gaussian distribution, with the
following expression

P (xn ) =
M∑

m=1

Q∑
q=1

ωn,q,mP (xn | N (μn,q,m, σn,q,m)) (8)

where ωn,q,m means the weight when the type n feature probability is modeled
by the m Gaussian component from the q hidden state, and μn,q,m, σn,q,m are
the corresponding mean value and standard deviation of the Gaussian distribu-
tion component. Let Θn = {ωn,q,m, μn,q,m, σn,q,m} express the GMM parameter
set for the feature n, the observation model Θ = {Θ1, Θ2, ..., ΘN} includes the
parameter set for all N types of mobility features. For the HMM training, we use
the maximum likelihood estimation (ME) algorithm to determine all the GMM
parameters which most likely fit the data set xn , satisfying

Θn = arg max
Θn

P (xn ) = arg max
Θn

T∏
t

P (xn (t)) (9)

The training algorithm is started with an initial guess of Θ and then the prob-
ability of taking the value of xn (t) by the Gaussian component of m from the
hidden state q can be calculated as follows

γn,q,m,t =
ωn,q,mN (xn (t) | μn,q,m, σn,q,m)∑M
j=1 ωn,q,jN (xn (t) | μn,q,j , σn,q,j)

· γt(q) (10)

where, γt(q) = P (Qt = q | X, λ). Then the corresponding updating rule for Θn

can be obtained as

wn,q,m =
∑T

t=1 γn,q,m,t∑T
t=1 γt(q)

(11)



410 W. Wang et al.

μn,q,m =
∑T

t=1 γn,q,m,txn (t)∑T
t=1 γn,q,m,t

(12)

Σn,q,m =
∑T

t=1 γn,q,m,t(xn (t) − μn,q,m)2∑T
t=1 γn,q,m,t

(13)

The complete algorithm is given as follows

Algorithm 1. GMMHMM Training Algorithm
1: Initialize model parameters: state transition probability matrix A, initial state dis-

tribution π, and the GMM parameters for each state
2: repeat
3: E-step (Expectation Step):
4: Compute forward probabilities αt(q) and backward probabilities βt(q)
5: Compute γt(q)
6: Compute ξt(q, p) = P (Qt = q, Qt+1 = p | X , λ)
7: Compute γn,q,m,t = P (Qt = q, Mt = m | X , λ) using (10)
8: M-step (Maximization Step):
9: Update initial state probabilities πq = γ1(q)

10: Update state transition probabilities Aqp =
∑T−1

t=1 ξt(q,p)
∑T−1

t=1 γt(q)

11: Update GMM parameters using (11)-(13)
12: until convergence

5 Results and Analysis

A near-miss video database that focuses on collisions, near-misses, and normal
driving data in real traffic has been developed in prior studies [1]. By using a
drive-recorder installed on the front shield of vehicles, front-view video data,
vehicle speed, accelerations, and GPS data were collected. The mobility features
of the turning vehicle were obtained through image processing based on front-
view videos. In the database we focus on the right turn across path conflicts and
manually divide them into the two scenarios shown in Fig. 1. Then we trained
the two GMM-HMM models respectively with the corresponding data trail of
the mobility features. We first examine the accuracy of GMM-HMM models
regarding the mobility feature predictions, as shown in Fig. 3. According to the
prediction results, we notice that as general models of the two scenario clas-
sifications, the object vehicle’s mobility features sometimes cannot be exactly
predicted. However, the Ego vehicle’s future behavior can be reasonably antic-
ipated. In cases from scenario I, the Ego vehicle usually slows down to a low
speed or stops and in scenario II cases, the global longitudinal/lateral speeds do
not change much.

The scenario prediction results regarding the likelihoods of the 10 test cases
are shown in Fig. 4. Treating the case no. 7 as a real-time scenario, the weight
factor ωi variation is also illustrated. The test cases no. 1-no. 5 are selected
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Fig. 3. Prediction results of Ego vehicle and Obj vehicle positions, (a) case from sce-
nario I, (b) case from scenario II

Fig. 4. Likelihood estimation of test cases, left: Comparison with different models,
right: real-time estimation of a single case (observation within 0.5 s)

from the scenario I and others from scenario II. According to the calculation
results, all the cases are correctly identified with the corresponding class. Some
cases are with remarkable significance like case no. 1. We also note the real-time
estimation sometimes leads to contrary prediction with real-time observations.

6 Conclusion

Focusing on the Left/Right Turn across path conflicts, this work proposed an
innovative surrogate risk indicator including scenario classification using GMM-
HMM models, which show good performances in scenario classifications.

References

1. Imaseki, T., et al.: Criticality metrics study for safety evaluation of merge driving
scenarios, using near-miss video data. SAE Int. J. Transport. Saf. 12(09-12-01-0002)
(2023)



412 W. Wang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Design and Analysis of Traction Control
Strategies for Icy Road Conditions

M. Mihalkov1, C. Caponio1, Z. Hankovszki2, A. Sorniotti3, U. Montanaro1,
and P. Gruber1(B)

1 Department of Mechanical Engineering Sciences, University of Surrey, Guildford, UK
p.gruber@surrey.ac.uk

2 AVL List GmbH, 8020 Graz, Austria
3 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

Abstract. Traction control (TC) plays a key role in improving vehicle safety,
especially for driving scenarios involving extremely low levels of tyre-road fric-
tion. In this paper a novel deep reinforcement learning (DRL) based TC strategy is
formulated and its performance is compared against a nonlinear model predictive
control (NMPC) solution for a simulated straight-line acceleration manoeuvre on
icy road conditions. The paper explores the design and assessment of the proposed
controllers using a vehicle model experimentally validated on ice. The simulation
results show that the DRL solution outperforms the NMPC strategy by reducing
the wheel slip ratio peaks and oscillations at the start of an acceleration manoeu-
vre. Additionally, it converges more quickly to the reference slip and is more
computationally efficient.

Keywords: Traction control · Vehicle dynamics · Artificial intelligence · Deep
reinforcement learning ·Model predictive control ·Wheel slip · Electric vehicle

1 Introduction

Traction controllers (TCs) adjust the driver’s traction torque request to limit wheel slip,
and in doing so, maximise tyre force generation and maintain vehicle stability [1]. The
functionality of TC is particularly beneficial for very low tyre-road friction coefficient
conditions, like icy roads. In these conditions, relatively small torque requests can induce
very fast wheel dynamics (beyond the driver’s control), yielding significant wheel slips
and potentially causing the vehicle to spin. Literature surveys on TC solutions, e.g., [2–4]
show that most of the available TC strategies use model based and deterministic control
approaches, such as NonlinearModel Predictive Control (NMPC) based solutions [2]. In
this work, a novel artificial intelligence based traction controller, using deep reinforce-
ment learning (DRL), is designed and its effectiveness explored for low road-tyre friction
conditions. The proposed DRL TC design uses feedforward neural networks (FFNNs).
The choice of neural network (NN) architecture is based on the current vehicle dynam-
ics control literature [5–7]. The analysis of different NN architectures such as recurrent
neural networks (RNNs) for vehicle dynamics control is beyond the scope of this paper.
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To evaluate the DRL controller, its performance is compared against an NMPC strategy,
serving as a benchmark state-of-the-art traction controller. The novelty points presented
in this paper are: (i) the design of a DRL-based-TC trained on an experimentally vali-
dated vehicle model, and (ii) a simulation based analysis of the performance advantages
of the DRL control strategy compared to a state-of-the-art NMPC TC.

The paper is organised as follows: Sect. 2 presents the case study electric vehi-
cle (EV), vehicle model validation and the simulated control framework. Section 3
introduces the proposed TC strategies. Section 4 describes the simulation setup and
the simulation results, which are quantitatively assessed. The conclusions and future
developments are reported in Sect. 5.

2 Vehicle Validation and Traction Controller Framework

2.1 Case Study Vehicle and Validation

The EV case study considers a single motor, rear-wheel-drive vehicle available at the
University of Surrey. Table 1 reports the main vehicle parameters. Straight-line accel-
eration tests were carried out with the vehicle driven on polished ice, see Fig. 1. The
experimental results were used to validate the simulation model created in AVL VSM
for the same acceleration manoeuvre, see Fig. 2. The tyres are simulated with the Pace-
jka Magic Formula (MF) 5.2. The electric motor dynamics are modelled with (i) a rate
limiter of 226%/s, and (ii) a communication time delay (td = 82ms) between the torque
request Trexp and the feedback motor Tfbexp (see Fig. 2a). The longitudinal acceleration
ax of the vehicle was measured with an on-board accelerometer and the slip ratio was
computed from the four wheel speed measurements.

2.2 Traction Controller Structure

The TC architecture is shown in Fig. 3. The driver presses the accelerator pedal, and
the pedal’s position (app) is fed into a drivability map to calculate a driver reference
torque (Tref ). The TC block receives Tref and the vehicle signals, and computes a torque
correction Tcorr that is subtracted from the driver torque request. The final torque request
(Tapp) is then applied to the vehicle. The controlled variable is the slip velocity sw =
ωwhr − vx, where ωwh is the angular speed of the driven wheels, r is the rolling radius
of the tyre and vx is the vehicle’s longitudinal velocity. The practical slip ratio is defined
as κ = ωwhr−vx

vx
.
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Table 1. Main vehicle parameters

Symbol Description Value

m Vehicle mass 566 kg

aF Front
semi-wheelbase

0.953 m

aR Rear
semi-wheelbase

0.733 m

hCG Centre of gravity
height

0.565 m

tF Front track width 1.094 m

tR Rear track width 1.08 m

r Rear wheel rolling
radius

0.279 m

Jwh Rear wheel inertia 1.1 kgm2

Tmax Peak motor torque 54 Nm

Gr Gear ratio of the
drivetrain

9.23:1

τm Motor time
constant

10 ms

Fig. 1. Case study EV tested on ice.

Fig. 2. Experimental (subscript exp) and simulated (subscript sim) straight-line acceleration
manoeuvre. a) torque request (Tr) and feedback motor torque (Tfb); b) longitudinal acceleration,
ax; c) practical slip ratio, κ .

Fig. 3. Simplified schematic of the traction control architecture.
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3 Control Strategies

3.1 NMPC Framework

The NMPC TC is a simplified version of the one presented in [1]. The internal model of
the NMPC is based on the following four equations:

d

dt
sw,L/R =

(
− r2

Jwh
− 1

mq

)
DμL/Rsin

(
Carctan

(
Bsw,L/R

ωwh,L/Rr

))
Fz + GrTfb

2Jwh
r (1)

d

dt
ωwh,L/R = 1

Jwh

(
GrTfb
2

− DμL/R sin

(
C arctan

(
Bsw,L/R

ωwh,L/Rr

))
Fzr

)
(2)

d

dt
Tfb = Tapp − Tfb

τm
(3)

where the subscript “L/R” denotes the left or right wheel. mq is the mass of the quarter
car model, Jwh is the rear wheel inertia, B,C andD are the simplifiedMF parameters [8],
Gr is the drivetrain gear ratio, µ is the friction coefficient and Fz is the vertical tyre load
considered as constant in the formulation of the NMPC internal model, and τm is the
motor time constant. The NMPC state vector is x = [swL , ωwhL , swR , ωwhR ,Tfb], where
Tfb is the feedback motor torque. The control action is u = Tcorr , whose maximum is
equal to the torque requested by the driver. The stage cost is:

min J = W�sw

(
�s2w,L(N ) + �s2w,R(N )

)
+

N−1∑
k=0

W�sw

(
�s2w,L(k) + �s2w,R(k)

)
+WuT

2
corr(k) (4)

where the slip velocity error �sw,L/R = sw,L/R − σxref ωwh,L/Rr, with the theoretical slip
reference σxref = 5%. W�sw and Wu are weighting factors for slip tracking and control
effort, respectively. Two versions of the same NMPC are proposed: the first one, denoted
as “expert NMPC”, with N = 50 steps in the prediction horizon and sampling time of
Ts = 10 ms, which is also used to guide the DRL TC training. The second one, denoted
as “real-time NMPC”, is the real-time version with number of steps in the prediction
horizonN = 10 and sampling time of Ts = 10ms. To confirm the real-time capability of
all proposed controllers, both NMPC configurations were run in real-time on a dSPACE
MicroAutoBox II system (900 MHz, 16 Mb flash memory). The real-time NMPC has
a peak turnaround time of 5.8ms, guaranteeing real-time capability, while the “expert
NMPC” had a peak turnaround time of 60.5ms and 30ms turnaround time subsequently,
exceeding Ts.

3.2 Reinforcement Learning Framework

DRL controllers, known also as agents, decide actions (control input) based on observa-
tions (plant states) from the environment, which includes the nominal plant and relevant
disturbances. The policy (control strategy) mapping observations to actions is learned
through interactions with the environment by maximising a cumulative reward over
multiple simulations, called episodes.
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For the proposed DRL TC formulation, the control input (action) a is the torque
correction, i.e., a = [Tcorr], while the observations vector is set as:

s = [ax,Tapp,�sw,av,

∫
�sw,av, app] (5)

where�sw,av is the average slip velocity error between left and right wheels. The reward
function is:

R = −W�sw,av

∣∣�sw,av
∣∣ +Wvxvx −WIL

∣∣Tcorr − Tcorr,exp
∣∣. (6)

The first two rewards guide the agent to track the reference slip while keeping the
vehicle accelerating. The third reward teaches the agent to follow the expert NMPC
control actionTcorr,exp. The third reward guides the agent to speed up the training process,
while the first two rewards teach the agent to continue improving the TC performance.
The weights for each term [W�sw,av , Wvx , WIL] have been chosen to give the same
priority to the first two rewards, while the third one has been tuned empirically. The DRL
algorithm used is the state-of-the-art actor-critic DDPG algorithm [9]. This algorithm
has the advantage of (i) handling complex plants with continuous control actions; (ii)
improving performance, i.e., they are able to learn policies that achieve higher rewards
on the same environment compared to value-based and policy-based algorithms; and
(iii) providing a good trade-off between sample efficiency and computational expense
[10]. The DDPG agent consists of 1 actor and 1 critic FFNNs. The actor network, i.e., the
one computing the control action has two hidden layers with 40 neurons each and ReLU
activation function after each layer, and one tanh output layer with one neuron, which
is scaled by the peak rear motor torque. The critic network, i.e., which evaluates the
actor’s performance, has two hidden layers with 40 neurons each and a ReLU activation
function in between for the state. The action path has two hidden layers, with 10 and 40
neurons respectively, and a ReLU activation function between them. The common path
combines the two paths and applies a ReLU activation function before the single-neuron
output.

4 Simulation Set up and Results

4.1 Test Scenario

The simulation analysis was carried out with the validated vehicle model presented in
Sect. 2.1 using AVM VSM software. The DRL TC agent was trained for 1000 episodes
and tested on a straight-line tip-in manoeuvre on a surface with a friction coefficient of
μx = 0.085. The manoeuvre consists of a step torque request Tref with an initial value
of 7.5Nm and a final value of 54Nm at a step time of 2.5 seconds.

4.2 Simulation Results

To evaluate the effectiveness of the DRLTC solution, the NMPCTC strategies presented
in Sect. 3.1, i.e., the expert NMPC and the real-time NMPC, have been adopted as
benchmark solutions. The sampling time of the DRL and NMPCs controllers is set
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at Ts = 10ms for a fair comparison. The reduction of sampling time implies a better
tracking of the reference slip regardless of the selected control algorithm [11]. In addition,
the controllers activate only when the slip is above of 5%. Figure 4 shows the simulation
results for the tip-in manoeuvre with an initial velocity of 2.5 km/h. All control strategies
manage to reduce the slip during themanoeuvre despite the presence of a pure time delay
in the system. However, the DRL control solution outperforms the NMPC strategies in
terms of residual steady-state error and converge time of the closed-loop slip response
(see Fig. 4a). The inset in Fig. 4c shows that theDRL agent provides a quicker adjustment
of the torque request compared to the NMPC controllers, resulting in a smaller overshoot
in the slip response depicted in Fig. 4a. In addition, the smoother control action provided
by the DRL also reduces the wear in the drivetrain components. In the interval between
1 and 2 seconds. The DRL agent starts to reduce the torque correction, leading to an
increase in the final torque request. This allows the vehicle to reach higher accelerations
compared to the NMPCs, up to 0.5m/s2 (see Fig. 4b).

Fig. 4. Simulation results: a) Slip; b) longitudinal acceleration; c) final torque request with an
inset in the interval [0.5, 1]s highlighting the intervention time and initial response of the TCs.

5 Conclusions

This paper proposes a novelDRL traction controller benchmarked against state-of-the-art
NMPC controllers with two parametrisations: a real-time capable NMPC with a 10 step
prediction horizon, and an expert NMPC with a 50 step prediction horizon. The expert
NMPC provides better closed-loop tracking performance than the real-time capable
NMPC, but is not real-time capable. The proposed DRL controller is trained for 1000
episodes using the control action of the expert NMPC as a term in the reward function
allowing the agent to learn faster. The proposedDRLTC strategy can successfully reduce
the peaks of the wheel slip and reduce the oscillations in the control action. In addition,
the DRL agent reaches the reference slip faster while managing to maintain a higher
longitudinal acceleration throughout the manoeuvre.

Future work will focus on extending the formulation of the DRL TC to different
friction coefficients and more challenging manoeuvres to further improve closed-loop
tracking performance. In addition, different NN structureswill be explored and analysed.
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Abstract. The accelerated shift towards electrification in the tracked vehicle
industry, particularly concerning off-road and military vehicles, poses challenges
due to their intensive power consumption and limited charging infrastructures.
Addressing these challenges, this paper focuses on the development of an adap-
tive state-tuned power management system for a series hybrid electric tracked
vehicle. The vehicle’s architecture includes an electric traction unit and a hybrid
powerpack. The core of this research involves designing a dynamic power allo-
cation system that adjusts the power sharing between the battery and a generator
set under varying operational conditions. Through a systematic approach, a power
management algorithm featuring a hierarchical controller structure to manage
the power flow is designed. Simulation tests, both Driver-in-the-Loop (DIL) and
Model-in-the-Loop (MIL), were employed to verify the system’s performance.
Results indicate that the algorithm coordinates power distribution, ensuring opti-
mal performancewhile adhering to the system’s constraints and adapting to imme-
diate power demands, demonstrating its potential for enhancing hybrid vehicle
operations in demanding maneuvers.

Keywords: Series Hybrid Powertrain · Tracked Vehicle Electrification · Power
Management · Power Following Control · Adaptive Control

1 Introduction

The industry trend toward off-road and military vehicle electrification offers benefits
like performance and efficiency, but poses challenges, including higher power demands
and limited charging access in off-road conditions. Hybridization, with its hybrid power-
pack management, emerges as a key solution to these issues, with Sivakumar’s research
highlighting its benefits like improved fuel economy and quieter operation [1].

Several power management strategies for series hybrid tracked vehicles have been
explored across various industries. Wang’s research investigates the power allocation for
a hybrid electric bulldozer, implementing a rule-based method with four key guidelines
that relate to battery charge and the required power, subsequently demanding power from
generator unit [2]. Furthermore, Shabbir has enhanced control strategies of thermostat
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and power following, aiming to reduce fuel usage by moderating the shifts between
the rules [3]. Zhai has also contributed with a heuristic energy management system
known as the Optimal Primary Source Strategy (OPSS), which is designed to improve
fuel efficiency and battery management in series hybrid electric tracked vehicles [4].
Zhang has furthered the development of rule-based and optimization-based approaches
by integrating intelligent control elements like fuzzy logic filters [5]. This integration
aims to address the challenges of fuel consumption that arise from frequent variations in
engine loads, the non-ideal operation of generator sets, and disturbances from hydraulic
pump torque.

In addition to the researches on power management, environmental impact of mili-
tary conditions on electric powertrains is also investigated from the existing literature.
Studies show that for a military vehicle application both the high-power demands and
the extreme temperatures that electric drive systems of military vehicles must endure, as
highlighted in the report by Stott and colleagues from the US Army Engineer Research
and Development Center (ERDC) [6], should be considered. Thus, priority is given to
performance and adaptiveness of the power management algorithm in this work from
military field.

In this paper, the focus is placed on an adaptive power management system specif-
ically designed for a series hybrid electric tracked vehicle, incorporating the literature
investigation combined with an emphasis on adaptiveness to operating conditions of
powerpack components. Figure 1 presents main components of a series hybrid tracked
vehicle. The architecture includes two principal units: the electric traction unit and
hybrid powerpack. While the traction unit is combination of electric motors, gearboxes
and brake systems, the powerpack consists of battery, generator set and power distribu-
tion unit that integrates the power generated from these sources. The objective of the
power management system is to dynamically regulate power distribution between the
battery and the generator set, considering system variables such as driver demands, and
the battery’s state of charge. The findings obtained are aimed to be tested on Kaplan
Hybrid [7], which is a hybrid tracked vehicle developed by FNSS.

Fig. 1. Main Components of a Series Hybrid Tracked Vehicle
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2 Power Management System (PMS) Development

The development of the PMS consists of several key stages: Modeling, Algorithm
Design, and Verification.

2.1 Modeling the Hybrid Powerpack Plant

To test and evaluate PMS, a hybrid powerpack model with inputs including engine speed
and generator torque requests, and actual outputs of these requests and the electric current
at the powerpack’s output bus is created.

The accelerator pedal position is first translated into a torque request for the traction
unit by referencing the electric motor’s full load curves at the given speed. This torque,
whenmultiplied by tractionmotor speed and unit efficiency, produces the power demand,
as illustrated in Eq. (1). PD, App, TM,max , ωM and ηTr represents driver power demand,
accelerator pedal position, maximum motor torque, traction motor speed and traction
unit efficiency respectively.

PD = App TM ,max(ωM )ωM ηTr (1)

Next, the genset’s power output is computed by multiplying the generator torque
with engine speed which is controlled by output torque of the PI controller and informed
by experiment-based lookup tables that factor in turbo lag and the engine’s full load
performance. Similar to the traction unit, the genset torque is limited by speed dependent
full load curves.Computation is presented byEq. (2) inwhichPGS, TG,req, TG,max,ωe and
ηGS represents genset’s power output, requested generator torque, maximum generator
torque, engine speed and GenSet efficiency respectively.

PGS = min
[
TG,req,TG,max(ωe)

]
ωeηGS (2)

The genset’s excess power over the driver’s demand becomes the battery’s power
input illustrated by PBattIn in Eq. (3) which may indicate discharge or charge. This power
determines the battery’s state of charge (SoC) through a simplified coulomb approach
based on Movassagh’s research [8]. Equation (4) shows the transient SoC calculation,
including bus voltage (VBus), battery capacity (QBatt) in Ah, and time step (Δt).

PBattIn = PGS − PD (3)

SoC(t) = SoC(t − 1) + [PBattIn(t)]
[
VBusQBatt

]−1
�t (4)

2.2 Algorithm Design of Power Management System

The developed powermanagement algorithm combines a high-level controller for power
allocation between the generator set (genset) and battery with a low-level controller
that commands the genset to produce the required power. As outlined in Fig. 2, the
power allocation algorithm employs an adaptive state-based power-following approach
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to determine the share of power provided by the battery and genset, increasing the
generator’s contribution as demand rises or the state of charge (SoC) of the battery
reduces to charge the battery up to a desired charge level. Based on actual state calculated
using driver demand and battery SoC, PMS also decides whether requested traction
power should be limited in order not to exceed the desired battery current limits at states
6 and 8. Meanwhile, the genset drive system controls the engine and generator through
speed and torque commands respectively to fulfill the power generation demands.

Fig. 2. Power Allocation Algorithm

This work’s primary contribution lies in its adaptiveness to operating conditions
of powerpack components, which is accomplished through dynamic normalization of
boundary conditions. Initially, the instantaneous available hybrid power, sum of the
maximum battery discharge and available genset power, is calculated based on operating
factors such as auxiliary power, bus voltage, and the temperature of the battery cells as
well as the engine coolant at that time step. Then, all power limits are normalized relative
to the maximum hybrid power. As a result, the state boundaries change adaptively and
they are illustrated in Fig. 2 in normalized format. In the final step, the driver’s demand
is also normalized, and the state is determined. This method allows vehicle to operate
the generator at varying power levels, influenced by the operating conditions for same
traction demand.

In addition to the state determination and transition algorithm, a power allocation
function is designated and refined based on the vehicle concept. The powerpack is
battery-driven in states 1 to 3, as depicted in Fig. 2, while state 4 ensures a smooth
transition between states 3 and 5 through hysteresis by adhering to previous state rules.
States 5 to 8 activate hybrid mode, with GenSet power outputs adjusted by a hybrid
function, optimized via a real-time brute-force method and parameter adjustment during
DIL simulations. For instance, when prioritizing silence, the function permits greater
battery discharge in hybrid states 4 and 5. Conversely, if the vehicle’s objective is high
performance, PMS is operated at 5 and 6 states and battery’s SoC is maintained at higher
levels maximizing generator usage by fine-tuning the hybrid function accordingly. This
hybrid function at state 5 operates similar to power following methods and is modeled as
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a first-order polynomial in relation to the battery’s state of charge. Its character is desig-
nated through the optimization of polynomial coefficients. Overall, PMS is designed to
modulate the powerpack, promoting a higher discharge tendency at states with greater
SoC and generator-driven charging tendency at states with lower SoC.

2.3 Simulations and Verifications

The powermanagement system undergoes testing throughDriver-in-the-Loop (DIL) and
Model-in-the-Loop (MIL) methods. DIL testing utilizes a real-time driving simulator
tailored for hybrid tracked vehicles, where the driver navigates the vehicle in a virtual
environment transmitting the power demands to the ground through corresponding con-
trol blocks, powerpack blocks and the traction unit. The MIL approach, moreover, eval-
uates the system’s performance with offline simulations, calibrating control parameters
based on postprocessed results.

The battery power output distribution chart, observed during a model-in-the-loop
(MIL) simulation, is presented in Fig. 3. In this simulation, the hybrid power allocation
function has been optimized to ensure high performance while maintaining the battery’s
SoC at around 60%, charging below this level and discharging above it. Figure 3 also
demonstrates that high SoC coupled with high power demand leads to maximum battery
discharge, while lower SoC and power demand results in maximum battery charging,
as expected in a vehicle with the main aim of performance. The hybrid function also
ensures smooth transitions, effectively preventing undesired engine power fluctuations.

Fig. 3. Battery Power Output Distribution from MIL Simulation

Moreover, real-time driver-in-the-loop (DIL) simulations are conducted to evaluate
the system under transient loading conditions, such as high-speed steering maneuvers,
using theDIL simulator specifically developed for series-hybrid electric tracked vehicles.
Real-time power requirements are monitored and recorded throughout the vehicle’s
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operation as illustrated in Fig. 4. Using the observations from these simulations, fine-
tuning studies of power management system is supported.

Fig. 4. Steering Maneuver from DIL Simulation

3 Conclusion

An examination of the simulation outcomes shows that thanks to the algorithm’s adaptive
capacity, the power management system coordinates the power sources to dynamically
meet demands without exceeding the battery’s and generator set’s limitations. Addition-
ally, the genset fulfills the required power generation within acceptable delay thresholds.
In summary, the abilities of the power management algorithm and developed MIL/DIL
environments underscore their importance for the future of hybrid tracked vehicles.
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Abstract. The path-tracking control of electric vehicles with four wheel indepen-
dent steering (FWIS) is crucial for enhancing vehicle stability. This paper aims to
address the issue of multi-actuator redundancy by coordinating the control allo-
cation of multiple actuators, thereby improving the handling stability and path
tracking performance of FWIS vehicles. First, a model of FWIS electric vehi-
cle is developed, taking into account both the nonlinear tyre and motor actuator
characteristics. Subsequently, a path tracking model is established and a hierar-
chical control architecture is designed. The upper-level controller computes the
generalized tracking force and the lower-level control force is distributed based
on the principle of optimal tyre utilization rate. Finally, the simulation results
demonstrate the effectiveness of the proposed control scheme in terms of tracking
accuracy and handling and stability.

Keywords: Four Wheel Independent Steering · Electric Vehicle · Motor
Characteristics · Handling and Stability · Path Tracking

1 Introduction

Vehicle electrification has not only provided a solution for reducing transportation emis-
sions, but also new possibilities for enhancing the handling and stability performance.
With advancements in electric motor technology and x-by-wire, the e-corner module,
which consists of in-wheel motors, brake-by-wire, steer-by-wire, and active suspension,
has been proposed as a next-generation modular platform for electric vehicles. Vehicles
equipped with e-corner modules can realize FWIS and even special functions such as
zero turn. Against the backdrop of a boom in skateboard platforms for EV designs, how
to ensure stability at high speeds is a great challenge.

In recent decades, there has been a growing focus on the steering stability of FWIS
systems. The intricate steering characteristics and over-actuated of these vehicles neces-
sitate an effective control strategy to coordinate the actuators and ensure system stability,
particularly at high speeds. In addition to traditional front wheel steering, various control
strategies such as direct yaw moment control [2], torque vectoring control [3], active
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rear wheel steering [4], and four wheel steering [5] have been proposed for FWIS and
four wheel independent driving vehicles. However, these control strategy studies often
overlook the influence of the actuators on control effectiveness. Consequently, ensuring
stability in FWIS electric vehicles with e-corner modules at high speeds remains a chal-
lenging problem. Furthermore, most studies utilize linear tyre models and lack further
analysis of tyre and motor characteristics [6].

The remainder of this paper is organized as follows. The vehicle path tracking model
is established in Sect. 2. The modeling and design of the controllers have been fully
studied in Sect. 3. Simulation and discussion are presented in Sect. 4 and the conclusion
is drawn in Sect. 5.

2 Vehicle Path Tracking System Dynamics Modeling

The study focuses on a fully electric vehicle equipped with four drive motors and four
steering motors. The objective is to effectively manage the torque and steering angle
of each motor to coordinate the chassis control system and optimize tyre utilization.
Figure 1 presents a top view of the vehicle, illustrating the yaw moment Mz and wheel
forces Fx/Fy.

Fig. 1. Path tracking model and FWIS vehicle

2.1 FWIS Vehicle Dynamics Model

Referring to Fig. 1, the FWIS vehicle model is described as:

m
(
v̇x − vyψ̇

) =
4∑

i=1

(
Fx,i cos δi − Fy,i sin δi

) − Fres (1)

m
(
v̇y + v̇xψ̇

) =
4∑

i=1

(
Fx,i sin δi + Fy,i cos δi

)
(2)

Izψ̈ =
2∑

i=1

lf
(
Fx,i sin δi + Fy,i cos δi

) −
4∑

i=3

lr
(
Fx,i sin δi + Fy,i cos δi

)



A Study on the Control of Handling and Stability 429

+
4∑

i=1

(−1)id
(
Fx,i cos δi − Fy,i sin δi

)
(3)

wherem is the total vehicle mass. vx and vy are the longitudinal and lateral speeds of the
vehicle.ψ is the yaw angle. Fx and Fy are the longitudinal and lateral forces. i = fl(front
left), fr(front right), rl(rear left) and rr(rear right). δ is the wheel steering angle. Fres is
the sum of aerodynamic resistance force and rolling resistance. Iz is the yaw moment
of inertia. d is one-half of the tread width. The nonlinear tyre forces are described by
means of the Pacejka Magic-Formula [1], where the independent variables are the tyre
slip rate and tyre slip angle, as well as the dependent variables are the longitudinal and
lateral tyre forces. The longitudinal wheel speed vw,i and tyre slip rate λi are defined as

vw,i = (
vx ∓ dψ̇

)
cos δi + (

vy + lfψ̇
)
sin δi, i = 1, 2 vw,i = (

vx ∓ dψ̇
)
cos δi + (

vy − lrψ̇
)
sin δi, i = 3, 4 (4)

λi = ωw,irw − vw,i

ωw,irw
, a > 0 λi = ωw,irw − vw,i

vw,i
, a < 0 (5)

where ωw,i and rw are the rotational velocity and effective radius of the wheel. αi is the
tyre slip angle defined as:

αi = arctan

(
vy + lfψ̇

vx ∓ dψ̇

)
− δi, i = 1, 2 αi = arctan

(
vy − lfψ̇

vx ∓ dψ̇

)
− δi, i = 3, 4 (6)

In order to describe the tyre force characteristics under the combined conditions, the
weight functions Gxα and Gyλ are introduced. By multiplying the weight functions with
Eq. (4), the tyre force output can be obtained. The vertical forces Fz,i are dependent
on steady-state component of the load transfer which is a function of longitudinal and
lateral accelerations:

Fzi = m

2(lf + lr)

(
lrg − hcg v̇x ∓ lrhcg v̇y

d

)
, i = 1, 2Fzi = m

2(lf + lr)

(
lfg + hcg v̇x ∓ lfhcg v̇y

d

)
, i = 3, 4 (7)

where hcg is the height of the center of gravity. Wheels’ dynamic equation as follows:

Iwω̇w,i = Tw,i − Fx,irw − Fz,ifrw (8)

where Tw is the drive motor output torque. f is the rolling resistance coefficient.

2.2 Motor Model

The drive system employs direct drive with electric motors. The primary function of the
drive motor system is to deliver the specified torque to each wheel as dictated by the
controller. The simplified ideal closed-loop dynamics of the motor can be described as
follows:

Tw = 1

τ1s2 + τ2s + 1
Tc (9)
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where τ 1 and τ 2 are close-loop response times and represent the control characteristic
of the motor’s field-oriented controller. Tc is motor torque command.

To simplify the FWIS actuator, the dynamic equation of the steer-by-wire (SBW)
system can be expressed as follows:

Ieqδ̈i + Beqδ̇i + Te + Tf = igTm,i (10)

where equivalent moment of inertia of the SBW system Ieq = Iw + ig2Im. ig is the
steering gear ratio. Iw and Im are the moments of inertia of the wheel and steering motor.
Equivalent damping coefficient of SBW system Beq = Bw + ig2Bm. Bw and Bm are
damping factors of wheel steering and steering motor. Tm,i is the steering motor output
torque. Te and Tf are the internal friction torque of the SBW system and aligning torque.

2.3 Path Tracking Model

The path-followingmodel is depicted in Fig. 1. A linear two-degree-of-freedom (2-DOF)
vehicle dynamic model is employed to generate the desired yaw rate for maintaining
vehicle stability. The state space equation can be given as follows:

Ẋ = AX + BU (11)

where Ẋ = [
β ψ̇ θ Y

]T
is the state variable set. β is the vehicle body side-slip angle.

θ is the heading angle. U = δf is the input variable.

A =

⎡

⎢
⎢⎢⎢
⎣

− 2Cf+2Cr
mvx

− 2Cflf−2Crlr
mv2x

− 1 0 0

− 2Cflf−2Crlr
Iz

− 2Cfl2f +2Crl2r
vxIz

0 0

− 2Cf+2Cr
mvx

− 2Cflf−2Crlr
mv2x

0 0

vx cos θ 0 vx cos θ − vxβ sin θ 0

⎤

⎥
⎥⎥⎥
⎦

,B =

⎡

⎢
⎢⎢
⎣

2Cf
mvx
2Cflf
Iz
2Cf
mvx
0

⎤

⎥
⎥⎥
⎦

(12)

3 Multi-Controller Integrated Control Strategy

Figure 2 depicts the overall control scheme, including a path tracking controller and
a hierarchical controller. It provides the ability to accurately assess the impact of
coordinated control.

3.1 Model Predictive Control

The path tracking can be formulated for MPC by the following optimization problem.
The cost function consists of two objectives penalizing the deviation from predefined
idealized trajectory Xref,i for the system states Xi and control inputs Ui:

J = min

⎡

⎣
Np∑

i=1

(
Xi − Xref ,i

)TQ
(
Xi − Xref ,i

) +
Nc−1∑

j=0

UT
j RUj

⎤

⎦ (13)
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Fig. 2. Control system architecture.

where Q and R are the weight matrices of the states and control inputs. Subject to

Xi = f (Xi,Ui) (14)

δmin ≤ δi(k + j|k ) ≤ δmax, j = 1, 2, · · · ,Nc − 1 (15)

3.2 Hierarchical Controller

The upper-level controller determines the desired forces and moment for tracking the
desired path. The sliding mode control method is adopted to ensure the vehicle follows
the reference states. The sliding surfaces are defined as follows.

S1 = vx − vxd , S2 = vy − vyd , S3 = ψ − ψd , (16)

To ensure that the errors between actual and desired values reach the sliding mode
surface within a limited time and attenuate chattering, a combinatorial reaching law is
applied in the controller:

Ṡi = −εisat(Si) − kiSi (17)

where εi and ki are parameters of the controller. The required forces and moment are
determined as follows:

Fxd = m[−ε1sat(S1) − k1S1 + ax] Fyd = m
[−ε2sat(S2) − k2S2 + ay

]
(18)

Mzd = Iz
[−ε3sat(S3) − k3S3 + ψ̇

]
(19)

The lower-level controller is used to realize better control performance through
optimal tyre force allocation:

J = min
4∑

i=1

F2
x,i + F2

y,i

μ2F2
z,i

(20)

whereμ is the coefficient of road adhesion. The total Fx, Fy andMz satisfy the equation
and the linear constraints:

−0.9μFz,i < Fx,i,Fy,i < 0.9μFz,i − 0.9 × √
2μFz,i < Fx,i ± Fy,i < 0.9 × √

2μFz,i

(21)
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After the forces of each tyre are allocated, the motor model is used to transform the
longitudinal force into drive or brake torque, and the lateral force into steering angle.

4 Simulation

In order to verify the effectiveness of the proposed integrated control strategy, the double
line change (DLC) scenery is utilized to test the performance of the FWIS vehicle at
different speeds.

a. DLC scenery b. Longitudinal speed

c. Motor torque d. Wheel steering angle

Fig. 3. Simulation result.

The simulation results are shown in Fig. 3a. Further analysis of the simulation results
at 20 m/s speed is shown in Figs. 3b–d. The results show that the FWIS coordinated
controlmaintains good speed and path tracking control accuracy form low to high speeds.
Although there are some constraints and influences on the actuators, the independent
wheels can still maintain coordinated torque and cornering control.

5 Conclusion

A FWIS electric vehicle path tracking system dynamics model considering nonlinear
tyre and motor characteristics is proposed. In order to achieve coordinated stabilization
of multiple actuators and the vehicle, a multi-controller integrated control strategy is
proposed. The longitudinal and lateral forces are optimally distributed to the actuator
layer of each wheel. Simulation results show that the method can achieve good path
tracking performance at different driving speeds.
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Abstract. Automating the driving task fundamentally changes the user’s driv-
ing experience. The driving function now dictates the driving style, previously a
product of individual decisions by the driver. Consequently, understanding what
constitutes a comfortable driving style becomes essential for ensuring the optimal
design of driving functions. This knowledge can be acquired through user studies.
As self-reports are often distorted, physiological data can help provide a more
objective insight into the emotions and feelings of the test subjects. Smartwatches
serve as a convenient and uncomplicatedmeasuring device in this context. The aim
of this paper is to investigate whether the accuracy of a smartwatch is sufficient
to infer user perceptions and subjective ratings. To achieve this, a subject study is
conducted using a driving simulator.

Keywords: driver-vehicle systems · automated driving · advanced driver
assistance systems · user study · driving simulator · driver state

1 Introduction

Human factors play an increasingly important role in the evolution of automobile devel-
opment. The growing integration of vehicle automation, from assistance systems to
autonomous driving, reshapes the traditional driver’s role. Drivers are transitioning into
more passive roles, resembling passengers, as vehicles assume greater control. Con-
sequently, the conventional perception of the driving experience undergoes a major
transformation [1].

To enhance the acceptance of novel driving functionalities, assessing the subjective
driver experience is crucial. Recognizing that self-reports may be subject to distortion or
inaccuracy, it is useful to employ objective measures based on physiological parameters.
Some studies have previously identified correlations between (dis-)comfort or trust and
physiological responses in automated driving functions. Common physiological mea-
sures for assessing the driver’s mood and emotions are electroencephalography (EEG),
electrocardiography (ECG), photoplethysmography (PPG), heart rate (HR), heart rate
variability (HRV), electrodermal activity (EDA) and eye tracking [2].

Given the widespread popularity of smartwatches, they offer a convenient option
for capturing physiological data in real-life scenarios. One notable advantage is the
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ability to acquire data in a naturalistic setting. This paper explores the adequacy of
smartwatch accuracy in monitoring the driver’s state while experiencing an automated
driving function.

2 Related Work

This paper focuses on the physiological parameters of electrodermal activity and pho-
toplethysmography. EDA describes changes in the bioelectrical properties of the skin.
The eccrine sweat glands in the skin are controlled by the sympathetic branch of the
autonomic nervous system and respond to psychological stimuli. PPG sensors use an
optical technique to detect changes in blood volume within the microvascular bed of
tissue. Cardiovascular activity, specifically heart rate, can also be considered an arousal
indicator. But unlike EDA, heart rate is regulated by both the sympathetic and parasym-
pathetic nervous systems, making it less clear as an indicator of emotional arousal [2,
3].

Previous studies have examined the relationship between physiological data and sub-
jective ratings. Dillen et al. [4] observed a correlation between self-reported comfort and
skin conductance in their study. They demonstrated that the type of driving event and
the interaction with other road users influence all physiological responses. They asserted
that electrodermal activity could predict comfort and anxiety. In a study by Beggiato
et al. [5], the correlation between self-reported discomfort and physiological parame-
ters was investigated using a wearable device for measuring. Unlike other studies, no
correlation was found between skin conductance level (SCL) and discomfort. However,
HR was identified as a significant parameter. The study reported that HR consistently
decreased during discomfort periods and returned to prior levels afterward. It was con-
cluded that specific uncomfortable situations affect physiological parameters like HR,
whereas situations with moderate to low reported discomfort did not show any changes.

This study employs the Empatica EmbracePlus, a medical wearable device designed
to monitor and analyse a range of physiological parameters, including SCL and PPG.
The application of the device has been demonstrated in other studies before. Menghini
et al. [6] identified significant discrepancies in skin conductance measurements. Several
participants exhibited flat and nonresponsive SC before the recording began. They sug-
gested that the E4, a comparable model to the Empatica EmbracePlus, could be reliably
used for measuring average HR in healthy adults. This implication also extends to HRV
measures, but only under static and stationary conditions, indicating that the quality of
the measurements is highly dependent on motion artefacts. This aligns with the findings
of Milstein et al. [7].

The device was also used in studies relating to driver monitoring. Gruden et al. [8]
utilised an Empatica E4 wristband and investigated the device’s accuracy during manual
driving. They identified substantial standard errors and elevated deviations in SCL and
HRV measurements resulting from hand movements while steering. In a related study,
Stephenson et al. [9] investigated the impact of unexpected events during autonomous
driving. They found that elevated electrodermal activity persisted after such events,
although they did not identify any statistically significant differences in heart rate.
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3 Study Description

3.1 Participants

Before the studybegins, participants are required to complete a preliminary questionnaire
designed to provide a more detailed characterization of the test subject pool. There was
a total of 10 participants recruited for this study (33% females) who were between 20
and 35 years old (M= 28.6, SD= 3.2). Six participants have a professional connection
to automated driving. Most of the participants use a car at least three times a week or
more.

3.2 Experiment Equipment

The driving simulation system used for the study was the Dynamic Vehicle Road Sim-
ulator from the Institute of Automotive Engineering, as shown in Fig. 1 (left). This
setup features a modified Volkswagen Golf 7 vehicle, cut off behind the front seats.
The cabin is mounted on a HEXaDRIVE motion platform from Simtec Systems GmbH
(Braunschweig, Germany). Five 48-inch curved monitors provide a 180° visualisation
of driving scenarios. The software utilised for the simulation is IPG CarMaker. The
mockup is fully functional, including feedback from an electric power steering unit.

The Empatica EmbracePlus (Empatica Srl, Milan, Italy) smartwatch was selected
for the study. This device is equipped with a ventral electrodermal activity sensor, which
samples at 4 Hz, and a 4-channel multi-wavelength photoplethysmography sensor with
a sampling frequency of 64 Hz. The internal Empatica software calculates the systolic
peaks. The watch wristband was placed on the participants’ non-dominant wrist and
fastened as tightly as was comfortable for them. The wearable also collects acceleration
data via a high-precision 3D microelectromechanical accelerometer, which monitors
wrist movements. The sampling frequency of the accelerometer is 64 Hz.

3.3 Procedure

The entire procedure takes approximately one hour. The first step involves a detailed
briefing of the test subjects, during which they are informed about the study’s objective
and instructed on how to use the driving simulator. Following this, a reference measure-
ment for the physiological parameter is recorded. A familiarisation drive is conducted,
lasting approximately ten minutes, to acclimate the test subjects to the driving simulator.

The actual test drive consists of four separate drives, each covering a 4-km route
through an urban environment. These drives are conducted automatically. Each drive
incorporates a potentially uncomfortable scenario: (1) a cyclist crosses the road from a
parking space, (2) a vehicle pulls out of a parking spot, (3) a skateboarder crosses the
road, and (4) a vehicle exits from a ramp. These events are strategically positioned at
various points along the route to introduce an element of surprise. Participants are not
informed about these specific situations during the initial briefing of the study.

In addition to measuring physiological data, we also assess the participants’ subjec-
tive perceptions. We utilise an adapted questionnaire from Morra et al. [10] to identify
their reactions to the test events. Therefore, we employ a five-point scale. Furthermore,
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Fig. 1. Dynamic Vehicle Road Simulator (DVRS) of the Institute of Automotive Engineering
(left) and scenario (1) with a crossing cyclist (right)

we assess the participants’ subjective perceptions of comfort and safety for the overall
drive using a five-point scale also.

4 Results

The results of the subjective ratings indicate that all participants perceived the four
situations of the test drive as dangerous (M = 4.44, SD = 0.71) and surprising (M =
4.27, SD= 0.65). Conversely, the ride was generally perceived as comfortable and safe
(M = 4.55, SD = 0.49).

Although the subjective ratings suggest a physiological reaction, the results indi-
cate that there are problems in the correct measurement of the data from the Empatica
EmbracePlus. Nine participants showed a flat and non-responsive SCL measurement.
Only one participant showed reactions to the events, as shown in Fig. 2. However, the
reactions were not significant either. In summary, the Empatica EmbracePlus was unable
to provide reliable measurements. Given that the device has previously demonstrated
that the quality of the data is highly sensitive to wrist movement, we also analysed the
data from the accelerometer. As the entire drive was automatic, there was no movement
at the wrist and it did not differ between scenarios.

A possible reason for the results could be that the participants had to adjust the
wristband themselves, so it may not have been worn tightly enough. In some cases, the
wearable was placed on dry skin. However, we also placed a few drops of warm water
with the other participants and this did not make a significant difference to the results
[11].

Furthermore, SCL measurements are typically obtained from the distal or interme-
diate phalanges of the ring and index fingers, which are areas with a greater density
of active eccrine sweat glands [11]. The EmbracePlus, like many wearables, employs
wrist sensors to measure skin conductance. Given that the wrist is less responsive to skin
conductance, an underestimation of parameters could be anticipated [12].

The results for heart rate also present challenges. For the calculation, we utilized
the internal Empatica software, which identifies the systolic peaks in the PPG signal.
The number of peaks detected in a 10-s sliding window was multiplied by six to obtain
the HR in beats per minute (BPM). We applied z-standardisation to the data to account
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Fig. 2. Skin conductance level over all participants for scenario (1) (left) and the reaction to
crossing cyclist from the only participant with a reaction (right)

for the individual variability of physiological responses. We examined two periods: 30
s before the stop and 30 s after the stop, as this was chosen in other research, as in [9].
The exemplary results are shown in Table 1.

Table 1. Results of the z-standardized HR before and after scenario (1) and (3)

Event Before After

scenario (1) M = 0.15, SD = 1.77 M = 0.05, SD = 0.71

scenario (3) M = 0.21, SD = 1.19 M = −0.07, SD = 0.43

It is not possible to detect a significant difference between the two periods. The HR
over the entire trial is subject to considerable fluctuations. This is reflected in the high
values for the standard deviation.

5 Conclusion

The results presented in this study investigate the physiological parameters measured
by the Empatica EmbracePlus smartwatch. Despite the participants reporting that the
situations during the study were perceived as dangerous, the SCL showed nearly no
reaction. The same applies to HR, which demonstrated considerable variability. It is
important to note that the sample size of 10 test subjects is relatively small, and that a
larger pool of test subjects could provide a more reliable database. For future research,
it would be beneficial to conduct a study utilising additional EDA and ECG sensors in
order to rule out the possibility that the participants have no physiological reaction to
the events.
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Abstract. Electrification is a widely explored area inmany fields and is becoming
a widely researched topic in tracked vehicles. Achieving efficient operation for
suchvehicles is crucial similar to traditional vehicles. This paper introduces a speed
profile generation procedure for a dual track – series hybrid tracked vehicle with an
emphasis on fuel economy and trip time optimization. A Dynamic Programming
method is proposed in spatial domain, considering the properties of predefined
road geometries. The study includes examination of speed and torque estimation
of the sprockets, particularly during steering maneuvers. Unlike wheeled vehicles,
tracked vehicles have to overcome the turning resistance moment of skid steered
tracks. Taking these dynamics into account, the study investigates efficient opera-
tion, presenting over a predefined road track including straight road, inclined road
and curve sections, discussing the tradeoff between fuel economy and trip time
optimality. As the result of problem solution, speed profiles are generated, and
operation trends of the powertrain components are discussed.

Keywords: Dynamic Programing · Electrified Tracked Vehicles · Skid Steer ·
Time Optimality · Energy Optimality

1 Introduction

Energy efficient operation is the main driving force of improvement of hybrid electrified
vehicles. This subject ismainly researched for straight road conditions, utilizing different
type of control strategies e.g. rule based control, power following control, ECMS, etc.
Dynamic Programming (DP) is generally used in these studies as benchmark of the
optimal control. Most studies apply the rules of the DP in time domain, where speed
profile is predefined. A good example for a dual track hybrid vehicle is given in [1],
where energy management system is discussed for a tracked vehicle on straight road
and includes also cornering sections in time domain. [2] discusses the improvement
of fuel economy of a wheeled hybrid vehicle for an upcoming uphill and downhill
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scenario. In [3] a speed profile generation study for a conventional truck is presented for
upcoming inclined roads. This study is an example of the spatial domain DP problem
applications. [4] provides a sample of spatial domain problem for a wheeled EV vehicle,
covering energy efficiency of electrical motors and trip time minimization tradeoff, for a
predefined track including curved road sections. Adaptive on-line optimization strategies
are covered in literature, however scope of this paper limited with predefined road profile
and off-line problem solution.

This study aims to provide optimized target speed profiles for a series hybrid – elec-
trified tracked vehicle which provides efficient operation in terms of fuel economy& trip
time. The DP approach is applied to solve the problem in spatial domain for predefined
road geometries. Using the characteristics of created road profile sections, e.g. inclina-
tion, turning radius of the curves; required torque, speed and power demand of electrical
motors are estimated. Trip time, fuel consumption and losses of other powertrain com-
ponents are the key objectives used in DP to be minimized. The output of this problem
is the optimized target speed profile. For a dual-motor, series hybrid tracked vehicle the
traction is provided by only the electric motors. Supply of the electrical motors’ power
demand is shared between the generator and the battery with respect to applied control
strategy. This relation is presented in Fig. 1. In the figure, two sided arrows show the
possible bidirectional power flow.

Fig. 1. Power flow diagram of the dual motor – series hybrid tracked vehicle

Unlike wheeled vehicles, braking of electrical motors does not occur only while
slowing down; the inner track brakes during a steering maneuver to overcome the turn-
ing resistance moment of the skid steered tracks. In this scenario, outer tracks consume
the supplied traction power, whereas inner track regenerates the kinetic energy during
braking. In most generic form, required dynamic torque for electrical motors can be
estimated as in Eq. (1) for a cornering maneuver [1]. In the equation, first square bracket
section includes required torque due to steady state maneuver (Rolling resistance, resis-
tance due to slope and turning resistance with respectively), whereas second square
bracket section covers the inertial moments due to longitudinal and yaw motion with
respectively. In the equation rspr describes the sprocket radius, i0 is cumulative gear ratio
of the driveline, η is driveline efficiency, B is the tread of the vehicle and ω̇EMo−i is the
acceleration of outer and inner electrical motors with respectively.

τEMo−i =
[(
FRoll + FGrad ± FTurn

) rspr
i0η

]
+

[
mr2spr

i20η

R

(R ± B/2)
± Izr2spr

i20ηB(R ± B/2)

]
ω̇EMo−i (1)

FTurn parameter given in Eq. (1) occurs due to turning moment resistance of the
tracks and it is expressed in Eq. (2). μt is effective turning resistance coefficient which
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decreases with respect to increasing turning radius, as expressed in [5]. For the case of
R > B/2 electrical motor velocities can be calculated as shown in Eq. (3) for outer and
inner motors with respectively. Vc is the velocity of the centerline of the vehicle.

FTurn = W · μt(R) · L
4 · B (2)

ωEMo−i =
(
Vc ·

(
1 ± B/2

R

))
· i0
rspr

(3)

2 Formulation of the Dynamic Programming Problem

To reduce the burden of dimensionality problemofDP, it is assumed that vehicle perfectly
follows perfectly the trajectory at each stage and lateral dynamics are only reflected in
kinematic relations for the tracks in Eq. (3) and in Eq. (1) for calculating the electrical
motor torques. Main dimensions of the DP problem are hence selected as 1) Distance,
2) Longitudinal velocity, 3) Longitudinal acceleration, 4) SoC of the battery and 5)
Alternator torque. Velocity and SoC are the main states; longitudinal acceleration and
alternator torque are considered as the inputs for the optimal control problem. Note that
alternator in generator set is assumed operating in torque mode, altering the applied
brake torque to provide required power output. Contrarily internal combustion engine
operates in speed mode, maintaining its speed at rated speed. Therefore, control variable
in the generator assembly is considered as only the alternator torque. At each stage of DP,
longitudinal velocity and SoC at next stage is calculated with respect to corresponding
inputs as shown in Eqs. (4) and (5). vk+1 is the calculated velocity at next stage using
long. Acceleration input ai,k and �tj,k which is the duration to complete constant road
segment distance�s. SoCk+1 is the calculated SoC at next stage using the battery current
IBatt and maximum charge capacity Qmax.

x1k+1 = vk+1 = vj,k + ai,k · �tj,k ,where �tj,k = �s

vj,k
(4)

x2k+1 = SoCk+1 = SoCk + IBatt · �tj,k
Qmax

(5)

In Eq. (5) battery current is calculated according to Eq. (6). Voc is open circuit voltage
and RBatt is the internal resistance of the battery. Battery power depends on the power
demand of electrical motors and power supply of the generator as defined in Eq. (7).
If the generator power supply exceeds the electrical power demand of the motors, it
charges the battery, otherwise they both supply the electrical motors. Also, battery is
charged through recuperation during the braking of electrical motors.

IBatt chg−dischg =
∓Voc ±

√
V2
oc ± 4RBatt · PBatt
2RBatt

(6)

PBatt = −((PElec−EM−o + PElec−EM−i) − PElec−Gen) (7)
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The cost function of theDP problem, gk(uk , xk) consists of threemain parts as shown
in Eq. (8). Trip time cost and energy related cost have their own weighting parameters:
wT and wE respectively. Energy cost include the fuel consumption, and power losses of
the battery and the electrical motors. Constraints defined by restrictions of components
and physical limits are penalized by the last term “LConstraints”. While solving the DP
problem backwards from “N-1”th stage back to 1st stage, minimum cost at each stage is
stored in the so called “cost-to-go matrix” (Eq. (9)), and corresponding optimal control
values (uk → Long. Acceleration &Generator torque) are stored in other matrices. After
these steps are completed, a forward calculation loop starts to obtain optimal velocity
profile, and SoC calculations according to defined initial conditions. Constraints are
applied in the problem according to inequalities (10), (11), (12), (13), (14) and (15):

gk(uk , xk) = wT · �tj,k + wE · (Fc + PLosses) · �tj,k + LConstraints (8)

Jk(xk) = min
uk

(gk(uk , xk) + Jk+1(f (uk , xk))) (9)

ωEMmin ≤ ωEMo−i ≤ ωEMmax (10)

τEMmin ≤ τEMo−i ≤ τEMmax (11)

|IBatt | < Imax (12)

ax−min ≤ ax ≤ ax−max (13)

vx ≤ vmax−limit (14)

vx ≤ √
ay−max · R (15)

As the nature of DP, final stage has a separate solution step, where a special penalty
for velocity and for battery SoC, as shown in Eq. (16), enforcing them to reach their
final value at Nth stage to desired value VelFin and SoCFin. Quadratic formation of these
penalties is beneficial in problem solution of the DP method.

JN (xN ) = gN (xN ) + (VelN − VelFin)
2 · 100 + (SoCN − SoCFin)

2 · 106 (16)

3 Results of Speed Profile Optimization

The DP problem is solved based on given road profile in Fig. 2. To present the concept
in a clear way, length of the designed road is kept short. The profile consists of curvature
sections as well as gradient sections including ascending and descending 10% slope.
Maximum speed limit is shown in Fig. 2-b calculated and used as a constraint for DP,
considering longitudinal and lateral acceleration limits. Solutions are obtained for three
different weighting as shown in Fig. 3: Solution 1 reaches to higher speeds at road
segments compared to others, whereas Solution 3 have overall better fuel economy as
numeric results are listed in Table 1.
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Fig. 2. a) Road Profile b) Velocity Limit & Road Data
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Fig. 3. Velocity profile results for 3 different Time – Fuel Cons. Tradeoff weightings

Table 1. Results for 3 different Time – Fuel Cons. Tradeoff weightings

Solution # Duration (s) Total Fuel Cons. (ml) Final SoC

1 32.09 151.0 59.98

2 32.74 149.5 59.98

3 33.27 148.8 59.98

In Fig. 4 operation results for powertrain components are presented. Note that sign of
the power values are with respect to the component perspective. For example, negative
battery power means, power is distributed from the battery, whereas positive sign cor-
responds to power is absorbed: charging. According to results, alternator usage is more
aggressive in Solution 1 which results with higher fuel consumption. At acceleration
phases, alternator provides power supply, whereas, at near steady state velocity regions,
flat road sections, alternator doesn’t contribute. Battery is charged starting from about
70 m up to start of the +10% gradient uphill, then battery power is used at downhill and
straight segments. It is also observed that the battery is slightly charged before R10 and
R15 curve sections. At the end of 200 m road profile, SoC values and velocity get back
to ~60% and ~5 km/h reaching to their initial values as enforced in DP problem.
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Fig. 4. Operation of the powertrain components

4 Conclusion

This study covers a 5DDynamic Programmingmethod for a DualMotor – Series Hybrid
Tracked vehicle. In the study, speed profile generation method is explained on a prede-
fined road which cover curves, and inclination. According to results, tradeoff between
fuel economy, and trip time can be presented operation of powertrain components are
observed.
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Abstract. Autonomous driving and electrification make over-actuation
technologies more feasible and advantageous. Integrating autonomous
driving with over-actuation allows for the effective use of their respective
strengths, e.g., for studying energy and time optimal control. To model
AVs, several vehicle coordinate systems have been used, e.g., Cartesian,
Frenet and spatial coordinates. The present study aims to achieve energy
and time optimal control of autonomous vehicles by using Frenet frame
modelling and over-actuation. This study enhances the existing Frenet-
based modeling by incorporating double-track dynamic vehicle models
and torque vectoring. The problem is formulated in an optimal control
framework, with carefully designed cost function terms and constraints.
Two control strategies are examined, one for minimising travel time and
the other for jointly optimising energy consumption and travel time.
The results indicate that by considering both energy and time in the
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1 Introduction

Autonomous vehicles (AVs) have been advancing rapidly in recent years, pri-
marily attributed to their potential in enhancing road safety and transport effi-
ciency. In the meantime, vehicles are becoming increasingly electrified, making
over-actuation technologies more feasible and advantageous.

There have been extensive studies exploring torque vectoring for enhancing
vehicle safety, e.g., [1,2], and energy efficiency, e.g., [3–5]. It is clear that com-
bining autonomous driving with over-actuation technologies allows for the effec-
tive use of their respective strengths. For example, previous studies [6–8] have
explored active camber, four-wheel steering and their integrations for improving
the active safety of over-actuated AVs.

To model AVs, several vehicle coordinate systems have been used, includ-
ing Cartesian, Frenet and spatial coordinates [9–12]. The spatial transformation
allows for the natural consideration of obstacle constraints on the state vec-
tor [12], and the Frenet transformation facilitates a singularity-free formulation
[13,14]. Still, these transformations and formulations are either not implemented
with dynamic vehicle models or not for over-actuated applications.

Based on the reviewed literature, the present study aims to achieve energy
and time optimal control of autonomous vehicles by using Frenet frame modelling
and over-actuation. This study enhances the existing Frenet-based modeling
by incorporating double-track dynamic vehicle models and torque vectoring.
This integration aims to leverage the advantages of both Frenet frame modelling
and advanced models. Utilising this modelling method, this study focuses on
optimising energy consumption and travel time simultaneously.

2 Vehicle Dynamics Modelling

By using the Frenet frame, the vehicle dynamics are modelled and presented
in this section. The model includes a double-track dynamic vehicle model, road
geometry, the Dugoff tyre model [15], load transfer as well as the possibility
for controlling the individual wheel torques, i.e., torque vectoring. The vehicle
motions in the longitudinal, lateral and yaw directions, the vehicle positions in
the Frenet frame [13], as well as the wheel dynamics are described with the
following equations:

mv̇x =mvyωz − (Fyfl + Fyfr) sin δf + (Fxfl + Fxfr) cos δf

+ Fxrl + Fxrr − CdAf
Dav

2
x

2
(1)

mv̇y = − mvxωz + (Fyfl + Fyfr) cos δf + Fyrl + Fyrr + (Fxfl + Fxfr) sin δf
(2)

Izω̇z = lf (Fyfl + Fyfr) cos δf − lr (Fyrl + Fyrr) + Bf

2 (Fyfl − Fyfr) sin δf

+ Bf

2 (Fxfr − Fxfl) cos δf + Br

2 (Fxrr − Fxrl) + lf (Fxfl + Fxfr) sin δf
(3)
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α̇ =ωz − κc(s)
vx cos α − vy sin α

1 − nκc(s)
(4)

ṡ =
vx cos α − vy sinα

1 − nκc(s)
(5)

ṅ =vx sin α + vy cos α (6)
Iwiω̇i =Ti − reFxi. (7)

vx and vy are vehicle velocities at the centre of gravity (CoG), ωz is the yaw rate,
and ωi is the angular velocity of the wheels. α denotes the yaw deviation with
respect to the centreline of the road, and n and s are the lateral position deviation
from the road centreline and the distance travelled along the road centreline,
respectively. Fxi and Fyi are the longitudinal and lateral tyre forces, respectively.
δf and Ti are the steering angles for the front wheels and the drive/braking
torque on the wheel, respectively. m, Iz, Iwi, Bf , Br, lf , lr, Af , Cd, and re are
the vehicle and tyre parameters, and Da is the air density. Detailed explanations
on these parameters, as well as tyre modelling, load transfer and torque vectoring
can be found in [2].

The state-space form of the modelled vehicle dynamics is used in Sect. 3 and
given as follows:

xk+1 = f(xk, uk). (8)

3 Problem Formulation

Optimal control problems (OCPs) are used to formulate the energy and time
optimal control of AVs. To achieve the objective of reducing energy consumption
and optimising travel time, the cost function is carefully designed. Specifically,
the power consumption of the wheels is minimised for energy efficiency. Moreover,
the travel time is directly optimised in the cost function. Additionally, a term
for actuator rate is included, to improve control efficiency and avoid acutator
oscillations.

The OCPs are formulated based on the detailed vehicle dynamics as described
in Sect. 2, with the capability of exploiting torque vectoring for energy and time
optimal control. Moreover, various constraints are applied for considering factors
such as road boundary, velocity, active safety and vehicle physical limits.

The OCP problem for jointly minimising energy consumption and travel time
is given as follows:

min
x,u ,Δu ,s,T

Qe

Nt−1∑

k=0

4∑

i=0

Tk,iωk,i +
Nt−1∑

k=0

||Δuk||2Rdu
+ ||sk||Qs

+ QTT (9a)

s. t. xk+1 = f(xk, uk), k ∈ {0, 1, · · · , Nt − 1} (9b)
g(xk, sk) ≤ 0 (9c)
x0 = x̃0 xf = x̃f (9d)
umin ≤ uk,i ≤ umax (9e)
Δumin ≤ Δuk,i ≤ Δumax (9f)
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where x = [x1, · · · , xNt
], u = [u0, · · · , uNt−1], Δu = [Δu0, · · · ,ΔuNt−1] and

s = [s0, · · · , sNt−1] are the sequences of states, control actions, variation of
control actions, and slack vectors, respectively. T denotes the travel time to be
optimised. x0 and xf are the initial and final states, respectively. Qe, QT , Rdu

and Qs are the weights on the energy consumption, travel time, control variation,
slack vector, respectively.

Two sets of cost function terms are formulated to investigate two strategies:
one focused on minimising travel time and the other aimed at simultaneously
optimising energy consumption and travel time. For the second strategy, the cost
function described in Eq. (9a) is employed. For the first strategy, the component
related to energy usage is excluded from Eq. (9a). The results for both strategies
are discussed in Sect. 4.

4 Results and Discussion

This section presents results for the two strategies examined: one for minimising
travel time and the other for jointly optimising energy consumption and travel

Table 1. Comparison of energy usage and travel time with torque vectoring: Optimis-
ing travel time vs. Jointly optimising energy usage and travel time.

Strategy Energy Usage (kWh) Travel Time (s)

Time 0.5609 23.01

Energy + Time 0.5028 23.27

Energy + Time = 28 0.1060 27.91
a “Energy + Time = 28” denotes the case where the travel
time is limited to 28 s.

Fig. 1. Comparison of vehicle trajectories with torque vectoring: optimising travel time
versus jointly optimising energy usage and travel time. “Centre” refers to the centerline
of the road, and “Track” indicates the boundary of the road.
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Table 2. Comparison of energy usage and travel time without torque vectoring.

Strategy Energy Usage (kWh) Travel Time (s)

Time 0.3916 23.93

Energy + Time 0.3542 24.09

Energy + Time = 28 0.1065 27.91

time. For the second strategy, two cases are analysed: one with free travel time
and the other with a fixed travel time. In addition, these strategies are evaluated
for the cases with and without torque vectoring. The evaluation is carried out
based on a section of a handling test track. Implementation details regarding
the strategies can be found in [2,16,17].

Table 1 presents a comparison of the results for purely optimising travel time
versus jointly optimising both energy usage and travel time, utilising torque
vectoring. As can be seen, by considering purely time in the formulation, the
vehicle consumes 0.5609 kWh of energy and takes 23.01 s to complete the test. In
contrast, by jointly considering energy usage and travel time in the formulation,
it consumes 10.4% less energy but only travels 1.1% slower. Moreover, when the
travel time is relaxed to 28 s, the energy consumption is significantly reduced.

Figure 1 shows the vehicle trajectories for the two investigated strategies
while considering torque vectoring. Starting at the outer border of the track,
the vehicle accelerates into the first corner with an initial velocity (vx) around
15 m/s. To achieve minimum travel time, the vehicle consistently attempts to
reach the maximum possible velocity, particularly during the first third and
the final section of the track. Nevertheless, the vehicle at times decelerates to
negotiate the cornering manoeuvres. When energy is considered in the problem
formulation, the vehicle achieves lower peak velocities. Additionally, the vehicle
aims to maintain a smoother trajectory to conserve energy, as evidenced by the
larger lateral deviations around positions of 100 and 400 m in the strategy for
optimising both energy and time. When the travel time is allowed to be larger,
i.e., 28 s, the vehicle travels closer to the centreline of the track, as indicated by
the smaller yaw and lateral deviations compared to the other two cases. However,
the vehicle does not travel strictly along the centreline to maintain a smoother
trajectory.

Table 2 presents the results for purely optimising travel time and jointly
optimising energy usage and travel time without utilising torque vectoring. By
comparing Table 2 with Table 1, it is evident that torque vectoring contributes to
faster lap times at the expense of higher energy consumption. On the other hand,
when completing the manoeuvre slower, i.e., 28 s, torque vectoring consumes a
similar amount of energy. This is likely because the required energy to overcome
the resistance forces is similar for both cases in such a low-dynamic manoeuvre.
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5 Conclusions

This study investigated energy and time optimal control of autonomous vehicles
using Frenet frame modelling and over-actuation. Enhancements have been made
to the existing Frenet-based modelling, including the incorporation of a double-
track dynamic vehicle model, an advanced tyre model and torque vectoring. The
problem was formulated within an optimal control framework, featuring care-
fully designed cost function terms and constraints. Two control strategies were
examined: one for minimising travel time and the other for jointly optimising
energy consumption and travel time. The findings in the studied driving scenar-
ios are summarised as follows. Firstly, considering both energy and time in the
formulation can reduce energy consumption by 10.4% with only a slight increase
in travel time. Secondly, maintaining a smoother trajectory contributes to energy
conservation. Finally, torque vectoring results in faster lap times but at the cost
of higher energy consumption. Additionally, torque vectoring consumes a similar
amount of energy when traveling within the same time frame.

In the next step, the plan is to further study energy and time optimal control
by exploring torque vectoring energy reduction and examining additional driving
scenarios.
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Abstract. 3D object detection from monocular camera videos constitutes a crit-
ical research domain. Achieving robust 3D object detection in databases lacking
annotated information poses a highly challenging task. This paper proposes a sim-
ple yet effective transfer learning approach, integrating data alignment, 3D object
detection, and dynamic result correction. Vanishing point detection is employed
to infer camera angles in diverse scenes, and preprocessing of new data is con-
ducted by considering the camera’s pitch angle and vanishing point position. Sub-
sequently, MonoDETR are applied for depth estimation and 3D object detection
in monocular videos. Building upon the detection results, dynamic correction is
achieved through inter-frame assistance, culminating in the final 3D object infor-
mation. Validation on the TUAT Near-Miss Incident Database demonstrates the
efficacy of the proposed approach. The results indicate a substantial reduction in
the cost of annotating new domain data while simultaneously enhancing detection
accuracy and robustness. Integration with onboard diagnostics (OBD) data allows
the reconstruction of information about various traffic participants in hazardous
scenarios, providing valuable insights for in-depth analysis of accident causes.

Keywords: Sensors and Actuators ·Monocular Camera Videos · 3D Object
Detection · Transfer Learning · Data Alignment · Dynamic Result Correction

1 Introduction

Autonomous driving systems rely on advanced perception, decision-making, and control
technologies, utilizing various sensors such as cameras, and LiDAR to perceive the
surrounding environment. While 3D object detection provides accurate descriptions
of objects in the environment, achieving optimal results often requires the fusion of
multiple sensors [1, 4]. However, due to the low cost of monocular cameras, they have
become widely used at this stage. This study specifically focuses on the detection of
3-dimensional objects from videos captured by monocular cameras.

Current methods for monocular-based 3D object detection rely on depth inference
from single images, demanding extensive depth annotation for model training [2]. Chal-
lenges arise from domain differences in training data, including variations in lighting,
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camera parameters, and road topography. Overcoming these domain disparities is crucial
for deploying models trained on existing domain knowledge directly to new domains
without incurring additional costs. To address this issue, we propose a transfer learning
solution incorporating data alignment, 3D object detection, and dynamic result cor-
rection. Validation on the Near-Miss Incident Database demonstrates enhanced detec-
tion accuracy and robustness while significantly reducing the cost of annotating new
domain data. Integration with OBD data aids in reconstructing information about traffic
participants in hazardous scenarios, facilitating a quantitative analysis of accident data.

Fig. 1. Over pipeline of our proposed method.

2 Methodology

The pipeline of our proposed method is illustrated in Fig. 1. This approach achieves
robust 3D object detection on new data lacking annotated information. Specifically,
vanishing point detection infers camera angles, and preprocessing takes into account
the camera’s pitch angle and vanishing point position for new data. Subsequently, deep
learning algorithms perform depth estimation and 3D object detection in monocular
videos.

2.1 Image Detection Technologies for Relative Position Estimation

In the field of autonomous driving and safe driving, recognizing and understanding the
environment and targets around the vehicle is a crucial issue. The environment includes
vehicles, pedestrians, bicycles, road lines, and traffic signals. Especially, predicting infor-
mation such as the speed and distance of target vehicles is expected to prevent car acci-
dents. Currently, various technologies are used to detect this information, such as radar
and ultrasonic sensors. However, these sensors are expensive and require complex instal-
lation, posing challenges for widespread adoption. Therefore, using onboard cameras,
which allow for low-cost and easy installation, has been attracting attention recently.
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2.2 2D and 3D Bounding Box Detection

When detecting targets such as vehicles from images, 2D Bounding Box detection tech-
nology is often considered first. While 2D Bounding Box detection is a mature tech-
nology that can achieve high-precision detection results in many fields, it only provides
the upper-left and lower-right corner coordinates of the target in the image, making it
difficult to understand detailed information such as the exact distance, rotation angle,
and size of the target. Thus, 3D Bounding Box detection is introduced, which maps the
exact position of the target in the world coordinate system based on rotation direction
information and predicts how the target will move next.

2.3 Depth Encoder for 3D Bounding Box Prediction

3D object detection using monocular cameras has long been considered a challenging
task. Most existing methods follow conventional 2D object detectors and predict 3D
attributes based on features around the object’s center. However, using only local features
cannot understand the entire 3D spatial structure of the scene and ignores the depth
relationships between objects in the image. We modified MonoDETR [3], a monocular
image recognition framework using a depth-induced transformer, to perform 3D object
detection frommonocular images.MonoDETRadds aDepthEncoder to the conventional
Visual Encoder to estimate depth information, achieving end-to-end 3D object detection
from 2D images.

2.4 Transfer Learning to Reduce Manual 3D Labeling

In machine learning, preparing training data is essential. The algorithm uses this data
to learn the parameters needed for prediction. Thus, the quality of training data is cru-
cial for the algorithm to make accurate predictions. Annotating 3D Bounding Boxes
is a challenging task that requires accurately capturing the three-dimensional shape of
objects, which is much more difficult than 2D images.

Using public databases increases the diversity of datasets and improves the model’s
generalization performance. The KITTI dataset, widely used in the field of autonomous
driving, includes tasks such as vehicle detection, 3D object detection, object tracking.
KITTI, with high-quality manual annotations, serves as an ideal dataset for developing
autonomous driving technologies. However, for the 3D Bounding Box detection task,
differences in the cameras used, such as variations in pitch angle, focal length, and
assumed height, can lead to suboptimal performance with the same model.

Our approach involves aligning the KITTI and TUAT near-miss databases based on
their vanishing points. Specifically, we calculate the vanishing points for both databases,
align Composition of the frames accordingly, and then crop and scale the TUAT near-
miss database videos to closelymatch the frames of theKITTI database.Our experiments
demonstrate that this preprocessing significantly enhances the accuracy of the predicted
3D bounding boxes and the precision of the target’s pitch angle.

Subsequently, the 3Dobject detectionmodel trained on theKITTI database is applied
to the TUAT database. We input the images from the TUAT near-miss database into the
model for object detection. During this process, the annotated bounding boxes from the
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KITTI database are used to annotate the images in the TUAT near-miss database. This
eliminates the need for manual creation of bounding boxes, thereby improving workflow
efficiency.

2.5 Dynamic Correction of Target Trajectories by LSTM

The purpose of this study is to track the trajectories of road targets. However, fluctuations
in the detection results over time can cause the targets to exhibit abnormal acceleration.
This can negatively impact the decision-making behavior of autonomous vehicles. For
example, consider a pedestrian walking normally, but due to fluctuations in the detec-
tion results, the predicted target appears to be accelerating across the road, forcing the
autonomous vehicle to take emergency evasive actions. Therefore, it is crucial to address
how to obtain reliable trajectories from image detection.

The simplest method is to filter out outliers, but in real-time processing tasks, simple
filtering algorithms tend to maintain the status quo slowly and may miss genuine abrupt
changes. To know the actual position and speed of the target vehicle, the ego vehicle’s
actual speed must be known. The TUAT near-miss database records the ego vehicle’s
speed information. In this study, we propose an algorithm for dynamically correcting
tracking results. As shown in Fig. 1, by utilizing the previous moment’s target detection
results and the vehicle’s speed, along with the current frame’s detection results and
current speed, we employ a Long Short-Term Memory (LSTM) network to construct a
recurrent network that corrects the current results in real-time. This approach outputs
the necessary corrections to the current detection results, improving detection accuracy
and stabilizing the target trajectory over time.

Fig. 2. Experiment results. (a) The 3D bounding box detection result and traffic scene restoration.
(b) Relative distance from object car. (c) The velocity of ego car and object car.

3 Experimental Results

The 3D bounding box detection results on the TUAT database are illustrated in Fig. 2(a),
showcasing not only the image category and 2D box coordinates but also the object’s
rotation angle, size, and distance from the camera. To assess the model’s effectiveness
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in estimating the relative motion states of vehicles within the TUAT Near-Miss Inci-
dent Database, we conduct both visual and quantitative tests. We use a specific example
to elucidate the results. In a video depicting a right-turning vehicle at an intersection
encountering a stationary black opposing vehicle that accelerates and enters the inter-
section, both vehicles engage emergency brakes. The trajectory of the detected relative
position of the black vehicle is presented in Fig. 2(b), initiating at a distance of 54 m.
As the video vehicle turns right, the X-direction relative distance decreases, and simul-
taneously, the Y-direction lateral distance also diminishes. Furthermore, the velocity
changes of the estimated ego vehicle and the target vehicle are depicted in Fig. 2(c).
The video vehicle decelerates in stages from the 6th second, while the target vehicle
initiates acceleration from the 8th second. Both vehicles apply emergency brakes at the
10th second to avoid collision, validating the effectiveness of the proposed method in
alignment with perceptual observations from video analysis.

4 Validation of Estimated Results

To quantitatively validate the estimated distances, we used Google Earth Pro to measure
actual distances. Bymapping the detected positions to themap and comparing themwith
the algorithm’s estimated distances,we verified the accuracy of ourmethod. For example,
the Google Earth measurement showed a distance of 49.01 m, while our algorithm
estimated 49.11 m, with an error of less than 0.1 m. Similar validation was performed
for objects at closer distances, demonstrating the method’s accuracy.
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Fig. 3. The errors in estimated results varying with distance.

To further validate the effectiveness of the proposed method, we need to statistically
verify the detection results across multiple vehicles. However, the TUAT database only
contains the OBD data of the host vehicle and the video data from the onboard camera,
lacking accurate positional information of surrounding vehicles in the road environment.
How can we verify the accuracy of the predicted results? We target stationary vehicles
in the road environment, using the predicted relative distance and the host vehicle’s
speed to estimate the speed of the road targets. By comparing the predicted results with
a distance of zero, we can assess the validity of our method. Additionally, we examine
the impact of errors based on the actual distance of the targets.
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We selected 50 stationary vehicles distributed on both sides of the road. The experi-
mental results are illustrated in the Fig. 3, showing the errors in estimated results varying
with distance. The graph plots the error values (in meters) on the y-axis against the dis-
tance (in meters) on the x-axis. There are two sets of data presented: the “Original Error”
(blue line with circular markers) and “Our Error” (orange line with circular markers).

From the graph, it is evident that the error values for the original method increase
significantly as the distance increases, reaching up to approximately −5 m at 35 m
distance. In contrast, the error values for our proposed method remain relatively stable
around zero across all distances.

This comparison highlights the effectiveness of our method in maintaining low and
consistent error values, demonstrating improved accuracy over the original method,
especially as the distance increases. This stability is crucial for reliable target tracking
in autonomous driving systems, ensuring more precise detection and reduced likelihood
of erroneous behavior in decision-making processes.

5 Summary and Future Directions

This study introduces a refined transfer learning framework for robust 3D object detec-
tion in the Near-Miss Incident Database, which lacks annotated information. The pro-
posedmethod effectively enhances detection accuracy and robustnesswhile significantly
reducing the cost of annotating new domain data. The integration with OBD data further
facilitates the reconstruction of traffic participant information in hazardous scenarios,
providing valuable insights for the development of Advanced Driver Assistance Systems
(ADAS).

Future work will focus on extending the range of detectable objects and improving
the accuracy of 3D detection and tracking algorithms. Enhancing the system’s perfor-
mance under various environmental conditions such as nighttime and adverse weather
will also be a priority. Additionally, further research will explore the integration of
other sensor modalities to complement monocular camera data, aiming to achieve more
comprehensive and reliable perception capabilities for autonomous vehicles.

References

1. Song, Z., et al.: Robustness-Aware 3D Object Detection in Autonomous Driving: A Review
and Outlook. arXiv preprint arXiv:2401.06542, 1–34 (2024)

2. Zhang, X., Xu, Q., Raksincharoensak, P.: Detection-Correction of Monocular 3D Bounding
Box with LSTM Recurrent Networks. AVEC22, Tu1B-03, pp. 12–15 (2022)

3. Zhang, R., et al.: MonoDETR: Depth-guided transformer for monocular 3D object detection.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)

4. Yao, J., Ramalingam, S., Taguchi, Y., Miki, Y., Urtasun, R.: Estimating drivable collision-
free space from monocular video. In: Proceedings of the 2015 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 420–427 (2015)

http://arxiv.org/abs/2401.06542


460 X. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Occluded Area Detection Based on Sensor
Fusion and Panoptic Segmentation

Hiroshi Yoshitake1(B), Jinyu Gu1, and Motoki Shino2

1 The University of Tokyo, Kashiwa, Chiba 277-8563, Japan
hyoshitake@edu.k.u-tokyo.ac.jp

2 Tokyo Institute of Technology, Ookayama, Tokyo 152-8550, Japan

Abstract. Detecting occluded areas in a driving environment is crucial
to preventing traffic accidents against hidden road agents coming out
from such occluded areas. Our previous work proposed a novel detec-
tion method that can offer geometric information of the detected areas
by utilizing camera and LiDAR sensor fusion. However, it had diffi-
culty identifying individual areas formed by different objects without
information about distinct objects. Thus, the objective of this study
was to improve our previous methodology, and panoptic segmentation,
which can distinguish between individual objects and offer semantic class
labels of the object, was adopted to overcome the limitation. Evaluation
results revealed that our proposed methodology could achieve satisfac-
tory results in occlusion area detection and superior accuracy in estimat-
ing hidden road agent types in the detected areas.

Keywords: occluded area detection · sensor fusion · panoptic
segmentation

1 Introduction

Road safety is a pressing concern globally with the development of the auto-
mobile industry. According to traffic reports, traffic accidents could be briefly
divided into two main categories: accidents involving visible road agents and
accidents involving hidden road agents. Visible road agents refer to entities or
objects on the road that are easily detectable and identifiable by drivers or sen-
sors. On the other hand, hidden Road agents refer to entities or objects that
cannot be directly detected by drivers or sensors by conventional means. Hidden
road agents from occluded areas can pose significant threats to road safety as
they are not readily visible to drivers. Therefore, detecting occluded areas is
crucial. With successful detection, we can integrate the detection results into
future Advanced Driver Assistance Systems (ADAS) to reduce the occurrence
of collisions against hidden road agents.

Existing methods use external information, including information from other
vehicles [1] and pedestrians [2], to detect the presence of hidden road agents
within the occluded areas. These methods do not involve direct analysis of the
surrounding environment to detect occluded areas that may contain hidden road
c© The Author(s) 2024
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agents. On the contrary, we firmly believe that experienced drivers can per-
ceive potential dangers by observing the surrounding environment. Thus, utiliz-
ing visual perception methods to detect occluded areas is essentially simulating
human perception.

Several existing methods detect occluded areas based on visual perception
methods [3–5]. Fukuda et al.[3] utilized a large dataset to train a predictor to
estimate the occlusion area or recover the scene. Jeong et al. [4] utilize 2D LiDAR
data from the bird’s eye view to estimate the occlusion areas in an occupancy grid
map. Ding and Song [5] utilized the density of depth information derived from
an RGB-D camera to estimate occlusion in human-related scenarios. However,
these methods faced challenges in offering geometric information of the areas
required for ADAS.

To overcome this limitation, we proposed a detection method utilizing sensor
fusion of camera and LiDAR and a key point extractor identifying object bound-
aries forming the occlusion [6]. We succeeded in extracting key points, detecting
occluded areas, and obtaining geometric information. However, identifying indi-
vidual occluded areas was difficult because the key points were not classified into
distinct objects. In other words, we can accurately detect individual areas if we
can achieve information on individual objects.

As a method to achieve object information, we adopted panoptic segmenta-
tion [7]. This method can distinguish between individual objects and obtain class
labels of each pixel simultaneously. Thus, we adopted this method and applied
it to our previous method [6] to propose an improved detection method.

2 Methodology

Figure 1 shows the overview of the proposed methodology. This methodology
consists of three main processes: 1. Data pre-processing, 2. Key point extrac-
tion, and 3. Occluded area reconstruction. The first and second processes were
elaborated in our previous work [6]. Thus, this study focuses on the third process:
Occluded area reconstruction.

The inputs to Process 3 are the key points, boundary points of occluded areas
containing depth information, extracted in Process 2 and the image obtained by
the RGB camera. Figure 2 shows a sample of extracted key points.

This process is designed to output individual occluded areas and estimated
types of hidden road agents in the areas. The process consists of four steps.
Firstly, panoptic segmentation is conducted to get segmented results of objects
with class labels. Semantic edges of each object can be extracted from the seg-
mented results. Secondly, the edge warping technique was adopted to obtain the
depth edge of individual objects by integrating the semantic edges and the key
points obtained in the previous process. Thirdly, Graham’s scan method was
adopted to construct a convex hull of the depth edges of an individual object
to reconstruct the occluded area. Lastly, a decision tree model was employed
to estimate the types of potential road agents. Spatial information of occluded
areas, such as depth, height, and width, and semantic information of occluded
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Fig. 1. Overview of the proposed methodology.

Fig. 2. Sample result of extracted key points of occluded areas. The top image is
showing the original RGB image and the bottom image is showing the extracted key
points of occluded areas made by the vehicles and building seen in the RGB image.

areas, the category label associated with the panoptic segmentation, were the
input of the model.

3 Evaluation

3.1 Method

As the evaluation of the proposed methodology, the detection accuracy of
occluded areas and the estimation accuracy of types of hidden road agents were
evaluated. For the detection accuracy, the average Intersection of Union IoU was
adopted as the evaluation metric, which can be expressed as Eq. 1, where IoUi

denotes the IoU of area i and n denotes the number of areas. IoU between the
detected results and manually labeled ground truth was evaluated for each area.
For the estimation accuracy, Precision was adopted as the evaluation metric. As
for the hidden road agent estimation, the model was trained with the ground
truth dataset and tested with the same dataset.
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IoU =
1
n

n∑

i

IoUi (1)

The method was evaluated for four different scenarios (S1–S4) included in the
KITTI dataset [8]. Ground truth labels were annotated manually. Annotations
of occluded areas were done by analyzing point cloud data, and annotations of
types of hidden road agents were done by analyzing each area in RGB images.

3.2 Results

Table 1 shows the results of IoU among different scenarios. The achieved results
are acceptable, as the IoU exceeded 0.5 in certain scenarios, indicating a sat-
isfactory result. Figure 3 compares a sample scene’s detected areas and ground
truths. From this result, it could be seen that our method was able to detect
the same individual occluded areas as the ground truth. Although our method
detected the same object, detected areas were larger than the ground truths,
leading to a larger area of union, a smaller area of intersection, and a smaller
IoU consequently.

Table 1. Evaluation results of IoU .

Scene ID IoU

S1 0.62

S2 0.32

S3 0.28

S4 0.41

In terms of estimation of hidden road agent types, we achieved an accuracy
of approximately 0.97. The high accuracy could be attributed to incorporat-
ing semantic information obtained in panoptic segmentation. We provided a
higher-dimensional dataset by introducing semantic data alongside the original
geometric information, enhancing linear separability.

4 Discussions

Although the evaluation metric was not high, the detection results of the pro-
posed methodology were satisfactory and close to the ground truths, as shown
in Fig. 3. This detection was possible because the key points of occluded areas
were aligned with the object edges, thanks to the semantic edges obtained in the
panoptic segmentation. Thus, it was confirmed that panoptic segmentation was
effective in the occluded area reconstruction process.

However, at the same time, our method exhibited sub-optimal performance
primarily due to the limitations of the panoptic segmentation. The segmentation
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Fig. 3. Comparison of detected occluded areas and ground truths of the scene shown
in Fig. 2. Red polygons are the detected occluded area and the blue polygons are the
ground truths.

Fig. 4. Representative result of panoptic segmentation failing to distinguish foreground
and background buildings as different objects. The top image is the original RGB
image, the middle image is the panoptic segmentation result, and the bottom image is
the segmentation result of the building on the left side.
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struggled to distinguish background information. Figure 4 shows a sample of
panoptic segmentation result, which failed to distinguish the foreground and
background buildings on the left side. Since the foreground building was not
segmented as a single object, the method failed to obtain the key points of the
occluded area on the left side made by the foreground building. This type of
failure was observed among vegetation such as trees. To overcome this issue, an
update in the representation of segmentation is necessary to treat background
objects as different objects.

5 Conclusions

This study proposed an occluded area detection method employing panoptic seg-
mentation to improve our previous methodology, utilizing camera and LiDAR
sensor fusion. The results showed that the proposed method could achieve satis-
factory detection and superior accuracy in estimating hidden road agent types.
From the results, it could be noted that our approach utilizing both geometric
and semantic features obtained through sensor fusion and panoptic segmenta-
tion offered a more holistic perspective for detecting occluded areas. We plan to
expand the size of the ground truth dataset to obtain more reliable evaluation
results and analyze the strength of the proposed method in depth.
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Abstract. This study presents the empirical mode decomposition method (EMD)
for vehicle vibration and a correlation detection approach for input from road and
vehicle body vibration using the Hilbert-Huang transform (HHT). Although the
magnitude squared coherence is commonly used to examine the correlation of
vehicle vibration with road input, it is not suitable for non-stationary vibration.
On the other hand, the Hilbert-Huang transform (HHT) which consists of EMD
and the Hilbert transform is proposed. This method is suitable for transient vibra-
tion analysis, while the drawbacks to intermittence signals are suggested. Vehicle
vibration signals include intermittence signals in some cases. In this study, the
masking EMD which adapts the mask signal to the amplitude of the target sig-
nal was applied to vehicle vibration to alleviate the drawbacks. By this method,
the correlation analysis by HHT demonstrates higher temporal resolution com-
pared to the continuous wavelet transform. Thus, it becomes possible to identify
the components that caused vibrations at the moments when the passengers felt
comfortable or uncomfortable, and to analyze the characteristics of the vibrations.

Keywords: Hilbert-Huang transform · Empirical Mode decomposition

1 Introduction

The testing of vehicle ride comfort still relies on subjective evaluations by test drivers.
There are a lot of advantages to using the same method in vehicle tests as the general
customers to evaluate cars. However, obtaining accurate physical information such as
frequency and amplitude of vibration from subjective evaluation is usually challenging.
The development of a quantitative analysis method for ride comfort vibration is not only
useful for improving ride comfort but also development of new suspension components
and their control logic. Although the magnitude squared coherence (the coherence) is
commonly used to examine the correlation between the input from road surfaces and
the output which is vehicle body vibration, the spectrum and phase obtained from the
frequency analysis used in the method are averaged values within the window. That
makes it difficult to capture the characteristics of transient vibrations. Moreover, the
calculation of the coherence further deteriorates the temporal resolution by averaging
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over a constant window for the spectrum and phase. On the other hand, the Hilbert-
Huang transform (HHT) which is suitable for non-stationary vibration was proposed [1].
HHT consists of the empirical mode decomposition (EMD) and the Hilbert transform
(HT), and the instantaneous amplitude and the instantaneous phase of the target signal
are calculated by HT. In addition, the instantaneous frequency is obtained from the
instantaneous phase. Since the signal that can be transformed by HT has to have only
a single frequency component, the target signal is first decomposed into the intrinsic
mode functions (IMFs) by EMD. EMD acts as a data-adaptive high-pass filter and has
high temporal resolution. However, the drawback called mode mixing when EMD is
applied to signals with intermittent signals is indicated by the author. In this study, we
describe a method for mitigating the drawback when applying it to vehicle vibration and
a correlation analysis with high temporal resolution using HHT.

2 Applying EMD to a Vehicle Vibration

2.1 Verification Method

The goal is to identify the characteristics of the instantaneous vibration when the vehicle
behavior that the passengers perceive as comfortable or uncomfortable and to identify
the components contributing to the vibration. For that goal, a road surface with a single
convex input occurring on the ISO class D is used to conduct a full vehicle simulation
using VI-CarRealTime. Figure 1a shows the road input and the simulation condition.
The vertical displacement at the point of contacting the front tire and the road is shown
in Fig. 1b. The vehicle parameters used in the simulation are the preset “Sedan car”
model in VI-CarRealTime.

(a) Simulation condition (b) Road profile

Fig. 1. Condition and road profile for simulation

2.2 Masking EMD

The procedure for processing EMD is first to take the difference between the average
of the upper and lower envelope curves for the target signal. This process is repeated
iteratively on the residual until achieving a threshold, at which point the residual is
extracted as an IMF. Then, the difference between the extracted IMF and the target
signal is taken, and the same process is repeated to sequentially decompose the signal
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into IMF of progressively lower frequencies. On the other hand, EMD has been pointed
out to have the problem of mode mixing where it decomposes signals with intermittent
components into IMFswith non-monocomponents asmentioned earlier. As the vibration
of a vehicle varies significantly depending on the driving location and conditions, the
characteristics and frequency of inputs from the road are not constant. This becomes a
challenge when EMD is applied to vehicle vibrations. In this study, the masking EMD
[2] which is modified for intermittency signals is used to mitigate the drawback. The
masking EMD adds a sinusoidal signal with single-frequency component across the
entire range of the target signal as the masking signal. By executing EMD on the target
signal, the components close to the frequency of the masking signal are extracted as an
intrinsic mode along with the imposed signal. By removing the added masking signal
from the intrinsic mode, the IMF of the target signal is obtained alone. According to the
boundary map for masking EMD described by Fosso et al. [3], a smaller amplitude of a
mask signal than the target signal is considered better. However, if the amplitude is too
small compared to the target signal, the imposed signal may not work as a mask. Thus,
we propose adapting the amplitude of the mask signal to an intermittency target signal
using the sliding filter. This also acts tomitigate the drawback of EMD. Figure 2 shows an
example of the target signal and amasking signal that adapts to the local amplitude of the
target signal. In addition, by Fosso et al., the conditions of frequency between the mask
signal and the two components that are to be extracted and separated are proposed with
f 1/f m > 0.7 and f 2/f m < 0.6, where f 1, f 2, and f m represent the frequency of the signal to
be extracted, the frequencyof one to be separated and themasking frequency respectively.
This study determines the masking frequencies are set to 1, 2, 4, 8, 16, 32, and 64 Hz
by taking into account the logarithmic relationship of human sensory perception of
vibration while meeting the aforementioned conditions. Figure 3a and Fig. 3b show the
instantaneous frequency of IMFs obtained by HHTwith the conventional EMD and with
the masking EMD using the configuration mentioned above respectively. Instantaneous
frequency from HHT is shown with lines in red. Furthermore, the background shows
the scalogram using CWT for the same vibration data. The instantaneous frequency
around 10 Hz in Fig. 3b which represents the maximum amplitude of the convex input is
finely decomposed compared to Fig. 3a. In addition, the instantaneous frequency lines
in Fig. 3b are less crossed compared to Fig. 3a, and the proposed method effectively
decomposes the signal.

Fig. 2. An example of mask signal
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(a) By conventional EMD (b) By the masking EMD with the adapted 

amplitude mask signal

Fig. 3. Apply EMD to vehicle vibration

3 Correlation Analysis of Input and Output in Vehicle Vibration
by HHT

The coherence is a common method for correlation analysis. It is calculated from the
Fourier transform (FT), and the wavelet transform (WT) is represented by Eq. (1),
where Cxy represents the cross spectrum of the input and the output signals, Pxx and
Pyy represent the power spectrum of the input and output signal respectively, Ax and Ay
represent spectra of input and output, θx and θy represents the phase of input and output,
and the E represents an expected value.

coh2 = |E(Cxy)|2
E(Pxx)E(Pyy)

(1)

= |E(Ax)|2|E(Ay)|2
E(Pxx)E(Pyy)

· |E(ei(θx−θy))|2 (2)

The first part of Eq. 2 is calculated based on the ratio of input and output amplitudes,
while the second part is determined by the phase difference between the input and
output. In the case of transient responses, although the amplitude ratio is not constant,
the phase difference remains constant. Thus, the correlation analysis using HHT utilizes
the second part of Eq. 2. Specifically, it is determined that input and output are correlated
when the instantaneous frequency of input signals corresponds to the one of output for
a certain duration. This method is possible because the instantaneous frequency can
be obtained by HT, whereas the method with FT or WT deteriorates the accuracy of
coherence. Figure 4a shows the correlation analysis of vertical acceleration on the front
wheel and vertical acceleration of the center of gravity on the vehicle body obtained
from the aforementioned simulation using HHT. The lines in orange represent the spots
having the correlation of the input which is the acceleration of the wheel and output
which is the acceleration of the vehicle body, and the coherence using CWT is shown in
the background. The lines are within a region of high coherence using CWT in the time
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axis direction, thereby correlation analysis using HHT exhibits high temporal resolution
compared to coherence using CWT. Figure 4b illustrates the correlation analysis when
the front bump rubber is replaced with the shorter one. It indicates that the correlation is
detected at the moment when the bump rubber reaction force peaks around 30 - 40 Hz.
Figure 4c illustrates the correlation when the greater damping force on the front damper
is applied. It also indicates that the correlations affected by damping force around 10 -
20 Hz, 60 Hz are detected. Furthermore, features of Fig. 4b and Fig. 4c can be observed
in Fig. 4a. This observation in Fig. 4a corresponds to the similarity of the bump rubber
reaction force in Fig. 4a and Fig. 4b, and the similarity of the generated damping force in
Fig. 4a and Fig. 4c. Consequently, HHT allows to find the characteristics of the vibration
at the moment of forced vibration and the contribution of components. Figure 5 shows
the characteristics of bump rubbers and dampers used in Fig. 4.

(a) Base configuration (b) Shorter bump rubber 

on front

(c) Greater damping 

force on front

Fig. 4. Correlation analysis using HHT and CWT

(a)  Specifications of bump rubber (b) Specifications of damper

Fig. 5. Specifications of vehicle components used for the correlation analysis
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4 Conclusion

This study presents the method for detecting the correlation between road inputs and
vehicle behavior using HHT with the adaptive amplitude masking EMD. The adaptive
amplitude masking EMD was demonstrated to alleviate mode mixing for intermittent
road inputs and their corresponding vehicle vibrations. Furthermore, the correlation
detectionmethod usingHHThas superior temporal resolution compared to the coherence
with CWT, allowing for more localized correlation detection. This advantage enables
the identification of components affecting vehicle vibration.

References

1. Huang, N.E., et al.: The empirical mode decomposition method and the Hilbert spectrum for
non-stationary time series analysis. Proc. Roy. Soc. London 454A, 903–995 (1998)

2. Deering,R.,Kaiser, J.F.: Theuse of amasking signal to improve empiricalmodedecomposition.
IEEE International Conference onAcoustics, Speech, and Signal Processing. vol. 4. pp. iv/485–
iv/488 (2005)

3. Fosso, O.B., Molinas, M.: EMDmodemixing separation of signals with close spectral proxim-
ity in smart grids. In: 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe) (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Dynamical Behaviours of the Nose
Landing Gear with Freeplay
and Stochastic Disturbance

Xiaolei Du1(B) and Yong Xu2

1 School of Mechanics, Civil Engineering and Architecture,
Northwestern Polytechnical University, Xi’an, China

duxiaolei970315@163.com
2 School of Mathematics and Statistics, Northwestern Polytechnical University,

Xi’an, China

hsux3@nwpu.edu.cn

Abstract. Shimmy dynamics of a dual wheel nose landing gear sys-
tem with torsional freeplay under stochastic lateral disturbances is stud-
ied. Dynamic characteristics of the deterministic case are numerically
analyzed, especially the shimmy of the landing gear through bifurca-
tion analysis. Meanwhile, the influences of the freeplay nonlinearity on
shimmy behaviours are examined in detail. Impacts of stochastic lateral
disturbances on the shimmy of the landing gear system are performed via
time history and recurrence plots. Our results show that the interaction
between the freeplay nonlinearity and the random load induces a sig-
nificant reduction in the critical shimmy velocity, which has an adverse
impact on the stability of the nose landing gear of an aircraft.

Keywords: Shimmy · Landing gear · Bifurcation analysis · Freeplay

1 Introduction

Landing gear shimmy is generally considered as an unexpected self-excited vibra-
tion of wheel and landing gear motion coupling with each degree of freedom.
Many researches omitted the nonlinear effects caused by freeplay. The struc-
tural freeplay, like mechanical transmission clearance of the landing gear, also
has a great impact on the wheel shimmy. In this work, the torsional freeplay
caused by torque links is taken into account, and Gaussian white noise will be
also considered to approximately describe the stochastic lateral excitation.

2 The Mathematical Model

The motion of each tire under the torsional and lateral bending effects of struts
is based on [2]. A typical dual wheel NLG of a midsized passenger aircraft is
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considered as sketched in Fig. 1. These two modes are coupled via the lateral
deformation λL and λR of the left and right tyres. The torsional and lateral
bending dynamics of the NLG can be described by Eq. (1a–b). The longitudinal
mode is omitted here since it does not actively participate in the NLG dynamics
[2]. The tire kinetmatic equation is obtained by the stretched string theory, which
describes the wheel-ground interaction. The resultant lateral deformation can be
expressed as an algebraic sum of the torsional and lateral bending modes where
the natural frequencies of both modes are different. The motion of each tire
under the torsional and lateral bending effects of struts is given by Eqs.(1a–b).
Then the overall model of the dual wheel NLG system for torsional and lateral
vibrational modes can be established as [2],

λ̇L+
v

σ
λL−v sin(θ)− lg δ̇ cos(δ)−(eeff −h) cos(θ)ψ̇ cos(φ)− D

2
ψ̇ sin(θ) cos(φ) = 0,

(1a)

λ̇R+
v

σ
λR−v sin(θ)−lg δ̇ cos(δ)−(eeff −h) cos(θ)ψ̇ cos(φ)+

D

2
ψ̇ sin(θ) cos(φ) = 0,

(1b)
where D is the seperation distance between the centres of two wheels, and each
tyre has the moment of inertia I about the spinning axis.

Fig. 1. Schematics of side and top views of the dual wheel NLG.

The torsional freeplay originating from the torque links of the NLG is studied
here. The gap between the torque links will cause a reduction on the torsional
stiffness that is expressed as [3]

MKψ
=

{
kψ (|ψ| − θFP ) sgn(ψ), |ψ| > θFP ,

0, |ψ| ≤ θFP .
(2)
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Specifically, a Gaussian white noise ω(t) is added to the lateral DOF as an
additive noise excitation. The ω(t) satisfies the following property

E [ω(t)] = 0, E [ω(t)ω(t + τ)] = N̄η(τ), (3)

where E[·] means expectation, η(τ) is Dirac function, N̄ is the noise intensity.

3 Bifurcation Analysis

A bifurcation analysis is performed to explore the deterministic NLG system.
The effects of the forward velocity and vertical loading force are to be analyzed
regarded to the stability with freeplay.

Fig. 2. The single parameter bifurcation with freeplay (Fz = 500 kN).

Figure 2 shows the bifurcation under high vertical load with the cases of
freeplay (0.04/0.06 rad). Figure 2(a) indicates that the nonlinearity caused by
freeplay still effects system at the high-speed stage. System does not return to
the equilibrium after the second bifurcation, but oscillates in multiple periods
as shown in Fig. 2(b). Increasing the freeplay will expand the shimmy area of
the system. In addition, at the low speed stage, the freeplay will cause multi-
period to single period and then to multi-period oscillation (Fig. 2(e)). System
will oscillate in the negative axis in the torsional direction as shown in Figs. 2(a)
and (d) and vibrate significantly in the lateral bending direction (Figs. 2(c) and
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(f)). The bifurcation diagrams with freeplay shown in Fig. 2 display multi-period
and quasi-period motions substansially extend the results of existing works. The
freeplay may lead to chaos under specific conditions, and the impact of freeplay
on the dynamics is more complex than discussed above.

Fig. 3. The double parameter bifurcation (v-Fz plane).

As shown in Fig. 3, the double parameter bifurcation diagram of the v-Fz

plane of the double wheel NLG system with and without considering the struc-
tural freeplay are obtained respectively. It can be seen from the Fig. 3(a) that
system shimmies when forward velocity reaches 5.439 m/s. The intersection of
the two areas is the area where system shimmies in both torsional and lateral
bending directions. The result without freeplay shown in Fig. 3(a) completely
corresponds to the one in [2]. From Fig. 3 (b), comparing with the case with-
out freeplay, the critical speed of system shimmy is advanced from 5.439 m/s to
about 1.028 m/s. The shimmy point in the torsional direction is extended from
175 m/s to about 270 m/s. The range of vertical load impact shimmy area is also
expanded from 550 KN to 900 KN, which means that the existence of the freeplay
makes the shimmy region in the torsional direction expand significantly. In the
lateral bending direction, due to the coupling effect, the existence of freeplay will
make the shimmy curve move up, indicating the vertical load required for system
to lateral shimmy increases. In other words, the torsional freeplay inhibits the
lateral shimmy to a certain extent.
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Fig. 4. The time histories with NES controller.

Figure 4 shows the time histories in the determistic and stochastic cases
respectively, the results indicate the shimmy can be well controlled by NES
(Figs. 5 and 6).

Fig. 5. The UCRP of the system with an embedding of m = 3, τ1 = 10 (Fz = 500 KN,
v = 0.25 m/s). m is embedding dimension and τ1 is delay time. The black line and red
line on top of the UCRP represent the time history in the torsional direction and lateral
bending direction respectively.

The unthreshold cross recurrence plot (UCRP) are obtained to compare the
dynamics represented in torsional and lateral direction, showing the recursive
structure characteristics from periodic to stochastic.

Moreover, the statistics on the cross correlation, recurrence rate and deter-
minism are obtained It can be seen that the system has strong cross-correlation,
high recurrence rate and intensive determinism in the case without freeplay, and
reduced after considering the freeplay and noise, indicating the coupling effect
and periodicity in the torsion and lateral bending directions decreased.
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Fig. 6. The quantification analysis diagrams of UCRP for the tortional direction
(Fz = 500 KN, v = 0.25 m/s). The black lines show positive relation, the red lines show
negative relation. The dash-dotted line in (a), (d), (g) marks the 5% confidence interval.
The lag domain is [–100, 100].

4 Conclusion

Shimmy dynamics of a dual wheel NLG with torsional freeplay under stochas-
tic lateral disturbances are investigated. We found that the torsional freeplay
leads to an enlargement of the shimmy area and an enhancement of the shimmy
characteristics compared to the case without freeplay. The stochastic lateral exci-
tation enhances the lateral bending direction shimmy and brings out the random
switching phenomenon of amplitude in the torsional mode of the system with
torsional freeplay.
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Abstract. Time delays and lags in control loops can cause instability
and pose significant challenges to engineers. This study investigates a
steering controller using the dynamic bicycle model, where the steering
system dynamics are approximated by a steering lag. A higher-level con-
troller calculates the desired steering angle based on the vehicle’s lateral
position and yaw angle by considering various time delays related to
these states. Stability charts are plotted for delay combinations, and the
most stable gain setups for the feedback controller are determined. The
results indicate that an appropriate increase in one of the time delays
expands the stable domain of control gains for the vehicle system, and
it enhances the performance of the vehicle controller.

Keywords: time delay · steering control · stability analysis · feedback
control

1 Introduction

In the past twenty years, autonomous vehicle (AV) research has seen incredible
progress. One area that is crucial for making these vehicles safe and stable is
active steering control [1–3]. Even though control systems have made essential
progress, surprisingly little attention has been given to studying the effects of
time delays within them, despite the fact that time delays persist as a critical
issue.

Recent research often focuses on automated platforms with complex electric
circuits and advanced actuators, which cause large time delays and lags in the
control system. However, most of the studies on path-following controllers [4,5]
neglect the impact of the sensor and communication delays and steering dynam-
ics, although these may lead to degraded system performance, such as steering
oscillations and instability [6,7]. One significant challenge for contemporary AV
systems is signal congestion. These systems are increasingly complex and face
difficulties in assimilating large volumes of data. Variations in sensor configura-
tions and estimation methods at the upper controller levels result in differences
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in feedback delays related to state variables [8]. Steering lag is another critical
factor [9] representing the time it takes for the tire to rotate and the tire contact
patch to develop the slip angle necessary for generating lateral tire force. This
lag is influenced by hardware capabilities and the design of the lower level con-
trol system. Hence, ignoring these two factors can potentially cause unforeseen
effects on system behavior.

Therefore, an in-depth investigation into the effects of time delays in upper-
level controllers and steering lag in lower-level controllers is essential for devel-
oping robust and safe control systems for AV. In this study, the stability of
a vehicle steering controller is analyzed considering time delays and steering
lag. The stability domains of the control system and the most stable control
gain setup can be determined under multiple time delay combinations. We can
improve the performance of the control system via proper tuning of the delays.

2 Vehicle Dynamics and Control Design

The lateral dynamics of vehicles are commonly studied using the well-known
bicycle model, which assumes a constant longitudinal speed Vx (see Fig. 1). This
model is widely used due to its simplicity and effectiveness in capturing vehicle
behavior.

In this case, the planar bicycle model for the vehicle is introduced in the form

m(V̇y + Vxψ̇) = FFy + FRy , JGψ̈ = aFFy − bFRy , (1)

where Vy is the lateral speed, ψ is the yaw angle and δ is the steering angle.
FFy and FRy are the lateral forces of the front and rear tires, respectively. The
overall mass of the vehicle is m; JG is the mass moment of inertia of the vehicle.
Parameters a and b refer to the distances of the front and rear axles to the center
of gravity G, respectively.

In case of small tire deformations, the linearized brush tire model [10] pro-
vides:

FFy = −2CFαF , FRy = −2CRαR , (2)

where CF and CR are the so-called cornering stiffnesses of the front and rear
tires, respectively. The tire slip angles are defined as follows:

αF = arctan
Vy + aψ̇

Vx
− δ , αR = arctan

Vy − bψ̇

Vx
. (3)

3 Hierarchical Steering Control Strategy

In this study, we consider that the desired path of the vehicle is along the X-axis.
Namely, the lateral error of the vehicle is the position YG of the vehicle’s center
of gravity, while the angular error is equal to the yaw angle ψ. To accomplish the
vehicle path-following, a hierarchical steering control strategy is constructed.
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Fig. 1. Representation of planar bicycle model

The upper-layer control law for calculating the desired steering angle δd is
designed to accommodate variations in feedback delays for lateral position and
yaw angle. The control law is based on a linear state feedback:

δd(t) = −PyYG(t − τy) − Pψψ(t − τψ) , (4)

where Py and Pψ are the feedback control gains. The time delays corresponding
to the different signals are τy and τψ.

In order to achieve the desired steering angle in the lower-level controller, a
simplified model of the steering system is used with the first-order differential
equation

τsδ̇(t) = δd(t) − δ(t), (5)

where the steering lag τs describes the latency of the steering. This lag is set to
τs=0.1 s in the study [9]. δ(t) is the real steering angle of the front wheel, while
δd(t) refers to the desired steering angle.

Table 1. Vehicle parameters.

Symbol (unit) Description Value

m (kg) The total mass of the vehicle 1435

Jz (kg · m2) Yaw moment of inertia 2340

L (m) Wheelbase 2.5

a, b (m) The distance from G to front, rear axle 1.2, 1.3

CF (N/rad) Cornering stiffness of front wheel 6 · 104

CR (N/rad) Cornering stiffness of rear wheel 6 · 104

Vx (km/h) Longitudinal velocity 60

4 Stability Analysis

By means of the D-separation and the semi-discretization methods (see [11]),
stability charts are constructed in the plane (Py, Pψ) of the higher level control
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gains while all the other parameters of the system are fixed as shown in Table 1.
The control gain setup, for which the system has the most stable configuration
(i.e., when the largest absolute value of the characteristic multipliers of the semi-
discretized system is minimal), can also be determined. This setup varies as the
parameters of the system are changed, like in case of the variation of the time
delays.

The state vector x of the vehicle system is defined as x = [YG ψ Vy ψ̇ δ ]T.
From Eq.(1)-(5), the linear state space model can be obtained:

ẋ(t) = Ax(t) + Bu(t) , (6)

where A ∈ R
5×5, B ∈ R

5×1. They are listed as follows:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
0 2(CF+CR)

m − 2(CF+CR)
mVx

− 2(CFa−CRb)
mVx

2CF
m

0 2(CFa−CRb)
Jz

− 2(CFa−CRb)
JzVx

− 2(CFa2+CRb2)
JzVx

2CFa
Jz

0 0 0 0 − 1
τs

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1
τs

⎤
⎥⎥⎥⎥⎦

, (7)

and the input u is the desired steering angle δd that is given by the proportional
controller

u(t) = Kyx(t − τy) + Kψx(t − τψ) , (8)

where the row vectors Ky = [−Py 0 0 0 0 ] and Kψ = [0 −Pψ 0 0 0 ] .

Fig. 2. Stability charts in the plane of control gains Py and Pψ for different combina-
tions of time delays.

Figure 2 shows the stable regions for the control gains Py and Pψ in case
of several varying feedback delay combinations. The black dashed line outlines
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the stability domain, with darker gray shades indicating faster decaying signals,
that is, indicating improved stability. The green star marks the optimal point
for the fastest system decay, showing that maximum control gains do not yield
the fastest decay. Increasing τψ significantly reduces the stable region, while
increasing τy primarily alters the shape of the stability domain. Some control
gain combinations become stable as τy increases. In Fig. 3(a), the blue domain
represents the fastest decay for the combination of the time delays where the
modulus of the largest characteristic multiplier is the smallest (see the color-
bar to the right of the stability chart). To verify the effectiveness of adjusting
a specific time delay combination to enhance the system’s control performance,
numerical simulations are conducted. The simulation duration is set to 10 s,
and the initial values are x0 = [3.5 0 0 0 0]T. Simulations are carried out for
two combinations of time delays: A (τy = 0.2 s; τψ = 0.1 s) and B (τy = 0.4 s;
τψ = 0.1 s). Figure 3(b) illustrates the simulation results for the lateral position of
the system over time. Combination B exhibits a faster system response compared
to Combination A, reaching a stable state earlier. Hence, adjusting a specific
time delay combination for the system under the most stable (optimal) gain
combinations can enhance the control performance.

Fig. 3. The effect of different time delay combinations on the linear stability: (a) the
value of the largest characteristic multiplier; (b) simulations for different time delay
combinations.

5 Conclusion

In summary, the presented analysis identifies the control gain setup that yields
the most robust parameter configurations against initial state perturbations by
adjusting the time delays of the state signals processing. It is counter-intuitive
that the optimal combinations of time delays are found with increasing one of
the delays. These findings challenge the conventional wisdom that time delays
tend to destabilize dynamical systems: certain scenarios may benefit from larger
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time delays and these scenarios are also relevant in practical applications like
the control of AV. Further investigation of complex hierarchical vehicle control
systems with various delays is the task of future research.
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Abstract. Vehicle teleoperation holds great promise but faces chal-
lenges in complex scenarios, limited awareness, and network delays,
impacting human operators’ cognitive workload. Our prior work intro-
duced the Successive Reference Pose Tracking (SRPT) approach, trans-
mitting poses instead of steering commands, potentially mitigating
delays. Yet, SRPT’s robustness in the face of state estimation inaccu-
racies and the necessary sensors remain unclear. In this study, we assess
SRPT under various challenging environmental conditions and measure-
ment errors using a Simulink-based 14-DOF vehicle model. Results show
SRPT’s consistent performance, using estimated states, in worst-case
scenarios. Our minimalist sensor setup - IMU, wheel speed encoder, and
steer encoder - underscores SRPT’s resilience without relying on GPS,
vital for urban environments. This paper highlights SRPT’s robust tele-
operation, setting the stage for future real-world vehicle tests prone to
measurement errors.

Keywords: Vehicle teleoperation · Remote driving · Network delay ·
SRPT · NMPC · State estimation · Measurement noises · Simulink

1 Introduction

Vehicle teleoperation is the remote control of a vehicle, typically wirelessly.
Automated vehicles (AVs) are promising for future mobility but face challenges
in complex scenarios, limiting their effectiveness. Teleoperation can serve as a
backup when AVs reach the limits of their Operational Design Domain (ODD)
[1]. The goal of teleoperation is to offer a secure and effective method to overcome
these limitations.
Key challenges in vehicle teleoperation include:

! Human-machine interaction: User experience with input modalities (e.g.,
touch, gesture, voice), feedback (e.g., haptic, visual, auditory), and cognitive
load.

! Network latency: Variable delays degrade performance, especially in low-
bandwidth or high-latency environments.
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! Safety and reliability: Robust fault detection, recovery mechanisms, and han-
dling communication failures or malfunctions (Fig. 1).

Fig. 1. Graphical depiction of the SRPT approach utilized for direct vehicle teleop-
eration. The remote vehicle is provided with successive reference poses as it progresses
forward. The control-loop includes a state-estimation block.

Various teleoperation concepts [1], including direct control [2–4], shared con-
trol [5–7], and trajectory guidance [8,9], face challenges such as latency and situa-
tional awareness. This paper focuses on mitigating the impact of network latency
in vehicle teleoperation using the Successive Reference Pose Tracking (SRPT)
approach, which falls under the direct control classification. SRPT transmits
poses instead of steering commands. This method aims to improve safety and
effectiveness by reducing human overcorrection and oscillations caused by delays.

1.1 Previous Work and Vehicle State Estimation

Our previous research introduced and assessed the SRPT approach [10–12].
Compared to predictive display-based teleoperation, SRPT, utilizing a Nonlinear
Model Predictive Control (NMPC) block, demonstrated superior performance by
dynamically adjusting vehicle speed and steer during rapid maneuvers and main-
taining stability under variable network delays. The control-station generates
closely spaced waypoints via joystick steering. Prior research works assumed per-
fect vehicle states; however, real-world scenarios necessitate evaluating SRPT’s
robustness against state estimation inaccuracies.

State estimation is crucial for reliable teleoperation. Methods like the
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) estimate
vehicle states using inputs from IMUs and wheel encoders. Bersani et al. [13]
employed a UKF with a kinematic model for pose and velocity estimation, while
Doumiati et al. [14] used an EKF with a four-wheel model to estimate side-slip
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angle and tire forces. Although high-accuracy methods using Lidar and GPS
exist, they are costly. Our approach focuses on cost-effective, resilient solutions
using only dead-reckoning sensors with EKF based state estimator to support
SRPT.

1.2 Contribution of Paper

This paper assesses the performance of SRPT vehicle teleoperation under state
estimation inaccuracies and challenging conditions. It highlights SRPT’s effec-
tiveness using only dead-reckoning sensors, enhancing robustness without GPS
dependency.

2 Method

The SRPT approach proposed in [11], requires vehicle states. Considering the
single-track vehicle model, set of vehicle states are:

X =
[

β , ψ̇ , ψ , Fy,F , Fy,R , Vx, x , y , δ
]T

The NMPC block optimizes for vehicle steer-speed commands, to keep the
vehicle motion in sync with the received successive reference poses [11]. Figure 3
shows the incorporation of a state-estimator in the form of EKF. Its prediction
model consists of the single-track version of the four-wheel vehicle model given
in [14] and it is given by

Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
mVx

(
Fy,F cos δ + Fx,F sin δ + Fy,R

) − β·a
Vx

− ψ̇
1

IZ

[(
Fy,F cos δ + Fx,F sin δ

)
lF − Fy,R lR

]

ψ̇
Vx
λ

[
Cσ,F σF − Fy,F

]
Vx
λ

[
Cσ,R σR − Fy,R

]
V̇x

Vx (cosψ − sinψ tanβ)
Vx (sinψ + cosψ tanβ)

δ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[σF , σR] are the tires slips given by

σF � tan δ − β − ψ̇ lF
Vx

σR � −β + ψ̇ lR
Vx

Fig. 2. Single-track vehicle
model.
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[Cσ,F , Cσ,R] are the lumped cornering stiffness of front and rear axles respec-
tively. [mf ,mR] are distribution of vehicle mass on front and rear axle based on
[lF , lR] respective distances of axles from CG (Fig. 2 and Table 1).

Fig. 3. Simplified block diagram of the simulation platforms set up on Simulink. Unity
has no role in simulation, it is to display the manoeuvres while being performed.

Table 1. (Simulated) Vehicle parameters for the single-track model.

Parameter Value

m 1680 kg

Iz 2600 kg s2

[mF ; mR] [871.6; 809.4] kg

[lF ; lR] [1.3; 1.4] m

[Cσ,F ; Cσ,R] [1.057e+05; 1.050e+05] N

λ (Relaxation length) 0.3 m

2.1 Measurement Model

A dead-reckoning set of sensors, comprising a virtual IMU, a speed encoder and a
steer encoder is considered. Hence the measurement vector and the measurement
model are given by
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Z =
[

ay,meas , ψ̇meas , Vx,meas , δmeas

]T

h (X) =

[
1

m

(
Fy,F cos δ + Fy,R

)
, ψ̇, Vx, δ

]T

3 Simulation Setup

A faster than real-time, vehicle teleopera-
tion simulation test platform is developed
using Simulink and Unity3D to emulate the
network delayed vehicle teleoperation sys-
tem, as shown in Fig. 3. In addition to envi-
ronmental disturbances depicted in Fig. 4,
measurement noises (Table 2) are also con-
sidered. These noise sources are grouped
into following sets:

Fig. 4. The track.

i. Actual states, no EKF
ii. Noise set 1 : EKF + Gaussian noises
iii. Noise set 2 : EKF + Gaussian noises + gainV + biasδ + 3◦tiltedImu
iv. Noise set 3 : EKF + Gaussian noises + gainV + biasδ + 3◦tiltedImu + CF,over +

CR,over

v. Noise set 4 : EKF + Gaussian noises + gainV + biasδ + 6◦tiltedImu
vi. Noise set 5 : EKF + Gaussian noises + gainV + biasδ + 6◦tiltedImu + CF,over +

CR,over

Table 2. Sources of measurement noise

Noise sources Description

Gaussian noise AWGN; Rk = diag
([

0.1122, 0.0052, 0.0832, 0.0032
])

gainV = 1.05 Inaccurate consideration of rolling radius.

biasδ = 0.5◦ Constant bias in steer angle measurement.

3◦tiltedImu ay,noisy = aycos(3◦) − 9.8sin(3◦) ; ψ̇noisy = ψ̇cos(3◦)

6◦tiltedImu ay,noisy = aycos(6◦) − 9.8sin(6◦) ; ψ̇noisy = ψ̇cos(6◦)

CF,over = 1.2CF

CR,over = 1.2CR

Overly estimated cornering stiffness.

Additionally, we include a teleoperation mode (under delays) with a look-
ahead driver model, representing a typical human operator, steering the vehicle
to align with the reference trajectory, serving as a baseline for comparing SRPT
modes.



Vehicle Teleoperation 493

4 Results and Discussion

Simulations revealed significant oscillations with the look-ahead driver model
during double lane change (C) and slalom (H) sections due to network delays. In
contrast, the SRPT mode effectively eliminated these oscillations in all sections.
The NMPC block considers steer-rate limitations and strategically decelerates
the vehicle, allowing for more time to maneuver. Fig 5 compares cross-track
errors across all modes. Key findings are:

Obs I: Expectedly, Lookahead-Optimum consistently outperforms Lookahead-
Suboptimum.

Obs II: SRPT reduces error in high steer demand regions like C and H, coun-
tering instability in H better due to SRPT’s speed control.

Obs III: SRPT performs better in regions with low adhesion (D), but shows a
slight decrease in performance in regions with extremely low adhesion
(G) due to significant changes in the system model. Nevertheless, this
doesn’t significantly affect its overall performance.

Obs IV: In windy conditions (E and F), SRPT maintains stability and outper-
forms Lookahead driver model in region F despite measurement noise.

SRPT vehicle teleoperation performs equal to or better than the lookahead
driver mode in all regions.

Fig. 5. Cross-track error for Lookahead and SRPT vehicle teleoperation modes at
22 km/h under network delays. SRPT maintains performance even with measurement
noise.

4.1 How SRPT Is Unaffected from Diverging State Estimation?

Intrinsically, The SRPT approach relies on accurate vehicle pose estimation
within a moving time window equal to the round-trip network delay (200–
300 ms). Although global pose estimation may diverge over time, the proposed
EKF provides accurate estimation within this small time window. This ensures
SRPT’s robustness under varying network delays, demonstrating its resilience
in adverse environmental conditions.
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5 Conclusion

In our previous work, we introduced the SRPT approach for vehicle teleoper-
ation, transmitting successive reference poses instead of steer commands. This
study assessed SRPT’s performance under state estimation errors using simu-
lations and an EKF vehicle state estimation using dead-reckoning sensors. The
remote vehicle was simulated with a 14-DOF vehicle model, and network delays
were modeled with a FIFO nature GEV distribution, ranging from 200–300 ms.
We simulated various adverse conditions, including challenging maneuvers, low-
adhesion tracks, strong crosswinds, and significant measurement noise with dead-
reckoning sensors.

Our findings show that SRPT outperforms the lookahead driver model under
variable network delays during both normal and aggressive maneuvers. Espe-
cially during prompt maneuvers such as tight cornering, double lane changes,
and slalom, SRPT mode exhibits significantly less cross-track error. This is
desirable as these are common real-life maneuvers. SRPT achieves this by auto-
matically moderating vehicle speed when needed. SRPT’s resilience to network
delay variability is promising for teleoperation systems, making them robust to
measurement noise, network delays, and adverse conditions.

However, extreme network discontinuity can still strand the vehicle, and sen-
sor failures require redundancy. Real-time computational resources are also nec-
essary for optimizing the NMPC horizon. Notably, NMPC optimization performs
within 5 ms on a standard office computer, which is sufficient given the 50 Hz
optimization cycle frequency.

Future work will involve deploying SRPT on a real vehicle and control station,
with operators generating reference poses using a steering joystick. Real-world
experiments in urban scenarios, including online estimation of cornering stiffness
and road adherence, will further enhance robustness.
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Abstract. In recent years, there has been remarkable progress in autonomous
driving technology. To improve the safety of autonomous driving comprehen-
sively, accurate predictions for all traffic agents are crucial. Typically, the graph
neural network is widely employed for the trajectory prediction. To enhance the
prediction accuracy rate, this paper utilizes a finetuned vision-to-language large
model to extract driving intentions. With the well-designed prompt and the super-
vision of the specific dataset, the LLM (large language model) can analyze the
current traffic condition and give the corresponding driving intention. This paper
also combines the result of the LLM and the output of the traditional prediction
model, and the future trajectory is modified with the driving intention, which can
improve the final prediction accuracy. Finally, in the decision-making part, both
the driving intention from the LLM and the trajectory from the traditional predic-
tionmodel are considered in the boundary-based drivable area, and a safe planning
path is then generated. According to the validation in the publicmotion forecasting
dataset, this method has greatly improved the accuracy of the prediction and the
safety of route planning.

Keywords: Autonomous driving · LLM · Trajectory prediction · Safety
capability

1 Introduction

In order to ensure the safety of autonomous driving, predicting the future trajectory of
traffic participants is essential. However, the trajectory prediction is a complex task due
to the complicated traffic situation, especially during rush hours and interaction between
different traffic participants [1]. In the traditional prediction model, the environmental
information, such as the lane and other vehicles’ positions is detected by the perception
system and then input into a neural network. Current methods primarily utilize graph
neural networks to extract key interaction information [2, 3].Waymo’s VectorNet model,
for instance, encodes the environmental information as vectors and tensors, enhancing
effectiveness and accuracy [4].

Recently, large language model (LLM) has been effectively applied in various fields.
For trajectory prediction, LLMs’ prior knowledge and understanding ability are used to
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extract the scene information and interaction information. Based on this, model like
Traj-LLM [5] and the transportation-context map [6] have enhanced the motion pre-
diction performance. Unlike existing methods which enhance prediction performance
by feeding enhanced scene information into prediction networks, this paper unitizes the
high-level information generated by LLM for the adaptive modification of the output tra-
jectory of the prediction network. Compared with the less interpretability of the network,
our method can explicitly handle the output of the LLM and according to the modifi-
cation result to improve the algorithm. In the meantime, we use a finetuned image-text
large language model, trained on a specialized dataset, which can greatly enhance the
understanding of the LLM for the specific traffic scene. The contributions of this paper
are summarized as follows:

1) Innovatively utilizing a fine-tuned large language model to adaptively modify
predicted trajectories with inferred driving intentions, enhancing prediction accuracy.
2) Considering both the driving intentions and predicted trajectories in the boundary-
based drivable areamodel and allowing the safetymargin tomaximize the safety (Fig. 1).

2 Method

Fig. 1. The main process of this paper

Firstly, the dataset is processed and input into a prediction network to generate
corresponding trajectory outputs. Simultaneously, the dataset is visualized in a specific
form. Through the reasonable setting of prompts and supervised learning on a custom
dataset, namely the finetuning process, the large language model’s ability to recognize
and understand the visualized dataset is significantly enhanced. The large language
model then outputs assessments the driving intentions based on this recognition.

Secondly, the driving intention assessment is then utilized to modify the trajectory
output by the prediction network, thereby improving prediction accuracy.

Finally, themodified trajectories are input into a boundary-based drivable areamodel,
which comprehensively considers both driving intentions and predicted trajectories to
achieve safe decision-making.
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2.1 The Finetune of the LLM

Firstly, the public dataset needs to be visualized in a fixed form as a picture. The picture
should contain all the related traffic elements, including the current position Pcur , the
current velocity Vcur , the current yaw θ , and the trajectory of the past 2 s ζ2seconds, and
the center line of the road Mlane. All the elements are described by specific geometric
shapes.

�per frame = (X {Pcur,Vcur, θ, ζ2seconds}, Mlane) (1)

The setting of the prompt firstly should consider the explanation of the above traffic
elements, and then describe the task for the driving intention judgement. The annotation
of the custom is according to the ground truth of the dataset, and the label is stored in
the corresponding JSON file.

According to the actual driving behavior, it can be divided into lateral intention
and longitudinal intention. According to the amplitude, laterally it can be divided into
left turn, left lane change, right turn, right lane change, going straight, U-turn, and
longitudinally it can be divided into acceleration, deceleration, braking, and uniform
speed.

2.2 Merge of the Driving Intention and the Predicted Trajectory

For themerge of the driving intention and the predicted trajectory, the prior information is
the accuracy rate of the driving intention and the accuracy rate of the predicted trajectory,
obtained by statistics on validation dataset. Also, in most cases, the vehicle follows the
centerline of the road, which is regarded as an important reference.

And the final modified trajectory is related to the predicted trajectory ζpredicted ,
driving intention I, the accuracy rate of the LLM τLLM , the accuracy rate of the predicted
trajectory τNN , and the neighbor centerline of the road Mlane, like in the Eq. (1) shows:

ζmodified = f
(
ζpredicted , I , τLLM , τNN ,Mlane

)
(2)

the detailed modification process is divided into three cases:
Case 1: When the driving intention is more consistent with the neighbor centerline

of the road, the modified trajectory should follow the direction of the centerline.
Case 2:When the predicted trajectory is more consistent with the neighbor centerline

of the road, the modified trajectory should follow the direction between the centerline
and the predicted trajectory.

Case 3: When neither the driving intention and the predicted trajectory is not con-
sistent with the neighbor centerline, the modified trajectory should follow the weighted
average of the driving intention and the weight is related to the prior information. The
Eq. (5) shows the modification process for the case 3.

ζmodified ,3 = τNN ∗ζpredicted+τLLM ∗I
τLLM +τNN

(3)

Case 4: When the driving intention is consistent with the predicted trajectory, the
predicted trajectory will remain unchanged.
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2.3 Decision-Making Based on Boundary-Based Drivable Area Model

Boundary-based drivable area model is an environmental model that considers the safety
margin. With the modified trajectory, the future drivable area boundary will be drawn,
and according to future boundaries, the safe decision-making can be generated.

The boundary of drivable area is shown in Fig. 2. The bounding boxes represents the
perception result and the map limit represents the information of the HD map, after the
pointing merging the final unified state-extended environment boundary is generated,
and different color of the boundary represents the different attribute [7].

Fig. 2. The fusion process of the boundary-based drivable area model [7]

Combined with the driving intention and the modified predicted trajectory, it can
ensure the safety of decision-making to the greatest extent.

3 Experiment

3.1 Finetune on the Vision-Text LLM

The public motion forecasting dataset Argoverse is utilized in this paper. And the LLM
miniGPT4 is selected for the driving intention judgement.

Because the official finetune process only makes use of 3000 pictures for the whole
scene, we utilize 500 frames in Argoverse with the annotation for the single scene. And
the information of the hardware and the train parameter is in Table 1.
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Table 1. Configuration of the finetune.

Environment Value Train parameter

GPU Nvidia L40*1 Batch size 2

GPU memory 48 GB Epoch 20

Operating system Ubuntu 18.04 Learning rate 3e-5

Pretrained weight 13 B

3.2 Modification of the Predicted Trajectory

The typical prediction model Vectornet is selected as the baseline for the output of the
trajectory and the network is trained for 25 epochs on the dataset Argoverse. And the
typical modified trajectory is shown in the Fig. 3 below:

The red rectangle represents the target vehicle and the gray line represents the cen-
terline of the road. The predicted trajectory by the Vectornet is in yellow, the modified
trajectory is in green and the ground truth is in red. From the picture, it is demonstrated
that the network predicts the wrong direction to straight, and with the modification of
the driving intention, the green line is much close to the ground truth, which proves that
the modification is effective.

Fig. 3. The modified trajectory in the left-turn scenario

According to the modification method in Sect. 2.2, with the fusion of the driving
intention of the LLM, the total prediction average distance error is greatly decreased by
31.9%, from 4.67 to 3.18.

3.3 Safe Decision-Making Based on Boundary-Based Drivable Area Model

The driving intention and the modified trajectory are considered in the boundary-based
drivable area model, and the corresponding drivable space is generated. The planner for
this part is the Werling planner based on the Frenet frame. The picture below shows the
safety and the reliability of this method (Fig. 4):
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Fig. 4. The decision-making comparison between original prediction and modified prediction

Subpicture 1 represents the real scene of the dataset. The green car is the ego vehicle
and chose to turn right in this scene, while the red car is the predicted vehicle and
actually went straight. Subpicture 2 then shows the drivable space at the current moment.
Subpicture 3 shows the drivable space at futuremoments and gives the planned trajectory
of the ego vehicle going straight according to the prediction information of VectorNet.
Subpicture 4 comprehensively considers the driving intention output by the LLM and
the predicted trajectory to draw the drivable space and the planned trajectory of the ego
vehicle at future moments, turning right.

In the subpicture 3, VectorNet model wrongly gives the prediction that the target
vehicle (annotated with the red circle) will turn left, while subpicture 4 that comprehen-
sively considers the LLM information to compensate the drivable boundary and reduces
the drivable area. In terms of decision-making, the ego vehicle in subpicture 4 also
avoids the target vehicle by an earlier right turn, thereby avoiding the safety risk of the
ego vehicle crashing straight into the target vehicle which demonstrates that this method
is safe and reliable.

4 Conclusion

This paper proposed a LLM enhanced trajectory prediction method. We finetune the
large language model, so that the large language model has better prior knowledge of
traffic scenes in general situations, and thus can give the driving intention of vehicles
in the scene. At the same time, this paper designs an adaptive trajectory modification
method, which utilizes the driving intention to modify the predicted trajectory, resulting
in an improvement of the accuracy. Finally, combined with the boundary-based driving
area model, this paper also adds the driving intention into the judgement of the drivable
area, which generates a safer decision-making.

Acknowledgements. This work was supported in part by National Natural Science Foundation
of China (U22A20104, 52102464), Beijing Natural Science Foundation (L231008), and Young
Elite Scientist Sponsorship Program By BAST (BYESS2022153) and Shuimu Tsinghua Scholar
Program.



502 Q. Cheng et al.

References

1. Mozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P., Mouzakitis, A.: Deep learning-based
vehicle behaviour prediction for autonomous driving applications: a review. IEEE Trans. Intell.
Transport. Syst. 23(1), 33–47 (2020)

2. Brito, B., Agarwal, A., Alonso-Mora, J.: Learning Interaction-aware Guidance Policies for
Motion Planning in Dense Traffic Scenarios. arXiv (2021)

3. Li, X., Ying, X., Chuah, M.C.: GRIP: graph-based interaction-aware trajectory prediction.
In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3960–3966. IEEE,
Auckland, New Zealand (2019)

4. Gao, J., et al.: VectorNet: encoding HD maps and agent dynamics from vectorized representa-
tion. In: 2020 IEEE/CVF Conference on CVPR, pp. 11522–11530. IEEE (2020)

5. Lan, Z., et al.: Traj-LLM: A New Exploration for Empowering Trajectory Prediction with
Pre-trained Large Language Models. arXiv (2024)

6. Zheng, X., et al.: Large language models powered context-aware motion prediction. arXiv
(2024). Accessed: 29 May 2024

7. Jiao, X., et al.: Reliable autonomous driving environment model with unified state-extended
boundary. IEEE Trans. Intell. Transport. Syst. 24(1), 516–527 (2022)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Self-tuning of the Virtual-Bike Control
for a Human-Powered Electric Bike

with Series Architecture

Stefano Radrizzani(B), Giulio Panzani, and Sergio Matteo Savaresi

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Via G. Ponzio 34/5, 20133 Milan, Italy

stefano.radrizzani@polimi.it

Abstract. Motivated by environmental awareness, electric bikes (e-
Bikes) diffusion as a means of transport has significantly increased in
cities, thanks to their low emission and footprint. Among the different
alternatives, series-parallel e-Bike architectures are interesting because
they merge the advantages of the most common parallel bikes and the
series ones, which can be exploited to improve the user experience. When
an e-Bike is operating in series mode, a specific control action is needed
to handle the absence of a mechanical transmission and so the chain-less
nature of series or series-parallel e-Bikes. To this aim, the virtual-chain
control law has been proposed and recently extended to a virtual-bike
approach, respectively aiming at emulating the experience of the chain
or an entire bike, whose parameters are user-chosen. In this work, a self-
tuning strategy for the control parameters in the virtual-bike approach is
formulated, making it independent of the specific bike and rider. Exper-
imental results showed the advantages and limitations of the proposed
solution.

1 Introduction

To reduce emissions and traffic in cities, electric bikes (e-Bikes) represent a suit-
able means of transport, whose diffusion significantly increased, see [1,4] for a
detailed review. Among the different alternatives, series-parallel e-Bike architec-
tures, e.g., [8,10], are interesting because they merge the advantages of parallel
bikes, the most diffused on the market, and the series ones, which can increase the
user experience when properly controlled to manage the absence of a mechanical
chain. Indeed, an electrical transmission becomes, through the battery, the link
between the in-wheel traction motor and the rider, whose power is converted
into electrical by a generator directly mounted on the pedals. Therefore, when
an e-bike can operate in series mode, a specific control law is necessary to deliver
the human power to the wheel or to store it in the battery.

The current literature on series mode control is mainly focused on the control
of the link between vehicle dynamics and human behavior. Indeed, it becomes
a fundamental step before facing energy management, as in [3]. Particularly,
c© The Author(s) 2024
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[2] explored the potential of a chain-less bike by virtually emulating a chain
transmission, whose ratio can be freely designed by the rider. This approach is
known as virtual-chain. Recently, [10] evolved this framework into a virtual-bike,
in order to emulate not only the behavior of the chain but also the dynamics of
a virtual bike, whose parameters are user-chosen.

In this work, we aim at improving the virtual-bike framework by proposing a
self-tuning strategy, in order to adapt its control parameters, making them inde-
pendent of a specific rider/bike pair. Specifically, vehicle/rider’s parameters are
identified in real-time while riding the bike: i.e., the bike coasting-down resis-
tance and the total mass of the system, which are explicit parameters of the
virtual-bike control law. Toward this aim, in this work, the virtual-bike control
is integrated with a Recursive Least Squares (RLS) [7] approach in order to
estimate the previously mentioned parameters. Indeed, RLS is an eligible solu-
tion for this application, where the identification problem is linear with respect
to the parameters and the control law is an explicit function of the identified
parameters.

The proposed approach has been experimentally tested to see the interaction
of the control law and the adaptive strategy when the rider is on the bike. Exper-
imental results show the general validity of the approach, but some limitations
have been experienced. Indeed, the input applied to the system is not sufficiently
exciting to correctly estimate the vehicle/rider’s parameters. This happens with
some combinations of the user-chosen design parameters of the virtual-bike.

The remainder of the paper briefly shows the vehicle modeling in Sect. 2,
before introducing the adaptive virtual-bike control in Sect. 3. Then, the experi-
mental results are shown in Sect. 4. Finally, the paper ends with some concluding
remarks and future directions.

2 Vehicle Overview and Modeling

The considered vehicle is the one introduced in [10]. It is composed of a rear
in-wheel electric motor, and a mid-drive generator, fed by a battery pack. Then,
the key element is the free-wheel mechanism in the chain, which is responsible
for the switch from a series to parallel architecture. Indeed, it can engage or
disengage the chain, depending on the difference between the rotational speed
on the wheel and pedal side [10]. Given that the vehicle is designed to engage the
chain at low speed only, the parallel bike is just a transient architecture handled
as in [9]. Hence, the vehicle control is for the series mode only, and so the model
is presented for this scenario.

When an e-Bike works in series mode, the pedal and wheel side are
mechanically decoupled. Therefore, the longitudinal dynamics can be effectively
described by considering the longitudinal force balance below [2,10]:

M
dv

dt
=

Tm

Rw
− Fcd(v), (1)

where M is the total vehicle mass, composed of the bike Mb and the rider’s
one Mh. Then, v is the longitudinal speed, Rw is the wheel radius, and Tm is
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the torque provided by the in-wheel electric motor. Fcd is the coasting-down
force that is typically modeled through a second-order polynomial function of
the speed:

Fcd = Fcd(v) = C + Bv + Av2, (2)

where A,B,C are model parameters. However, the longitudinal model in (1) can
be simplified into a linearized one:

M
dv

dt
=

Tm

Rw
− βv, (3)

where
β =

dFcd

dv
= 2Av + B. (4)

On the pedal side, due to the low inertia of the generator, the model is much
simpler and the following torque balance holds:

Th = −Tg (5)

where Th is the human torque applied by the rider and Tg the one applied by
the generator.

3 Adaptive Virtual-Bike Control

The virtual-bike control law, introduced in [10] is the evolution of the virtual-
chain control law from [2]. The virtual-chain is the solution of a bilateral control
problem [11]: it returns a reference speed Ωp for the generator on the pedals, as
a function of the wheel speed Ωw, and a reference torque Tm for the in-wheel
traction motor, as a function of the cyclist’s torque Th. Then, if the reference
pedal speed and motor torque share are designed to be respectively proportional
to the wheel speed and rider’s torque, the proportionality factor plays the role
of a virtual chain ratio:

Ωp =
Ωw

τv
and Tm =

Th

τv
. (6)

It is worth mentioning that the virtual chain ratio is a user-chosen parameter,
which can be freely designed, also as a function of the vehicle speed, according
to the rider’s preferences, even to keep a constant desired cadence.

This framework has been extended to the virtual-bike control by solving an
impedance control problem [5] in the Laplace domain. In this way, the pedal
speed and the reference torque become:

Ωp =
Ωw

τv
and Tm =

Ms + β

Mvs + βv

Th

τv
, (7)

where Mv and βv represent the virtual mass and the virtual friction coefficient
of the bike desired by the user. Considering that s is the Laplace operator, the
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electric motor torque is now related to the rider’s one through a transfer function
and not by a static relationship as in the virtual-chain. The advantage of such an
approach is the feeling experienced by the rider to be on a different bike, which
can be freely designed. The main drawback of this control law is that the rider’s
mass and the bike costing-down resistance are necessary to compute M and β.

Therefore, in this work, the main goal is the self-tuning of these parameters,
in order to have a control law independent of their previous knowledge. To self-
tune M and β, a recursive least-squares (RLS) problem has been formulated,
exploiting that the vehicle dynamics in (3) can be re-written as:

a(t) =
1
M

(
Fm(t) − Av2(t) − Bv(t) − C

)
, (8)

where a is the vehicle acceleration and Fm = Tm/Rw. The RLS solution is
computed by analytically [6] solving:

θ∗(t) = argmin
t∑

k

(
a(k) − φT (k)θ

)2
, (9)

where θ is the vector of parameters and φ the vector of measurements sampled
at time instant k:

θT =
1
M

[
1, −A, −B, −C,

]
and φT (k) =

[
Fm(k), v2(k), v(k), 1

]
. (10)

Hence, the self-tuned virtual-bike control law becomes:

Tm(t) =
M(θ∗(t))s + β(θ∗(t), v(t))

Mvs + βv

Th

τv
=

1
θ∗
1(t)

s − [2θ∗
2(t)v(t) + θ∗

3(t)]
Mvs − βv

Th

τv
. (11)

To conclude, the adaptive virtual-bike control law affects the link between the
rider’s torque and the motor one making it a transfer function with time-varying
parameters. A graphical representation of the control scheme is given in Fig. 1.

4 Experimental Results

The effectiveness of the proposed methodology is experimentally tested on the
same bike presented in [10] but with a different rider. Experimental tests showed
the emulation capabilities of the self-tuning approach, despite a voluntary wrong
parameter initialization θ∗(0). Moreover, different user-chosen parameters have
been considered, ranging from a lighter to a heavier virtual tuning of the bike.
Figure 2 shows the mismatch between the measured speed and the desired one,
i.e., the speed computed imposing the chosen vitual-bike model, which is numer-
ically quantified through the RMSE (Root Mean Square Error) comparing the
adaptive approach and benchmark non-adaptive one developed in [10]. The adap-
tive solution was revealed to be superior except for one scenario. Indeed, when
the virtual parameters represent a heavy bike, the cyclist rides at low speed;
therefore, the RLS solution is not able to properly estimate the coasting-down
force because of the lack of information. For such a reason, the emulation per-
formance deteriorates. Opposite, in other cases, performance increases thanks to
a better estimation of the coasting-down force.
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M G

RLS

adaptive strategy

virtual-bike

virtual-chain

Fig. 1. Adaptive virtual-bike control scheme.

Fig. 2. Experimental results. (Left) Measured speed is compared, during an accel-
eration phase, with the reference when in series mode (after the diamond), and the
error is compared with the nominal non-adaptive solution, in tables. (Right) Evolu-
tion of the adaptive estimation of the coasting-down force compared with the nominal
non-adaptive model, during a longer test.
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5 Conclusions

In this work, an RLS-based adaptive strategy for the virtual-bike control strategy
in an e-Bike operating in series mode has been proposed. The effectiveness of
the self-tuned solution has been experimentally evaluated and a general good
behavior has been experienced. However, also some limitations have been noted
with specific choices of the parameters, related to experience heavier virtual
bikes. Therefore, further improvement or different approaches will be tested to
increase the overall performance, also when emulating heavier bikes.
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Abstract. In the rapidly advancing realm of Connected Autonomous
Vehicles (CAVs), achieving reliable and precise positioning is of
paramount importance. This paper presents a comprehensive approach
integrating vehicular sensing, communication, and advanced filtering
techniques to enhance vehicle positioning in urban areas. By leveraging
LiDAR point clouds along with a light and accurate object detector, we
create cohesive environmental sensing that improves situational aware-
ness in autonomous systems. Central to our methodology is the integra-
tion of the Labeled Multi-Bernoulli Mixture (LMBM) filter, which offers
a probabilistic framework for dynamic state estimation in environments
characterized by high uncertainty and clutter. In turn, enhanced object
locations are exploited as anchors for vehicular self-localization via an
Extended Kalman filter (EKF). Our experimental results show that the
proposed solution significantly enhances vehicular positioning accuracy.

Keywords: Cooperative sensing · Kalman filtering · Bernoulli tracking

1 Introduction

Global Navigation Satellite Systems (GNSSs) have widespread application in
Connected Autonomous Vehicle (CAV) scenarios. However, conventional GNSS
systems suffer from multipath propagation in urban environments, leading to
high positioning errors [8] that can not tolerated in safety-related vehicular ser-
vices. A promising solution to overcome this problem is represented by collabo-
rative sensing systems that leverage the presence of multiple actors in the same
driving area to enhance positioning accuracy thanks to the coherent fusion of
localization measurements acquired by nearby vehicles, as done in Implicit Coop-
erative Positioning (ICP) [2].
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This paper introduces a novel method for cooperative LiDAR-based vehicular
self-positioning that leverages data sharing among vehicles to enhance localiza-
tion accuracy. The innovative aspect of this method lies in its ability to address
and mitigate key challenges such as false detections, object-measurement asso-
ciation, and measurement-measurement association which must be handled for
real-world implementations. By integrating LiDAR data from various vehicles,
the method ensures a more reliable and accurate vehicle positioning. Validation
was conducted using a real-world dataset where multiple vehicles approached a
zebra crossing on a two-way urban road featuring stationary road elements at
the crossing. The results demonstrate the method’s effectiveness in improving
positional accuracy and robustness in complex urban environments, underscor-
ing its potential for practical applications in autonomous driving and advanced
driver-assistance systems.

The rest of the paper is organized as follows. In Sect. 2, the cooperative
sensing-based self-positioning solution is described. Section 3 presents the details
of the experiment and provides a quantitative assessment, followed by concluding
remarks in Sect. 4.

2 Cooperative Self-positioning

The proposed method fundamentals on implicit cooperative sensing and posi-
tioning. Vehicles equipped with LiDAR sensors generate point clouds. These
point clouds encompass useful information for autonomous driving such as the
location of road elements. In this end-to-end method, the object detector pro-
posed in Sect. 2.1 clusters separable 3D points in the body reference system
and identifies them as objects. Among these detected objects, there exist noise-
derived detections. Besides, the other two onboard units are actively engaged,
namely GNSS and Inertial Measurement Unit (IMU). Here, the GNSS position-
ing is enhanced with a Satellite-Based Augmentation System (SBAS), if avail-
able, which requires Line-Of-Sight (LOS) conditions with at least two geosatel-
lites. Otherwise, Single-Point Positioning (SPP) is considered.

Additionally, vehicular heading is required for LiDAR-GNSS calibration.
Some approaches used for the calculation of vehicular heading are visual odom-
etry, dual-antenna GNSS localization, and fusion of GNSS and IMU [4]. Simply,
we used single-antenna GNSS fixes to calculate vehicle heading and then cali-
brated the rotational component of LiDAR and GNSS reference frames.

While the proposed method can be implemented in a centralized or decen-
tralized way, this paper focuses on centralized cooperation. In turn, the follow-
ing data is exchanged with Road Side Unit (RSU) via Vehicle-to-Infrastructure
(V2I) communications: detected object locations in the local framework and
GNSS position fix. RSU synchronizes the aggregated data and projects objects
onto the global reference system. At this step, a Multi-Target Tracking (MTT)
filter tracks the static road elements in the presence of clutter. Here, vehicles are
considered different sensors making observations in the same area and a special
form of Labeled Multi-Bernoulli Mixture (LMBM), also known as multi-sensor
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LMBM, is utilized. This operation returns object locations with lower uncer-
tainty to be considered as anchors for the subsequent steps. It is worth noting
that, the accuracy and precision of target locations in the global reference frame
are tightly correlated to the number of vehicles as the higher the number of vehi-
cles, the better the accuracy. These objects are back-propagated to each vehicle
via V2I communications. Within this transmission, GNSS position fix, detected
targets with clutters, and augmented object locations are available at each vehi-
cle. Subsequently, vehicles individually employ a custom Extended Kalman Filter
(EKF) given in Sect. 2.3 and leverage their global positioning.

2.1 Grid-Based Spatial Detector

The Grid-Based Spatial Detector (GSD) employed in this work is designed to
isolate sets of points in the 3D space that objects have generated. The process
is initiated by inserting a point cluster at a known position within the point
cloud to mitigate segmentation noise. Subsequently, the point cloud is projected
onto a 2D space and segmented to generate a density map. This density map
is subsequently filtered to reduce noise-induced segments. At the core of this
object detector is a density-based clustering method, namely density-based spa-
tial clustering of application with noise (DBSCAN) [3] which is utilized to gen-
erate clusters in the density map. In turn, the inserted point cloud has been
recognized among all detections and the segmentation bias has been eliminated
by shifting clusters. Consequently, clusters with small dimensions are averaged
and represented as single-point objects, ensuring accurate and reliable object
detection.

2.2 Cooperative LMBM

MTT is a critical process performed in autonomous systems, for detecting and
tracking multiple objects in a dynamic environment. An advanced MTT method
is LMBM [5], efficiently handling measurement-target data association and clut-
ter. This filter relies on a multi-Bernoulli birth model that initiates Bernoulli
components at predefined locations.

The projection of detected objects on a global reference system depicts
a multi-sensor configuration with independent imaging sensors. Likewise,
the detected objects are independent. Therefore, Bernoulli components are
independent and follow separate Bayesian recursions. A Bernoulli Random
Finite Set (RFS) β is comprised of components at time t, RFSβ �
{(T,L)β , re,t,β , μt,β , Σt,β}, where Tβ is the birth time, Lβ is a unique label
assigned to Bernoulli β born at time t, and μt,β is the first central moment
and Σt,β is the covariance of Gaussian distribution. Bernoulli components fol-
low a static motion model, namely μt,β = μt−1,β , as fixed targets in the driving
scenario are considered.

For the propagation of existence probability, re, and marginal association
probabilities over time, Gibbs’s sampling [6] has been employed thanks to its
capability to handle high dimensional problems. After conducting the gating,
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pruning and capping steps, target states are obtained by processing the remain-
ing Bernoulli components. These states contain the spatial attribute of objects
in 2D, denoted by the object set O = {xo,t} : |O| = No, and their corresponding
covariance to be used by the filter introduced in the following section.

2.3 Extended Kalman Filter-Based Refinement Stage

A set of vehicles V = {1, . . . , NV} cruise in a 2D area. Each vehicle v, with
v ∈ V, is represented by its state xv,t = [uv,t,vv,t] where uv,t and vv,t are the
2D position and 2D velocity, respectively. The vehicle’s state changes over time
according to a nearly constant velocity motion model [7], defined as

xv,t|t−1 = Fxv,t−1 + Lqv,t−1 , (1)

where F = [I2 TsI2 ;02×2 I2] and L = [0.5T 2
s I2 ;TsI2], Ts the sampling time,

while qv,t−1 ∼ N (0, I2σ2
v,U) is a zero-mean Gaussian random variable with stan-

dard deviation σv,U modeling the acceleration uncertainty of the v-th vehicle.
EKF is employed for tracking as follows. States are predicted according to

the motion model in (1) and are exchanged with RSU along with detected
objects provided by GSD explained in Sect. 2.1. Subsequently, the LMBM filter
(Sect. 2.2) is utilized. The leveraged object locations are then back-propagated
to vehicles and object-object association between detected objects and leveraged
targets is established according to the maximum likelihood criterion.

For the update step of the EKF, both GNSS and object-derived measure-
ments are utilized to enhance vehicular positioning. The GNSS measurement of
vehicle v is modelled as follows:

ρ
(v)
g,t = hg(xv,t) + nv,t = Txv,t + nv,t , (2)

where T = [I2,02×2], while nv,t ∼ N (0, I2σ2
v) is a zero-mean Gaussian ran-

dom variable with standard deviation σ2
v characterizing the GNSS positioning

accuracy of the v-th vehicle.
Any object o ∈ O with state xv,o,t = [ux,o,t,uy,o,t] refined by the RSU is

more accurate compared to the detection j, such that xv,j,t = [ux,j,t,uy,j,t],
generated by the same object on vehicle v. Leveraging this fact, so o and j,
the measurement models ρ

(j,v)
r,t and ρ

(j,v)
α,t , define the distance and the clockwise

angle from positive x-direction between object j and vehicle v, namely they are

ρ
(j,v)
r,t = hr(xv,j,t) + n(j,v)

r,t = ‖ρ
(v)
g,t − xv,j,t‖2 + n(j,v)

r,t , (3)

ρ
(j,v)
α,t = hα(xv,j,t) + n(j,v)

α,t = �(ρ(v)
g,t ,xv,j,t) + n(j,v)

α,t , (4)

where � is the angle while n(j,v)
r,t ∼ N (0, I2σ2

r) and n(j,v)
α,t ∼ N (0, I2σ2

α) are zero-
mean Gaussian random variables with standard deviations σr and σα, respec-
tively. EKF refinement exploits the measurements ρ

(j,v)
r,t and ρ

(j,v)
α,t to improve

the vehicle state. Accordingly, the state estimate of the vehicle is updated as

xv,t = xv,t|t−1 + Gt

(
ρv,t − h

(
xv,t|t−1,xv,1,t, . . . ,xv,No,t

))
, (5)

Ct = Ct|t−1 − GtBCt|t−1, (6)
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Fig. 1. Trajectories show GNSS measurements along with RTK-corrected ground truth
(GT) positions, SBAS and SPP available regions along with prototypes

where Gt = Ct|t−1B
(
BCt|t−1BT + Σ

)−1 is the Kalman gain, B = [T,Jr,Jα]T

in which Jr and Jα are the Jacobian matrices extracted from (3) and (4), ρv,t �
[ρ(v)

g,t ,ρ
(1,v)
r,t , . . . ,ρ

(No,v)
r,t ,ρ

(1,v)
α,t , . . . ,ρ

(No,v)
α,t ]T, Σ � blkdiag(σ2

vI2, σ
2
rINo

, σ2
αINo

),
h = [hg(xv,t|t−1), h̄o

r, h̄o
α]T with h̄o

α = [ho
α(xv,1,t), . . . ,ho

α(xv,No,t)]T, and h̄o
r =

[ho
r(xv,1,t), . . . ,ho

r(xv,No,t)]T which are range and angle measurements calculated
using augmented objects.

3 Experimentation and Results

To assess the performance of the proposed method, we collected real-world data
through several experiments using two different instrumented prototype vehicles,
an electric light quadricycle and a prototype bus as shown in Fig. 1, equipped
with comprehensive sensor systems. Collected data includes RTK-corrected and
uncorrected GNSS measurements as well as LiDAR point clouds. Five objects
detectable by LiDAR were used to enhance positioning, aiming to evaluate local-
ization improvement compared to ICP. The setup, shown in Fig. 1, featured both
vehicles converging towards an area with the deployed objects. For further elab-
oration on the experimental campaign and dataset we refer to [1].

During the implementation of the proposed method, an assumption of lossless
and zero-latency V2I communication has been made. Data collected by sensors
were aggregated and processed at a central computational unit offline. As con-
cerns the computational cost, the bottleneck is LMBM in which the number
of measurement-target association hypotheses increases exorbitantly. While this
problem can be overcome by investigating lighter MTT algorithms, we limited
the number of hypotheses and Gibbs’s samples and initiated Bernoullis in the
center of the surveillance area, so near to objects.

Figure 2 shows the Cumulative Density Function (CDF) of the vehicle posi-
tioning error considering ICP with [1] and without multipath compensation [2],
raw GNSS ego vehicle position, proposed method, referred to as Cooperative
Self-Positioning (CSP), along with Circular Error Probability with 95% confi-
dence (CEP95). When CEP95 is concerned, CSP has a positioning improvement
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of 68% and 66% compared to GNSS for veh1 and veh2 respectively. Besides, CSP
has similar performance to the benchmark ICP which assumes perfect associa-
tion among detected objects, making it unemployable in real applications.

Fig. 2. Performance comparison of CSP against ICP with and without NLOS compen-
sation and Ego-GNSS.

4 Conclusion

This paper proposed a cooperative sensing-aided positioning method relying
on environmental perception with LiDAR sensors. This model-based algorithm
handles the uncertainty of a dynamic environment by exploiting collaborative
sensing and employing the LMBM filter. This method has been assessed in a real-
world application and its effectiveness has been reported. The planned future
work is to establish V2I communications and integrate RSU as both an observer
and the central computational unit.
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Abstract. With the increasing demand for enhanced vehicle performance and
handling dynamics, torque vectoring has become a key technology in contempo-
rary automotive engineering. Over the years, various control algorithms have been
developed and their performance assessed using objective metrics that measure
a vehicle’s ability to follow a reference quantity for lateral dynamics. However,
this evaluation approach is limited as it does not consider feedback from actual
drivers. This paper addresses this critical gap by incorporating drivers’ subjec-
tive evaluations through Driver-in-the-Loop simulations. The study conducts a
comprehensive analysis of both objective metrics and subjective driver assess-
ments, investigating the impact of different torque vectoring control strategies
on vehicle dynamics. By correlating quantitative metrics with human percep-
tion, this integrated approach enhances the understanding of the effectiveness of
torque vectoring control strategies and their real-world implications for driver
satisfaction.

Keywords: Torque Vectoring · Vehicle Dynamics · Driver-in-the-Loop
Simulation · Subjective Evaluation · Objective Assessment

1 Introduction

Electric vehicles are increasingly recognized as a viable alternative to traditional internal
combustion engine vehicles due to their perceived sustainability [1]. The use of electric
motors in these vehicles facilitates the implementation of multiple-motor powertrain
layouts [2], enhancing vehicle dynamics through improved control capabilities. Notably,
the adoption of In-Wheel Motors (IWMs) is widespread [3], as they allow independent
control of driving torque at eachwheel, enabling the implementation of TorqueVectoring
Control (TVC). Indeed, Torque Vectoring (TV) controls vehicle lateral dynamics by
generating a yaw moment through differential longitudinal forces on the wheels of the
same axle.

Over the years, several TV controllers have been proposed [4, 5], with their perfor-
mance typically evaluated using objective metrics that measure how closely they track
reference quantities for lateral dynamics, such as yaw rate and sideslip angle. Recently,
there has been a growing trend to incorporate driver preferences into TV control logics,
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allowing the selection of driving modes [6, 7] to slightly modify the behavior of the
controlled vehicle. This innovation tailors the vehicle response to driver desires, poten-
tially increasing vehicle effectiveness and acceptability through appropriate feedback
to the driver. Indeed, drivers’ subjective evaluations of vehicle performance still are a
fundamental process for car manufacturers [8]. However, there is a trend toward corre-
lating subjective evaluations with objective indexes to reduce reliance on human testing
in the future. For instance, ride comfort ratings are typically correlated with acceleration
measurements at the seat level [9, 10]. On the other hand, vehicle handling ratings are
typically correlated with system deadbands, delays, and gains in the vehicle’s response
to driver inputs [11–13].

This paper presents an in-depth analysis of the subjective and objective assessment
of various torque vectoring control strategies through Driver-in-the-Loop simulations.
The objective analysis provides a quantitative framework for evaluating the effectiveness
of different torque vectoring control strategies. Conversely, the subjective assessments
encompass factors such as perceived vehicle responsiveness, handling confidence, and
overall driving satisfaction, offering crucial insights into user experience. Additionally,
the study investigates the relationship between objective measurements and subjective
evaluations, aiming to establish a correlation between quantitative metrics and human
perception. This integrated approach enhances the understanding of torque vectoring
control strategies’ effectiveness and their real-world impact on driver satisfaction.

2 Torque Vectoring Controllers Design

Three alternative torque vectoring (TV) control strategies have been developed to
enhance the cornering performance of the Dinami� PRC DP14 Formula SAE com-
petition vehicle of Politecnico di Milano, shown in Fig. 1. These control strategies differ
in their architectures, utilizing various combinations of feedforward and feedback yaw
moment contributions. The objective of the feedback control action, regardless of its
specific implementation, is to track the desired yaw rate response of the vehicle, which
is defined as a function of vehicle speed and steering wheel angle input.

Fig. 1. DP14 Formula SAE vehicle of Politecnico di Milano.

Each TV controller features a unique formulation for defining the yaw moment
applied to the vehicle, as detailed in the following:
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• PITorqueVectoringController: ThePI torque vectoring controller consists in a pure
feedback control aiming at tracking the desired yaw rate through the minimization of
the yaw rate error (εψ̇ )

Mz,PI = kp(vx) · εψ̇ + ki(vx) · ∫
εψ̇dt (1)

• PI + DD Torque Vectoring Controller: The PI + DD toque vectoring controller
consists of the PI feedback control action described above with the addition of a DD
feedforward control action function of the input steering wheel angle (δ) and steering
wheel angle rate (δ̇) commanded by the driver

Mz,PI+DD = Mz,PI + Mz,DD = Mz,PI + kδ(vx) · δ + cδ(vx) · δ̇ (2)

• DD + ESC Torque Vectoring Controller: The DD + ESC torque vectoring con-
troller supplements the DD feedforward control action with an ESC-like discontin-
uous feedback contribution applying a discontinuous yaw moment contingent upon
whether the absolute value of the yaw rate error falls below or exceeds a specified
threshold (εψ̇,TH ).

Mz,DD+ESC = Mz,DD + Mz,ESC = Mz,DD +
⎧
⎨

⎩

0 IF
∣
∣
∣εψ̇

∣
∣
∣ < εψ̇,TH

kp(vx) · εψ̇ IF
∣
∣
∣εψ̇

∣
∣
∣ ≥ εψ̇,TH

(3)

For an effective and reliable performance of the proposed torque vectoring controllers,
all their gains are scheduled as function of vehicle longitudinal speed (vx).

3 Driver-in-the-Loop Simulator Testing Campaign

The effects of different TV control logics for a Formula SAE vehicle are assessed in this
study through the adoption of Driver-In-the-Loop simulations at a static driving simula-
tor. This allows testing in a safe environment while also ensuring a proper repeatability of
the boundary conditions among the performed tests. Therefore, the resulting subjective
evaluations from drivers can be considered as feedback about the torque vectoring con-
trol logic. Indeed, the 14DOFs vehicle model implemented in VI-CarRealTime software
has not been modified throughout the testing campaign.

The static driving simulator experimental campaign has been conducted by involving
six drivers possessing significant familiarity with the FSAE competition vehicle both
on track and in its development utilizing the same static driving simulator employed in
this study. A tailored test track has been designed for the present study, where a double
lane change maneuver is proposed. To ensure comprehensive evaluation, drivers were
tasked with completing a minimum of 10 laps of the test track with each TV controller,
rating vehicle response on a scale of 1 to 10, focusing on four key aspects being control,
stability, easiness and repeatability.
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4 Results

The performance of the proposed torque vectoring controllers is evaluated at first on a
subjective basis through the ratings gathered from drivers. Then, an objective evaluation
is performed to understand the effectiveness of each TV control logic in improving vehi-
cle lateral dynamics. In the end, a correlation between subjective ratings and objective
indexes is performed to understand which are the most important objective quantities
that drive the human perception of vehicle lateral dynamics control.

4.1 Subjective Evaluation

The subjective evaluation of the proposed torque vectoring controllers relies on drivers’
evaluations, which are reported in Fig. 2 for the double lane change maneuver. In there,
the median rating is highlighted with a red bar, with the blue box that indicates the
25th and 75th percentiles of the ratings distribution. On average, the PI + DD TVC
results the best control logic on a subjective basis for all the inspected rating categories,
while the PI TVC results the control logic with the highest spread of ratings. This
means that the addition of the feedforward component to the yaw moment generation is
positively perceived by the driver. This could be due to a prompter vehicle response to the
driver inputs, which also results in a more consistent rating in easiness and repeatability
categories having a more direct vehicle behavior as function of the steering input. The
DD + ESC TVC generally results the worst performing control logic, probably due to
its discontinuous control action which is not positively perceived by humans.

5 6 7 8 9

DD+ESC

PI+DD

PI

Control Rating

5 6 7 8 9

DD+ESC

PI+DD

PI

Stability Rating

5 6 7 8 9

DD+ESC

PI+DD

PI

Easiness Rating

5 6 7 8 9

DD+ESC

PI+DD

PI

Repeatability Rating

Fig. 2. Subjective evaluation of the proposed TV controllers about the vehicle cornering response
during the double lane change maneuver.

4.2 Objective Evaluation

In this study, the objective analysis of vehicle handling performance is conducted using
specifically defined Key Performance Indicators (KPIs) for transient maneuvers. To
ensure consistency in the objective KPIs across different drivers, a normalizationmethod
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has been implemented to minimize the influence of driving style on the evaluation
process. The normalization is expressed as follows.

KPIj,norm = KPIj − KPIPI
|KPIPI | (4)

With this approach, theKPIj,norm values represent the relative variation ofKPIj obtained
using the jth TV control logic, compared to KPIPI obtained with the PI TV control logic,
which serves as the reference.

The evaluation of the relative objective performance of the proposed TV controllers
during a double lane change maneuver is presented in Fig. 3. The results indicate that
both the PI + DD and DD + ESC TVCs achieve lower section times compared to the
PI TVC, with enhanced cornering performance attributed to an increased yaw rate gain
in response to steering wheel angle inputs. Additionally, the PI + DD TVC demon-
strates a significantly reduced hysteresis cycle area for the yaw rate response as a func-
tion of the steering wheel angle input, indicating improved repeatability of cornering
response. However, this improvement is accompanied by several instances where the
steering wheel torque opposes the steering wheel angle input, making vehicle control
more challenging for the driver.

Fig. 3. Effects of the proposed TV controllers on the double lane change vehicle cornering
response.

4.3 Subjective-Objective Evaluation Correlation

The objective evaluation of vehicle cornering performance is conducted in this study on
a relative basis, using the PI TV control logic as a reference, thus also the subjective
assessment is reverted to a relative basis for correlation purposes. Thismethod eliminates
driver bias in the evaluation of the TV control logics by considering only the variation
in subjective evaluations (Ratingi) of the ith driver relative to those obtained from the
same driver using the reference TV control logic (RatingPI ).

Ratingi,rel = Ratingi − RatingPI (5)
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The primary tool used for analyzing the level of correlation between subjective
ratings and objective indexes is the Spearman rank correlation coefficient. This statis-
tical measure evaluates the strength and direction of a monotonic relationship between
two variables. The results regarding the correlation of subjective ratings with various
objective KPIs is reported in Fig. 4 for the double lane change maneuver.

Fig. 4. Spearman correlation between subjective ratings and objective KPIs during double lane
change maneuvers.

The analysis of control ratings reveals an inverse correlation with the steering wheel
angle rate and sideslip angle rate KPIs. This is logical, as lower values for these rates
likely correspond to fewer driver corrections needed to complete the maneuver. Addi-
tionally, control ratings are strongly correlated with changes in the yaw rate/steering
hysteresis loop area. Stability ratings exhibit a strong correlation with section time and a
strong inverse correlation with the yaw rate gain relative to steering input. This indicates
that higher stability is perceived by the driver when the double lane change maneuver is
completed at a lower average speed and the vehicle is slightly less responsive to steering
input. Easiness ratings show a significant inverse relationship with the RMS value of
the steering wheel angle rate and the standard deviation of the tires’ utilization factor.
This suggests that the vehicle is perceived as easier to drive when it requires fewer cor-
rections. Repeatability ratings exhibit a very strong correlation with the hysteresis loop
area of yaw rate relative to steering wheel angle input, indicating that drivers perceive
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increased repeatability when the vehicle’s yaw rate response is more predictable based
on the steering wheel input.

5 Conclusions

The impact of three different torque vectoring control strategies on vehicle dynamics
has been evaluated in this study. The standard approach, which relies on objective KPIs,
has been enhanced by incorporating subjective evaluations from six drivers through a
testing campaign on a static driving simulator. The subjective evaluations identify the PI
+ DD controller as the best perceived by humans. Additionally, the objective evaluation
of torque vectoring controllers indicates that the PI + DD controller is the one most
significantly enhancing vehicle cornering response, though it increases driver workload.
The correlation between subjective and objective evaluations then is used to explain
the reasons behind the improved or worsened ratings. Specifically, the PI + DD torque
vectoring controller demonstrates the smallest hysteresis loop area between vehicle yaw
rate response and steering wheel angle input, which correlates with higher ratings of
controller capabilities. Additionally, the PI + DD controller also causes lower sideslip
angle speeds, making the vehicle less challenging to drive and resulting in higher sub-
jective ratings for vehicle easiness. This research not only contributes to optimizing
torque vectoring control strategies but also provides a methodology for bridging the gap
between objective performance metrics and subjective driver experience. These find-
ings can guide the development of future torque vectoring systems, leading to vehicles
that excel in objective performance measures while aligning with drivers’ subjective
preferences.
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Abstract. With the automotive industry’s shift towards sustainability and energy
efficiency, optimizing vehicle handling dynamics has become secondary. Addi-
tionally, there is a growing trend towards comfort-oriented design over handling
performance. However, advancements such as integrating multiple independently
controlled electric motors enable torque vectoring, offering a promising solution
for reconciling these conflicting objectives. This paper proposes a novel approach
to jointly improve vehicle handling and energy efficiency. Advanced simulation
techniques are used to explore various suspension configurations to balance cor-
nering performance and energy consumption. A torque vectoring controller is
then designed in combination with meticulously tuned suspensions. This innova-
tive approach, which considers active control design alongside suspension setup,
achieves superior performance. Desired vehicle cornering capabilities are attained
while ensuring significant efficiency in straight-line driving, which constitutes
most road driving.

Keywords: Torque Vectoring · Vehicle Dynamics · Suspensions Setup Tuning ·
Vehicle Handling · Energy Efficiency

1 Introduction

Road vehicle users continue to demand sporty and high-performance vehicles, despite
the automotive industry’s current focus on achieving sustainable and energy-efficient
solutions [1]. Consequently, in the context of suspensions, the industry’s attention has
shifted away from enhancing vehicle handling performance [2, 3]. Instead, suspension
design now prioritizes ride comfort, with numerous approaches aimed at optimizing sus-
pensions to improve overall ride quality [4, 5].While car setup optimization [6] remains a
fundamental aspect, recent advancements enabling the use of multiple electric motors in
a single vehicle [7] have facilitated more advanced improvements. The implementation
of In-Wheel Motors (IWMs) [8] allows for the easy deployment of Torque Vectoring
(TV) systems, which control lateral dynamics by applying a yaw moment. Over the
years, numerous TV controllers have been proposed [9, 10] to enhance vehicle lateral
dynamics by actively tracking a yaw rate and/or sideslip angle reference. Conversely,
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some approaches utilize TV solely to improve overall vehicle efficiency [11]. A prevalent
strategy lies between these two extremes, where TV controllers are designed to enhance
lateral dynamics while allocating actuation torque to motors in a manner that minimizes
power losses [12]. Additionally, TV controllers can adapt vehicle behavior tomeet driver
preferences by selecting a driving mode [13], allowing for on-demand modifications to
the reference vehicle behavior, thus balancing vehicle handling and energy efficiency.

This paper investigates a novel approach to achieving optimal vehicle handling and
high energy efficiencyby jointly tuningvehicle suspensions anddesigning the torquevec-
toring control system. This integrated approach addresses the trade-off between vehicle
cornering performance and energy efficiency by providing additional degrees of free-
dom. In particular, various configurations of combined suspension tuning and torque
vectoring designs are evaluated in a simulation environment to assess their impact on
cornering dynamics and energy efficiency.

2 Vehicle Model and Suspensions Tuning

The vehicle considered in this study belongs to the S-segment and is equipped with four
independently controllable In-Wheel Motors (IWMs). The vehicle model for simulation
purposes is developed using VI-CarRealTime software, incorporating five rigid bodies
and 14 degrees of freedom. Specifically, the model used in this study is based on the
validated SportCarmodel, originally representing an internal combustion engine vehicle,
whose powertrain has been replaced with four In-Wheel Motors (IWMs).

Suspension angles, such as camber and toe, are typically set at neutral values in stan-
dard road cars to prevent excessive tire wear from scrubbing against the road. In contrast,
these angles are often adjusted away from neutral in sports vehicles to enhance cornering
response. Therefore, it is crucial to set these angles appropriately for the specific vehi-
cle’s purpose. In this study, two suspension setups are considered, as shown in Table 1.
The baseline setup features suspension angles typical of road vehicles, ensuring proper
drivability under all conditions. The sporty setup, instead, includes more aggressive
suspension angles and a stiffened rear anti-roll bar to improve vehicle handling.

Table 1. Baseline and sporty vehicle suspensions setup details.

Parameter Symbol Baseline Setup Sporty Setup

Front camber angle γf −0.5 ° −4.5 °

Front toe angle τf −0.05 ° −0.15 °

Rear camber angle γr −0.5 ° −3.0 °

Rear toe angle τr +0.05 ° +0.15 °

Front roll-bar stiffness kθ,f 7040 Nm/rad 7040 Nm/rad

Rear roll-bar stiffness kθ,r 21450 Nm/rad 42900 Nm/rad
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3 Torque Vectoring Controller Design

The Torque Vectoring (TV) controller developed in this study is intended for imple-
mentation on a vehicle equipped with the baseline suspension setup, with the goal of
replicating the cornering performance of the same vehicle when fitted with the sporty
suspension setup. To achieve this goal, a reference generator for vehicle cornering has
been designed. Specifically, the yaw rate has been chosen as the control variable, and
the reference function incorporating exponential saturation, as outlined in [10], has been
adopted in this study.

rref =
⎧
⎨

⎩

V
l(1+KUSV 2)

τSW δSW = αδSW IFδSW ≤ δ∗
SW

rmax + (r∗ − rmax)e

( −α(δSW −δ∗SW )
(rmax−r∗)

)

IFδSW > δ∗
SW

(1)

In there, themaximumattainable yaw rate is themaximumachievable lateral acceleration
normalized by the actual vehicle speed (rmax = ay,max/V ), r∗ is the yaw rate value at
which the transition between the linear and saturation regions occurs, δ∗

SW = r∗/α is
the steering wheel angle value at which this transition happens and τSW is the steering
ratio between the steering wheel and the front wheels. Given the reference yaw rate
function, its three main parameters (rmax, α, δ∗

SW ) are obtained by fitting the reference
to the yaw rate response of the sporty vehicle to steering pad constant speed maneuvers.
These maneuvers have been performed at several different constant speeds by increasing
the steering wheel angle at a rate of one degree per second until reaching the vehicle
handling limits. The reference function characteristic coefficients are then regularized
through a proper fitting over the achievable speed range for the vehicle for defining the
yaw rate reference in each possible condition, with the results reported in Fig. 1.
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Fig. 1. Reference yaw rate function coefficients as function of vehicle speed.

The torque vectoring controller for tracking the desired yaw rate response defines the
yaw moment to be deployed to the vehicle as the sum of a feedforward and a feedback
contribution.

Mz = Mz,FF + Mz,FB = kδδ + kP
(
rref − r

) + kI
t∫
0

(
rref − r

)
dt (2)
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The feedforward contribution is function of the wheel steering angle commanded by
the driver, while the feedback contribution is the output of a PI controller aiming at
minimizing the yaw rate deviation from its reference value. The feedforward gain (kδ)
is obtained by imposing that the static gain of the frequency response function relating
the yaw rate response to the steering input is equivalent for the active and the sporty
vehicle, resulting in the following

μ r
δ
,ACTIVE = μ r

δ
,SPORTY → kδ = ky,f ky,r l

ky,f +ky,r
αSPORTY−αBASE

αBASE
(3)

where ky,f and ky,r are the cornering stiffness of the front and rear axles respectively, l is
the vehiclewheelbase andαBASE andαSPORTY are the slope of the linear yaw rate response
region for the baseline and the sporty vehicles respectively. The feedback control gains
(kP, kI ) are instead tuned with a model-based approach with the objective of obtaining a
robust and stable controlled system which performs as closely as possible to the sporty
vehicle.

4 Results

The effectiveness of the proposed control strategy, implemented on a vehicle with the
baseline suspension setup, in replicating the lateral dynamics performance of the vehicle
with the sporty suspension setup, is evaluated through numerical simulations. The results
encompass both transient and steady-statemaneuvers, covering a range of scenarios from
open-loop to closed-loop modalities, under high friction conditions (µ = 1.0).

4.1 Straight Line Constant Speed Maneuver

A straight-line constant speedmaneuver is simulated to evaluate the energy consumption
effects of three different vehicle configurations. This maneuver was conducted at speeds
ranging from 5m/s to 50m/s, in increments of 5m/s. The simulation results are presented
in Fig. 2 for the various running speeds. In there, the specific energy consumption
(Esp) increases more than linearly with vehicle speed due to aerodynamic resistance and
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Fig. 2. Specific energy consumption and its variation with respect to the baseline vehicle for a
straight-line constant speed maneuver across three vehicle configurations.
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shows no significant differences among the three vehicle configurations. However, the
variation in specific energy consumption (�Esp) relative to the baseline vehicle indicates
an increased energy demand for the sporty vehicle. This phenomenon may be attributed
to the suspension angles, which causes tire scrubbing on the road, resulting in power
losses due to lateral slip velocity at the tire-ground contact.

4.2 Constant Radius Cornering Maneuver

The steady-state handling performance of the proposed vehicle configurations under high
friction conditions is evaluated using an ISO 4138 constant radius cornering maneuver.
In this maneuver, the vehicle’s speed is progressively increased at a constant rate, and the
steering wheel angle is adjusted in close-loop to maintain a circular trajectory. The speed
is increased from10km/huntil the baseline vehicle achieves at least 99%of themaximum
attainable lateral acceleration for the selected turn radius. The cornering results for a
specific maneuver with a 100 m turn radius are presented in Fig. 3. Additionally, Fig. 4
summarizes the handling and energy consumption performance across all the inspected
turn radii.
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Fig. 3. Vehicle handling response during a constant radius cornering maneuver for a 100m radius
turn across three vehicle configurations.

The results in Fig. 3, illustrating the trend of the steering wheel angle as a function
of vehicle lateral acceleration, indicate that the sporty and active vehicle configurations
achieve almost equivalent cornering performance, both of which surpass that of the
baseline configuration. Indeed, the baseline vehicle requires a greater steering wheel
angle input to achieve the same turn radius. Additionally, both the baseline and active
vehicle configurations exhibit similar sideslip angle responses, whereas the sporty vehi-
cle is also capable of reducing the sideslip angle. The results in Fig. 4 indicate that
the active vehicle configuration requires slightly more steering wheel angle input com-
pared to the sporty configuration, while the baseline vehicle demands significantly more
input than both. Furthermore, Fig. 4 demonstrates that both the sporty and active vehicle
configurations consume less energy than the baseline configuration when executing a
constant radius turn. Notably, the sporty vehicle achieves nearly five times the energy
savings of the active vehicle. This significant reduction in energy consumption is primar-
ily attributed to the lower longitudinal slip of the outer tires in the sporty vehicle, which
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Fig. 4. Maximum steering wheel angle and specific energy consumption variation (�Esp) with
respect to the baseline vehicle during a constant radius cornering maneuver across three vehicle
configurations.

is not employing increased longitudinal forces at outer wheels as the active vehicle is
doing.

4.3 Double Lane Change Maneuver

The transient performance of the proposed vehicle configurations is evaluated using
steering wheel closed-loop simulations based on an ISO 3888 double lane-change
maneuver under high friction conditions. Figure 5 presents the results of this maneuver,
comparing the performance of the three vehicle configurations.

An examination of the results in Fig. 5 reveals that the sporty and active vehicle con-
figurations perform similarly under transient conditions, indicating an effective design
and tuning of the torque vectoring controller. The trends observed in the steady-state
tests are confirmed, showing that both the sporty and active vehicles generally enhance
the cornering performance. Additionally, the active vehicle requires a slightly larger
steering wheel angle input and exhibits a marginally higher sideslip angle compared
to the sporty vehicle, which also confirms the steady-state results. In terms of power
consumption, the baseline vehicle is the most demanding (Esp,BASE = 137.9 Wh/km),
followed by the active vehicle (Esp,ACTIVE = 132.4 Wh/km), which consumes slightly
more energy than the sporty vehicle (Esp,SPORTY = 130.8 Wh/km).
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Fig. 5. Vehicle handling response during a double lane change maneuver in high friction
conditions across three vehicle configurations.

5 Conclusions

The use of torque vectoring to enhance vehicle lateral dynamics has been extensively
studied over the years. However, integrating a torque vectoring controller with suspen-
sion parameters tuning to improve cornering capabilities while ensuring good energy
efficiency remains underexplored. In this study, baseline and sporty suspension setups
have been defined and a torque vectoring controller designed for an active vehicle with
the baseline suspension setup to emulate the handling characteristics of the sporty vehi-
cle. Various steady-state and transient maneuvers have been simulated to demonstrate
the method’s effectiveness. Steady-state maneuver results confirm that the actively con-
trolled vehicle can closely match the sporty vehicle performance by using torque vec-
toring to enhance the baseline vehicle handling. In terms of energy efficiency, the active
vehicle outperforms the sporty vehicle in straight-line conditions but performs slightly
worse in turns. Transient maneuver results corroborate the steady-state findings regard-
ing handling, with the active vehicle’s energy savings approaching those of the sporty
vehicle.

References

1. Requia, W.J., Mohamed, M., Higgins, C.D., et al.: How clean are electric vehicles? evidence-
based review of the effects of electric mobility on air pollutants, greenhouse gas emissions
and human health. Atmos. Environ. 185, 64–77 (2018)



532 M. Asperti et al.

2. Afkar, A., Mahmoodi-Kaleibar, M., Paykani, A.: Geometry optimization of double wish-
bone suspension system via genetic algorithm for handling improvement. Journal of
Vibroengineering 14, 827–837 (2012)

3. Kwon, S.-J., Kim, T.-L., Kim, C.-J.: Optimal selection of suspension and tires for vehicles’
cornering performance. Machines 10, 1032 (2022)

4. Uys, P.E., Els, P.S., Thoresson, M.: Suspension settings for optimal ride comfort of off-road
vehicles travelling on roads with different roughness and speeds. J. Terrramech. 44, 163–175
(2007)

5. Mitra, A.C., Soni, T., Kiranchand, G.R.: Optimization of automotive suspension system by
design of experiments: a nonderivative method. Adv. Acoust. Vibr. 2016, e3259026 (2016)

6. Wloch, K., Bentley, P.J.: Optimising the Performance of a Formula One Car Using a Genetic
Algorithm. In: Yao, X., Burke, E.K., Lozano, J.A., et al. (eds.) Parallel Problem Solving from
Nature - PPSN VIII, pp. 702–711. Springer, Berlin, Heidelberg (2004)

7. Rinderknecht, S., Meier, T.: Electric power train configurations and their transmission
systems. SPEEDAM 2010, 1564–1568 (2010)

8. Murata, S.: Innovation by in-wheel-motor drive unit. Veh. Syst. Dyn. 50, 807–830 (2012)
9. Katsuyama, E., Yamakado, M., Abe, M.: A state-of-the-art review: toward a novel vehicle

dynamics control concept taking the driveline of electric vehicles into account as promising
control actuators. Veh. Syst. Dyn. 59, 976–1025 (2021)

10. Asperti, M., Vignati, M., Sabbioni, E.: On torque vectoring control: review and comparison
of state-of-the-art approaches. Machines 12, 160 (2024)

11. De Filippis, G., Lenzo, B., Sorniotti, A., et al.: Energy-efficient torque-vectoring control of
electric vehicles with multiple drivetrains. IEEE Trans. Veh. Technol. 67, 4702–4715 (2018)

12. Pennycott, A., Novellis, L.D., Gruber, P., et al.: Enhancing the energy efficiency of fully
electric vehicles via the minimization of motor power losses. In: 2013 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 4167–4172 (2013)

13. Mangia, A., Lenzo, B., Sabbioni, E.: An integrated torque-vectoring control framework for
electric vehicles featuring multiple handling and energy-efficiency modes selectable by the
driver. Meccanica 56, 991–1010 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Enhancing Steer-by-Wire Systems
with an Integrated E-Motor and MR-Brake

Actuator – Feedback Control Strategy

Matthias Niegl1(B), Johannes Hendewerk1, Matthias Becker2, Stefan Battlogg3,
and Peter Pfeffer2

1 MdynamiX AG, Heßstr. 89, 80797 Munich, Germany
matthias.niegl@mdynamix.de

2 Munich University of Applied Sciences, Dachauerstraße 98b, 80335 Munich, Germany
3 INVENTUS Development GmbH, Montafonerstraße 68, 6771 St. Anton i.M, Austria

Abstract. This study introduces an innovative control strategy for a steer-by-
wire (SbW) force feedback actuator, tailored for automotive use. The actuator
integrates a direct drive electricmotor and amagnetorheological brake (MR-brake)
within a streamlined, compact design. This electric motor delivers torque essential
for the desired steering feel and ensures swift responsiveness. Concurrently, the
MR-brake, noted for its compactness and energy efficiency, contributes passive
damping and robust end-stop torque capabilities. The synergistic use of these
components allows for a smaller andmore resource-efficient electricmotor design.
A critical aspect of this strategy is the implementation of a torque splitter, essential
for replicating the steering feel associated with Electric Power Steering (EPS)
systems. This splitter distributes the required feedback torque between MR-brake
torque and e-motor torque, ensuring high fidelity and consistent stability across a
range of vehicular dynamics and maneuvers. Notably, maintaining a subjectively
satisfying steering feel under conditions where torque proportions vary between
actuators presents a significant challenge. The proposed actuator design, with
its focus on performance, safety, and reliability, is particularly well-suited for
advanced SbW systems demanding high standards in these areas.

Keywords: Steer-by-Wire · Force Feedback Actuator ·Magnetorheological

1 Differentiation to Current Force Feedback Actuator Designs

Current force feedback actuators which will be released in series production vehicles
soon are using the same basic technology as column assisted electric steering systems. A
small e-motor generates feedback torque with a worm gear towards the driver. A torque
sensor is still required for a consistent steering feel to compensate friction tolerances
from the manufacturing or wear [1]. A worm gear is a cost effective, simple and well-
known component, the risk of a failing steer bywire systemmotivates the suppliers to use
proven technology. Not all suppliers are focusing on this approach, e.g. Thyssenkrupp
introduces a direct drive force feedback technology without a torque sensor [2]. Direct
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drive e-motors promise a rigid steering feel with the possibility to generate frequencies
up to 50 Hz. The drawback which prevents a more common use of direct drive e-motors
is the requirement for the end stop torque which is typically higher than 20 Nm. The
exact number is still to be discussed among the OEMs. This would result in heavy and
large e-motors which are cost intensive and havemajor drawbacks in terms of packaging.
Figure 1 shows close to series production SbW columns from Nexteer Automotive and
Thyssenkrupp.

Fig. 1. SbW Force Feedback Actuators Nexteer Automotive [3] and Thyssenkrupp [2]

There are several possible solutions to using a small direct drive e-motor for functions
related to steering feel but still providing high torque output:

• Use the maxed out peak torque of the e-motor
• Mechanical end stops in series to an e-motor
• Mechanical brake in series to an e-motor

The different approaches shows there is no simple solution for the direct drive force
feedback actuator in existence.A combination of an e-motorwith anMR-brake described
in the following could solve the tradeoff between good steering feel and reduced costs
or packaging.

2 Design and Theoretical Benefits of the Actuator Combination

A magnetorheological brake is a device that uses the properties of a special fluid or
powder to control the braking force. An electric coil is attached to either the rotor or the
stator, and can generate a magnetic field when a current is applied to it. The magnetic
field closes from the rotor to the stator through the gap, and it causes theMRP particles to
align and form magnetic bridges between the two surfaces. Figure 2 shows a simulation
without and with a magnetic field.

The magnetorheological brake is a simple, reliable, and efficient way of braking.
To reach a counter torque of 25 Nm the MR-brake prototype consumes 60 W electrical
power at 12 V [5]. An electric motor wheelbase such the Simucube 2 Pro generates a
maximum torque of 25 Nm at 450 Watts peak [6].

Figure 3 shows on the left side the INVENTUS SbW actuator concept dimensions
are significantly smaller than a compared gaming wheelbase. This hybrid force feedback
actuator includes a 5 Nm e-motor and a 25 Nm MR-brake.
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Fig. 2. Simulation of particle chains in an magnetic field [4] (© Fraunhofer IWM)

Fig. 3. INVENTUS SbW Force Feedback Actuator Concept Dimensions [5] vs. Simucube 2 Pro
[6] (to scale)

The major question is wether a hybrid force feedback actuator can generate the same
quality of steering feel as a pure e-motor. In order to answer that, the hybrid actuator
designed for this study (Fig. 4) did not focus on size or packaging. The e-motor itself can
generate up to 15.7 Nm of continous torque and 30.0 Nm of peak torque. This enables a
direct comparison on one system between the hybrid design and the pure e-motor with
a disabled MR-brake. If both actuators are enabled, the e-motor torque can be limited to
any low peak torque from a close to series production concept.

The actuator further has a MR-brake designed by INVENTUS Development GmbH
with a peak torque of 8 Nm. Figure 4 shows the hybrid actuator cross-section and the
real actuator including a high precision angle sensor.

3 Controller and Torque Splitter

AnMR-brake can only be controlled semi-actively and can therefore only take over two
of four quadrants in the steering wheel torque- steering wheel angle velocity diagram
during steering. An electric motor is required for e.g. active return. To design a control
system for distributing the torque with good steering feel, the control must be advanced.
This includes blending of actuator torques in the steering off-center and more e-motor
proportion in the on-center region, thereby moving away from the ideal areas. Sudden
changes in e.g. SWV may lead to unwanted behaviors due to settling time and minor
differences in actual torque. To realize blending, factors between 0 and 1were introduced
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Fig. 4. SbW Force Feedback Actuator with Direct Drive E-Motor and MR-Brake

and multiplied with the respectable torque command value of MR-brake and e-motor.
The factors are realized via a characteristic field as shown in Fig. 5. At lower SWVs, the
MR-brake factor is 0 and reaches a factor of 1 at a given SWV, called transition speed. A
full takeover of torque from the brake only happens in areas where the MR-brake factor
is 1 (resulting in an e-motor factor of 0). In areas where the MR-brake is active, but
the factor is smaller than 1, the e-motor is partially taking over the torque in low SWV
section, achieving torque blending of each actuator torques.

Fig. 5. Torque factor map of MR-brake for torque splitter

For end stop behavior, a similar logic is used with twomain differences. Firstly, since
the achieved SWVs are low compared to driving even when pushing over the end stop
torque limits, the transition speeds of the characteristic field are kept low, resembling
more the ideal torque splitter. Secondly, the e-motor is not disabled in areas where the
MR-brake is active to avoid fast on and off switching of e-motor torque due to the steeper
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map. Steering into the end stops results in an added torque of e-motor and MR-brake,
steering away from the end stops is only controlled by the e-motor.

4 Simulation and Driver in the Loop Results

For the execution ofDriver-in-the-Loop (DiL) tests, the hybrid actuatorwas implemented
within a static driving simulator stationed in the laboratory of the Munich University of
Applied Sciences. The control unit for the MR-brake and the inverter for the e-motor
are connected to an embedded computer. This embedded computer handles the torque
splitter and simulates a Pfeffer steering model [8].

To evaluate the functionality of the torque splitter, a Weave Test, 100 km/h, 30 °,
0.2 Hz, 4 m/s2 and End Stop Tests are performed. For both scenarios the actual torque
values were computed utilizing the currents and their respective torque constants. It’s
important to note that the setup did not incorporate a torque sensor. The graph in Fig. 6
shows the torques aginst the SWA for the Weave Test. The MR-brake becomes active
during turning the steering wheel into the sine wave according to the torque-velocity
diagram. Arriving at the peak of SWA sine wave, the MR-brake torque ramps down due
to decreasing SWV. The e-motor takes over completely to generate the counter torque
and a smooth transition can be seen. By superimposing the torques of each actuator, a
well-defined hysteresis can be generated.

Fig. 6. E-motor and MR-brake torque splitting for Weave Test

The graph in Fig. 7 shows the torques of the actuators over the measurement time,
for the End Stop Test. The MR-brake becomes already active during slowly turning
the steering wheel towards the end stop and the e-motor is inactive. At 4.5 s, when
the end stop limit is reached the MR-brake and the e-motor torques are rising to the
parametrized maximum. At 11 s during steering back to the center the e-motor torque
is reduced slowly as well. The end stop transitions can be generated as a sum of the
actuators or independently as shown in the measurement.

An expert evaluation of both scenarios in a DiL environment shows good subjective
results, the transitions between the actuators where hardly noticeable, only the end stops
where described as “little sticky”. The MR-brake is not released early enough, because
the driver’s intention is sensed after oversteering the MR-brake torque.
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Fig. 7. E-motor and MR-brake torque splitting for End Stop Test

5 Summary and Outlook

In this study the potential advantages for a force feedback actuator with direct drive e-
motor andMR-brake are presented. The design is cost effective, delivers a highmaximum
torque at low energy consumption and ensures flexible end stops. The steering feel of the
design was analyzed objectively and evaluated subjectively by experts. The results show
that the developed torque splitter feels smooth in the transitions, but the MR-brake tends
to stick in the end stops. The reason for the behavior was identified in the angle sensor
position at the endof the actuators. The sensor typewill be changed towards a hollowshaft
type and positioned between the steering wheel and the e-motor to improve the sticky
feel. The torque input from the driver is measured early to release the MR-brake instead
of first oversteer it. A second demonstrator with a series production EPS-motor including
an updated MR-brake is currently being built up to further investigate the potential of
the presented force feedback actuator with direct drive e-motor and MR-brake.

Acknowledgement. This study was supported by the European Union “Interreg Bayern-
Österreich”.
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Abstract. In autonomous driving systems, motion planning to reach a
given destination while avoiding obstacles becomes a task entirely man-
aged by the on-board unit. In this work, we present a rule-defined motion
planning algorithm for autonomous driving applications based on an
adaptive Model Predictive Controller (MPC) framework. The motion
planning task is first formulated as an Optimal Control Problem (OCP)
subject to time-varying Control Barrier Function (CBF) constraints. It
is then integrated within an MPC framework with adaptive weights set-
tings, enabling the algorithm to dynamically adjust the MPC weights
according to the rule-defined driving scenarios. The developed motion
planner generates optimized trajectories for a high-fidelity Autonomous
Vehicle (AV) model within IPG CarMaker software. Simulations per-
formed showed that the developed motion planner adeptly facilitates suc-
cessful overtaking, following, and stopping of the AV behind the Obstacle
Vehicle (OV) based on rule-defined scenarios perceived by the AV.

Keywords: Autonomous Vehicle · Model Predictive Control ·
Optimal Control Problem · Obstacle Avoidance · Control Barrier
Functions · High Fidelity Simulation Environment

1 Introduction

Motion planning algorithms ensure the safety of Autonomous Vehicles (AVs) in
the presence of Obstacle Vehicles (OVs) and also ensure that AVs reach their
target destinations. Obstacle avoidance is an important aspect of motion plan-
ning. One of the earliest implementation was based on Artificial Potential Fields
(APF), where repulsive forces are used to avoid obstacles [1]. However, a lim-
itation of APF-based algorithms is their poor performance in the presence of
highly nonlinear systems and the oscillations that occur when operating at low
frequencies. To overcome this issue, a model-dependent Control Barrier Function
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(CBF) [2] was used to handle obstacles in more complex non-linear optimization
algorithms.

To fulfill the second fundamental goal of a motion planning algorithm, which
is goal reaching, approaches based on way-point tracking or Control Lyapunov
Functions (CLFs) [3] have been widely adopted in literature. Research work has
shown that it is possible to combine CBFs and CLFs and other essential con-
straints through a Quadratic Programming (QP) to form an OCP [4]. The OCP
can then be propagated along a predefined receding time horizon resulting in an
MPC framework and is one of the current state-of-the-art techniques [5,6] for AV
motion planning in addition to data-driven techniques. Data-driven approaches
are becoming increasingly popular due to their ability to efficiently optimize in
diverse environments [7]. However, these approaches have the disadvantage of
not providing security guarantees defined through a mathematical formulation
of constraints. For this reason, in safety-critical tasks and when proper modeling
of the physical problem is available, model-based approaches are still a viable
solution for motion planning. This is confirmed by the extensive literature avail-
able on automated control of vehicles, such as in [8–10] where MPC is used for
obstacle avoidance control, automatic highway overtaking and urban low speed
autonomous driving respectively.

The most common solution to handle multiple driving scenarios in a model-
based motion planner is a hierarchical approach. Each scenario is characterized
by a specific problem formulation, and a high-level algorithm identifies the situa-
tion and selects the appropriate algorithm. To develop a single algorithm capable
of handling multiple scenarios, this paper proposes a rule-based motion planner
for an AV using a waypoint-assisted MPC formulation subjected to time-varying
CBF constraints. The formulated motion planner can overtake, follow, and fully
stop behind OV depending on the autonomous driving scenario sensed by the AV.
This adaptability eliminates the need for transition planners for each scenario,
making the algorithm versatile. This is achieved by making the MPC adapt the
weights based on predefined driving rules corresponding to the sensed scenario.
The first section of the paper focuses on the mathematical modeling of the vehi-
cle and the formulation of the motion planner. The second section deals with
simulation methodology while the third section presents the simulation results.

2 Mathematical Modelling

2.1 Vehicle Model

The AV to be controlled has been mathematically approximated by using a
Single Track Model (STM) [11] and the kinematic expressions that describe the
motion of STM along the constrained XY space are expressed in (1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = v sin(θ + β)
ẏ = v cos(θ + β)

θ̇ =
v sin(β)

Lr

(1)
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where

β = atan
(

Lr tan(δ)
L

)

The parameters L and Lr denote the total length of the vehicle and length
of the vehicle from rear axle to the vehicle’s Center of Gravity (CoG) point
respectively. The variables v, δ and θ represent velocity of the vehicle, steering
angle imposed at front wheel and orientation of the vehicle with respect to
the global XY plane respectively. Integrating (1) yields x, y and θ where the
quantities x and y denote the position of the vehicle along global XY frame.

The variables v and δ are the control variables to vehicle. To have a smoother
control, the control actions are placed on acceleration uacc and steering rate ψ
and are defined in (2).

{
v̇ = uacc

δ̇ = ψ
(2)

The expressions (1) and (2) are collectively taken as X and U respectively
and are combined to define the total non-linear dynamic Eq. (3) of STM and is
fed as a dynamic equality constraint to the optimization algorithm.

Ẋ = f(X,U) (3)

2.2 Development of the Motion Planning Algorithm

The specific problem formulation developed is analyzed as follows. In particu-
lar, the CBF formulation is described in detail and then the overall problem
formulation is reported.

2.2.1 CBF Constraint Formulation The OV in this work is formulated as
a circular entity centered at its CoG point and this circular entity is described
mathematically in (4)

B(XAV,XOV) = (XAV − XOV)�(XAV − XOV) − D2
OV (4)

where XAV is a vector containing position states of the AV (x and y), while XOV

corresponds to the OV’s positional state vector (xOV and yOV) and finally, DOV

defines the region of influence around the OV. The first-order time derivative of
(4) is taken and is described in (5)

Ḃ(XAV,XOV, ẊAV, ẊOV) = 2(XAV − XOV)�(ẊAV − ẊOV) (5)

where ẊAV points to the AV’s velocity vector (ẋ and ẏ), while ẊOV corresponds
to the OV’s velocity vector (ẋOV and ẏOV) with ẋOV = 0. The generalized
expression for CBF constraint in continuous form [12] after substituting the B
and its derivative Ḃ is defined in (6)

Ḃ(XAV,XOV, ẊAV, ẊOV) + γB(XAV,XOV) ≥ 0 (6)
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where γ defines the rate at which the AV is guided away from the region confined
to the OV. A high value of gamma makes the AV overtake OV closer to it, while
a small value makes the AV overtake OV by going very wide of it. The setting
of the parameters DOV and γ values are done by the rules defined in the motion
planner and are optimally tuned for each specific driving scenario. Under the
OV overtaking rule, DOV and γ are set at 2.5 m and 100 to allow the AV to
overtake the OV within the available lane width. In the scenario of OV vehicle
following, DOV is extended to 15 m while γ is reduced to 1 to ensure the AV
maintains a safe following distance. Lastly, for the fully stopping rule, DOV is
further increased to 20 m while γ is brought to around 0.35 to prevent the AV
from overtaking the OV. The constraint Eq. (6) when satisfied creates a forward
invariant safe set S that assists the AV to keep it away from the space confined
to that of the OV.

2.2.2 Definition of Way-Points Assisted MPC Based OCP From the
fundamentals of optimal control theory, a problem formulation based on a
quadratic cost function can be defined. This cost function is then subjected
to the constraints arising from the vehicle dynamics (3), OV induced CBFs (6)
and from vehicle state and control limits. This OCP is then propagated in time
along a predefined receding time horizon T leading to a MPC based formulation
as defined in (7).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
U

J(X, U) =
1

2

N−1∑

k=0

[
‖Xk − Xref,k‖2Q + ‖Uk − Uref,k‖2R

]
+

1

2
‖XN − Xref,N‖2P

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋk − f(Xk, Uk) = 0 Dynamic Constraints

Ḃ(XAV, XOV, ẊAV, ẊOV) + γB(XAV, XOV) ≥ 0 CBF Constraint

Umin ≤ U ≤ Umax Control Constraints

Xmin ≤ X ≤ Xmax State Constraints

(7)

where N indicates the number of discretization time steps distributed along the
MPC time horizon and is fixed as 50 steps while T is set at 2.5 s leading to a
ΔT of 0.05 s for the MPC.

XN stands for terminal states of AV, while P, Q and R correspond to the
weights for the MPC. The way-points that define the path along which AV needs
to travel have been set in Xref,k in the problem definition (7). In this paper, the
MPC is optimized based on the hypothesis that the distance between AV and
OV is known and AV knows whether it is travelling on a road consisting of
a single lane or a double lane. The MPC is numerically solved thanks to an
open source acados solver based on sqp-rti [13]. The formulation is developed
to properly handle 3 common driving scenarios: overtaking, following and full
stopping by defining them as rules set by weights to the MPC. In particular,
the default driving rule is OV overtake, but if the speed of OV relative to AV is
greater than a threshold defined in this paper, vehicle following rule is applied.
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In situations when AV is travelling along a single lane road and there is an
OV stopped along that lane vehicle stopping rule is applied to the MPC. The
mathematical relationship between OV velocities for different AV velocities that
causes change of rule between OV overtaking and vehicle following scenario is
shown in Fig. 1a.

The MPC is able to automatically toggle between these 3 rules depending
upon the information about OV velocity, AV velocity and lane width datum
by changing the weight matrices P, Q and R and parameters γ and DOV that
are defined and set for each rule. For the overtaking maneuver, less emphasis
is placed on the weights associated with lateral and longitudinal position track-
ing error (δx and δy) compared to the weights assigned to velocity tracking
error (δv). This approach allows the CBF constraint to push the AV away from
region occupied by OV while trying to maintaining the reference velocity vref,AV.
Regarding the vehicle following and fully stopping maneuvers, the weights for
both scenarios focus primarily on δx, with near-zero weights on δy and δv. This
configuration ensures that the AV strictly adheres to the reference lane with min-
imal lateral movement and aligns its driving behavior based on the parameters
DOV and γ. In the vehicle following scenario, as discussed in Sect. 2.2.1, DOV is
set to 15 m and γ is reduced to 1. This enables the AV to decelerate and match
the velocity of the preceding OV while maintaining a safe following distance.
For the fully stopping scenario, as outlined in Sect. 2.2.1, the parameter DOV is
increased to 20 m, while γ is adjusted to 0.35. This ensures that the AV comes
to a complete stop behind the stationary OV while maintaining a safe stopping
distance with minimal lateral movement.

3 Methodology

Extensive virtual simulations were conducted to test the adaptiveness of the
MPC-based motion planner and an integrated scenario comprising of an ego
vehicle and four OVs is reported in this work. The ego vehicle encounters the
four OVs one after the another and performs different manoeuvres based on the
velocity of the obstacle vehicle which defines the rule set for the MPC weight
adaptation. The algorithm is expected to seamlessly transition between the over-
taking, following or safety-critical fully stopping manoeuvres. Further details are
included in Sect. 4. The simulations were performed using Simulink platform of
MATLAB environment in combination with high-fidelity simulation environ-
ment of IPG CarMaker. At each time-step, the environment and the multi-
body vehicle model of the simulator take as input the control outputs from the
motion-planner. The details of the information exchanged between the Simulink
and IPG CarMaker is schematically represented in Fig. 1b. Since ego-localization
and obstacle tracking is out of scope of this research, the initial states of the AV
and the OV are provided to the motion planning algorithm which in real life
would be given by localization and perception modules.

The control algorithm outputs the optimized acceleration (uacc) and steering
rate (ψ) of the AV, latter of which is integrated to obtain the steering angle (δ)
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(a) (b)

Fig. 1. (a) Plot between the AV reference velocity and the OV velocity that defines the
threshold velocity limit that separates vehicle following maneuver from the overtaking
maneuver by the AV. (b) Layout of feedback loop established between the developed
motion planner and the high-fidelity simulation software.

at the front wheels from the given initial steering angle. uacc is used to derive
brake pedal angle and gas pedal angle of IPG CarMaker vehicle by utilizing
the in-built PID control block of IPG CarMaker. δ is used to obtain steering
angle of the steering wheel of IPG CarMaker vehicle using the steering system
kinematics. The obtained states of the simulator model are fed to the algorithm,
which acts as a feedback to the optimizer.

4 Simulation Results

The simulated scenario could be divided into four functional sub-scenarios occur-
ring sequentially as follows:

– The AV, driving at a reference cruise velocity overtakes a stationary OV.
– The AV, driving at a reference cruise velocity overtakes a slow-moving OV.
– The AV, driving at a reference cruise velocity decelerates and follows an OV

moving at a considerably high velocity which then takes a right turn at the
road junction allowing the AV to accelerate back to its reference speed.

– The AV accelerates back to its stated reference velocity and then stops while
detecting a stationary OV when overtaking option is not possible because of
a divider in between the 2 lanes.

Table 1. Obstacle Vehicle characteristics for Integrated Simulation

OV Number OV type vOV y0,OV MPC Rule

OV1 Stationary [0 m/s] 100m Overtake

OV2 Moving [6 m/s] 170m Overtake

OV3 Moving [13.6 m/s] 200m Follow

OV4 Stationary [0 m/s] 1300m Stop
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Fig. 2. The path and positions of the AV and the OVs in the integrated scenario
simulation. The red car indicates the stationary OV1, while green and yellow cars
represent OV2 and OV3 respectively. The dark orange line denotes the barrier that
divides the two lanes. Finally the blue car denotes OV4.
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Fig. 3. Results from the integrated scenario simulation

The scenario consists of 4 OVs along the path of the AV as seen in Fig. 2.
The OV characteristics are stated in Table 1.

All the sub-scenarios proceed continuously on a two-lane straight road, with
each lane having a width of 3.5 m. Before the junction, the lanes are separated
by lane markings, and after the junction, they are separated by a barricade.
The initial and the reference velocity for the AV are set to 17.5 m/s and the
simulation results are shown in Fig. 3. The OV1 gets overtaken by the AV since
it is stationary (shown in green region of Fig. 3). The AV then overtakes OV2 as
it is travelling within the vehicle following threshold limit of 13.5 m/s (shown in
yellow region of Fig. 3). The AV then approaches OV3 and decelerates to follow
the OV since OV3 is travelling above the set threshold limit. The AV keeps
following OV3 (shown in pink region of Fig. 3) till a junction located at about
1100 m from the starting position of the AV (shown in Fig. 3), where OV3 shifts
to another path different from that of the AV. The AV now is free to accelerate
to its stated reference velocity vref,AV of 17.5 m/s and this could be inferred from
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orange region of Fig. 3. Once the AV crosses the junction and approaches OV4,
the presence of barricades between the lanes prevents the AV from performing
any further overtaking maneuver. Since there is no adjacent lane for AV now to
overtake OV4, even though OV4 is stationary AV decelerates and stops behind
OV4 (shown in indigo region of Fig. 3).

The logarithm of the CBF value during the simulation run over time is plot-
ted in Fig. 3 as the black line and it could be inferred that constraint values are
always greater than zero with a minimum value of 0.22 confirming that the con-
straints are always satisfied. As previously mentioned, the weights assigned to
the MPC cost function are instantaneously adjusted according to the OV han-
dling rules. This adjustment can be observed from the magenta line in Fig. 3,
which defines the rule activated based on the scenario observed by the AV. A
value of 1 indicates that the vehicle overtaking rule is followed, while values of 2
and 3 indicate that vehicle following and vehicle stoppage rules are followed by
the MPC. Notwithstanding the fact that the MPC weights are shifted instan-
taneously, the AV does not exhibit any significant transient behaviours which
could be observed from AV path in Fig. 2, which in-turn signifies that sudden
change of the weights does not lead to instability of the AV. This behaviour
was possible by setting the weights to control inputs on the ψ relatively higher
compared to all other weights for all the scenarios in addition to the rule specific
weight setting on tracking errors discussed earlier. A twofold advantage of such
setting is that AV does not show high fluctuation in acceleration and steering
rate values thereby resulting in smoother velocity profile which can be observed
from the velocity plot in Fig. 3 (red line).

The normalized δx error cost is shown in Fig. 3 as the blue line. It can be
inferred that this cost increases when the AV steers away from its reference
line to perform an overtaking maneuver around the OV. The motion planner
then works to bring the AV back to the reference line while satisfying the CBF
constraints to reduce this cost. A similar pattern is observed for the δy error
cost, also normalized and depicted as the dark green line in Fig. 3, during the
overtaking maneuver. During the vehicle following and fully stopping scenarios,
it could be inferred that the δx error cost is almost equal to 1 with near-zero
cost values for δy and δv (also normalized and shown as brown line) error. This
occurs because the AV tries to follow the OV3 while maintaining a safe fol-
lowing distance with minimal lateral deviation from the reference line, achieved
by heavily penalizing the δx error for the vehicle following maneuver. Similar
behavior is observed in the vehicle stopping scenario where the AV decelerates
from its stated reference velocity vref,AV and completely stops behind OV4 with
minimum lateral deviation from its reference by sacrificing the cost on δy and
δv errors. Additionally, when OV3 steers right from the junction, the δy error
cost is initially higher and gradually declines. This is because the AV is now free
to track the way-points set for vref,AV, which was not possible earlier due to the
vehicle-following rule enforced because of OV3. The AV reaches these way-points
by accelerating through the road junction. The δv error cost is higher during the
overtaking maneuvers around OVs because a reduction in the AV velocity is
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necessary to safely overtake the OVs as observed in the red line. The normalized
δv error cost is also higher when the AV accelerates along the road junction to
reach vref,AV as OV3 moves right at the junction.

The maximum solving time for the combined setup (Simulink + IPG Car-
Maker) during the entire simulation time range is found to be 4.2 milliseconds
which is less than ΔT of 0.05 s (20 hz) required by MPC thereby demonstrat-
ing the real-time integration capability of the developed motion planner. This
20 Hz control frequency ensures the system can dynamically react to unexpected
situations within a suitable reaction time, as highlighted in the research work
of [10].

5 Conclusion

In this paper, a rule-based adaptive motion planner for an AV capable of
autonomously overtaking, following, and stopping behind an OV is developed
using an adaptive MPC framework. Based on the lane width available and rela-
tive speed between the AV and the OV, rules are defined that enables the motion
planner to consider the proper driving scenario. The simulation results for these
rule-defined scenarios are presented which confirms that the motion planner is
able successfully adapt to different driving scenarios without colliding with any
of the OV by seamlessly transitioning between weights assigned for different
driving conditions.

Acknowledgement. The authors would like to acknowledge IPG Automotive for
providing the CarMaker software, which was crucial for the simulations and analysis
in this research.
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Abstract. Estimation of the actual friction potential frommeasured vehicle states
has been extensively explored for passenger cars, but lacks attention for motor-
cycles. Several aspects towards friction potential estimation for motorcycles are
discussed in this study: (i) analysis of the characteristics ofmotorcycle tyres on dif-
ferent surfaces and conditions by using an instrumented motorcycle, (ii) analysis
of the theoretical performance of an EKF-based friction potential estimation app-
roach by means of simulation studies, and (iii) analysis of the feasibility of using
a wetness sensor on the motorcycle to gain information on actual road conditions.

Keywords: Friction Potential Estimation · Extended Kalman Filter · EKF ·
Motorcycle · Tyre Characteristics · Road Conditions ·Wetness Sensor

1 Introduction

The forces transmitted in the contact area of the tyres with the road are decisive for the
handling dynamics and safety properties of road vehicles. Demanded forces that exceed
the limits of friction may lead to a loss of stability, with potentially dangerous conse-
quences, especially for motorcycle riders. Knowledge of the actual friction potential,
however, may improve the performance of safety systems such as Anti-Lock Braking
System (ABS), Traction Control System (TCS), and Stability Control System, and may
also be helpful for the development of further Advanced Driver Assistance Systems
(ADAS).

Methods for online estimation of the actual tyre–road friction potential can be basi-
cally classified into cause-based and effect-based [1]. The former methods are based
on the detection of environmental (temperature, rain, etc.) or road surface conditions
(water, ice, etc.). This can be done predictively within certain limits, but usually allows
just for a classification of the actual friction potential. The latter methods rely on mea-
surable effects of the current tyre–road contact conditions on the dynamic behaviour of
vehicle and tyres. This allows for an estimation of the friction potential, but valid and
yet sufficiently simple models of vehicle and tyres are required to adequately represent
their behaviour at different friction conditions.
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Various approaches for friction potential estimation are presented in vehicle dynam-
ics literature, but refer almost exclusively to two-track vehicles, see e.g. [2–4]; an excep-
tion thereof is [5], wherein nonlinear regression methods are applied to estimate the fric-
tion potential during braking manoeuvres for a motorcycle. In this proceedings, selected
aspects of an ongoing study towards friction potential estimation for motorcycles based
on the magic formula (MF) tyre model and an extended Kalman Filter (EKF) approach
are discussed, along with the first results from an analysis using a wetness sensor on a
motorcycle.

2 Tyre Characteristics at Different Road Conditions

In a first step, the longitudinal characteristics of the front and rear tyres of an actual
motorcycle have been analysed in order to identify applicable effects with regard to
friction potential estimation. Starting from an available MF tyre parametrisation (from
measurements on a flat track test rig), the scaling factors of the MF tyre model were
adjusted to adapt the tyre characteristics to different surfaces and conditions found at the
braking platform of the ZalaZONEproving ground inHungary. Respectivemeasurement
data was collected by means of an instrumented motorcycle, and a procedure similar to
[6] was employed to derive tyre forces and slip values at the front and rear tyres from
coast down, constant speed, and acceleration and braking manoeuvres.

Figure 1 shows the resulting tyre characteristics of the front and rear tyres with the
traction coefficient μ = Fx/Fz and the corresponding longitudinal slip κ. Comparing
the orange and blue lines reveals a remarkable drop of the friction potential from dry
asphalt to wet polished concrete, while the slope at small values of longitudinal slip κ

remains unchanged. Note, that for the rear tyre, the friction potential is fully exploited

Fig. 1. Comparison of the longitudinal characteristics of the motorcycle tyres derived from mea-
surements on a flat track test rig (grey) as well as from road tests with an instrumented motorcycle
on dry asphalt (orange) and wet polished concrete (blue).
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in wet conditions, while maximum tyre forces at higher positive slip values cannot be
reached in dry conditions since a lift-off of the front tyre would occur (wheelie).

The same limitation applies to the front tyre under braking (stoppie). Besides, and due
to the lack of driving forces, only negative slip values are used for the characterisation
of the front tyre from on-road measurements. Yet, one may conclude that an effect-
based friction potential estimation approach based on pure longitudinal excitation due
to acceleration and braking, and relying on the diverging characteristics of the tyres in
the (beginning of the) non-linear region seems promising.

3 Performance of EKF Based Friction Potential Estimation

It seems reasonable to investigate the performance of effect-based friction potential esti-
mation approaches in idealised simulation studies first, before real-world measurements
are taken into account. The former is addressed in this section, aiming to gain experi-
ence w.r.t. required excitation intensities for reliable estimation results, as well as related
adaption time delays.

A discrete-time extended Kalman-Filter (EKF) according to [7] is implemented in
Matlab. The selected structure of the algorithm is based on the planar three-dof motorcy-
cle model depicted in the top left part of Fig. 2. In case of acceleration, the drive torque
T2 is the input to the estimator; longitudinal velocity v̂x, angular velocity ω̂2 and friction
potential μ̂max,2 comprise the estimated states of the EKF, which are updated at each
time step by taking the chosen measurements in form of the longitudinal acceleration ax
and the angular velocity ω2 of the rear wheel into account. Within the EKF, a simplified
MF with Fx2 = Fx2

(
Fz2, κ2, μmax,2

)
is applied. The vertical tyre forces Fz1 and Fz2

required within the EKF are related via the c.g. coordinates a, b, and h to the longitudi-
nal acceleration ax from the previous time step. In the case of braking at the front wheel
only, a corresponding approach is realised.

The model of Fig. 2 is used as simulation model with the full MF tyre model in
longitudinal direction, and with overlayed white noise. For simplicity, the front and rear
tyre characteristics are presumed to be equal, such that only one friction potential μ̂max
is estimated for both tyres by the EKF. Variations of the tyre–road friction potential are
realised by altering the scaling factor λμx of the MF tyre model. A synthetic, sawtooth-
like torque profile was selected, with alternating drive and braking inputs T2 > 0 and
T1 < 0 at the rear and front wheel, respectively, resulting in acceleration and braking
sections for a duration of two seconds each. Several instantaneous changes of λμx and
thusμmax are included in themanoeuvre. The linear increase of torque during a sawtooth
provokes increasing wheel slips, and the peaks of the torques were selected that the
traction coefficients μ1 and μ2 reach a certain fraction of the friction potential μmax
during each segment, which will be referred to as “excitation intensity” in the following.
In the bottom plot in Fig. 2, the dashed lines show the traction coefficients μ1 and μ2
for the front and rear tyre, respectively, and the dash-dotted line indicates the excitation
intensity, which is set here to approx. 80% ofμmax. In this form, the manoeuvre provides
ideal conditions for testing the EKF by comprising persistent and high excitations while
remaining within the wheelie and stoppie limitations.

The estimated friction potential μ̂max converges in steps to the predefined μmax as
can be observed by the blue line in the bottom plot of Fig. 2. It was found that the
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traction coefficients need to exceed an excitation intensity of 0.6 for the algorithm to
reliably converge. In Fig. 2, the related adaption time delays of the EKF are summarized
as bar chart. The adaptation time delay is the time from the instantaneous change of
λμx until μ̂max converges to a ±10% error range of μmax. Adaption time delays of few
seconds can be observed, and tend to increase with increasing downward-steps of the
friction potential: for the steps towards λμx = 0.4, more than one sawtooth-excitation
are required for the algorithm to converge. Adaption time delays w.r.t. the upward steps
appear to be close to each other. This effect can be explained in the present case by the
fact that the traction coefficients μ1 and μ2 quickly exceed the former μmax after an
upward-step, which gives a clear sign to the EKF that μmax must have raised as well.

Fig. 2. Top left: three-dof motorcycle model for EKF and simulation. Bottom: simulated acceler-
ation and braking manoeuvres with changing and estimated friction potential. Top right: adaption
time required by the EKF to detect changes of the friction potential.

4 Analysis of Sensor-Based Detection of Wet Road Surfaces

To overcome limitations of the effect-based estimation method w.r.t. required excita-
tion intensity and adaption time delays, the potential of a cause-based method to gain
information on the actual road conditions is analysed in this section.

Multiple sensor principles for the purpose of detecting and quantifying road wetness
are discussed in literature, see e.g. [8, 9], and recommendations for the positioning of
such sensors at passenger cars are given based on different mechanisms of water spray
ejection of rotating tyres.

In order to analyse the potential at motorcycles, two identical piezo-electric wetness
sensors were applied to the instrumented motorcycle. First, a decision had to be made
about the position of the sensors. Having in mind that the front tyre experiences changes
in road conditions first, and already displaces some water from the road such that the
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rear wheel experiences less road wetness when following the front wheel in the same
track, it seems reasonable to place both sensors in the area of the front wheel. Two
distinct positions have been selected, and are illustrated as orange rectangles in the top
left sketch in Fig. 3: the first one is attached to the guard plate below the engine, such that
the sensor is most directly hit by the water picked up by the tread of the front tyre; the
second one is placed beneath the front fender, such that the sensor gets in contact with
the spray circumferential to the front tyre. Impinging water droplets excite vibrations of
the membrane of each sensor, resulting in oscillating analogous voltage output signals,
which were recorded with a sampling rate of 50 kHz at the instrumented motorcycle.

Multiple measurements with different water heights on different surfaces have been
conducted, with different velocities and different engine speeds. The recorded sensor
signals were then analysed in both time and frequency domains, and from a comparison
between the different mounting positions, the one beneath the front fender was found to
be favourable. This may be due to the reasons described in [8, 9] that there is not enough
water picked up by the front tyre to impinge on the first sensor at lower water heights, or
the sensor position was too high above the road; another dominant reason is attributed to
the engine noise, which is more dominant in the signal of the sensor at the engine plate
than beneath the front fender.

Fig. 3. Top left: selected positions of the wetness sensors at the motorcycle. Bottom left: power
spectra for different water heights at an asphalt road resulting from the sensor mounted beneath
the front fender. Right: asphalt road with different water heights at different tracks.

Power spectra of the signal of the sensor beneath the front fender are shown in the
bottom left diagram in Fig. 3, resulting from different water heights on an asphalt road,
which was traversed with a constant speed of 80 km/h in 4th gear. At lower frequen-
cies, the sensor signal is influenced by engine noise, which possibly masks effects from
impinging water. At higher frequencies above the sensor resonance frequency f ref, the



Towards Friction Potential Estimation for Motorcycles 555

spectra quickly decay with increasing frequency. The frequency range in between, how-
ever, allows for a clear distinction between dry asphalt (dark blue) and full wet asphalt
with ponding water (dark orange), as well as between intermediate water heights at
different tracks as depicted in the right picture in Fig. 3.

5 Summary

Analyses of the tyre characteristics of an actual motorcycle on different road surfaces
and conditions reveal the possibility of effect-based friction estimation based on an
extended Kalman Filter, relying on pure longitudinal driving and braking inputs. A
performance analysis in a simulation environment confirms the feasibility in principle,
but also shows that rather high excitation intensities and respective high longitudinal
slip of the tyres are required, and that an estimation time of at least 2 s has to be
accepted. As a possible solution, wetness sensors were investigated on the motorcycle.
Encouraging results towards a quicker detection of wet road surfaces were found with a
sensor positioned beneath the front fender of the motorcycle.

Acknowledgements. The measurement was carried out for R&D purposes at the ZalaZONE
Automotive Proving Ground within the framework of scientific cooperation.
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Abstract. Teleoperated vehicles are gaining importance during the
transition to fully automated vehicles since at the current state of devel-
opment automated vehicles are not capable of operating in all conditions
and environments. Despite the high potential of the concept of teleoper-
ated vehicles, there are still challenges to be dealt with. As the teledriver
is physically not present in the vehicle during teleoperation, the commu-
nication between the teledriver and the vehicle takes place via internet.
That could lead to a delayed transmission of the telemetry and visual
signals. Additionally, the teledriver’s perception of the vehicle motion
is reduced. This study demonstrates the differences between teledriving
and normal driving from a theoretical perspective and how the stability
of the vehicle-teledriver system is affected by the communication delay
and the reduced perception of the vehicle motion. To increase the driver’s
perception and the ease of control of the teleoperated vehicle, a simple
structured and tunable steering wheel torque emulation concept is intro-
duced.

Keywords: Teledriver model · torque emulation · teleoperated
vehicle · stability · time delay · perception · steering feel

1 Introduction

In recent years, autonomous driving has become a focal point of research and
development. As a matter of fact, there is currently no automated vehicle that
is capable of operating in all conditions and environments, as defined in SAE
level 5 [6]. Automated vehicles still require human intervention in unknown driv-
ing environments or the event of hardware or software failure. As a transition to
fully automated vehicles, teledriving also known as remote operation of vehicles
over the internet plays an important role. Teleoperated vehicles can be employed
in various practical scenarios, including taxi services, delivery services [2] and
shared mobility platforms such as from Vay Technology GmbH [8]. In [7], the
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structure of a teleoperated vehicle system is described. During vehicle teleoper-
ation, the control signals of the teledriver such as steering input, throttle and
brake pedal positions are transmitted to the vehicle control unit (VCU) over the
internet and thus the signal transmission is delayed. To provide the teledriver
with appropriate visual and acoustic feedback, the teleoperated vehicle has to
be equipped with cameras and speakers. Likewise, there is a time delay to reach
the telestation. In Fig. 1, the schematic structure of the telestation and the tele-
operated vehicle is illustrated.

Fig. 1. Teleoperated vehicle system based on [7]

Despite the high potential of the concept of teleoperated vehicles, an inves-
tigation into the dynamics and the stability of the vehicle-teledriver system
remains absent in the current literature to the best of the author’s knowl-
edge. This paper studies the influence of the communication time delay and
the reduced perception of the teledriver on the vehicle-teledriver system. Fur-
thermore, a torque emulation concept is introduced that considers the telestation
signals and the vehicle states to improve the teledriver’s haptic perception and
the ease of control of the teleoperated vehicle [3].

2 Vehicle-Teledriver System

In this section, the vehicle-teledriver system is derived from the conventional
vehicle-driver system. As described in [5], the vehicle-driver system consists of
the vehicle model GV eh(s) = yCG(s)

δsw(s) , the driver model Dr(s) = δsw(s)
Δy(s) and a

prediction transfer function Pr(s) = y(s)
yCG(s) . The steering wheel angle is δsw, yCG

is the current lateral position of the vehicle, y is the predicted lateral position
and Δy is the deviation between the predicted position and the lateral position
reference in the local road frame. Firstly, the parameter set of the driver model
Dr(s) is derived for conventional driving based on [5] and [3].

When the driver is physically not present in the vehicle, the communication
between the driver and the vehicle takes place via the internet. The teledriver
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inputs are transmitted to the vehicle with a communication delay. The vehicle’s
output and the visual information are transmitted to the driver with a commu-
nication delay as well. Therefore, the delay transfer function GCom(s) = e−TCs

is added. The resulting closed-loop vehicle-teledriver system is shown in Fig. 2.
For the purposes of this investigation, the communication time delay is assumed
to be constant TC = 0.04 s. The stability of the closed-loop system is evaluated
based on the Nyquist stability criterion. The open-loop transfer function is

Go,TS(s) = Dr(s) GCom(s) GV eh(s) GCom(s) Pr(s). (1)

Fig. 2. Block diagram of the vehicle-teledriver system

As shown in Table 1, the phase margin ϕR decreases with increasing time
delay until it reaches a negative value. That demonstrates that the closed-loop
motion can leave the stable regime due to communication delay. The crossover
frequency ωc = 0.285 Hz does not change with varying communication delay.

Table 1. Influence of the time delay on the system stability

TC 0 s 0.04 s 0.08 s 0.12 s 0.16 s

ϕR 30.00◦ 21.80◦ 13.59◦ 5.39◦ −2.82◦

Now, it is assumed that the human operator is able to adapt to the situa-
tion of driving a vehicle remotely, based on experience. Therefore, it is further
assumed that the teledriver is trained to operate the vehicle at a certain speed,
e.g. vx = 30 km/h, and with a communication delay TC = 0.04 s. The parame-
ters of the teledriver model are derived accordingly for this speed. In Table 2, the
crossover frequency and phase margin of the closed-loop system are given. As the
vehicle velocity is changing, but the teledriver does not adapt due to the reduced
perception of speed, it can be seen that the crossover frequency shifts to higher
values and the phase margin decreases with increasing velocity, until the phase
margin is negative. This results from the non-minimum phase behaviour which
becomes more dominant at higher frequencies. The closed-loop motion with the
teledriver leaves the stable regime at 45 km/h due to the reduced perception.
This phenomenon can also be observed with teledrivers in real application.
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Table 2. Influence of the reduced perception on the system stability

vx 30 km/h 35 km/h 40 km/h 45 km/h

ϕR 30.00◦ 21.14◦ 10.60◦ −0.62◦

ωc 0.285 Hz 0.355 Hz 0.424 Hz 0.490 Hz

In conclusion, a teledriver can steer the vehicle in a stable fashion despite
the time delay. However, if the teledriver’s perception of the changing speed is
reduced, the vehicle motion can become unstable. There might be teledrivers
who are able to adapt themselves to different speeds, but the motion could still
become unstable due to the communication time delay. To increase the stability
of the teleoperated vehicle-teledriver system, a phase-boosting element, such as
lead-steering as proposed in [4], could be introduced, which is however beyond
the scope of this paper. Alternatively, a steering wheel torque emulation could
also be helpful for the driver to better adapt to changing speed.

3 Torque Emulation

In literature, there are many concepts to emulate the feedback torque at the
steering wheel. However, most of them require a profound knowledge of the
steering system parameters. In the scope of this study, a tunable torque emu-
lation concept is introduced and implemented in a teledriving simulator and a
real telestation. Since there are no physical links between the telestation steering
system and the vehicle steering system, the feedback torque can be generated
freely. The torque emulation concept has a modular structure that can be tuned
as described in [3]. The emulated torque considers the telestation steering wheel
angle δsw,TS , telestation steering wheel rate δ̇sw,TS , lateral acceleration ay and
the yaw rate r of the vehicle. A spring torque is calculated based on the steering
wheel angle and a damping torque based on the steering wheel rate. The lateral
acceleration and the yaw rate based torques are used to provide the teledriver
with information of the vehicle motion. Each torque component Ti is evaluated
with a two-dimensional characteristic curve that considers the longitudinal veloc-
ity vx and the corresponding signal. The characteristic curves are generated with
the hyperbolic tangent function as described in [1]. The maximum value and the
slope around the origin are varied with the parameters Ai(vx) and ξi(vx). The
variable χ and the index i describe the individual signal to generate the torque
component (χ = i = δsw,TS , δ̇sw,TS , ay, r)

Ti = Ai(vx) tanh(ξi(vx) · χ). (2)

For test purposes, a slalom is build up in a teledriving simulator. In Fig. 3, the
view of a telestation is shown. The tests at the real telestation can be found in
[3].
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Fig. 3. Telestation with operator in real environment [8]

The reaction of a teledriver with little teledriving experience is tested with
different torque contributions. For this study, the results with no torque emu-
lation (mode 0) are compared with two different torque emulation modes. The
investigated torque emulation mode 5 only includes the spring and damping
torque. Whereas mode 9 considers all four torque components. In the left
graph of Fig. 4, the trajectories with the different torque emulation modes at
vx = 30 km/h are illustrated. In comparison to mode 0, where no feedback
torque is applied, the driver successfully navigates through the slalom with the
assistance of the feedback torque. Moreover, the amplitudes are reduced with a
feedback torque at the steering wheel. However, in mode 5 the driver leaves the
track after passing the exit gate of the slalom. In contrast, in mode 9 the driver
finishes the slalom without touching any cones and not coming off the track.
Additionally, the driver manages to steer the vehicle with a slightly smaller
amplitude than in mode 5. The steering inputs of the driver and the correspond-
ing vehicle states with different torque emulation modes are compared in the
right graph of Fig. 4. With the feedback torque at the steering wheel, the driver
steers less than without a feedback torque. Furthermore, in mode 9 the driver
reacts earlier passing the cones than in mode 5 or mode 0. Additionally, the

Fig. 4. Trajectory with different torque emulation modes at vx = 30 km/h (left); Steer-
ing inputs and vehicle states with different torque emulation modes (right)
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steering wheel angle rate is lower in torque emulation mode 5 and 9 than with
mode 0. Due to the lower steering wheel angle input in modes 5 and 9, the
lateral acceleration and the yaw rate are also lower. The tuning parameters of
mode 5 are chosen such that the spring torque has the greatest contribution.
This steering wheel angle based torque may give the driver the feeling of hav-
ing an immediate response, but the information of the vehicle’s response is not
provided. In mode 9 the contribution of the spring torque is smaller, but there
are additional torque components such as the lateral acceleration and the yaw
rate based torque. The torque emulation component was also introduced to a
real telestation. The tests in the real system show that torque emulation assists
the steering of a teleoperated vehicle and improves the teledriver’s perception
of speed and the road, which is helpful when performing the slalom manoeuvre
from simulation in a real environment [3].

4 Conclusion

This study shows from a theoretical perspective how the teleoperation of a vehi-
cle differs from driving a normal vehicle. In general, the teledriver has to cope
with the influences of the varying time delay and the reduced perception. The
combination of these two impacts makes the teleoperation of a vehicle more
challenging than conventional driving. To increase the driver’s perception and
the ease of control of a vehicle, a basic and tunable torque emulation concept
is introduced, that considers the steering wheel angle, steering wheel rate, lat-
eral acceleration and the yaw rate. Due to the simple structure, it is possible to
run the torque emulation component in real-time on a simulator and the real
telestation.

A teledriving simulator for testing the driving behaviour in a safe environ-
ment is used. The tests at the teledriving simulator demonstrate that a non
trained teledriver may have difficulties driving without any torque feedback.
Generally, the absence of feedback torque gives drivers an unusual light feel-
ing. That leads to heavy steering due to the reduced perception. It could be
demonstrated that the motion gets unstable whenever big steering wheel angle
inputs are applied in combination with a high steering wheel angle rate. In this
case, the driver tries to steer more due to the delayed reaction of the vehicle.
Furthermore, it became clear that it is beneficiary to have a component in the
teleoperated vehicle-teledriver system that boosts the phase of the open-loop
system and therefore ensures the stability of the closed-loop system. For fur-
ther investigations the torque emulation component could be integrated into the
system model to investigate its influence on stability.
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Abstract. Redundancies provide essential fail-operationality and are
commonly utilized in design of Steer-by-Wire systems. Operationality
of steering rack actuators can therefore be increased using differential
braking as additional redundancy level. Research in this field has shown
boundaries for lateral control to be mitigated compared to conventional
steering systems. This paper focuses on performance increases by drive-
line torque and stability control, both yielding effects of combined lon-
gitudinal and lateral tire slip during cornering.

Coping with the tradeoff between under- and oversteer whilst increas-
ing performance was the major aim during controller design. For vehicle
prototype testing a model following control scheme for differential brak-
ing was derived and implemented. Measurements on a low friction prov-
ing ground in suitable driving maneuvers were carried out subsequently.
The results show new boundaries of vehicle dynamics and address vari-
ations of steering kinematics parameters as well as driveline configura-
tions. Investigated interactions of longitudinal and lateral tire slip in
the field of differential braking brings up promising potential to increase
cornering ability in the fallback level for steering rack actuators.

Keywords: Steer-by-Wire · Differential Braking · Vehicle Dynamics

1 Introduction

Recent legislation has released further development of Steer-by-Wire systems
[7]. Published standards describe supplementary redundancies in steering sys-
tems with limited performance [2] as optional design method. Implementation
of differential braking has therefore been topic of several research in the past.
Jonasson [6], Gauger [3], Sharma [10] and our recent work investigated limits
regarding driving dynamics in steady-state conditions [9]. Maximum curvature
depends on maximum feasible brake forces due to road wheel friction.

The constraint of differential braking in terms of Steer-by-Wire can be equiv-
alent to understeer since desired yaw rate would not be achieved. We are demon-
strating theoretically and practically how understeer can be reduced. Therefore
c© The Author(s) 2024
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overlaying drive torque and increased longitudinal slip was used to change the
vehicle’s driving behavior.

A stability controller within a model following control scheme was imple-
mented. As a result we were able to show the impact of longitudinal slip and
drive torque on the vehicle’s driving behavior in practical application. To achieve
greater magnitudes of yaw rate, increasing side slip was necessary. This can the-
oretically be considered as oversteer, but might be compensated due to vehicle
free steer behavior and active countermeasures.

The results show increases in potential for lateral control using effects of
combined slip. Variations in driveline configurations and steering kinematics give
an outlook towards further vehicle applications. These findings extend previous
research.

2 Vehicle Dynamics

Differential braking differs from conventional front axle steering regarding con-
trol input and front wheel steering system behavior. Literature [4,6,9] has
described single track models where the front wheel steering angle is treated
as an additional degree of freedom. Figure 1 shows the model considered within
this paper. (a) is an extended single track model with differential brake forces
[6]. (b) shows the steering model to describe mechanics of the vehicle’s free
steer behavior. The model was parametrized by test bench measurements with
the test vehicles steering system. Phenomena of combined tire slip are modeled
through a coupled brush tire model according to Pacejka [8] by Eq. (1). Its out-
put vector F effectively describes the resulting forces Fx and Fy depending on
the combination of theoretical slip quantities σx and σy.

Fig. 1. (a) Vehicle Model [6] (b) Steering Model
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F = σ
F

σ
(1)

Yielded vehicle model behavior is nonlinear due to steering system friction and
tire behavior. Therefore the phase plane method can describe system dynamics
as practiced by Bobier-Tiu [1] to describe differential braking control. Figure 2
shows side slip and yaw rate (β− ψ̇) phase portraits with free steering as a result
of approximate differential brake forces Fb,fl/rl on front and rear axle.

Fig. 2. Nonlinear behavior represented by phase portraits for differential brake forces
at v0 = 20 m/s and μ = 0.3

The system reaches a steady state for all three variants. It has fewer yaw
rate but is more stable at higher velocities than the same system would with
steering angle fixed to zero. Greater dynamics can be achieved using two different
methods. On the one hand, differential brake forces Fb,fl/rl can be increased by
overlaying drive torque. Rear axle understeer interventions can be utilized to
increase yaw rate on the other hand. They cause the vehicle to turn into the
corner by transiently increasing side slip angles on front and rear axle. Both
options yield potential oversteer and the necessity of equivalent countermeasures.

3 Controller Design

We implemented a model following controller in a vehicle with rapid prototyping
platform to investigate performance improvement. Figure 3 shows the scheme.
It comprises a reference model, feedforward block, a slip controller and stability
controller as well. The stability controller in this scheme can bypass the slip
controller with an additional brake input disregarding the separate anti-lock
functionality of the slip controller. The controller prevents under- and oversteer
depending on the driving state.

The feedforward block computes necessary brake inputs by the reference
model’s desired yaw rate ψ̇ and takes into account vehicle longitudinal speed
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Fig. 3. Control concept for differential braking as steering backup with stability control.
Inputs uC : Driver steering wheel angle δSW , longitudinal velocity vx, yaw rate ψ̇.
Outputs uV : Brake pressures pb1...4

vx and steering wheel angle δSW . The steering angle resulting from the rack
position xRack is not considered as an input in the control algorithm. Sensor
data for the rack position might not be available in the considered use case of
differential braking.

The control scheme is used to determine the possible performance increase
by understeer interventions yielding greater magnitudes of tire slip. Triggering
drive torque ovelay is not shown.

4 Vehicle Testing and Performance Evaluation

Differential braking’s limit is primarily understeer, therefore the main goal was
to determine the performance increase with understeer countermeasures on the
rear axle. Since it is also able to impact stability and maximum yaw moment,
a variant with drive torque overlay was tested as well. The maneuver “slowly
increasing steering-wheel angle” from straight line driving according to ISO 4138
[5] was chosen for performance evaluation regarding circular driving behavior. To
determine the effectiveness of understeer countermeasures, the tests were carried
out in a modified prototype vehicle on a snow-covered driving dynamics surface
with low friction. Vehicle behavior for conventional steering was measured as
a reference and compared to the results of differential braking with positive
scrub radius in three variants. The results with feedforward differential braking
were compared to adding the stability controller and drive torque. To eliminate
the impact of the positive scrub radius, the test sequence was repeated only
applying brake and drive forces on the rear axle to analyze an equivalent vehicle
with negative scrub radius. Initial vehicle speed was 20 m/s.

Figure 4 shows the results. Thereby steering-wheel and side slip angle are
shared over lateral acceleration for both sequences and corresponding measure-
ments. For each case, three measurement series have been examined to ensure
statistical validity. Steering by feedforward differential braking shows to lead to
expected understeer behavior for the front and rear axle braking as well as rear
axle only. For both test sequences, understeer interventions through the sta-
bility controller and drive torque overlay increased feasible lateral acceleration
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compromising slip angle β. Shown driving behavior can further be adjusted by
controller design.

Fig. 4. Slowly increasing steering-wheel angle according to [5] at v0 = 20 m/s

Results again show strong dependency of differential braking on road wheel
friction and scrub radius. Analyzing effects of combined slip indicates novel
improvements towards feasible lateral acceleration during low friction tests.
Drive torque overlay has also shown promising results towards feasible vehi-
cle dynamics. The downside of drive torque overlay was the negative effect on
driving stability and that vehicle speed was reduced less to decrease accident
severities regarding the steering failure. Another challenge is the impact of the
front axle’s free steering behavior.

5 Outlook and Summary

This paper shows earlier derived limits of lateral control for differential braking to
be extendable by effects of combined slip. We focussed on maximum lateral vehi-
cle dynamics regarding circular driving behavior. Measurements for two vehicle
variants have shown expectable different results in the linear region. Achieved
vehicle reactions using greater magnitudes of longitudinal slip were comparable
for both setups.

Feasible yaw moment was increased overlaying drive torque at both axles
and analyzed in the same driving maneuver. The result in real vehicle tests
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was a performance increase as well as a tendency to oversteer, which yields the
necessity for a stability controller as well.

Considering potential increase in vehicle dynamics as a chance and the risk of
oversteer as a fact of differential braking, a stability controller seems essential for
full use of differential braking’s capabilities as backup steering. Further testing
has to be carried out in real world and virtual development for implementation.
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Abstract. Identification of tyre grip is crucial for ensuring safety and
performance. To develop new tyres matching the requirements for grip,
extensive testing is required both indoor and outdoor, which is time-
consuming and costly. Therefore, the possibility to assess their perfor-
mance in laboratory before manufacturing a full tyre appears very attrac-
tive. On this purpose, the present paper compares the peak of the friction
coefficient, evaluated using a Laboratory Abrasion Tester (LAT100) on
two compounds and the grip assessed through MTS Flat-Trac machine
tests on two full tyres having the same structure and made of the com-
pounds tested on the LAT100. An ad hoc procedure for driving the test
on the LAT100 and make them comparable with the full-tyre data was
developed. A good correlation was found for the dependency of the fric-
tion coefficient on temperature and load, highlighting the possibility of
using LAT100 tests to gain information about tyre performance, before
the manufacturing of the full tyre.

Keywords: Grip · Cornering Stiffness · VMI LAT100 · MTS Flat-Trac

1 Introduction

Tyre grip is crucial for evaluating vehicle handling performance and design effec-
tive vehicle dynamics controllers, such as ABS and ESP. Assessing tyre grip in
the early stage of its design is therefore of utter importance in the tyre develop-
ment. Under this point of view, the possibility to assess tyre performance using
laboratory tests on compound samples before manufacturing a full tyre appears
very attractive. The present paper considers tests carried out on a Laboratory
Abrasion Tester (LAT100) on two compound samples (referred as “CompoundA”
and “CompoundB”) and Lateral Steady State test performed on MTS Flat-Trac.
The CompoundB is a more performing compound than the CompoundA and so
it experciences higher value of grip and cornering stiffness.

The LAT100 machine consists of a spinning disc on which a solid rubber test
wheel (Grosch wheel) is pressed under a normal load Fz at a slip angle. The
tangential velocity of the sample wheel is induced by the disc angular velocity.
c© The Author(s) 2024
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The traveling speed, slip angle, and load can be varied over a wide range. The
average slip velocity in the contact area is created by combining the angular
velocity and slip angle [1]. Although the machine was originally designed to
assess the abrasion loss of the test wheel according with different experimental
test conditions, the objective of this study is to verify if it can also be used
to assess its grip by performing tests similar to ones carried out on the MTS
Flat-Trac machine on a full tyre.

2 Methodology

As mentioned earlier, the present research investigates the possibility of using
the LAT100 machine to measure friction coefficient as a function of load and
temperature and assess possible correlations between these measurements and
their counterparts on full tyre grip measured on MTS Flat-Trac. On this purpose,
an ad hoc procedure was developed for testing compound samples, in the form
of a solid wheel, in steady-state cornering conditions. The idea is to replicate on
the LAT100 machine tests similar to the ones performed on the MTS Flat-Trac
machine on a full tyre, so to compare the outputs. Specifically, two compounds
were tested in the LAT100 machine. Tests on the MTS Flat-Trac machine were
carried out with two full tyres, having an identical structure, but with the tread
made of the two compounds tested on the LAT100.

2.1 MTS Flat-Trac Tests

Only steady-state cornering tests are considered in this work since these condi-
tions are replicable on the LAT100. These tests are performed applying a trian-
gular wave slip angle input at constant vertical load. The test is then repeated
by varying the vertical load. Figure 1 shows on the left the cornering (or lateral)
force (Fy) vs. the slip angle (α) curve obtained during tests carried considering
three different vertical loads: the blue curve refers to the nominal load, the red
curve to the 65% of the nominal load and the yellow curve to the 125% of the
nominal load. Data are reported in a non-dimensional form for industrial privacy
reasons: the cornering force is made non-dimensional by the vertical load applied
during the test, while the slip angle is made non-dimensional by maximum slip
angle imposed during the test. From these tests, the following information can
easily be obtained:

– tyre grip: the peak cornering force divided by the vertical load imposed during
the test;

– cornering stiffness: the slope of the lateral force curve near the origin (α =
±0.5 deg);

– the nonlinear dependency of the tyre grip on the vertical load.
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2.2 LAT100 Tests

Similarly to the MTS Flat-Trac tests, the procedure involves the application of a
triangular repeated slip angle time history profile to the test wheel. In particular,
LAT100 tests are performed by placing the test wheel on the actuator (right side)
and then repeated with the specimen flipped, i.e. by rotating the specimen 180◦

with respect to its vertical axis (left side). In fact, since the testing surface is
a rotating disc, the velocity profile is not uniform in the contact patch, thus
by repeating the test on both sides, the non-uniform speeds distribution, and
the consequent conicity effects on the specimen, should be compensated [2]. An
example of the results obtained on the LAT100 machine are shown on the right
of Fig. 1, which reports the cornering force vs. the slip angle for three different
vertical loads: the nominal load (blue), the 75% of the nominal vertical load (red)
and the 125% of the nominal load. The same non-dimensional form used for the
MTS Flat-Trac data (left of Fig. 1) is used. The influence of the disc speed,
the maximum slip angle, the slip angle rate, the powder sprayed on the contact
patch and test duration was investigated during the research. Parameters were
tuned in order to improve the matching with the MTS Flat-trac data. Results
are shown in the next section in terms of grip and cornering stiffness and their
dependence on vertical load and test temperature.

Fig. 1. Lateral force vs SSA on MTS Flat-Trac (left) and LAT100 (right)

3 Results

In this section, the comparison between LAT100 and MTS Flat-Trac data is
reported. From Fig. 2 and 3 is possible to appreciate the similarities and the
differences between the grip (Ed. Note: for simplicity of comparison, we will use
the not entirely appropriate term “grip” for the LAT100 wheel as well, aware
that the more suitable term would be “coefficient of friction”) and the corner-
ing stiffness as a function of the vertical load evaluated on MTS Flat-Trac and
LAT100. Data are reported in a normalized form for industrial privacy reasons,
in particular the vertical load is normalized on the nominal one and the tempera-
ture range on the central value of the test (same for MTS Flat-Trac and LAT100
data). Consequentially, each key performance indicator (KPI) is normalized on
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the corresponding “nominal value”. LAT100 data were compared with MTS
Flat-Trac data to assess the correlation in terms of grip (maximum of the nor-
malized lateral force with respect to the side slip angle) and cornering stiffness
(slope of the lateral force trend for null side slip angle). Each graph shows the
same scales between MTS Flat-Trac and LAT100 data for grip and temperature
representation but different ones for what concern cornering stiffness and loads,
since the two machines work at very different loads.

As expected considering the characteristics of the two compounds, grip and
cornering stiffness of CompoundB are larger than the ones of CompoundA at
each tested vertical load. This ranking is confirmed both by MTS Flat-Trac and
LAT100 data. As it can be seen the trend of the grip with the vertical load is
well correlated in MTS Flat-Trac and LAT100 tests. Indeed, tyre grip is mainly
influenced by tread compound characteristics. Viceversa, the trend of the cor-
nering stiffness on the vertical load differs between MTS Flta-Trac and LAT100
data. For what concerns the cornering stiffness, in fact, the tyre structure (not
present in the Grosch Wheel) plays a crucial role. The tyre cornering stiffness is
actually given by two contributions: tread and belt/sidewall stiffness. Obviously,
the Grosch Wheel’s cornering stiffness is instead determined only by the tread
contribution. The influence of temperature was also investigated.

Fig. 2. Grip vs load on MTS Flat-Trac (left) and LAT100 (right)

Fig. 3. Cornering Stiffness vs load on MTS Flat-Trac (left) and LAT100 (right)

Figures 4 and 5 respectively show the trend of the grip and the cornering
stiffness vs. the tread temperature during the tests carried out on the MTS
Flat-Trac and the LAT100 for the CompoundB.
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Fig. 4. Grip and Cornering Stiffness vs temperature for the CompoundB on MTS
Flat-Trac

Fig. 5. Grip and Cornering Stiffness vs temperature for the CompoundB on LAT100

A good correlation between MTS Flat-Trac and LAT100 data can be seen
for the dependency of the grip on the temperature for all the tested loads. For
what concerns the cornering stiffness, unless the trend with temperature and
load is captured, more remarkable differences can be noticed: the effect of the
load is more evident on the MTS Flat-Trac, while the effect of temperature is
higher on the LAT100, where it is possible to observe that the temperature range
is bigger than the MTS Flat-Trac one, since the first acquisition is at a lower
temperature with respect to the MTS Flat-Trac tests: a more severe “Run-In”
has to be implemented in order to obtain a preconditioning similar to MTS
Flat-Trac tests, matching the entire temperature range.

Figure 6 compares the trend of grip vs. the tread temperature for
CompoundA and CompoundB during the tests carried out on the MTS Flat-
Trac and the LAT100 at the nominal load. As already noticed, the trend for
CompoundB both for grip and cornering stiffness is in good agreement between
MTS Flat-Trac and LAT100 data, instead the CompoundA shows a less tem-
perature dependent behavior on LAT100 than on MTS Flat-Trac.
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Fig. 6. Grip vs temperature comparison for MTS Flat-Trac (left) and LAT100 (right)

4 Conclusions

The objective of this work was to evaluate the effect of different compounds
on tyre grip and cornering stiffness through indoor tests at the LAT100 and
correlate obtained results with full tyre data collected on a Flat Track machine.
The developed procedure offered the opportunity to assess the behavior of two
test wheels made of different compounds (CompoundA and CompoundB) as
function of the normal load and temperature, performing tests similar to the
ones carried out on the real tyre on the MTS Flat-Trac. The results of the
LAT100 tests align qualitatively with those obtained from the MTS Flat-Trac
tests. While the overall trends of the key performance indicators (KPIs) remain
consistent, there is a scaling effect due to the substantial difference between the
experimental subjects (Grosch wheel and pneumatic tyre) and the two machines.

In particular, a qualitative correlation between LAT100 and MTS Flat-Trac
exists for the grip against the load for both the CompoundA and CompoundB.
On the other hand, the trends of the grip against the temperature only finds a
correlation for the CompoundB. The behavior of the CompoundA in fact tends
to remains almost constant over all the temperature range.

Regarding the cornering stiffness, instead, a qualitative correlation against
load and temperature holds for both the compounds.

Although the complexity of the mechanics involved precludes an immediate
quantitative correlation, a finite element simulation approach generally allows for
the incorporation of structural and geometrical differences between the Grosch
wheel and the tyre during validation. This enables the prediction of the tyre grip
using the coefficient of friction measured in the laboratory.
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Abstract. Wear is becoming a topic of major attention for tyres, affect-
ing also other performances. Therefore, its estimation is of utter impor-
tance under several points of view, such as predictive maintenance and
vehicle dynamics controllers. Indoor testing is emerging as an alterna-
tive way for predicting wear compared to on-road outdoor tests, which
nowadays represent the standard methodology. Indoor tests, in fact, are
performed in a more controllable environment, reducing testing time and
costs. However, several challenges must be faced to reproduce indoor the
same wear rate/shape obtained in real on-road working conditions. The
present paper focuses one of the critical aspects for indoor testing: the
definition of the load cycle to be applied to a tyre, i.e. the time history of
forces, slip and angles to be provided as an input to the wear machine.
Specifically, a clustering approach able to extract from outdoor data a
limited set of manoeuvres representative of a given outdoor wear track
is proposed.

Keywords: Tyre Wear · Indoor Testing · Clustering · Vehicle
Dynamics

1 Introduction

Nowadays, the standard process to assess the wear performance of a tyre involves
outdoor tests, during which a convoy of vehicles travels along predefined road
courses. Although well consolidated, this testing methodology has several limi-
tations: long duration, high costs and subjected to uncontrollable variables such
road conditions, weather and traffic; nonetheless, it is responsible for environ-
mental pollution. Indoor wear testing is emerging as a viable alternative to road
testing, with the advantage of being performed in an environment where bound-
ary conditions are controlled and with the possibility of rigorous monitoring of
key performance indicators. In addition to that, the development of an indoor
methodology can enhance the understanding of the underlying mechanisms to
wear phenomena; similarly, smart systems for monitoring tyre conditions could
undoubtedly benefit from data of indoor testing process. Nevertheless, to drive
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indoor tests that are representative of on-road conditions, several issues must be
addressed: a) definition of the machine-input time histories of forces, slip ratio,
inclination angle and speed able to reproduce the wear induced by a given track
and vehicle combination; b) identification of indoor testing conditions such as
abrasiveness of sandpaper.

This paper focuses on the first aspect, aiming to identify the manoeuvres
to be performed on the indoor testing machine in order to replicate the wear
rate/shape achieved outdoor. Telemetry data acquired on outdoor sessions are
processed and clustered in terms of accelerations and speed, with the aim of
extrapolating from the whole time history a reduced number of significant con-
ditions, which can be representative of the full outdoor wear session.

2 Objective and Methodology

The indoor wear machine considered for this study is a new facility by ZF (Fig. 1),
composed of two testing stations and a 3 m diameter drum with a width of
600 mm, actuated by an AC electric motor. The tyres, mounted on the rim, are
fixed to a load carriage that features four degrees of freedom: the three rotations,
and the axial translation with respect to the drum. The machine is able to
provide radial and lateral forces, driving and braking torque and camber angle to
the wheel. Each testing station has a powder feeding system to prevent gumming
of the drum surface, typically covered in abrasive sandpaper; in addition, a laser
monitors the tread wear evolution during the test.

Fig. 1. ZF indoor wear tester

The wear machine input file required to run a wear test is typically derived
from telemetry data acquired during outdoor testing campaigns. The main steps
in the generation of the input file to the wear machine (Drive-File), which include
the time history of forces, speed, angles and slips to apply to the tyre, are:
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1. Processing of acquired outdoor data: the data coming from outdoor
sessions are processed through a properly designed routine, with the aim of
removing outliers and filter unwanted disturbances.

2. Clustering: accelerations and speed time histories are clustered in order to
extrapolate from the whole dataset a reduced number of significant manoeu-
vres, able to describe the chosen outdoor wear course. This is a key step when
building the indoor wear machine input since it allows to rationalize and sim-
plify a complex time history in a reduced set of manoeuvres with increased
control and insight capability; same procedure could be applied for virtual
track replicas via FEA simulations as well. The description of the procedure
followed in this work will be addressed later on.

3. manoeuvres simulation and Drive-File composition: the representative
manoeuvres obtained by means of clustering contain only kinematics infor-
mation about the global motion of the vehicle, i.e. speed and accelerations
in the CoG. These data must be simulated by means of an inverse dynamics
model, in order to obtain forces, torques and inclination angles acting on each
car corner. During typical outdoor wear courses, the vehicle experiences soft
handling manoeuvres with accelerations up to 0.5 g, in which the behaviour
of the car can be assumed as linear; this enables a validated dynamics model
that accounts for some simplification to be chosen. This vehicle dynamics
model has been validated by comparing its output to those obtained either
via VI-Grade CarRealTime or directly to outdoor data. After the vehicle
dynamics simulation phase, the significant manoeuvres are re-arranged to
build a suitable Drive-File for the indoor test.

The present paper focuses on the clustering process, which is crucial in the
Drive-File definition.

Indeed, the proposed procedure (Fig. 2) is not the only one when dealing
with indoor tyre testing. A similar approach was described in [1], but with no
specific mention to clustering. Another viable procedure consists of defining a set
of standardised manoeuvres by default. These do not represent any real course,
but are able to summarise the typical working conditions of a tyre. Alternatively,
the indoor load history can be derived from direct measurements on the car
wheels [2].

Fig. 2. Drive-File generation workflow
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3 Clustering

Clustering is a crucial step in the generation of the input file for the indoor
wear machine. This procedure allows to reduce the number of conditions to be
replicated from the thousands of samples acquired outdoor to few significant
manoeuvres, able to fully reproduce a complete wear course.

The extrapolation of such manoeuvres has to combine two different princi-
ples. In fact, the number of conditions to be replicated indoor must be sufficient
to avoid the loss of significant information from the original acquisition. At the
same time, it has to include the fewest manoeuvres possible, in order to keep
the test simple and not over-complicated. In this work, a statistical clustering
procedure has been adopted. The k - medoids data mining algorithm is used to
achieve a reduction in the number of conditions from the thousands of samples
acquired outdoor to few hundreds of manoeuvres, based on vehicle longitudinal
and lateral acceleration (ax, ay), speed (v) and travelled distance. The resulting
set of conditions can be effectively visualised in Fig. 3. It is a bubble plot in
which each point represents a cluster center defined by longitudinal and lateral
accelerations and speed. The size of the bubbles identifies the time spent in each
condition. A cluster identified by a larger dot is highly representative of the
outdoor acquisition, therefore a longer time must be spent in such manoeuvre.

Fig. 3. Bubble plot of clustered manoeuvres. The size of each point refers to the time
spent in a certain condition, i.e. the frequency of occurrence of such manoeuvre. The
colors refer to the speed level.

As said, the choice of the number of cluster (i.e. manoeuvres) is not trivial. In
this work, a sensitivity analysis to clusters number has been performed through
FEA with a model defined on a chosen tyre specification and on a selected wear
route. The aim was to find the minimum manoeuvres number providing a suf-
ficient fidelity level to the original course. To do that, the energy dissipated on
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each tyre groove in the contact patch was computed after the clustering pro-
cedure. Then, that values compared to those obtained with the full outdoor
acquisition. The acceptance threshold was set to ± 5% of relative percentage
error. Figure 4 shows the trend of such error on dissipated energy for each tyre
groove. As can be evinced, about 150 clusters are sufficient to achieve an error
within the imposed threshold. Increasing the manoeuvres number even more,
such discrepancy tends to zero, while in case of decreasing them an accuracy
reduction can be assessed anyhow. Nevertheless, choosing larger sets of condi-
tions (for instance 600) would not be beneficial since leading to over complicated
indoor tests. Same considerations would apply if same approach were used for
virtual track replica by means of FE analyses.

This sensitivity analysis, here only briefly reported, showed that this cluster-
ing approach is able to fulfil the previously mentioned requirements: adequate
similarity to the unclustered time history of speed and accelerations by using a
small number of extrapolated conditions. Extensions to multiple cases confirmed
the considerations hereby reported.

Fig. 4. Relative percentage error on dissipated energy computed with respect to the
full outdoor acquisition, as function of increasing clusters number. Each line refers to
a single tyre groove (GRV).

4 Results and Conclusions

In this section, results of indoor and outdoor tests are compared. The indoor test
was driven by an input file obtained using the proposed clustering approach. The
correlation between outdoor and indoor tests was assessed comparing the weight
loss rate [mg/km], the abrasion rate [mm/1000 km] and wear shape.

Figure 5 shows the wear profile evolution (tread height vs. tread width) over
travelled distance both for indoor and outdoor test (data are presented in a non-
dimensional way for industrial privacy reasons). As it can be seen, the indoor
tests result to be an accelerated version of the outdoor ones: a comparable wear
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Fig. 5. Wear profile indoor vs outdoor

amount can be reached in around half travelled distance. This aspect is primarily
related to the higher abrasiveness of the sandpaper used for indoor testing.
Compared to road asphalt, it exhibits higher levels of micro-roughness and lower
of macro-roughness. This can be considered as beneficial, since indoor tests take
shorter time than outdoor ones. Coming to the wear profiles, a good agreement
between indoor and outdoor can be appreciated. Main differences are concerned
with a higher material loss on the inner shoulder, which is likely to be induced by
the different tyre footprint on a curved surface compared to a flat road and the
difference between the kinematics of vehicle suspension and the wear machine
load carriage.

Concluding, the main results obtained in this work are related to the imple-
mentation of a validated clustering procedure. This is able to extract from large
dataset only few significant manoeuvres, helping in saving time and resources
both in FEA and experimental tests. Then, concerning the latter, the indoor
procedure exhibited a larger wear rate compared to the outdoor one. As said,
this was expected and can be attributed to the different abrasiveness of the two
contact surfaces. Also the wear shape obtained indoor showed good similarities
to that outdoor.
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Abstract. Backing up a trailer can be a daunting task, even for expe-
rienced drivers. The main challenge being the unstable property of
car-trailer kinematics when reversing. With steer-by-wire systems, the
mechanical connection between the steering wheel and the road wheels
is replaced by an electrical connection. This means that road wheels no
longer have to be directly connected to the steering wheel input. The aim
of this paper is to help the driver to steer the trailer directly by stabilising
the car-trailer kinematics during reversal. This is achieved by developing
a steer-by-wire system coupled with a closed-loop trailer reversal con-
trol using the necessary feedback. How to obtain this feedback is further
investigated in this paper as well as how to use the steering wheel input
and torque feedback to interact with the backup assist function. The
developed control and user interaction is subjectively and objectively
evaluated using computer simulation and a physical prototype of a vehi-
cle equipped with steer-by-wire.

The results from the simulation experiments demonstrate that drivers
with and without experience of driving a trailer can do the wanted
manoeuvres with higher accuracy as well as within a short time span
with the controller that is developed in this work. The results from the
real life experiments also appears to indicate that the system can remove
stress from the driver and move the trailer in an accurate way during a
parking manoeuvre.

Keywords: Steer-by-Wire · Trailer · Backup Assist

1 Introduction

There are many benefits with the introduction of steer-by-wire into vehicles.
There are both economic and functional reasons for this introduction, examples
of economic reasons can be, fewer modifications for left- or right-hand driven
vehicles, simpler axle geometry as seen in Fig. 1, and weight/space reduction.
The main functional reason for steer-by-wire is the possibility of having a steering
ratio that changes with speed, surface, etc. [1].
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Reversing with a trailer is known to be a difficult manoeuvre and a lot of
experience is needed for being able to do it in a good and accurate way. The
main challenge lies in that the system is unstable during reversal. If you drive
the car-trailer system in a straight line, sooner or later the trailer angle will
diverge unless stabilised by the driver. It is also challenging from the drivers
perspective since the trailer will initially move in the opposite direction of the
drivers steering input due to offset between tow hitch and the rear axle of the
vehicle [2].

The system developed in this project will be different to a traditional “non-
steer-by-wire” car since it takes the input from the driver of what the desired
car-trailer angle should be instead of what the wheel angle should be. While
this manoeuvre could also be achieved in a traditional car without steer-by-
wire, there are drawbacks, as noted in [3]. The primary challenge lies in the
difficulty for the driver to translate their desired trailer movements through the
steering wheel, which is mechanically linked to the wheels. Consequently, the
steering wheel must constantly mirror the wheel angles, necessitating the use
of alternative mechanisms, such as a knob, for the driver to specify the desired
car-trailer angle i.e. the φ angle. This setup results in the steering wheel rotating
during manoeuvres, sometimes at high speeds, causing discomfort for the driver
and potentially posing safety risks.

Fig. 1. The difference between conventional steering and Steer-by-Wire.

2 Car-Trailer Motion and Controller Design

2.1 Bicycle Model for the Car Based on Geometry

The way that the kinematic model of the car-trailer system will be derived
for this thesis will be based on the method that is used in [4] and [6]. This
model, which is based on a bicycle model of a car-trailer system, is going to be
implemented in a car-trailer system so that the angle between the car and the
trailer (i.e. hitch angle) can be controlled.

There are both fixed variables such as the wheelbase, length from the tow
hook to the rear axle of the car as well as the length from tow hook to the axle
on the trailer, and also values that will change with time such as, actual and
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demanded car-trailer angle φ, the actual and demanded angular rate φ̇ as well
as the speed of the car.

The angle and the angular rate of the hitch angle φ is defined in this thesis
as seen in Eq. 1 where θ1 and θ2 is the car and trailer global angle respectively.
This can be seen in Fig. 2:

φ = θ2 − θ1, φ̇ = θ̇2 − θ̇1 (1)

The points ICT and ICV are the trailer and car rotational centres, respec-
tively. These are defined as the points around which the bodies rotate.

Fig. 2. An overview of the kinematic model.

Based on the bicycle model in Fig. 2 equations can be derived on how the
angular rate of the hitch angle (φ̇) depends on the hitch angle (φ) and the steering
angle (δ) [4], which can be seen in Eq. 2.

φ̇ = − v

L3
· sin(φ) − v

L1
·
(

1 +
L2

L3
· cos(φ)

)
· tan(δ) (2)

2.2 Stability Analysis of the Open-Loop System

To analyse the stability of the open-loop system Eq. 2 an eigenvalue analysis is
performed.

In order to do so, a first-order Taylor expansion of Eq. 2 is made such that:

φ̇ = − v

L3
· φ − v

L1
·
(

1 +
L2

L3

)
· δ (3)

From Eq. 3 it can be seen that the car-trailer system without any backup
assist, the eigenvalue of the linearised system is − v

L3
, which lies in the left-hand

side of the complex plane if and only if v takes on a positive value, indicating
forward driving. Conversely, we can confirm what we know from experience,
namely that the system is unstable when reversing. The instability of reversing
raises the need for an assist system to ensure that the eigenvalue is in the left-
hand side of the complex plane.
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2.3 Controller Design

In this paper, the controller by solving for the steering angle, δ, from Eq. 3 such
that:

δtarget = −L1

v
· L3 · φ̇target + v · φ

L2 +′ L3
(4)

with φ̇target being the control value.
The control value is based on the difference between the real-time φ and the

target φ as a P-controller:

φ̇target = k · (φtarget − φ) (5)

The value is fed to a P controller with the output as the φ̇ input to the
steering angle, that is the target front wheels angle of the car. The value of φ
is also given as an output from the system, which can be used as feedback to
the driver in a way that the “zero-torque” position of the steering wheel always
corresponds to the angle of φ. A block diagram of the controller is shown in
Fig. 3.

Fig. 3. The flow chart for controlling φ.

2.4 Stability Analysis of the Closed-Loop System

By combining Eq. 4, Eq. 5 and Eq. 3, the eigenvalue of the system is changed to
−k. This means that, all that is required to ensure the stability of reversing is
that k needs to be larger than zero so that the eigenvalue lies in the left-hand
side of the complex plane.

3 Length Estimation of Trailer

For the model that is developed in this project to work, there is a need to know
the length of the trailer to its wheel axle. The length of the trailer is not always
known and it can also be difficult to accurately measure the length. This could
be a cumbersome process if it must be done by the driver. Therefore it would be
beneficial if the trailer length could be determined automatically. This could be
done using a error prediction method, using a parameter value that minimises
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the quadratic sum of the prediction errors [3]. However, to make the system
compact and more efficient, another simple yet effective way of determining the
length of the trailer is created and utilised. This is by using Eq. 2 to derive the
length of the trailer L3. The equation for L3 can be seen in Eq. 6.

L3 = −v · (sin(φ) · L1 + L2 · cos(φ) · tan(δ))
φ̇ · L1 + v · tan(δ)

(6)

This equation will give the length of the trailer whenever all of the variables
in the equation are steady-state. The car-hitch angle as well as its angular rate,
steering angle, and car speed will be recorded during a short period when reach-
ing steady-state and the distance between the trailer axle and the tow hook can
be calculated using Eq. 6. The easiest way to get stable inputs is to start the
length estimation while going forward in a turn with a fixed steering angle. This
means that φ̇ will move towards zero and the speed and φ will move towards
steady values respectively. This will make the equation easier to solve as well
as make the result more stable. If the trailer gets replaced by a different one,
the system will work again to estimate the new geometry. In theory, the estima-
tion also works during reversing if the trailer back-up assist system is not active.
After the automatic length estimation, the result will be sent to the controller as
input of trailer length. The driver can also choose to manually input the length.

Fig. 4. Simulation results of the length estimation of a 3.5 m long trailer.

As can be seen from Fig. 4, the trailer length estimation gives reasonable val-
ues after about 5 s. This delay is due to the road being straight in the beginning
and leads to that there is no steering angle to start with.

4 Determining the Car-Trailer Angle

In the trailer backup assist system, estimating the hitch angle is a key for control-
ling the required steering during trailer reversing. This angle can be determined
direct measurement or by using yaw-rate sensors, as was done in this project.
This works by having one yaw-rate sensor on the car and the other on the trailer.
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The hitch angle is then determined by integrating the difference between the car
and trailer yaw angular rate (θ̇1 and θ̇2) over time.

One challenge with this way of determining the trailer-car angle is that there
is no way for the car and trailer to know their global angle relationship at the
start of integration, therefore a calibration of what is zero degree of the hitch
angle must be done. This is done by resetting the integration to zero when the
yaw rate of both car and trailer has been close to zero for some time during
forward driving.

Another challenge with this setup is that it is very common to have integra-
tion drift due to sensor bias. There are several more or less complicated ways to
reduce the influence of the IMU drift. In this paper sensor bias is observed over
time and when the car is stand still, the observed bias is removed from the yaw
rate and thereby reduce the influence of the integration drift.

5 How to Avoid Jack-Knifing

Jack-knifing is when the car-trailer angle can no longer be reduced but increases
until there is contact between the car and trailer. This so-called critical angle
is reached the moment the car and the trailer share the same yaw rate and the
front wheels are steered to its maximum value [3] [5]. To find the critical hitch
angle, calculations can be done to find when the car and trailer share the same
instant centre of rotation when the maximum geometrical angle on the front
wheels is reached.

An estimate of the critical angle φ̇crit can be found from Eq. 3 when φ̇ = 0
and δ = δmax such that

φcrit = −L3

L1
·
(

1 +
L2

L3

)
· tan(δmax); (7)

This means that to prevent jack-knifing from occurring, φ should not be
allowed to pass the critical angle. The width of the car and trailer is not consid-
ered in this calculation which might lead to that the critical angle might not be
reached before the car and trailer hit each other if the car or the trailer is very
wide.

6 Experiments

6.1 Experimental Setup

For the driving simulator studies conducted in this research, IPG CarMaker was
used. Two experiments were conducted to discover if the trailer back-up assist
is improving the drivers’ performance to reverse with a trailer. For the straight
reverse experiment, the trace of the car was recorded and compared with a
reference lane that it should follow. Mean squared errors of the comparison were
computed to determined the accuracy of the car-trailer system motion with or
without the back-up system. Time for movement was also recorded for each of
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them. For the parking experiment, similarly, a reference lane was given for the
driver to follow, with and without the back-up assist system. In this case the
time it took to complete the manoeuvre is shown for comparisons and not mean
squared errors since was found to be difficult to compare the actual trace with
the reference in a good way.

For the real-world tests using a test vehicle with a trailer, steering wheel
data were recorded and are plotted to show the difference between manual and
assisted manoeuvres.

6.2 Experiment Results Driving Simulator

The first experiment was conducting using a Volvo XC90 demo model with user-
defined steering system based on steer-by-wire with the trailer back-up assist.
The experiment was made up by two parts: the straight-line reverse test and the
parking into a designated parking lot on the simulated parking space test. For
the straight-line reverse, the test drivers drove the trailer-car system to reverse
for 80 m on a straight road, with and without the assist system. Driving traces of
the car, for three test drivers, are shown in Fig. 5 to make comparisons between
driving with and without the assist system.

Fig. 5. Results from the straight line experiment.
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In Fig. 5, the blue line is the reference straight line to follow for the test
driver, which starts from the left side of a figure. The red lines are the traces
of the cars driven by test drivers, with a sampling rate of 2 Hz. It is clear that
the drivers can follow the reference lane more accurately with the help of the
assist system. Without the assist system, some drivers have to undergo several
trials and errors to correct the direction of the trailer. To quantitatively show
the differences of lane-following accuracy, a mean squared error based on the
deviation between the trace and the reference lane is defined and computed.
Results are shown in Table 1.

Table 1. Mean squared errors (MSE) of three test drivers

Non-assisted Assisted

Driver 1 3.005 m2 0.0 m2

Driver 2 3.149 m2 0.042 m2

Driver 3 1.308 m2 0.037 m2

A smaller MSE value stands for a higher accuracy in following the reference
lane. Without the back-up assist system, none of the drivers can easily control
the car-trailer system even though driver 2 is experienced in reversing a trailer in
the real world. Comparatively, with the assist system, all the drivers can follow
the reference lane effortlessly.

In Table 2, time-to-reach for each driver has been recorded as well and the
difference in time between being assisted and not is not as large as the difference
in MSE.

Table 2. Time for passing the distance of three test drivers

Non-assisted Assisted

Driver 1 187 s 31 s

Driver 2 62 s 71 s

Driver 3 169 s 109 s

In the second experiment, the reference lane is no longer a straight road, but
a path to park the trailer into a parking lot. Here, time-to-reach is the main
output for evaluation shown in Table 3 and the three test drivers are put into a
parking scenario. Their driving traces with and without the assist are recorded
and shown in Fig. 6.
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Fig. 6. Results from the parking experiment.

Table 3. Time for parking the trailer in the parking slot of 3 test drivers.

Non-assisted Assisted

Driver 1 192 s 43 s

Driver 2 131 s 41 s

Driver 3 170 s 46 s

It can be seen in Fig. 6 that driving without the assist normally requires more
correction movement and less possibility in keeping to the reference lane due to
greater challenge in hitch angle control compared with having the assist. With
these disadvantages, time-to-reach shows a great difference between assisted and
non-assisted driving. For driver 1 and 3 who do not have much trailer parking
experience, time-to-reach has been significantly reduced by 4 to 5 times. For
driver 2 who is experienced, it has also been reduced by 3 times.
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6.3 Experiment Results Real World

Due to lack of time the system that is implemented into a Volvo V60 was not
tested by any test persons other than the developers of the system. The main
experiment that was conducted in the car is to study the steering wheel angle, φ
and the velocity of the car through a parking manoeuvre. The data can be seen
in Fig. 7.

Fig. 7. Data gathered from the car in the experiment. The first graph show steering
wheel angle in blue and φ in orange. The second graph shows how the speed is changing
under time and the last graph show how δ changes with time.

As shown in Fig. 7, the steering wheel angle input by the driver, the hitch
angle φ, the steering angle δ, as well as vehicle speed from a 70-second trailer
parking manoeuvre with regard to time were all recorded. The manoeuvre starts
from stand-still and ends when the trailer reaches the target spot. To analyse
the delay between the driver input and the hitch angle φ, the steering wheel
angle and the hitch angle φ are overlaid.

The system is speed-sensitive since the steering angle δ was frozen below
speeds of 0.1 m/s to reduce the stress on the steering rack at standstill. Also
an amplitude limiter 0.5 rad for the steering angle δ was implemented. When
the vehicle starts from stand-still, the steering angle δ was kept at 0 until the
speed of the system reaches the safety limit. During this process, delay was
accumulated since the system does not output required steering angle. After
several seconds, the controller finishes compensating for the error and the delay
is controlled under one second during the parking process. The delay also occurs
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during braking. Vehicle speed v controlled by the driver does not influence the
delay unless it is smaller than the safety limit of 0.1 m/s. The last graph in Fig. 7
shows how the steering angle δ is changing to fulfil the driver’s request. A large
difference can be seen between the steering wheel input in the first graph and
the actual steering angle in the last graph. The steering wheel angle is changing
slowly and predictable while the steering angle is more erratic. This difference
is showing how much strain that has been taken off from the driver during a
parking manoeuvre.

7 Discussion and Conclusion

The overall stability of the trailer back-up assist that is developed in this the-
sis can be considered as stable and does not seem to be restricted due to the
linearisation of the equations used in the controller.

The main issue with reversing and controlling the motion of the trailer with-
out the trailer back-up assist system that was noticed in the simulation exper-
iments is that the driver must control the car direction in order to adjust the
trailer direction in a nonlinear fashion. When the car-trailer system is moving,
it is hard to predict how the trailer will react to the steering wheel input, and
corrections must be made constantly. The delay in the change of trailer direction
is also large. That explains for the large curves and less accuracy in the traces of
the simulator experiments without the assist. When the driver becomes anxious
due to lack of control over the trailer direction, the driver tends to overreact and
give large inputs on the steering wheel, leading to more errors.

However, with the trailer back-up assist, the intensity of the above issues
were reduced. The hitch angle follows the steering wheel input directly and ease
the burden from drivers so that they had enough time to avoid obstacles and
move the trailer in a stable manner. Also, since the car could react to very small
changes of the angle in the car-trailer system, the driver could react before any
large deviations occur in the wanted car-trailer angle and hence the stability of
the system was vastly increased compared to the non-assisted system.

It can be seen from the experiments in the driving simulator that both the
time to finish the manoeuvres as well as the accuracy of the manoeuvres was
greatly improved using the system that is developed in this work, both for expe-
rienced and non-experienced trailer drivers. The real life experiments shows that
there was a large difference between the requested car-trailer angle (i.e. steer-
ing wheel angle) and the actual steering angle. This difference shows how much
strain that was taken from the driver since the driver could focus on the path of
the trailer instead of focusing on controlling the steering angle on the car and
through that the path of the trailer. Hence, the experiments show that the trailer
back-up assist can be a great help to drivers with different levels of driving skills.

One thing that is not considered in this work is the motion of the vehicle and
therefore the risk of hitting obstacles with the vehicle. This means that since
that the driver is mostly checking the motion of the trailer it might be so that
the driver forgets to check the motion of the car and may drive into an obstacle
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with the car. However, this is something that can easily be avoided by using the
proximity/camera sensors that are available on the car to alert the driver if the
car get close to any obstacle. Another way to tackle this issue is by switching
between the trailer backup assist mode and a normal driving mode.
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Abstract. Electronic Stability Control (ESC) allows to prevent safety-
critical scenarios and vehicle sideslip angle estimation plays a crucial role
in such applications. Time to market and safety concerns in the devel-
opment and validation of such algorithms are leading the automotive
industry towards virtual methods. The recent introduction of driving
simulator technologies on vehicle development process allows to develop
calibrate and test in advance virtual prototypes of full vehicle and its
controls obtaining objective and subjective evaluation during the early
stage of the vehicle development. This paper presents the methodology
and results related to the development and calibration of a yaw rate based
stability control grounded on a mixed-kinematic sideslip estimator. This
work has been carried out leveraging tools provided by simulation plat-
forms, scalable configurations of driving simulators and results from road
tests.

Keywords: Stability Control · Sideslip Angle · Virtual Methods ·
Simulation Platforms · Vehicle Control · Vehicle State Observer

1 Introduction

Electronic Stability Control (ESC) has been introduced to prevent cars from
losing driveability [1–4] and vehicle (or body) sideslip angle is of paramount
importance in such algorithm [5–7]. In this paper the estimation performances
of sideslip estimators are outlined at first [8–10]. A yaw rate based stability
control is then presented and the results outlined. Virtual methods provide pow-
erful tools to speed up the development process following the V-model app-
roach [11,12]; in this work such methodology has been applied for the evalua-
tion of both estimation and control achievements. This paper outlines at first
an overview of the system, development environments and use cases considered
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for this activity. Then the adopted estimation, control strategies and dedicated
KPIs are introduced for evaluation of the performances. A comparison between
results on different development environments is illustrated. Finally, the conclu-
sions portrays the main outcomes and summary of the achieved results.

2 System Overview, Virtual Environments and Use Cases

This work has been accomplished following the V-model approach by leveraging
the information from several development environments with decreasing virtual-
ization levels (Fig. 1). Simulation activities have been performed in a completely
virtual Model-In-the-Loop (MIL) environment while Driver-Hardware-In-the-
Loop (DHIL) tests on a COMPACT Simulator by VI-grade [13]. The virtual
environment development results of this activity have been achieved based on a
vehicle model provided by VI-grade CarRealTime software [14]. Vehicle activities
have been carried out on a AWD fully electric vehicle equipped with Brembo
braking system [15–17] portrayed in Fig. 1. The designated use case for this
activity is the Lane Change maneuver following test protocol as in ISO 3888-1
[18].

Fig. 1. (Left) Brembo braking system. (Right) V-model diagram.

3 Vehicle (or Body) Sideslip Angle Estimation

Vehicle (or body) sideslip angle is of great importance in the development of
stability control algorithms. In this work, the following body sideslip angle (β)
estimators have been adopted and compared: BSAE presented in [8,9] and BSAA
outlined in [10] and results are illustrated in Fig. 2. Main idea is to confront such
methods in order to assess the best appropriate solution for the control purposes
and to determine whether consistent results can be achieved in environments
with different level of virtualization. To evaluate the estimation performances,
the EAM (Error At Maximum) indicator delineated in (1) has been adopted:
it focuses on the relative error between the estimated sideslip angle at the time
instant t when the ground-truth (GT) signal is at its maximum value; ground-
truth signal is provided by VI-grade CarRealTime software on MIL and DHIL
environments, Kistler Correvit S-Motion optical sensor on vehicle. Although this
is not a complete evaluation of the estimation behaviour and features of the
algorithms, it provides a concise assessment of the estimation outcomes during
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Fig. 2. (Left) Example of a vehicle test during a Lane Change manouver (ISO 3888-
1). (Right) KPI to assess body slip angle estimation performances (VEH = vehicle,
GT = Ground-Truth, m = mean, std = standard deviation).

several repetitions of lane-change maneuvers where the maximum sideslip angle
(β) is a major concern. The closer the EAM is to the unit value 1, the better
the estimation performances. Based on this criteria, BSAA outperforms BSAE
in terms of both mean value and standard deviation in all environments; thus, it
is the most suitable solution for the purposes of stability control. Furthermore,
this analysis shows coherent results among different development environments
demostrating the effectiveness of using a virtualization approach to anticipate
road testing activities.

EAM [−] =
BSAx(t)
GT (t)

, x = {E,A} (1)

4 Yaw Rate Based Stability Control

The stability control adopted for this activity is portrayed in Fig. 3 where both
the wheel slip controller and the yaw rate controller are based on a PID algorithm
enhanced with additional non linear contributions. The methodologies behind
these logics are similar to the ones described in [19,20] and [21,22] respectively.
The reference generator is developed starting from the definition of maximum
admissible yaw rate as in [23]. The vehicle state observer (VSO) provides the
information required by the stability control but not included among the avail-
able measurements; the estimators of the sideslip angle (β) presented in the
previous section are included in this block. The stability control exploits the



600 L. D’Avico et al.

Fig. 3. Yaw rate based stability control scheme where β = body sideslip angle,
ref = reference, r = yawrate, λ = wheel slip, Fb = brake force, X = {Front,Rear},
Y = {Left,Right}

benefits of the independent wheels braking system generating a reference brake
force for each corner (F ref

b,XY ) in order to enhance performance and safety.
The tuning of the yaw rate controller is the main goal of this work. For

this purpose, four different set of parameters have been defined based on an
increasing degree of control intervention: standard control intervention (SD),
less invasive control intervention (LC), more invasive control intervention (MC)
and stability control deactivated (OFF). In order to take into account environ-
ments with the variability of the driver’s inputs only, driving simulator (DHIL)
environment and vehicle testing have been considered. To carry out this analy-
sis, the following objective criteria have been applied: (1) vehicle (body) sideslip
angle peak defined as the maximum absolute value of the measured angle dur-
ing the maneuver; this criteria focuses on the vehicle lateral stability; (2) yaw
rate peak defined as the maximum absolute value of the yaw rate during the
maneuver; this criteria highlights the vehicle steerability; (3) speed loss ratio
defined as the ratio between the minimum speed within the maneuver and the
speed at the beginning of maneuver, this criteria aims to measure the level of
the brake intervention. Since vehicle activities have been carried out on a mixed
dry and wet/dry condition, DHIL manouvers have been performed using 2 grip
levels (1, 0.8) to take into account the tire-road grip (mu) variability during road
testing. As outlined in Fig. 4, results follow the expected behaviour: increasing
the degree of control leads to decrease both body sideslip angle and yaw rate
peaks, while speed loss ratio tends to increase. In terms of comparison between
development environments, the results show a consistent trend between driving
simulator (DHIL) and the vehicle.



Stability Control 601

Fig. 4. Stability control results: comparison between vehicle data and DHIL tests (mu
refers to the tire-road grip) during Lane Change manouvers (ISO 3888-1).

5 Conclusions

In this work the tuning and validation of a yaw rate based stability control has
been described. The strategy have been carried out based on virtual methods
following the V-model approach which has been used to assess the most suit-
able estimation algorithm and parameter sets to be tested on vehicle. Despite
a significant effort is required to implement realistic virtual environments and
define representative KPIs to evaluate the outcomes, the results have shown that
virtual methods provide useful information in order to support and speed up the
development of vehicle estimation and control strategies prior to any vehicle
activity leading to significant time and cost reduction.
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Abstract. This paper aims to maximize deceleration on split friction
roads by combining steering and individual wheel braking. For this, a
previously tested optimization problem is adapted to curved roads. The
optimal brake force and steering allocation is investigated as a function
of the split friction asymmetry. Results show that low friction is more
detrimental to maximum braking on the inner side of the curve due to
load transfer. Finally, the paper showcases a control strategy for braking
on split friction, which enhances safety and manoeuvrability in critical
split friction scenarios.

Keywords: split · friction · optimization · cornering · curve · braking

1 Introduction

Split friction is an edge case of a slippery road where one side of the vehicle is on
the regular road surface while the other is on a low-friction surface, like snow or
fallen leaves. The road condition asymmetry creates an asymmetry in the brake
forces, which in turn creates a yaw moment disturbance. The disturbance must
be countered, typically by the driver, but can be abrupt and surprise the driver
[8]. Making it autonomous would be beneficial to reduce accidents.

Contributions in literature have primarily focused on designing a controller
for steering, assuming the ABS handles the brake control, as in [2,10]. However,
our research shows that using ABS on all wheels can be dangerous when there
is a significant friction difference between the two vehicle sides. More advanced
control solutions focus on designing the steering compensation and the brake
control together [5,9]. However, none of these have investigated the effects of
friction on vehicle dynamics and maximum braking.

When braking under split friction, the maximum deceleration potential with-
out deviating from the lane depends on the friction asymmetry [3]. In [7], the
authors investigate the maximum deceleration potential on curved roads for
c© The Author(s) 2024
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several steering/braking configurations and varying road friction coefficients.
They showed a significant maximum deceleration potential reduction when the
brake forces are constrained not to produce any yaw moment. Balancing the yaw
moment on split friction braking is critical, but restricting the brakes implies
longer stopping distances.

This paper analyses the maximum deceleration potential under split friction
as a function of lateral acceleration and friction asymmetry. The resulting alloca-
tion of brake forces and steering can be used to design control algorithms better
suited to varying friction. Inspired by this analysis, a control implementation is
tested in simulation to show the potential.

2 Maximum Static Deceleration on Curved Roads

With the focus on maximising braking in a curve, an optimization problem (OP)
is built upon a double-track vehicle model with combined slip and longitudinal
and lateral load transfer; for details, see [1,3]. The focus of the OP on a high
level is illustrated in Fig. 1.

Fig. 1. Vehicle trajectory and orientation

The velocity vector is denoted with V , and its orientation, the side slip angle,
with β. The vehicle’s orientation is defined by the yaw angle ψ. In the static case
of no dynamics, the acceleration along V , av, should be minimized. In contrast,
the acceleration perpendicular to V , ap, keeps the vehicle in the curve to a desired
lateral acceleration ap,des. Further, for a constant radius, yaw acceleration ψ̈ is
unwanted; thus, the yaw torque Mz = Izzψ̈ should be zero. At the same time,
the yaw rate ψ̇ is chosen as a desired one.

For the desired lateral acceleration and yaw rate, the circular motion ones
can be used, defined as

ap,des =
v2
x

R
(1)

ψ̇des =
vx
R

(2)

where R is the road radius, and vx the longitudinal speed. More advanced defi-
nitions can be obtained from [6].
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The maximum static deceleration optimization problem is expressed as

min
q

av(q)

s.t. ap(q) = ap,des

Mz(q) = 0

ψ̇ = ψ̇des

Fxi =
σxi(q)
σi(q)

Fi(q)

Fyi =
σyi(q)
σi(q)

Fi(q)
√

F 2
xi + F 2

yi ≤ kF Fmax,i

(3)

with q = [κi, δ, β]ᵀ the optimization variables, κi the longitudinal slip ratio, δ
the steering angle. The control inputs are u = [κi, δ]ᵀ, while [β, ψ̇] are states.
Equality constraints are needed for the forces [Fxi, Fyi] to include the load trans-
fer. Further, an inequality constraint is added for the friction circle, multiplied
by a factor 0.95 < kF < 1 to avoid numerical instabilities at the friction peak
and excessive slips.

The solution to the OP (3) is static, without dynamics. In reality, as speed
reduces, ap,des also reduces, and the vehicle brakes harder, giving a larger mag-
nitude of av every instant. Instead, the solution can be seen as an upper limit
to what deceleration can be achieved with the current speed and radius. For
a straight road, the solution converges to a steady state instead as R becomes
large and 1/R → 0 in (2). Next, the analysis of the OP is presented as a function
of the friction difference between the vehicle sides.

3 Split Friction Effects

The friction asymmetry between the left (inner side for a left turn) μ1 and right
(outer) μ2 vehicle side is defined as

Δµ = μ1 − μ2 (4)

Several outputs from the OP (3) are depicted in Fig. 2 for several Δµ values. For
positive Δµ, the outer curve side μ2 varies, while the inner μ1 = 1, and vice versa
for negative Δµ. The maximum deceleration potential is depicted in Fig. 2a. The
curves are asymmetric. Less deceleration can be achieved when the inner side
has lower friction (Δµ < 0) than when the outer side is on low friction (Δµ > 0).
The main mechanism behind this is the lateral load transfer. The more lateral
acceleration, the more pronounced the asymmetry becomes. The steering input
and side slip angle are depicted in Fig. 2b. Some counter-steering is observed at
large Δµ for the blue curve at low lateral acceleration. As lateral acceleration
increases, the magnitude of steering inputs and side slip angles increase.
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Fig. 2. Vehicle deceleration, steering angle and side slip angle for several lateral accel-
eration values as a function of friction asymmetry

The optimal brake force and seeing allocations are depicted in Fig. 3 for two
cases when the friction is low on the inner or outer curve side, respectively. The
effect of load transfer is more important when the inner side has low friction,
as the inner side friction circles are smaller, see Fig. 3a. Due to this mechanism,
the side slip angle is also smaller, and the outer front circle moves away from
the friction circle.

Fig. 3. Brake force/steering allocation for ap,des = 0.4 g; The friction circles are scaled
with the load; fui denotes how much of the friction circle is utilized

4 Vehicle Closed-Loop Simulations

Figure 4 shows the control logic. The human driver is replaced by a path-following
PD steering controller using look-ahead measurements y from a vision system
and is complemented by a feedforward steering angle based on friction. The brake
controller controls the high-friction brakes to reduce excessive yaw torque using
yaw rate ψ̇ and the look-ahead measurement y as feedback. The low-friction side
is controlled by the ABS. The details of the control logic are given in [4].
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Fig. 4. Block diagram of control logic

Vehicle simulations are conducted in IPG CarMakerTM to validate the opti-
mization, presented in Fig. 5. The simulation is performed for an initial speed
of V0 = 70 km/h and radius R = 100 m, corresponding to a lateral limit of
ap,des ≈ 0.4 g. In Fig. 5a, the vehicle trajectory and motion states are depicted,
while the states’ targets are depicted with black dashed lines. The deceleration
av surpasses the limit set by the OP av,OP after a transient phase of about
0.7 s. The lateral acceleration ap gradually decreases as av increases and velocity
drops. At the same time, the yaw rate decreases linearly, as the side slip angle is
almost constant, fluctuating around 1◦. Also, the steering controller keeps path
deviations small. The small side slip angle and path deviation at high decelera-
tion show the vehicle’s good manoeuvrability. In Fig. 5b, the control inputs are
depicted. Interestingly, the ABS turns off the inner side brake torques up to 0.5 s
due to excessive slip. It is also when the steering angle is at its peak.

Fig. 5. Closed loop simulation of a vehicle braking in a curve of R = 100 m on split
friction with µ = [0.6 1] and initial speed V0 = 70 km/h
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5 Conclusion

This paper presented a way to find the maximum braking during corner-
ing on split friction roads. The maximum braking and the active front steer-
ing/differential brake torque allocations were investigated as a function of the
friction difference between the vehicle’s sides and the lateral acceleration. The
analysis revealed that low friction on a curve’s inner side is more dangerous
than on the outer side due to the lateral load transfer. Further, a control logic
was showcased that achieves good path-following and keeps the vehicle side slip
small while achieving optimal deceleration. Future work includes using prior
friction knowledge to predict optimal speed in a curve for varying friction road
conditions.
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Abstract. Due to the importance of safety in the development of Auto-
mated Driving Systems (ADS), research is ongoing on fallback functions
for ADS. Scenarios involving steering actuator failures during curved
road driving are particularly dangerous, with limited available fallback
options. This paper proposes a method for achieving a safer in-lane stop
using differential braking when steering actuator failure occurs. Lateral
motion is induced by the difference in longitudinal forces between the
left and right sides, facilitating an in-lane stop maneuver. The vehicle’s
lateral behavior under differential braking and changes in front-wheel
steering angle are modeled. A model-based estimator using a Kalman
filter estimates the vehicle’s state and steering angle. Based on these esti-
mations and lane information, a controller employing a linear quadratic
regulator (LQR) is developed. The effectiveness of the differential brak-
ing in-lane stop system is validated through simulation.

Keywords: Differential braking · Minimal risk maneuver · In-lane
stop

1 Introduction

Automated Driving Systems (ADS) are being developed for a variety of appli-
cations, aiming to enhance driving safety, efficiency, and convenience. However,
it is crucial to prepare for scenarios where ADS may not function normally due
to various reasons, such as sensor failures, actuator failures, software glitches,
or unforeseen road conditions. To address such situations, fallback functions are
being researched extensively. One notable fallback function is the Minimal Risk
Maneuver (MRM) [3], which is designed to bring the vehicle to a safe, stable
stop when the ADS encounters a failure.

Typically, the primary consideration during an MRM is a straight stop. This
maneuver is performed when only longitudinal deceleration control is possible,
c© The Author(s) 2024
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and lateral control is compromised due to lane detection failures or steering
actuator malfunctions. As a result, straight stops can lead to collisions with
roadside structures or others in certain situations. Conversely, an in-lane stop
allows for lateral control, enabling the vehicle to halt within its lane, even on
curved roads.

Previous research has explored various methods to achieve safe stopping
maneuvers under ADS failures. However, many of these methods focus on
straight stops or rely on fully functional steering systems [1,5]. There remains a
significant gap in addressing the safe stopping of vehicles on curved roads when
the steering system fails.

In this paper, a differential braking in-lane stop system is proposed to exe-
cute the in-lane stop maneuver on curved roads, specifically addressing scenar-
ios involving steering system failures. The proposed method employs differential
braking to generate the necessary lateral motion, thus enabling safer in-lane
stops compared to straight stops. The proposed approach is distinctive in that
it does not rely on the steering system, making it particularly useful in sce-
narios where steering control is lost. Simulation results demonstrate that the
proposed approach effectively performs in-lane stops, enhancing safety during
ADS failures.

2 Vehicle Model

The behavior of the vehicle and changes in the front wheel steering angle occur
directly due to the differential longitudinal force [4].

The extended two-track model [2,4] is used to consider the differential lon-
gitudinal force in the commonly used bicycle model. At the same time, the
simplified steering model is utilized.

Fig. 1. Single-track model with vehicle geometric parameters, applied forces and
motion characteristics.

The geometric parameters of the vehicle and the forces generated at each
wheel are illustrated in Fig. 1. Fx,i and Fy,i represent the longitudinal and lateral
tire forces with i = {f, r} denoting the front and rear tires. u and v are the



Fallback Approach for In-Lane Stop 613

longitudinal and lateral velocity, γ is the yaw rate, δf is the front wheel steering
angle and αi are the tire slip angles. lf and lr are the distance of the front and
rear axles from the vehicle’s center of gravity (CG).

The combined state space equation for the lateral dynamics motion model
and the steering system model can be expressed as follows:

ẋ = Ax + Bu (1)

x =
[
v γ δf δ̇f

]T
, u =

[
ΔFx,f

ΔFx,r

]
(2)

A =

⎡

⎢
⎢
⎢
⎣

−Cf+Cr

mu − lf Cf −lrCr

mu − u
Cf

m 0

− lf Cf −lrCr

Jzu − l2f Cf+l2rCr

Jzu
lf Cf

Jz
0

0 0 0 1
0 0 − kδ

Jδ
− bδ

Jδ

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎣

0 0
w
2Jz

w
2Jz

0 0
seff

Jδ
0

⎤

⎥
⎥
⎦ (3)

ΔFx,i are the differential longitudinal forces, m is the vehicle mass, Jz is the
moment of inertia about its z-axis and w is the track width of the vehicle. The
coefficients of the tires slip, Ci, are the cornering stiffness. In addition, Jδ, bδ, and
kδ are the effective moments of inertia, effective damping, and effective stiffness
of the steering system, respectively. seff is the effective scrub radius, which is
defined as the distance between the point of application of resultant longitudinal
force and the steering axis at ground level.

3 Differential Braking In-Lane Stop System

The differential braking in-lane stop system consists of four modules: reference
generator, state estimator, controller, and brake pressure distributor.

Fig. 2. Block diagram of the differential braking in-lane stop system.

The system architecture is shown in Fig. 2. γref is the reference yaw rate and
x̂ is the estimated states. In addition, ΔFb,i are the differential braking forces
and Pb,ij are the braking pressures with j = {L,R} denoting the left and right
tires.
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The reference generator module determines a reference state based on lane
detection. It calculates the reference yaw rate to reach the look-ahead point,
which is determined based on the vehicle’s speed. Simultaneously, the state esti-
mator module obtains the estimated states using a model-based state observer
with a Kalman filter. Based on both the reference state and the estimated vehicle
state, the controller then calculates the necessary differential braking amounts
for the front and rear wheels. A Linear Quadratic Regulator (LQR) algorithm is
utilized in the controller. The brake pressure distributor module calculates the
appropriate signal for braking pressure.

4 Simulation Result

The proposed system is verified through a joint simulation using CarSim and
MATLAB/Simulink. The simulation cycle is set to 1 ms, while the controller’s
output cycle is set to 20 ms. The scenario assumes a steering system failure and
includes an in-lane stop maneuver on curved roads. Despite the lack of torque
input to the steering wheel due to the steering system failure, a front wheel
steering angle can be generated by the differential braking.

Fig. 3. Vehicle Path for the in-lane stop maneuver on a curved road.

Figure 3 shows the path of the vehicle as it comes to a stop on a curved
road with the differential braking in-lane stop system active. The distance to
the road center line after stopping is 0.047 m, successfully performing the in-lane
stop maneuver without crossing the lane.

Figure 4 presents the speed, distance to the center line, yaw rate, front wheel
steering angle and brake pressure inputs over time. After approximately 13 s,
the vehicle speed is sufficiently reduced. At this point, differential braking is
ceased, with brake pressure applied to all wheels to achieve a complete stop.
The simulation results demonstrate that the in-lane stop maneuver is successfully
performed without deviating from the road.
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Fig. 4. Simulation results for the in-lane stop maneuver on a curved road.



616 J. Sung et al.

5 Conclusion

In this paper, we proposed a reliable system that utilizes differential braking to
perform in-lane stop maneuvers in the event of a steering system failure. The ref-
erence state was calculated using road information to ensure the vehicle remains
within the lane. To account for the steering angle generated by differential brak-
ing, the steering system model was integrated with the vehicle lateral motion
model. An estimator and controller were designed using the integrated model.

Simulations confirmed that the proposed differential braking in-lane stop
system can decelerate and stop the vehicle within the lane on curved roads
without deviating. Our results demonstrate that differential braking is an effec-
tive method for maintaining vehicle control and safety when a steering system
failure occurs. The integration of the steering system model with the vehicle
lateral motion model allows for precise control of the vehicle’s trajectory, even
on curved roads.

Future research is expected to extend this work to more complex road envi-
ronments and different maneuvers, such as road shoulder stops. Additionally,
experiments with actual vehicles will be conducted to validate the system’s per-
formance in real-world conditions.
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Abstract. In this paper we consider a driver assist system concept for the sta-
bilization of the vehicle during high sideslip angle cornering (drifting). Unregu-
lated steering inputs (steering noise) from inexperienced drivers, can disturb the
drift equilibria and oppose to the controller’s stabilization task. Therefore, this
paper presents a drift assist control concept to cancel the steering effects from
the driver by torque vectoring. In detail, first by equilibria analysis for four-wheel
drive vehicle, the steering effects on drift equilibria are analyzed, which indicates
a contradiction between stabilizing the yaw rate and the sideslip angle. Then,
by nonlinear programming, it is proven that the path angle rate together with
the speed which determine the trajectory, could be stabilized with torque vector-
ing against the steering noise. Finally, a steering noise cancelling and trajectory
tracking controller structure is designed and further evaluated with CarMaker.

Keywords: Drift Assist Control · Torque Vectoring · Trajectory Tracking ·
Vehicle Dynamics

1 Introduction

Vehicle control systems that enable cornering at high sideslip angle (drifting) have
recently been the focus of significant research effort. These approaches have been devel-
oped mainly in the context of Autonomous Vehicles (AVs) to demonstrate that the AV
controllers are able to operate in regimes that are challenging and non-intuitive for
average human drivers [1–5].

Drift-assist control, where the driver still maintains authority over the control of
the vehicle in the context of Advanced Driver Assist Systems (ADAS), has been intro-
duced by several high-performance vehicle manufacturers (“Variable Drift Control” of
McLaren [6], “Drift Mode” of BMW [7]). These systems allow the vehicle to operate
outside the envelope of stability control systems, or even provoke instability to achieve
high sideslip angle [8, 9]. However, maintaining a drift condition, even with drift-assist
control, currently still requires driving skills beyond average and understanding of the
non-intuitive vehicle behavior in such operating regimes. One of the reasons is the steer-
ing input provided by the driver can prevent the control system from achieving its task,
if it is not properly coordinated with the wheel torque control of the drift assist system
[10].
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In this paper, we introduce a concept of drift-assist system to stabilize the vehicle in
high sideslip cornering using torque vectoring interventions against uncoordinated steer-
ing inputs (steering noise) by the driver. In particular, we calculate drifting equilibria for
vehicles equipped with four-wheel torque vectoring capability, and explore the effects of
steering angle in the required wheel-slip for four wheels to achieve the same equilibrium
states. This study reveals a conflict in maintaining the same yaw rate and vehicle sideslip
angle when the steering angle changes. Therefore, we formulate a trajectory tracking
task where the vehicle speed and path angle rate (instead of both yaw rate and sideslip
angle) are sought to be stabilized by means of torque vectoring when the steering angle
is being disturbed. The control task is formulated as a nonlinear programming problem
to demonstrate the feasibility of the concept, and a control structure is designed and
further validated in CarMaker.

2 Drift Equilibria for Four-Wheel Drive Vehicle

Based on typical parameters of a high-performance vehicle, a four-wheel drive vehicle
model (Fig. 1) is considered for longitudinal/lateral dynamics (speed v, yaw rate r and
sideslip angle β), with steering δ and four-wheel slip ratio sri(i = fl, fr, rl, rr) as inputs.
The model considers nonlinear tire characteristics and load transfer effects.

Fig. 1. The four-wheel drive vehicle model for drift equilibrium analysis.

Unlike rear-wheel drive drift analysis where there are only two controlled variables
(steering and throttle), now with four-wheel drive that allows different slip ratio for each
wheel, there are more unknown variables involved. But with three equilibrium equations
(v̇, ṙ, β̇ = 0) we can only solve for three variables. Therefore, we set the steering δ and
the slip ratio sri as known before solving the equilibria [11]. With equal slip ratio for
wheels of the same axle (sfl,fr = srf , srl,rr = srr), the solved equilibria at different δ are
shown in Fig. 2 (counterclockwise drifting with counter steering) as surfaces marked in
different color. One of the most important findings of this steady-state analysis is the
steering effects on the drift equilibria: i.e., when the counter steering increases from −
10° to −20° (green surface to orange surface in Fig. 2), to maintain the previous req,
the rear wheel slip ratio srr has to increase and srf to decrease, however for keeping
the sideslip βeq, the trend is opposite that srr has to decrease and srf to increase. This
leads to a preliminary conclusion that req, βeq are unlikely to be both stabilized when
the steering has changed (the effects of different slip ratio for wheels on the same axle
will be discussed in detail in our future work).
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Fig. 2. The four-wheel drive drift equilibria at different steering angle δ.

3 Nonlinear Programming Based Steering Noise Cancelling

As discussed in previous section, when the drift equilibrium is disturbed by additional
steering inputs, req, βeq are not likely to be stabilized separately. Therefore, we discuss
the steering noise cancelling problem in the aspect of path angle rate ϕ̇, which is the sum
of yaw rate r and sideslip rate β̇ (Fig. 1), and directly decides the trajectory. To explore
whether stabilizing ϕ̇ is possible, nonlinear programming method [12] is applied to the
previous four-wheel vehicle dynamics model in a counterclockwise drift, and the cost
function J is written as:

J = ε1
(
ϕ̇ − ˙ϕeq

)2 + ε2(v − veq)
2 (1)

where ϕeq, veq are the equilibria path angle rate and speed, ε1, ε2 are the weighting
coefficients. The result is shown in Fig. 3, a sinusoidal noise (180°) is added to the
equilibrium steering wheel angle (−380°). With torque vectoring that independently
controls the slip ratio for each wheel, the desired speed, path angle rate and the trajectory
could be kept against the steering noise from unskilled driver.
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Fig. 3. The steering noise cancelling results of nonlinear programming.
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4 Steering Noise Cancelling Controller and Simulation Results

In the preceding section, we discussed the possibility to cancel the steering effects of
an inexperienced driver and maintain the desired trajectory for drifting with torque
vectoring. In this section, we design a steering noise cancelling controller and evaluate
it in CarMaker. As shown in Fig. 4, the proposed structure could be divided into three
parts, which will be discussed respectively.

Steering Angle

Desired Trajectory

Radius 

Lateral Deviation

PD
Controller

Equilibria 

MAP

Desired Sideslip

-
+

Equilibrium Yaw Rate

Sideslip

Controller 

Steering Noise Cancelling and 
Trajectory Tracking

Torque Vectoring

Controller 

Yaw Rate

-+
-+

Sideslip

Wheel 

TorqueDesired Yaw Rate

Sideslip Stabilization Yaw Rate Stabilization
Equilibrium Speed

Vehicle Model

in CarMaker 

Fig. 4. The structure of the steering noise cancelling and trajectory tracking controller.

4.1 Steering Noise Cancelling and Trajectory Tracking

Known the desired trajectory radius Rdes and the disturbed steering angle δ (which
deviates from the equilibrium δeq with a noise of δnoise), we firstly calculate a new
equilibrium sideslip angle βeq as feedforward based on the previous equilibrium map
(Fig. 2). Next, to account for the lateral deviation ed from the desired trajectory, a
feedback sideslip angleβc based on a Proportional-Derivative (PD) controller is adopted.
Then, the desired sideslip angle βdes could be written as Eq. (2), in which kpd , kdd are
coefficients. The desired trajectory could be tracked as higher sideslip generates more
centripetal force which drives the vehicle drift deeper into the corner thus reduce the
trajectory radius, and vice versa.

βdes = βeq + βc = βeq − kpd ed − kddded/dt (2)

4.2 Sideslip Stabilization

To stabilize the sideslip angle at the desired βdes, the equilibrium yaw rate req is con-
sidered together with the sideslip error βerr(βerr = βdes − β). And the desired yaw rate
rdes could be written as Eq. (3), in which τ is a time constant.

rdes = req − β̇err = req − βerr/τ (3)
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4.3 Yaw Rate Stabilization and Torque Vectoring

With the desired yaw rate rdes and the yaw rate error rerr = rdes − r, a Proportional-
Integral (PI) controller is implemented to calculate the desired yaw moment �Mz for
torque vectoring, as shown in Eq. (4), in which kpr, kir are constant coefficients. Then,
together with the total drive force Fxdes in order to maintain the equilibrium speed veq,
also assuming all wheel torque is delivered as drive force [13], the drive torque for each
wheel Tfl,fr,rl,rr could be written as Eq. (5). Here w is the wheel track width, rw is the
wheel rolling radius, and ctf is a coefficient to decide the torque allocation between front
and rear wheels.

�Mz = kprrerr + kir

∫
rerrdt (4)

Tfl,fr = ctf (1/2Fxdes ∓ �Mz/w)rw
Trl,rr = (1 − ctf )(1/2Fxdes ∓ �Mz/w)rw (5)

4.4 Simulation Results

To evaluate the above steering noise cancelling controller, a circular track with 20 m
radius is built in CarMaker. The vehicle is drifting in counterclockwise direction until 2 s
a steering noise with increasing frequency and amplitude is added to imitate the steering
behavior of an inexperienced human driver. As shown in Fig. 5, the steering effects are
effectively reduced by varying the sideslip angle and yaw rate, that the lateral deviation
is lower than 1 m and the desired trajectory is basically maintained as shown in Fig. 6.
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Fig. 5. Vehicle motion with steering noise cancelling controller.
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Fig. 6. Trajectory with steering noise cancelling controller.

5 Conclusion

In this paper we propose a driver assist system concept for the stabilization of the vehicle
during drifting, as undesired steering inputs (steering noise) from inexperienced drivers
can disturb the drift equilibria and deviate the vehicle from the desired track. Therefore,
this paper presents a steering noise cancelling and trajectory tracking concept to cancel
the steering effects from the driver by torque vectoring. In detail, first by equilibrium
analysis specifically for four-wheel drive vehicle, the steering effects on drift equilibria
are analyzed, which indicates a contradiction between stabilizing yaw rate and sideslip
angle. Then, by nonlinear programming, it is proven that the path angle rate together
with the speed which determines the trajectory could be regulated with torque vectoring
against the steering noise, by independently controlling the slip ratio for all four wheels.
Finally, a control structure is proposed and further evaluated in CarMaker, where the
vehicle successfully maintains drifting on the desired circular track under a sinusoidal
steering disturbance.

References

1. Velenis, E., et al.: Steady-state drifting stabilization of RWD vehicles. Control. Eng. Pract.
19(11), 1363–1376 (2011)

2. Goh, J.Y., et al.: Toward automated vehicle control beyond the stability limits: drifting along
a general path. J. Dyn. Syst. Meas. Control 142(2) (2019)

3. Acosta Reche, M., et al.: A hybrid hierarchical rally driver model for autonomous vehicle
agile maneuvering on loose surfaces. In: International Conference on Informatics in Control,
Automation and Robotics (2017)

4. Joa, E., et al.: A new control approach for automated drifting in consideration of the driving
characteristics of an expert human driver. Control. Eng. Pract. 96, 104293 (2020)

5. Baars, M., et al.: Control of a scaled vehicle in and beyond stable limit handling. IEEE Trans.
Veh. Technol. 70(7), 6427–6437 (2021)

6. Jalopnik. Here’s What The McLaren 720S’ Drift Mode Really Does (2017). https://www.you
tube.com/watch?v=oEa5R1dM5rM

7. BMW M. How To Adjust the DSC and Drift in an Electric BMW M Model (2023). https://
www.youtube.com/watch?v=yJZFpF8FCLc

https://www.youtube.com/watch%3Fv%3DoEa5R1dM5rM
https://www.youtube.com/watch%3Fv%3DyJZFpF8FCLc


624 Y. Sun et al.

8. Werling, M., et al.: Robust power-slide control for a production vehicle. Int. J. Veh. Auton.
Syst. 13, 27 (2015)

9. Park, M., Kang, Y.: Experimental verification of a drift controller for autonomous vehicle
tracking: a circular trajectory using LQRmethod. Int. J. Control. Autom. Syst. 19(1), 404–416
(2021)

10. Voser, C., et al.: Analysis and control of high sideslip manoeuvres. Veh. Syst. Dyn. 48(sup1),
317–336 (2010)

11. Milani, S., et al.: Vehicle drifting dynamics: discovery of new equilibria. Veh. Syst. Dyn.
60(6), 1933–1958 (2022)

12. Andersson, J.A.E., et al.: CasADi: a software framework for nonlinear optimization and
optimal control. Math. Program. Comput. 11(1), 1–3 (2019)

13. Nakano, H., et al.: Trajectory tracking control of a vehicle with a large sideslip angle. In:
2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


A Decoupling Control Scheme for Path
Tracking with Model Predictive Path

Integral and Output Regulator

Hang Wan, Hui Liu, Shida Nie(B), and Lijin Han

Beijing Institute of Technology, Beijing 100081, China

nieshida@bit.edu.cn

Abstract. The coupling and nonlinearity of vehicle dynamics present
considerable challenges to path tracking of autonomous vehicles. In this
paper, a necessary condition is derived to decouple the translational
motion from yawing motion based on the time-scale separation. Con-
sequently, the translational motion is regulated over an extended control
horizon to generate a human-like tracking trajectory. The yawing motion
is regulated based on a high-fidelity control model. In addition, model
predictive path integral (MPPI) is developed to mitigate the computa-
tional burden of nonlinear motion planning through sampling-based opti-
mization. A predictive output regulator is developed to solve the underac-
tuated problem in the 2-DOF lateral dynamics with only 1-DOF of con-
trol input. Simulation results show that the proposed method enhances
computing efficiency and reduces the lateral jerk by an average of 50%
with only one set of parameters.

Keywords: Autonomous vehicle · Decouple · MPPI · Underactuated
control

1 Introduction

While a short-term step can improve tracking accuracy and stability of motion
control system, a long-term prediction/control horizon is necessary to make a
resonable future guess and make impacts on the translational motion and speed
profile of vehicles [4]. However, the limited computing power causes a dilemma
between them. Besides, the coupling control of states envoling over different time
scales leads to difficult controllers tunning in different driving conditions.

This paper derives the necessity for path tracking problem. As a result, the
translational motion can be decoupled from the rotational. And states envoling
over different time scales can be regulated with different control loops. Thus,
the computational load can be reduced and the control horizon can be extended
without sacrificing tracking accuracy. To further mitigate the computational
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burden, The path integral control framework is incorporated into the model pre-
dictive control, where the control sequence is constantly optimized via parallel
sampling [6]. Moreover, a predictive output regulator is proposed to solve the
underactuated problem in lateral tracking. Simulation results show that the pro-
posed method reduces the computational complexity of nonlinear optimization
effectively and improves the steering smoothness without sacrificing tracking
accuracy.

2 Formulation of Path Tracking Problem

We consider the path tracking problem as the Point to Points problem (P2Ps).
The original P2Ps solve the path tracking problem in a single loop, which leads to
difficult bandwidth allocating and controllers tunning. In this paper, the coupling
P2Ps is decoupled as the simplified P2Ps problem through deriving a necessity
as shown in Fig. 1.

Fig. 1. Formulation of the P2Ps tracking problem.

In the coupling design with single-loop, path convergency needs the following
equations hold.

lim
t→∞ ‖x(t) − xref(t)‖ → 0, (1a)

lim
t→∞ ‖y(t) − yref(t)‖ → 0, (1b)

lim
t→∞ ‖θ(t) − θref(t)‖ → 0, (1c)

lim
t→∞ ‖v(t) − vref(t)‖ → 0. (1d)

In the necessity derivation, we prove that the last two equations, i.e., Eq. 1c
and 1d, are the necessary condition of the first two equations. Then the single
loop control scheme can be transformed into cascade control scheme.
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3 Decoupling Control Scheme

In this section, we propose a decoupling control scheme with the translational
regulator and the attitude regulator as shown in Fig. 2. Because any rotation
maneuver required to point the heading in the right direction or desired yaw
rate for translational control can be achieved quickly, the control authority of
the attitude regulator has a higher bandwidth than the translation regulator.

Fig. 2. Decoupling control scheme.

3.1 Translation Regulator

For a mobile vehicle with nonholonomic constraints, where the control actions
may affect not only the immediate result but also the next situation and, through
that, all subsequent results, which we called the delayed effect of the actions.
With a guidance law generating the transient profile, dynamics controller can
output more reasonable manipulation signal and provide smoother steering.

Control systems with long-term control horizon and short sampling step
bear significant computational burden. Due to decoupling design, cascade con-
trol scheme enable different sampling steps and control horizons between slow
translational regulator and attitude regulator. Although linear tracking law in
translational regulator reduces the computational burden [1], it needs explicit
method to handle the large deviation from reference path [5]. We propose to
formulate a nonlinear programming (NLP) for translational regulator as follows,

minimize φ(xT ) +
∫ T

t

(q(xt) +
1
2
uT

t Rut)dt. (2a)

subject to ẋ = f(xt,ut, t), (2b)

Assume the dynamics equation given in Eq. (2) can be transformed into
system which is affine in control input. Define the value function of system
states,

V (xt) = min
u

EQ[φ(xT ) +
∫ T

t

(q(xt) +
1
2
u(xt)TRu(xt))dt]. (3)
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The expectation of the second-order Taylor expansion of V (xt) with respect
to the state variable is as following,

EQ[V (xk + δ)] = V (xk) + Δ(fT + uTGT )Vx(xk). (4)

Under the small enough sampling step Δ, the Bellman principle can be used
to approximate the value equation as a recursive equation,

V (xk, k) = min
u

{Δ(q(xk) +
1
2
uTRu) + EQ[V (xk + Δf + ΔGu, k + 1)]}. (5)

Substituting the Eq. (4) into Eq. (5), the optimal control input can be derived
under unconstrained conditions. Then, calculating the limits respect to time, we
can derive the Hamilton-Jocabi-Bellman (HJB) equation as following,

Vt(xt, t) = q(xt, t) + f(xt, t)T Vx − 1
2
V T

x GR−1GT Vx. (6)

Normally, it is difficult to solve this backward PDE due to the curse of dimen-
sionality. The path integral control scheme provides an elegant method to derive
the optimal control distribution based on Feynman Kac lemma [3]. It allows to
represent the solution of the PDE as an exception of a stochastic function,

V (xt, t) = −λ log(EP[exp(− 1
λ

S(τ))]), (7)

where S(τ) is the state-dependent cost function. Supposing that we have known
the probability density function q∗(u|U, σ) of the optimal control distribution
Q

∗, the optimal control inputs at each sampling step t can be generated through
sampling from Q

∗.

u∗
t = EQ∗ [ût] ∀t ∈ 0, 1, . . . , T − 1. (8)

However, it’s inaccessible to explicitly provide the optimal control dis-
tribution because the precise environment models cannot be established for
autonomous vehicles. So we cannot directly sample from the optimal control
distribution. Importance sampling (IS) can be utilized to sample from another
known distribution QÛ,σ and monte carlo (MC) method can be utilized to pro-
vide the unbiased estimation of the optimal control sequence.

EQ∗ [ût] =
∫

q∗(u|U, σ)ûtdû

=
∫

w(u)q(u|Û , σ)ûtdû

= EQÛ,σ
[w(u)ût],

(9)

where w(u) = q∗(u|U,σ)

q(u|Û,σ)
is the IS weight.

Providing the optimal control distribution as follows [6],

q∗(u) =
1
η

exp(− 1
λ

S(u))p(u), η =
∫

exp(− 1
λ

S(u))p(u)du, (10)
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where p(u) = q(u|Ũ , σ) is the base distribution. Substituting Eq. (10) into IS
weight and abandoning the non-optimization elements, we can estimate the IM
weight as following,

w(u) =
exp(− 1

λS(u) − ∑T−1
t=0 (ût − ũt)T σ−1vt)∫

exp(
∑T−1

t=0 ((ût − ũt)T σ−1vt))q(u|Û , σ) exp(− 1
λS(u))

=
exp(− 1

λS(u) − ∑T−1
t=0 (ût − ũt)T σ−1vt)∫

q(u|Û , σ) exp(− 1
λS(u) − ∑T−1

t=0 (ût − ũt)T σ−1vt)

(11)

The computational cost evaluations of MPPI with NLP and single loop linear
MPC are provided in Table 1.

Table 1. Computational Cost Evaluation

Method Number of nonzeros in
Lagrangian Hessian

Execution time (s)

Decoupling (MPPI) 41 0.01+0.001

Decoupling (NLP) 439 0.0209 + 0.001

L-MPC (Single loop) 610 0.032

3.2 Attitude Regulator

In the decoupled cascade control scheme, the master controller, i.e., translational
regulator, provides the set point for the slave controller (attitude regulator).
Then the attitude regulator manipulates the steering mechanism to guide the
vehicle to achieve desired yaw rate and sideslip angle. Methods that do not
consider the side-slip angle probably lead to non-zero steady-state yawing error
and poor performance when driving in the tight radii curves [2]. The tangent
direction of the reference path is commonly chosen as the desired heading angle
of the attitude controller in these methods. We take the side-slip angle into
consideration through designing a MPC based output regulator and generate
the transient profile for output regulator to improve the transient response and
the driving comfort. The finite-time optimal control problem is transformed into
a standard quadratic program (QP).

4 Result

J-shape path consisting of a straight line with a length of 70 m and an arc with
a radius of 47.8 m is fed as the reference path. The vehicle is controlled at a
speed of 36 km/h. Figure 3 shows the simulation results of proposed decoupling
ORMPC (D-ORMPC), compared with Error-based MPC (E-MPC) and its vari-
ants (PMPC) with a preview item of path curvatures.
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Fig. 3. Simulation results in J-shape path. (a) Steering rate. (b) Lateral jerk. (c) Lateral
tracking error. Simulation results of steering rate and lateral jerk show that our method
achieves more elegant steering without sacrificing tracking accuracy.

Fig. 4. (a) Transient profile generated by NLP in Sinusoidal path at one sampling
interval. (b) Transient profile generated by MPPI. (c) Solving time and tracking error
comparisions in different driving scenario.

More comparisions about MPPI with NLP are presented in Fig. 4. In all four
driving scenarios, two controllers share the same control parameters, which prove
the proposed scheme achieves good parameters adaptability. The results show
that the tracking performance of MPPI deteriorates in tight radii curves, which
is mainly because it does not sample sufficiently in action space and there is a
bias in the estimation of state value.
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Abstract. This paper presents a novel Learning-based Model Predic-
tive Contouring Control (L-MPCC) algorithm for evasive manoeuvres at
the limit of handling. The algorithm uses the Student-t Process (STP) to
minimise model mismatches and uncertainties online. The proposed STP
captures the mismatches between the prediction model and the measured
lateral tyre forces and yaw rate. The mismatches correspond to the pos-
terior means provided to the prediction model to improve its accuracy.
Simultaneously, the posterior covariances are propagated to the vehicle
lateral velocity and yaw rate along the prediction horizon. The STP pos-
terior covariance directly depends on the variance of observed data, so
its variance is more significant when the online measurements differ from
the recorded ones in the training set and smaller in the opposite case.
Thus, these covariances can be utilised in the L-MPCC’s cost function
to minimise the vehicle state uncertainties. In a high-fidelity simulation
environment, we demonstrate that the proposed L-MPCC can success-
fully avoid obstacles, keeping the vehicle stable while driving a double
lane change manoeuvre at a higher velocity than an MPCC without
STP. Furthermore, the proposed controller yields a significantly lower
peak sideslip angle, improving the vehicle’s manoeuvrability compared
to an L-MPCC with a Gaussian Process.

Keywords: Learning-based model predictive control · Student-t
process · Evasive manoeuvre · Obstacle avoidance · Limit of handling

1 Introduction

A crucial safety element of automated driving is to prove the capacity to avoid
obstacles at the limit of handling. A common solution is based on Nonlinear
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Model Predictive Control (NMPC), which optimises the steering angle and the
longitudinal force of a vehicle. However, in such scenarios, where longitudinal
and lateral dynamics are coupled, the uncertainties and inaccuracies due to
the tyre’s non-linear behaviour pose a particularly challenging problem [1,2].
Therefore, we focus on developing a Student-t Process (STP) combined with a
Model Predictive Contouring Control (MPCC), which improves the prediction
model, reducing the tyre model mismatches and minimising the vehicle lateral
state uncertainties. An L-MPCC based on a sparse Gaussian Process (GP) has
recently been proposed for lap-time optimisation [4]. It leverages the capacity of
the GP to predict the mismatches between the prediction model and the mea-
sured vehicle states: longitudinal and lateral velocity and yaw rate. Furthermore,
the vehicle is constrained inside the track, tightening the track boundaries with
the vehicle position uncertainty. The latter is first computed as the GP’s pos-
terior covariance, then open-loop propagated along the prediction horizon using
successive linearisation similar to an Extended Kalman Filter (EKF) [4]. How-
ever, the propagated position uncertainty can increase exponentially over the
prediction horizon, strongly limiting or eliminating the allowable driving area.
This results in a very conservative controller. A possible alternative is to con-
sider the uncertainty in the vehicle velocity states rather than in the vehicle
position [3]. For instance, the NMPC cost function can be extended by the vehi-
cle lateral velocity and yaw rate variance. Thus, the latter can be minimised to
reduce the operating time in the unstable region of the vehicle. However, these
variances are computed and propagated by linearising the prediction model with
a constant tyre model uncertainty optimised offline. This simplification does not
consider the remarkably different accuracy of the tyre model in different operat-
ing regions, and therefore, it does not reduce the prediction model mismatches
in all regions.

We propose an L-MPCC based on an STP, which predicts the mismatches
between the prediction model and the vehicle yaw rate and the lateral tyre forces
measured by intelligent (force sensing) bearings [5]. The proposed controller
minimises the vehicle’s operating time at unstable working points, thanks to the
STP posterior covariance of the tyre forces. The latter ones are used to compute
and propagate the vehicle lateral state uncertainties along the prediction horizon.

The contributions of this paper are threefold. The first is the development
of the L-MPCC based on an STP, which directly reduces the prediction model
mismatches in the tyre model rather than in the vehicle velocity states typ-
ically used [4]. This results in successfully performing evasive manoeuvres at
8.5% higher velocity than the current state-of-the-art MPCC [1]. The second
contribution is related to the STP, which improves the outlier resistance of the
state-of-the-art GP. Furthermore, the STP posterior covariance depends on the
observed measurements, providing a higher variance than a GP for operating
points different than in the training set and a lower one in the opposite situ-
ation [8]. The third contribution is improving the vehicle stability by reducing
the sideslip angle peak of a 76% during an evasive manoeuvre, thanks to the
reduction of the model mismatches and the minimisation of the vehicle lateral
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state uncertainties. Thus, the controller decreases the time the vehicle spends in
operating points close to the vehicle’s handling limits.

2 Learning-Based Model Predictive Contouring Control

The proposed L-MPCC controller is based on an MPCC for obstacle avoidance at
the limit of handling [1]. The prediction model is a nonlinear single-track vehicle
model. The Cartesian reference system describes the vehicle kinematics, as the
contouring formulation requires. The vehicle dynamics, the longitudinal (vx) and
lateral (vy) velocity, and the vehicle yaw rate (r) are described as follows:

⎧
⎪⎨

⎪⎩

v̇x = (Fx, F cos(δ)−(Fy, F+ΔFy, F ) sin(δ)+Fx,R−Fdrag)
m + (r + Δr) vy

v̇y = (Fx, F sin(δ)+(Fy, F+ΔFy, F ) cos(δ)+Fy, R+ΔFy, R)
m − (r + Δr) vx

ṙ = ((Fy, F+ΔFy, F ) cos(δ)lf−(Fy, R+ΔFy, R)lr+Fx, F sin(δ)lf )
Izz

(1)

where the road-wheel angle (δ) and the longitudinal force at the front (Fx, F )
and rear axle (Fx, R). The lateral front and rear tyre forces, respectively Fy, F

and Fy, R, are computed using validated Fiala tyre model [2]. However, during an
evasive manoeuvre, the prediction model inaccuracies can increase significantly,
so the model mismatches of the front (ΔFy, F ) and rear (ΔFy, R) lateral tyre
forces and the yaw rate (Δr) are computed by an STP.

The proposed L-MPCC cost function is responsible for ensuring path track-
ing, maintaining the physical feasibility of the control inputs, prioritising obstacle
avoidance in case of collision risk, and minimising the uncertainties of the pre-
diction model, thus limiting the operating time in nonlinear regions. The cost
function (J) is defined as follows:

J =
N∑

i=1

(
NObs∑

j=1

(
qeObs,ji

e2Obs,ji

)
+

NEdg∑

k=1

(
qeEdg,ki

e2Edg,ki

)
+ qδ̇ δ̇i

2
+ qḞx

Ḟ 2
x, i

+ qeCon
e2Con,i + qeLag

e2Lag,i + qeV el
e2V el

)

+
NProb∑

j=1

(
qσr

σ2
r,j + qσvy

σ2
vy,j

)

(2)
where N is the length of the prediction horizon, NObs and NEdg are respectively
the number of obstacles and road edges, and qeObs

, eObs, qeEdg
and eEdg are

used to prioritise obstacle avoidance and keeping the vehicle away from the road
edges in case of emergency [1]. The tracking performance is ensured by the
minimisation of the contouring (eCon), lag (eLag) and velocity eV el errors with
their respective cost terms, i.e. qeCon

, eLag, qeV el
. The lateral velocity and yaw

rate uncertainties are minimised through the σvy
and σr parameters of the cost

function. The σvy
and σr are propagated open-loop, so they can increase rapidly,

potentially overpowering the other elements of the cost function. To avoid the
problem, they are propagated not over the entire prediction horizon, N = 30, but
only for the reduced horizon NProb = 20 [4]. Furthermore, the cost parameters,



L-MPCC for Evasive Manoeuvres 635

qσvy
and qσr

, are tuned not to exceed the cost related to obstacle avoidance
prioritisation. Therefore, the proposed controller pushes the vehicle to work at
operating points close to normal driving. However, it allows the vehicle to drive
at operating points close to the handling limits if it helps avoid a collision.

3 Student-T Process and Uncertainty Propagation

This study uses an STP as a stochastic process with a Laplace inference to
estimate model mismatches and uncertainties for two reasons. First, the Student-
t distribution allows the algorithm to define the level of Kurtosis, reducing the
influence of the outliers and improving the accuracy of the predictions [7,9].
The robustness to outliers is an essential property for L-MPCC, which relies on
online measurements with sensor noise. For instance, a single outlier can highly
influence the GP prediction; pushing the posterior means far away from the
level of the other observations, which is not the case in an STP [9]. The second
reason is that the STP posterior covariance directly depends on the observed
measurements and not only on the location of the observed measurements. This
implies that the covariance increases when the measurements vary more than
expected, i.e., a higher difference between training and test sets, and vice-versa
decreases when the difference is lower [7,8]. Once again, this is an essential
property for an L-MPCC, which can work in conditions with a high discrepancy
from the training scenario. Regarding the kernel selection, this work opts for the
automatic relevance determination Matérn 5/2 function due to its generalisation
capabilities and interpretability properties. The STP is implemented using the
GPML Matlab Code version 4.2 [6].

We predict the ΔFy, F , ΔFy, R and Δr model mismatches, rather than the
errors in vx and vy as usually done in literature [4] because it allows the reduc-
tion of the mismatches in a proactive way. It also directly targets the source of
the errors, i.e., the tyre forces, and not the states that depend on them. This
is possible thanks to the availability of tyre lateral forces at the front and rear
axle, measured by the intelligent bearings [5], the vehicle yaw rate and the con-
trol inputs Fx and δ. Thus, we assume that the discrepancies are independent of
the vehicle position [4] and that the velocity states, not measurable through the
standard sensor setup for passenger vehicles, are entirely dependent on the tyre
forces. The training data is derived from the algebraic difference between the
measurements and the nominal model predictions. The training set is composed
of 2 double lane changes at respectively 55 km/h and 80 km/h, and a double
lane change with collision avoidance prioritisation at 55 km/h. The manoeuvres
are selected to identify the mismatches in the linear and nonlinear regions of
the vehicle. The test set comprises a double lane change at 60 km/h and the
same manoeuvre with collision prioritisation. Despite the high prediction model
accuracy and the reduction of the model mismatches, some unmodeled effects
can still influence the prediction model. These are captured by the STP poste-
rior covariance for the front and rear lateral tyre force, respectively σFy, F

and
σFy, R

. Thus, the tyre forces are not only evaluated as a single point but also as a
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Fig. 1. States and control inputs in a double lane change.

distribution [3]. The STP variance and degrees of freedom are transformed and
simplified into a Gaussian variance to be able to propagate it through the pre-
diction horizon and relate them to the lateral states related to vehicle stability,
i.e. vy and r, using a procedure similar to an EKF [3,4].

4 Results

Figure 1 shows the performance of the evaluated controllers in a double lane
change with collision avoidance prioritisation at 65 km/h. Figure 1a shows that
only the learning-based controllers can successfully avoid the two obstacles and
stay inside the road track. Vice versa, the MPCC baseline [1] leaves the track on
the right side at 130 m. The improvement is due to reduced model mismatches in
the L-MPCC. For instance, the proposed L-MPCC+STP reduces the root mean
square of the Fy, F , Fy, R and r mismatches by respectively 33.14%, 24.85% and
60.61% compared to the MPCC and further 20.14%, 11.85% and 61.33% with
respect to the L-MPCC+GP. This proves the importance of implementing an
STP rather than a GP to predict the model mismatches. The enhanced perfor-
mance of the proposed controller is also visible from the reduction of the vehicle
lateral velocity peak; see Fig. 1c. Furthermore, the L-MPCC+STP can reduce the
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lateral velocity and, consequently, the sideslip angle peak by 76%, maintaining
an overall higher velocity during the manoeuvre than the L-MPCC+GP. Fig-
ures 1c and 1f show that the vehicle sideslip angle reduction and the increased
operating time in the stable vehicle behaviour are not only due to the lower
model mismatches but also to the reduced uncertainties for the vehicle lateral
states. However, it has a lower vehicle longitudinal acceleration when the obsta-
cle avoidance manoeuvre is over to achieve the desired velocity, Fig. 1e.

5 Conclusions

This paper presented a novel Learning-based Model Predictive Contouring Con-
trol based on a Student-t Process for evasive manoeuvres with an online min-
imisation of model mismatches and uncertainties. In a high-fidelity simulation
environment, we demonstrate that our proposed controller successfully avoids
obstacles, keeping the vehicle stable while driving a double-lane change manoeu-
vre at a higher velocity compared to a non-learning-based baseline. Furthermore,
the proposed controller reduces the peak of vehicle sideslip angle by 76%. The
performance enhancement is due to the properties of the Student-t Process,
which can further reduce the prediction model mismatches and better capture
the vehicle state uncertainties. Future work involves the proposed controller
implementation on rapid prototyping hardware to prove its real-time capability.
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Abstract. We present an approach for predictive braking of a four-
wheeled vehicle on a nonplanar road. Our main contribution is a method-
ology to consider friction and road contact safety on general smooth road
geometry. We use this to develop an active safety system to preemptively
reduce vehicle speed for upcoming road geometry, such as off-camber
turns. Our system may be used for human-driven or autonomous vehi-
cles and we demonstrate it with a simulated ADAS scenario. We show
that loss of control due to driver error on nonplanar roads can be miti-
gated by our approach.

Keywords: Active Safety Systems · Predictive Control · Road Models

1 Introduction

Nonplanar road geometry plays a major role in the behaviour and safety of
ground vehicles that operate in such environments. Operating limits due to road
adherence change while new effects appear, such as losing contact when cresting
a hill. This paper develops an approach to consider these effects generally on
a smooth nonplanar road surface. We develop a novel predictive safety system
algorithm for safe vehicle operation on nonplanar road geometry. We show that
our safety system maintains safe vehicle speed on a simulated off-camber turn.

This manuscript addresses gaps in current ADAS systems in the treatment
of road geometry. Namely, most solutions are designed for flat roads [6,8].
Approaches that consider more complicated geometry limit their considerations
to road curvature, slope, and bank [1,7]. These variables are not sufficient to
describe roads with curved cross-section and subsequent analysis of vehicle safety
is simplified in existing literature. The work in [1] ignores changes in vehicle ori-
entation due to road slope and bank when assessing rollover and friction limits.
Furthermore, centripetal effects, such as a vehicle driving over a crest or off-
camber turn, are absent. The authors of [7] consider changes in the components
of gravity on a vehicle due to slope but not bank angle, and weight distribution
of the vehicle is not considered for rollover prevention.
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This paper presents a new active safety system for predictive braking on
nonplanar roads which addresses these shortcomings in a systematic and general
manner applicable to general, smooth nonplanar road surfaces.

2 Vehicle Operating Limits

Fig. 1. Parametric road surface xp. Coordi-
nates s, y, and θs describe vehicle pose relative
to the surface.

We consider three operating lim-
its for a single-body vehicle on a
smooth road surface: Tire friction,
road contact, and velocity continu-
ity. The last refers to the inability
instantly change vehicle speed, and
is necessary to anticipate vehicle
behaviour on variable road geome-
try. To consider road geometry in a
general sense we use the road model
developed in [2], which we intro-
duce and use next (Fig. 1).

2.1 Nonplanar Road Model

The paper [2] extends the approach of modeling a car as a body tangent to and
in contact with a surface to a general parametric surface. The road surface xp is
parameterized by coordinates s and y, which then describe a vehicle positioned
at normal offset n from the road. Vehicle orientation is described by the angle θs

between the longitudinal vehicle axis eb
1 and the s tangent vector of the surface:

xp
s . Surface coordinates may be chosen flexibly, such as to follow the center of a

lane. The main results hold for any surface parameterization and are:
[
ṡ
ẏ

]
= (I − nII)−1 J

[
vb
1

vb
2

] [−ωb
2

ωb
1

]
= J−1II (I − nII)−1 J

[
vb
1

vb
2

]
. (1a)

θ̇s = ωb
3 +

(xp
ss × xp

s) · ep
n

xp
s · xp

s
ṡ +

(
xp

yy × xp
s

) · ep
n

xp
s · xp

s
ẏ (1b)

Here vb
i and ωb

i are the ISO body frame components of a vehicle’s linear and
angular velocity. I and II are the first and second fundamental forms of xp, with
partial derivatives of xp denoted by subscripts. J is the Jacobian between the
body frame and xp, used here in the form of a Q-R decomposition:

θp = − sin−1

(
xp

s · xp
y

‖xp
s‖ ‖xp

y‖
)

Q =
[ ‖xp

s‖ 0
− sin(θp)

∥∥xp
y

∥∥ cos(θp)
∥∥xp

y

∥∥
]

(2a)

J =
[
xp

s · eb
1 xp

s · eb
2

xp
y · eb

1 xp
y · eb

2

]
= Q

[
cos θs − sin θs

sin θs cos θs

]
. (2b)
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The Q-R form for J simplifies expressions in this manuscript, while Eq. (1)
captures nonplanar behaviour. Coriolis forces and moments on the vehicle will
follow from part of the Newton Euler equations:

F b
1 = m

(
v̇b
1 − ωb

3v
b
2

)
F b
2 = m

(
v̇b
2 + ωb

3v
b
1

)
F b
3 = m

(
ωb
1v

b
2 − ωb

2v
b
1

)
(3)

Kb
1 = Ib

1ω̇
b
1 +

(
Ib
3 − Ib

2

)
ωb
2ω

b
3 Kb

2 = Ib
2ω̇

b
2 +

(
Ib
1 − Ib

3

)
ωb
3ω

b
1 (4)

vb
3 = 0 per the road model [2] and thus is not present. For motion planning

purposes, we will describe vehicle velocity using signed speed v, sideslip angle β,
and rates of change of θs and β proportional to v as follows:

vb
1 = v cos(β) vb

2 = v sinβ θ̇s = κsv β̇ = κβv (5)

Expressions for v̇b
1 and v̇b

2 follow via standard calculus. v2 and v̇ will be decision
variables in our safety system, with s, y, θs, β, κs, and κβ treated as parame-
ters. These choices will allow our safety system to be implemented as a convex
optimization problem. Another result is an expression for ωb

3 from θ̇s using (1):

ωb
3 = κsv − (xp

ss × xp
s) · ep

n

xp
s · xp

s
ṡ −

(
xp

yy × xp
s

) · ep
n

xp
s · xp

s
ẏ (6)

2.2 Friction Cone Constraint

Using (3), constraint (1a), and (5), the net vehicle normal force is:

F b
3 = mv2

[
cos(β + θs) sin(β + θs)

]
Q−1II (I − nII)−1 Q

[
cos(β + θs)
sin(β + θs)

]
(7)

F b
3 is linear in v2, meaning the net normal tire force (F t

3) is affine in v2 for a
given s, y, and θs as gravity forces are constant (found in [2]) and aerodynamic
forces are often approximated as linear in v2.

Linear expressions for F b
1 and F b

2 follow from the same equation blocks used
to derive (7) and are not expanded here. As a result, net longitudinal and lateral
tire forces F t

1 and F t
2 are affine in v̇ and v2 by the same assumptions. The

complete friction cone constraint is then:
∥∥F t

1 F t
2

∥∥
2

≤ μF t
3 (8)

where μ is a road adherence parameter. This constraint is a convex second order
cone constraint as the tire forces are affine functions of v̇ and v2.
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2.3 Road Contact Constraint

Fig. 2. Wheelbase dimensions used for
weight distribution.

Enforcing road contact requires model-
ing weight distribution, which requires
modeling the roll and pitch moment on
the vehicle. These follow from (4), where
the ωb

1,2,3 coefficients are linear in v due
to (1a) and (6). For ω̇b

1,2 we use the
approximation from [2] that[−ω̇b

2

ω̇b
1

]
≈ J−1II (I − nII)−1 J

[
v̇b
1

v̇b
2

]
.

(9)
Expansion of (4) using (1), (5), (6), and (9) provides expressions for roll

and pitch moments Kb
1 and Kb

2. These are linear in v2 and v̇ and omitted for
brevity. For weight distribution we consider moments from tire normal forces.
The dominant source of other moments are longitudinal and lateral tire forces,
which produce moments about the height of the center of mass h. Moments due
to tire normal forces KN

1 and KN
2 are then:

KN
1 = Kb

1 − F t
2h KN

2 = Kb
2 + F t

1h (10)

These are affine in v2 and v̇, and may be extended to include v2 terms for
aerodynamic moments. To model the forces on individual tires, we use the load-
transfer model of [4] with wheelbase dimensions in Fig. 2:

Nf =
F t
3 lr − KN

2

lr + lf
Nr =

F t
3 lf + KN

2

lr + lf
δ =

KN
1

2
(
t2f + t2r

) (11a)

Nfr = Nf − δtf Nfl = Nf + δtf Nrr = Nr − δtr Nrl = Nr + δtr (11b)

The four tire normal forces Nfr (front right) through Nrl (rear left) are affine
in v2 and v̇, meaning that constraining them to be positive to avoid loss of road
contact is a convex constraint:

Nfr ≥ 0 Nfl ≥ 0 Nrr ≥ 0 Nrl ≥ 0 (12)

2.4 Velocity Continuity Constraints

To develop our safety system, friction cone and road contact constraints are
introduced at fixed points in space in a multistage control problem presented
next. These stages must be connected together with velocity constraints relating
v2 and v̇ at adjacent stages to capture vehicle speed changing over time. We use
a midpoint integration scheme similar to [5]:

(
v2

)k+1
=

(
v2

)k
+

1
2

(
v̇k + v̇k+1

) (
lk+1 − lk

)
(13)

Here superscript k denotes the stage of the control problem, and lk is the arc
length traveled by a vehicle to reach stage k.
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3 Active Safety System

min
(v2)k,v̇k

N−1∑
k=0

∣∣∣(F t
1

)k − B
∣∣∣ (14a)

subject to Eq. (8) ∀ k (14b)
Eq. (12) ∀ k (14c)
Eq. (13) ∀ k (14d)(
v2

)0
= (v0)

2 (14e)

We develop an active safety sys-
tem with safety limits encoded
by constraints (8), (12), and (13).
These constraints are convex in v2

and v̇ for fixed s, y, θs, β, κs, and
κβ , which we respectively make
decision variables and parameters
for optimization problem (14). We
introduce stages 0 through N − 1
with decision variables and parameters present at each stage. (13) constrains the
speed between adjacent stages, while (8) and (12) constrain individual stages.
We introduce parameter v0 for initial speed of the vehicle, and B for a nominal
brake force input. We use the objective function (14a) which is the total absolute
difference between B and the longitudinal tire force at each stage.

The main output of this optimization problem is F t
1 −B at each stage, which

informs how much tire forces must change relative to B for continued safe vehicle
operation. As an example application, B could be a pedal request from a driver
and F t

1 − B being nonzero indicates active safety measures must be taken, such
as an automated brake procedure. Minimizing F t

1 −B corresponds to intervening
only when necessary, such as if a driver fails to slow down for an off-camber turn.

We note that the core novelty of this safety system is the nonplanar road
safety constraints. These are not limited to speed-limiting applications, and may
be used for active steering, suspension, and powertrain systems as well.

4 Simulation Environment

We tested our active safety system using a simulated lane-keeping scenario on a
nonplanar road surface. We used a nonplanar two-track vehicle model with sus-
pension motion based on [2] with a combined-slip Pacejka tire model [3]. Driver
behaviour was simulated with a PI steering controller. Brake actuators and slip
control were simulated with a proprietary Brembo model. We implemented our
safety system (14) with parameters for each stage corresponding to following
the center of a lane, with brake force targets handled by a nonplanar electronic
brakeforce distribution (EBD) algorithm described here:

The core component of EBD is distributing a target brake force and moment
over the four wheels of a car. This is fundamentally limited by the road adherence
of each tire and any limits of the brake actuators. We consider weight distribu-
tion effects in a general manner by careful use of accelerometer data. The raw
output of any accelerometer is proper acceleration, which is related to coordinate
acceleration in an inertial frame via gravitational acceleration g.

aproper = acoordinate − g =
1
m
F b − g (15)
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The far-right expression follows from Newtonian mechanics, telling us the
accelerometer measures every force but gravity. We use this to estimate tire
force components directly, which are used to compute the net normal force and
moments in (11). The four normal forces then inform our EBD algorithm, which
distributes target net brake force and moment over the four wheels.

Two test cases were considered: First, impulsive brake application after an
initial delay, modeling a delayed driver. Second, driver brake application was
removed and the test repeated with the active safety system present. All simula-
tions used the same steering control, brake control, vehicle simulator, and road
surface: a u-turn with a 30% off-camber bank.

(a) No safety system and delayed driver (b) Safety system active

Fig. 3. Vehicle trajectories on nonplanar u-turn, starting from bottom left

5 Results and Conclusion

Closed loop vehicle trajectories with and without safety system are shown in
Fig. 3. As evidenced in Fig. 3a, a proactive driver can maintain control of the
vehicle, but must brake almost immediately to follow the lane. With the non-
planar safety system (Fig. 3b) no longitudinal driver intervention is necessary.
However, implementation of the same system with a planar road model results
in loss of control. Our safety system mitigates loss of control of a vehicle using
knowledge of the road surface and intended vehicle motion.
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Abstract. Global path planning for autonomous mining trucks in
shovel-loading areas requires path optimality and high computational
efficiency. However, generating qualified paths for the loading process is
more difficult for conventional methods under accurate final pose con-
straints. Furthermore, due to large-scale maps with variable obstacle dis-
tribution, considerable computation time needs to be allocated for path
planning when using conventional methods. To address this problem, a
novel Variable-Step-Length Hybrid A* based on Dichotomy Optimiza-
tion (DO-VSLHA*) algorithm is proposed to generate obstacle-free paths
considering mountain morphology and vehicle constraints while reduc-
ing computation time. To avoid U-shape obstacles and unnecessary node
search, the clustering method is applied to the grid map to generate con-
vex polygon obstacles. Subsequently, with joint sampling of step length
and steering angle, we put forward dichotomy optimization based on the
cost function in order to generate near-optimal nodes in each loop of
the node expansion process, thus reducing the overall computing time of
path planning. Field experiments are carried out on autonomous mining
trucks at an open-pit mine, validating the improvement in effectiveness
and computational efficiency of our method compared to conventional
methods.

Keywords: mining truck · path planning · Hybrid A star

1 Introduction

The emergence of autonomous mining trucks (AMTs) shows great promise in
addressing safety hazards and the aging workforce [1]. However, the deployment
of AMTs in typical mining operations is still challenging [2]. Shovel-loading oper-
ation is one of the most complex scenarios in open-pit mines, which significantly
influences the ore production efficiency [3]. To ensure the safety and efficiency
of the loading process, the loading position and orientation of AMTs are strictly
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constrained [4]. Under this restriction, the global path planning of AMTs is cru-
cial to generate an obstacle-free reference path with accurate final orientation
for subsequent motion control [5].

The global path planning of AMTs in the shovel-loading area encounters two
primary challenges. Firstly, the global reference path must satisfy non-holonomic
constraints of AMTs and final pose constraints to ensure the safety of the loading
process. Thus, some conventional methods are not suitable for AMTs due to their
neglection of final orientation and vehicle kinematics, such as A* [6] and Rapidly-
exploring Random Tree [7]. In addition, the irregular massif and scattered rocks
form various obstacle distributions in large-scale shovel-loading areas. Under this
circumstance, conventional methods that adopt a fixed step exhibit a dramatic
decrease in search efficiency and path quality.

At present, global path planning for autonomous mining trucks mainly adopts
Hybrid A* [8] and its variants, which utilize motion primitives and Reeds-Shepp
curve to satisfy non-holonomic and final pose constraints respectively. In [9],
Hybrid A* considering tire cost is designed based on a high-precision digital map
for global path planning of AMTs. In [10], the dichotomy process is introduced
to Hybrid A* to determine a near-optimal steering angle in the node expansion
stage, thus improving the smoothness of the global reference path. In [11], a
modified Hybrid A* using different curvature in forward and backward motion
primitives is proposed to generate a global feasible path for subsequent trajectory
optimization. However, the state space of Hybrid A* increases significantly when
encountered with large-scale areas, leading to unacceptable computation time.
To tackle this problem, prior research has proposed the concept of variable step
length. In [12], a variable-step-length A* based on an improved cost function is
proposed to reduce the overall computation time. In [13], a step selection strategy
based on dangerous area construction is proposed for sparse A*. Nevertheless,
these approaches determine step length from discrete value sets based on simple
rules, thus lacking the adaptability required for the intricate environment in
shovel-loading scenarios.

In summary, the strict restrictions on the final pose and complex environment
result in performance degradation of conventional methods. To deal with these
challenges, this paper focuses on improving computational efficiency and path
quality of global path planning. The contribution of the paper lies in proposing
a novel joint dichotomy optimization method to determine near-optimal step
length and steering angle in the node expansion stage of Hybrid A*. The gener-
ated near-optimal nodes typically have lower costs, contributing to the improve-
ment of computation time and path quality of global path planning.

2 Methodology

Our proposed method contains the map pre-processing stage and the path plan-
ning stage. The overall framework of the proposed DO-VSLHA* is shown in
Fig. 1.
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Fig. 1. The overall framework of the proposed DO-VSLHA*. The original grid map is
pre-processed to eliminate U-shape obstacles which typically lead to unnecessary node
exploration. The obstacle grids are clustered into groups and transformed into convex
polygons, forming a new map for collision detection in the path planning stage. In each
node expansion iteration of the path planning stage, joint sampling on step length
and steering angle is applied to generate the initial successor nodes. Subsequently,
the cost of each initial node is updated based on collision detection and heuristic
function. Then, a dichotomy optimization is proposed to determine near-optimal step
length and steering angle based on dichotomy optimization. The near-optimal nodes
are subsequently generated and added to the open set of Hybrid A*.

In map pre-processing, DBSCAN [14] is applied to cluster obstacle grids into
different groups. The eps-neighbourhood Nε(·) and core object in DBSCAN is
defined as follows:

Nε(p) = {q ∈ G|dist(p, q) < ε} (1)

p is

{
core object if ‖Nε‖ >= Minpts

others if ‖Nε‖ < Minpts
(2)

where p and q represent the obstacle grid. dist(·) represents the distance function
and adopts Euclidean distance in our case. Minpts and ε represent the number
threshold of obstacle grids and distance threshold respectively. In our case, we
let {

ε = w + 2d

Minpts = 2
(3)

where w represents the width of ATMs and d represents the safety margin on
each side. After clustering, the convex hull algorithm is applied to every cluster
to generate a convex polygon. Ray-casting method is utilized to filter invalid
convex polygons when the loading point and starting point are located inside
them. With map pre-processing, U-shape obstacles are eliminated, thus avoiding
unnecessary node searches.

In the path planning stage, the node expansion of Hybrid A* is described as
follows ⎡

⎣xs

ys

θs

⎤
⎦ =

⎡
⎣xc

yc

θc

⎤
⎦ + d · L

⎡
⎣cos θc

sin θc
tan δ
lw

⎤
⎦ (4)
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where Nc(xc, yc, θc, dc) and Ns(xs, ys, θs, ds) represent the state of the current
node and the successor node respectively. d ∈ {−1, 1} denotes the forward or
backward motion and lw denotes the wheelbase of AMTs. L and δ denote the step
length and steering angle. By determining near-optimal L and δ, successor nodes
with less cost are generated to accelerate the overall node expansion process.

A joint optimization of step length and steering angle based on dichotomy
is proposed to generate near-optimal nodes. The pseudo-code of the dichotomy
optimization is shown in Algorithm 1. A joint sampling on step length and
steering with a given discrete interval is performed to generate an initial successor
set. Then, we generate near-optimal nodes with a given number of iterations. In
each iteration, the node with the least cost and its corresponding step length sm

and steering angle δm are selected. Then, the adjacent value of step length and
steering angle can be found, denoted as sl, sr, δl, δr. Subsequently, we generate
four new nodes based on the mean value of these parameters, as shown in line
11 and 12 in Algorithm 1. The node with the least cost among the generated
nodes is chosen to generate a new node with nm. By repeating the dichotomy
process, the step length and angle will converge to a near-optimal value, and
these near-optimal nodes will be added to the initial node set.

Algorithm 1. Dichotomy(Nodes)
Input: Node list Nodes ← ∅
Output: Node list Nodes

for i ← 1 to MaxAngle do
for j ← 1 to MaxStep do

n ← CreateNode(i × AngleSize, j × StepSize); Nodes.add(n)
end for

end for
for i ← 1 to Num do

nm ← MinCostNode(Nodes); sm ← Step(nm) ;δm ← Angle(nm)
sl, sr ← NeighbourStep(sm); δl, δr ← NeighbourAngle(δr)
nll ← CreateNode( δl+δm

2
, sl+sm

2
);nlr ← CreateNode( δl+δm

2
, sm+sr

2
)

nrl ← CreateNode( δm+δr
2

, sl+sm
2

);nrr ← CreateNode( δm+δr
2

, sm+sl
2

)
nt ← MinCostNode(set(nll, nlr, nrl, nrr)); st ← Step(nt) ;δt ← Angle(nt)
nnew ← CreateNode( δm+δt

2
, sm+st

2
)

Nodes.add(nnew);
end for
return Nodes

3 Experiments

To validate our proposed method, we conduct field tests on an AMT at an
open-pit mine, as shown in Fig. 2a. The original grid map is generated according
to a 913 m×1037 m shovel loading platform with the resolution of 1 m for path
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planning, as shown in Fig. 2b. We compared our method with Hybrid A* and D-
HA* [10]. Path length L, smoothness Φ and computation time T are calculated
to verify the effectiveness of path planning methods. Smoothness Φ is calculated
with Φ =

∑N
i=1 |φi − φi−1|, where N represents the number of path points and

φ represents yaw angle of each path point.

(a) Shovel loading platform (b) Grid map (c) Experimental results

Fig. 2. The shovel-loading scenario, grid map, and experimental results of field tests.

Results are shown in Fig. 2c and Table 1. Our method outperforms con-
ventional methods in path length, smoothness, and computation time. Unlike
Hybrid A* using fixed parameters in node expansion, the proposed dichotomy
optimization generates near-optimal nodes with optimized exploration parame-
ters, thus reducing the number of iterations and the overall computation time. In
addition, compared to D-HA* which only optimizes steering angle by dichotomy
process and faces more computation burden, our method jointly optimizes step
length and steering angle, thus improving the path quality and overall compu-
tational efficiency.

Table 1. The comparison results between our proposed method and others.

Method L (m) φ (rad) T (s)

Hybrid A* 610.89 22.08 50

D-HA* 625.58 24.22 105

DO-VSLHA* 591.43 5.01 24.60

4 Conclusion

This paper presents a novel variable-step-length Hybrid A* based on dichotomy
optimization which jointly optimizes step length and steering angle and gener-
ates near-optimal nodes in the node expansion stage. The experiment demon-
strates that our proposed method outperforms other conventional methods in
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computation time and path quality, indicating better adaptability in complex
environments at open-pit mines.
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Abstract. This paper deals with a study to construct a road friction characteristic
database as the first step in building a system to estimate road friction charac-
teristics ahead, which is one of the major issues in traffic safety. To achieve this
goal, we proposed a new method that can continuously measure the peak µ in the
µ-s characteristic and showed the measurement results on different road surfaces.
Based on these results, in this paperwemeasure the friction characteristics of snow
and ice surfaces at a well-maintained test site and present the continuousµ-s char-
acteristics on the surfaces and the peak µ regions on each surface. Furthermore,
measurements are also performed on ordinary roads under snowy conditions, and
a comparison with the results from the proving ground, it is shown that we need
to examine the dynamics of the µ-s characteristics.

Keywords: Road friction · Breaking force ·Measurement · Tire characteristics

1 Introduction

In recent years, various ADAS have been developed to ensure road traffic safety, and to
further promote these effects, the effect of autonomous driving is expected in the next
stage. Currently, various sensing systems and algorithms for safety management have
been improved one after another from the viewpoint of reducing accidents, reducing
the burden on drivers, and improving reliability, compared to when ADAS was first
introduced, and it is believed that the effectiveness of safety support has been greatly
improved. For these various safety systems to function effectively, it is important to
fully understand the friction characteristics of the road surface, which is a prerequi-
site for the control systems to function effectively. Road surface friction characteristics
generally vary greatly depending on road conditions, weather, temperature, region, etc.,
and the friction coefficient of road surfaces that ordinary vehicles face varies greatly
from approximately 0.15 to approximately 1.2. On roads with large differences in the
friction coefficients, emergency braking distances can vary by several times or even ten
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times more depending on changing road conditions, which poses a major problem from
the perspective of safety management. When driving on snowy or icy roads in snowy
or mountainous regions in winter, building a road friction estimation system is one of
the extremely important research subjects from the perspective of safety management.
However, to build such a system, it is important to construct a database related to road
friction, but such a system has not yet been constructed. Given this situation, our research
purposes are to establish a method for continuous measurement of road surface friction,
to construct a broad database of road surface friction, and to construct an environmental
database that is highly correlated with the friction characteristics. This paper presents
the results of continuous measurement results of the road friction coefficient for vari-
ous paved road surfaces that have been developed through past activities, as well as the
results of continuous measurements of road friction on snowy and icy roads.

2 Measurement Device on Road Friction

Road friction measuring devices have been developed for various purposes and are now
widely used for various purposes. Roughly speaking, these can be divided into two
types: one is a system for evaluating the road surface itself, and the other is a system for
measuring the characteristics of tires to understand the vehicle behaviors. The required
friction characteristics need to be considered separately for the longitudinal and lateral
directions, but since the characteristics of normal tires can be roughly considered in
terms of a friction circle, we will focus on the braking characteristics especially for
µ-s characteristics, which are important from the perspective of safety. Figure 1 shows
various road friction measurement systems.

Fig. 1. Differences in road friction measurement equipment

These two groups of road friction characteristic measuring devices have different
characteristics due to their different purposes. Road surface evaluation instruments are
designed to measure road surface friction at measurement points on the road surface,
because the relationship between the measurement position and the road surface char-
acteristics is important. Currently, instruments used on highways and airport runways
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can measure the surface friction continuously. These devices are used for continuous
measurements to grasp changes over time and identify areas of damage, but they cannot
measure the detailed lateral force characteristics and/or braking /driving characteris-
tics required for vehicle dynamics analysis. On the other hand, dynamic vehicle tire
characteristic measuring devices are designed to measure tire characteristics under var-
ious road surface conditions, and measure tire characteristics by continuously changing
brake torque and/or sideslip angle under the assumption that the friction coefficient in
the measurement section is constant. Therefore, although it is suitable for measurements
on maintained road conditions such as proving grounds, it is not suitable for measure-
ments on road surfaces such as ordinary roads where friction characteristics change. To
build a road friction database, it is important to measure both characteristics, especially
the ability to continuously measure road friction characteristics as well as the ability to
measure µ-s characteristics at each point. To simultaneously satisfy both requirements,
we developed a new road friction measurement system. The basic idea behind the con-
struction of this system is to measure a finite set of µ and s, and use these results to
estimate µ-s characteristics. An important element in the construction of this system
is the introduction of a function that represents the µ-s characteristics well. The magic
formula proposed by Pacejka describes very well the characteristics of the tire, including
not only lateral force characteristics but also braking force and torque characteristics1).
A simplified description of this formula can be written as in Eq. 1.

(1)

The three constants a, b, and c in the formula are used to identify theµ-s characteristic
from as few experimental results as possible. Figure 2 shows the estimated peak µ and
lockedµwhen three sets ofµ and s aremeasured, using the data on theµ-s characteristics
measured so far and the characteristics of snow-and-ice roads extracted from literature.
In this identification, the friction coefficients of slip ratios of 2%, 12%, and 22% are
assumed to be known. These results show that sufficient braking characteristics can be
obtained by using this method.

Fig. 2. Peak µ and lock µ on µ-s characteristic estimated from three sets of µ and s (s = 2%,
12%, 22%).
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3 Constructed Measurement Device

A road friction characteristic measuring device with the above-mentioned structure was
constructed. Figure 3 shows a trailer-typemeasuring device having threemeasuring tires,
which are driven by chains from the trailer tires using different teeth of sprocket.

The basic idea behind the construction of this system is to measure a finite set of
µ and s, and use these results to estimate µ-s characteristics. An important element in
the construction of this system is the introduction of a function that represents the µ-s
characteristics well.

For this reason, various control methods have been adopted to improve safety and
comfort, and their effectiveness has been demonstrated. Road friction characteristics are
extremely important for the various systems for these safety measures, and ensuring
these friction characteristics is a prerequisite for the control.

The coefficient of road friction on an actual road surface varies greatly depending on
the road surface material, road surface condition, tire structure, and other factors. Fur-
thermore, the reduction of the coefficient of friction on snowy and icy roads inwintertime
in snowy regions poses a significant threat to road traffic safety. In the past, road surface
friction measurements have used sliding friction such as BPN, or truck/bus/trailer type
road surface friction measurement systems to measure µ-s characteristics by gradually
applying braking. In particular, themeasurement of peakµ at each location on the road is
important for estimating road friction characteristics since the widespread use of ABS in
recent years has enabled braking near peak µ and automatic braking system is based on
such control. However, the road friction measurement systems required the assumption
that the friction characteristics of the measured section are constant. However, it can
be inferred that the friction characteristics may always change between a road surface
where frequent braking is applied just before an intersection and a section where most
vehicles pass at a constant speed, and that the friction characteristics always change on
partially frozen or partially snow-covered road surfaces. In such measurements related
to road surface friction, it is important to understand the continuous change in peak µ,
but until now, there has been no system capable of continuously measuring this char-
acteristic. In recent years, the authors have proposed a new road friction measurement
system to overcome this problem and have shown its measurement results.

In this paper, we present an overview of the system we have constructed and the
measurement results, followed by the results of continuous measurement of peak µ

under various conditions, including snow and ice on actual roads. Furthermore, we
summarize the identification of these measurement problems and future issues.
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Abstract. This paper designs an observer for estimating road elevations at all tire
contact patches using only an inertial sensor with high accuracy, comparable to
that of laser scanning. The observer is constructed within the framework of the
unknown input Kalman filter to estimate road elevations, which act as disturbances
to vehicle dynamics. The model for the observer is based on vertical-pitch-roll
dynamics, encompassing road elevations at all tire contact patches. The introduc-
tion of virtual measurements for all tires ensures the observability of the model in
the inertial sensor-based observer without requiring both additional sensors and
model simplification. Additionally, a bias model is added to compensate for sensor
installation errors for practical realization. Experimental validation demonstrates
that the proposed observer can estimate road elevation with high accuracy, regard-
less of vehicle speed and dynamics, even when utilizing only an inertial sensor,
making it suitable for rapid and robust road maintenance.

Keywords: Road elevation estimation · Inertial sensor signals · Virtual
measurement · Observable model design · Unknown Input Kalman Filter

1 Introduction

Road maintenance is of paramount importance for ensuring ride comfort, stable vehicle
control, and even safety against road cracks or potholes [1, 2]. A critical initial step in
road maintenance is the measurement of road bumpiness [3, 4]. Accurate measurement
of the road profile typically employs direct-contact devices called profilometers, albeit
at a significant cost in terms of both time and money.

Inertial sensors offer a more affordable alternative because road elevation variations
affect inertial sensor signals. However, a challenge arises as road elevation changes are
not directly observable using only inertial sensor signals. This limitation stems from the
fact that the inertial sensor is attached to the sprung mass, with the excitation caused by
road elevation changes being filtered by the unsprung masses. To address this, previous
methods have either incorporated additional sensors at an increased cost [5] or utilized
a vehicle model without unsprung masses, compromising accuracy [6].

Previous work by J. Gim et al. showcased the potential for road elevation estimation
using only inertial sensor signals by introducing virtual measurement and synthesiz-
ing the Unknown input Kalman filter [7]. However, this research primarily focused on
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estimating longitudinal road elevations for vehicle localization, emphasizing consis-
tency and repeatability, without extending its applicability to road maintenance, which
requires high precision.

This paper proposes an observer design for the accurate estimation of road elevations
at all tire contact patches, with a specific emphasis on its applicability to road mainte-
nance. The vehicle model in the observer is extended to an eight-degree-of-freedom
(8-DOF) model to encompass road elevation changes at all four tire contact patches.
To ensure observability, virtual measurement is also extended for all tires, and a bias
model is introduced to compensate for sensor installation errors. The effectiveness of
the designed observer is validated by comparing it with directly measured road eleva-
tions using profilometers, establishing its potential utility in practical road maintenance
applications.

2 Observer Design

Figure 1 shows the scheme of the proposed road elevation observer.

Fig. 1. Scheme of the proposed observer for estimating road elevation changes using only inertial
sensor signals.

Vehicle dynamics is excited by alterations in road elevation and the driver’s accelera-
tion or brake input, and the inertial sensor mounted on the vehicle measures this vehicle
dynamics in terms of accelerations and angular velocities. The discretized model for
both vehicle dynamics and the inertial sensor are derived as:

xk+1 = f (xk , uk , dk−1),

yk = h(xk , dk−1), (1)

where vehicle state x ∈ R
n encompasses the vertical displacements of sprung and

unsprung masses and their rates, as well as the pitch and roll angles of the sprung
mass and their rates. The known input u ∈ R

1 represents the longitudinal acceleration.
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The disturbance d ∈ R
q signifies the road elevations at all tire contact patches and their

rates, which are the parameters to be estimated. The measurement y ∈ R
p consists of

only the inertial sensor signals.
The designed observer employs an 8-DOF vehicle model, incorporating vertical,

pitch, and roll dynamics representing the responses excited by road elevation changes
at all tire contact patches, as illustrated in Fig. 2 [8]. The measurement model y includes
four inertial sensor signals—vertical acceleration, lateral acceleration, pitch rate, and
roll rate signals—to design a road profile observer based only on inertial sensors.

Fig. 2. 8-DOF vehicle model.

A observer framework is based on the unknown input Kalman filter, which esti-
mate disturbances with rapid responses, provided the system satisfies the following two
conditions [9]:

rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

Hk

HkFk
...

HkF
n−1
k

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = n and rank(HkGk) = rank(Gk) = q, (2)

where Fk = ∂
∂xk

f (xk , uk , dk), Gk = ∂
∂dk

f (xk , uk , dk), Hk = ∂
∂xk

h(xk).
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However, the employed 8-DOF vehicle model does not satisfy the observability
conditions, meaning that the road profile cannot be estimated using only inertial sensor
signals. This is because the inertial sensors are not responsive to changes in the road
profile that are longer than the wheelbase, such as hills. The concept of virtual measure-
ment involves continuously monitoring low-pass-filtered road profiles as zero, under
the assumption that road profiles longer than wheelbase should be flat. Therefore, four
virtual measurements, corresponding to each tire contact patch, are augmented into the
measurement model involving the only inertial sensor signals:

yaug,k = [
yk Rfl,k Rfr,k Rrl,k Rrr,k

]T = [
yk 0 0 0 0

]T
,

where Rij,k = αRij,k−1 + (1 − α)Rij,k−1, (3)

Rij andRij are the virtualmeasurements and the vertical road heights at all tire contact
patches, where i denotes the front or rear tires, and j are left or right side. α determines
how much the estimated road height influences the virtual measurement. Consequently,
the model guarantees observability by augmenting the original states with four virtual
measurements for each tire contact patch.

Finally, a bias model is incorporated to compensate inertial sensor installation
errors. Inertial sensor signals involve the sensor biases with constant or slowly changing
dynamics. The final model for a road profile observer is designed with:

xfinal,k = [
zs,k żs,k θk θ̇k φk φ̇k zfl,k żfl,k zfr,k żfr,k zrl,k żrl,k zrr,k żrr,k

Rfl,k Rfr,k Rrl,k Rrr,k Rfl,k Rfr,k Rrl,k Rrr,k bz̈s,k bθ̇ ,k bφ̇,k bÿs,k
]T

,

ufinal,k = ẍs,k ,

dfinal,k = [
Ṙfl,k Ṙfr,k Ṙrl,k Ṙrr,k

]
,

yfinal,k = [
z̈s,k θ̇k φ̇k ÿs,k Rfl,k Rfr,k Rrl,k Rrr,k

]
. (4)

The proposed observer synthesizing the designed observablemodel into the unknown
input Kalman filter estimates the vehicle states and the one-time-step delayed road
profiles at all tire contact patches.

3 Validation

Figure 3 shows the validation results through comparative analysis of road elevations
measured by laser sensors on profilometers for four distinct cases. The estimated results
demonstrate that the designed observer can accurately estimate road elevations for all
tire contact patches using only inertial sensor signals, with high accuracy similar to that
achieved by laser scanning. This accuracy remains consistent across different vehicle
types, vehicle speeds, and driver’s acceleration intentions.
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Fig. 3. Estimated results of the designed observer for four cases.
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4 Conclusion

This paper proposes an observer for estimating road elevation changes at all tire contact
patches using only inertial sensors, achieving accuracy comparable to that obtained with
laser sensors. Therefore, the designed observer can be an alternative to direct contact
measurement approaches requiring special devices with a short time horizon.

Acknowledgement. This work was supported by the Advanced Materials and Components Lab-
oratory Project for Defense Industry, Under grant no. DCL2020L, funded by Korea Research
Institute for Defense Technology Planning and Advancement (KRIT).

References

1. Norrman, J., Eriksson, M., Lindqvist, S.: Relationships between road slipperiness, traffic
accident risk and winter road maintenance activity. Climate Res. 15(3), 185–193 (2000)

2. Kat, C.J., et al.: Vibration-induced discomfort in vehicles: a comparative evaluation approach
for enhancing comfort and ride quality. SAE Int. J. Veh. Dyn. Stabil. NVH 8(2) (2024)

3. Ruochen, W., et al.: Switching control of semi-active suspension based on road profile
estimation. Veh. Syst. Dyn. 60(6), 1972–1992 (2022)

4. Ni, T., Li, W., Zhao, D., Kong, Z.: Road profile estimation using a 3D sensor and intelligent
vehicle. Sensors 20(13), 3676 (2020)

5. Jeongkyun, L., Kukjin, Y.: Temporally consistent road surface profile estimation using stereo
vision. IEEE Trans. Intell. Transp. Syst. 19(5), 1618–1628 (2018)

6. Göhrle, C., Schindler, A., Wagner, A., Sawodny, O.: Road profile estimation and preview
control for low-bandwidth active suspension systems. IEEE/ASME Trans. Mechatron. 20(5),
2299–2310 (2015)

7. Juhui, G., Changsun,A.: IMU-based virtual road profile sensor for vehicle localization. Sensors
18(10), 3344 (2018)

8. Setiawan, J.D., Safarudin, M., Singh, A.: Modeling, simulation and validation of 14 DOF full
vehicle model. In: International Conference on Instrumentation, Communication, Information
Technology, and Biomedical Engineering, pp. 1–6. IEEE, Bandung (2009)

9. Darouach,M., Zasadzinski,M., Onana, A.B., Nowakowski, S.: Kalman filtering with unknown
inputs via optimal state estimation of singular systems. Int. J. Syst. Sci. 26(10), 2015–2028
(1995)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Physics-Informed Neural Network for Mining
Truck Suspension Parameters Identification

Mingyu Wu , Yafei Wang(B) , Yichen Zhang, and Zexing Li

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
wmy_marvin@sjtu.edu.cn

Abstract. Mining truck suspensions are prone to performance degradation under
complex external excitation of the mining area, leading to high safety risks and
maintenance costs.However, the lackof unsprungkinematic information andharsh
operating environments lead to inadequate accuracy of current physical models.
On the other hand, data-driven methods partially address the issue of incomplete
information, but suffer from the absence of interpretability and generalization. To
address these challenges, this paper introduces a Physics-Informed Neural Net-
work (PINN) for precise suspension characteristic identification of mining trucks.
Specifically, the physical model of the longitudinal-vertical dynamics of the min-
ing truck is established. Then, based on the model, baseline values of suspension
parameters are regressed through the instrumental variable method. Therefore,
the hybrid modeling architecture is established to precisely identify suspension
parameters by utilizing a recurrent neural network. Under this architecture, the
states of the mining truck can be effectively updated. Real truck experiments
demonstrate the proposed hybridmodel outperforms traditional physical and data-
driven models in estimating suspension nonlinear parameters and truck dynamic
characteristics under typical longitudinal motions.

Keywords: Mining Truck · Hybrid Model · Neural Network · Parameter
Identification

1 Introduction

Accurate suspension parameter identification of mining trucks is essential to its dynamic
modeling and subsequent control strategy [1]. Existing models can be roughly divided
into physics and data-driven models for the vertical dynamic modeling of vehicles and
their coupling effects.

Existing models can be roughly divided into physics and data-driven models for the
vertical dynamic modeling of vehicles and their coupling effects. Physical models are
typically expressed using Newton’s law or Lagrange equations to describe the vehicle’s
dynamic characteristics [2]. Dynamics modeling and parameter identification are then
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conducted using filteringmethods or their combination [3]. Although the physical model
has significant advantages in generalization, it is necessary to clarify all parameters and
may fall short in transient conditions and extreme scenarios [4]. Data-driven models are
superior to physical models in many fields and have a more comprehensive range of
applications, but they still cannot escape the shortcomings of poor generalization and
interpretability [5].

In recent years, physics-informed neural network has received widespread attention.
Data-drivenmodels can effectively compensate for parts that are challenging or impossi-
ble to model with physical models. Physical models can extend the applicability range of
data-driven models, effectively expanding the applicable state space concerning vehicle
dynamics [6]. In [7], a simplified vehicle model was integrated with a recurrent neural
network to estimate the vehicle’s lateral motion behavior, and results demonstrated that
the hybrid architecture achieved excellent estimation quality while demonstrating gen-
eralization across various tires, surfaces, and driving scenarios. A novel car-following
control model combining machine learning and kinematics models for automated vehi-
cles was established in [8], the real vehicle trajectory data sets demonstrated better
performance for controlling the longitudinal movements under a hybrid approach.

Considering the aforementioned limitations and challenges, this paper primarily
focuses on establishing a longitudinal-vertical dynamic model for mining trucks dur-
ing transportation. A hybrid-driven framework that combines data-driven and physical
models to identify the suspension parameters of mining trucks is employed. At first, the
nonlinear mapping relationship of the inertial measurement unit to the measured point is
proposed for determining the vertical motion. Secondly, the mining truck longitudinal-
vertical dynamicsmodel is established considering the differences in parameters between
the front and rear suspensions. Subsequently, the instrumental variable method derives
baseline values for suspension parameter identification. The hybrid modeling architec-
ture combining physics and learning methods is given for precise identification and
prediction of the mining truck’s suspension parameters and dynamic characteristics.

2 PINN Architecture

The proposed method integrates a deep learning network into a physics model of the
mining truck to establish an accurate mining truck longitudinal-vertical dynamic model
and identify precise suspension parameters. Figure 1 shows the schematic diagram of
the proposed algorithm. Firstly, the sequence states of the mining truck maneuver are
collected by monitor sensors. The critical suspension parameters (such as stiffness and
damping coefficients) are roughly determined by a linear dynamic model considering
the longitudinal-vertical coupling effect. Meanwhile, the sequence states are the input
of the deep learning network, which can calculate the parameter correlation factors. The
modified parameters are fed into the mining truck dynamic model to estimate the state
of the next time step. The state loss Lp between predicted and target states can be used
as the loss error term of the neural network and update the neural network weights.

The overall hybrid modeling architecture is shown in Fig. 2. According to the state
of two consecutive moments as the input of the network and the physical model, the
correction coefficients of the suspension parameters are calculated through the network
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Fig. 1. Schematic diagram of the proposed PINN algorithm.

and then input into the physical model to estimate the state of the next moment. The
selected loss function is utilized to calculate the MSE after dimensional unification and
perform backpropagation andweight training on the network. Since the parameters input
to the network model in this article are time series signals, a recurrent neural network
(RNN) is considered. The Long Short-Term Memory (LSTM) network is selected as
the RNN network, with 3 layers and a hidden size of 128. The suspension correction
parameters are calculated through a fully connected layer during output. In the network
model, in order to avoid problems such as gradient disappearance or gradient explosion
during the neural network training process, the Xavier initialization method is used to
initialize the RNN network. The normal distribution initialization method is employed
for the linear output layer to enhance the training stability and accelerate the convergence
speed of the network.
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Fig. 2. Hybrid modeling architecture and experimental platform TR100A mining truck.

The mining truck longitudinal-vertical dynamic modeling and suspension parameter
identification have been proposed by combining physics and deep learning methods.
In order to verify the validity and accuracy of the proposed theory, the real test of the
mining truck is carried out below.
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3 Experiments and Results

In order to verify the accuracy and effectiveness of the proposed method, we conducted
experiments on a real mining truck. The TR100A mining truck made by TEREX was
selected as the experimental platform (Fig. 2). The experiments were conducted on a
flat paved road, and the mining truck was in the unloaded state. For simplification, the
ground’s excitation is neglected compared to the tire dimension during transportation.
The experiments include longitudinal acceleration and deceleration tests, and specific
tests are shown in Table 1.

Table 1. Mining Truck Experiment Conditions

Part number Status Conditions

1 Acceleration 0–20 km/h

2 20–30 km/h

3 Deceleration 10–0 km/h

4 20–0 km/h

5 30–0 km/h

The hybrid model proposed in this article can give the suspension parameters of the
mining truck, which is crucial to the structural design and performance prediction of the
mining truck. Figure 3 and Fig. 4 show the change regulations of identified front and
rear suspension stiffness, respectively.
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Fig. 3. Change regulations of front and rear suspension stiffness.
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Fig. 4. Change regulations of front and rear suspension damping.

Working conditions Part 1 andPart 5 are selected for display to verify themodel effect
during acceleration and deceleration. Figure 5 show the comparison results of the vertical
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acceleration of the center of gravity in the testing set of the two working conditions. It
can be seen that the hybrid model proposed in this article has more robust applicability
and accuracy than the physical model and data-driven model. In the physical model,
the calculation of the unsprung position requires solving differential equations during
the calculation process. This process will introduce errors and oscillations, leading to
violent oscillations in the final state calculation at the next moment. The accuracy of
the data-driven model is higher than that of the pure physical model, but it is affected
by limited samples and a more significant number of iterations (about 10–15 epochs,
depending on the size of samples), which limits its generalization ability. The model-
based hybrid-driven model proposed in this article can effectively reflect the real motion
state and converge within a limited number of iterations (about 2–3 epochs). It can also
be seen from the comparison results that under some severe working conditions and
sharp points, the hybrid model still has strong robustness.
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Fig. 5. Comparison of the vertical acceleration at CoG (Part 1, 5).

In order to give qualitative comparison results of the three models, this article uses
the MSE of all testing sets as the measurement index. The smaller the value, the higher
the accuracy of the model. The MSE comparison results for the vertical acceleration of
the center of gravity ac, the sprung velocity of the front suspension vf and the sprung
velocity of the rear suspension vr are shown in Table 2.

Table 2. The comparison of MSE in the experiment

MSE value Physics model Data-driven model Hybrid model

ac (m/s2)2 13.69 0.18 0.13

vf (×10−2m/s)2 2.36 0.76 0.32

vr (×10−2m/s2)2 2.23 0.78 0.31

It can be seen that the hybrid model method proposed in this article has good perfor-
mance in predicting different motion parameters. It is worth mentioning that the hybrid
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model method in this paper only relies on the sensor signals of the vehicle body and does
not require unsprung information. This advantage makes it possible to directly predict
the dynamic characteristics of the mining truck without building a complex mining truck
sensor measurement system.

4 Conclusion

For precise prediction of mining truck vertical dynamic characteristics and accurate
identification of the suspension parameters during the transportation process, a hybrid
modeling architecture is proposed by combining physics and learning methods. Experi-
mental results from realmining truck tests demonstrate enhanced accuracy and efficiency
of the proposed hybrid model compared to traditional physical and data-driven models
in estimating suspension nonlinear parameters and predicting the mining truck vertical
dynamic characteristics under various working conditions.
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Abstract. The growing prevalence of autonomous driving is expected to shift
passengers’ attention from driving, increasing the demand for enhanced ride com-
fort. Studies addressing ride comfort have prominently explored active suspension
control with recent research on preview suspension control using on-board sen-
sors. The proposed systems often include LiDAR deployment at the front for
high-precision road surface profiles. However, these systems often involve costly
sensors such as LiDAR, making it impractical for on-board installation. Nonethe-
less, in recent autonomous vehicles, LiDAR tend to be mounted on the roof. It
would be beneficial to leverage this LiDAR for preview control, the point cloud
obtained from the roof has insufficient density to accurately perceive the uneven-
ness on the road surface. To overcome the low-density issue in point cloud data
obtained from less channels LiDAR, this study applies a supervisedmachine learn-
ing model, developed for autonomous driving, to estimate road surface profiles
and enhance the precision of these estimations.

Keywords: Depth completion · Autonomous car · LiDAR · Neural Network ·
Point cloud densification · Preview control

1 Introduction

In the last few years, extensive research and development have been conducted towards
the widespread adoption of autonomous vehicles. With the anticipated proliferation
of autonomous driving, there is an expectation that occupants, including drivers, will
engage in activities other than driving, further increasing the demand for enhanced
ride comfort. In these considerations, studies focused on improving ride comfort of
autonomous vehicles have prominently explored active suspension control. Recently,
attention has shifted towards preview control using on-board sensors that have evolved
in conjunction with autonomous driving technologies.
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For preview suspension control, various systems have been proposed to estimate road
surface profiles. These include a system achieving high-precision road surface profile
acquisition bymounting LiDAR at the front of the vehicle [1], and a system using optical
sensorsmounted on the roof of the vehicle to obtain road surface profiles [2].While these
preview sensing systems can independently detect the undulations of the road surface
with high precision, their implementation often involves expensive sensors for preview
control. Particularly, LiDAR stands out as one of the most costly sensors among those
integrated into autonomous vehicles, and its use should be limited to the minimum nec-
essary quantity and specific mounting positions for ensuring safe autonomous driving.
For example, as point cloud dataset [3] shown in Fig. 1, frequently LiDAR installed for
acquiring information about the surroundings of autonomous vehicles is a roof-mounted
32 channels. LiDAR used for environmental perception is often positioned on a high
elevation such as on the roof, and the point cloud density is relatively low for use in
preview control. Therefore, this study clarifies the differences in road surface profile
estimation from the data obtained from roof-mounted LiDAR, as typically proposed
for autonomous vehicles, contrasted with front-mounted, as suggested in conventional
preview control studies. Moreover, to obtain a sufficient road surface profile for preview
control from the sparse point cloud from LiDAR installed on autonomous vehicles,
proposes that utilizes RGB image information obtained from onboard cameras.
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Fig. 1. An example of point cloud data from roof [3]

2 Experiments of Measuring Speed Bump

In this paper, to investigate the differences on road surfacemeasurement by themounting
position and the number of channels of LiDAR, experiments were conducted using a
system shown in Fig. 2a tomeasure speed bumps. Both roof-mounted and front-mounted
128 channels LiDARs (Ouster) were utilized, with an RGB camera installed near the
LiDARmounted on the roof. By using the system, a bump that has a cross-section shape
as shown in Fig. 2b placed on a flat road surfacewasmeasured. In addition to the obtained
128 channels raw point cloud data, the point clouds were downsampled to 32 and 64
channels to create comparative data. For example, the point cloud data obtained from
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the front-mounted 128 channels LiDAR, which is suitable for preview control when
both LiDARs capture the bump simultaneously, were compared with the point cloud
data obtained from the roof-mounted LiDAR assumed to have 32 channels for use in
autonomous vehicles, as shown in Fig. 3. Note that both plots have the distance from
the front wheels as the X-axis. As shown in Fig. 3, there is a significant difference in
point cloud density due to the different mounting positions and the number of channels.
Additionally, it is considered highly disadvantageous from the perspective of capturing
road surface shapes if the density decreases to the level shown in Fig. 3b, even when
using LiDAR.

pmubdeepsfoepahS.bmetsysgnisneS.a

LiDAR

(Ouster OS1-128)

Camera

LiDAR

(Ouster OS1-128)
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Fig. 2. Experimental Setups

a. 128 channels from front b. 32 channels from roof
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Fig. 3. Examples of Point Cloud from the System

To conduct a specific comparison, data with the width of 1 m capturing the bump
from the obtained point clouds were extracted, and 2D road surface profiles with the
origin at beneath the front wheels were presented for each condition in Fig. 4. The
red dashed lines in the figure represent the moving average of the raw point clouds,
simplified estimating the road surface shape. It can be confirmed from Fig. 4 that front-
mounted LiDARs capture the undulating shape better than roof-mounted ones, and larger
number of channels LiDARs captures more detailed undulations. However, in the case
of roof-mounted installation, except for 128 channels, the obtained point clouds are
insufficient for capturing the undulating shape adequately, making it difficult to estimate
the road surface profile. Besides, the Root Mean Square Error (RMSE) of the bump
shape estimated by moving average compared to the true value and the ascending order
based on the RMSE including the results for 64 channels are shown in Table 1. This
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study aims to enable the estimation of 2D road surface profiles with the same degree of
precision as those obtained from high-density point clouds by front-mounted LiDAR,
as typically handled in conventional studies on preview control, even from such sparse
point clouds.

a. 32 channels from front   b. 32 channels from roof

c. 128 channels from front   d. 128 channels from roof
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Fig. 4. Road Surface Profile from Raw LiDAR Point Cloud of Each Condition

Table 1. RMSE of Bump Shape Estimation

Front/Roof - Number of channels F-128 F-64 F-32 R-128 R-64 R-32

RMSE [m] 0.0067 0.0095 0.0146 0.0098 0.0147 0.0208

Ascending order of RMSE value 1 2 4 3 5 6

3 Interpolation Method by RGB Using FusionNet

In this study, to densify point clouds for road surface profile estimation, FusionNet that is
a supervisedmachine learning framework proposed byGansbeke et al. [4] is employed to
perform depth completion from sparse depth images generated from low-density point
clouds and their corresponding RGB images. This framework has an architecture as
shown in Fig. 5. By combining part of the dataset used for training the original model
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with the data obtained from the current experiments, a new training dataset is created.
This aims to construct a model more focused on depth of road surface than the original
one.
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Fig. 5. Architecture of FusionNet [4]

4 Training and Results

In this training, depth map scaled to 15-m range from 32 and 64 channels front-mounted
LiDAR, along with their corresponding RGB images, were provided as input data, with
the ground truth data based on the 128 channels data as supervision. An example frame
used in the training data is shown in Fig. 6. Our dataset provides 6650 frames for training,
2490 frames for evaluation, and 1091 frames for testing. In this paper we tried to achieve
densification from 32 channels front-mounted LiDAR data. However, directly using the
raw 128 channels data as the ground truth can make it challenging to estimate planes
accurately due to noise. Therefore, denoising was performed as shown in Fig. 7. This
involved segmenting the planes from the point clouds, removing the points recognized
as planes, and inserting grids based on plane equations to denoise the data.

The results of point cloud densification by using our trained model at the same
location as in Fig. 4 are shown in Fig. 8. The best RMSE between the dense depth
map as an output and the ground truth was 0.023 m. Additionally, the RMSE of the
undulating shape in estimated road surface profile from predicted dense depth map by
the same method as those in Fig. 4 was 0.0118 m.
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a. Image and sparse depth map of input  b. Ground truth depth map as supervision

Fig. 6. One Frame of our Dataset

a. Raw 128 channels data b. Plane-inserted as denoise

Fig. 7. Ground Truth

Fig. 8. Prediction Results with Trained Model

5 Conclusion

In this paper, we compared measurement accuracy differences due to LiDAR installa-
tion position and the number of channels. The results indicate significant challenges in
estimating undulating shapes with LiDARmounted on autonomous vehicles. To address
this, we a trained a model to densify low-density road point clouds. Future work will
focus on enhancing accuracy by applying object detection techniques.
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Abstract. Balancing a bicycle through steering is similar to balancing
an inverted pendulum, with a travel-speed-dependent pivot point. This
paper derives a speed-dependent balancing controller for a self-balancing
bicycle. This controller is based on an identified gray box model. The
identification procedure is formulated as a weighted least squares prob-
lem with the time-varying parameter of the model. Identification data
was generated on a controlled bicycle robot. Excitation experiments were
designed to account for the unstable nature of the problem. Based on
this identified model, a gain-scheduled controller is derived for a speed-
independent closed-loop performance for a speed range. The controller
is further implemented on the bicycle and tested for a set of speeds.
Tests performed on the bicycle illustrate the gain-scheduled controller’s
performance gain.

Keywords: Bicycle dynamics · Gray-box identification ·
Gain-scheduled controller

1 Introduction

Modern traffic safety relies heavily on Advanced Driver Assistance Systems
(ADAS). Testing these systems often requires specific scenarios that include
a cyclist target to ensure safety and repeatability. To address the challenges of
testing ADAS in cyclist scenarios, a bicycle robot with self-balancing and path-
tracking capabilities has been developed. Compared to existing solutions with a
stable moving robot platform [1], this bicycle robot is inherently unstable and
hence will exhibit more natural leaning behavior.

Obtaining a reliable model usually requires measuring and computing phys-
ical parameters. However, such methods require additional tools and time to
dismantle the bicycle and measure its individual parts. In contrast, this paper
adopts an alternative approach: using system identification techniques to esti-
mate these model parameters from experimental data.

Gray-box identification offers an advantage in this context. It employs a
model structure informed by physical principles, which can enhance robustness
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against varying operational conditions. Given its benefits, we apply a gray-box
identification method, to compute a bicycle model parameterized by longitu-
dinal speeds. This strategy combines the merits of a physically-informed model
with system identification, enabling the identified model to extrapolate dynamics
across multiple speeds.

In this paper, we introduce a gray-box identification method to obtain a
semi-linear bicycle model. Tests are done in a closed loop and a model with an
explicit speed dependency is obtained. The speed-dependent model is then used
to derive a controller that achieves a speed independent closed loop using gain
scheduling (Fig. 2).

Fig. 1. Bike schematics Fig. 2. Schematic Block of the Control loops

2 Method

The steering angle of the bicycle is assumed to be controlled perfectly. Hence, we
do not need to consider models that include the interaction between the leaning
angle and the steering torque. Instead we adopted a point-mass model from [2]
for its simplicity and relevance to our actuator settings, as shown in Fig. 1. The
bicycle’s roll dynamics from steering angle δ to roll ϕ are given by, assuming
small caster,

Jxx
d2ϕ

dt2
− mghCMϕ =

Jxzv sin (λ)
b

dδ

dt
+

mv2hCM sin (λ)
b

δ, (1)

where Jxx, Jxz are the inertia with respect to the xz-axes and x-axes. Other
parameters are depicted in Fig. 1. The equation above can be recast to a LTI
transfer function for a constant speed with the structure,

Gϕ̇δ̇(s, v) =
A0vs + A1v

2

s2 + B0
(2)

where s is the Laplace operator and Ai, Bi are constant coefficients. This equa-
tion describes the roll dynamics, i.e., Gϕ̇δ̇(v) in Fig. 1.

To identify the parameters of the roll dynamics in (2), identification experi-
ments were conducted in closed loop. To mitigate biases induced by closed loop,
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periodic excitation signals were used and frequency responses are collected [3].
This was done by applying these periodic signals to the reference ϕect and noise
to δ̇ect. Further, to use the frequency response for our unstable system Gϕ̇δ̇, the
definition of transfer functions are also extended to include the imaginary axis,
since the imaginary axis is not in its region of convergence.

A next step in the identification process was to form empirical transfer func-
tion estimate (ETFE) F̂ (jω, vi) based on the measured tests,

F̂ (jω, vi) =
1
Pi

l=Pi∑

l=1

F{ ˆ̇ϕ[l](jω, vi)}
F{ˆ̇

δ[l](jω, vi)}
= R(jω, vi) + jI(jω, vi) (3)

where subscript l denotes the lth response out of Pi periodic responses conducted
at speed vi. F{x} denotes the Fourier transform of time series data x, and R and
I denote the coefficients of real and imaginary components, respectively. Such
an averaged ETFE is asymptotically unbiased if the noise e is Gaussian [3].

A final step in the identification process was to use the obtained ETFE in
(3) to fit the model (2).

To minimize the difference between the identified model Gϕ̇δ̇(jω, v) and the
empirical transfer function F̂ (jω, vi), a cost function of frequency responses
ε(jω, v) can be defined

ε(jω, v) = F̂ (jω, v) − Gϕ̇δ̇(jω, v) = F̂ (jω, vi) − N(jω, v)
D(jω, v)

(4)

Dε = DF̂ − N = a(jω, v) + jb(jω, v) (5)

where N and D are numerator and denominator of the transfer function in (2).
With a total of n experiments at speeds vi, i ∈ Z+ and each containing m+1

frequency points in frequency responses, we may sum the cost function ε(jω, v)
over all the experiments

E =
n∑

i=1

m∑

k=0

[a2(jωk, vi) + b2(jωk, vi)]. (6)

Here k denotes the index of the frequency points in Fourier Transformation of
the experiment data and i denotes the index of speeds. For simplicity in notation,
variables to the functions (jωk, vi) will be omitted henceforth. We notice that,
(6) is a weighted cost function of the difference between the identified model
Gϕ̇δ̇ and the empirical transfer function F̂ . Therefore, we can minimize (6) with
respect to all unknown coefficients - Ai’s and Bi’s in the transfer function

∂E

∂Ai
= 0,

∂E

∂Bi
= 0. (7)

To minimize the differences (6) over all the experiments spanned in a speed
range {v1, ..., vn}, we construct the equations into a linear regression form. Define
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intermediate variables λh, Sh, Th and Uh

λh =
m∑

k=0

Wkωh
k , Sh =

m∑

k=0

Wkωh
k R̂k, Th =

m∑

k=0

Wkωh
k Îk, Uh =

m∑

k=0

Wkωh
k (R̂2

k + Î2k)

where m denotes the number of frequency points in a frequency response. Wk,
which provides design freedom compared to the weight D from problem con-
struction in (5), is a user-defined weight for individual frequency points.

Substitute these variables and rewrite (7) in matrix form

n∑

i=1

⎡

⎣
2λ0v

4
i 0 −2S0v

2
i

0 2λ2v
2
i −2T1vi

−2S0v
2
i −2T1vi 2U0

⎤

⎦

⎡

⎣
A0

A1

B0

⎤

⎦ =
n∑

i=1

M(vi)N

=
n∑

i=1

⎡

⎣
−2S2v

2
i

−2T3vi

2U2

⎤

⎦ =
n∑

i=1

C(vi). (8)

Further, experiments can also be weighted individually

n∑

i=1

WiM(vi)N =
n∑

i=1

WiC(vi) (9)

where Wi is the user-defined weight for individual speeds i ∈ {1, ..., n}. This
complex linear curve fitting problem is thus solvable in a weighted least square
formulation. The weights for individual experiments and frequency points, i.e.
Wi and Wk, may be used as a tuning parameter, depending on the number of
periods in each experiment and frequency range of confidence.

Based on the derived parameter dependent LTI model of the roll dynamics,
a gain-scheduled PD controller was designed. The design criteria was a speed
independent closed loop performance for a range of speeds. Specifically, KI(v)
and KO(v) are computed, such that inner balancing and outer roll tracking loop
in Fig. 1 have speed-independent bandwidths.

3 Result

On the bicycle presented in Fig. 3, identification experiments have been con-
ducted, at speeds of 2.2, 2.4, 2.6, 2.8 m/s. Although these experiments were con-
ducted without a human dummy, our algorithm is prepared for scenarios involv-
ing a dummy, which can be modeled as a mass rigidly attached to the saddle.
Periodic multisine signals up to 25 Hz are chosen for ϕect and δ̇ect to control
the excitation frequency range. After the decay of initial transients, the peri-
odic responses are processed following (3). Table 1 summarizes the number of
identification periods and Fig. 3 visualizes the averaged frequency responses at
each speed. It is noteworthy that, in lower frequency range, a clear dependency
can be seen between the magnitudes of frequency responses and the speeds. At
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higher frequencies, this dependency dies out and it might be attributed to other
system dynamics in the control loop, e.g. sensors.

Substituting the computed averaged empirical transfer functions F̂ (jω, vi) =
Ḡi(jω) and letting the weights Wk, Wi be identity for simplicity, a model is
identified:

Ĝϕδ(s, v) =
0.8285vs + 1.9699v2

s2 − 20.2663
(10)

To evaluate this model and with a rough approximation of D = −Jxz ≈
−mahCM and J ≈ mh2

CM , a comparison between the identified parameters of
the roll dynamics and direct measurements of center of gravity is given in Table 2.
It can be observed that the differences are small in magnitude.

Based on the identified model, we compute KI(v) and KO(v) to limit the
closed-loop bandwidth of the inner balancing loop to be 1.5 Hz and the outer
roll-tracking loop 0.15 Hz respectively.

Against a same step references of ±3◦, this gain-scheduled PD controller was
tested on the bicycle robot. For comparison, a speed-independent P-D controller
is tested as well, referred to as conventional P-D controller. Figure 3 illustrates
the roll-tracking performance. While both the gain-scheduled (Blue) and con-
ventional P-D controllers (Red) performed similarly at the higher speed, the
gain-scheduled controller has better performance at the lower speed. This high-
lights the limitations of conventional controllers and confirm the practical need
of our gain-scheduled approach. With the same roll reference, the gain-scheduled
controller is further tested at an even lower speed of 1.7 m/s, visualized in Fig. 6.
Despite of constraints in the steering motor and IMU signal-to-noise ratio, the
gain-scheduled controller stabilzed the bicycle, showing the potential of speed
extrapolation (Figs. 5 and 4).

Table 1. The experiment profile

Speed (m/s) total number of Periods

2.2 11

2.4 19

2.6 12

2.8 7

Fig. 3. Figure to the right: the averaged
empirical transfer function (3)
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Table 2. The calculated physical param-
eters illustrated in Fig. 1

calculated (m) measured (m)

a 0.4206 0.6687

b 0.9580 1.1549

hCM 0.4841 0.534

Fig. 4. Bike modules overview

Fig. 5. Figure to the right: Tests of the Gain-
scheduled controller (Blue) and conventional
P-D controller (Red) at 2.4 and 3.0m/s with
ϕref = ±3◦

Fig. 6. Experiment with the
extrapolated Gain-scheduling
controller at lower speeds

4 Conclusions

An approach to obtain a gain scheduled controller for a balancing bicycle robot
using grey box identification is presented. The performance of the controller is
illustrated on a prototype bicycle robot. The gray box identification employs
periodic excitation signal to asymptotically remove the bias and the excitation
frequency ranges are tailored with multisine excitation signals.

Future work will focus on enhancing controller robustness and adapting the
model for changing conditions, e.g., loading different human dummies. Besides,
adaptive control and online identification based on dual-Youla method may be
explored as it fits our purpose well [5].
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Abstract. The focus of the research is on the most common trans-
port vehicle, the truck-semitrailer combination. A single-track kinematic
model is used, supplemented by the dynamics of the steering system, to
design a linear state feedback controller for the low-speed path-following
problem in reverse. Despite the significant time delay considered in our
study, the linear stability of the system is ensured, even for complicated
maneuvers. The advantages of the adaptive gain tuning method are pre-
sented based on simulations of the commonly used 90-degree alley dock.

Keywords: truck-semitrailer · reverse maneuvering · time delay ·
path-following

1 Introduction

Autonomous vehicles imply a fundamental change in modern engineering. Opti-
mizing safety, speed, and operating costs is the task and responsibility of engi-
neers. Beyond safety, the competition among automotive designers now focuses
on reducing travel time and costs, even more so, in the case of commercial trucks.
Key tasks on highways involve operating long convoys with only one human
driver in the front, i.e., platooning. Vehicle-to-vehicle communication decreases
fuel consumption through real-time traffic data.

Maneuvering articulated vehicles, especially in reverse motion, demands spe-
cial attention due to potential accidents like the Jackknifing phenomenon [1,2].
Driver Assistance Systems (DAS) are available, but these features only assist
human drivers, not replace them in complicated situations. Auto-parking systems
at docking stations address the dwelling time problem of transport companies
[3]. The implementation of automated maneuvers cannot be realized without
developing path-following controls in reverse motion [4]. Installing fully auto-
mated parking systems into loading bays allows drivers to spend more time on
the road.
c© The Author(s) 2024
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Our research focuses on the most common freight transport vehicle, the truck-
semitrailer combination. Due to the dwelling time problem, we are interested in
realizing complicated maneuvers in reverse motion. The single-track kinematic
model is applied with the assumption of rigid wheels. The paper presents and
analyzes a control scheme for solving the path-following problem in low-speed
reverse motion. Neglecting the time delay of localization and control-related
computations on stability may be irresponsible; thus, the stability of reversing
along curves with constant curvatures is investigated in the presence of signifi-
cant time delay. Based on stability charts - produced by the semi-discretization
method, see [5] - related to reversing along circular arcs (constant curvature),
three different gain tuning strategies for varying curvature are selected, and their
performances are compared via simulations.

2 Model Setup

The vehicle combination is modeled with the single-track kinematic model, see
Fig. 1. The wheels at points F, R and T are assumed rigid. The constant longitu-
dinal speed of the rear axle of the towing truck is V . The geometry is described
by the wheelbase l of the towing vehicle, the distance a between the kingpin (K)
and the rear axle (R), and the length L of the trailer’s axle measured from the
kingpin. During the path-following problem, the prescribed point of the vehi-
cle combination is the center point T of the trailer’s axle. Table 1 contains the
numerical values of the parameters.

The vector of the state variables is q =
[
e Θ ϕ δ ω

]
, where e is the lateral

deviation between the prescribed point of the vehicle combination (T) and the
closest point on the desired path (C); Θ denotes the yaw angle error; and ϕ is the
relative yaw angle between the two vehicle parts. The dynamics of the steering
system are considered using the steering angle δ of the front wheel (which is
related to the only actuation) and steering rage ω. The control gains p and d of
the steering servo control are listed in Table 1.

The equations of motion are derived from the kinematic constraints of the
vehicle. On the one hand, the velocity vectors of points F, R and T are parallel
to the related wheel planes, described by the unit vectors eF, eR and eT in Fig. 1.
On the other hand, the longitudinal speed of the truck’s rear axle (point R) is
constant (V ). Finally, the equations of motion are formulated in

ė = V
(
sin (θ − ϕ) − a

l
tan δ cos (θ − ϕ) + cos θ

(
sinϕ +

a

l
cos ϕ tan δ

))
, (1)

θ̇ =
V

l
tan δ + ϕ̇ − κṡ , (2)

ϕ̇ = − V

lL

(
l sinϕ + (L + a cos ϕ) tan δ

)
, (3)

δ̇ = ω , (4)
ω̇ = −pδ − dω + pδdes , (5)
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Fig. 1. Single-track kinematic model of the truck-
semitrailer.

Table 1. Numerical values
of the parameters.

Parameter Value

V −1.5 m/s

a −0.8 m

l 3.5 m

L 10 m

p 300 1/s2

d 34.6 1/s

The reverse path-following motion is achieved by a linear feedback controller:

δdes(t) = δff(κ) − Pe e(t − τ) − Pθ θ(t − τ) − Pϕ

(
ϕ(t − τ) − ϕ�

)
, (6)

where τ is the feedback delay; Pe, Pθ and Pϕ are the control gains (representing
the feedback term) related to the lateral deviation, the angle error and the rela-
tive yaw angle between the truck and the trailer, respectively. The feedforward
term δff(κ) and the reference value ϕ�(κ) of the relative yaw angle are the steady-
state solutions of (1)–(5), which depend on the curvature κ, of course. Note that
the steady-state solution could be generated from geometric considerations as
well.

3 Stability and Optimization

Figure 2(a) shows the linear stability chart of the path-following motion when the
time delay is τ = 0.5 s. Colored areas represent the stable gain configurations;
white crosses denote the most stable gain setup (in the sense of the smallest
real part of the rightmost eigenvalues) for each curvature value. As can be seen,
the most stable gain setup for one specific case may be located outside of the
stable domain for a different curvature value. However, reversing along a path
with varying curvature may still be possible if control gains are selected from
the intersection of stable domains (assuming that the rate of change is relatively
small).

The main contribution of this study is the comparison of control gain tuning
methods. One of the most common maneuvers in loading bays is the so-called
90-degree alley dock in reverse. This maneuver can be realized along a path
consisting of three clothoid arcs (i.e., the curvature κ changes linearly, see [6]),
and a straight-line run-out at the end. The desired position and orientation of
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Fig. 2. (a) Stability chart in the plane of control gains. Shaded areas denote the stable
domains for different curvature values. White crosses represent the most stable gain
setups within each stable region. (b)–(c) Trajectories of the trailer’s axle (prescribed
point) during the investigated 90-degree alley dock with the skeleton model of the
vehicle combination at some specific time steps. The clothoid segments and the straight
run-out are labeled along the trajectories.

the trailer, and the curvature of the path can be adjusted at the start and end
points of the maneuver. The trajectory with the explanation of the segments is
plotted in Fig. 2(b).

The differences in the performance between three different gain tuning meth-
ods are shown in Fig. 3. The comparison is based on simulation results by solving
the nonlinear equations of motion (1)–(5) using the Matlab built-in solver dde23
with adaptive time stepping. The steady-state solution related to zero curvature
(i.e., the starting of the maneuver) is set as the initial condition. Panels (a)–
(e) represent the time series of the state variables, while (f) shows the change
of curvature in time along the entire path. The path segments are separated
by brown dashed lines in each panel. Real vehicles have a physical limit to the
steering angle. Let this limit be δmax = 40◦ = 0.7 rad, as also marked with gray
dashed line in panel (d). Three distinct methods for tuning the control gains are
presented: the green thick line represents the case when the gains are adaptively
tuned to the most stable setup according to the instantaneous curvature; the
blue thin line is the most stable for the largest occurring curvature value; while
the orange dashed line is the most stable for the zero curvature, i.e. assuming
straight-line motion.

Figure 2(b) also helps visualize the motion in the case of adaptive gain tun-
ing that provides a smooth and precise parking maneuver. In panel (c), the
motion is illustrated when the gains of the controller are tuned for κ = 0. The
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Fig. 3. Simulated time series of the state variables during the 90-degree alley dock
(i.e., reversing along a path with varying curvature) with time delay τ = 0.5 s in order
to demonstrate the differences between the three distinct gain tuning methods. The
control gain related to the lateral deviation is Pe = −5 rad/m. Vertical dashed lines
separate the segments of the path. Horizontal dashed lines in (d) mark the physical
limit of the steering angle.

motion becomes unstable as the steering angle exceeds its limitation and the
truck overturns in this latter case.

As a main contribution, using adaptive control gain tuning is recommended
to solve the reversing problem along the path of varying curvature. However, con-
sidering the largest occurring curvature in the gain tuning method can also lead
to an acceptable solution, although precise positioning may not be achievable at
the straight-line segment (when κ = 0). Finally, neglecting the path curvature in
the 90-degree alley dock maneuver in reverse can easily lead to unstable motion.
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4 Conclusion

A possible control algorithm for reversing a truck-semitrailer combination along
a path was constructed using the single-track kinematic model. The time delay in
the control loop and the dynamics of the steering mechanism were also included
in the model. An adaptive control gain tuning method was established besides
two other strategies by which reversing may be stabilized even in case of a large
time delay. These methods were implemented via a typical parking maneuver
involving varying path curvature. In order to achieve the best performance in
solving the path-following problem, the adaptive control scheme is recommended
based on the presented comparison.
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Abstract. Linear range considerations in the tire-road contact restrict
the potential of dynamic control designs of passenger vehicles, while
strong nonlinear dynamics such as drifting are intrinsically dangerous.
In this paper, based on the chassis with independent wheel drive/brake
torque control, we propose a model-based strategy to exploit the poten-
tials of all four tires in combined slips to elevate the cornering perfor-
mance in critical maneuvers. The model-inversed results indicate that the
maximal achievable steady-state (SS) yawing is larger than the widely-
used boundary for control system design. Nonlinear dynamics around
the created stable motions are further analyzed by plotting phase planes.
With feedback control incorporated, the proposed strategy is verified in
simulations for both local and global dynamics. The method also shows
a distinctive availability of tuning different vehicles into desired driving
characteristics and elevating their performance levels through indepen-
dent powertrains.

Keywords: Vehicle dynamics · Steering characteristics · Combined
slip · Cornering performance · Vehicle stability control

1 Introduction and Motivation

The development of vehicular technology has led to a surge of innovations in
chassis control. Still, such advancement is restricted by the very basic mechanics
mechanism of the tire-ground contacts. To maintain steerability for drivers, clas-
sical active systems (e.g., ESC) commonly keep the vehicle within the linear SS
boundaries that in return, give up the potential in the nonlinear regions [1,2]. In
advanced chassis with independent torque control, more possibilities are shown
with the utilization of large combined slips, such as drifting control in [3] and
obstacle avoidance in [4]. Indeed, such large-side slip motion is stabilizable while
not elevated since the maximal yawing is yet within the SS boundary in [1,5].

1.1 Problem Formulation

The motivation of the paper comes from the demand to stabilize the oversteer
vehicle after global instability is induced by Saddle-Node bifurcation [1]. Instead
c© The Author(s) 2024
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Fig. 1. (a) Modification of SS steering chara (-OL: open-loop; -C: with proposed con-
trol; US: understeer; OS: oversteer; NS: neutral); (b) Visualised control intervention.

of moving towards driting where a large body side-slip is required, we aim to
achieve high cornering speed while retaining a small body side-slip. The key
finding traces that the maximal achievable yaw rate ωz,max,c in SS is extended
than the well-known open-loop one ωz,max,ol:

ωz,max,c

(
≈ μf + μr

2
1

vxg

)
> ωz,max,ol

(
=

min{μf , μr}
vxg

)
, (1)

where μ is the contact coefficients and g is the gravitational constant (see [5] for
detailed parameter definitions).

1.2 Key Contributions

I) we propose a new mechanics-based approach to manipulate the vehicle
dynamics in critical maneuvers, while maintaining predictable body motions
in either yaw or lateral side-slip.

II) a desired SS equilibrium can be created even for oversteered vehicles in
globally unstable domains, where an elevated performance of SS cornering
can be achieved;

III) methodology for the control systems development based on the proposed
strategy is demonstrated, and the simulated results verify its feasibility and
functionality.
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2 Methodology

The proposed method is applied to a 3-DOF (degree of freedom) planar vehicle
model where control system development is also introduced.

2.1 Vehicle and Tire Model in Combined Slips

A planar 3-DOF vehicle model assumes the form [1] (check [6] for parameters):

m (v̇x − vyωz) = (Fx1 + Fx2) sin δ + (Fy1 + Fy2) cos δ + (Fx3 + Fx4) ,

m (v̇y + vxωz) = (Fy1 + Fy2) cos δ + (Fy3 + Fy4) + (Fx1 + Fx2) sin δ,

Izω̇z = (Fy1 + Fy2) lf cos δ − (Fy3 + Fy4) lr + Fx2d2 − Fx1d1,

(2)

where F... are the tire forces (1, 2, 3, 4 refer to four wheels, see Fig. 1) and
vx, vy, ωz are the motion states. The tire force at the combined slip is described
by adopting the combination of the steady-state Magic formula and non-steady-
state TMeasy model, which finally gives the force calculation in the form of

Fi = μiFzi sin
(
C (Bsi − EBsi + E arctan Bsi)

)
, i ∈ [1, 2, 3, 4]. (3)

The longitudinal and lateral forces are derived based on (3), respectively:

Fxi =
sxi

si
Fi, Fyi =

syi

si
Fi. (4)

where sxi, syi are the slip ratios defined in two dimensions [5] and si =√
s2

xi + s2
yi.

2.2 Preliminaries of Extending Steady-State Cornering

Using OS vehicles as a demonstration, the contact force in front wheels cannot
be fully used due to the imbalance of yawing moment

∑
Mz �= 0, thus, we

apply certain opposite longitudinal forces in the side wheels to create extra yaw
torque Mz,x = Fx2d2 − Fx1d1 in (2) while generating no sum in longitudinal
acceleration

∑
Fx = 0. This Mz,x contributes in a similar way to ESC, but

not for stabilization, to directly modify the combined tire characteristics in the
axle which consequently, leads to the enlarged lateral force generation ΔFy and
additional yaw moment Mz,y. To reach SS motions, balances in three planar
dimensions x = [vx, vy, ωz]T in (2) have to be satisfied:

∑
Fx,...(x;u) = −vyωz,ss,

∑
Fy,...(x;u) = vxωz,ss,

∑
Mz,...(x;u) = 0, (5)

where x denote the equilibrium of state variables and u is the controllable inputs
that are the longitudinal slip ratios [sx1, sx2]T .



696 H. Lu et al.

Fig. 2. Extension and modification of SS steering chara (-OL: open-loop; -CL: with
proposed control; US: understeer; OS: oversteer), where the red dot-dash line refers to
the OL boundary in (1).

Analytically, in maximal conditions, full contact forces both in the front and
rear axle are generated and balanced assuming an SS condition:

4∑
i=1

Fy,i + ΔFy = vxωz,ss,
∑

Mz,... = ΔFylf − (Fx1d1 − Fx2d2) = 0, (6)

where in the case of the open-loop system,
∑4

i=1 Fy,i = vxωz,max,ol. Thus, the
increment of the SS yaw rate can be derived Δωz,max = ΔFy/vx, and the unbal-
anced moment is compensated through longitudinal tire forces.

The solution of Eq. (5) satisfying (6) can be numerically found by inversing
the nonlinear systems as shown in Fig. 2, where the external input parameters
are [ωz,des, vx,des, δ], and the solution set is [vy, sx1, sx2]. The black line refers to
the SS cornering achieved by the proposed methodology, where the green region
indicates the absolute elevated performance w.r.t classical boundary (check (1)).

Stability around the new elevated equilibrium x in Fig. 1 is checked through
phase planes in Fig. 3. In this maneuver, driver is not able of stabilizing the
motions (left of Fig. 3), and even the drifting would be restricted in the OL
boundaries (red dotted line). While in the right-side panel, one can achieve an
out-of-limit yawing speed in a more stable and simple manner. The quick demon-
stration in Figs. 2 and 3 points out the capability of the proposed methodology
in critical conditions.
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Fig. 3. Phase planes of (a) an uncontrolled open-loop OS vehicle system and of (b) a
same OS vehicle but with feedforward control torque.

2.3 Control System Development

Based on the created equilibrium x and the calculated longitudinally controlled
slips sx1, sx2, the control law Tc in the side wheels is structured as

Tc = Tc,ff(sx1, sx2) + Tc,fb(x,x), (7)

where the feedforward term Tc,ff calculated from (6) is applied for creating the
SS equilibrium and the feedback term Tc,fb is to accomplish better local stability
against deviations. By substituting sx1, sx2 into the tire formula (3, 4), one can
derive that

Tc,ff = [Fx1(sx1)Rw, Fx2(sx2)Rw]T . (8)

Consequently, the feedback controller can be assumed in an elegant way that

Tc,fb = [
d2

d1 + d2
Mpd,

d1

d1 + d2
Mpd]T ,Mpd = K (x(t) − x) , (9)

where K is the coefficient matrix for control gains of motion states. This torque
Tc is further applied to the rotational dynamic model of wheels, which for sim-
plicity here, is not listed. The matrix of control gains is

K =
1
Iz

[
0 Py Pω

]
(10)

where Py = −0.0772N2ms3 and Pω = 1.2375N2m2s3 are the optimal gains
derived at the new equilibrium (check [6] for methods).

3 Simulated Result and Discussion

Simulations are carried out in Matlab/Simulink with the Vehicle Dynamics Tool-
box, and a path with a radius of 48 m is designed to test the cornering capability.
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(v)

(a)

(b1)

(b2)

Fig. 4. Three types of external control intervention are compared: without control,
with only feedforward torque Tc,ff , with both Tc, where the (a) road map, (b1-b2)
motion state variables are checked, respectively.

The longitudinal speed is set at 20 m/s, which means that to stably exit the cor-
ner, the minimum yaw rate is 20/48 = 0.417 rad/s larger than the ωz,max,ol = 0.4
rad/s of the oversteered vehicle in Fig. 2. Thus, without control, theoretically the
corner cannot be passed at this speed.

Figure 4 presents the kinematics and dynamics data in passing the corner.
Compared to the case without control, the proposed controller helps the vehicle
to get through the corner successfully, and in road maps, little difference can
be spotted. While in the dynamic responses, further incorporation of feedback
portion improve the settling processes by faster decaying, which finally gets the
vehicle stabilized at ωz = 0.43 rad/s exceeding the road requirement.

4 Conclusion

In sum, the proposed method demonstrates the effectiveness and advantages of
motion stabilization and performance elevation for OS vehicles compared to nat-
urally unstable drifting. A more promising application is for vehicles at different
steering characteristics, where on the basis of advanced chassis, one can create
desired motions way beyond the classical handling boundary.
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Abstract. This paper presents a slip control design method for a four
wheel driven electric race car with low hardware requirements. In addi-
tion, to achieve robustness against the changing frictional conditions, a
discrete-time Luenberger tractive force observer is designed. The tun-
ing is carried out using the high-precision vehicle dynamics simulation
software CarMaker. The performance of the controller is demonstrated in
real-world tests. An extensive comparison is given to show the advantage
of the proposed method over a previously designed PID controller.
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1 Introduction

In the past decades, the development of whee-

Fig. 1. Longitudinal characteris-
tics of the Hoosier R20 tire

lslip control solutions has been a challeng-
ing task both for passenger and race vehi-
cles. When dealing with the former one, the
main goal is to maintain stability of the vehi-
cle. Racing cars on the other hand have more
requirements, such as to achieve the best pos-
sible lap time. To accomplish this, it is nec-
essary to maximize the accelerations of the
vehicle. In order to achieve this in the lon-
gitudinal direction, it is vital to extract the
maximum tractive and braking forces from the
tires (Fig. 1).

When examining the longitudinal tire
characteristics, it is evident that the tractive
force is significantly impacted by the longitu-
dinal slip. Therefore, it is crucial to maintain
optimal wheelslip during braking and acceleration. The longitudinal wheelslip -
in case of acceleration - can be calculated using the following formula:
c© The Author(s) 2024
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κ =
rω − vx

rω
(1)

where κ is the slip, r is the dynamic wheel radius, ω is the rotational velocity of
the given tire and vx is the longitudinal velocity.

Designing a controller capable of maintaining optimum wheel slip is still a
challenging task today due to the highly nonlinear behaviour of the tire/road
interface. Several solutions can be found in the literature: the most recent ones
include model predictive control (MPC) [1] or application of neural network
[2]. MPC has the advantage of being able to handle constraints, but it requires
significant computational capacity. A Formula Student car have limited capacity
due to financial causes and weight limitations. The use of a neural network
requires a substantial amount of reliable data for training. Conducting sufficient
testing within the available time is not feasible. Therefore, it is advisable to
consider classical control solutions that do not require significant computing
capacity. In this paper a design of SMC for controlling slip is proposed.

2 Design of the Sliding Mode Controller

2.1 Longitudinal Model

To achieve optimal longitudinal wheelslip using sliding mode control, a longitu-
dinal model must be established. It contains the longitudinal forces acting on
the vehicle, as well as the forces and moments acting on a specific wheel. These
forces and moments can be expressed as:

mv̇x = FxFL
+ FxFR

+ FxRL
FxRR

− Faero − Fr (2)

where m is the mass of the car, Fxi
are the tractive forces on the four wheels,

Faero is the aerodynamic drag, Fr is the tire resistance.

θω̇ = Mwheel − Fxr + Frr (3)

where θ is the wheel inertia, ω̇ is the angular acceleration of the wheel, Mwheel

is the torque applied to the wheel, r is the wheel radius.

2.2 Idea Behind Sliding Mode Control

Sliding mode control is a nonlinear control technique that aims to achieve the
optimal trajectory/reference even in the presence of significant uncertainties. The
controller is a variable structure controller containing a discontinuous switching
function. Its design ensures that the system always approaches and remains at
the switching point of the function. This state is the sliding surface, defined
by S(x) = 0. The function S(x) is typically a linear combination of the state
variables x, which equals to 0 if and only if the desired control objective is
met. The controller design consists of creating the sliding surface, defining the
switching function to ensure that the system always moves towards the sliding
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surface and finally deriving the equivalent function make sure that the system
slides along this surface. In the case of wheelslip control the configuration space
can be

S(κ, ω) = (κ − κopt)ω (4)

where κ is the longitudinal wheelslip, κopt is the optimal slip, ω is the angular
velocity of the given tire. This is a common solution that can be found in the
literature [3].

2.3 Equivalent Control

The goal of the equivalent control is to keep the system in the sliding mode
defined in Sect. 2.2. It is obtained by satisfying the equation

Ṡ(v, ω) = 0 (5)

The derivative of the longitudinal velocity from Eq. 2 after coupling tractive
forces losses into one term each yields:

v̇x =
Fxsum

− Floss

m
(6)

The derivative of the angular velocity of the wheel can be expressed from 3:

ω̇i =
Mwheeli − Fxi

r + Tri

θ
(7)

The configuration space 4 can be rewritten using 1:

S(v, ω) =
rωi − v

rωi
ωi − κoptωi,→ S(v, ω) = (1 − κopt)ωi − v

r
(8)

Taking the derivative of this, and cy substituting the terms from 6 and 7,we
can get:

Ṡ(v, ω) = (1 − κopt)ω̇i − v̇

r
, Ṡ(v, ω)i =

1 − κopt

θ
(Mwheeli − Fxi

r + Frir) (9)

The control input is the torque applied to the wheel. The equivalent part can
be expressed using 5 and 9:

ui(eq) =
(1 − κopt) (r (Fxi

− Fri))
θ

+
θ

1 − κopt
· Fxsum

− Floss

rm
(10)

2.4 Switching Function

The idea behind the switching function is to drive the system from its initial state
towards the sliding surface. Once it has reached sliding mode, it is also necessary
to reject noise and uncertainties that the equivalent control could not handle.
In order to move towards the desired sliding mode, the expression SṠ = −η|S|
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must be satisfied, where η is a positive constant. This means that the sign of
S(x) is always opposite to the sign of its derivative, which drives S to 0. To
achieve this, the required input signal is

usw = −η sgn(S) (11)

In theory, the switching function should be a discontinuous signum function. Due
to the highly oscillatory nature of this input signal, it is replaced by a sigmoid
function to avoid unnecessary wear on the mechanical components:

usw = −η
s

|s| + δ
(12)

where δ is a parameter that “softens” the chatter. Given the characteristics of
the tire, the main objective is to ensure that the slip remain in the optimal
region, rather than tracking a specific reference value.

3 State Estimation

3.1 Tractive Force Observer

Fig. 2. Actual and estimated tractive forces

The input signal is the sum of the
switching and the equivalent func-
tions. Accurate estimation of trac-
tive forces is crucial as it significantly
influences the latter. Tire-road fric-
tion can vary in a wide range due to
various factors such as surface, tem-
perature, etc. Therefore, it is neces-
sary to implement a force observer.
The estimated states at time step k+1
of the discretized Luenberger observer
are written as x̂(k + 1) = Adx̂(k) +
Bdu(k) + Ld(y(k) − ŷ(k)), where x̂(k)
are the estimated states, u(k) are the
inputs, y(k) are the measured states, ŷ(k) are the estimated outputs at time k.
Ad is the state matrix, Bd is the input matrix, Ld is the observer gain matrix
[4].

The aim is to estimate the tractive forces using the introduced Luenberger
observer. By writing Eqs. 2 and 3 into state-space form, the estimator can
be designed. The states are xT = [vx ωFL ωFR ωRL ωRR FFL FFR FRL FRR]
and the inputs are: uT = [TFL TFR TRL TRR Floss], where [FL, FR, RL, RR]
marks the front left, front right, rear left and rear right wheels.

The system is then discretized using Tustin transform. The observer gain is
calculated via pole allocation and simulation results. The final poles in contin-
uous time are p = [−1 − 2 · · · − 9] · 50. The formula pdisc = epTs is used to
obtain the discrete poles, where Ts is the sampling time, which is 0.005 s. To
demonstrate the performance of the observer, I made test runs in Carmaker with
different friction coefficients. The results can be seen in Fig. 2.
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3.2 Velocity Estimation

In reality, the longitudinal velocity cannot be measured with low-cost sensors, so
its estimation is crucial to the successful implementation of the controller. The
idea is to use Kalman filter in order to take advantage of the accuracy of the
GPS and the quickness of the inertial sensors. This method is introduced in [5]
and the realization for this particular race car can be found in [6].

4 Results, Comparison with PID

Fig. 3. Front left wheelslip Fig. 4. Torques (front and rear left)

The controller has been designed using Matlab/Simulink. C code is generated
from the model, which runs on a Texas Instruments TMS570LS1227 microcon-
troller. The SMC is compared to a run with a previously designed PID controller
and to a run without wheelslip control.

Figure 3 shows that the wheelslip oscillates less with SMC than with PID.
This also means that the torques oscillate more with PID (Fig. 4), which can
cause the premature failure of certain drive train elements. In terms of perfor-
mance, the SMC has a slightly higher overshoot, but is also faster. Its settling
time is around 0.4 s, while the PID only settles after 0.75 s, also with a larger set-
tling error. During the test, the car completed the 70 m straight in under 3.56 s
without controller, 3.52 s with PID and under 3.4 s with SMC. The latter is an
improvement of 4.495%. Looking at Fig. 5, we can see that the maximum accel-
eration was around 11.75 m

s2 without control, 12.25 m
s2 with PID and 12.5 m

s2 with
SMC. It can be seen that the SMC performs better especially in the 0.3–0.75 s
time interval, which is consistent with the fact that it settles faster (Fig. 6).
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Fig. 5. Longitudinal acceleration Fig. 6. Longitudinal velocity

5 Conclusion, Further Recommendations

This paper demonstrated that the proposed SMC is more advantageous than
the previously designed PID wheelslip controller. The current design is only
suitable for operation in straight-line acceleration scenarios. It would be advan-
tageous to incorporate lateral dynamics in the future. This implies that the
combined slip must be considered in lieu of the pure longitudinal, and that the
force observer must also consider losses resulting from turning. Furthermore,
with a slightly faster microcontroller it would be worth considering a simple
MPC, as its attributes are highly suitable for this particular problem.
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6. Facskó, V.: Estimation of vehicle states with on-board sensors (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.mathworks.com/help/sps/ref/luenbergerobserver.html
https://www.mathworks.com/help/sps/ref/luenbergerobserver.html
https://doi.org/10.1115/1.1766026
http://creativecommons.org/licenses/by/4.0/


Long Combination Vehicles Reverse Strategies
Based on Articulation Angle Gradient

Zhaohui Ge(B), Fredrik Bruzelius, and Bengt Jacobson

Chalmers University of Technology, 41296 Gothenburg, Sweden
zhaohui.ge@chalmers.se

Abstract. To guide the development of driver assistant systems and fully auto-
mated solutions for reversing long combination vehicles (LCVs), the principles
for reversing LCVs are investigated using the articulation angle gradient. The
widely used Steady-state Circling Limitation (SSCL) in reversing LCVs has two
main drawbacks: it restricts vehicles from operating with large articulation angles
crucial for tight spaces and lacks a well-defined feasible range. Two new reverse
principles are introduced that can provide better insight. The first principle extends
SSCL to include more extreme articulation angles for single-articulated vehicles.
It also addresses the necessity of considering articulation gradients when devel-
oping the continuous reverse limitation for multi-articulated vehicles. The second
principle introduces limited distance reversing for vehicles that no longer meet the
first principle’s requirements, providing additional vehicle ending poses useful for
tasks like loading and coupling.

Keywords: Combination Vehicle · Kinematic Model · Reverse · Articulation
Angle Gradient

1 Introduction

High-capacity transport using multi-articulated LCVs increases efficiency and reduces
the emission of the transportation [1]. Reversing those vehicles is a difficult and time-
consuming task for drivers [2]. A potential solution to this challenge is developing driver
assistant systems or fully automated solutions for reverse tasks.

Matsushita et al. controlled reversing a double-trailer vehicle with a velocity and
a trajectory controller [3]. Morales et al. presented a reverse control algorithm that
transformed a virtual steering angle at the last trailer into the tractor steering angle
and pointed out that their algorithm is feasible only under the condition that none of
the articulation angles within the vehicle exceed the corresponding magnitude reached
during the vehicle’s minimal radius steady-state circling state [4, 5]. That limitation
is referred to as the SSCL. Within the SSCL, articulation vehicles are claimed to be
able to reverse continuously without any inter-unit clashes. Some research on control
algorithms for reversing combination vehicles [6–8] are using paths that follow SSCL
for validations. Therefore, SSCL is considered as the basic reverse limitation for LCVs.

The drawbacks of the existing research are that they lack boundaries for their feasible
region or that the feasible region is defined incompletely.
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2 Kinematic Model

A kinematic vehicle model shown in Fig. 1 is used in this study.

Fig. 1. Vehicle Model

The yaw gradient with respect to the 1st unit’s rear axle travel distance is:

∂Ψi

∂s1
=

⎧
⎨

⎩

f ∂Ψi
∂s1

(δ, li), i = 1

f ∂Ψi
∂s1

(δ, li, θ i−1), i = 2, 3, 4, · · · (1)

where Ψi is the heading in the global coordinate system, s1 is the travel distance at the
1st unit’s rear axle, δ is the steering angle at the 1st unit’s front axle, li is the dimensions,
as stated in Fig. 1, from the 1st to the ith unit, and θ i−1 is the articulation angle vector of
the 1st to the ith articulation angle.

Using Eq. (1), the articulation angle gradient with respect to s1 is given as:

∂θi

∂s1
= ∂Ψi

∂s1
− ∂Ψi+1

∂s1
= f ∂θi

∂s1

(δ, li, θ i), i = 1, 2, 3, · · · (2)

3 Articulation Angle-Based Reverse Principles Analysis

This section introduces two principles that can be used to develop future reverse strate-
gies. They are established from the articulation angle gradient in Eq. (2) with parameters
from several combination vehicles.

As shown in Table 1, the dimensions of nine vehicle combinations [9] are used in
the following discussions. Cfg. 1 is a regular tractor and semi-trailer combination. Cfg.
2 to 5 are double-articulated vehicles within 25.25 m limitation. Cfg. 6 to 9 are double-
or triple-articulated vehicles within 34.5 m limitation.

All the combinations follow two mechanical constraints. The steering angle δ is
limited within [−45◦, 45◦] [6] and the articulation angles are limited to [−90◦, 90◦] to
avoid inter-unit clashes within the combination.

3.1 Controllable Articulation Angle-Oriented Reverse Principle (CAARP)

For a reversing combination vehicle, it is vital to be able to change the evolution of
the articulation angle to avoid inter-unit clashes, which the articulation angles should
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Table 1. Vehicle combinations selected for following discussions.

Cfg. No. 1 2 3 4 5 6 7 8 9

Combination in the report [9] 402 602 604 606 705 11 13 1 9

Fig. 2. Comparison between SSCL and CAARPL for single-articulated combinations vehicles.

be able to be controlled to avoid their mechanical limitations. They are called Control-
lable Articulation Angles, a concept introduced in this research. For a single-articulated
vehicle, they can be described as:

∀ |θ1| < θ1,CAARP, ∃δ ∈ [−45◦, 45◦], ∂θ1

∂s1
· sgn(s1) · θ1 ≤ 0 (3)

where θ1,CAARP is the first articulation angle limitation for controllable articulation angle,
sgn(s1) indicates the travel direction of unit 1.

All the following discussion is based on reversing, which means sgn(s1) = −1.
As shown in Fig. 2, colored zones show the articulation angle gradient that satisfies
∂θ1
∂s1

· sgn(s1) · θ1 ≤ 0; θ1 between two red lines are within SSCL; and θ1 between two
purple marked dash lines are feasible for CAARP. The CAARP feasible range is defined
as an interval on the one-dimensional articulation angle space.

Equation (3) is satisfied outside the domain described by the SSCL in Cfg. 1, 2, 3,
6 and 8, which indicates CAARP allows for higher articulation angle limitations. This
is because these configurations have their rear coupling points on unit 1 in front of their
rear axles, and SSCL lacks steady states where the instantaneous rotation center is on
different sides of unit 1 and unit 2. For the remaining vehicles, SSCL and CAARP have
the same limitation. However, when θ1 is close to the CAARP limitation, as limited by∣
∣
∣
∂θ1
∂s1

∣
∣
∣, there will be only limited possibility of reducing the articulation angle. Therefore,

one needs to have a margin to this border.
The next step is to extend CAARP to multi-articulated vehicles. To find out how to

define the feasible range of CAARP for multi-articulated vehicles, the later part of the
statement in Eq. (3) is extended to all articulation angles, and the new statement is given
in Eq. (4).

∃δ ∈ [−45◦, 45◦], ∂θi

∂s1
· sgn(s1) · θi ≤ 0(i = 2, 3, . . . ) (4)
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a) Articulation angle trajectory b) Steering and articulation angles with 

respect to the travel distance of Unit 1

Fig. 3. Simulation of reverse Cfg. 2 from θ1 = −60◦, θ2 = 10◦ towards a straight pose.

The green areas in Fig. 3a show that the articulation angles satisfy Eq. (4) of a double-
articulated vehicle formed with units 1 to 3 of Cfg. 2. Double-articulated combinations
formed with the first three units of Cfg. 3 to 9 show similar behaviors. If the same ideal
from SSCL is applied, the first part of Eq. (3) should be extended to ∀|θi| < θi,lim.
This should create a rectangular area in Fig. 3a and fully covered by green areas. It is
impossible to define such a rectangular in Fig. 3a. This indicates that the CAARP feasible
range for multi-articulated vehicles cannot be defined by independently limiting each
articulation angle.

Equation (4) is insufficient in defining the feasible range for CAARP of multi-
articulated vehicles. Therefore, the articulation angle gradients are considered to further
study the feasible range of CAARP. As shown in Fig. 3a, the articulation angle gradient

range for a specific pose is expressed by a set of arrows:
(
− ∂θ1

∂s1
,− ∂θ2

∂s1

)

δ=−45◦,0◦,45◦ . For

any steering angle within the steering limitation, the articulation angle gradient vector
will be within the sector between the arrows for δ = −45◦ and δ = 45◦ via δ = 0◦. This
can be proved by the continuity of ∂2θi

∂s1∂δ
.

As shown in Fig. 3a, the feasible articulation gradient vector plots on the articulation
angle plane can offer subjective guidance onwhether a vehicle pose is within theCAARP
feasible range. For a vehicle pose which is close to the corners of SSCL in the second
quadrant, it is impossible to continuously reverse due to all articulation angle vectors
in surrounding areas increasing |θ2| towards its mechanical limitations. Hence, forward
driving is the only possibility before applying CAARP to a vehicle from that pose. We
classified long combination vehicles in similar states as NO-NO states, an abbreviation
for “if NO forward driving, then NO continuous reversing”.

A simulator based on Sect. 2 is built to test the controllability of vehicles’ poses
outside SSCL. Figure 3 shows one of the simulation results from it. This simulation
shows that a pose outside SSCL may still have controllable articulation angles, and
articulation angle gradient vectors can guide steering control.

The dimension of the articulation angle space will increase with the number of
articulation joints. To describe the articulation gradients of a triple-articulated vehicle,
one additional dimension will be added for θ3, which will turn the 2-D plane in Fig. 3a
into a 3-D articulation angle cube. The internal high dimension planning problem, and
space constraints are expected to bring additional challenges.
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3.2 Locked Articulation Angle-Oriented Reverse Principle (LAARP)

LAARP means the combination vehicle aims for NO-NO states, poses outside the
CAARP limitation. The Locked Articulation Angle appears when at least one articu-
lation angle within a combination vehicle reaches its mechanical limitation, and forward
driving is required to avoid clashes. The idea behind LAARP is that the vehicle does not
need to reverse further after it arrives at its desired position.

This study shows primary results that show the potential of LAARP. This is done
by simulating the combination vehicles with the model from Sect. 2. The vehicle in the
simulation will start to reverse with a specific pose, and the steering angle is kept fixed
during the reverse. The resolution is 1◦ for initial articulation angles and 0.1◦ for the
steering angle. The simulation step is given as �s1 = 0.1m. The simulation ends when
the vehicle reaches a locked pose. For a rough estimation, the longer the vehicle can
reverse, the greater the potential to manoeuvring the last unit.

Figure 4 shows the maximum reverse distance with fixed steering angles of Cfg. 9,
where the position on the articulation angle plane shows the initial pose. Figure 4a and
b show the result of a single-articulated vehicle formed by the first two and three units
of Cfg.9, respectively. Figure 4c and d show the results of the triple-articulated Cfg.9
that sliced at two different θ3.

a) Unit 1 to 2 b) Unit 1 to 3 c) Unit 1 to 4 d) Unit 1 to 4

Fig. 4. Maximum reverse distances with fixed steering angles of Cfg. 9.

Recall fromFig. 2, the single-articulated vehicle based onCfg. 9will no longer satisfy
the requirement for CAARP at large articulation anglemagnitudes. According to Fig. 4a,
the vehicle may still reverse for meters outside CAARP limitations. Figure 4c to d also
show non-zero reverse distances appearing in many initial poses of the multi-articulated
vehicles, showing the potential outside CAARP feasible range in reverse.

4 Conclusion

This paper investigates principles that can guide the development of reverse strategies
for long combination vehicles from the view of kinematical model-based articulation
angle gradients. Two principles are established in this paper.

ControllableArticulatedAngle-orientedReversePrinciple aims tomaintain the vehi-
cles’ ability to avoid inter-unit clashes. The feasible range of CAARP can be easily
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defined by articulation angle limitations for single-articulated vehicles. A more com-
plex limit on each articulation angle dependent on the other articulation angles is neces-
sary for multi-articulated vehicles, which must consider the articulation angle gradients.
Analysing the instantaneous kinematics of multi-articulated vehicles of a specific initial
pose is insufficient to identify whether the pose is within the feasible range of CAARP.
A planning algorithm for vehicle pose change in the articulation angle space is required
to define the feasible range for multi-articulated vehicles based on the CAARP.

Locked Articulation Angle-oriented Reverse Principle uses vehicle poses outside the
feasible range of CAARP. The preliminary study confirmed the feasibility of LAARP
by observing the non-zero reverse distance of the first unit between the nonlocked to
locked articulation angle pose.

Compared with the SSCL, the two new reverse principles show possibilities of
expanding the feasible vehicle pose ranges for reverse path planning, including addi-
tional intermediate poses from CAARP and final poses from LAARP. CAARP excludes
certain poses from SSCL intermediate poses for reverse.
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Abstract. In this study, we conduct an analysis of the longitudinal
dynamics of a vehicle model in an incline, with a specific focus on its
behavior, at low speeds, when starting and stopping. The model is min-
imal, yet an effective representation of a vehicle that includes the effects
of springs and dampers as well as friction and electric braking models,
which allows for easy analysis into their interplay at low speed. One
important feature that this early study shows is how the acceleration
and jerk is affected by static and dynamic friction coefficients in dif-
ferent driving situations. Our study further demonstrates the interplay
between the electric and friction braking systems and the differences in
oscillatory motion they generate. Such insights are vital if we want to
improve vehicle control at low speeds and suggest ways to reduce prob-
lems like excessive acceleration and jerk. Additionally, our findings could
also provide valuable insights when developing active friction braking
systems.

Keywords: Longitudinal dynamic · Standstill · Braking system

1 Introduction

1.1 Background and Literature Review

Most everyday driving involves non-extreme maneuvers, nevertheless, ride com-
fort is often compromised by frequent starts and stops. Ride discomfort is caused
by acceleration and jerk (the rate of change in acceleration). As the vehicle accel-
erates, passengers experience inertia forces, leading to discomfort when these
forces are large or change rapidly. Additionally, both uphill and downhill driv-
ing affect comfort by shifting weight distribution between the two axles, which
in turn influences the potential for regenerative braking power. Specifically, in
downhill driving, Chen et al. [1] investigate a regenerative braking strategy for
electric vehicles on varied slopes. They analyzed the effect of the slope on brak-
ing, and introduced an online co-estimation of road slope and vehicle mass using
neural networks and a least-squares algorithm.
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Many studies have been done on longitudinal ride comfort. Hou et al. [2]
present a novel control strategy using residual reinforcement learning to enhance
vehicle ride comfort during the post-braking phase in urban environments.
Experimental tests on a skateboard chassis confirm its effectiveness in improving
comfort across different braking scenarios. The relationship between acceleration,
jerk, and passenger discomfort was examined in [3], using a driving simulator
with 23 participants. That test showed that discomfort increases with accelera-
tion amplitude, and that the strength of this effect depends on the direction of
motion. Lee and Choi [4] focused on enhancing ride comfort in low-risk braking
situations. Their research was conducted on Electro-Mechanical-Brake (EMB)
and Brake-by-Wire (BBW) systems, which allow for more precise control of brak-
ing actuators. A control algorithm was developed that significantly improved ride
comfort by generating an acceleration trajectory designed to minimize discom-
fort caused by sudden changes in acceleration and jerk. A key aspect of this
improvement is the reduction of jerk, ensuring smoother transitions and a more
comfortable driving experience. In order to control and minimize jerk, Singh
et al. [5] introduced an autonomous emergency braking system. The system’s
stopping distance was analytically calculated, and a simple controller tracked
the desired velocity profile. In [6], a novel braking method using an integrated
electro-hydraulic brake system was proposed to improve ride comfort. The pro-
posed method comprises target acceleration generation, revision of target accel-
eration, and acceleration tracking control. The tracking control included both
feedforward and feedback control, which were used to precisely track the target
acceleration.

1.2 Motivation

In this study, we investigate and analyze the behavior of vehicle motion at
low-speeds using a minimal vehicle model that captures the main longitudinal
dynamics phenomena. Our research specifically focuses on scenarios of starting
and stopping in an uphill, where both propulsion and friction braking torques are
engaged. We do this by testing how the relation between static and dynamic fric-
tion coefficients affect the dynamics. We then study acceleration and jerk under
different conditions to understand the conceptual comfort difference between
using a shaft torque, generated from for example an electrical motor, and a fric-
tion brake force. By gaining a deeper understanding of vehicle dynamics in this
particular scenario, we seek to pave the way for further understanding of how
to reduce excessive jerk when starting and stopping, and thus provide solutions
for better ride comfort in everyday driving conditions.

2 Modelling

2.1 Model Description

For the current study, we have developed a minimal vehicle model to capture a
few aspects of longitudinal comfort at low speed, which is shown in Fig. 1(b). The
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model includes a vehicle body, a wheel hub and wheel. The body is supported
by a spring-mass suspension system that is attached to a wheel hub.

The vehicle body has a sprung mass mb, the wheel hub has mass ma and the
wheel has mass mw, radius r, and moment of inertia J . Further, the suspension
system comprises a spring and damper, with parameters k and d, respectively,
which allow the wheel to have a translational motion in relation to the vehicle
body. We let x1 and x2, respectively, be the vehicle’s body and wheel displace-
ment relative to the surface, ẋ1 and ẋ2 their respective velocities, and ẋ1 and ẋ2

their accelerations. The angular velocity of the wheel is ω, the propulsion torque
acting on the wheel is Tp, and the clamp force of the break is Fc. We finally
assume that here is no slip between the tyre and ground, and thus ẋ2 − rω = 0.

Fig. 1. (a) Vehicle velocity and acceleration from Carmaker, (b) The minimal vehicle
model.

We note that the model simplifies a vehicle’s complexity by lumping all wheels
into a single representative wheel. Here we considered wheel as a solid model
and the stiffness and damping characteristics from the tires and suspension are
consolidated into a spring and damper setup. The model has two degrees of
freedom, which are the movement of the sprung mass and the wheel. The effects
of motion resistance such as air drag, rolling, etc. are omitted.

Taking all this into consideration, the equations of motion for the system on
a road with an inclination angle ϕ are given by

mbẍ1 − k(x2 − x1) − d(ẋ2 − ẋ1) = mbg sin(ϕ), (1)

J + r2ms

r
ẍ2 + rk(x2 − x1) + rd(ẋ2 − ẋ1) = Tp(t) − rFb(ẋ2) + rmsg sin(ϕ),

(2)
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where ms = ma + mw and the friction force Fb is given by

Fb(ẋ2) =

{
[−μsFc, μsFc], ẋ2 = 0,

−
(
μd + (μs − μd) · exp

(
−

(
ẋ2
vs

)α))
sign(ẋ2/r) · Fc, ẋ2 �= 0.

(3)

and includes the Stribeck effect (with Stribeck velocity vs), and static and
dynamic friction coefficients μs and μd, respectively.

2.2 Parameter Selection

The lumped parameters of the model were selected through a comparative anal-
ysis between our proposed model and a standard model provided by the simula-
tion tool Carmaker. This comparison was conducted to ensure that both models
exhibited similar natural frequencies. Results from Carmaker (for an example
see Fig. 1(a)) were used to adjust the parameters until the frequency response of
the minimal model matched that of the Carmaker model. This process helped in
ensuring that the simplified model well represents the dynamics of a Carmaker
vehicle model.

3 Simulation

3.1 Driving Scenario

Simulations and solving the equations of motion were done using MATLAB &
Simulink. The two scenarios we analysed were starting and stopping in a hill.
During all simulations the propulsion torque Tp(t) varies, while the clamp force
Fc remains constant, ensuring that there is always a sufficient friction braking
torque to bring the model to a complete stop.

3.2 Results

By analyzing the jerk of the main body, some levels of rapid changes are observed
when the wheel starts moving and when it comes to a complete stop. To analyze
role the friction in the brake has in these scenarios, the body acceleration and jerk
were calculated for different static and dynamic friction coefficients, as shown
in Fig. 2. In order to minimize noise when calculating signal derivatives, such
as jerk, and to ensure accurate analysis and detection, we employ a 6 Hz low-
pass filter [7]. This significantly reduced noise and minimized fluctuations in the
derivatives, which enhanced the clarity and reliability of the results for analysis.

As can be seen in Fig. 2(a) and 2(b), jerk and acceleration of the body
increases significantly with higher static friction coefficients μs and lower
dynamic friction coefficients μd, when the vehicle starts moving. Here the fric-
tion brake must transition from a static to a dynamic state, which means that
when the static friction coefficient is big, the maximum static friction force will
be greater and requires more force to overcome in order to initiate motion. A
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Fig. 2. The maximum body (a) jerk and (b) acceleration during start, an maximum
(c) jerk and (d) acceleration during stop are shown for µs and µd.

consequence is that this results in greater jerk. Conversely, a small μs and a large
μd lead to smoother transitions and reduced jerk. This indicates that very high
μs and very low μd gives discomfort in start scenarios on uphill. Instead, when
stopping, Fig. 2(c) and (d) show the jerk and body acceleration after the wheel
has stopped rotating. As seen in the figures, μs seems to have a small effect when
stopping while μd plays an important roll. An increase in μd increase both jerk
and acceleration, but they are both almost constant for a given μd and varying
μs. To observe the effects the difference Δμ = μs − μd between the two coeffi-
cients have, we chose three different cases to analyze. The body acceleration and
jerk for these cases are shown in Fig. 3.

Fig. 3. Time histories for (a) body acceleration, (b) body jerk and (c) wheel speed.

As can be seen in Fig. 3(a), when the model starts moving, we see for all
three cases that there is a jump in acceleration, resulting in a large jerk (see
corresponding plot in Fig. 3(b)). In particular, jerk is largest for Case 2, with
the largest Δμ, and the smallest for Case 3, with the smallest Δμ. However, when
stopping, Case 3 has the largest jerk. It can also be seen that the three cases
have similar oscillations when stopping, and for Cases 1 and 2 the maximum
jerk and acceleration is the same since they have the same μd. From Fig. 2 we
know that a change in μs only has a small effect on the jerk, when stopping. In
general, μs has no effect when stopping, but when μs is small and close to μd,
the wheel may start rotating again, thereby affecting and reducing acceleration.
Cases 4 and 5 in Fig. 3(c) demonstrate this behavior.
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4 Conclusion

In the present study, we introduce a minimal longitudinal model that incorpo-
rates the effects of springs and dampers as well as friction and electric braking.
We examined the behavior of the vehicle at low speeds when starting and stop-
ping in an uphill when varying the friction coefficients of the friction break. The
results indicate that μd and μs have different impact depending on the scenario.
The combination of a small value for μd and a large value for μs increases dis-
comfort when starting. Conversely, a large μd, independent of μs, when stopping
also increases discomfort. Additionally, as the difference Δμ between the fric-
tion coefficients decreases, increased oscillations are experienced when stopping.
This study can be used to enhance the understanding of the interplay between
friction and electric brake close to zero speed, and thus help us improve comfort
by reducing jerk. In future research, we can utilize this model to develop a con-
troller for managing jerk more effectively as well as including a more realistic
tire model and enhance the current friction model, and thereby improving both
performance and validity in special scenarios.
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Abstract. Evaluating braking system limits is crucial in designing heavy-duty
trucks, often requiring extensive time and resources through field and dynamome-
ter testing. To reduce these demands, modeling approaches have been widely
adopted. However, it faces challenges in complex configurations like fuel cell
trucks due to interactions between brake and energy systems, particularly regen-
erative braking, a feature absent in conventional heavy-duty trucks. This paper
presents a model that simplifies the representation of these systems in fuel cell
trucks, using data-driven models based on field tests. It details constructing and
validating a comprehensive brake systemmodel specifically for downhill scenarios
in fuel cell trucks, achieving around 99% accuracy in predicting brake limits.

Keywords: fuel cell heavy-duty truck · braking system modeling · simulation ·
braking limit point · retarder oil temperature

1 Introduction

As the transition from fossil fuels to hydrogen gains momentum for carbon neutrality
[1], the development of eco-friendly fuel cell heavy-duty trucks has become a focal point
[2–4]. Predicting the braking performance of these trucks is a critical design challenge,
usually assessed through costly and time-consumingfield anddynamometer tests.Aneed
exists for a method to forecast braking performance beforehand amid changing design
specifications. Accessing vehicle data such as states of the powertrain, braking, and
control systems is crucial for accurate performance prediction [5]. However, obtaining
comprehensive data, especially for new vehicle development, is often challenging. This
requires amodeling technique that can forecast braking performance using field test data.
This paper proposes a modeling approach using experimental data to forecast braking
system limits in fuel cell heavy-duty trucks. The method enables deriving algorithms
for complex components and diverse systems, even with minimal knowledge of the
underlying mechanism and control algorithms.
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Table 1. Details of field test driving scenarios

Scenario Total driving duration Total distance covered Remarks

#1 1727 s 29.47 km –

#2 1162 s 12.85 km driving at low speeds
...

...
...

...

#14 2372 s 37.17 km exclusive use of regenerative
braking, no retarder

#15 578 s 10.79 km –

2 Braking System of Fuel Cell Heavy-Duty Trucks

The braking system of a fuel cell heavy-duty truck can be classified into two main
components: the primary brake and two auxiliary brakes. The primary brake utilizes air
disc brakes with the operational limit dependent on the temperature of the disc. The two
auxiliary brakes, namely the regenerative brake and retarder, operate through distinct
mechanisms. The regenerative brake converts kinetic energy into electrical energy using
a generator during deceleration, and its operational limit is influenced by the battery’s
state of charge (SOC) [6]. Fuel cell and cooling fan operations play crucial roles in
SOC changes during deceleration, and the control algorithms for fuel cell operation and
the cooling fan significantly impact both SOC and the operational limit of regenerative
braking. On the other hand, the retarder generates braking force by slowing down the
output shaft of the transmission, with the braking torque produced by fluid friction [7].
The operational limit of the retarder is determined by the retarder oil temperature.

3 Brake System Modeling

To construct a brake system model, diverse vehicle states during braking were obtained
through a series of field tests. The tests were conducted on long downhill descents, with
the truck endeavoring to maintain a consistent speed range as much as possible. The
dataset includes 52 signals. The dataset was collected from 15 distinct driving scenarios
(see Table 1). These scenarios were executed by a 6x4 tractor, specifically a fuel cell
heavy-duty truck.

The model structure for the fuel cell heavy-duty truck is shown in Fig. 1. Model of
each component is described below.

The vehicle is modeled as a simple lumped mass model as follows:

meqv̇x = τtraction/Rwheel − Fbrake − meqg sin θ − krrmeqg cos θ − 0.5CdAf ρv
2
x . (1)

The structure of the retarder oil temperature model is illustrated in Fig. 2a, and the
temperature dynamics are defined as follows:
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mrtd cp,rtd
dTrtd
dt

= Prtd − ṁclntcp,clnt
(
Trtd − Tclnt,rtd_in

) − hrtdArtd (Trtd − Tair), (2)

Fig. 1. Model structure for brake system modeling of a fuel cell heavy-duty truck

Fig. 2. (a) Structure of retarder oil temperature model, (b) Structure of neural network (NN) for
equivalent heat transfer coefficient, (c) Validation of the parameter modeled by NN
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Fig. 3. Validation of models for (a) retarder oil temperature, (b) disc temperature and (c) SOC

wheremrtd , cp,rtd ,Trtd ,Prtd , hrtd andArtd aremass, specific heat, temperature, power,
convective heat transfer coefficient and convection area of retarder, ṁclnt and cp,clnt are
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mass flow rate and specific heat of coolant, Tclnt,rtd_in is coolant temperature at retarder
inlet and Tair is ambient temperature.

The equation for the temperature difference through the radiator is

ṁclnt cp,clnt
(
Tclnt,rad_in − Tclnt,rad_out

) = hrad Arad
((
Tclnt,rad_in + Tclnt,rad_out

)
/2 − Tair

)
, (3)

where Tclnt,rad_in and Tclnt,rad_out are coolant temperature at radiator inlet and outlet,
hrad and Arad are convective heat transfer coefficient and convection area of radiator.
Assuming that the amount of heat generated by the transmission is the same as the energy
change in the coolant, the following equation is derived:

ṁclntcp,clnt
(
Tclnt,TM _out − Tclnt,TM _in

) = Q̇TM , (4)

where Tclnt,TM_out is coolant temperature at transmission outlet, Q̇TM is heat generated
by the transmission. Combining Eqs. (2), (3) and (4), the following temperature equation
can be derived:

mrtd cp,rtd
dTrtd
dt

≈ Prtd − Keq(Trtd − Tair), (5)

where Keq is equivalent heat transfer coefficient of retarder.
The temperature model for the retarder oil is intricately linked to the transmission,

both of which are cooled by the same coolant. Accounting for this, modeling the trans-
mission temperature becomes imperative, necessitating the inclusion of several other
unknown variables. Additionally, the mass flow rate of the coolant is influenced by an
internal algorithm whose specifics are unknown. To address this challenge, this paper
introduces the utilization of a neural network to model the equivalent heat transfer coef-
ficient described in Eq. (5). Inputs (vehicle speed, motor speed, retarder torque, coolant
and ambient temperatures, gear ratio) obtained from the model feed into the neural net-
work shown in Fig. 2b. This model, operating as a two-hidden-layer feedforward neural
network with 64 nodes in each layer and utilizing the Rectified Linear Unit (ReLU)
activation function, outputs the equivalent heat transfer coefficient. Figure 2c shows the
validation results of the equivalent heat transfer coefficient model.

Keq = fNN (x), x = [vvehicle, ωmotor, τrtd , Tcoolant,Tambient , Rgear]. (6)

Figure 3a shows the validation results of the retarder oil temperature model.
The differential equation for the disc temperature is designed as follows:

mbrkcp,brk
dTbrk
dt

= Pbrk − Q̇conv = Pbrk − hbrkAbrk(Tbrk − Tair), (7)

where Pbrk is the power generated by the air disc brake, mbrk , cp,brk , hbrk , and Abrk are
the mass, specific heat, convective heat transfer coefficient, and convection area of the
air disc brake, respectively. The experimental formula for the convective heat transfer
coefficient of a disc brake in turbulent flow [8] is given by

hbrk = 0.04(k/D)Re0.8 =
(
0.04kρ0.8L0.8/Dμ0.8

)
v0.8. (8)
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Fig. 4. Comparison of results between simulation and field test data in 3 scenarios
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Fig. 5. Comparison of brake operational limit points caused by temperature or SOC constraints
in simulations and field tests

Figure 3b shows the validation results of the disc temperature model.
The battery model is designed based on the equivalent circuit model [9] by open

circuit voltage, internal resistance, battery capacity, and battery charge/discharge power
as follows:

SȮC =
(
Voc −

√
V 2
oc − 4PbatRi

)
/2QbatRi. (9)

Figure 3c shows the performance validation results of the battery model.

4 Model Validation

To validate the braking systemmodel, we systematically compare field test data and sim-
ulation results for Scenarios #1, #2, and #14, as illustrated in Fig. 4. Directly comparing
field test data with simulation is challenging due to variations in drivers; the truck was
operated by a human driver in the field test, while a driver model controlled the truck in
the simulation. However, our primary focus is on ensuring the consistency of the braking
limit point during downhill driving under the same gradient road conditions.
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In both the field tests and simulation, the order of brake demand distribution was
regenerative brake first, followed by the retarder, and then the disc brake. If a brake in
priority reaches its torque limit, the next one is engaged. In Scenarios #1 and #2, all three
brake systems were activated, whereas in Scenario #14, the retarder was intentionally
deactivated to simulate a retarder failure case. Consequently, Scenario #14 underscores
the predominant engagement of the primary braking system, surpassing the braking limit
point.

Figure 5 demonstrates the consistency of the proposedmodel in terms of the distance
to the brake operational limit caused by temperature or SOC constraints. Across several
scenarios, the model’s distance to the brake limit exhibits a very high correlation. These
robust findings affirm the effectiveness of the proposed modeling approach.

5 Conclusion

This paper presents an approach utilizing field test data to model the braking system
of fuel cell heavy-duty trucks when internal details are unavailable. It models the pri-
mary braking system (air disc brake) and auxiliary systems (regenerative braking and
retarder). Specific models for disc temperature, SOC, and retarder oil temperature, rep-
resenting braking limit points, are developed. Validation against field test data confirms
the simulation model’s accuracy in forecasting braking limit points to be over 99%. The
proposed method allows for advanced forecasting of braking performance in fuel cell
heavy-duty trucks based on design specification changes, optimizing vehicle stability
and efficiency through simulation.
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Abstract. Non-Pneumatic Tires are primarily recognized for their puncture-free
attributes, particularly suitable for specialized vehicles. However, not only the
advantages, but also vehicle characteristics such as noise, vibration, and harshness
need to be considered in case of application to standard passenger cars. To address
this, estimating the vibration characteristics of NPT, considering the nonlinear
behavior of the tire and its interaction with other car components, is important for
vehicle development and chassis control. In this study, tire finite element analysis
combined with the multibody simulation of a quarter-car model is employed. The
vibration characteristics of a passenger car equipped with NPT are investigated
on a specific tire construction and a car model in comparison to a pneumatic
tire. It was found that the NPT exhibits high-frequency characteristic vibrations,
although the overall trend is qualitatively similar to that of the pneumatic tire when
the vertical stiffness and the contact properties are set to be close to those of the
pneumatic tire.

Keywords: Non-pneumatic tire · Cleat Impact · Vibration · Ride Comfort

1 Introduction

A non-Pneumatic tire (NPT, airless tire) has been used in specialized applications such
as all-terrain vehicles. The previous study mentioned that the application of the NPT to
standard passenger needs consideration of potential performances such as noise, vibra-
tion, harshness and rolling resistance [1]. In the previous research [2], an NPT structure
with a circular deformable shear beam which has an advantage in reducing energy loss
during impacting a cleat is proposed. The vibration analysis induced by discrete spokes
was reported in the study [3]. However, estimating the vehicle vibration characteristics
of NPT involving the nonlinear behavior of the tire and its interaction with other chassis
components is not conducted very well, although it is crucial for vehicle development
and chassis control. The main goals of the present work are to investigate and improve
the vibration characteristics of a passenger car equipped with NPT. In the present study,
tire finite element (FE) analysis combined with a multibody quarter-car model is per-
formed. The vibration characteristics is investigated on a specific NPT construction in
comparison to a pneumatic tire by using the method.
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2 The Detail of NPT Structure

Figure 1 shows the specific structure of the NPT, based on the concept proposed in the
previous work [4]. The spoke is made of elastomer with relatively low-hysteresis-loss
properties compared to the rubber used for conventional pneumatic tire to mitigate the
rolling resistance. The spoke geometry has an advantage of transferring stress concen-
tration in tire bottom region to entire region by connecting angled spokes. The geometry
helps reduce strain energy which is proportional to square of stress when linear elastic
material property is assumed. The tread ring is composed of tread rubber, steel belts,
and elastomer layer. The elastomer layer enables shear deformation of the tread ring,
allowing the NPT to have a contact length comparable to that of a pneumatic tire. The
steel belts are designed to transfer stress in the circumferential direction and positioned
outside the elastomer layer to accommodate deformation of the spokes, which have
relatively low-hysteresis-loss to reduce the rolling resistance.

The geometry is configured to provide comparable vertical static stiffness and foot-
print length with the tolerance of 10% to those of a similar size pneumatic tire as shown
in Fig. 2, specifically 165/70R14.

Fig. 1. Structure of NPT in this study

Fig. 2. Contact properties of NPT in comparison to pneumatic tire

3 Modeling Description and Computational Process

3.1 Computational Process

In this study, a methodological approach based on finite element structural analysis is
employed. Linear frequency-domain finite element analysis involving rolling effect is
widely used to simulate rolling tire.However, as the tread ring of theNPTundergoes large
deformations during rolling over a cleat, it is crucial to consider geometric nonlinearity of
the structure. Additionally, the vibration caused by rotating discrete spokes contacting
road surface also needs to be considered. For these reasons, nonlinear (rolling) tire
simulation is employed in this study.
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3.2 Modeling Description

The schematic diagram of the model is described in Fig. 3. In this study, a combination
of a FE tire model and a multibody quarter-car model is employed. This approach is
suitable when the input forces between the left and right wheels are in-phase, such as in
case of a cleat impact, to directly capture the tire-suspension interaction and the nonlinear
behavior of the NPT while mitigating computational cost.

The quarter-car model consists of tire and suspension link FEmodels, rigid car body,
joints, and bushings. The physical properties of the model are determined based on a
specific front suspension of a B-segment car. The material properties used in the tire
FE model such as elasticity and viscoelasticity are determined based on the laboratory
material tests.

As shown in Fig. 3, the calculation assumes the condition to roll over a 10 mm high
step-shaped cleat. In this study, the spindle forces under speed of 10 km/h, 40 km/h and
60 km/h are calculated and compared between the NPT and the pneumatic tire. Once
the spindle forces are calculated, they can be utilized as input information for vibration
predictions analysis of the entire vehicle system.

Fig. 3. Schematic diagram of simulation model

4 Results and Discussions

4.1 Vibration Characteristics of NPT

Timeand frequencydomain response of the spindle force in vertical direction is described
in Fig. 4 and 5, respectively. At 10 km/h condition, the time domain spindle force
of the NPT shows a similar tendency compared to that of the pneumatic tire and has
a dip after the initial impact of the cleat. The dip can be explained by the bending
deformation of the tread ring during rolling over the cleat, which is commonly referred
to the envelope property. As the spindle force during cleat crossing at lower speed is
influenced by enveloping and footprint length properties [5], the NPT is considered to
have the envelope property similar to that of the pneumatic tire. The major difference
at 57 Hz can be attributed to the vibration generated while the individual spoke hits
the road surface. The vibration around 190 Hz is a result of the characteristic vibration
caused by the mass and stiffness of the spokes themselves, as shown in Fig. 6. This type
of vibration can be referred to spring surge in general.
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At 40 km/h condition, the time-domain spindle force exhibits the unsprung mass
vibration around 10–20 Hz and the first-order vertical vibration mode around 90 Hz as
shown in Fig. 6. The NPT shows the major difference in the vibration amplitude around
90 Hz compared to the pneumatic tire while the amplitudes of lower frequency are at
the same level. Since the NPT has the envelope property similar to that of the pneumatic
tire, the frequency characteristics of the input force generated when rolling over the cleat
can be assumed to be qualitatively equivalent, and the difference in the spindle force
can be attributed to the difference in the vibration characteristics of the tire structure.
One possible factor is that the spokes of the NPT are composed of low-hysteresis-loss
materials, which may explain the higher gain in this frequency range.

At 60 km/h condition, vibration amplitude of NPT is comparable to that of the
pneumatic tire. It is well- known that tire vertical force resulting from cleat impact
depends on the speed, as the frequency characteristics of the input force vary with the
speed during cleat crossing.

(a) 10km/h (b) 40km/h (c)60km/h

Fig. 4. Time domain spindle force

(a) 10km/h (b) 40km/h (c)60km/h

Fig. 5. Frequency domain spindle force

Fig. 6. Mode shapes affecting spindle force

In summary, significant differences were observed in the high frequency range such
as the vibration caused by the rotating discrete spokes, the spoke surge, and the tire
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characteristic vibration at certain vehicle speedwhile the overall trends are similar.While
these trends can potentially change through innovative designs of the spoke shape, the
fundamental tendencies are estimated to remain the same. Addressing these differences
would require improvements in both vehicle and tire construction.

4.2 Vibration Characteristics Between Different Structure

The results introduced in the previous section show the vibration characteristics of the
NPT. However, these results are based on the examination of a specific structure. In
particular, the NPT has an opportunity to change the vibration characteristic around
90 Hz by adjusting the enveloping property to change the frequency characteristics of
input force during rolling over the cleat, leveraging its design flexibility. To verify this,
a study was conducted by individually adjusting the elastic modulus of the spokes and
elastomer layer to maintain the constant vertical stiffness while changing the envelope
property.

In this study, twoNPTmodels with almost identical vertical stiffness were examined,
with different design properties as shown in Table 1. Spec A has the same specification
as discussed in the previous section while the tread groove is omitted for simplicity.
Figure 7 illustrates the contact properties of tires. Spec B, the construction with a tread
ring of higher rigidity exhibits the shorter contact length, indicating the lower envelope
property.

Table 1. Elastic modulus and vertical stiffness of NPTs for parametric study

NPT Spec Elastic modulus [MPa] Tire Vertical stiffness[N/mm]

Elastomer Layer Spokes

A(BASE) 6 45 186 N/mm

B 200 40 187 N/mm

Fig. 7. Contact properties of NPT

Figures 8 and 9 compare the time and frequency domain spindle force in vertical
direction, respectively. For the NPT with the higher rigidity of the tread ring (Spec B),
the characteristic vibration around 90 Hz at 40 km/h is reduced compared to Spec A.
This result suggested that the frequency characteristics of the input force during rolling
over the cleat has a peak close to the eigen frequency of the first-order vertical vibration
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mode of Spec A, which is qualitatively similar behavior to pneumatic tires [6], while it
is separated for Spec C. However, the vibration around this frequency range is larger at
60 km/h. This can be explained by the speed dependency of the frequency characteristics
of input force generated during cleat crossing.

As mentioned above, the trend of the NPT in this study, which exhibits a larger
amplitude of high-frequency vibration, remains consistent across different structures.
However, it can be described that the NPT has design flexibility to change the vibration
characteristics at a specific speed by adjusting the envelope property.

(a) 10km/h (b) 40km/h  60km/h

Fig. 8. Time domain spindle force between different construction

(a) 10km/h (b) 40km/h  60km/h

Fig. 9. Frequency domain spindle force between different construction

5 Conclusion

In the present study, the vibration characteristics of a specific NPT construction was
evaluatedwithin a comprehensive vehicle simulation, considering the nonlinear behavior
of the tire. The spindle force was investigated in comparison to the pneumatic tire and
found that the NPT has high-frequency characteristic vibrations, although overall trends
are similar. However, it was also described that the NPT possesses the design flexibility
to change the frequency characteristics at a specific speed by adjusting the envelope
property. Future efforts will focus on exploring performance improvements including
the tire and the vehicle design properties.
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Abstract. In this research, to maintain a passenger’s good visual acuity during
long riding,we investigated the effects of long-termvibration and visual task on the
visual acuity. The results showed that after performing the prolonged visual tasks
in the vibration-exposed state, the visual acuity in the stationary state remained
unchanged, but the visual acuity in the vibration-exposed state decreased. From
these results, it is assumed that among the functions of the eye, the function of
stabilizing the eye against vibrations is most likely to deteriorate due to fatigue
caused by visual loads. Consequently, to maintain visibility in the car during long
car trips, it is important to suppress head movement. This helps prevent fatigue in
the eye stabilization function.

Keywords: Human engineering · Visual acuity ·Whole-body vibration

1 Introduction

Recently, there has been an increasing demand for performing visual tasks such as
computerwork andvideoviewing in the car. In future vehicle development, it is important
for passengers to have good visibility of objects even while exposed to car vibrations. It
is known that visual acuity, which indicates the ease of seeing objects, decreases due to
whole-body vibration [1].

Motivated by this background, to clarify the factors behind the decline in visual
acuity, we investigated the relationship between visual acuity and eyemovements during
vibration. As the result, we showed that the visual acuity during vibration is anticipated
by a percentage of visual target’s projection outside fovea centralis [2]. This implies that
eye motor control to project a visual target on fovea centralis stably is important for the
good visual acuity under whole body vibration such as car riding.

On the other hand, our previous study was on visual acuity during a relatively short
period of vibration.Other research showed that long-termexposure to vibration gradually
reduces vision acuity [3]. In this research, to evaluate the effects of long-term vibration
and visual tasks on the visual acuity, we measured changes in visual acuity before and
after playing a video game for long time in the condition of exposure to whole body
vibration.
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2 Visual Acuity During a Short Period of Vibration

In our previous study [2], we investigated the impact of whole-body vibration on visual
acuity using a shaker shown in Fig. 1a. Our findings revealed that the experimental col-
laborator, who initially had a visual acuity of -1.0 LogMAR (equivalent to 6/4.8 vision),
exhibited a visual acuity of 0.0 LogMAR (equivalent to 6/6 vision) under vibrations
mimicking car movement with a peak amplitude of 0.05G. Furthermore, the collabo-
rator’s visual acuity was measured at 0.1 LogMAR (equivalent to 6/7.5 vision) under
vibrations with a maximum amplitude of 0.1G.We confirmed that the passenger’s visual
acuity decreases even under car vibration, consistent with previous research.

To elucidate the mechanism of poor visual acuity under vibration mimicking car
movement, we measured the movements of eye, head and visual target under vibration
and showed the following relationships between these values and the visual acuity:

(1) The reduction in visual acuity due to vibration exposure can be anticipated by a
nonlinear function of a retinal slip ratio (Fig. 1b). The retinal slip ratio is defined as
a percentage of visual target’s projection outside fovea centralis shown in Fig. 1c.

(2) The reduction in visual acuity is independent on the visual acuity in a stationary
state.

It can be interpreted that the passenger is no longer able to project the visual target
stably on fovea centralis stably under vibration, and the visual target becomes blurred
and difficult to see. The eye motor control under vibration is important for good visual
acuity in car riding.

On theother hand, our previous study evaluated the visual acuity over a short duration.
To make it easier for passengers to see objects during long rides, it is necessary to
investigate how long-term vibration and visual tasks affect visual acuity.
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Fig. 1. Visual acuity during a short period of vibration mimicking car movement

3 Experimental Setup for Effects of Long-Term Vibration
and Visual Tasks on the Visual Acuity

In this section, we show a new experimental method to investigate how long-term vibra-
tion and visual tasks affect visual acuity. Figure 2a shows the new experimental setup
in this research. We installed the visual acuity test chart 0.75m and a display for visual
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task 0.6 m ahead from the experimental collaborator’s eye position. The experimental
collaborator, which sits a passenger car seat installed on the floor of shaker having 6
degrees of freedom, can take a vision test before and after performing the visual task.

To investigate the effects of long-term vibration and visual task, the requirement for
visual task is that experimental collaborator can focus on performing the task for a long
time feeling tired. For this reason, we use a video game “TETORIS” [4] as a visual task.

We use the Early Treatment of Diabetic Retinopathy Study (ETDRS) chart with the
Landolt rings arranged in an inverted triangle shown in Fig. 2a as visual acuity test
chart. The unit of visual acuity of ETDRS chart is Logarithm of the Minimum Angle
of Resolution (logMAR), defined as the common logarithm of viewing angle of the slit
of the Landolt ring. An advantage of using LogMAR is that it can be mathematically
calculated including addition, average and so on, because the LogMAR is recognized as
interval scale [5].
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Fig. 2. New Experimental setup

Using the experimental setup, we investigated the effect of long-term vibration and
visual task on visual acuity in following three steps.

Step 1. Measurement of visual acuity before visual task
The experimental collaborator sits the passenger car seat installed on the shaker,

laying their hands on the knee and their head off the headrest with their eyes close.
When the collaborator hears a start signal from the experimenter, the collaborator opens
their eyes and answer the directions of the slits of the Landolt rings by voice. The possible
answers are only 4 choices such as ‘Upper’, ‘Down’, ‘left’ and ‘right’. We ask them for
answering one direction of one Landolt ring in about 1 s even if they are not confident
in the answer.

They start to answer the directions of the slits of the Landolt rings corresponding
to 0.6 LogMAR from left to right and continue to answer the directions of the lower
Landolt rings in the same way when all directions of upper Landolt rings are answered
correctly.

When the collaborator answers the wrong direction, we finish 1 trial of the visual
acuity test after their answering all remaining slits of Landolt rings on the same line.
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Using a correct answer rate for the Landolt ring with incorrect answers, we calculate
the collaborator’s visual acuity. For example, in the case of the correct answer rate 60%
(3 out of 5 rings are correct) for the Landolt ring with 0.3 LogMAR, the collab-orator’s
visual acuity is considered 0.34 LogMAR.

As with our previous research [1], we measure the visual acuity before visual task in
a stationary state aswell as in a vibration-exposed state. Figure 2b shows the translational
accelerations in each direction of the floor of the shaker used as vibration input. The
translational accelerations are the randomnoise signals superimposedon sinwave signals
at a frequency of 1, 1.1, and 1.4 Hz, filtered through a band pass filter at a frequency of
0 to 5 Hz and have a maximum amplitude of 0.05G. Before the visual task, the visual
acuity measurements are taken four times, twice in the stationary state and twice in the
vibration-exposed state.

Step 2. Performing the visual task (playing the video game “TETORIS” for a total
of 1 h)

After the measurement of visual acuity before visual task of Step 1, to apply loads
of the prolonged visual task to the experimental collaborator, we ask them to play the
video game “TETORIS” for a total of 1 h.

The collaborator plays “TETORIS” using the display 0.6m ahead from their eye
position and the game controller at hand as shown in Fig. 2a. The duration of each
playing “TETORIS” is 15 min. The collaborator performs this 4 times, getting out of
the shaker and taking a about one-minute break between each playing.

To evaluate the loads of vibration, we use two vibration conditions during playing
“TETORIS”: stationary and vibration-exposed. The same data used in Step 1 is utilized
for vibration input. The experimentalwith andwithout vibration is conducted on different
days to avoid interaction between the two.

Step 3. Measurement of visual acuity after visual task
After performing the visual task, we measure the visual acuity in same way of Step

1 and complete this experiment.
The requirement for the experimental collaborator is that the collaborator’s visual

acuity is 0.6 LogMAR (equal to 6/24 normal vison) or higher with the naked eye or soft
contacts. In this study, four male collaborators (mean age: 36 years) in their 30s to 40s
participated. We performed above Step 1, 2, 3 on each collaborator and got A total of
64 samples (2 cases of visual acuity before and after the task, 2 cases of presence or
absence of vibration during visual acuity measurement, 2 cases of presence or absence
of vibration during visual task, 2 repetitions, 4 collaborators, multi-plication number) of
visual acuity data. This study was approved by the Ethics Review Committee of Toyota
central R & D Laboratory (No.21B-11).

4 Results and Discussions

Figure 3 shows averages and standard deviations of visual acuitymeasured under various
conditions. Clearly, the followings are shown:

(1) There are no significant changes in visual acuity before and after playing the game
in the stationary state,
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(2) After performing the prolonged visual tasks in the vibration-exposed state, the
visual acuity in the stationary state remained unchanged, but the visual acuity in
the vibration-exposed state decreased.
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Fig. 3. Visual acuity under various condition

Table 1 shows the results of a three-way ANOVA for differences in the visual task,
presence or absence of vibration during visual acuity measurement, and between-subject
differences. We consider only an interaction between the differences in the visual task
and the presence or absence of vibration because the interaction between the differences
among experimental collaborators and other factors is less effective. As is clear from
Table 1, the visual acuity changes can be expressed by incorporating the differences in
the visual task and the presence or absence of vibration.

Table 1. Three-way ANOVA results

P values

Main factor Differences in the visual task:3 levels
(Before task, after task in stationary, after task in vibration)

ns

Presence or absence of vibration during visual acuity measurement:
2 levels (stationary, vibration)

***

Experimental collaborator: 4 levels (4 person) ***

Interaction Differences in the visual task and presence or absence of vibration
during visual acuity measurement

**

The above results show that the only effect of prolongedvisual tasks under vibration is
a decrease in visual acuity under vibration. It is thought that the blurring of the projected
image on the fovea caused by whole-body vibration results in reduced visual acuity.
Therefor it is assumed that among the functions of the eye, the function of stabilizing the
eye against vibrations is most likely to deteriorate due to fatigue caused by visual loads.
To maintain visibility in the car during long car trips, it is important to suppress head
movement. This helps prevent fatigue in the eye stabilization function. The vibration
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characteristics of the seated head are characterized by high sensitivity to longitudinal
and pitch motion. It is increasingly important to design and control vehicles based on
these specific human vibration characteristics.

5 Conclusion

In this research, to investigate how long-term vibration and visual tasks affect visual
acuity, we studied the changes in visual acuity before and after playing a video game as
a visual task under prolonged vibration. The following results were shown:

(1) There are no significant changes in visual acuity before and after playing the game
in the stationary state,

(2) After performing the prolonged visual tasks in the vibrating state, the visual acuity
in the stationary state remained unchanged, but the visual acuity in the vibrating
state decreased.

From these results, it is assumed that among the functions of the eye, the function of
stabilizing the eye against vibrations is most likely to deteriorate due to fatigue caused
by visual loads. To maintain visibility in the car during long car trips, it is important to
suppress head movement. This helps prevent fatigue in the eye stabilization function.
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Abstract. This paper presents a novel human-centered collaborative
driving scheme using model-free reinforcement learning (RL) approach.
The human-machine cooperation is achieved in both decision-making
and steering control levels to improve driving safety while leaving space
for human freedom as much as possible. A Markov decision process is
firstly derived from the collaborative driving problem, then a RL agent
is developed and trained to cooperatively control the vehicle steering
under the guidance of a heuristic reward function. Twin delayed deep
deterministic policy gradient (TD3) is conducted to attain the optimal
control policy. In addition, two extended algorithms with distinct agent
action definitions and training patterns are also devised. The effective-
ness of the RL-based copilot system is finally validated in an obstacle
avoidance scenario by simulation experiments. Driving performance and
training efficiency of different RL agents are measured and compared to
demonstrate the superiority of the proposed method.

Keywords: Human-machine coordination · Steering control ·
Reinforcement learning · Driver intention

1 Introduction

Subject to the inadequacies of fully autonomous driving technology, it is still
the mainstream practice to retain human drivers in the vehicle control loop [1].
Nowadays a new technical architecture called human-machine collaborative driv-
ing has emerged as the times require. Through close collaboration in vehicle
motion planning and control, the integrated system can easily benefit from the
hybrid intelligence of the human and the machine [2].
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In order to achieve the coordination, traditional methods for driving author-
ity allocation usually include constructed functions, model predictive control,
fuzzy system and game theory [3]. Recently, with the development of machine
learning and neural networks, several researchers have attempted to use such
techniques to settle the co-driving problem. For example, [4] proposed a shared
steering control framework based on miscellaneous RL methods to achieve a flex-
ible and efficient path-following maneuver. In [5], a lane change decision-making
strategy was developed with deep Q-learning, in which the driving risk was eval-
uated by probabilistic models beforehand. Nevertheless, few of the existing works
pay attention to the control freedom or the realization of individual preference of
the driver, thus is detrimental to volume up the superiority of human intelligent
in the hybrid system.

A human-centered collaborative driving paradigm adheres to the minimal
intervention principle [6], which means the machine partner only intervenes as
necessary. Otherwise, the human entities are allowed to do whatever they want,
such as choosing the desired path and speed, under the premise of safety. There-
fore, it improves the driving flexibility in face of some ambiguous environments,
and also facilitates the user acceptance of the assistance system. Several human-
centered shared control schemes have been elaborated in the robotics domain,
like [7] and [8], but that relevant to the ground vehicle is rare. To this end, the
main contributions of this paper are concluded as:

– A novel human-centered collaborative driving scheme is proposed, which is the
first effort to achieve human-machine coordination in the integrated decision-
making and control links with reinforcement learning (RL).

– Two extended RL agents adapted for the collaborative driving task are
devised and validated in a challenging obstacle avoidance scenario, which
provides directions for structural optimization and training acceleration.

2 Driver-Vehicle System Modeling

Vehicle Modeling. The lateral dynamic characteristics of a vehicle can be
represented by a 2-DOF bicycle model:

β̇ =
2

Mu

[
Cfδ − (Cf + Cr)β +

−aCf + bCr

u
r

]
− r (1a)

ṙ =
2
Iz

[
aCfδ − (aCf − bCr)β − a2Cf + b2Cr

u
r

]
(1b)

where M is the vehicle mass; Iz is the yaw inertia; a and b are the distances of
the front and rear axles from the center of gravity; Cf and Cr are the cornering
stiffnesses of the front and rear tires; β is the sideslip angle; r is the yaw rate.
The longitudinal speed is u and the system incentive is the front steering angle
δ. Note that the vehicle model is only used for environmental simulation during
training and validation since the RL-based method is a model-free approach.
Therefore, the model uncertainty will not downgrade the performance of the
controller.
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Driver Modeling. The optimal preview model is utilized to describe the driver
steering control behavior during the path-following process. At an instant t0, the
optimal steering angle can be obtained by:

δ∗
d =

2(a + b)
d2

[
f(t0 +

d

u
) − y(t0) − ẏ(t0)d

u

]
(2)

where d is the preview distance; f is the reference path; y, ẏ is the lateral dis-
placement and velocity respectively. Likewise, the driver model is not necessary
a priori knowledge for the controller design, but plays a role in the interaction
with the RL agent.

3 Reinforcement Learning Approach

The collaborative driving control can be considered as a Markov decision process
(MDP), which is denoted by a tuple (S,A, P,R, γ) composed of states S, actions
A, transitions P , rewards R and discount factor γ ∈ [0, 1]. An optimal policy
π∗ that maximizes the expected discounted return in the future can be found
through a training process with interaction of the external environment. The
policy is usually represented by a parametric neural network.

Observation. The agent observation in this paper consists of the driver action
aH = [δd, δ̇d] and the environment states oE . The environment states contain
positions and status of both ego vehicle and surroundings, including information
of lanes, road boundaries and obstacles.

Action. The action space is discussed as two situations here. Considering the
end-to-end capability of neural networks, the agent output can be defined as
either the steering angular velocity or the target lateral displacement of the ego
vehicle. For the latter, a low-level Stanley controller [9] is employed to figure out
the executable front-wheel steering angle.

Reward. The step reward is comprised of human reward rH and environmental
reward rE , which is given by:

rH = k1e
−σ1(δ−δd)

2
(3a)

rE = k2e
−σ2dc

2 − k3e
−σ3do

2
(3b)

where dc is the offset of the ego vehicle to the lane centerline; do is the distance to
the nearest obstacle; k1, k2, k3 are weighting coefficients; σ1, σ2, σ3 are adjustable
softmax coefficients.
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Policy Gradient. To obtain the optimal policy, twin delayed deep deterministic
policy gradient (TD3) is adopted in this paper. TD3 establishes two Q-function
networks Qθ1 , Qθ2 as the critic and a deterministic policy network πθ as the
actor, which is updated by the policy gradient:

∇θJ(π) =
1
N

∑
∇aQθ1(s, a) |a=πθ(s) ∇θπθ(s) (4)

where J is the return function and N is the number of transitions in a mini-
batch. Figure 1 shows the overall framework of the proposed collaborative driving
scheme.

Fig. 1. An overview of the collaborative driving control loop using RL.

Besides vanilla TD3 (where the agent output is the direct steering action),
two extended versions are also developed and investigated in this paper: TD3-
SC and TD3-SF. Both of them has target lateral displacement as their action
space with a subsequent Stanley tracker. The difference is that TD3-SC agent is
trained under changeable episode steps, which means an episode ends as collision
occurs, while TD3-SF agent is trained under fixed episode steps (collision does
not abort the episode). Performance of the three agents will be compared and
discussed in the next section.

4 Validation

Fig. 2. The testing environment of the collaborative driving scheme.

The collaborative driving agents are trained and validated in the scenario shown
in Fig. 2. As illustrate by the diagram, there exist two feasible paths for the
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Table 1. Comparison of the training time for the three agents.

Agent TD3 TD3-SC TD3-SF

Training time [h] 3.63 1.81 0.97

vehicle to bypass the obstacles. These paths serve as the reference trajectories
for human drivers. In addition, one straight-line path representing the driver
takes no action in face of the oncoming obstacle is also involved. Basically, the
driver randomly choose one of the three reference paths for each episode. It is
expected that with the assistance of the collaborative control, the vehicle can
travel along the desired path consistent with driver’s intention when there is no
risk of collision, or actively steer to avoid the obstacle in case of danger (Fig. 4).

Fig. 3. Trajectory plots for various driver’s reference choices.

Fig. 4. Action plots for various driver’s reference choices.

As depicted in Fig. 3, for path 1 and 2 , all three agents can follow the
reference and make the correct steering decisions that align with the driver’s
intention. However, the trajectories of vanilla TD3 have more deviations than
the others, owing to the arbitrary variations and jitters in the steering angle
output, which is also plotted in Fig. 3 accordingly. For path 3 , it can be seen
that all agents successfully bypass the obstacle, but some of them choose to
turn left while others choose to turn right. This is also interpretable that the
agents stochastically make their own strategies due to the symmetrical nature
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of the field. Besides, Table 1 lists the total training time for the three agents to
convergence. Obviously, TD3-SF has the highest training efficiency as well as
the best path-following accuracy among the three agents.

5 Conclusion

In this paper, a novel human-centered collaborative steering strategy based on
RL is proposed and validated in an obstacle avoidance driving scenario. The
result shows that the RL-based controller can effectively decode driver’s inten-
tion from the steering behavior and correct the risky action to enhance the driv-
ing safety. In the comparison of three different agents, the adjustment of agent
output to target displacement helps to improve the stability of steering control,
while the fixed-step discipline can greatly increase the convergence speed. Future
work may include to explore more advanced RL algorithms like soft actor-critic
(SAC), and to conduct additional driver-in-the-loop experiments where real-
world human drivers are engaged.
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Abstract. The interiors of ultra-compact electric vehicles (EVs) can be uncom-
fortable owing to the noise caused by the road and wind. To address this issue, we
propose an active noise control (ANC) system that uses a giant magnetostrictive
actuator. The proposed system allows estimating ride comfort by analyzing the
biological information of passengers and controlling the interior acoustic environ-
ment. The proposed ANC system employs wall-surface vibrations generated by
a giant magnetostrictive actuator. We analytically investigated the thrust charac-
teristics of giant magnetostrictive materials deformed by a magnetic field through
electromagnetic field analysis. The results showed that the effect of thrust on
frequency changes depends on the characteristics of the giant magnetostrictive
material.

Keywords: Ultra-compact Electric Vehicle · Interior Sound Control · Giant
Magnetostrictive Actuator · Ride Comfort · Electromagnetic Field Analysis

1 Introduction

As ultra-compact electric vehicles (EVs) employ electric motors as their power source,
the noise within the vehicle primarily comprises road and wind noise [1]. This is because
the bodies of ultra-compact EVs are compact and lightweight owing to the rigidity of
their lower outer plates. Generally, hard felt and urethane are employed on the interior
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walls and roofs of vehicles to minimize external noise. However, the installation of these
passive noise control materials in an ultra-compact EV is difficult owing to interior-space
limitations. Additionally, the demand for ultra-compact EVs is expected to increase in
the future. However, the research and development of noise control systems for ultra-
compact EVs have been insufficient. To address this issue,we investigated an active noise
control (ANC) system for ultra-compact EVs using a giant magnetostrictive actuator
(GMA) [2–4]. Giant magnetostrictive materials (GMMs) feature an elastic displacement
exceeding 1000 ppm, high-speed response, and high durability [5]. Therefore, a GMA
can output low to high frequencies.

In this study, we determined the output characteristics of GMAs using the finite
element method to develop two GMA models for ultra-compact EVs. Their output per-
formance was evaluated through electromagnetic field analysis based on the differences
in the material properties of the proposed GMAs.

2 Giant Magnetostrictive Material

Terefenol-D, exhibits the largest room-temperature magnetostriction. Terefenol-D is an
alloy composed of terbium, dysprosium, and iron. GMMs are functional materials that
can transformenergy into other forms andgenerate 100 timesmoremagnetostriction than
conventional magnetic materials. Furthermore, their magnetostriction force and Curie
temperature can be changed by altering their metal structure [6, 7]. Most GMMs devel-
oped thus far feature a metal composition of Tb0.3Dy0.7Fe1.9–2.0. The selected Tb/Dy
ratio minimizes their anisotropy energy at room temperature owing to the competition of
the TbFe-DyFe pseudo-dielement system. The characteristics of GMMs can be altered
by altering their manufacturing method and the compounding ratio of the metal powder.
Table 1 lists the physical properties of Terfenol-D [8].

3 GMA Structure and Flux Density Generated by GMM

3.1 GMA Structure

Figure 1 shows the structure of aGMAcomprising a columnarGMM, permanentmagnet
(that applies a bias magnetic field), solenoid coil, and spacer. The coil is connected to
an alternating current (AC) source and a magnetic field is generated as the current flows
through the coil. The magnetic field stretches the GMM, and the control sound is output
by the wall surface, generating vibrations via the shaft and spring. Table 2 lists the
fundamental components and materials of the GMA.

3.2 Magnetostriction Force Generated by AC Flowing Through the Coil

Figure 2 shows a model of the GMA along the longitudinal cross-section. The N pole
of the permanent magnet around the GMM is on the shaft side and the S pole is on
the opposite side. In this scenario, the magnetostrictive force generated on the surface
in contact with the shaft has a positive value. This is because, as shown in Fig. 2, the
x-axis originates from the shaft side, and the left direction is positive. Therefore, the
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Table 1. Nominal physical properties of Terfenol-D.

Physical properties Values

Density [ρ] 9.3 × 103 [kgf/m3]

Elastic modulus [YH ] 2.5–3.5 × 1010 [N/m2]

Elastic modulus [YB] 5.0–7.0 × 1010 [N/m2]

Speed of sound [cH ] 1.72 × 103 [m/s]

Speed of sound [cB] 2.45 × 103 [m/s]

Magnetic permeability [μT ] 9.2 × 4π × 10–7 [Tm/A]

Magnetic permeability [μS] 4.5 × 4π × 10–7 [Tm/A]

Coupling coefficient [k] 0.7–0.75 [-]

Resistivity [ρe] 60 × 10–8 [�·m]

Impedance [ρcH] 1.57 × 107 [Rayls]

Impedance [ρcB] 2.27 × 107[Rayls]

Frequency [ f H l] 0.845 × 103 [Hzm]

Frequency [ f Bl] 1.255 × 103 [Hzm]

Shaft Spring Spacer Spacer

Case CoilPermanent magnet

Giant magnetostricitive material

Fig. 1. GMA structure.

Table 2. Nominal physical properties of the GMM.

Components Material Electrical resistivity

Permanent magnet Neodymium sintered –

Shaft/ Spring /Spacer SUS303 0.7 × 10–6

Coil Cu 1.7 × 10–8

GMM Terfenol-D 6.0 × 10–7

direction in which the stretched GMM is pushed out of the shaft is positive. This GMA
employs permanent magnets as the bias magnets. Therefore, it can generate a constant
magnetostrictive force under the effect of the magnetic field applied by the permanent
magnet, even though no AC flows through the coil. Subsequently, when an AC flows
through the coil, the magnetostriction force generated by the operating GMM increases
or decreases. This magnetostrictive force causes the shaft to transmit vibrations to the
wall surface, resulting in the generation of sound waves.
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N S

x

N SS N

Fig. 2. Model of the GMA along the longitudinal cross-section.

3.3 Analysis Model and Material Characteristics of the GMM

In this study, we considered the magnetic flux density for the output band of road noise
using finite element models of the GMA through an electromagnetic field analysis using
JMAGDesignerVersion 16.0 (JSOLCorporation).A permanentmagnetwasmagnetized
along the axial direction of the GMM. The coil conductor featured a diameter of 0.5,
1000 turns, and an inductance of 3.5 μH.

In this analysis, the characteristics of the GMM were used as the values for the
magnetic field and flux density, based on the research conducted by Sugawara [9]. The
size change under the effect of an external magnetic field applied to the GMM was
determined according to the method proposed by Mori [10]. The Young’s modulus of
the GMM was set to 26.5 GPa and its Poisson’s ratio was 0.3. Based on these, a 3D
analysis was conducted. The number of divided elements and nodes was 29653 and
5570, respectively. The electromagnetic field analysis considered the eddy currents in
the shaft and GMM.

4 GMA Structures and Magnetic Flux Density Generated
by the GMM

Figure 3 shows the finite element models of the two GMAs employed in this study.
Figure 4a shows aGMAinwhich twoTerfenol-D componentswith lengths and diameters
of 20 and 4 mm, respectively, are arranged in series. By contrast, the GMM shown in
Fig. 4b has a length of 43 mm and comprises two permanent magnets. As GMAs output
the displacement owing to the axial strain of the material, we analytically examined
the magnetic flux density characteristics of the two GMMs by changing the AC voltage
and varying the frequency applied to the coil from 100–500 Hz based on the road-noise
frequency band. In this analysis, a sampling frequency of 20 kHz and voltage amplitude
of 1–5 V were employed.

Figure 4 shows the vector plots of the magnetic flux densities for each model under
an applied voltage of 3 V. Model A exhibits a large magnetic flux density at the interface
between the GMM and permanent magnet, whereas Model B exhibits a large magnetic
flux density at the center of the GMM. Figure 5 shows sample vector plots for the
amplitude of the magnetic flux density of each model when the AC voltage was changed
from 1–5 V. In both figures, the vertical and horizontal axes represent the magnetic flux
density and AC frequency, respectively. The magnetic flux density is the value at the
surface center on the shaft side. These were higher for Model A than for Model B at
100 and 300 Hz. Based on these results, we determined that the magnetic flux density
changes depending on the GMM shape and the arrangement of the permanent magnets.
However, a detailed study of the correlation between the magnetic flux density and the
magnetostriction force is required.
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Fig. 3. Finite element models of the two GMAs: Models (a) A and (b) B
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Fig. 4. Vector plot samples of the magnetic flux density for each model at the maximum voltage:
Models (a) A and (b) B.
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5 Conclusion

This study analyzed the output performances of two GMAs with different material
properties to develop an acoustic device for an ANC system for ultra-compact EVs. We
determined the low-frequency output control sound via electromagnetic field analyses
of finite element models of the GMA. The analysis results indicated that the magnetic
flux density changes depending on the shape of the GMM and the arrangement of the
permanent magnets. However, a more detailed study on the correlation between the
magnetic flux density and the magnetostriction force is required. Therefore, in future
studies, we plan to vary the size, weight, shape, and components of the actuator, and
employ a material with a higher magnetic permeability.
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Abstract. Accidents caused by wheeled mining machines contribute to approx-
imately 30% of injuries and fatalities in the global mining industry. Wheeled
mining machines have limited driver assist features when compared to the pas-
senger vehicle market and are typically limited to collision avoidance by braking.
These products are often subject to false positive interventions leading to produc-
tion losses, increased wear, and resistance to adopt the technology by end users.
This study proposes a sampling-based method to expand the collision avoidance
by braking approach to include steering. The sampling method is based on the
vehicle’s kinematics and the application of a Gaussian distribution to the steering
rate to determine the probability of a collision occurring. Initial results indicate
that the inclusion of steering rate on the collision prediction model may increase
the operator’s situational awareness, leading to fewer false positives.

Keywords: Automatic emergency braking · mining safety · collision avoidance
system · situational awareness · heavy vehicle dynamics

1 Introduction and Background

New technologies are transforming the mining industry, making it cleaner and safer.
One of the focus areas is the safe operation of mine transport and mobile equipment.
The International Council on Mining and Metals (ICMM) reports that approximately a
third of all fatalities at their member company operations are due to transport and mobile
equipment accidents [1].

Mining machine Collision Avoidance Systems (CAS) are under the spotlight in
South Africa, where the use of Collision Prevention Systems (CPS) is regulated [2].
Where a significant risk of injury exists due to collisions between mining machines
and pedestrians (for underground mines) and between mining machines (for surface
mines), mines are required to implement CPS. The regulation stipulates three distinct
stages of the interaction and the subsequent response by the CPS: 1) The remote object
is detected, 2) the operator(s) and pedestrian(s) (if applicable) are given an effective
warning and (3) themachine is slowed and stopped [2].Within the SouthAfrican context,
mobile machines include any self-propelled machine used for the purpose of mining,
transport, or associated operations. Effectively, this means that all wheeled vehicles,
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such as light vehicles, forklifts, load-haul-dumpers (LHDs) and haul trucks are subject
to these regulations. At the time of writing, South Africa is the only region in the world
that regulates the use of collision avoidance technology [3].

Mining collision avoidance products currently available on the market are almost
exclusively retrofits that are installed on existingminingmachines.Collision avoidance is
provided by interfacing with the machine’s SAE J1939 CAN-bus through a standardized
interface [4]. The standardized interface only makes provision for the application of the
machine’s braking system. This limits the collision avoidance system to a single degree
of freedom (effectively only half a degree of freedomsince the throttle cannot be applied).
Any action other than slowing and stopping themachine is left up to the operator. Existing
systems typically do not instruct the operator to change direction; rather, they rely on
instructions such as ‘warning’ or ‘caution’ before automatically applying the brakes [3].

The result of limiting the automatic intervention to braking, and only warning the
operator, is that mining collision avoidance systems tend to be very conservative, erring
on the side of caution. The result is that numerous false positives are reported, resulting
in increased wear and tear, production losses and resistance to adoption from the end
users [5]. It is hypothesized that improved situational awareness of the operator through
increasing the design envelope of the collision avoidance system, may result in fewer
false positive detections, resulting in improved performance and wider adoption.

2 Approach

Collision prediction is a vital part of CAS. Without an accurate collision prediction
model that can provide a computationally inexpensive solution, a collision can be falsely
predicted or neglected. Both situations are dangerous and could lead to a collision, an
injury or/and a reduction in the productivity of the mining operations. The proposed
method will be explained with a passing scenario. This is a scenario that frequently
occurs on mining sites and is included in the User Requirements for CPS developed by
the Minerals Council South Africa [6]. Figure 1 shows the passing interaction scenario,
with the ego and actor vehicles indicated.

2.1 Trajectory Prediction

Collision prediction works on the principle that the future states of one vehicle are
compared to the future states of another vehicle. If the predictions simultaneously occupy
the same location, it is assumed that the machines will collide [7]. For this reason, a
trajectory must be predicted for all relevant vehicles.

The proposed approach uses linear kinematic equations (see Eq. (1) to (7)) to predict
the vehicles’ future states. By applying different steering rates to a geometric Acker-
mann steer single-track model in conjunction with kinematic equations for yaw and the
predicted x and y Cartesian coordinates, the future states of a vehicle are predicted. This
provides a range of predicted vehicle states at the center of gravity of the vehicle within
the kinematic constraints and steering rate limits of the vehicle. Figure 1 shows the result
of the sampling-based prediction method.
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Equations (1), (2), (3), (5), (6) and (7) represent the kinematic equations that calculate
the predicted x and y Cartesian coordinates. Equation (4) computes steering angles by
integrating different steering rates over a small time increment�t. Equations (8), (9) and
(10) represent the equations for the geometric Ackermann single-track model, which is
used to constrain the maximum steering angle based on the maximum allowable lateral
acceleration ay, chosen to be 0.3 g.

x = x0 + Vx�t (1)

y = y0 + Vy�t (2)

ψ = ψ0 + ψ̇�t (3)

δ = δ0 + δ̇�t (4)

Vx = Vcos(ψ) (5)

Vy = Vsin(ψ) (6)

V = ψ̇R (7)

δ = L

R
(8)

aymax
= V2

R
(9)

δ = aymax
L

V2 (10)

2.2 Trajectory Uncertainty

Trajectory prediction also includes the modelling of the uncertainty of the predicted
states. Common methods include applying a Gaussian distribution to the predicted x
and y Cartesian coordinates [8].

This study applies a Gaussian distribution to the steering rate of the vehicle. Figure 1
shows the trajectory prediction model for the head-on passing scenario with blue areas
indicating lower probabilities. By integrating the Gaussian distribution, the probability
for each steering rate is computed and applied to each predicted future vehicle state
accordingly. To ensure that the predicted states of the vehicle fully represent the spatial
domain, samples are added based on the width, length and heading angle of the vehicle.

The next step is a detailed analysis of the trajectory probabilities. The Euclidian dis-
tance between the predicted states of different vehicles at a certain predicted time incre-
ment is used to construct a uniform grid of collision probabilities. Using the Euclidean
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Fig. 1. Trajectory prediction for the ego and actor vehicles for a passing scenario.

distance between the predicted future states, a uniform probability grid is populated with
the probabilities of each trajectory. The maximum probabilities in relevant regions of the
grid are kept with a convolutional moving maximum method [9], ensuring a conserva-
tive uncertainty model. The probabilities must be normalized for all the vehicle grids to
ensure consistency. Figure 2 shows the probability grids for the ego and actor vehicles,
where the blue areas indicate the lowest trajectory probabilities.

Fig. 2. Ego (left) and actor (right) vehicle trajectory probability for passing scenario.

Considering the uncertainty of the trajectory based on the steering rate of the vehicle,
the safest steering direction can be determined, based on the collision prediction metric.
From this information an effective warning can be supplied to the driver. This may
improve the situational awareness of the operator.
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2.3 Collision Metric

Common collision prediction metrics integrate probability distributions over a region
to determine the probability of a collision based on the joint probability distribution of
multiple vehicles [8]. The proposed model introduces a novel collision metric based on
the highest trajectory probability of the different vehicles. Since it is impossible to convert
the probability distributions based on the steering rate to a grid of probabilities without
influencing the probability distribution, the following method is proposed: multiplying
the probability grids based on the trajectory of different vehicles, a new probability
grid is created. This is referred to as the collision probability grid. Since this produces
very small numbers due to the multiplication of probabilities, a method is developed to
provide a collision metric between 0 and 100, based on the probability of the steering
rate, which can be converted to a percentage (Eq. (11)). P(ego) and P(actor) are all the
probabilities across each uniform probability grid for the ego and actor vehicles.

Max Collision% = max

(
P(ego)P(actor)

max(P(ego)P(actor))
× 100

)
(11)

This collision metric provides a percentage value which can be seen in Fig. 3. By
applying a threshold to the proposed collision prediction metric, a collision can be
predicted.

Fig. 3. Collision prediction metric for passing scenario.

Fig. 4. Collision metric vs simulation time for different scenarios.
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3 Initial Results

Apassing and head-on scenario, based on [6], aremodelled and simulated inRoadRunner
[10]. These scenarios are used to do initial tests of the model, specifically to investigate
the use of a collision prediction metric threshold to predict a collision. Figure 4 shows
the collision metric of the two scenarios. The results indicate that the maximum collision
metric is notably different for the two scenarios. This indicates that, for these two sce-
narios, it is possible to apply a threshold to the collision prediction metric, such that the
head-on scenario and passing scenario will not both state that a collision will occur. The
threshold can be tuned based on the maximum allowable separation distance between
the different vehicles.

4 Discussion

This paper introduced a physics constrained, sampling-based collision predictionmethod
for mining CAS. The collision prediction model used a maximum possible percentage
collision probability method to determine whether a collision will occur, while the tra-
jectory uncertainty is modelled using the steering rate. Initial results indicate that the
collision prediction model has potential in terms of predicting collisions, but further
investigation is needed to apply a reasonable threshold to the collision metric and test
the robustness of the model. Since the probability is applied to the steering rate of
the vehicle, this approach has the potential to increase the situational awareness of the
operator.

It is important to note that the Gaussian distribution applied to the steering rate has a
significant influence on the collision predictionmetric andmust be carefully chosen. The
grid size, predicted steering rate samples and predicted time increment, all significantly
influence the performance and computational efficiency of the proposed method and
needs to be investigated in more detail.
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Abstract. LaneKeepingAssistance (LKA) is one of themost commonAdvanced
Driver Assistance System (ADAS) functions on the market, yet it is still not well
accepted by drivers. Although LKA can reduce the occurrence of traffic accidents
by correcting the vehicle heading in the event of an unintentional lane departure,
poor usability often results in manual deactivation of the function. We provide
considerations onhow to specifyLKAfunctions in general and propose admittance
control as a solution to improve the state-of-the-art from the widely used concept
of torque overlay, which is limited by a trade-off between automated and manual
driving modes. Using the proposed LKA function, unintentional lane departure is
prevented while maintaining comfortable reaction torque which allows the driver
to easily steer the vehicle.

Keywords: Advanced driver assistance system · Shared control · Lane keeping
assistance · Human machine interaction · Haptic feedback

1 Introduction

Unintentional lane departure due to driver inattention or fatigue can cause tragic acci-
dents. According to NHTSA data, 42% of traffic fatalities are caused by lane departure
[1]. The Lane Keeping Assistance (LKA) function is now a common feature in new vehi-
cles to help avoid fatal accidents. The European Union has even made LKA mandatory
for M1 and N1 vehicles [2].

The Handbook of Driver Assistance Systems published by Springer describes the
requirements of LKA to help prevent unintentional vehicle lane departure [3].

1. Inform the driver of imminent lane departure in a timely manner.
2. Steer the departing vehicle back into the lane if possible.

However, unnecessary warning or intervention from the LKA system should be
avoided. In addition, intervention should be avoided for intentional lane changes e.g.
during overtaking or if the driver intentionally “cuts corners”. LKA intervention on
unintentional lane departures should be clearly perceptible without hindering the driver.
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The torque overlay method, in which the LKA torque is added on the existing assist
torque for manual driving, has often been used as a steering based LKA mechanism.
Torque overlay can exist in both open-loop and closed-loop format. The open-loop for-
mat adds the LKA torque for an arbitrary period of time when the system detects an
imminent lane departure. The amount of torque applied to the steeringwheel is small and
can be easily overcome so that the driver keeps control of the vehicle. However, the LKA
performance is expectedly low because the open-loop system does not consider feed-
back of the vehicle position and heading with respect to the lane marking. Furthermore,
the haptic warning disappears even if the risky situation exists. To resolve this problem,
closed-loop torque overlay, also known as blended control, is now widely implemented
[4]. Blended control improves the LKA performance by incorporating steering angle
feedback and provides continuous risk communication to the driver. However, the over-
laid torque is modulated to ensure that the driver does not require excessive steering
torque leading to a trade-off between manual and automated driving modes. Hence, a
method for switching the control authority between driver and automation is required
based on estimating driver intention [3].

Wepropose anLKAsystembasedon admittance-type haptic shared control [5]which
removes the need for complex authority switching controllers. The experiment results,
which were performed on a real vehicle, show improved acceptance of intentional lane
crossing and LKA performance when the driver is hands-off. Additionally, the risk of
lane departure is continuously communicated to the driver via the steering wheel.

2 Requirements Specification of LKA

The main requirements for LKA are haptic risk communication and safe vehicle motion.
However, the driver’s steering feel should not be impaired by the LKA function. Addi-
tionally, the LKA function must cope with a wide range of operating situations across
driver intentions, vehicle states, traffic environments and so on. The LKA specification
can be summarized by the flowchart in Fig. 1.

Fig. 1. LKA specification flowchart.

1. The estimated time until lane crossing tLC is calculated by the distance between the
vehicle and lane marking δe, heading angle δh, vehicle speed v and steering column
angle θc as tLC = f (δe, δh, v, θc). The threshold time tth determines when the LKA
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function is activated. A small tth reduces the impact of the LKA function on manual
driving while a large tth allows more comfortable vehicle motion when the function
is activated.

2. Intentional lane crossing by drivers must be accepted by the LKA function which,
until now, has required complex driver intention estimation methods. The proposed
LKA control scheme shall eliminate this requirement. Therefore, it is sufficient for
the controller to observe the indicator as the driver intention.

3. When the driver is hands-on, continuous haptic warning is necessary while high-risk
conditions persist. When the driver is hands-off or “out-of-the-loop”, safety features
must prevent lane departure ideally in all situations. Themaximum lateral acceleration
and jerk which may be induced by the LKA function has been specified in ISO 11270
and UN ECE-R79 [6, 7] as 3 m/s2 and 5 m/s3 respectively. However, this may be
insufficient in certain situations. For example, a vehicle travelling at 50 km/h on a road
with the minimum curvature of 80 m [8] experiences a lateral acceleration of 2.41
m/s2 which is already approaching the limit. The lateral acceleration which would
be induced by the LKA function would be even greater as the vehicle must follow
a smaller radius of curvature. Therefore, strict LKA in all situations would merit a
revision of the current regulations.

4. When Lane Centering Assist (LCA) is available, the LKA function should quickly
transition to LCA in order to prevent jerky motion as illustrated by Fig. 2. As LCA
is merely a convenience feature, the centering torque is much smaller than the LKA
torque which is a safety feature.

LKA activated 

hands-on Hands-off

LKA

LKA

Fig.2. Example of jerky motion due to lack of LCA.

5. Even when LCA is not active, some centering functionality must be present to pre-
vent the vehicle from “bouncing” between lane markings due to the LKA heading
correction. A temporary return control is therefore required to obtain smooth vehicle
motion once the LKA heading correction is completed.

The proposed LKA based on admittance control will primarily focus on improving
point 2 and 3. It is shown to provide high lane keeping performance and continuous
haptic warning while being receptive of driver intentional lane crossing.
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3 Admittance Control Based LKA

Figure 3a shows the block diagram of LKA based on admittance control. Closed-loop
torque overlay based LKA is also shown as a benchmark in Fig. 3b; note the presence
of a gain kt which modulates the torque command generated by the angle controller.
θLKA is the angle command to prevent lane departure and is generally calculated by
θLKA = f (δe, δh, v). Ttb is the torsion bar torque of the Electric Power Steering (EPS)
which is used to measure the driver torque Td . Upon activation of the LKA function, θc
tracks θcmd using the angle controller which is implemented by PD control.

(a) Admittance control based LKA (b) Torque overlay based LKA

Fig. 3. Block diagrams of LKA control schemes.

In Fig. 3a, the Manual Reference Controller (MRC) is used to estimate the manual
deviation angle θMD created by the driver input. θMD is then superposed with θLKA to
create the command angle θcmd for the angle controller, thereby incorporating the driver
intention directly into the angle control. The dynamics of the steering column during
hands-off situations is given by Eq. 1 and the reaction torque felt by the driver during
hands-on situations is given by Eq. 2:

Jcθ̈c = kp(θLKA − θc) + kd
(
θ̇LKA − θ̇c

) + Jcθ̈LKA (1)

Ttb = kMD(θLKA − θc) + cMD(θ̇LKA − θ̇c) + JMD
(
θ̈LKA − θ̈c

)
(2)

where Jc is the moment of inertia of the steering column, kp and kd are the PD controller
gains. JMD, cMD and kMD are the MRC parameters.

From Eqs. 1 and 2, it can be seen that the LKA performance in hands-off situations
and the driver torque required to intentionally change lanes have been decoupled.

The PD controller gains kp and kd can be tuned to improve the angle tracking per-
formance independent of the reaction torque. The MRC parameters kmd and cmd allow
flexible adjustment of reaction torque with respect to distance to the lane marking, as
θLKA = f (δe, δh, v). Crucially, θc can perfectly track θcmd where θcmd = θLKA + θMD

and θMD = 0 during hands-off situations. Deactivation of the LKA function is unneces-
sary for intentional lane crossing which means that the system can continuously provide
haptic information while high-risk conditions persist.

4 Performance of LKA

In this section, the admittance control based LKA is evaluated on a real vehicle using the
closed loop torque overlay as a benchmark. The experiment procedure is shown in Fig. 4.
First the driver intentionally steers the vehicle across the lanemarking (Fig. 4a). Next, the



Interactive and Robust Prevention of Lane Departure 767

vehicle approaches the lane marking without driver input and risking unintentional lane
crossing (Fig. 4b). Ideally, intentional lane crossing can be achieved without excessive
driver torque and unintentional lane crossing is prevented by the LKA function.

(a) Hands-on, intentional lane crossing (b) Hands-off, unintentional lane crossing

Fig. 4. Experimental procedure.

The torque overlay experiment results are shown in Fig. 5. The blue highlighted
area corresponds to the intentional lane crossing scenario and the beige highlighted
area corresponds to the unintentional lane crossing scenario. In Fig. 5a, a high value of
the gain kt is used to prioritize the angle tracking performance and unintentional lane
departure is prevented. However, the reaction torque during intentional lane crossing is
high at around 6 Nm. In Fig. 5b, a low value of kt is used and the reaction torque during
intentional lane crossing has been reduced to around 2 Nm. However, angle tracking
performance is reduced, and unintentional lane departure is observed.

LKA activated 

hands-on

LKA activated

hands-off

LKA activated 

hands-on

LKA activated

hands-off

LKA LKA

Fig. 5. Performance of torque overlay based LKA.

Figure 6a shows the experiment results using the proposed admittance control based
LKA.The high angle tracking performance derived from the admittance control structure
prevents unintentional lane departure. In addition, the reaction torque observed during
intentional lane crossing is comparable to that from Fig. 6b at around 2 Nm. Thus, the
requirements ofLKAoutlined inSect. 2 have been achievedwithout the need for complex
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authority switching mechanisms which rely on estimation of driver intention. Figure 6b
demonstrates how the reaction torque may be easily tuned using the MRC parameter
kMD. The reaction torque grows linearly until the vehicle has crossed the lane marking
at which point it plateaus. The LKA function is never turned off and continuous risk
information is communicated to the driver even when driving along the lane marking.
Exploring the optimal MRC parameters is an important step in combining appropriate
haptic risk communication and driver acceptance.

Lane marking

(b) Reaction torque tuning effects

LKA activated 

hands-on

LKA activated

hands-off

(a) Experiment results

LKA ONLCA or Manual area

LKA

Fig. 6. Performance of admittance control based LKA.

5 Conclusion

This paper has proposed an LKA system based on admittance-type haptic shared control.
The admittance control scheme has been shown to allow high lane keeping performance
when the driver is hands-off while being receptive of driver intentional lane crossing.
Figures 5 and 6 demonstrate how the trade-off required of conventional torque overlay
LKA has been resolved using the proposed admittance control based LKA.

Maintaining a comfortable steering feel and smooth vehicle motion when the LKA
function is activated are the primary challenge to driver acceptance of the function in the
future. The requirements of LKA outlined in Sect. 2 aim to improve driver acceptance
rates by addressing both of these issues.
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Abstract. This paper presents an analysis of the control law for a torque-vectoring
system that actively distributes left and right drive torques to maximize the steady-
state cornering performance of a rear-wheel drive race car. The control law allo-
cates torque to the left and right vertical load distribution. Steady-state analysis
results show that the maximum lateral acceleration could be improved by 7.8% by
decreasing themaximum slip ratio and altering the point at which the yawmoment
is trimmed compared to the existing passive system. Furthermore, the stability of
the system is reduced, and measures to ensure stability are presented.

Keywords: Torque-Vectoring · Steady-State Cornering · Performance
Optimization ·Moment Method · Simulation

1 Introduction

In race cars, operating at the limit of tire performance, enhancing cornering perfor-
mance is crucial to minimize lap times. The most important of these is the steady-state
performance at the corner apex, which determines the minimum speed during the cor-
nering process, and requires maximizing the grip of the four tires and balancing the
yaw moment. Typical measures for improving cornering performance include various
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approaches aimed at uniformly improving overall performance. These may include ini-
tiatives such as mass reduction, tire performance improvement, and increased down-
force. In scenarios where cornering performance potential is constrained by regulations,
the steady-state cornering capability of a rear-wheel-drive vehicle primarily hinges on
achieving equilibrium between lateral forces acting on all four tires and longitudinal
forces exerted on the left and right rear tires. Ensuring that the lateral forces on all
four tires reach their limits is crucial. The key lies in the distribution of torque applied
to the left and right rear tires, known as torque-vectoring (TV). While TV is typically
induced by a passive differentialmechanism, achieving precise control for each vehicle in
motion presents challenges. Active yaw moment control systems have been extensively
researched to improve vehicle maneuverability and stability in recent years. Among
these, active TV systems, including those investigated by our research group [1] have
garnered significant attention. Different TV control laws that change the dynamic char-
acteristics have been studied so far. Among them, a torque distribution strategy propor-
tional to the vertical load was devised to suppress stability changes associated with load
transfer during acceleration and deceleration [2].

This study presents an analytical investigation of the contribution of a TV control
law proportional to the vertical load to maximizing the steady-state lateral acceleration
of a rear-wheel-drive race car. Although this control law has been recognized and much
investigated for some time, the purpose of this paper is to emphasize its importance
compared to conventional passive systems for maximizing the steady-state lateral accel-
eration of race cars. The analysis method used is the moment method [3, 4], which can
comprehensively analyze the behavior changes caused by nonlinear tire characteristics.
This analysis method has the advantage of being able to quantify stability indices for
whether or not a turn can be maintained. The analysis results were then compared with
those obtained with conventional passive systems.

2 Vehicle Dynamics Model

2.1 Equations of Motion with 7 Degrees of Freedom

As shown in Fig. 1(a), the vehicle is constrained on a two-dimensional plane, exhibiting 7
degrees of freedom, which encompass the rotational motion of eachwheel. To accurately
the model’s behavior, roll/pitch load transfers were calculated based on the height of the
center of gravity and the tire positions under static equilibrium conditions. In addition,
anti-roll stiffness distribution was considered for rolling effects.

The equations of translational motion for two degrees of freedom in the longitudinal
and lateral directions at the vehicle’s center of gravity are shown in Eqs. (1) and (2).
Equation (3) shows the equation of rotational motion in the yaw direction.

m
(
V̇x − rVy

) = −(FyFL + FyFR) sin δ + FxRL + FxRR − Fd , (1)

m
(
V̇y + rVx

) = (FyFL + FyFR) cos δ + FyRL + FyRR, (2)

Izz ṙ = lf
(
FyFL + FyFR

)
cosδ − lr

(
FyRL + FyRR

) + tf /2
(−FyFL + FyFR

)
sinδ + tr/2(FxRL − FxRR), (3)
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Fig. 1. (a) Free body diagram showing all external forces applied to a vehicle body. (b) Free body
diagram showing all external forces on the tire and wheel assembly.

2.2 Application to Moment Method

The moment method is a quasi-static analysis method that uses a combination of the
steering wheel angle δsw and the sideslip angle β at a given longitudinal velocity Vx as
inputs. Developed in the 1990s, primarily as an analytical tool for race cars, this method
offers a significant advantage in that it can comprehensively represent the relationship
between the vehicle’s lateral acceleration ay and yawmomentN for each input condition.
In this study, as shown in Eq. (4), the time derivatives of the longitudinal velocity Vx

and lateral velocity Vy were constrained to zero in the moment method calculation.
[
ay,N

] = f(δsw, β,Vx)with V̇x = V̇y = 0, (4)

Specifically, a moment diagram was created as shown in Fig. 2. The horizontal axis
represents the lateral acceleration, indicating the cornering performance, whereas the
vertical axis represents the yaw moment. The inputs are represented by two lines: the
red line represents the constant steering angle, and the black dashed line represents the
constant sideslip angle. The endpoint of the constant steering angle line represents the
limit of the front tire, whereas the endpoint of the constant sideslip angle line signifies
the limit of the rear tire.

Fig. 2. Schematic diagram describing the moment method.

The trim line, where the yaw moment was balanced, and the trimmed maximum
lateral acceleration were used as indices of cornering performance. In addition, as a
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stable systemmust maintain turning for a steady-state, we focused on the stability index.
The slope of the constant steering angle in the Fig. 2 indicates stability; specifically, the
stability index SI shown in Eq. (5) was used.

SI = ∂N/∂{aym(lf + lr)}, (5)

3 Study of Control Law for Active TV Systems

In this study, our focus lies in examining whether the yaw moment, resulting from the
disparity in longitudinal forces, can alter the trimming point of the cornering performance
depicted in Fig. 2, consequently improving overall cornering performance. Another
important consideration is the interdependence between the lateral and longitudinal
forces generated by the tires. Figure 3 shows the lateral force values against the slip
ratio along the line of constant slip angle, as determined using the tire model. The
convex shape of the graph, with its apex at zero slip ratio, indicates the undesirability of
employing extremely high slip ratios when aiming to maximize lateral force on the tire
for enhanced lateral acceleration. This issue remains unresolved with existing passive
differentials. In passive systems, TV is governed by the grip state of the left and right
tires, affected by factors such as the frictional torque of the clutch or the yaw angular
velocity. Consequently, one wheel may experience strain, resulting in a high slip ratio
and a loss of the lateral force necessary for improving cornering performance.

Fig. 3. Lateral force against slip ratio calculated from tire model.

The control law of the torque vectoring system proportional to the vertical load in
this study based on the relationship between slip ratio and lateral force for improving
the problem and cornering perfor-mance of the passive system is shown in Eq. (6).

TRL,RR = Tin
[
p
{∣∣FzRL,RR/FzRL + FzRR

∣∣ − 0.5
} + 0.5

]
, (6)

Here, Tin represents the input torque. This control law allocates torque to the rear wheels
according to the vertical load distribution on the left and right sides. The parameter p is
set, where p= 1 signifies distribution in accordance with the vertical load distribution on
the left and right sides. For p= 0, TV was performed, equivalent to an open differential.
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4 Analysis to Validate the Proposed Control Law

The proposed active TV control law was compared to the existing open differential,
limited-slip differential (LSD), and locked differential during steady-state turning to
determine its effects on lateral acceleration and stability. The analysis was conducted
on a vehicle used in Formula SAE events [5], where competition vehicles were built
by students from universities worldwide. Test data specific to FSAE vehicles were used
for tires [6] and differentials. Table 1 lists the fundamental vehicle parameters. Figure 4
shows the moment diagram of each system. The longitudinal velocity was 15 m/s, and
the steering wheel angle was calculated for combinations in the range of 0°–100°, with
the sideslip angle ranging from −5°–5°.

Table 1. FSAE vehicle parameters

Parameters Value

Total mass 268 kg

CoG height 275 mm

Front axle to CoG distance 832.4 mm

Rear axle to CoG distance 697.6 mm

Front/Rear track width 1200 mm

Anti-roll stiffness distribution 60%Fr

The lateral acceleration of the proposed system improved by approximately 7.8%
compared to the maximum value of the passive system. Among the passive systems, the
locked differential system exhibits the lowest lateral acceleration.

Figure 5 shows the stability index at the trim line for each system. The larger the
stability index in the negative direction, the higher the stability; if the value is in the
positive direction, the vehicle cannot continue turning. In the passive system, the directly
connected locked differential exhibited the highest stability, up to approximately 10m/s2

of lateral acceleration. In the region where the lateral acceleration exceeded 10 m/s2, the
other systems were more stable, and the situation was reversed. The proposed control
law for TVwas found to be unstable, indicating a trade-off between stability and steady-
state cornering performance. If stability becomes an issue at speeds higher than those
used in this study, the TV ratio in Eq. (6) should be adjusted closer to zero. Two factors
contributed to the increase in the lateral acceleration of the proposed system. First, the
increase in the slip ratio of the inner rear wheel was suppressed to increase the lateral
force, as the control law intended. In fact, the slip ratio was reduced by approximately
66% compared to the direct-coupling case. The second factor is thought to be that the
addition of yaw moment increased the grip in the negative yaw moment region of the
moment diagram to zero.
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       (a) Open (b) LSD

(c) Locked    (d) Active TV

Fig. 4. Moment diagram for each system.

Fig. 5. Trimmed lateral acceleration relative to the stability index.

5 Conclusion

Moment method analysis compares the proposed torque vectoring control law with the
passive system and shows that significant performance improvement can be expected
without weight reduction or additional downforce. However, since the reduction in sta-
bility, which is considered to be a trade-off with lateral acceleration, could be a serious
problem, the same analysis will be performed at higher vehicle speeds where the yaw
damping is reduced. In addition, since the estimation of vertical loads is necessary to
fully apply the control law to reality, the estimation and calculation of load changes due
to load transfers and aerodynamics will also be investigated.
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Abstract. Vehicle localization is one of the key technical factors for
autonomous vehicles. It requires high accuracy, precision, and robustness
towards various road conditions. Popular localization methods include
global navigation satellite system (GNSS) and visual methods, but their
accuracy can degrade in some conditions. This work proposes to use the
environmental magnetic field (EMF) for localization to complement the
shortcomings of existing methods. EMF is a combination of the Earth’s
geomagnetic field and magnetic field induced by man-made objects. It
has local fluctuations that can be paired with coordinate positions and
is time-invariant within a practical timescale. Past works considering the
localization of road vehicles had few problems when applying them to the
localization of autonomous vehicles. This work overcomes the problems
in the existing method by creating a two-dimensional magnetic field map
using Gaussian Process regression, using magnetic markers to enhance
EMF fluctuations, and utilizing the Monte Carlo localization algorithm.
The proposed method was validated through actual vehicle tests, and its
robustness towards other vehicles was examined.

Keywords: Autonomous Vehicle · Localization · Environmental
Magnetic Field

1 Introduction

Autonomous vehicles (AVs) can not only free people from driving but are
also expected to solve various social problems. One key technical factor for
autonomous vehicles on the road is vehicle localization. It is important because
the autonomous system will maneuver the vehicle based on this understanding.
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Fig. 1. Image of vehicle localization by EMF. The geomagnetic field is altered by
artificial objects such as manholes and other ferromagnetic objects.

It requires high accuracy, precision (the modest error accepted for a typical 2 m
wide vehicle running in a 3 m wide lane is 50 cm), and robustness towards various
road conditions. Conventional localization methods use GNSS (global navigation
satellite system) or visual sensors such as cameras and LiDARs (light detection
and ranging) [3]. However, these methods have conditions where their localiza-
tion accuracy can degrade. Therefore, in practice, multiple methods complement
each other to increase robustness.

This work proposes to use the environmental magnetic field (EMF) for AV
localization to complement the conventional methods. Here, EMF refers to the
combination of the Earth’s geomagnetic field and magnetic field induced by man-
made objects. EMF has two features that are useful for localization: it has local
fluctuations that can be paired with coordinate positions and is time-invariant
within a practical time scale [9]. Figure 1 shows the concept image of the pro-
posed AV localization method using EMF. Various ferromagnetic objects can be
found in road environments, such as manholes, railroad tracks, and underground
structures. Fluctuations of the magnetic field caused by these objects are used
for localization.

EMF localization has recently been studied for relatively small indoor mobile
robots such as in [1,5,7]. However, there are a few examples of EMF localization
for road vehicles and problems when applying the works for AV localization. One
of them is that their localization accuracy is unacceptable, possibly because there
are less useful magnetic field features in outdoor environments. [6] proposed a
method using only the magnetometer data, but the localization accuracy was
poor, with several hundred meters of error in worst cases. Another problem is
that previous works have only made a topological map of the measured magnetic
field along the vehicle trajectory. However, this is insufficient for AV localization
since the vehicle needs information about the position along the path and within
the road or lane width.
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Fig. 2. Image of experimental vehicle running on the experimental field. Magnetic
markers are embedded in the lane where the experiment vehicle is running.

2 Proposed Localization Method

This work proposes to overcome the problems of the current EMF localization for
road vehicles by the following methods: First, a two-dimensional magnetic field
map is created using Gaussian process (GP) regression. Second, magnetic mark-
ers can be embedded on roads in places with few magnetic features to enhance
such features. Finally, the Monte Carlo method is utilized for the localization
algorithm.

GP regression is a non-parametric and Bayesian approach to regression that
can model non-linear function relations [4]. Therefore, it is suitable for modeling
EMF with limited observation points, and previous works aimed at an indoor
environment produced a 2D EMF map from limited observations [1,7].

In areas where EMF fluctuations are expected to be scarce, magnetic markers
are added to enhance the fluctuations of EMF. Unlike the conventional meth-
ods such as the magnetic positioning system [2], where the markers’ coordinate
information is measured and stored in a database for localization, the proposed
method does not require such coordinate information. This is because the fluc-
tuations of EMF caused by magnetic markers are modeled into the EMF map
with other EMF fluctuations caused by various other reasons.

The Monte Carlo localization (MCL) algorithm utilizes the particle filter
algorithm, expressing the vehicle states, such as its coordinate position and
heading, as multiple “particles.” Unlike other localization methods, such as
Kalman filtering, MCL can approximate any distribution without an explicit
landmark [8].

3 Experimental Condition

The proposed method was validated through data obtained from the experiment
vehicle. Figure 2 shows the overview of the experimental setup. Data collection
was conducted at the ITS R&R experimental field at the University of Tokyo.
The experimental field has an actual scale model of a road environment. Some
sections have magnetic markers embedded at the center of the lane at 2 m inter-
vals, which can be used to generate the EMF fluctuations needed for the pro-
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Fig. 3. The generated Z-axis EMF map.

posed method. EMF measurement was conducted at a 50 m straight section with
magnetic markers embedded in the road.

Measurements were done by a sensor unit attached to an experiment vehicle
provided by Aichi Steel Corporation. The sensor unit is attached to the vehicle’s
rear, as shown in Fig. 2. The sensor unit comprises 16 3-axis magnetometers
installed in a straight line 50 mm apart. The vehicle also has a velocity sensor,
inertial measurement unit (IMU), and GNSS antenna.

Conditions with and without other vehicles were conducted to assess the
proposed method’s robustness towards other road members. An electric vehi-
cle (Mitsubishi iMiev) was used for the other nearby vehicle, with 4 different
situations considered: the vehicle being parked with its power off, the vehicle
parked with power on, the vehicle running next to the experiment vehicle, and
the vehicle running towards the vehicle in the adjacent lane.

4 EMF Map Generation and Discussion

Figure 3 shows the EMF map generated by the proposed method. It was gener-
ated within X = −2 m to + 2 m and Y = −1 m to + 53 m at the resolution of
1 cm. The figure is plotted with the original measurement data plotted in blue
points. The X and Y axes show the coordinate positions, and the Z-axis with
the color bar shows the magnetic field intensity in µT.

As seen in Fig. 3, the proposed method generated the EMF map that retained
the magnetic field fluctuations of the original measurements. A distinctive spike
shape can be seen around the locations of magnetic markers.

5 Localization Results and Discussion

The proposed localization method was applied to measurement data obtained
from the experiment vehicle to validate the proposed method. Figure 4 shows
the localization result of the condition without any other vehicles nearby. The X
and Y axis show the coordinates, and the vehicle ran in the upward direction of
the figure. The blue dots show the reference GNSS positions, the red line shows
the estimated path of the proposed localization algorithm, and the yellow dots
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Fig. 4. The localization result of the
condition without any other vehicles.

Fig. 5. The localization error of differ-
ent conditions.

show the final state of the particles. It can be seen that the localization result
follows the reference GNSS positions.

Figure 5 shows the localization error from the reference GNSS position of var-
ious conditions. The horizontal axis shows the GNSS position in the direction of
the Y axis, and the vertical axis shows the localization error at each Y coordi-
nate. The blue line shows the error of the condition with no other vehicle, as we
saw in Fig. 4, the red line shows the error of the condition with an EV parked
with its power off, the yellow line shows the error of the condition with an EV
parked with its power on, and the purple line shows the error of the condition
with an EV coming towards the experiment vehicle in the adjacent lane. The
horizontal dashed line shows the 0.5 m error border, and the vertical line shows
the Y coordinate position of the last marker observed within the experiment
condition.

As seen in Fig. 5, the proposed method was able to localize the vehicle for
most of the length of the experiment in the conditions listed in the legend. In the
condition with an EV parked and oncoming, the vehicles passed by at around Y
= 25 m, but very little effect on localization is seen. A relatively large localization
error is seen for EV parked and EV oncoming conditions after the vehicle passes
the last marker. This was mainly caused by a large measurement error by IMU
when the vehicle stopped at the end of the measurement.

However, the localization of the condition with an EV running in parallel
with the experimental vehicle was not successful, and it is not plotted in the
figure. The localization failure may be due to the continuous offset from the
original EMF in the measurement caused by the presence of a nearby vehicle.
Our preliminary analysis in a simulated environment had a similar outcome when
the measured EMF had some offset error from the original EMF.
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6 Conclusion

This paper proposes a new vehicle localization method for AVs. The method uses
EMF, which is a combined magnetic field of the Earth’s geomagnetic field and
magnetic field induced by manmade objects. The proposed method generates
a 2-D EMF map using GP regression, utilizes magnetic markers where EMF
fluctuation is less present, and uses the MCL method to localize the vehicle
using the generated EMF reference map.

The proposed method was validated by data obtained from an actual vehicle.
It successfully localized the vehicle with high accuracy. The method also showed
some robustness towards the existence of other vehicles, but it failed to localize
in a condition where an EV was running parallel to the experiment vehicle. We
will continue to refine the method to localize the vehicle even in the constant
existence of a surrounding vehicle.
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Abstract. Yaw resonances cause the rear-end of the vehicle to swing,
which is related to the feeling of handling. As a basis for improving this
motion, this paper considers the restoration of yaw resonance. The equi-
librium position of the yaw resonance is the extension of the velocity
vector at the “heading point,” where the vehicle median line is perpen-
dicular to the turning radius in a steady state turn. Toward this position,
the center of percussion at the rear-end of the vehicle travels. This travel
is the restoration of yaw. Observing the vehicle behavior from the earth-
fixed coordinate system at the moment when the heading point changes
direction of travel, the heading point and the center of percussion travel
in their respective directions. Each motion continues for a distance from
the rear wheel to the heading point to reach the equilibrium position.
This continues time equals “yaw lead time constant.” Therefore, when
the yaw lead time constant is small, the vehicle is restored in a short
time.

Keywords: Yaw natural frequency · Yaw restoration · Yaw lead time
constant

1 Introduction

The swinging motion of the rear-end of the vehicle, as in the hand gesture that
begins at the 223-second point in a video [1], interferes with the pleasantness of
the handling. This paper proves that this swing is the yaw resonance, discusses
its mechanism, and proposes a method to improve it.

2 Vehicle Model and Its Yaw Resonance

The vehicle planar motion, represented by the yaw velocity “r” and the sideslip
angle at C.G. “β,” are represented by a linear model shown in Fig. 1. Its vehicle
mass m is represented by portion masses divided into front and rear masses [2],

mf =
lr

l
m, mr =

lf

l
m (kg) (1)
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Fig. 1. A planar 2-DOF model for center of gravity

according to the vertical loads. The yaw moment of inertia Iz is expressed as

Iz = mf(kNlf)2 + mr(kNlr)2 = kN
2mlf lr (kgm2) (2)

where kN
2 is a coefficient called dynamic index [3].

Newton’s second law equations of the model are described by

kN
2mlf lrṙ = 2Ff lf − 2Frlr (Nm) (3)

mV (r + β̇) = 2Ff + 2Fr (N). (4)

The front and rear cornering forces 2Ff and 2Fr are respectively

2Ff = −Cfmfαf , 2Fr = −Crmrαr (N) (5)

where Cf and Cr are the cornering coefficients in the acceleration dimension,
respectively. Their typical values are Cf = 100 and Cr = 200 [(m/s2)/rad],
respectively. The front slip angle αf and the rear slip angle αr are written as

αf = βf − δ, αr = βr (6)

βf = β +
lf
V

r βr = β − lr
V

r (rad). (7)

Algebraic manipulation of the above equations yields

ṙ = −Cf lf + Crlr

kN
2lV

r − Cf − Cr

kN
2l

β +
Cf

kN
2l

δ (rad/s2) (8)

β̇ = −
[
1 +

(Cf − Cr)lf lr
lV 2

]
r − Cf lr + Crlf

lV
β+

Cf lr
lV

δ (m/s2). (9)

The yaw natural frequency “ωn” of the model is described by

ωn =

√√√√√Cr +
(

Crl

V 2
− 1

)
Cf

kN
2l

(rad/s). (10)
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Fig. 2. The pendulum

3 Motion Equations Representing the Resonance
Explicitly

To understand resonances, that of a single pendulum is suitable. Its Newton’s
second law shown in Fig. 2a is represented in Fig. 2b. This figure expresses the
phenomenon that θ̈ occurs in the opposite direction of θ in proportion to θ as
shown in Fig. 2c. Therefore, the equilibrium position is at θ = 0. Thus transform-
ing the equations of motion of the vehicle into a form similar to that in Fig. 2b
can reveal its equilibrium position and the variable that accelerates toward it.

The final term of Eq. (8) is eliminated by replacing β with βrpc shown in
Fig. 1. Subtracting kN

2lr/V times Eq. (8) from Eq. (9) yields

d
dt

(
β − kN

2lr
V

r

)
= −

(
1 − Crlr

V 2

)
r − Cr

V
β. (11)

The term in round brackets on the left-hand side means the sideslip angle “βrpc”
at rpc behind kN

2lr from the center of gravity. Hence

βrpc = β − kN
2lr

V
r. (12)

Position rpc is the center of percussion where no acceleration occurs when a
percussion force is applied to the front wheel position in the lateral direction of
the vehicle [3]. By using Eq. (12), eliminating β from Eqs. (8) and (9) obtains

ṙ = −
[
1 +

(kN2 − 1)lr
l

Cf − Cr

Cf

]
Cf

kN
2 V

r − Cr − Cf

kN
2l

βrpc +
Cf

kN
2l

δ (13)

β̇rpc = −
[
1 +

Cr(kN2 − 1)lr
V 2

]
r − 1

Tr
βrpc (14)

where Tr is yaw lead time constant [4] expressed as

Tr =
V

Cr
(s). (15)
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The time constant is the coefficient of Laplace variable s in the numerator of the
transfer function relating the steer angle to the yaw rate.

The first term on the right-hand side of Eq. (14) is eliminated by replacing
r with sideslip angle “βH” at Heading Point “H.P.” where the radius is perpen-
dicular to the vehicle median line in a steady state turn. H.P. is located near the
rear wheels at very low speeds and moves forward with increasing vehicle speed.
As typical examples, H.P. is at the midpoint of the wheelbase at 60 (km/h) and
on the front axle at 80 (km/h). H.P. is represented as lH ahead of the rear wheels,
as shown in Fig. 1. The length lH is expressed as

lH =
V 2

Cr
= TrV (m). (16)

Using βH and βrpc, yow velocity is written as

r =
βH − βrpc

lH + (kN2 − 1)lr
V (rad/s). (17)

Substituting this expression into the expressions (8) and (9) and performing
the algebraic operations yields

β̇H = −2ζωnβH + ωn
2Trβrpc+

[
1 +

(kN2 − 1)lr
l

· Crl

V 2

]
Cf

kN
2l

Trδ (18)

β̇rpc = − 1
Tr

βH (19)

where ζ is yaw damping ratio.
The first and last terms on the right-hand side of Eq. (18) are eliminated by

assuming a steering where they cancel each other out. That is

δ =
2ζωn[

1 + (kN2 − 1)βH
lr
l

· Crl

V 2

]
Cf

kN
2l

Tr

βH (20)

Numerical simulation results are omitted, but under non-zero initial conditions,
the steering proportional to βH causes the yaw resonance to continue. Under this
steering, Eq. (19) is reduced as

β̇H = ω2
nTrβrpc. (21)

Comparing Eqs. (19) and (21) with Fig. 2b with attention to the negative
sign, we obtain Fig. 3a.

4 Yaw Resonance and Its Restoration

Figure 3a means that the yaw resonance equilibrium position is at βH = 0 and
β̇rpc is restored toward this position, as shown in Fig. 3b.
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Fig. 3. Resonance and Restoration of Yaw: ωn and Tr denote the yaw natural frequency
and yaw lead time constant, respectively.

Fig. 4. Yaw resonance mode

Yaw resonance is a phenomenon in which the rear wheels accelerates toward
the extension of H.P.’s vehicle speed vector. The meaning of Fig. 3 is represented
by the behavior of the vehicle in Fig. 4. The equilibrium state of the yaw res-
onance is position B, where βH = 0 as in steady-state turning. At this time,
the rear wheels position r is on the extension of H.P.’s vehicle speed vector

−→
VH.

Hence,
−→
VH is located at position r in the extension of

−→
VH is a balanced state.

Therefore, yaw resonance is a phenomenon in which rcp accelerates toward the
extension of

−→
VH like positions A and C.

This motion rotates the vehicle around H.P. It is shown in the H.P. path,
which is closer to a straight line than the front or rear wheel paths in Fig. 5,
which shows a restoring behavior after an unbalanced condition are given. For
concise analysis, rpc is assumed to be on the rear wheel.

Intuitively, the restoration is the behavior in which rpc maintains its former
motion to the vicinity of the ground position where H.P. was at the moment of
imbalance, and then follows the trajectory of H.P. This phenomenon is seen in
Fig. 5, where rpc moves almost straight ahead to the vicinity of the initial H.P.
ground position, and then follows the trajectory of H.P.

The restoration mechanism is represented in schematic Fig. 6. The schematic
shows the result of H.P. and rpc continuing to travel lH(m) in each direction
at the moment of disproportionation. The vehicle median line is on the vehicle
speed vector at H.P., thus βH = 0, which means the equilibrium position, as
shown at position B in Fig. 4.
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The time required for the vehicle to travel lH(m) is Tr(s). Tr is located in the
block −1/Tr that represents the strength of restoration in Fig. 3a. This block cor-
responds to the −g/L block, which represents the restoration of the pendulum,
shown in Fig. 2b. Thus, a small Tr or lH immediately restore the vehicle.

Fig. 5. Vehicle trajectories (initial con-
ditions: βH �= 0, βrpc = 0 and δ = 0)

Fig. 6. Schematic of the restoration in yaw
resonance implied in Fig. 5

5 Handling Improvement

To emphasize the restoration, yaw lead time constant and the length can be
shortened by increasing the rear cornering coefficient from Eq. (16).

To suppress the manifestation of yaw resonance pointed out in the movie
[1], it is necessary to increase the yaw damping ratio, which can be achieved by
increasing the front cornering coefficient [5].

6 Conclusion

This research has revealed that the swaying phenomenon at the rear-end of the
vehicle is a manifestation of yaw resonance. Restoration of the yaw resonance is
the running of the rpc to the H.P. position at the moment of imbalance. This
suggests that the vehicle planar motion can be improved by controls that focus
on the heading point and rpc.
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Abstract. For testing and analyzing urban vehicle-pedestrian or vehicle-bicyclist
interactions as realistically and safely as possible, new types of test environments
are required. This paper presents and analyzes a test environment in which a
Vehicle-in-the-Loop test bench is combined with a motion laboratory. In this test
setup, a real automated vehicle can interact with a human pedestrian or cyclist in
a virtual test field in the same way as in real road traffic. Employing a walking
platform ensures that the pedestrian’s range of movement is not restricted during
the test. This test environment is used to stimulate vehicle perception with a pedes-
trian avatar animated by a test subject. The test results are compared with mea-
surements taken with a human pedestrian in reality, and strengths and weaknesses
of the approach are discussed.

Keywords: Advanced Driver Assistance Systems · Automated Driving
Systems · Testing and Validation · Motion Capture · Vehicle-in-the-Loop ·
Mixed Reality

1 Introduction

Due to safety concerns, testing and analyzing safety-critical urban interaction scenar-
ios involving vehicles, pedestrians, and bicycles on real roads or proving grounds is
challenging. On the one hand, current approaches, which utilize moving dummy pedes-
trian or bicycle targets on proving grounds or avatars in numerical simulations represent
human interaction behavior only to a very limited extend. On the other hand, analyses in
motion laboratories, an approach which has been increasingly used in recent years for
evaluating pedestrian and bicycle behavior in traffic in a safe test environment, consider
the automated vehicle only in simulation. With both approaches, the behavior of the
interaction partner is always only realistically depicted to a limited extend; real behavior
is only approximately or not at all possible.
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In this paper, we introduce a new cyber-physical test environment for a realistic
and safe analysis of the interaction of advanced driver assistance systems or automated
driving systems with vulnerable road users (VRUs) and we analyze the strengths and
weaknesses of such an approach. Such an approach has been theoretically proposed in
[1], but, to the best knowledge of the authors, no realization of their idea or experimental
results have been shown so far.

2 Method

For safe and realistic studies of Vehicle-VRU interaction scenarios, we combine a
Vehicle-in-the-Loop test bench (ViL) with a Pedestrian-in-the-Loop test bench (PiL)
and a Cyclist-in-the-Loop (CiL) test bench via a virtual test field as shown in Fig. 1.

Fig. 1. MotionLab -Connected test benches for human-machine interaction of automated vehicles
with VRUs

The real automated vehicle on the ViL test bench perceives information about other
traffic participants from the virtual test field via its camera filming a projected image
from a virtual reality (VR) environment model. It can respond by steering, accelerating,
or braking against electrical motors that provide realistic force and torque feedback and
update the pose of a vehicle avatar in the same VR environment model. More detailed
information about the ViL test bench is available in our previous works [2–4].

On the PiL test bench, a real human test subject wears a head mounted display
(HMD) and perceives information from the VR environment model. The subject moves
on a low-µ walking platform with adaptive incline and is fixated at the hips for this
purpose. The position and orientation of the subject’s head (from the HMD), hands, and
feet (from trackers), together with the position and orientation of the test subject’s hips,
as well as walking speed and direction (from the walking platform) are provided to an
Unreal Engine 5 implementation. There, this tracking information is used to calculate
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the local pose of a human skeleton model [5]. Excessive degrees of freedom of this
model are derived using inverse kinematics (e.g., the positions of elbows and knees).
Using the walking speed and direction, the pedestrian avatar changes its global position
in the environment and is animated accordingly.

On the CiL test bench, a real human test subject wears an HMD and perceives
information from the VR environment model while riding a bike on a bicycle trainer. A
camera-based 3D human pose estimation (HPE) system is used to determine the precise
position of the human rider relative to the bike as an additional signal into a multi-body
system (MBS) model of the bicycle with rider. The camera-based 3D HPE has been
integrated as an efficient and flexible alternative to the previous purely laboratory-based
motion capture using marker-based systems as part of a collaboration with Subsequent
GmbH (https://www.subsequent.ai). The AI method used enables the use of simple
video data, such as from smartphones or vehicle cameras, to evaluate the detailed 3D
movement data of the human skeleton in real time. The solution has so far been used in
professional and elite sports, neurological rehabilitation, home fitness, and security [6].
Additionally, the measured steering angle and wheel speed are used as inputs. The MBS
model controls the resistance torque on the eddy-current dyno on the bike’s rear axle.
The pose of the bike and the rider is sent from the MBS model in real time to an Unreal
Engine 5 implementation and animates a cyclist and bike avatar in the virtual test field
in the same way as on the PiL test bench.

Information from the virtual test field then again feeds into the vehicle’s sensor input,
allowing it to react to the VRUs’ actions without endangering the subjects in any way.

3 Experimental Validation

For the analysis of the strengths andweaknesses of the proposedmethod,we conduct tests
both in real-world conditions and in our test environment. The general functionalities
of the ViL test bench, such as the integration of the real vehicle and the transfer of the
real vehicle’s motion to the motion of the vehicle in the virtual environment, have been
previously demonstrated by us [2, 4]. Therefore, our tests focus on the integration of
the PiL test bench and its influence on the vehicle’s perception. If the perception works
similarly, we expect only minor differences in all subsequent vehicle functions.

For our tests, we use a real automated shuttle bus that employs a monocular camera
(1280 × 960 px, 20 fps) and feeds the images to an instance of the 3D HPE algorithm,
which we also use in the CiL test bench, to estimate a skeleton representation of the
pedestrians pose. We treat the anchor point of the skeleton as position of the pedestrian.

For different pedestrian poses, the skeleton estimation accurately represents the posi-
tion of various limbs (see Fig. 2, left and middle). As expected, the estimation is accurate
for visible limbs but shows higher deviation for covered limbs. However, the skeleton
estimation may not always represent the pose of the human test subject correctly if
untracked joints are highly bent. In such cases, there is a deviation between the test
subject’s pose and the avatar’s pose (see Fig. 2, middle and right; note the deviation in
the position of the left and right elbows) and the HPE algorithm is fed a divergent visual
representation of the test subject. This issue mainly concerns elbow positions and, to a
lesser extent, knee positions.

https://www.subsequent.ai
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Fig. 2. Skeleton estimation in reality (left), skeleton estimation on test bench (middle), and
respective pose of the test subject (right)

To compare the performance for static objects, we position test subjects of small
(166 cm),medium (178 cm), and large (189 cm)heights, or similarly sizedhumanavatars,
in defined positions and compare the output of the HPE algorithm. The pedestrians are
detected in similar positions (see Fig. 3). For test subjects placed closer to the vehicle (x
< 12 m) the position’s standard deviations fall within the interval between 0.7 cm and
7.9 cm; for test subjects further away, they fall within the interval between 4.2 cm and
53.7 cm. The measurements for both real-world conditions and the test bench setup are
similar for mean value and standard deviation, especially for smaller distances to the
vehicle. We are also able to reproduce the systematic measurement error for different
test subject heights.

Fig. 3. Static pedestrian position estimations

To compare the performance for dynamic objects, the test subject had the task of
walking past the vehicle at predefined distances (laterally back and forth both closer and
further away). In the real-world scenario, these distances were marked with cones; for
the test bench setup, ground truth data of the test subject’s position is available from
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the VR environment model. In the results (see Fig. 4), we can see that the pedestrian is
detected with a similar deviation from the real path in both environments. However, we
note higher uncertainty in the position estimation for higher distances in the test bench
scenario. We assume, this is due to the unrealistic reflective surface of the pedestrian
avatar (see Fig. 2, middle).

Fig. 4. Dynamic pedestrian position estimations with ground truth

To estimate the latency of our test bench, we recorded both the test subject in the
motion laboratory and the image projected for camera stimulation of the vehicle using
a camera (see Fig. 5), which can record at 240 frames per second - this corresponds to
a temporal resolution of approximately 4.2 ms. A test subject raises or lowers their arm
in a semi-circular motion, which in turn animates the pedestrian avatar accordingly. We
counted the number of camera frames between when the test subject’s arm is at a 90°
angle to the torso and when the avatar’s arm reaches the same position. Considering
the recording frequency, we observed an average latency of 134 ms with a standard
deviation of 15 ms across ten individual measurements. All measured latencies fall
within the interval between 104 ms and 154 ms.

Fig. 5. Setup for latency measurement
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4 Summary and Outlook

This paper presents a test environment in which a Vehicle-in-the-Loop test bench is
combined with a motion laboratory to include a human pedestrian and a human cyclist.
We demonstrate that vehicle perception can be stimulated in the test environment in
a manner comparable to real-world conditions. Our approach surpasses traditional test
benches and motion laboratory concepts while maintaining the safety of laboratory
environments, unlike proving ground tests.

In the future, we plan to add tests for vehicle-cyclist interaction scenarios. To
improve pedestrian depiction in the test bench, we want to use more realistic pedes-
trian avatars. Additionally, we aim to integrate the human pose estimation algorithm
within the Pedestrian-in-the-Loop test bench to increase the accuracy of the pedestrian
avatar’s animation, particularly for otherwise untracked limbs.

Acknowledgement. This work was partly funded by the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) and partly financed by the European Union in the frame
of NextGenerationEU within the project “Solutions and Technologies for Automated Driving in
Town” [7] (grant FKZ 19A22006P).
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{maxime.penet,gaetan.le-gall}@valeo.com

https://www.valeo.com/en/comfort-driving-assistance-systems/

Abstract. This paper deals with the identification of the relationship
between vehicle acceleration and driver available actuators. The vehicle
is modeled based on how a driving task is performed. The model is
constructed using neural networks whose weights are identified using
data collected through non tailored driving sessions. To take into account
disturbances, the model follows a Laplace distribution. This leads to a
more robust estimate of the vehicle knowledge and the confidence we
have in it. The approach is illustrated on a prototype vehicle equipped
with a petrol engine, plus a device to actuate the pedals.

Keywords: Neural network · Laplace distribution · Pedal control

1 Introduction

The development of autonomous driving features considerably boomed over the
past years, leading to their deployment in commercially available vehicle. Yet,
many challenges sustain which rely on innovative solutions to be solved (see
[1]). When dealing with such complex problems, it is advantageous to work with
an agile mindset as frequent testing to rapidly apprehend the current level of
performance is considered a smart strategy.

This drives the need to design prototype vehicles to validate solutions in real
driving situations. As many vehicle software are developed by non-car manu-
facturers, it is a common approach to use commercially available vehicles that
are then upgraded as needed. These users usually assume that a car can be
controlled at high level such as via the acceleration (see e.g. [2]). Since this is
not a standard interface, low level controllers have to be designed. This paper
focuses on the longitudinal dynamic and considers the problem of tracking an
acceleration using throttle and brake pedals.

A proficient control strategy consists in using an inverse model obtained from
a mechanical description of the vehicle (see e.g. [5]). If this has proven to work
well (see e.g. [3] or [4]), it however requires too deep vehicle knowledge and too
many measurements in order to be efficiently deployed on a large scale. A generic
solution thus needs to consider a black box approach to the nature of the vehicle,
from an end user perspective.
c© The Author(s) 2024
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In this paper, we consider a data driven inverse model design taking a driver
viewpoint. Data from non-tailored driving sessions are used. To compensate
for the expected uncertainties and significant noise levels, the model output
is selected as a Laplace distribution. This brings robustness in the estimation
process, quite similarly as when a least absolute deviation criteria is used to fit
a model. Vehicle types variability is handled by using neural networks because
they offer strong descriptive power.

The paper is organized as follows. In Sect. 2, we describe how to model the
vehicle behavior taking a driver perspective. In Sect. 3, we present the chosen
model structure. In Sect. 4 we provide some pointers to solve the challenges
related to the specifics of our data collection process. In Sect. 5, results using
real vehicle data are presented. Finally, the paper is concluded in Sect. 6.

2 A Driver Perspective on the Longitudinal Dynamic

Our objective is to model an inverse map, from vehicle acceleration to actuators,
to design a low level controller used to track a desired acceleration. It is known
that using mechanical descriptions to model the dynamics of a vehicle (see e.g.
[5]) is costly. For instance, the innumerable parameters can only be obtained
through complex experiments, or the acquisition of data is hardly accessible or
data inaccurate. This is in contrast to the relative ease with which people can
drive. Consequently, we focus on a driver’s point of view.

There is a vast literature dealing with driver modeling (see e.g. [6]). They
describe how drivers adjust acceleration to cruise or to follow a leading vehicle,
and how brake and throttle pedals positions are modified accordingly to vehicle
gear or speed. This means that the inverse vehicle model is a mapping from
vehicle speed, engaged gear and target acceleration to brake and throttle pedals
positions. The advantage of this driver oriented approach is that only a few
signals are needed, namely vehicle odometry (e.g. acceleration and speed coming
from an IMU) and some CAN information (gear number and pedals positions).

3 Model Selection

As most drivers consider the vehicle as an unknown system which reacts to some
inputs, we consider a black box model. Instead of relying on tailored experiments,
we simply include any driving sessions data as long as they cover the expected
operating domain. We can thus rely on easy access to a significant amount of
data. The inconvenience though is that we shall also expect significant noise
levels. By interpreting external factors as having stochastic effects, the output is
chosen to be a probability distribution. This approach only works well if external
factors have a non deterministic effect during the data collection phase.

We assume that this distribution is both monomodal and symmetrical.
Indeed, disturbances can reasonably be approximated by such distributions (e.g.
average road is flat and whenever going uphill we can go downhill as well). To
reduce numerical complexity, it is worth working with distributions represented
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by a small numbers of parameters like the Gaussian distribution. However, in
our case, the latter is not fit for purpose as the external factors can induce signif-
icant noise which could bias our variance estimate. We thus need a heavier tail
distribution, which can be obtained through a Laplace distribution. The inverse
map hence generates the probability p

p(U |X,Y, θ) =
1

2b(X,Y, θ)
e− |U−μ(X,Y,θ)|

b(X,Y,θ) (1)

where θ are parameters to be defined, X is the input vector (speed and gear), Y
is the target acceleration and U is a signal which can be mapped unambiguously
to a brake and throttle position. The Laplace distribution is fully described by
μ and b. Basically, μ embeds the vehicle dynamic that is reflected through data
while b monitors how much it can be trusted. They can take various shapes
depending on the actual vehicle and data set. This is why a generic function
structure is needed. We thus select neural networks.

Assuming that the actuator response time is fast and/or the requests are
varying slowly, actuators internal dynamic can be neglected. This means that
an internal memory is not required. We select a direct feedforward architecture
(see e.g. [7]). As its numerical evaluation is simple, it has the additional benefits
of enabling real time operation on a wide range of ECU. To determine a pedal
position, we build the probability density function (1). We then use it to select
an appropriate value according to a meaningful criteria such as the mode, or any
other criteria including risk management (see e.g. [8]).

4 Estimating the Distribution Parameter

Firstly, we need to consider the data causality issue. Indeed, when estimating net-
work weights, we need to apprehend the relationship between pedal displacement
and the corresponding observed acceleration. This is challenging as actuators can
exhibit very dissimilar responses. Therefore, we model lag basically through con-
stant delays. Signal distortion is taken into account through a DDTW algorithm
(see e.g. [9]). The median index mapping variation is used as an estimate of
our delays. The delay estimation strategy is based on the fact that the mapping
from pedal to acceleration should define a monotone operator, i.e. if we push
harder on a pedal we shall see more effect on the acceleration. Delay variations
are assumed to be small and are included as the source of additional noises.
The variations around the value of the delay are monitored to ensure that our
assumption is viable.

Once delays are estimated, we can synchronize speed, gear and acceleration
with pedal positions. To find the set of parameters which best explains the
observed data, we use a log likelihood criteria. To ensure well-posedness of the
problem, a Lasso regularization is chosen. Since pedal positions are assumed
to follow a Laplace distribution (1), θ is given as the solution of the following
minimization problem

θ = argminwΣi

(
log(2b(Xi, Yi, w)) +

|Ui − μ(Xi, Yi, w)|
b(Xi, Yi, w)

)
+ λ|w|. (2)
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where λ is a regularization parameter which is selected to achieve the best com-
promise between model smoothness and data explanation. Using a Laplace distri-
bution means that the model is trained via a (modified) least absolute deviation
problem. This implies a reduced sensitivity to disturbances and external factors.

To solve (2) we use an ADAM solver (see e.g. [10]) which is based on stochas-
tic gradients (see e.g. [11]). It estimates true gradient using a subset of randomly
drawn samples. It is commonly assumed that all samples are equally important
using uniform sampling. In our case, this is an issue as data are collected in
inverse proportion to their safety relevance. Indeed, we are more likely to col-
lect a soft braking than a heavy braking data point. There is thus a risk that
those safety cases will not be properly captured, implying that the model will
be biased. To circumvent this issue, we propose to use stratified sampling (see
[12]). Since we consider a low dimensional input vector, we suggest to stratify
through a full gridding of the input space. We also use a drop out strategy (see
[13]) to avoid learning specifics related to external disturbances.

5 Results

The approach is illustrated on data collected from a petrol engine vehicle. First,
we estimated the delays to correct the causality issue. Its distribution over the
record as well as the synchronized normalized signals are depicted in Fig. 1.

Fig. 1. Instantaneous delay estimation using DDTW

Then, by using (2), we estimated the networks weights. The mode results
(i.e. μ in (1)) can be seen in Fig. 2. The brake and throttle positions are coded
with negative and positive percentage values respectively.

The mapping has been used in a low level controller, which includes a feed-
back, to control the vehicle on a rural road, see Fig. 3. The tracking accuracy is
satisfying with the inverse model (feedforward) being the main contributor. The
feedback is mainly active to compensate for external factors such as pitch.
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Fig. 2. Mode petrol engine, black cross: synchronized data set.
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Fig. 3. Inverse map validation, vehicle control on a rural road.

6 Conclusions

This paper tackles the problem of building and deploying an inverse vehicle
model from acceleration to actuator by non expert through a driver oriented
approach. The vehicle is described by a black box model based on a small set of
easily available signals. Data are collected in a non-tailored way, which implies
cheap access to a significant amount of data. To compensate for expected sig-
nificant noise level, the model output is probabilistic. The density function was
selected as a Laplace distribution as it leads to more robust estimates. Assuming
that users cannot provide a priori knowledge, model structure was chosen to be
a neural network. It provides a huge descriptive power, though at the cost of
challenges when estimating its weights where algorithms are usually based on
uniform sampling of data. To remove potential bias related to the density of
corner cases, we suggest to use a stratified sampling. This model was estimated
from a petrol engine vehicle, showing its ease of deployment and its performances.
Future works will consist in introducing a reinforcement learning framework in
order to keep improving this map online. The probabilistic map being handy as
it provides a natural way to explore alternatives.
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Abstract. The paper presents and compares an optimal control alloca-
tion (CA) and model predictive control (MPC)-based torque vectoring
(TV) for improved energy efficiency of electric vehicle with four indepen-
dent electric motors. Offline and online (instantaneous) optimisation-
based CA are designed for front-rear torque distribution. For overall
wheel torque allocation, a production-ready MPC-based TV is extended
with energy consumption minimisation terms. CA and MPC rely on
power loss curves of differently sized front and rear powertrains that are
fitted with polynomial regression models. Performance of both strategies
is evaluated in high-fidelity nonlinear simulation environment in terms of
energy efficiency improvement on standard driving cycles and impact on
the vehicle dynamics in lateral manoeuvres. Results demonstrate consis-
tent reduction of the energy consumption and preservation of the vehicle
handling behaviour.

Keywords: Energy Efficiency · Control Allocation · Torque
Vectoring · Vehicle Dynamics · Model Predictive Control

1 Introduction

Battery electric vehicles with four independent motors offer improved vehicle
dynamics performance and energy efficiency due to their all-wheel drive and
torque vectoring capabilities, achieved through independent wheel torque con-
trol. In the literature, different approaches have been applied to solve this effi-
cient torque allocation problem, typically with the assumption of equal power-
trains. These approaches range from rule-based/analytical solutions [1], offline
and online instantaneous optimisation [2,3], and various model predictive con-
trol concepts for powertrains with [4] and without disconnect clutch actuation
[5,6]. For equal motor assumption, it is demonstrated in [7] that optimal longi-
tudinal bias is either single axle for low torque demand or 50:50 for high torque
demand. Similar conclusions have been drawn for lateral motion, where outer-
track motors are first considered. In this paper, a 4MEV with differently sized
front and rear powertrains is considered, and the optimal control allocation (CA)
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and model predictive control (MPC) based torque vectoring (TV) are designed
with an emphasis on improving the overall vehicle energy efficiency and driving
range, while accounting for induced effect on vehicle dynamics [8].

2 Energy-Efficient Torque Vectoring Design

2.1 Power Losses Modeling

The powertrain power losses models are developed based on experimental data
obtained from bench tests of inverters, surface-mounted permanent-magnet elec-
tric motors, and gearboxes originating from an electric hypercar. The power loss
maps are a function of respective torque, speed, and battery voltage. They are
fitted with polynomial regression models for use in the online optimisation prob-
lems to capture the complex and nonlinear relationships between the variables.

Figure 1 shows the power loss characteristics of the front and rear powertrains
as a function of the electric motor torque request for multiple motor speed oper-
ating points and constant battery voltage (normalized axes). Each rear axle
powertrain can be used in a free-rolling configuration with inverter switches
opened, i.e. in open circuit with mechanical losses predominant (represented by
∗ in Fig. 1b).

(a) Front axle powertrain power losses (b) Rear axle powertrain power losses

Fig. 1. Individual power losses characteristics for specific EMs angular velocities

Tyres introduce controllable energy dissipation attributable to longitudinal
slip, which is a function of wheel torque. Herein, the tyre losses are excluded
from offline optimisation to reduce computational complexity. We observed in
simulation that tyre power losses never exceed 10% of a Front-Wheel Drive
(FWD) vehicle’s global power losses on a demanding driving cycle (EPA-US06).



806 M. Prost et al.

2.2 Optimal Torque Control Allocation Problem

The CA strategy determines the longitudinal torque split between front and
rear axles. The nonlinear multi-parametric optimisation problem, given by Eq. 1,
minimises the overall powertrain power losses subject to driver-demanded force
request and velocity-dependent actuator torque constraints. The optimisation
yields a front-to-total bias for the overall range of achievable inputs.

J “ min
T

2∑

i“1

Pi(Ti, Vbat, ωi) (1)

where i “ [Front,Rear], Ti is the vector of front and rear motor torques [Nm],
Vbat is the battery voltage [V] and Ωi is the front and rear motor speed [rad/s].

The objective function value of optimal solution is compared to the one of a
FWD strategy with rear powertrains disabled, i.e., free rolling (cf. Fig. 1b), and
more efficient torque allocation is selected. Such switching between strategies
can yield excessive bias transitions and, thus, instantaneous torque steps on both
axles which compromise drivability. A rate limit is therefore applied to the bias
after the optimisation to avoid selection of possible local minima as illustrated in
Fig. 2 where points A, B, C, and D correspond respectively to previous sample
time (t´ 1) solution, locally optimal solution with the rate constraint (red line)
included in the optimisation, selected suboptimal solution, and globally optimal
solution without rate constraints included in the optimisation. Rate limit can
be scheduled with yaw rate to avoid unsafe behaviour and/or driver demand to
protect drivetrain components from torque steps, while maximum value should
be set for acceptable drivability (low jerk).

Fig. 2. Vehicle trajectories (Power losses
against force bias and force request at
constant vx and Vbat

Fig. 3. Optimal front-to-total force bias
for constant Vbat, positive Freq and low
tyre slip

In the offline case using a fixed lateral distribution of 50:50, the results are
stored in 3D map as shown in Fig. 3 to facilitate vehicle implementation and
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reduce computational effort. The optimisation tool is implemented in Matlab
and uses the fmincon SQP solver.

The same optimisation problem is solved online using the fmincon SQP solver
and implemented in real-time on a production ECU. The benefit of this approach
is the adaptation to varying motor torque limits that can be changed by the
driver (directly or through driving modes) or inverter due to, e.g., temperature
derating. The offline optimisation in that case requires pre-computed maps.

2.3 Model Predictive Control Torque Vectoring Architecture

For the overall torque distribution control, a production-ready Linear Time-
Varying (LTV) MPC TV [9] is expanded with energy efficiency terms. It is based
on a 7-degree-of-freedom handling model as seen in Fig. 4, extended with energy
loss state fed by the aforementioned, polynomial regression power loss functions
for each powertrain where tyre slip losses can be considered independently. The
cost function S that includes driver demand tracking terms (yaw rate and force
request) and control input penalization terms is extended with energy state
minimisation term to account for energy efficiency as shown in Eq. 2.

Fig. 4. Simplified 7deg of freedom vehicle handling model including power losses cal-
culation where i “ Front, Rear and j “ Left, Right

A high cost set on yaw rate tracking Wψ̇ gives authority to the
safety/performance character of the problem over the efficiency cost. The effi-
ciency term weight WE is scheduled based on yaw rate and surface adhesion to
maintain safety during high slip or high lateral dynamic manoeuvres.

S(X(k), Tij(k),Xdev(k)) “ Wψ̇.(ψ̇ref (k)´ ψ̇(k))2

` WFx.(Fx,ref ´ (
∑

ij

Tij(k).
1

Rw,ij
))2

` WE .(Eloss(k))2

` WUrate.(Tij(k ´ 1)´ Tij(k))2

(2)

where X is the state vector, Xdev is a vector of controller inputs, ψ̇ is the yaw
rate [rad/s], Fx,ref is the longitudinal force request [N], Rw,ij are the wheel radii
[m], Eloss is the energy losses estimation [J], k is the current discretization step,
and W are the weights applied to each cost term of the objective function.
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The MPC TV problem is solved using a quadratic problem solver with linear
constrains and runs on a production ECU at a sampling rate of 10 ms.

3 Longitudinal Motion Simulations

A longitudinal vehicle model consisting of a closed-loop driver model, longitu-
dinal vehicle dynamics with suspension effects included, powertrain model with
compliance and inertia effects, and Pacejka tyre model is used to asses the vehicle
efficiency on standard driving cycles. Table 1 compares the results of the differ-
ent torque allocation strategies relative to a fixed 50:50 All-Wheel Drive (AWD)
strategy in terms of energy losses ΔEloss and total energy consumed ΔEcons.
Results from online CA and energy efficient MPC TV are equal.

Table 1. Efficiency variation compared to fixed AWD for different drive cycles

WLTP (class 3) EPA US06 UC LA92
Fixed FWD (100:0) ΔEloss “ ´31.45%

ΔEcons “ ´13.05%
ΔEloss “ ´16.95%
ΔEcons “ ´4.85%

ΔEloss “ ´21.69%
ΔEcons “ ´10.01%

Fixed RWD (0:100) ΔEloss “ `8.10%
ΔEcons “ `3.60%

ΔEloss “ `6.06%
ΔEcons “ `2.36%

ΔEloss “ `7.42%
ΔEcons “ `4.34%

Offline CA ΔEloss “ ´31.46%
ΔEcons “ ´13.14%

ΔEloss “ ´22.40%
ΔEcons “ ´7.39%

ΔEloss “ ´23.40%
ΔEcons “ ´11.34%

Online CA ΔEloss “ ´32.05%
ΔEcons “ ´13.40%

ΔEloss “ ´22.63%
ΔEcons “ ´7.49%

ΔEloss “ ´23.61%
ΔEcons “ ´11.42%

It is evident that the FWD configuration presents efficiency results close to
those of the offline and online CA and MPC efficient TV due to the unusually
high capacity of the front powertrain for the low force demand of most driving
cycles. The online CA exhibits minor improvement compared to the offline CA
as it circumvents the inaccuracy of fixed step breakpoints in the offline map.

4 Lateral Motion Simulations

The weights associated to the cost function of the MPC TV are tuned to conserve
the safety, performance and driving characteristic of the baseline MPC TV while
improving efficiency. Steady-state skidpad tests in Fig. 5 demonstrate that both
efficient CA and TV provide efficiency improvement at low values of lateral
acceleration, with the efficient TV surpassing the CA for ay ∈ [2.5 : 5.5] m/s2 due
to a yaw moment request allowing for a favorable left-right torque distribution.

ISO Ramp steer test presented in Fig. 7 showcase the weight associated to
energy efficiency at low values of lateral acceleration ay and the convergence of
the energy efficient TV yielded torque commands towards the baseline TV ones.
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While the energy efficient MPC TV reduces the vehicle responsiveness (under-
steer gradient increased by approx. 9%), the maximum value of lateral acceler-
ation is preserved. Note that the efficient TV torque allocation corresponds to
the successive enabling of the outside and inside rear wheels as shown in Fig. 6.

Fig. 5. Vehicle trajectories (PSteady-
state skidpad test (R “ 42m/μ “ 1)
AWD relative power losses

Fig. 6. Wheel torque during steady-state
(vx “ 100 km/h) ramp steer manoeuvre

(a) Focus max ay of different architectures (b) Power losses of different architectures

Fig. 7. Steady-state (vx “ 100 km/h) ramp steer with tyre slip induced Fxreq increase

The control allocation strategies are implemented on a production specifi-
cation vehicle equipped with 4 electric powertrains, i.e. one for each wheel, to
validate integration and real-conditions behaviour during dynamic manoeuvres.
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Conclusion

This paper presents strategies to enhance vehicle efficiency and dynamic perfor-
mance, including an optimal offline torque allocation strategy, an online torque
allocation strategy, and a model predictive control-based energy-efficient torque
vectoring system. Through simulation testing on an EV, these solutions proved
effective for vehicles with multiple electric motors of varying sizes. The control
allocation strategy efficiently distributes force requests between front and rear
axles, enhancing overall vehicle efficiency by up to 32.05% compared to a baseline
50:50 AWD architecture and up to 5.68% compared to a fixed FWD architecture
on typical driving cycles. However, the performance gains were tempered by the
unusually high capacity of the demonstrator vehicle powertrains. Furthermore,
the strategy preserved the dynamic behaviour of the baseline vehicle, ensuring
stability, maneuverability, and safety across various driving conditions, includ-
ing cornering manoeuvres at the handling limit. Vehicles equipped with efficient
torque vectoring maintained lateral performance and improved overall efficiency
by up to 17% compared to fixed lateral distribution configurations at specific
vehicle operating points.
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Abstract. In the paper, a lateral control strategy is presented using
Physics-Informed Neural Network (PINN) for automated vehicles. The
main idea is that the physics information is incorporated into the training
process, which leads to an improvement in the performance level of the
control algorithm. Moreover, in the highly nonlinear range of the lateral
dynamics, which is not properly covered by the training dataset, the
stability of the vehicle is guaranteed. The results are compared to a
conventional neural network trained to control the vehicle.

Keywords: Automated vehicles · Neural networks · Lateral control

1 Introduction

In general, the modeling process of an arbitrarily chosen system often relies on
large datasets, which must cover the whole operational range of the system. This
can be a challenging task, and the presence of nonlinearities and uncertainties
makes it even harder. However, the modeling phase is essential since the reach-
able performance level highly depends on the accuracy of the model in several
applications such as control and observer design.

In the field of control design, the applied methods can be sorted into two
main groups, based on how the collected dataset is utilized. The first group
contains the classical methods, in which the dataset is used for constructing
a nominal mathematical model. Whilst the second group consists of methods,
which directly use the data points during the control design [1]. In practice, the
machine learning-based solutions cannot be used for control purposes in safety-
critical systems. However, combined control structures give an option for the
control-oriented use of machine learning-based methods [5].
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Although the combined solutions can guarantee the robustness of the con-
trol loop, the neural network-based layer must have a high accuracy, which
can achieved using non-conventional training methods such as Physics-Informed
Neural Network (PINN). The main idea behind this approach is to consider
the physical information of the system during the training process [2,7]. The
goal of the paper is to present a high-performance level neural network for com-
bined control structures. In the paper, a comparison study can be found between
the conventional and the modified training process of the network. The whole
method is validated through an automated vehicles-motivated problem: trajec-
tory tracking.

The paper is structured as: In Sect. 2 the data generation process, and the
nonlinear system are presented. In Sect. 3 the physics-informed neural network
is detailed in terms of control purposes. The results of the simulations can be
found in Sect. 4. Finally, the paper is summarized in Sect. 5.

2 System Description and Data Generation

In this section, the mathematical formulation of the vehicle dynamics and the
data acquisition of the training process is presented. The main equations of the
vehicle dynamics rely on the lateral forces, which can be computed from the slip
angles (αi), where i = {f, r}, f denotes the front, while r is the rear axis [8].
The axle positions measured from the center of gravity are denoted by li. Using
these values and the tire characteristics (Magic formula), the lateral forces of
both the front and the rear tires can be computed using [6]:

Fy,i = mglf,rL
−1μisin(c · tan−1(b · αi)). (1)

The shape of the nonlinear tire characteristics is determined by the parameter
c, b. The distance between the rear and front axis is: L = lf +lr. The vehicle mass
is m, while the gravitational acceleration is g. Based on the tire characteristics
and the slip angles, the lateral forces can be computed for the axles. The vehicle
motion is described by two main equations:

d2ψ

dt2
=

1
Iz

(lfFy,f − lrFy,r),
dvy

dt
=

1
m

(Fy,f + Fy,r), (2)

where ψ̇ is the angular velocity (yaw-rate), and the lateral velocity is given
by vy. The goal is to calculate the derivatives during the training process of
these signals, which can be done using the continuous dynamical equations:
ẋ = F(x0, u, pi), where F is the dynamical system, x0 gives the initial conditions,
u is the control input and the varying parameters are given by pi. In practice, the
continuous systems are discretized to fulfill the requirements of the implemen-
tation [3], for the time-varying system: x(k + 1) = A(k)x(k) + B(k)u(k), y(k) =
CT (k)x(k). Using the discrete state space model of the system, the output can
be predicted based on the input signals sequence (U = [u(1), u(2)...u(Np)]). The
tracking error can be computed from the predicted output and the reference
value (yref ∈ R

n×Np) as ε(k) = yref (k) − y(k). Then, using the predicted error
signal, the following quadratic optimization can be formed [3]:
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min
U

Np∑

i=1

(
γ(yref (i) − y(i))2 + λu2(i)

)
, s.t. φU < b and lb ≤ u ≤ lu, (3)

where γ ∈ R and λ ∈ R are weights, which make the balance between the
tracking accuracy and the energy used for the control purposes. The upper and
lower bounds for the control input signal are denoted by lb, lu. Moreover, a
bound is defined for the chosen, predicted states of the system (b), and φ can be
constructed from the system matrices.

In the next step, the data generation process is presented. Considering that
the tire characteristics significantly depend on the operational point of the vehi-
cle, the nonlinear system is linearized at each operational point. Furthermore, it
is assumed, that the reference longitudinal velocity is known over the prediction
horizon. The data generation process is carried out by driving the vehicle along
the reference trajectory, which is defined as:

yref (t) = β(p1x(t)3 + p2x(t)2 + p3x(t) + p0)sin(ωt), (4)

where t provides the simulation time. The parameters of the reference lat-
eral position are varied randomly to generate trajectories with different radius.
The parameters of the reference positions are selected to: p1 ∈ [−1, 1], p2 ∈
[−2, 2], p3 ∈ [−0.5, 0.5], ω ∈ [0, 0.5], β = 0.1. The sampling time is set to
Ts = 0.02 s, and the longitudinal velocity is set between 10 and 20 m/s.

Firstly, the initial states and the parameters of the reference trajectory are
randomized. Secondly, the vehicle is driven along the route solving the optimiza-
tion problem (3), which calculates the control input signal sequence, and several
signals are saved during the simulation. The measured states of the vehicle are:
x = [y0, vy, ψ̇, ψ, ]T , and the control input is the steering angle (δ). Moreover,
the output of the system is the lateral position. During the data generation the
weights are set to γ = 1, λ = 5 to ensure smooth trajectory tracking. Moreover,
the yaw-rate (ψ̇) is limited to 0.7 rad/s ≥| ψ̇ | and the limits for the control input
is set to 0.2 rad ≥| u | ∀u ∈ U to ensure stable motion requirements. Finally, the
prediction horizon is selected to Np = 45.

3 Physics Informed Neural Network in Control Structure

Fig. 1. Structure of the training process

In Fig. 1, the whole training structure
is presented of the neural network.
The input vector consists of the ini-
tial states of the vehicle (x0). Since
the neural network is implemented for
trajectory tracking, the input vector
is augmented with a sequence of the
reference signal (yref,1...yref,k), where
k denotes the length of the reference
signal. Moreover, taking into account
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the varying parameters of the system (p1...pn), these values are also incorporated
into the input vector. In practice, the horizon length for the reference signal and
for the changing parameters should be chosen to the same. Finally, the uMPC

gives the reference control signal value, which is computed from (3). In Figure
L gives the computation method of the loss function within one iteration step.

3.1 Computation of the Loss Function

The loss function, which is the base of the optimization process, is built up
from two main parts: the data-based part and the physics-based part. Firstly,
the data-based loss function is detailed. In every iteration step, the predicted
output signal of the neural network is denoted as û and computed as:

û = F̂ (x0, p1,2...n, yref,1, yref,2, yref,m), (5)

where F̂ is the approximated function of the system. Using the predicted value
of the network, for the given set of training datasets the error between the target
and the predicted data can be computed as εdata = û − uMPC . Secondly, the
physics-based loss function is calculated. The derivative(s) of the specific states
can be computed using the nonlinear function of the system (2). Using the ini-
tial states, the varying parameters, and the predicted neural network output:
˙̂x = F(x0, û, pi). Since the real output of the neural network is known (uMPC),
the real derivatives can be also computed by the nonlinear description of the sys-
tems. The calculated error between the derivatives is crucial during the training
process. This part of the algorithm takes into account the nonlinear effects of
the dynamics for the error between the real and the results of the neural net-
work. This makes the estimation more accurate within the ranges, where a small
deviation between the real and the estimated value results in a significant error
in the changes of the system states. This effect is observable, especially within
the ranges influenced by highly nonlinear effects. This makes the performance
level of the neural network higher within these ranges, which makes the neural
network more reliable. Both the data-based loss function (Lossdata), and the
physics-based part (Lossphy) is computed using L2 loss:

LNN = Q1
1
N

N∑

i

||(εdata,i)||2 +
1
M

M∑

j

Qj
1
N

N∑

i

|| ˙̂xi,j − ẋi,j ||2, (6)

where M gives the number of the computed derivatives and Q1, Qi aims to
scale the loss values to each other. These values are computed for each mini-
batch of the neural network and also computed for every epoch. The training
process of the neural network can be made using an optimizer such as the ADAM
optimization algorithm [4]. In the following, the effectiveness of the proposed
training process is demonstrated through a lateral trajectory tracking problem
of automated vehicles.



816 T. Hegedűs et al.

3.2 Training Dataset and the Neural Network

The whole training dataset consists of 60000 data points, which are saved during
the 4000 randomly generated test scenarios. The output of the neural network is
computed through the input vector (5). In the vehicle-oriented implementation,
the input vector is T = [vy, ψ, ψ̇, v1,p, ε1...n]. εi gives the predicted error between
the current lateral position and the reference trajectory. However, for training
purposes, not the whole reference trajectory is used, but it is sampled along the
prediction horizon as i = {1, 12, 23, 34, 45}. Moreover, the first and the predicted
last longitudinal velocity is used. Since the goal is the trajectory tracking, the
output of the network is the steering angle. During the training process, based
on the nonlinear differential equations, the predicted derivatives of the lateral
displacement and the yaw-rate are considered (see: (2)) in the data-based part
of the loss function. Moreover, the weights in the loss function are Qdata =
10, Qψ̈ = 5, Qv̇y

= 1.
The size of the input vector of the neural network is 10, while the output is 1.

The network has 3 hidden layers and the number of neurons is 25, 40, 20. More-
over, the activation functions are Hyperbolic tangent, ReLU, and Hyperbolic
tangent. The training process of the network is carried out using the Adaptive
Moment Estimation (ADAM) algorithm [4]. During the optimization the Learn-
ing rate is selected to 0.01, the size of the mini batch is 256, while the maximum
epoch number is 200.

4 Simulation Results

In this section, the conventionally trained and the PINN are compared to each
other in terms of tracking performance. The test scenarios are implemented in
CarMaker vehicle dynamics simulation software, in which a Tesla Model S vehicle
is used. For training purposes, a small amount of data is used to highlight the
advantage of the incorporation of physical information. Moreover, dynamical
ranges are eliminated from the training dataset in terms of yaw-rate: (0.35 ≤|
ψ̇ |≤ 0.45) ∨ (0.55 ≤| ψ̇ |≤ 0.65). The results are summarized in Table 1.

Table 1. Test results using different neural networks

Size of data n = 2000 n = 4000 n = 8000 n = 12000 n = 16000

PINN ✗ ✓ ✓ ✓ ✓

Conv. NN ✗ ✗ ✗ ✓ ✓

The test is said to be successful if the vehicle fulfills the stable motion require-
ments during the scenario. In Table 1, successful tests are marked with a check-
mark (✓), while unsuccessful tests are marked with a crossmark (✗). Considering
the results shown in the table, it can be observed, that the PINN-based solution
was successful in reference trajectory tracking with the use of 4000 data points,
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whereas the conventionally trained network required at least 12000 data points.
Furthermore, the lateral positions are depicted in Fig. 2a, for three cases: PINN,
with 4000 and 8000 training data points, and the conventionally trained with
12000 points. Although the conventional trained model used more data points,
the physics-based extension in the loss function increased tracking accuracy as
shown in Fig. 2a. In Fig. 2b the yaw-rates during the trajectory tracking can
be examined. The regions, which are not covered by the training dataset, are
highlighted in red.
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(a) Lateral positions during test scenarios (b) Yaw-rates of the vehicle

Fig. 2. The velocity and the trajectory of the vehicle

5 Conclusion

The paper presented a novel PINN-based lateral control strategy for autonomous
vehicles. The physics-based information of the vehicle has been utilized during
the training process of the vehicle. As the simulation examples have shown the
this information can significantly improve the performance level of the controller
and guarantee the stable motion even under extreme circumstances.
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Abstract. Many automakers are announcing electric vehicle (EV) mod-
els in response to environmental regulations. However, charging times
still exceed those of traditional internal combustion engine vehicles.
Moreover, the supply of electric vehicle charging stations has not kept
pace with the rapid expansion of electric vehicle adoption. This incon-
gruity raises ongoing concerns for drivers regarding Distance To Empty
(DTE) or remaining range. However, accurate DTE prediction faces chal-
lenges due to various factors. Therefore, predicting effective remaining
range is attracting researchers’ attention. However, most algorithms are
based on long-term historical driving data, which presents limitations in a
shared vehicle scenario with frequently changing drivers. To address these
challenges, this paper introduces a novel algorithm employing machine
learning to classify driving styles and predict remaining range. This app-
roach can integrate expected future road information and current driving
conditions, offering a solution to the uncertainties associated with tradi-
tional methods.

Keywords: Electric Vehicles (EVs) · Machine Learning · Drive Style ·
Remaining Range Prediction · Distance To Empty (DTE)

1 Introduction

1.1 Background

The importance of sustainable energy solutions in the automotive industry has
led global automakers to promote electric vehicles (EVs) to meet environmental
regulations. Despite technological advancements, challenges persist, hindering a
smooth transition to EVs. While fast charging is available, EV charging times
still exceed those of conventional internal combustion engine vehicles. Addition-
ally, the growth of EV charging infrastructure has not kept pace with EV adop-
tion, leaving drivers uncertain about charging availability when needed. More-
over, drivers experience ongoing fatigue from monitoring the Distance To Empty
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(DTE) and the distance to charging stations or destinations. DTE is determined
by multiplying the vehicle’s total energy by its power efficiency, which decreases
as the vehicle’s battery charge level (State of Charge (SoC)) nears 0%. Conse-
quently, drivers may experience heightened anxiety once the SoC drops below
a certain threshold. Accurately predicting DTE is thus a critical challenge for
EVs. However, designing precise DTE prediction logic is challenging due to its
complexity, influenced by factors such as driving style, external conditions, air
conditioning usage, battery health, and driving mode. Furthermore, predicting
remaining range becomes even more challenging due to unknown future driving
conditions. (see Fig. 1).

Fig. 1. Sharp rise in anxiety once the SoC has crossed a certain point and Various
factors affecting Distance To Empty (DTE).

In addition, current remaining range prediction methods use calibration val-
ues because it is difficult to define the effects of various factors in a fixed formula.
To determine energy efficiency for future routes, official efficiency values for each
road type are calibrated and used as constants. Similarly, driving mode weights
are fixed through calibration. Setting these values requires extensive data col-
lection to match actual vehicle specs and standard values for general drivers,
a process that demands significant resources from automakers. However, these
calibration values are averages and do not account for individual driving styles
or conditions, limiting the accuracy of the actual Distance to Empty (DTE).

Recent advances in artificial intelligence are impacting the automotive
industry, with significant research being conducted using machine learning [2].
Remaining range prediction in electric vehicles is a critical task, and various
methods have been proposed. Some studies estimate energy consumption based
on past driving records [1,6], which is accurate for familiar routes but less so for
new ones. Modeling approaches also predict energy consumption using vehicle
dynamics equations [3]. Recently, machine learning methods have emerged [4,5],
though they heavily depend on data.

This paper introduces an improved DTE algorithm that works with minimal
data, leveraging past, present, and future vehicle data and machine learning.
The algorithm can classifies the driver’s style from past data and predicts DTE
using future driving environment information, like road gradient, and the current
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vehicle state. This approach addresses the uncertainties of existing DTE methods
by learning and adapting to the current driver’s style in real-time, enhancing
DTE accuracy with less data.

2 Proposed Algorithm

2.1 Proposed Algorithm Structure

The integrated algorithm consists of a driving style assessment network and a
remaining range prediction network (see Fig. 2).

Fig. 2. Schematic diagram of the proposed algorithm.

The driving style assessment network leverages machine learning techniques
to analyze driving data and determine driving styles. Simultaneously, the remain-
ing range prediction network considers various factors and incorporates the
assessed driving style to enhance prediction accuracy. In practical driving scenar-
ios, diverse drivers operate vehicles in various situations, making it challenging
to determine specific driving styles. This study aims to assess driving style based
solely on data obtainable through the vehicle’s Controller Area Network (CAN)
communication.

From this, we propose a remaining range prediction algorithm that incor-
porates the evaluated driving style. The integration of these networks aims to
provide a comprehensive solution for predicting remaining range by considering
both driving style and relevant factors in real-time EV driving scenarios.

2.2 Data Acquisition

The creation of a high-quality dataset is crucial for enhancing machine learning
performance. In this study, real-world driving data from a HYUNDAI electric
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vehicle was collected to build the dataset. Twelve factors were obtained through
CAN (Controller Area Network) communication, including vehicle speed, road
gradient, accelerator position sensor (APS), brake position sensor (BPS), steer-
ing wheel angle, steering wheel angular velocity, outside temperature, odometer,
total power consumption, air conditioning power consumption, and Distance to
Empty (DTE) value. Diverse scales among selected factors can adversely affect
the learning process. To mitigate this, normalization was applied, ensuring that
data characteristics of each factor were represented on a similar scale. Addition-
ally, synchronization for the timestamp was performed. The processed datasets
were then divided into a randomly selected test set and a training set for network
training and performance evaluation. The test set-to-training set ratio was set at
0.1:0.9 for this study. The total driving data acquired amounted to approximately
5,000 s and 40 km, comprising short driving sessions from different days using the
company’s test car. During testing, half of the driving sessions were conducted
under normal conditions, while the remaining sessions involved diverse driving
behaviors, including rapid acceleration/deceleration maneuvers and adjustments
to the air conditioner. From the collected data, five features were utilized to
assess driver behavior, including APS, BPS, steering wheel manipulation, and
longitudinal vehicle velocity. These feature data were segmented into 500-s inter-
vals and categorized into three label classes (Bad, Normal, Good) to classify
driver styles (see Fig. 3).

Fig. 3. Labeled collection data.
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The remaining features were input into the second network to predict the
vehicle’s power efficiency, considering the current vehicle conditions. These fea-
ture data were divided into 100-s intervals, and clustering was employed to deter-
mine the class label based on the actual travel distance divided by the total
energy consumption of the corresponding driving data.

2.3 Network Layer

The order and outline of the layers used to optimize the performance of the
proposed algorithm are as follows. (see Table 1).

Table 1. Layer Descriptions

Order Layer Description

1 Sequence Input Layer Entry point for sequence data, accommodating
specified input dimensionality

2 Layer Normalization Layer Stabilizes learning by normalizing inputs across
features, improving training efficiency

3 Bidirectional LSTM Layer Processes sequences bidirectionally to capture
comprehensive dependencies and contextual info

4 Dropout Layer Applies 50% dropout rate to prevent overfitting
and enhance generalization

5 Fully Connected Layer Contains 50 neurons to learn complex patterns
from sequence data

6 ReLU Activation Layer Introduces non-linearity with ReLU activation
for learning complex data relationships

7 Fully Connected Layer Maps learnt features to output classes for final
classification, with neurons matching output
classes

8 Softmax Layer Converts outputs to probability distributions for
multi-class classification tasks

3 Conclusion

The power efficiency classification results of the network are depicted in Fig. 4.
The distance calculated by multiplying the network’s final output, the pre-

dicted power efficiency, by the vehicle’s total energy, proved to be more effective
in determining the practical remaining range value compared to the existing
method. This success can be attributed to the algorithm’s effective handling of
shorter distances, unlike existing Distance To Empty (DTE) logic, which relies
on power efficiency calculated from previous driving data. This paper presents
a practical approach to predict the remaining range, alleviating anxiety for EV
drivers. The proposed method demonstrates effectiveness even with limited data
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Fig. 4. Results of the test data set.

and holds promise for real-world electric vehicles with further development.
Moreover, it is expected to be particularly effective in scenarios where drivers
change frequently, such as shared vehicles or corporate fleets. Future studies will
consider additional factors and the impact of regenerative braking on electric
vehicles.
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Abstract. The development and testing of Advanced Driver Assistance
Systems (ADAS) is one of the most active fields in the automotive indus-
try towards Automated Driving (AD). This work presents the deploy-
ment and testing of an Adaptive Cruise Control (ACC) based on Model
Predictive Control (MPC). The goal is to design and validate through the
experimental campaign a computationally efficient longitudinal dynam-
ics controller and assess its fuel economy potential. The development of
the control structure as well as the definition of the testing method for
energy efficiency assessment are central aspects of this work. The perfor-
mance of the approach is tested on a light-duty commercial vehicle on
a state-of-the-art 4-axis powertrain testbed. The findings demonstrate
that the speed profile can be optimized to achieve a fuel reduction of up
to 13% while maintaining mission timing and comfort.

Keywords: Advanced Driver Assistance Systems · Adaptive Cruise
Control · Model Predictive Control · 4-axis powertrain testbed

1 Introduction to ADAS for Fuel Economy

In the past decades, vehicles have been increasingly equipped with connectivity
and automation technologies with the introduction of communication infrastruc-
tures and onboard sensors [1]. Compared to manual driving, vehicles equipped
with Advanced Driver Assistance Systems (ADAS) can be controlled more pre-
cisely, improving road safety and traffic flow stability [2]. In recent years, there
has been a marked interest in using ADAS beyond safety and comfort to also
address vehicle efficiency improvement [3].
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Adaptive cruise control (ACC) is one of the most popular ADAS available
on a wide variety of mass-production vehicles. ACC has proven to be well-suited
to enhance fuel economy because of the possibilities opened by prescribing a
target lead vehicle speed [4]. A wide variety of strategies have been proposed
to minimize fuel consumption, especially when the following policy is solved
under a predictive control framework [5–7]. Recent literature on the topic only
partially focuses on systematic assessment of energy savings from ADAS with
experimental testing [8], while great attention is paid to the impact of low-level
control policies on stability [9].

This work presents a novel experimental framework to assess fuel economy
improvement introduced by a predictive controller deployed in real-time and
tested in a powertrain testbed. The proposed ACC sets the optimal target accel-
eration to guarantee passenger comfort and reduce fuel consumption. Special
attention is paid to a low-level controller to guarantee a good enough tracking
of the desired acceleration. Experimental results demonstrate fuel consumption
reduction up to 13% especially when relaxed headway time values are set.

The work is organized as follows. Section 2 presents the proposed ACC con-
troller, the MPC problem formulation, and the inner feedforward-feedback accel-
eration tracking controller. Section 3 concludes with the ACC real implementa-
tion on powertrain testbed.

2 Adaptive Cruise Control on Powertrain Testbed

The proposed ACC is implemented on a vehicle installed in a powertrain testbed
(hereinafter called host vehicle) as depicted in Fig. 1.

The lead vehicle speed profile is emulated together with the host vehicle
radar to properly generate the relative distance and relative speed profiles. The
high-level predictive controller uses kinematic vehicle constraints to determine
the optimal target acceleration for the host vehicle. Then, a low-level controller
with combined feedback and feedforward action properly tracks the given refer-
ence. The powertrain testbed automation system made it possible to conduct a
systematic assessment of vehicle performance.

In the following, the two proposed control layers are briefly described.

Fig. 1. Scheme of the experimental framework on the 4-axis powertrain testbed in
which the MPC-ACC has been tested.
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2.1 MPC Controller Design

Assuming that the low-level control action ensures perfect tracking of the desired
acceleration ah,ref (t), it can be modeled together with the internal vehicle
dynamics as a single integrator. In this way, the host vehicle speed vh(t) is
related to the desired acceleration ah,ref (t) with the following set of equations
[10]:

⎧
⎪⎨

⎪⎩

xr(t) = xr(0) +
∫ t

t0
vr(t)dt

vr(t) = vr(0) +
∫ t

t0
ar(t)dt

vh(t) = vh(0) +
∫ t

t0
ah(t)dt

(1)

where xr(t) is the relative position between the lead and the host vehicle, vr(t) =
vl(t) − vh(t) the relative velocity, ar(t) = al(t) − ah(t) the relative acceleration,
vh(t) the host vehicle velocity, and ah(t) the host vehicle acceleration at time
t. The values of xr(t) and vr(t) are given by the radar, and the host vehicle
speed vh(t) is assumed available in vehicle control unit. The relative acceleration
becomes ar(t) ≡ −ah(t), as the acceleration of the lead vehicle al(t) is unknown,
and assumed to be zero for the prediction model. The host vehicle acceleration
ah(t) is used as a control decision variable, and al(t) acts as a disturbance on
the system.

In ACC, an important performance parameter is the desired headway time
(thw,d) i.e., a way for the driver to communicate how closely the vehicle should
follow the preceding one. The desired headway time is used to define a reference
distance

xr,d(k) = xr,0 + v̄h(k)thw,d (2)

that depends on a constant xr,0, representing the minimum distance, and the
host vehicle’s speed vh. The latter is saturated as:

v̄h(k) =

{
vh(k) if vh(k) < Vmax

Vmax if vh(k) ≥ Vmax

where Vmax is the road limit speed.
Correspondingly, the tracking error at time step k is defined as e(k) =

xr,d(k) − xr(k). Hence, a primary control objective is minimizing the absolute
tracking error e(k).

Constraints related to safety and comfort are detailed in the following:

– Safety : the inter-vehicle distance should always be greater than a minimum
safe distance, i.e. xr > xr,min, thus avoiding collisions. Furthermore, the rel-
ative velocity between the vehicles should be minimized, |vr(k)|.

– Comfort : the peak values of the host vehicle acceleration |ah(k)| and jerk
|jh(k)| should be kept small to guarantee the comfort of driving action. To
accommodate the jerk constraints into the MPC problem, the host accelera-
tion is written as a state, and its variation

dah

dt
≡ jh(t) ≡ u(t)
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is treated as an input u, which written in discrete-time domain becomes

ah(k) = ah(k − 1) + Tsu(k) (3)

The proposed MPC-ACC needs a dynamic model to predict the evolution
of the vehicle and its surroundings. To do that, the equations in (1) are firstly
written in discrete-time domain with sample time Ts and then combined with
(3) to obtain a discrete-time state space model:

ξ(k + 1) = Aξ(k) + Bu(k) (4)

with states ξ = [xr(k), vr(k), vh(k), ah(k − 1)]�, and matrices

A =

⎛

⎜
⎜
⎝

1 Ts 0 − 1
2T 2

s

0 1 0 −Ts

0 0 1 Ts

0 0 0 1

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

0
0
0
Ts

⎞

⎟
⎟
⎠ . (5)

The following MPC problem is proposed for the ACC:

min
ξ,u

N∑

k=1

||ξk − ξref
k ||2Q + ||uk||2R (6a)

subj. to
ξk+1 = Aξk + Bδuk k = 0, . . . , N − 1 (6b)
xr,min < xr(k) (6c)
ah,min ≤ ah(k) ≤ ah,max (vh(k)) , k ∈ N (6d)
|u(k)| ≤ jh,max. (6e)

Weight matrix Q � 0 is properly set to track the relative distance with the
minimum effort in terms of acceleration, while R � 0 is tuned to normalize the
variations of the acceleration with the state deviations. Constraints on relative
distance, acceleration, and jerk are set to guarantee comfort. Hence, the con-
troller tries to properly follow the lead vehicle with minimum effort in terms of
acceleration command. This approach produces a smoother speed profile, which
indirectly reduces fuel consumption and improves comfort.

The resulting control problem (6) is cast into a quadratic programming (QP)
problem once and offline. At each time step, the problem is updated with the
current state and then solved to obtain the optimal acceleration deviation u∗(t).
Finally, the target acceleration is updated using Eq. (3) and set as the new
reference for the inner acceleration control layer, as explained in Subsect. 2.2. The
proposed method allows real-time implementation on the testbed’s hardware. It
is worth mentioning that, to avoid infeasibility issues, a slack variable is added
to the acceleration state constraints. During the implementation, its activation
has been noticed only in critical conditions, like panic braking of the lead vehicle
or when running on aggressive driving cycles.
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2.2 Low-Level Acceleration Tracking Control

The low-level controller generates accelerator and brake pedal signals to accu-
rately track the target acceleration ah,ref . It combines a feedforward (FFC) and
a feedback (FBC) controller. The FFC generates throttle and braking commands
by inverting the vehicle model. The FBC, which uses a PI (Proportional-Integral
controller), compensates for plant-model mismatches by tracking the speed ref-
erence vh,ref generated from the integration of ah,ref . For the sake of brevity,
this work excludes all calibration details and instead presents a simplified control
scheme, as depicted in Fig. 2. Note that the information about the actual gear
and road grade (RG) profile is used by the feedforward to guarantee a better
plant model inversion and hence improve the open-loop tracking of the desired
vehicle acceleration.

Fig. 2. Simplified low-level controller scheme.

3 Experimental Results and Conclusions

The proposed MPC-ACC is evaluated at a vehicle level in the powertrain testbed.
This setup enables a systematic assessment of the fuel consumption in repeatable
conditions over different driving cycles by directly measuring the fuel rate of the
internal combustion engine. Experimental results obtained on a 2.5-ton light-
duty commercial vehicle are reported in Table 1.

Table 1. Fuel Consumption (FC) reduction achieved by the MPC-ACC with 3 s head-
way time. The results are mean values of FC with dispersion, obtained by giving the
host and lead speed profiles references 3 times to the same driver model, thus allowing
the assessment of different vehicle responses to the same speed profiles.

Scenario Lead FC [L] Host FC [L] FC Reduction [%]

Urban 1.30 ± 0.01 1.14 ± 0.01 13.5 ± 0.1

Extra-urban 3.82 ± 0.02 3.32 ± 0.01 13.0 ± 0.3

Highway 5.54 ± 0.02 5.40 ± 0.01 2.6 ± 0.2
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The difference in fuel consumption is evaluated by giving the lead and the
host speed profiles to the same vehicle under test. The speed profiles and fuel con-
sumption in both cases are reported in Fig. 3. The results show that by adopting
a headway time of 3 seconds, the proposed MPC-ACC can improve fuel con-
sumption by up to 13% in urban and mixed extra-urban driving scenarios while
respecting mission timing. Minor effects on fuel economy have been highlighted
in highway scenarios, where well-known state-of-the-art techniques remain more
suitable.

The results have demonstrated the promising application of Vehicle-in-the-
Loop (ViL) testing on a 4-axis powertrain testbed. Future works will use cutting-
edge hardware stimulators to replace emulated radar and camera with real data
from the vehicle’s onboard sensors.

Fig. 3. Fuel consumption results of the MPC-ACC on Real-Driving Emissions (RDE)
profiles, i.e. RDE Urban (top), RDE Rural (center), and RDE Motorway (bottom). The
host and lead speed profiles are performed by the same vehicle, namely the light-duty
commercial vehicle, to highlight the potential fuel consumption reduction.
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Abstract. With the decreasing cost of LiDAR sensors, sensor setups
with multiple LiDARs are becoming available. In such advanced setups
with multiple LiDARs the sensor temporal asynchronicity and spa-
tial miscalibration are critical factors for vehicle localization increasing
measurement uncertainty. Hence, simple merging of synchronized point
clouds as done in some literature can lead to sub-optimal results. To
tackle this problem we propose MLIO, a factor graph-based odometry
computation algorithm that fuses multiple LiDARs with an inertial mea-
surement unit (IMU) and provides an accurate solution mitigating the
effect of temporal asynchronisity and spatial miscalibration.

The proposed algorithm is validated using a custom dataset. We com-
pare the proposed algorithm with the state-of-the-art LiDAR-only odom-
etry algorithms, such as KISS-ICP, and LiDAR-IMU fusion LIO-SAM
and demonstrate its superiority. We were able to achieve up to 40% and
16% increment in positional and orientation accuracy compared to KISS-
ICP and 25% increment in positional accuracy compared to LIO-SAM.

Keywords: LiDAR Odometry · multi-LiDAR Odometry · Factor
Graph

1 Introduction

The localization of autonomous machines in a reference coordinate frame is a
fundamental task and prerequisite for downstream applications reasoning about
objects and tasks within this world frame. Dependent tasks are for example
perception, planning, control, and many more [1]. Accurate localization can
be achieved either through state estimation or simultaneous localization and
mapping (SLAM). Usually, a Global Navigation Satellite System (GNSS) along
with other sensors like an Inertial Measurement Unit (IMU) and In-Vehicle sen-
sors (steering and velocity encoders) are employed for state estimation [2] while
LiDARs and Cameras are primary sensors for SLAM [3]. Vehicle motion esti-
mation through LiDAR odometry, even though can be prone to drift if not cor-
rected with loop closures [6], provides a robust solution. LiDAR odometry and
c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 833–842, 2024.
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mapping for the sensor setups with the single LiDAR are studied extensively
in [4–6]. Lately, decreasing LiDAR cost, caused the emergence of multi-sensor
setups and works with multiple LiDARS are becoming available [8,11]. Authors
in [8] extend the LOAM [7] algorithm to accommodate multiple LiDARs, how-
ever, it is designed to work with LiDARS with common Field of View (FoV)
for online calibration and sensors with higher resolution with feature-rich point
cloud. Similarly, in [11], a multi-LiDAR localization and mapping pipeline is
proposed based on KISS-ICP algorithm. The authors apply a separate scan reg-
istration for each LiDAR point cloud and create an offline map which is later
used for online localization.

Departing from multiple sensors from the same type to setups with multiple
LiDARs from various manufacturers or different tasks as short range and long
range sensing, increases the difficulty to perform precise localization. Further,
the LiDARs can be asynchronous with different update rates and hence pose
a significant challenge to perform odometry estimation. In particular in cases
where the sensor setup do not have overlapping FoV as in our experimental
vehicle, Easymile [10], calibrating them to a common reference frame can be
challenging due to missing jointly available information.

In this work, we propose a factor graph-based LiDAR odometry algorithm
for an asynchronous multi-LiDAR setup. We employ an IMU as a base sensor to
build the factor graph similar to our previous work [2] and architecture proposed
in [3]. Kiss-ICP [6] is used to compute the odometry for each LiDAR using the
locally constructed LiDAR map. Instead of trying to synchronize the LiDAR
point-cloud or fusing them neglecting the time asynchronicity, we treat each
LiDAR separately and estimate the odometry for each IMU update. We can
turn the odometry estimation framework into state estimation by integrating
the GNSS measurements into the factor graph. The major contribution of the
proposed framework is threefold:

Fig. 1. Tightly coupled multi-LiDAR odometry for the odometry computation from
two different LiDARs in the EasyMile setup
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– We propose a novel and modular LiDAR Odometry prediction framework for
multiple asynchronous LiDARs with a non-aligning FoV.

– The architecture is devised so that GNSS sensor can be added to perform
state estimation.

– We validate the proposed algorithm using a custom dataset collected using
the EasyMile vehicle with 4 LiDARs, a GNSS Sensor, and an IMU.

2 Problem Formulation

Given the use of multiple sensors with diverse sets of information, we not only
estimate the vehicle position and orientation but also its velocity and IMU’s
bias. Assuming that XG

t represents the state for the factor graph,

XG
t =

[
IP

G, IR
G, IV

G, BI
]
t

(1)

where, IP
G, IR

G, and IV
G are the IMU’s position, orientation, and velocity

in the Global Reference Frame (G). BI consists of the estimated accelerometer
and gyroscope biases. The subindex t is used to represent the time instance.

We differentiate two case with GNSS measurements and without. In the first
case we apply the algorithms as odometry computer and as in the latter case as
state estimator. The major focus of the manuscript is dedicated to the odometry
computer component and we will additionally demonstrate the state estimation
capability.

3 Factor Graph Construction

The IMU sensor is used as the base sensor to develop the factor graph, and
multiple LiDAR odometry factors are added online as they become available.
The overall architecture of the proposed algorithm is illustrated by Fig. 1. The
modular nature of the algorithm enables the addition and removal of sensors
based on their availability. Since this study focuses on the LiDAR odometry
component only, we will focus on how multiple LiDARs can be easily integrated
into the framework using Robot Operating System (ROS). The architecture is
based on the IMU timestamps, hence requiring to have IMU in the sensor setup,
besides that, any other sensor providing relative odometry or absolute positions
can also be added. The EasyMile sensor setup consists of the following sensor
installation:

– GNSS Sensor, located at the top of the vehicle
– two 16 Plane Velodyne Lidars with 1800 FoV facing front and back of the

EasyMile vehicle, providing PointCloud at 10 Hz
– two 4 Plane Sick long range Lidars with 1800 FoV facing front and back of

the EasyMile vehicle, providing PointCloud at 10 Hz
– XSens IMU sensor providing acceleration and angular velocity measurements

at 100 Hz
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3.1 Graph Initialization

Initially, when the vehicle is stationary, IMU measurements are stored in a buffer
for a predefined time window. The measurements are then analyzed to compute
the orientation of the IMU in the local frame, except the yaw angle, which
is initialized to zero. The IMU provides the acceleration and angular velocity
measurements along the IMU reference frame. Using the gravity component
measurement of the acceleration, the initial orientation of the IMU is computed
using the following equations:

aX = −gsin(θ)
aY = gsin(ψ)cos(θ)
aZ = gcos(ψ)cos(θ)

(2)

where, aX , aY , and aZ are the mean values of the buffered accelerometer mea-
surements while the vehicle is stationary. θ and ψ are the IMU roll and pitch
angle in the Local Reference Frame L. g is the acceleration due to gravity. We
neglect the bias and noise contribution in the IMU measurements in this initial-
ization phase. The initial roll and pitch angle are calculated using Eq. 2.

Position and velocity values are initialized to zero. The roll and pitch angles
are initialized using the step discussed above while the yaw angle is initialized
to zero. For bias values of the accelerometer, user input or prior knowledge is
utilized while the gyroscope bias is initialized as the mean value of the angular
velocities when the vehicle is stationary. Once the initial state is defined, the
factor graph is constructed by adding values at the IMU timestamps and factors
connecting the corresponding sensor timestamps.

Fig. 2. Tightly coupled multi-LiDAR odometry for the odometry computation from
two different LiDARs in the EasyMile setup
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3.2 IMU Factor

First for each received IMU measurement, a value is added to the factor graph,
in a similar approach to [3]. We apply the widely used pre-integrated factor pro-
posed by [9]. Adding a value to the graph with each measurement is suitable
for the IMUs with the lower frequency ranges, till 100 Hz, while for the IMUs
with the higher frequency, some IMU measurements are stored in a buffer and
values are added as per the user-defined, but lower frequency. The raw IMU mea-
surements at time instance t consists of linear acceleration I ât and the angular
velocities I ω̂t. The accelerometer and gyroscope models are then defined as:

I ω̂t = Iωt + Ibωt
+ Iηt

I ât = L
I Rt(W at − W g) + Ibat

+ Iνt

(3)

where, Iωt and Iat are the true angular velocities and linear accelerations of the
IMU. Ibωt

and Ibat
are the angular velocity biases and linear acceleration biases.

They are modeled as a random walk. The noise terms, Iηt and Iνt, follow Gaus-
sian distributions. L

I Rt is the rotation matrix from the L frame to IMU reference
frame. Readers are referred to [9] for further reading on the development of this
factor.

3.3 Lidar Odometry and Odometry Factors

We study two approaches to creating a LiDAR odometry factor for the factor
graph. The first approach is a lightly coupled odometry computer based on the
work of [6]. In this approach, the odometry computer directly subscribes to the
point cloud topics obtained from the LiDAR sensors, and the computed optom-
etry is used as a binary factor connecting two values in the factor graph corre-
sponding to the point cloud timestamps. The relative transformation between
the two locations of the two consecutive point clouds in the local map is used as
the factor between the values in the graph closest to these timestamps. A lightly
coupled and completely separate mapping approach for sensor setup with mul-
tiple LiDARs can create unnecessary overhead to the algorithm if we create
multiple LiDAR maps. In case of employing the ICP [6] approach for multiple
LiDARs, different local maps need to be constructed, stored, and maintained
for each LiDAR separately. Our previous work in [2] employed this technique
to compute LiDAR odometry for two Velodyne LiDARs of the EasyMile sensor
setup. In this work, the loosely coupled approach creates a single LiDAR map
and localizes the newly obtained point cloud in the cumulative local map created
using the point cloud of all the LiDARs instead of a single LiDAR. The local
map is updated using the downsampled point cloud from each LiDAR following
techniques employed in [6].

The second approach is a tightly coupled LiDAR odometry with the possibil-
ity to integrate multiple LiDARs into a single local map and use the optimized
factor graph state to update the local map. The complete architecture of the
multi-LiDAR odometry applied in this work is illustrated in Fig. 2. Note, that
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the LiDAR point cloud from different LiDARs is received asynchronously by
the ROS network. Contrary to the common practices of fusing the point cloud
from different LiDARs into one single point cloud and performing the odometry
computation, our approach deals with the LiDAR point cloud separately. The
addition of values to the factor graph with high-frequency IMU measurement
allows to fuse asynchronous LiDARs odometry with IMU. As soon as the fac-
tor graph is initialized, the mapping module receives the point cloud from each
LiDAR and adds the downsampled point cloud to the local map. The local map
is stored in the IMU frame as the origin, hence the static transformation from
IMU sensor to each LiDAR is used to add the LiDAR point cloud to the map.
When the point cloud from each LiDAR is received at least once, the ICP algo-
rithm based on KISS-ICP proposed on [6] is run to compute the odometry of
the LiDAR in the L frame. Contrary to the [6], where a constant velocity model
is used to predict the initial guess of the ICP algorithm, we use the predicted
state from the IMU pre-integration model closest to the point cloud timestamp.
This is illustrated in the Fig. 2.

Once the Lidar is localized in the L frame, the computed transformation is
added as a unary factor connecting the corresponding IMU value. Fixed lag factor
graph optimization is done to compute the estimated state at the LiDAR times-
tamp. This estimated transformation is used to update the local map instead
of the ICP computed transformation as done in [6]. This is repeated for the
asynchronous point clouds arriving from different LiDARs and is enabled easily
by the design choice of using the IMU timestamps to create values in the factor
graph.

3.4 GNSS Unary Factor

GNSS sensor provides the location of the vehicle in the G frame. They are
transformed to the IMU reference point in the vehicle to be added to the factor
graph as the unary factor using the known static transformation between the
GNSS and the IMU.

I p̂G = p̂G
t + GNRI

GNpI (4)

where, I p̂G is the GNSS measurement transformed to the IMU location in the
vehicle expressed in the G frame. GNRI and GNpI represent the rotation and
translation component of the static transformation between IMU and the GNSS
sensor.

4 Results and Comparison

To validate the proposed algorithm, we use the EasyMile vehicle and its sensor
setup. We validate the algorithm against the LiDAR only odometry computation
algorithm KISS-ICP [6] and LiDAR IMU fusion SLAM algorithm LIO-SAM
[4]. The test is performed with the data collected around the Department of
Mechanical Engineering, Politecnico Di Milano Bovisa Campus. We collect three
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distinct scenes to demonstrate the suitability of the proposed algorithm for the
multi-lidar sensor setup.

Figures 3a, 3b and 4a show the qualitative results of the trajectory of the
vehicle computed using the baseline algorithms and the proposed MLIO algo-
rithm. For the baselines, the point cloud received from the different LiDARs are
synchronized and then merged to provide a 360 FoV around the vehicle. The
points in the vehicle trajectory are first aligned with the GNSS measurements
temporally to find the correspondence and then Umeyama alignment algorithm
[12] is used to perform the alignment. Qualitative observation of these trajecto-
ries obtained from the proposed and baseline algorithms shows that the proposed
MLIO algorithm can provide the most consistent and accurate LiDAR odometry
estimate at high frequency. In Fig. 4b, we also demonstrate the state estimation
capability of the algorithm, which also takes as input the GNSS unary factor.

This observation is further buttressed by the results shown in Table 1. The
results obtained in this table are for the input point cloud from the two Velo-
dyne LiDARs only. The point clouds are first temporally synchronized using
ROS message filters, merged and then fed to the baselines for LiDAR odometry
estimation. However, for MLIO, such temporal synchronization is not necessary.
In this table, we have listed results for two different variants of MLIO algorithm,
MLIO−0 for the loosely coupled variant and MLIO−1 for the tightly coupled
one. We can see that both the MLIO algorithms provide similar level of accuracy
in average. In average, they provide approximately 25% increase in positional
estimation accuracy while maintaining similar level of accuracy in terms of yaw
angle estimation compared to LIO-SAM. They outperform KISS-ICP signifi-
cantly by improving positional accuracy by 40% and yaw angle estimation by
16%.

We also conduct some ablation studies about the LiDAR choice and the possi-
bility of choosing LiDARs with different parameters and from different manufac-
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Fig. 3. Ground truth and estimated vehicle trajectories. The red and green circles
indicate the start point and GNSS failure point while the arrow shows the vehicle
motion direction. Bottom Figure: Ground truth and estimated side slip angle
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Fig. 4. Odometry and State estimation results from the proposed and the baseline
algorithms

turers into a single framework. In Table 2, the results of this study are illustrated.
The KISS − S and MLIO − S refer to the framework only taking input from
the SICK front and rear LiDARs, while KISS−SV and MLIO−SV take input
from the front SICK and rear Velodyne LiDARs. We can observe that MLIO
outperforms KISS-ICP for both frameworks in all the scenes. Furthermore, we
can observe an interesting result, the performance of both the KISS-ICP and
MLIO degrade when using the point clouds from the LiDARs from the different
manufacturers. This degradation is more pronounced for the KISS-ICP algo-
rithm. This could be because the LiDARS are calibrated approximately in the
spatial frame due to their lack of common FoV. The temporal and spatial mis-
calibrations easily introduce noises into the local map and the point cloud fed to
the algorithm. This effect is minimized in the MLIO algorithm due to the use of
the factor graph to optimize the poses, hence the performance is not degraded
to the same degree of KISS-ICP. This also demonstrates the capability of the
algorithm to integrate multiple LiDARs from different manufacturers.

Table 1. Positional Root Mean Square Error (RMSE), Absolute Positional Error
(APE) at the trajectory end and Yaw RMSE for predicted odometry computed using
the baselines KISS-ICP [6], LIO-SAM [4] and the proposed Multiple LiDAR and Iner-
tial Odometry (MLIO)

Algorithm Scene 1 Scene 2 Scene 3

KISS-ICP [6] 0.92, 2.75,0.06 0.26,0.1,0.07 1.12,2.76,0.047

LIO-SAM [4] 1.17,1.41,0.025 0.32,0.21,0.07 0.29,0.67,0.043

MLIO-0 0.90,1.5,0.049 0.24,0.14,0.06 0.29,0.41,0.041

MLIO-1 0.78,1.15,0.049 0.26,0.19,0.06 0.31,0.79,0.038
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Table 2. Positional RMSE, APE and Yaw RMSE values for predicted odometry com-
puted using the baselines KISS-ICP [6] and the proposed Multiple LiDAR and Inertial
Odometry (MLIO)

Algorithm Scene 1 Scene 2 Scene 3

KISS-S 0.68,0.34,0.06 0.17,0.06,0.06 0.21,0.53,0.037

KISS-SV 2.75,3.27,0.075 0.29,0.57,0.067 1.18,2.95,0.046

MLIO-S 0.45,0.43,0.054 0.15,0.048,0.06 0.15,0.16,0.036

MLIO-SV 1.09,2.06,0.05 0.35,0.54,0.068 0.30,0.76,0.038

5 Conclusions

In this work, we propose MLIO, a framework to estimate the LiDAR odometry
using the input from multiple asynchronous LiDARs and an IMU sensor. The
backend odometry for each LiDAR is computed using KISS-ICP while the factor
graph using IMU pre-integration factors is used to compute optimized LiDAR
odometry. We validate the algorithm on the dataset collected using EasyMile
vehicle with the installation of the required sensor. We can demonstrate that
the proposed MLIO algorithm is able to outperform the considered baselines,
the LiDAR-only KISS-ICP and LiDAR and IMU based LIO-SAM in this custom
dataset.

The proposed algorithm could be extended to include online calibration of
the LiDARS which could significantly improve the overall odometry estimation
result.
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Abstract. Ego Vehicle state estimation is integral to every autonomous
driving software stack. Thereby, the estimation of the state and its com-
ponents as for example the side slip angle, is a crucial component to
track the vehicle maneuvers. In the absence of a direct sensor measur-
ing side slip angle, most of the existing literature either use observers
like Kalman Filters or non-modular factor graphs by modeling lateral
dynamics. However, the modularity of such graphs, to integrate multi-
ple asynchronous sensors that provide disentangled measurements, like
LiDAR, GNSS, and IMU is still overlooked in the literature. In this work,
we propose a novel factor graph-based architecture that builds upon the
vehicle dynamics at its core to enable the fusion of multiple sensors asyn-
chronously and enables to perform robust and accurate state estimation.

We validate the proposed algorithm against two baselines, a model-
based Extended Kalman Filter and a factor graph-based state estimator
that uses the IMU pre-integration factor as a reference factor. The algo-
rithms are validated in a custom dataset collected using an in-house
vehicle.

Keywords: State Estimation · Robustness · Sensor Fusion · Factor
Graph · EKF

1 Introduction

Any robotic application like Autonomous Driving requires knowledge of its loca-
tion, i.e. position, orientation, velocity, etc. to provide autonomous functionality.
The measurements obtained from different sensors cannot be directly interpreted
as the vehicle state due to various challenges including, noisy measurements,
asynchronous sensor readings, discrepancies in the sensor measurement format
compared to state representation, etc. Hence, the state is estimated using the
measurements obtained from different sensors. In literature, these state estima-
tion algorithms can be broadly categorized into filtering-based built upon the
Kalman Filter and its different variants: Extended Kalman Filter (EKF) [2,8],
Unscented Kalman Filter [1,8], and Graph-based methods either using a pose
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graph [12] or a factor graph [4,5]. While Filtering-based approaches are primarily
employed for state estimation, graph-based approaches are the primary choice
for Simultaneous Localization and Mapping (SLAM). With the advancement of
learning-based algorithms, some works in literature use deep learning techniques
to perform state estimation. [9–11,14]. Even though deep learning-based algo-
rithms provide reliable solutions, they are often constrained to the systems they
are trained for due to measurable domain gaps and require the ground truth
data to optimize the algorithm.

The representation of the Vehicle state varies across different works, with
each adopting distinct formats and modeling approaches for their components.
Among these components, side slip angle estimation proves to be one of the
most challenging, particularly within the context of modeling vehicle lateral
dynamics. The absence of a dedicated sensor for direct side slip angle measure-
ment has prompted the exploration of various techniques in the literature, often
involving GNSS and optical sensors. However, the reliability of GNSS sensors
in urban canyons and the cost associated with optical sensors present signifi-
cant challenges. The UKF filtering approach in [1] models the vehicle motion
using the single-track vehicle kinematic model and doesn’t explicitly compute
the side slip angle. [2] address this by including vehicle side slip angle in state
representation and modeling vehicle motion with a single-track version of the
four-wheel vehicle model, however, the filtering-based approach is not modular
and hence not designed to include additional sensors into the framework. The
authors in [3] propose a state estimator based on a factor graph. This estima-
tor models the vehicle’s lateral dynamics using a single-track vehicle dynamics
model. Nevertheless, it is noteworthy that this research is confined to represent-
ing only the vehicle’s lateral dynamics. Unfortunately, this limitation restricts
the incorporation of additional sensors such as the Inertial Measurement Unit
(IMU), GNSS, LiDAR, Cameras, and others into the broader state estimation
framework. Our earlier work, [4] is similar to the proposed architecture, but only
tests the inclusion of the vehicle kinematic factor into the factor graph without
explicitly modeling vehicle lateral dynamics.

In this work, we propose a factor graph-based state estimation architecture
that takes the single-track vehicle dynamics model as the reference factor and
integrates GNSS measurements and LiDAR odometry for vehicle state estima-
tion. We demonstrate the superiority of the proposed algorithm in terms of
modeling vehicle lateral dynamics compared to the baselines and its modular-
ity in integrating multiple asynchronous external sensors enabling robust state
estimation in GNSS outage scenarios. The major contribution of the proposed
framework is threefold:

– We propose a novel and modular factor graph-based state estimation frame-
work that can utilize measurements from IMU, LiDAR, GNSS, and In-Vehicle
sensors (i.e. velocity and steering encoders) to provide consistent and reliable
state estimation.

– Filter-like implementation of the architecture enables real-time state estima-
tion at high frequency. The frequency can be regulated to meet user’s need.
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Fig. 1. Left: Overall Architecture of the proposed factor graph based state estimator
illustrating inputs from multiple sensors, Right: Vehicle Sensor setup and Reference
frames definition for problem formulation

– We demonstrate that the proposed algorithm can provide robust and accurate
lateral dynamics state estimate when compared to the IMU preintegration
based factor graph [4] and baseline EKF [2].

2 Problem Formulation

For state representation, we take the position of the IMU as the reference point
and assign it as the origin of the Vehicle Reference Frame (V). Xt represents
the state or values for the factor graph,

Xt =
[
Ix

G, Iy
G, Iψ

G, V I
x , βI , ωI

]
t

(1)

where, [IxG, Iy
G] and Iψ

G are the IMU’s position and orientation in the Global
Reference Frame (G). V I

x , βI , and ωI are longitudinal velocity, side slip angle
and yaw rate in IMU frame. The subindex t corresponds to the time instance.

If we represent XG
t as a set of the factor graph state till time instance t,

the algorithm needs to estimate the posterior distribution p(XG
t |Zt). Where Zt

represents all the measurements from sensors till time instance t. Estimation can
be performed using the Maximum A Posteriori (MAP) inference, for XG

t , which
is represented as:

XG
t = argmax

XG
t

(p(XG
t |Zt)) (2)

while we can approximate the posterior p(XG
t |Zt) using the Baye’s law as,

p(XG
t |Zt) ∝ p(Zt|XG

t )p(X0) (3)

where, p(Zt|XG
t ) is the measurement likelihood density and p(X0) is the prior of

the states. Given the measurements obtained from the LiDAR in the point cloud
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format, linear acceleration, and angular velocities measurements from IMU,
global position measurements in the latitude, longitude, and altitude format
from the GNSS sensor, steering angle measurement from the steering encoder
and longitudinal velocity measurement from the velocity encoder, the algorithm
provides the estimates of XG

t at time instance t by solving Eq. (3) for the respec-
tive states.

The overall architecture of the algorithm is illustrated in Fig. 1 and detailed
representation is provided in Fig. 2. The factor graph is designed to accommo-
date the vehicle dynamics factor as a base factor and add additional sensor
measurements as per their availability.

2.1 Factor Graph

A factor graph is constructed by taking the synchronized In-Vehicle sensor’s
measurements as the reference points in a temporal sense. These sensors have
the highest frequency in most sensor setups and hence can provide connection
points to other sensors with a high degree of flexibility. Using the Robot Oper-
ating System (ROS) framework, the factor graph is constructed by taking their
timestamps as the reference points, and new values are added to the graph con-
currently. The modular nature of the graph enables the addition and removal of
sensors based on their availability. The sensor setup consists of 2 GNSS Sensors,
located at the front and the rear of the vehicle operating at 10 Hz, one Hesai 32
plane LiDAR operating at 20 Hz, one Bosch 5-axis IMU, and In-Vehicle sensors,
all operating at 100 Hz.

Filter Like Architecture. The posterior distribution in Eq. 3 is proportional
to the product of a prior distribution p(X0) and the measurement likelihood
p(Zt|XG

t ). This allows for an iterative solution to the MAP problem by moving
the optimization horizon into a computationally tractable threshold [5]. The
MAP inference referred to by Eq. 2 is solved by using factor graph [13] in this
work. A factor graph is a bipartite graph, G = (V,F) with V being the set of
values, F being the set of factors. For a given factor graph, MAP inference in
Eq. 2 can be rewritten as a product of multiple factors:

X = argmax
X

∏

i

ψi(Xi) (4)

where the subscript i refers to the factor number. Each factor can be a result of
measurement or constraint received from different sensors. Assuming that each
factor is of a type,

ψi(Xi) ∝ exp{−1
2
||hi(Xi) − zi||2Σi

} (5)

measurements from different sensors can be easily integrated into the factor
graph if the measurement model given by hi(Xi) can be defined. The MAP
inference problem can be modeled as a least square optimization problem with
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Fig. 2. Factor Graph construction displaying all the factors

the residual error given by ei = hi(Xi) − zi. zi is a measurement received from
a sensor. The measurements are assumed to be normally distributed with zero
mean and Σi covariance. This factorized implementation facilitates the modular
architecture of the factor graph-based algorithm and hence enables sensor fusion
for measurements coming from different sensors with different modalities.

In this work, we implement a filter-like factor graph-based state estimator
taking inspiration from the work in [5]. Given that In-Vehicle sensors are the
sensor with the highest frequency in most vehicles, its timestamp is used to add
values to the factor graph. Having established a factor graph with reference val-
ues at high frequency, a variety of sensors can be easily integrated. Most control
algorithms require the state to be estimated at a high frequency for smooth oper-
ation, however, LiDAR odometry and GNSS measurements are usually available
at a lower frequency of (10–20) Hz. This filter-like implementation is designed
using predict-optimize iterations to provide state estimates at In-Vehicle sen-
sors’ frequency. With each In-Vehicle sensor measurement, the state is predicted
to the next time instance using single-track vehicle dynamics model, and once
a LiDAR or GNSS factor is added to the graph, it is optimized to obtain an
updated or optimized state.

2.2 Vehicle Dynamics Factor

To construct the factor graph within the framework, the vehicle dynamics are
incorporated into residual error functions aimed at minimizing through fac-
tor graph optimization. Equation 6 represents the residual errors pertaining to
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vehicle dynamics and connects two states or values, denoted as Xk and Xk−1

within the graph. Here, vy, vx, and ωz are the lateral, longitudinal, and angular
velocities of the vehicle, respectively. Additionally, Cf and Cr denote the cor-
nering stiffness of the front and rear tires, while lf and lr represent the distances
from the vehicle’s center of gravity to the front and rear axles, respectively. The
steering angle δ and longitudinal acceleration ax are measured from the steering
encoder and IMU. A single dynamic factor is established by linearizing Eq. 6.
In the factor graph, values are added at the frequency of the In-Vehicle sensors,
and two consecutive values are linked by factors, as depicted in Eq. 6.

ek−1
x = xk − xk−1 − Δt(vk−1

x (cos(ψk−1)− sin(ψk−1)βk−1))

ek−1
y = yk − yk−1 − Δt(vk−1

x (sin(ψk−1) + cos(ψk−1)βk−1))

ek−1
ψ = ψk − ψk−1 − Δtωk−1

z

ek−1
vx

= vk
x − vk−1

x − Δtak−1
x

ek−1
β = βk − βk−1 + Δt

(
−Cf + Cr

mvk−1
x

βk−1 −
(

Cf lf − Crlr

m(vk−1
x )2

+ 1

)
ωk−1 +

Cf δk−1

mvk−1
x

)

ek−1
ωz

= ωk
z − ωk−1

z − Δt

(
−Cf lf − Crlr

Jz
βk−1 −

Cf l2f + Crl2r

Jzvk−1
x

+
Cf lf δk−1

Jz

)

(6)

2.3 Measurements Factor

The measurement factor incorporates lateral acceleration âk
y and yaw rate ω̂z

measurements from IMU. It also includes longitudinal velocity measurement, v̂x

from the velocity encoder. This integration is expressed through the residual of
these measurements connected with the value at time instance k, denoted as Xk,
as illustrated in Eq. 7. Additionally, the steering angle at time instance k, δk is
also considered in the formulation.

ek
v̂x

= v̂x − vk
x

ek
ω̂z

= ω̂z − ωk
z

ek
ay

= âk
y +

Cf + Cr

m
βk +

Cf lf − Crlr
mvk

x

ωk
z − Cfδk

m

(7)

2.4 GNSS and LiDAR Factors

GNSS sensor provides the location of the vehicle in the frame G. The sensor
setup has two RTK-corrected GNSS sensors located at the front and rear of the
vehicle and hence can also provide information on the vehicle’s global yaw and
pitch angle. The GNSS measurements are transformed into the IMU reference
point of the vehicle and are subsequently added to the factor graph as a Unary
factor using the known static transformation between the GNSS sensor and the
IMU sensor.

I p̂G = p̂G
t + GNRI

GNpI (8)
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where I p̂G is the GNSS measurement transformed to the IMU location in the
vehicle expressed in the G frame. GNRI and GNpI represent the rotation and
translation component of the static transformation between IMU and the GNSS
sensor.

To compute LiDAR Odometry we employ a lightly coupled odometry com-
puter based on the work of [6]. In this approach, the odometry computer directly
subscribes to the point cloud topics obtained from the LiDAR sensor and is used
as a binary factor between two values corresponding to the timestamps of the
consecutive LiDAR scan. The relative transformation between the two consecu-
tive point clouds is used as the factor between the values in the graph closest to
these timestamps.

3 Implementation

We design the factor graph and perform state estimation using the Fixed Lag
Smoother in the GTSAM [7] framework. We use the ROS framework to establish
callbacks to acquire sensor measurements and test real-time applicability. The
proposed algorithm is validated against two model-based state estimators: an
EKF [2] and an IMU preintegration-based factor graph [4]. We acquire test
data with difficult maneuvers to demonstrate the algorithm’s ability to model
vehicle lateral dynamics and its modularity to integrate arbitrary other sensors
in the state estimation framework. We use a Datron optical sensor to measure
the vehicle’s longitudinal and lateral velocities and validate the estimated state
against it in complex maneuvers.

4 Results

A series of slalom maneuvers is performed to create the first scene. The trajectory
of the vehicle’s motion along with the states estimated by the proposed algorithm
and the baselines are illustrated by Fig. 3. Position estimation from the proposed
algorithm and the baselines are very similar as they both use the RTK-corrected
GNSS sensors, however, a significant improvement can be seen in the estimation
of the side slip angle. We can observe that the side slip angle estimation from
the proposed factor graph that utilizes a vehicle dynamics model for motion
prediction matches closely to the estimation from the EKF and the Datron side
slip computation, while estimation from the IMU factor graph is significantly
worse in maneuver end situations.

In the second scenario, we use two scenes as shown in Fig. 4, to validate the
algorithm, where we investigate a GNSS failure case. We eliminate the availabil-
ity of both GNSS measurements to the algorithm after a certain time instance
from the algorithm’s initiation and analyze its performance in terms of state
estimation. This same procedure is applied to the baseline algorithms. Note,
for the baseline EKF, the IMU and In-Vehicle sensors’ measurements are made
consistently available and update respective states even in the absence of GNSS
measurements in the failure scenario. Ground truth for position and yaw angle
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Fig. 3. Top Figure: Ground truth and estimated vehicle trajectories using the proposed
and the baselines algorithms. The green circle indicates the start point while the arrow
shows the vehicle motion direction. Bottom Figure: Ground truth and estimated side
slip angles using the proposed and baseline algorithms

Table 1. Root Mean Square Error (RMSE) values for estimated states (Position, Yaw
angle values) computed using the baselines EKF [2], IMU Graph [4] and the proposed
algoritm

Algorithm Scene 1 Scene 2

EKF [2] 3.0692, 0.1387 11.6245, 0.1520

IMU Graph [4] 1.1523, 0.0587 6.1375, 0.0827

Dynamics Graph 0.6005, 0.0597 2.2953, 0.0491

is computed using two RTK-corrected GNSS positions. Notably, since GNSS
positions are unavailable from 5 s onward for Scene 1 and 50 s onward for Scene
2 into the algorithm run, the unused GNSS measurement serves as a reliable
ground truth reference. This further emphasizes the robust performance of the
proposed dynamics graph under GNSS failure conditions. The qualitative anal-
ysis presented in Fig. 4a reveals that the proposed algorithm consistently out-
performs both the EKF [2] and the IMU factor graph [4] in terms of vehicle
position estimation. Moreover, the estimation of the side slip angle from the
proposed graph appears to be more accurate compared to the IMU graph and
EKF. A similar level of performance is observed in the GNSS failure scenario in
Scene 2, illustrated by Fig. 4b. The quantitative results are depicted in Table 1,
supporting the findings and show that the proposed dynamics graph consistently
outperforms both baseline algorithms in positional and yaw angle estimation. In
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total, we can observe up to 60% and 23% performance improvement on average,
in terms of positional and yaw angle estimation respectively compared to the
IMU graph.

5 Conclusion

We present a novel factor graph-based state estimation algorithm. The algorithm
uses a vehicle dynamic factors to establish a base factor graph and integrates
multiple asynchronous sensors like LiDAR, GNSS, etc. to provide consistent and
accurate state estimation at high frequency. We validate the algorithm using
data collected by an in-house vehicle with the defined sensor setup and multiple
scenarios, where we simulate the GNSS sensor failure to check the reliability of
the algorithm in urban settings. We were able to demonstrate that the proposed
algorithm is highly modular and can seamlessly integrate multiple asynchronous
sensors while providing reliable and robust state estimates compared to the
baselines.

References

1. Bersani, M., et al.: An integrated algorithm for ego-vehicle and obstacles state
estimation for autonomous driving. Robot. Auton. Syst. 139, 103662 (2021)

2. Prakash, J., Vignati, M., Sabbioni, E.: Vehicle teleoperation: performance assess-
ment of SRPT approach under state estimation errors, 2023

3. Leanza, A., Reina, G., Blanco-Claraco, J.-L.: A factor- graph-based approach to
vehicle sideslip angle estimation. Sensors 21(16) (2021). https://www.mdpi.com/
1424-8220/21/16/54093

4. Dahal, P., Prakash, J., Arrigoni, S., Braghinl, F.: Vehicle state estimation through
modular factor graph-based fusion of multiple sensors. In: IEEE Vehicle Power
and Propulsion Conference (VPPC). Milan, Italy 2023, pp. 1–6 (2023). https://
doi.org/10.1109/VPPC60535.2023.10403196

5. Nubert, J., Khattak, S., Hutter, M.: Graph-based multi-sensor fusion for consis-
tent localization of autonomous construction robots. In: 2022 IEEE International
Conference on Robotics and Automation (ICRA). IEEE (2022)

6. Vizzo, I., Guadagnino, T., Mersch, B., Wiesmann, L., Behley, J., Stachniss, C.:
KISS-ICP: in defense of point-to-point ICP - simple, accurate, and robust regis-
tration if done the right way. In: IEEE Robotics and Automation Letters (RA-L),
vol. 8, no. 2, pp. 1029–1036 (2023)

7. Dellaert, F., Contributors, G.: “Borglab/ch1gtsam,” May 2022. https://github.
com/borglab/gtsam)

8. Bersani, M., Vignati, M., Mentasti, S., Arrigoni, S., Cheli, F.: Vehicle state estima-
tion based on Kalman filters. In: 2019 AEIT International Conference of Electrical
and Electronic Technologies for Automotive (2019)

9. Kong, D., et al.: Vehicle lateral velocity estimation based on long short-term mem-
ory network. World Electr. Veh. J. 13(1) (2021)

10. Revach, G., Shlezinger, N., Ni, X., Escoriza, A.L., van Sloun, R.J.G., Eldar, Y.C.:
KalmanNet: neural network aided Kalman filtering for partially known dynamics.
IEEE Trans. Signal Process. 70, 1532–1547 (2022)

https://www.mdpi.com/1424-8220/21/16/54093
https://www.mdpi.com/1424-8220/21/16/54093
https://doi.org/10.1109/VPPC60535.2023.10403196
https://doi.org/10.1109/VPPC60535.2023.10403196
https://github.com/borglab/gtsam
https://github.com/borglab/gtsam


Vehicle State Estimation Through Dynamics Modeled Factor Graph 853

11. Dahal, P., Mentasti, S., Paparusso, L.., Arrigoni, S., Braghin, F.: Robust-
statenet: robust ego vehicle state estimation for autonomous driving. Robot.
Auton. Syst. 104585 (2023). https://www.sciencedirect.com/science/article/pii/
S0921889023002245

12. Frosi, M., Matteucci, M.: ART-SLAM: accurate real-time 6dof lidar slam, 2021
13. Dellaert, F., Kaess, M.: Factor graphs for robot perception. Found. Trends Robot.

6 (2017). http://www.cs.cmu.edu/kaess/pub/Dellaert17fnt.pdf
14. Chindamo, D., Gadola, M.: Estimation of vehicle side-slip angle using an artificial

neural network. In: MATEC Web of Conferences, vol. 166, p. 02001, January 2018

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.sciencedirect.com/science/article/pii/S0921889023002245
https://www.sciencedirect.com/science/article/pii/S0921889023002245
http://www.cs.cmu.edu/kaess/pub/Dellaert17fnt.pdf
http://creativecommons.org/licenses/by/4.0/


Nonlinear Model Predictive Control
for Enhanced Path Tracking and Autonomous
Drifting Through Direct Yaw Moment Control

and Rear-Wheel-Steering

Gaetano Tavolo1(B), Pietro Stano1, Davide Tavernini1, Umberto Montanaro1,
Manuela Tufo2,3, Giovanni Fiengo2,3, Pietro Perlo4, and Aldo Sorniotti5

1 University of Surrey, Guildford GU2 7XH, UK
g.tavolo@surrey.ac.uk

2 University of Sannio, 82100 Benevento, Italy
3 Kineton R&D, 80146 Naples, Italy

4 Interactive Fully Electrical VehicleS (IFEVS), 10040 Turin, Italy
5 Politecnico di Torino, 10129 Turin, Italy

Abstract. Path tracking (PT) controllers capable of replicating race driving tech-
niques, such as drifting beyond the limits of handling, have the potential of enhanc-
ing active safety in critical conditions. This paper presents a nonlinear model
predictive control (NMPC) approach that integrates multiple actuation methods,
namely four-wheel-steering, longitudinal tyre force distribution, and direct yaw
moment control, to execute drifting when this is beneficial for PT in emergency
scenarios. Simulation results of challenging manoeuvres, based on an experimen-
tally validated vehicle model, highlight the substantial PT performance improve-
ments brought by: i) vehicle operation outside the envelope enforced by the cur-
rent generation of stability controllers; and ii) the integrated control of multiple
actuators.

Keywords: active safety systems · electrified vehicles · modelling · testing and
validation · autonomous drifting · nonlinear model predictive control

1 Introduction

Since 2014, the EU has mandated vehicle stability controllers (VSCs), enhancing active
safety during emergency manoeuvres, through the limitation of the yaw rate error,
sideslip angle, and longitudinal tyre slip [1, 2]. While these systems are effective in
supporting the average human driver, they may be overly conservative for highly auto-
mated vehicles (AVs) [3]. In parallel, powertrain electrification and active chassis control
systems offer new AV control opportunities [4]. A current trend in AV research involves
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emulating expert driving techniques, such as drifting, by using path tracking (PT) con-
trollers that push the vehicle beyond the conventional VSC-related stability constraints,
potentially improving road safety [5]. Several PT algorithms from the literature, e.g.,
[6, 7], achieve controlled drifting by tracking dedicated sideslip angle and yaw rate pro-
files, in addition to the reference trajectory. However, such controllers are not designed
to induce drifting only when necessary to track a challenging trajectory, and are often
demonstrated in scenarios with negligible vehicle speed variations or increasing speed,
along circular paths or during drift parking, typically with rear-wheel-drive AVs [8, 9].
On the contrary, typical real-world emergency manoeuvres involve significant speed
reductions through braking, imposed either by the human/automated driver and/or the
VSC. Although the recent studies in [5] and [10] demonstrate the safety benefits of
autonomous drifting in realistic scenarios, the literature lacks a performance assess-
ment of different chassis actuation suites, and especially rear-wheel-steering (RWS), in
terms of accident avoidance through AV control beyond the VSC-related boundaries.
This paper targets the gap by proposing an NMPC algorithm that integrates four-wheel-
steering, longitudinal tyre force distribution, and direct yaw moment (DYM) actuation.
Simulation results with a high-fidelity model along two challenging manoeuvres show
the controller’s capability to perform drifting, and the benefit of rear steering actuation
for achieving tighter cornering.

2 Control Architecture

Three alternative NMPC PT formulations are considered: i) NMPCMz,δr , which is the
novelty of the study, and controls (independently from each other) the time derivatives
of the front and rear steering angles, δ̇f and δ̇r ; the time derivative of the longitudinal tyre
force on the front axle, Ḟx,f ; the front-to-total force distribution factor in braking, pb;
and the time derivative of the DYM, Ṁz; ; ii)NMPCMz , which, compared toNMPCMz,δr ,
excludes δ̇r control; iii) NMPCbas, which, compared to NMPCMz , excludes Ṁz and pb
control. The control allocation (CA) algorithm is detailed in [5], and is integrated with a
rule-basedVSC, including a PID anti-lock braking system (ABS). In theNMPCMz,δr and
NMPCMz simulations, the VSC intervention thresholds are relaxed, to allow operation
beyond the limits of handling.

2.1 Prediction Model Formulations

The prediction models are based on the single-track formulation in [5]. For brevity, only
the updated longitudinal and lateral force balance and yaw moment balance equations
for the NMPCMz,δr case are reported:

v̇x = 1

m
[Fx,f cos

(
δf

) − Fy,f sin
(
δf

) + Fx,Rcos(δr)

− Fy,rsin(δr) − Fx,Mz − Fdrag − Froll + mvyψ̇]
v̇y = 1

m
[Fx,f sin

(
δf

) + Fy,f cos
(
δf

)

+ Fx,rsin(δr) + Fy,rcos(δr) − mvxψ̇]
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ψ̈ = 1

Iz
[Fx,f sin

(
δf

)
lf + Fy,f cos

(
δf

)
lf

− Fy,rcos(δr)lr − Fx,rsin(δr)lr + Mz] (1)

where m is the vehicle mass; Iz is the yaw mass moment of inertia; lf and lr are the front
and rear semi-wheelbases;Fdrag andFroll are the aerodynamic drag and rolling resistance
force; Fx,i and Fy,i are the longitudinal and lateral tyre forces of the axle i, where the
subscript i = f , r refers to the front or rear axles; and Mz is the direct yaw moment
generated through the actuation of the friction brakes, while Fx,Mz is the corresponding
longitudinal tyre force contribution. The lateral axle forces,Fy,i,, are calculated through a
simplified version of the Pacejkamagic formula, whose vertical tyre force inputs account
for both the static contribution and the longitudinal load transfer, based on the measured
longitudinal acceleration, ax,meas.

2.2 Optimal Control Problem

At each time step, the NMPC algorithm computes an optimal control sequence that mini-
mizes a cost function, see its discrete form in [5], based on the outputs from the prediction
models, which are expressed through the following continuous time formulation:

ẋ(t) = f (x(t), u(t),w(t)) (2)

where x is the state vector, andu is the control input vector,which, for the three considered
controller configurations, are expressed as:

xMz,δr = [
vx, vy, ψ̇, s, ey, eψ, δf ,Fx,f ,Mz, δr

]
uMz,δr = [

δ̇f , Ḟx,f , pb, Ṁz, εMz, δ̇r
]

xMz = [
vx, vy, ψ̇, s, ey, eψ, δf ,Fx,f ,Mz

]
uMz = [

δ̇f , Ḟx,f , pb, Ṁz, εMz
]

xbas = [
vx, vy, ψ̇, s, ey, eψ, δf ,Fx,f

]
ubas = [

δ̇f , Ḟx,f
]

(3)

where s is the distance along the path; ey is the lateral position error; eψ is the heading
angle error; and εMz is the slack variable associated with a soft constraint on the DYM.
The online data vector, w, is the same for NMPCMz,δr and NMPCMz , i.e., wMz,δr =

wMz = [
ax,meas, μ, ρref ,Mz,min,Mz,max

]
, where μ is the tyre-road friction factor,

which is assumed constant along the prediction horizon (Hp), while the reference road
curvature (ρref ) and the maximum and minimum DYM values (Mz,max andMz,min) vary
according to [5]. In NMPCbas, w excludes Mz,min and Mz,max. The output vectors and
their reference values include the PT error variables and the states associated with the
control inputs:

zMz,δr = [
vx, ey, eψ, δf , δr,Fx,f ,Mz

]
zMz,δr ,ref = [

vx,ref , 0, 0, 0, 0, 0, 0
]

zMz = [
vx, ey, eψ, δf ,Fx,f ,Mz

]
zMz,ref = [

vx,ref , 0, 0, 0, 0, 0
]

zbas = [
vx, ey, eψ, δf ,Fx,f

]
zbas,ref = [

vx,ref , 0, 0, 0, 0
] (4)

where the reference longitudinal speed, vx,ref , is assumed to be known and variable
along Hp. For all controllers, hard constraints are set on the steering angles, the front
longitudinal tyre force, and their variation rates, as well as on the rear longitudinal tyre
force:



Nonlinear Model Predictive Control 857

−δi,max � δi � δi,max

−μidFz,f � Fx,f − Fx,Mz

Fz,f
Fz,f +Fz,r

� μidFz,f

−δ̇i,max � δ̇i � δ̇i,max

Ḟx,f ,min � Ḟx,f � Ḟx,f ,max

−μidFz,r � Fx,r − Fx,Mz
Fz,r

Fz,f +Fz,r
� μidFz,r

(5)

whereμid is an ideal friction factor, which marginally overestimates the real one used in
the high-fidelity vehicle model to avoid underbraking, while the slip ratios are limited by
the ABS, with relaxed intervention thresholds in case of NMPCMz,δr and NMPCMz ; and
the term Fx,Mz is present only in NMPCMz,δr and NMPCMz .NMPCMz and NMPCMz,δr

also include a hard constraint on pb, a soft constraint on Mz , and a hard constraint on
Ṁz:

pb,min ≤ pb ≤ pb,max
−εMz + Mz,min ≤ Mz ≤ Mz,max + εMz, with εMz ≥ 0

Ṁz,min ≤ Ṁz ≤ Ṁz,max

(6)

whereMz,min andMz,max are computed by the CA algorithm, based on the prediction of
the control inputs at the previous time step.

3 Model Validation and Simulation Results

3.1 Case Study Vehicle

A four-wheel-drive electric vehicle (EV) prototype by IFEVS, with a centralized on-
board electric machine per axle, is used as case study, see Fig. 1a. The EV is equipped
with: i) a set of vehicle dynamics sensors, e.g., to measure the individual wheel speeds
and the longitudinal and lateral velocity components; ii) an integrated GPS device with
inertial measurement unit; iii) a modified commercial VSC unit to independently control
the friction brake torque of each corner; and iv) a dSPACEMicroAutoBox III system for
rapid control prototyping. The vehicle simulation model was implemented in the IPG
CarMaker environment, andwas experimentally validated along ahandbrakemanoeuvre,
see Fig. 1b. The very good match between the experiments and the high-fidelity and
prediction model results confirms: i) the reliability of the CarMaker model as a control
systemassessment tool; and ii) the ability of the proposed predictionmodels to accurately
capture the system dynamics at the limit of handling.

3.2 Simulation Results

The NMPC implementations were evaluated along two manoeuvres, i.e., a 135-deg turn
and a U-turn with braking from an initial speed of 45 km/h. For NMPCMz,δr , different
RWS angle limits, equal to 5, 10, and 15 deg, were set. Although higher than those for
typical RWS systems, these values were selected to assess the potential advantages of
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Fig. 1. (a) Case study EV prototype. (b) Time profiles of the hand-brake manoeuvre inputs, i.e.,
steering wheel angle δsw , wheel torque Twh, and braking pressures Pbrk , along with the associated
sideslip angle β, yaw rate ψ̇ , and lateral acceleration ay . IPG: CarMaker simulation model results;
Exp.: experimental results; Pred. Mod.: prediction model results. The notations ‘fl’, ‘fr’, ‘rl’ and
‘rr’ refer to the front left, front right, rear left, and rear right corners.

enhanced rear steering capabilities. The 135-deg turn results are reported in Fig. 2a. The
vehicle with NMPCbas significantly deviates from the reference trajectory, and exits the
turn with unsafe lateral and orientation errors. On the contrary, the drifting behaviour
inducedbyNMPCMz andNMPCMz,δr enables theEV to effectively complete themanoeu-
vre. The DYM interventions create an asymmetric braking force distribution between
the EV sides, resulting in increased yaw rate and rear slip angle magnitudes, which
enhance manoeuvring agility. However, the Mz profile requested by the PT controller
is very different from the one generated by the vehicle through the CA algorithm, see
the mismatch between the ‘NMPC’ and ‘Plant’ curves in the Mz plot. This is caused
by the absence of the lateral load transfer in the prediction model, and the purposely
relaxed constraints on the longitudinal force and DYM, to fully utilise the tyre-road
friction capability. While the δr actuation does not improve performance in the 135-deg
turn, the counterphase actuation of δf and δr can facilitate vehicle oversteer [11], with
potential benefits during more aggressive manoeuvres, such as the U-turn in Fig. 2b, for
which a higher initial destabilizing effect is desirable. Since the inner wheel tends to be
saturated during high lateral acceleration manoeuvring, the DYM intervention struggles
generating the destabilizing effect required to induce controlled drifting, which, instead,
can be more effectively induced with the RWS intervention. As a result, NMPCMz,δr

generates higher yaw rates, reducing the DYM intervention as well as the lateral and
speed tracking errors. For NMPCMz and NMPCMz,δr , Table 1 includes a set of PT key
performance indicators (KPIs), including the maximum and root mean square (RMS)
errors of the lateral position and speed, along with the maximum sideslip angle mag-
nitude, indicating the extent of the controlled drifting behaviour. The RWS actuation
of NMPCMz,δr reduces the lateral error by ~1.8 m during the U-turn test, compared to
DYM intervention alone of NMPCMz . The best trade-off between the lateral and speed
tracking errors is achieved with a maximum rear steering angle magnitude of 10 deg.
A further increase to 15 deg results in higher |β|max (up to 44 deg), lower RMSevx , and
increased

∣∣ey
∣∣
max(by 0.17 m).
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Fig. 2. Simulation results for (a) the 135-deg turn and (b) the U-turn, for NMPCbas, NMPCMz ,
and NMPCMz,δr with maximum RWS angle constraints equal to 5, 10, and 15 deg.

Table 1. KPIs along the 135 deg-turn and U-turn (the best values are highlighted in bold).

Case Configuration
∣
∣ey

∣
∣
max RMSey RMSevx |β|max

[m] [m] [km/h] [deg]

135-deg turn NMPCMz 3.88 0.988 1.574 17.3

NMPCMz,δr , δr,max = 5 deg 4.09 1.227 1.553 38.6

NMPCMz,δr , δr,max = 10 deg 4.16 1.131 1.176 53.1

NMPCMz,δr , δr,max = 15 deg 4.30 1.139 1.211 63.0

U-turn NMPCMz 3.347 0.945 3.265 16.9

NMPCMz,δr , δr,max = 5 deg 1.572 0.397 1.618 27.8

NMPCMz,δr , δr,max = 10 deg 1.476 0.337 1.223 39.6

NMPCMz,δr , δr,max = 15 deg 1.493 0.329 1.110 44.2
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4 Conclusion

The study introduced a nonlinear model predictive controller (NMPCMz,δr ) for the con-
current actuation of the front and rear steering angles, the total longitudinal tyre force
and its distribution between the axles, as well as the direct yawmoment, to execute drift-
ing manoeuvres when beneficial to the path tracking (PT) performance in emergency
conditions. The simulation results, based on an experimentally validated vehicle model,
highlight that: i) drifting is very effective in dealing with challenging trajectories that
PT controllers coupled with conventional vehicle stability controllers cannot achieve
(see the NMPCbas results), thereby enhancing the collision avoidance capability; and
ii) in the more demanding scenario, i.e., the U-turn test, the rear steering actuation of
NMPCMz,δr significantly enhances the tracking performance, by reducing the maximum
lateral error by ~1.8 m compared to NMPCMz .
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Abstract. Controlling a vehicle’s powerslide motion in the presence of
a human driver is a challenging control task, but one that may have
a significant impact on vehicle safety, for example, during rapid eva-
sive manoeuvres. Reinforcement Learning, a data-driven optimal control
strategy, has gained increasing attention in recent years, demonstrating
its effectiveness in successfully controlling various nonlinear systems. In
this work, a novel powerslide controller is designed for an all-wheel drive
battery electric vehicle with individually driven front and rear axles and
a human driver in closed-loop using Reinforcement Learning. The per-
formance of the proposed controller is analysed, and its robustness to
steering disturbances and changes in road friction is demonstrated.

Keywords: Powerslide · Reinforcement Learning · Driver Assistance
System · Powerslide Control · Drift Assistance · Optimal Control

1 Introduction and Related Work

The ability to control a vehicle in extreme driving conditions, such as the power-
slide, where large vehicle sideslip angles, large traction forces and large negative
steering angles occur, is of great interest to the automotive industry. Since the
powerslide is an unstable motion, [4] addresses the observability and controllabil-
ity characteristics for both rear-wheel drive (RWD) and all-wheel drive (AWD)
vehicles. Depending on the drive concept, the powerslide can be stabilised in dif-
ferent ways. In recent years, Reinforcement Learning (RL), a data-driven control
approach, has become increasingly popular and has been considered to stabilise
the powerslide in this work. In [1] and [9], RL is used to control the steering
wheel angle and the drive train in simulation, while in [2], RL-based controllers
are successful tested on radio-controlled (RC) model cars in real world. The
development of battery electric vehicles (BEVs) and the possibility of using
individual electric motors on each axle opens up new control strategies. While
previous works considered the autonomous drift controlling both the vehicle’s
c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 862–868, 2024.
https://doi.org/10.1007/978-3-031-70392-8_121
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drive train and the steering system, [3] proposes a linear controller that controls
front and rear axle torques in the presence of a human driver. This controller
shows great performance in simulation; however, when tested in the real world,
it requires application effort to handle specific road conditions. In this work, a
novel RL-based controller is proposed for an AWD BEV to control the individ-
ually driven front and rear axles with a human driver in the loop. Moreover, the
robustness of the proposed controller in terms of steering disturbances from the
driver and sudden road friction changes is analysed. Further, the controller is
integrated into a test vehicle and the control performance is proven in a real-
world test case. The remainder of this paper is structured as follows. In Sect. 2,
the general problem setup, the vehicle model and the RL problem are intro-
duced, while in Sect. 3, the test configuration and the results in simulation and
in real world are presented. Section 4 gives a brief summary and an outlook.

2 Problem Formulation

This section introduces the vehicle and driver model used in the simulation
environment, and the general methodology of RL.

Vehicle and Driver Model. The nonlinear two-wheel vehicle model in Fig. 1
at time step t ∈ N0

xt+1 = fcar (xt,ut) , (1)

is considered, with vehicle state x ∈ X and input u = [δ, Tfront, Trear]
T ∈ U ,

where Tfront and Trear denote the front and rear axle torques, respectively. In
the presence of a human driver, the steering angle δ is defined by the nonlinear
driver model [6]

δ = fdriver (β, v, e,Δψ) (2)

based on vehicle sideslip angle β, velocity v, lateral deviation e and orienta-
tion Δψ relative to the desired path.

Fig. 1. Two-wheel vehicle model with independently driven front and rear axles.
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Control Goal. While the driver (model) in (2) focuses only on path-tracking
by applying δ, the RL-based controller’s task is to initiate and stabilise the
powerslide by applying Tfront and Trear. Although the control tasks are separated,
they are expected to interfere with each other.

Reinforcement Learning. In RL, an agent learns a policy based on the inter-
action with its environment. The agent acts on the environment using con-
trol ut ∈ Û = U\{δ} sampled from policy πθ(u|x) with policy parameters θ
based on the current environment state xt. The agent observes the next envi-
ronment state xt+1 and receives a reward rt+1 defined by the reward function
R associated with the tuple [xt,ut,xt+1]. A Markov Decision Process (MDP)
described by 〈X , Û , R, fcar,X0〉 is assumed, where X0 ⊆ X denotes the initial
state distribution. Starting from an initial state x0 ∈ X0, the MDP forms a
trajectory τ of states, actions and rewards. The central objective is to find an
optimal control policy π∗ that maximises the expected sum of discounted rewards

π∗ = arg max
πθ

E
τ∼π

[∑∞
t=0

γtrt

]
(3)

with discount factor γ ∈ [0, 1] balancing the present impact of future rewards.
To find policy parameters θ, optimisation problem (3) can be solved using policy
gradient methods, e.g. Proximal Policy Optimization (PPO) [7,8].

Observation Space and Action Space. At each time step, only a sub-
set of the entire environment state is visible to the agent. The observation
space o = [β ψ̇ v ωfront ωrear δ βtarget βref]T comprises vehicle sideslip angle β,
yaw rate ψ̇, velocity v, angular speed of front axle ωfront and rear axle ωrear,
respectively, and the steering angle δ. Moreover, the agent receives information
about the target steady-state vehicle sideslip angle βtarget and the predefined
vehicle sideslip angle reference trajectory βref on how to reach βtarget. The vehi-
cle sideslip angle reference is a ramp function with a slope of −9◦/s, derived from
expert knowledge, converging to βtarget. While the first six entries in o reflect
sensor information available in the car, the last two entries are required to fulfil
the control task. To stabilise the powerslide, the agent can individually control
both the front axle torque Tfront and the rear axle torque Trear, however only
positive torque values are feasible, which excludes the possibility of braking.

Reward Function. During training, the agent tries to learn a policy that max-
imises the reward function. To simultaneously encourage the agent to stabilise
the powerslide and to stay on the circular path,

R (β, e) =
∑2

i=1
wiRi = wslipRslip (β) + wpathRpath (e) , wi ∈ [0, 1] (4)

is chosen as a weighted sum of the reference vehicle sideslip angle tracking and the
trajectory following reward Rslip and Rpath, respectively. The reward terms Ri =
exp

(−ciΔ
2
i

)
with the deviation of the control target Δi and shaping parameter ci

ensure a positive learning signal.
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3 Experiments

The agent is trained in simulation and evaluated in simulation and in real world.

Training and Network Architecture. Throughout the training, two multi-
layer perceptron (MLP) networks are trained, one for the policy and one for the
value function. Both networks share the same architecture, namely three hid-
den layers and use Exponential Linear Unit (ELU) activation functions. Before
the observations are passed into the policy network, they are normalised to the
range [–1,1]. The output of the policy network is clipped to the range [–1,1]
and scaled to the admissible torques. To improve exploration during the train-
ing, generalised state-dependent exploration (gSDE) is used. The learning rate
is set to 2e−4 and the discount factor to 0.9999. ADAM is used to optimise the
networks [5]. To accelerate the training, 40 environments are run in parallel. A
training episode is terminated when it exceeds 40 seconds. However, it is pre-
maturely terminated when the vehicle leaves the track or when the difference
between the current vehicle sideslip angle and the reference exceeds a certain
threshold. A rollout buffer size of 409600 and a batch size of 5120 are used.

3.1 Testing

The trained controller is tested in both simulation and real world.

Simulation. The controller is trained on different configurations of the environ-
ment, where each configuration is randomly initialised. In the first example, the
controller is exemplarily evaluated with a target vehicle sideslip angle of –30 deg
on a circular path with radius R = 60m and friction coefficient μ = 0.21, see
Fig. 2. The vehicle starts with an initial velocity of 20 km/h and transitions into
a stable powerslide motion following the vehicle sideslip angle reference βref.
Figure 2 shows that the controller successfully learnt to transition the vehicle
from regular steady-state cornering into powerslide and to stabilise the power-
slide motion. To initiate the powerslide and to increase the vehicle sideslip angle,
a high rear axle torque compared to the front axle torque is applied. Once the
target vehicle sideslip angle is reached, front and rear torque converge to a fixed
drive torque distribution of γ = Trear/(Trear + Tfront) = 0.84.

Fig. 2. Simulation of the powerslide with a target vehicle sideslip angle of −30◦ on a
circular path with radius R = 60 m and friction coefficient μ = 0.21.
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In the second example, the controller’s robustness to steering and road fric-
tion disturbances is focussed. In the first scenario, a disturbance of the steer-
ing angle δ is considered, while in the second scenario, the road friction μ is
instantaneously increased (μ↑) and decreased (μ↓). The steering angle distur-
bance is represented by a shifted cosine function over a single period of 0.5 s
with an amplitude of 1.5◦ towards the inside (δ↑) and the outside (δ↓) of the
turn. For these evaluations, the environment configuration is adapted to radius
R = 18.5m and friction coefficient μ = 0.35, corresponding to the real-world
setting. Figure 3 shows the vehicle sideslip angle trajectories resulting from the
steering wheel angle disturbance and the change of the friction value. In both
scenarios, the vehicle motion is successfully stabilised by the controller.

Fig. 3. Simulation of the powerslide with a target vehicle sideslip angle of −30◦ on a
circular path with radius R = 18.5 m and friction coefficient μ = 0.35. Robustness is
analysed by applying a disturbance to the steering angle (upper plots) and a change
of the road friction (lower plots) at time t = 20 s.

Real World. The controller is deployed on a conventional, consumer-grade com-
puter, which is connected to the vehicle’s embedded hardware. The test vehicle is
a series production electric sports car. Vehicle sensor data and computed controls
are exchanged between the computer and the vehicle via the XCP-protocol using
prototype hardware. The controller runs cyclically with a sampling frequency of
100 Hz. For the control task, only built-in sensor signals of the vehicle are used,
except for the vehicle sideslip angle, which is provided by an additional inertial
measurement unit (IMU) mounted in the car. The measurements are collected
on a watered circuit with 18.5m radius and an estimated friction coefficient of
0.35. In the experiment, the vehicle starts in regular steady-state cornering with
an initial speed of 20 km/h and after time step t = 5 s, it transitions to the
powerslide with a target vehicle sideslip angle of −30◦, see Fig. 4. The controller
stabilises the powerslide motion, however, oscillations of the vehicle side slip
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angle are present. This could be due to the driver influence, latencies or sensor
noise in the control loop.

Fig. 4. Measurements of the powerslide with a target vehicle sideslip angle of −30◦ on
a circular path with 18.5 m radius and an estimated friction coefficient of 0.35. Vehicle
sideslip angles β1 and β2 were recorded with different drivers.

4 Summary and Outlook

In this paper, an RL-based controller is developed to stabilise the powerslide of
a vehicle with a human driver in charge of steering only. This is achieved by
controlling the front and rear axle torques of an AWD BEV. The control perfor-
mance of the powerslide controller on a circular path both in simulation and in
the real world is demonstrated. For the latter case, the controller is tested in a
series production electric sports car. The experiments clearly show that the pro-
posed controller reacts appropriately to steering disturbances and instantaneous
changes in the friction coefficient, revealing the robustness of the controller.
Moreover, the tests prove that the controller, which was exclusively trained in
simulation is also capable of stabilising the powerslide motion in real-world appli-
cation. This indicates the capability of RL controllers to bridge the simulation
to reality gap, since it has to deal with unmodelled real-world phenomena.

Future work should investigate the performance of RL-based controllers
across a broader range of drivers, friction coefficients, and vehicle platforms.
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Abstract. Degraded suspension dampers strongly influence vehicle
safety and ride comfort, but often occur after several years of opera-
tion. Related workshop checks are usually not degradation-adaptive, so
they can be significantly delayed to the need for maintenance. To make
the maintenance adaptive to degradations, onboard diagnosis methods
can be used, which rely on the degradation status extracted from sen-
sor signals.To support the development of sensitive yet robust diagnosis
models, a model that can simulate and explain the effects of damper
degradation in common sensor signals is proposed. This paper focuses on
low-frequency effects in signals of the wheel speed sensors, which are ultra
low cost and always available in modern vehicles. As a result, the model
shows a good qualitative match to real-world test drives, specifically in
the frequency domain. Therefore, various real-world measurements were
conducted, in particular, test bench measurements of degraded dampers
and vehicle on-road tests.

Keywords: condition-based maintenance · damper degradation ·
diagnosis models

1 Introduction

New trends in automotive mobility, such as shared vehicles and highly auto-
mated driving, require advanced methods to self-responsibly diagnose main-
tenance needs. In contrast to regular, pre-scheduled, or reactive maintenance,
advanced maintenance strategies have a decisive advantage: the maintenance
activity can be adapted to the actual degradation state. These maintenance
strategies include so-called condition-based maintenance, based on diagnostic
models that continuously monitor the degradation status of one or more compo-
nents. The paper focuses on the suspension damper, which often degrades over
time; according to a report, more than every hundredth vehicle fails a regular
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check after seven years due to faults related to suspension springs and dampers,
[1]. Wheel speed sensors are ultra low cost, available in every modern vehicle and
are close to suspension dampers, which makes them attractive as limited sensor
set. The analysis of wheel speed signals in the presence of degraded dampers
shows that effects from degradation occur in the frequency domain, see Fig. 1.
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Fig. 1. Measured effects of damper degradation on wheel speed signals

Therefore, the focus of this paper is to explain, how these effects are transmit-
ted from the damper to the signals and how they depend on chassis parameters
and environmental conditions. Existing studies focus directly on the develop-
ment of diagnosis models, e.g., [2–4], rather than on explanations of these effects.
Building up a deeper understanding of the these effects could potentially help to
develop sensitive yet robust diagnosis models. In contrast, approaching the diag-
nosis model development purely data-driven demands excessive data collection
due to the high variance of chassis parameters, including different suspension
damper and spring variants and different tyres, in different vehicle models.

2 System Model

Dynamics simulation that can handle degradation effects and parameter varia-
tions can help to better understand these effects. To select a suitable model, an
approximately constant vehicle speed is assumed, thus pitch and roll motions are
neglected. Consequently, a quarter-car model with single-point excitation serves
as a base model for this study, see, e.g., [5]. The frequency range of interest
is limited to the vertical natural frequency of the un-sprung mass m2, typically
between 12–15 Hz [6]. To simulate the wheel speed signals, the quarter-car model
is extended by a rotational degree of freedom of the wheel. The angular velocity
of the wheel is denoted ω. Consequently, we add to the equations of motion of
the quarter-car model, Euler’s law for the wheel, equation (2), where I2 denotes
the wheel polar moment of inertia, rl is the loaded radius and Fx the longitudi-
nal tyre force. In addition, a moment My is introduced, which represents rolling
resistance effects and the influence of tyre eccentricity. Typically, the natural
frequency related to the un-sprung mass in the longitudinal direction lies in the
frequency range of interest. Thus, the model is further extended by the equation
of motion (1) in the longitudinal direction, with longitudinal suspension stiff-
ness cSx and damping coefficient kSx. For all model-based analyses, the model is
parametrised with values from [7]. A schema of the model is depicted in Fig. 2.
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The road is modeled as stochastic excitation, [5], whereby the waviness is
kept constant with a value of 2, and the degree of unevenness is varied in typical
values. A single-contact-point transient tyre model, [7], is applied; decoupling of
belt and rim mass is not considered since the frequency range of interest is well
below the in-plane first natural frequency. Due to the assumed constant vehicle
speed v1, the slip states are small, and tyre forces are assumed to be linear
with respect to the transient longitudinal slip κ′ in (3), where CFκ

denotes the
longitudinal slip stiffness, κ′ the longitudinal transient slip, u the longitudinal
tyre deflection in the contact patch and σκ, the relaxation length. The first-order
differential Eq. (4) is employed, where the input is the longitudinal slip velocity
Vsx = V2 − reff · Ω. For the simulation of the effects of the degradation of the
suspension damper, the damping coefficient kSz is reduced by 30%.
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Fig. 2. Schema of the system model Fig. 3. FFT of simulated wheel speed
signal

For a more detailed analysis and later comparison of simulation and mea-
surement results, measurements with an Audi A6 are performed. The relevant
model parameters are measured on a Kinematic and Compliance Test Rig. Fur-
ther measurements include measuring the suspension spring and the damper in
new condition and with 50% oil loss, and the suspension stiffness in the longitu-
dinal direction.
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3 Results

The simulation results are analysed in the frequency domain. Figure 3 shows
the relevant characteristic frequencies. These frequencies include the natural
frequencies related to the sprung mass, to the un-sprung mass in vertical and
longitudinal directions, and to the rotation frequency of the wheel. In the follow-
ing, the influence of My is neglected in the simulation results and related effects
in the measurement signals are filtered out.

From (2), it is evident that the wheel speed ω is influenced by the term
rLFx, which depends on the parameters reff , σκ, CFκ, all functions of wheel load
Fz, [7]. Variations of σκ and CFκ with Fz do not exhibit significant effects on
the simulated wheel speed. Therefore, the subsequent analysis focuses on the
parameters rL and reff . For both, a linear dependency on Fz is assumed based
on values from [7]. If dependencies are set to zero, degradation effects cannot
be observed. It becomes clear that reff and rL couple the vertical motion and
effects of a degraded damper (influencing the wheel load) with the rotational
wheel motion and wheel speed ω.
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Fig. 4. Sensitivity analysis of wheel speed signals to tyre parameter variations

Figure 4 illustrates that a variation of the loaded radius with wheel load,
f eff∗(Fz), affects the simulated wheel speed across the investigated frequency
range; an increasing slope in the linear relationship amplifies the vibrations. The
dependency of the effective rolling radius on the wheel load, f l∗(Fz), affects
the simulated wheel speed vibrations below 20 Hz. In addition to changes in
magnitude, also the vertical natural frequency of m2 is shifted. An increasing
slope shifts the natural frequency towards greater values.

Besides the tyre parameters, road roughness and vehicle speed show consid-
erable effects on the wheel speed in simulation, which are not addressed here in
more detail.

Figure 5 depicts the simulated wheel speeds for a well-functioning and a
degraded suspension damper. In comparison to Fig. 1, it is remarkable, that
degradation-induced effects within the frequency range related to the natural
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frequency of the sprung mass, at approximately 1.4 Hz, are observable in the
simulated signals but remain absent in the measurements. Furthermore, the mea-
surements reveal effects spanning the frequency spectrum from 3 to 11 Hz, which
are not evidently mapped by the simulation results. The measurements show an
influence concentrated around the vertical natural frequency of the un-sprung
mass, approximately within the range of 11 to 16 Hz. This phenomenon is cap-
tured by the simulation. Beyond 16 Hz, both the simulated and measured signals
show negligible effects.
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Fig. 5. Spectra of simulated wheel speeds for a well-functioning and a degraded sus-
pension damper

The influence of road roughness can be observed in other measurements,
which is mapped well by the simulation. However, the simulation results show
a strong dependency on vehicle speed, which cannot be confirmed by the mea-
surements. If the vertical tyre stiffness cT and the effective rolling radius reff

become functions of vehicle velocity and inflation pressure, as addressed in [8],
the simulation to reality gap is decreased.

4 Discussion and Conclusion

The above findings outline the potential of physics-based models to simulate the
effect of suspension damper degradation on wheel speed signals. The model can
be parameterised with few parameters, and it can be used to explain measured
degradation effects and further to systematically develop a diagnosis model for
condition-based maintenance. A respective physics-informed machine learning
diagnosis will be published in a further research paper soon, which uses physics-
based knowledge derived from the system model above.

First, the simulation of degradation effects can be used to engineer features
with a high degradation-information to noise ratio. The simulation results indi-
cate that frequency-based features in the range of 12 to 15 Hz are particularly
suitable.

Second, the sensitivity analysis reveals that the model parameters influenc-
ing wheel speed signals, aside from damper degradation, can be confined to a
limited set. This knowledge is significant as it gives an argued indication of
critical parameter combinations for the development and testing of a diagnosis
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model, where the challenge is to remain robust against varying vehicle and envi-
ronmental parameters while also being efficient, e.g., collecting no data of not
influencing parameters.

The results demonstrate that vehicle speed, road roughness and the influence
of tyre radii depending on wheel load should be considered for a diagnosis model.
The sensitivity analysis shows, that these parameters influence the wheel speed
signals within the frequency range associated with a damper degradation effect,
which indicates that diagnosis purely based on wheel speed signals is difficult.

Future research may focus on methods that can fuse information from esti-
mated environment and vehicle parameters and features that include information
about the degradation state, enhancing both diagnostic sensitivity and robust-
ness in real-world scenarios. Moreover, discrepancies between simulated and mea-
sured signals revealed areas for further refinement.
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Abstract. To ensure functional safety of vehicle dynamics controllers, monitor-
ing functions are used to limit the effectiveness of lateral dynamic inputs to a safe,
controllable level. For this purpose, driving situation dependent limits for maxi-
mum permissible lateral dynamic inputs are determined with the help of subject
studies. To exploratively investigate limits of a steer-by-wire superposition func-
tion in a nonlinear driving situation, a subject study (N = 52) was conducted in
a semi-dynamic driving simulator. This paper presents the study design and dis-
cusses the results obtained. A 4 × 4 within subject design including an additional
baseline conditionwas used to investigate the independent variables steering angle
fault and side slip angle. First, significant effects on themaximum lateral deviation
and the integral of the side slip angle are demonstrated with a two-way ANOVA,
thus proving the methodical approach. Second, limits for permissible additional
steering input of a steer-by-wire system in an oversteering driving situation are
determined from the obtained data.

Keywords: Steer-by-Wire · Functional Safety · Controllability

1 Introduction

Controllability in vehicle dynamics is generally considered as the driver’s ability to
follow a desired course by having a direct feedthrough of control inputs via the steering
wheel [1]. It is the task of functional safety to ensure this controllability even in the
event of failures by limiting their effectiveness [2]. For this purpose, driving situation
dependent limits for maximum permissible dynamic inputs are determined with the help
of subject studies where system faults are systematically injected [3]. With the use of
new actuators such as steer-by-wire systems, which offer additional degrees of freedom
for lateral control, the limits of driving dynamics are of increasing interest for such
controllability studies. Thus, this paper presents the design and the results of a subject
study investigating the effects of faults of a steer-by-wire superposition function.

Previously published studies have largely defined the driving situation by variations
of vehicle speed and lateral acceleration and are therefore based on common standards
[4]. Neukum et al. [5] have previously investigated superposition steering system faults,
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but restricted their analysis to a maximum steering fault of 3° at tire level and only
considered straight-ahead driving. Schneider [6] also examines higher yaw moment
disturbances, triggered by faults in the ESC actuators, but also refers to straight-ahead
driving. In both cases, the authors argue that straight-ahead driving represents a worst-
case scenariowhen assessing lateral dynamicmalfunctions [7]. However, it remains open
to what extent the limits shift during transient maneuvers. To investigate the impact of
steering torque recommendation, Mehrjerdian et al. [8] investigated the driver’s reaction
in an oversteer situation, reproducing side slip angles of approx. 3° using a kickplate.

In contrast to the research mentioned above, the study presented in this paper is
intended to take the increased potentials of steer-by-wire based superposition systems
into account by assessing larger fault amplitudes in more critical driving situations
characterized by higher side slip angles. It focusses on faults which decrease the yaw
reaction since this is the effective operating area of superposition steering systems in
oversteering driving situations. The following research questions are mainly addressed:
(1) Do steering faults of a superposition steer-by-wire system which decrease the yaw
reaction lead to a reduction in controllability at the limits of driving dynamics? (2) How
do the effects of such steering angle faults differ depending on the criticality of the initial
driving situation?

To answer the research questions a subject study on a semi-dynamic driving simulator
was conducted. The study design uses a new methodical approach to conduct subject
tests at the limits of driving dynamics in a reproducible manner. Thus, the evaluation
of the applied methods and evaluation criteria is also part of this paper’s contribution.
Methods and design of the subject study are explained in more detail hereinafter.

2 Study Design

In total, 52 (age range= 20–65 years) participants took part in the study. The participants
had a valid driving license for an average of 18 years and reported a yearly driving amount
from 5.000 to more than 50.000 km. Two thirds of the participants reported having
prior experience in simulated driving environments. 33% of the participants attended
safe-driving trainings.

2.1 Driving Maneuver and Fault Injection

To investigate the research questions described above, the participants experienced the
following driving situation: Driving on a rural road with a reference trajectory defined
by a pylon lane and a center line. The road consisted of 32 consecutive curves with a
length of 240 m and a radius of 75 m. To simplify the driving task and to standardize the
driving situation, a constant speed of 86 km/h was set using cruise control. This speed
results in stationary circular driving close to the maximum adhesion utilization of the
tires.

The cornering was divided into three phases (Fig. 1b). In phase I, the vehicle was set
to a defined side slip angle β0 by a controlled traction stimulus at the rear axle in order to
create a reproducible unstable driving situation. A reversible, initially yaw-decreasing
steering angle fault δF was then injected near the curve apex over a period of 1 s. It is
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known from literature that compensatory actions of a driver generally start 250 ms after
fault injection and are completed after 1.5 s [5]. Thus, the chosen fault duration is within
the most critical time frame. Figure 1a shows an example of stimulus M relative to the
maximum drive torque and steering fault δF .

Fig. 1. Side slip angle β and lateral deviation�y based on the lateral stimuliM and δF (a) during
an example cornering with separated phases for destabilization (Phase I), fault injection (Phase
II) and evaluation (Phase III) (b).

2.2 Study Design and Procedure

A 4 × 4 within-subject design including additional baseline conditions was used to
examine the independent variables initial side slip angle β0,m at the end of phase I
and amplitude of steering angle fault δ

∧

F,n. Each combination of β0,m and δ
∧

F,n defines
a specific test condition (TCmn). During baseline conditions (BLm0), the participants
experienced solely an unstable driving situation without any steering angle fault. The
baseline conditions serve as controllability references of the nonlinear driving situation
to objectively evaluate the criticality of injected steering angle faults. Each participant
experiences conditions shown in Table 1 two times, once for left and once for right hand
curves.

Two dependent variables were chosen to evaluate the criticality of the test conditions
defined above. First, the integral of the absolute side slip angle |β| during phase III
generally indicates the instability of the driving situation [9]. Second, the maximum
lateral deviation |�y|max from the reference line is used to evaluate the ability to follow
the track. In the following, both values are used as indicators for the criticality of a
steering angle fault. In contrast to former controllability studies, no absolute criterion
was used to assess pass or fail of a test condition. Instead, we use baseline-related values
for the dependent variables:

∫|β|TCmn = ∫|β|TCmn

max
(∫|β|BLm,R; ∫|β|BLm,L

) (1)
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Table 1. Test conditions of the 4× 4 within-subject design including baseline conditions (δ
∧

F,0 =
0°)

Amplitude of steering angle fault δ
∧

F,n (deg)

0 25 50 75

Initial side slip angle β0,m (deg) 0 BL10 TC11 TC12 TC13

5 BL20 TC21 TC22 TC23

10 BL30 TC31 TC32 TC33

15 BL40 TC41 TC42 TC43

|�y|maxTCmn = �|y|max,TCmn

max
(
�|y|max,BLm,R;�|y|max,BLm,L

) (2)

For each β0,m there is a baseline value for a left-hand (L) and a right-hand (R) curve. In
Eqs. (1) and (2), the maximum of these two values is used to consider the most critical
cornering without steering angle fault. According to these definitions, a baseline-related
value greater than 1 corresponds to increased criticality as a consequence of a steering
angle fault.

3 Results

For the analysis a data set of 48 valid test runs was used. A significance level of α =
0.05 was defined for all inferential statistical tests. The curve direction had no significant
effect on the dependent variables (p∫

β = 0.26, p�y = 0.21). Therefore, themeasurements
for left and right curves were combined into a repeated measures model in the following
analyses. The Mauchly test revealed that the requirement for sphericity of the measure-
ment data is not fulfilled. The differences in variance are plausible due to the changed
criticality of the driving situations caused by the independent variables. However, in the
following evaluation Huynh-Feldt (HF) corrected p-values are used to compensate the
violation of sphericity.

3.1 General Inferential Statistics

The results of a two-way ANOVA carried out for the repeated measures model are listed
in Table 2. The results of the significance test (pHF ) reveal significant effects of β0
and δF on both dependent variables (pHF < .001). Based on the explained variation
(η2p), the effect size f can be determined according to Cohen [10]. Following Cohen’s
classification of the effect size f , the measurement data shows an almost entirely strong
effect (f > 0.4) of the within-subject factors on ∫|β| and �|y|max. A medium effect
can be observed for the interaction δF : β0 on the dependent variable ∫|β| (f > 0.25).
These results show that the study design effectively captures the relationship between
independent and dependent variables in a nonlinear driving situation.
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Table 2. Metrics for the assessment of the chosen study design

Dependent variables

∫|β|TCmn �|y|maxTCmn

Within-subject factor δF pHF < .001; η2p = 0.47; f =
0.94

pHF < .001; η2p = 0.53; f =
1.06

β0 pHF < .001; η2p = 0.32; f =
0.68

pHF < .001; η2p = 0.23; f =
0.54

δF : β0 pHF < .001; η2p = 0.08; f =
0.29

pHF < .001; η2p = 0.19; f =
0.48

3.2 Descriptive Analysis

To determine maximum permissible yaw-decreasing faults, the medians of the baseline-
related maximum lateral deviation�|y|max and integral of side slip angle ∫|β| are exam-
ined. Figure 2 summarizes the results for all test conditions. Values greater than 1 corre-
spond to an increase in the lateral deviation or integral of side slip angle compared to the
baseline condition and thus indicate reduced controllability resp. Increased instability
of the driving situation. The comparison shows that the impact of the steering angle
fault δF on both dependent variables tend to diminish as the initial side slip angle β0
increases. For lower initial side slip angles (β0 = {0◦, 5◦}) the median values of both
dependent variables increasewith increasing steering fault.Whereas forβ0 = {10◦, 15◦}
even improvements in stability and controllability are observable.

Fig. 2. Median values for baseline-related values of themaximum lateral deviation and the integral
of side slip angle

This descriptive observation is supported by one-tailed t-tests. The results show a
significant increase in the mean values of ∫|β| for all test conditions compared to the
baseline conditions (p < .01) at lower initial side slip angles (β0 = {0◦, 5◦}). For higher
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initial side slip angles β0 = {10◦, 15◦}, no significant difference in mean values could
be detected (p > .99).

No significant differences between mean values of baseline and test conditions were
also found for �|y|max at β0 = 15◦ (p = .28). For β0 = 10◦, there is a significant
increase for test conditions with δF = {50◦, 75◦} (p < .01). For a steering angle fault of
25°, there is no significant difference in the means (p = .78).

4 Discussion

The subject study identified significant effects caused by steering angle faults which
decrease the yaw reaction in the nonlinear region of driving dynamics. Due to the high
effect sizes, the proposed study design is suitable for investigating controllability in
oversteering driving situations. Based on the descriptive analysis, the initially formulated
research questions can be answered as follows: Yaw decreasing steering angle faults
can reduce controllability at the limits of driving dynamics. The impact depends on the
amplitude of the steering angle fault and the criticality of the initial situation. The steering
angle faults investigated in this study were even found to improve controllability as the
initial side slip angle increased. In summary, only the test conditions TC31, TC41, TC42
and TC43 (see Table 1) show an improvement in stability and controllability according
to the analysis in Sect. 3.2 and can therefore be assessed as permissible. In further
investigations, additional grid points of the independent variables, especially at smaller
side slip angles, should be examined to enable correlation analysis.
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Abstract. In highway driving, understanding the intentions of sur-
rounding vehicles is a crucial prerequisite to ensure collision-free lane
changes. In this study, an automated lane change system framework is
proposed for highway driving. A Long Short-Term Memory (LSTM)-
based network is utilized to predict the paths of surrounding vehicles as
probability distributions. When initiating a lane change, multiple can-
didate paths are generated, and the collision probability is then calcu-
lated by considering the generated paths of the host vehicle and the
predicted paths of surrounding vehicles. Using the vehicle as a reference,
the collision risk area is defined first related to the lane change. Secondly,
the probability of the predicted distribution of the surrounding vehicles
existing within this area is integrated to derive the collision probabil-
ity. Subsequently, the collision-free optimal path is adopted, and Model
Predictive Control (MPC) is employed for path tracking. The proposed
framework was validated on a highway-like proving ground.

Keywords: trajectory prediction · risk assessment

1 Introduction

The safety and importance of lane changes on highways are critical in
autonomous driving. Ensuring these maneuvers are safe is essential for efficient
navigation and obstacle avoidance. Recent advancements have emphasized the
need for reliable automated lane-change systems, drawing significant attention
from researchers and industry professionals [8].

Trajectory prediction of surrounding vehicles is essential for safe lane changes.
Despite progress in predicting vehicle trajectory using various learning-based
models, real-world application remains limited [4]. Few studies have implemented
these systems in actual vehicles, highlighting a gap between theory and practice.
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Although various studies have been conducted on risk assessment, it is com-
mon to predict the trajectories of surrounding vehicles using simple models such
as constant velocity and acceleration models [5].

Therefore, this paper aims to bridge these gaps by presenting an automated
lane-change system using a probabilistic trajectory prediction network. Through
risk assessment between the predicted trajectory and the generated lane change
candidates, the optimal lane change trajectory is generated. The real-time effec-
tiveness of the proposed framework is validated through real vehicle experiments.

2 Probabilistic Trajectory Prediction Network

In this study, an efficient LSTM encoder-decoder network structure [3], ensuring
real-time performance, is employed to predict the trajectories of surrounding
vehicles in the form of a probability distribution.

2.1 Input and Output Representation

The input of the network at timestep t = T is the past trajectory of the target
vehicle, Xhist, in the following form.

Xhist(T ) = [(xT−Th , yT−Th), ..., (xT−1, yT−1), (xT , yT )] (1)

where x, y indicate the position of the target vehicle and Th is the length of
the history. The output of the network is a bivariate normal distribution of the
future trajectory, represented by mean and variance.

Ypred(T ) = [fT+1
xy , ..., f

T+Tf−1
xy , f

T+Tf
xy ] (2)

where Tf is the length of the predicted future trajectory and

fxy = [(μx, μy, σx, σy, ρ)] (3)

is the parameters of the bivariate normal distribution. The interaction between
the ego and target vehicle is considered by extracting the spatial vehicle inter-
action feature using convolutional social pooling [1].

2.2 Input Data Preprocessing

Since surrounding vehicles are detected through perception sensors, the initially
obtained position of the target vehicle are based on the local coordinate of the ego
vehicle. To enable the network to effectively learn the dynamic characteristics of
the target vehicle and its relationship with the lane, the trajectory of the target
vehicle are transformed into lane coordinate-based position.

Therefore, a two-step coordinate transformation is applied. First, the posi-
tion of the target measured in the local coordinate system (x, y)lo is transformed
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into the position in the global coordinate system (x, y)g using the vehicle’s local-
ization data:

(x, y)g = T1((x, y)lo; (X,Y, θ)ego) (4)

where T1 is the rigid transformation matrix and (X,Y, θ)ego represents the global
position and heading angle of the ego vehicle. Next, with the stacked trajectory
history in the global coordinate Xhist,g, using the map data of the current driving
lane, the lane heading is calculated and the global position is transformed into
the lane coordinate system:

Xhist,la = T2(Xhist,g; θla) (5)

where T2 is the rigid transformation matrix and θla is the lane heading angle
in the global coordinate. Note that Xhist,la is transformed so that the current
position Xhist,la(Th + 1) = (0, 0). Once the prediction is performed, the output
(lane coordinate) is transformed back to the local coordinate.

2.3 Dataset and Training

The proposed method is trained using a dataset that combines the HighD dataset
with data acquired from real-world vehicle experiments. Since the network’s
output follows a normal distribution, we employ the negative log-likelihood as
the training loss.

3 Collision Risk Assessment

3.1 Lane Changing Trajectory Candidate Generation

Using the lane information, lane change (LC) trajectories are generated in the
Frenet frame [2], allowing for easy and intuitive application of planning. Polyno-
mial trajectories are generated based on conditions such as initial position, final
position, and acceleration constraints. This process results in several candidate
trajectories X

(n)
plan, where 1 ≤ n ≤ N and N is the number of the candidates.

3.2 Risk Probability Calculation

When approximating the shapes of the ego vehicle and target vehicle as rectan-
gles, the trace of the center point of the target vehicle in situations where the
two rectangles overlap can be defined as the collision area Scol. The bivariate
normal distribution predicted for the center point of the target vehicle is inte-
grated within this area to calculate the collision probability. Since the probability
of collision can be considered as the maximum collision probability during the
prediction horizon, the collision probability between the candidate n and the
predicted trajectory of the target vehicle during the prediction horizon can be
defined as follows.

P
(n)
col (T ) = max

T≤t≤T+Tf

p(n)(t) (6)



886 Y. Ahn et al.

where
p(n)(t) =

∫
(x,y)∈S

(n)
col (t)

g(x, y; t)dxdy (7)

and g(x, y) is the probability density function of the bivariate normal distribution
which is formed by the network output fxy.

Meanwhile, if the ego vehicle is steering to change lanes, the shape of Scol

becomes an octagon, making integration difficult. Since the shape is still convex,
it can be replaced with a rectangular shape S′

col satisfying Scol < S′
col, where

the area is approximately similar [6]. This does not underestimate the collision
probability since Pcol < P ′

col is always satisfied because g(x, y) > 0. Assuming
the size of the ego and target vehicle is similar, S′

col can be defined as:

S
′(n)
col (t) = {(x, y)|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax} (8)

where

xmin = x
(n)
plan(t) −

√
w2 + l2

2
cos (tan−1 (

w

l
− Θ)) − l

xmax = xmin + 2l + l cos Θ + w sin Θ

ymin = y
(n)
plan(t) −

√
w2 + l2

2
sin (tan−1 (

w

l
+ Θ)) − w

ymax = ymin + 2w + w cos Θ + l sin Θ

(9)

Here, w and l are the width and length of the vehicle, and Θ is the heading
angle difference between the vehicles. x

(n)
plan(t) and y

(n)
plan(t) indicate the planned

position of candidate n at time t.
The bivariate normal distribution does not have an explicit integration form

(i.e., cumulative distribution). Therefore, the risk probability Pcol is calculated
using the numerical method known as the Darboux integral. To avoid underesti-
mating the probability due to errors caused by the method, the upper Darboux
sum is considered. Defining finite sequences with equal intervals xmin = x0 <
x1 < · · · < xm = xmax and ymin = y0 < y1 < · · · < yk = ymax, Eq. (7) can be
approximated as follows:

p =
m−1∑
i=0

k−1∑
j=0

sup
x∈[xi,xi+1]
y∈[yi,yi+1]

g(x, y)ΔxΔy (10)

where Δx and Δy are intervals along the local coordinate.
If there exists a lane change candidate within the collision probability thresh-

old, and among them, candidate n∗ with the smallest lateral acceleration is
selected as the final reference Xref = Xplan(n∗).

4 Lane Change Controller

Given the reference lane change trajectory Xref , a linear MPC is constructed
based on the lateral bicycle model of the vehicle [7]. The optimal steering angle
is achieved by minimizing the cost function of the MPC, which mainly consists
of lateral error and steering angle rate.
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5 Experimental Results

To validate the proposed framework, actual experiments were conducted. The
experiments took place at a proving ground, designed in the form of a highway.
The prediction network was implemented on a mid-performance laptop in a
Robot Operating System environment, while the controller was developed in
the MATLAB/Simulink environment. Real-time control was executed through
the MicroAutobox II. The sampling time for the prediction network and risk
assessment is 70 ms and 50 ms for the controller.

Experimental Result
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(a) The target vehicle (red) traveling in the left adjacent lane

at a speed similar to that of the ego vehicle (black)
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(b) Despite the LC intention, a collision is anticipated in
the generated LC trajectory candidate (pink). As a result,
the optimal trajectory is determined to be the lane keeping
trajectory (green).
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(c) As the target vehicle decelerates, a collision-free trajec-
tory is generated (green)
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(d) After the lane change, lane keeping is initiated again

Fig. 1. Experimental result
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Figure 1 shows the result when the ego vehicle attempts a lane change to the
left while there is a vehicle traveling at a similar speed in the left lane. The results
show that the proposed framework has been validated to ensure a collision-free
and safe lane change in real-time scenarios.

6 Conclusion

In this paper, a novel framework for automated lane change system is proposed.
The framework is consist of trajectory prediction network, collision risk assess-
ment module, and the controller. The proposed framework was validated in
a highway-like proving ground. Applications of more complicated scenarios is
planned for future work.
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Abstract. This paper presents a sensor-less vehicle state estimationmethod using
a neural network for semi-active suspensions. This method surpasses conventional
mathematicalmodels in performance and reduces calibration effort. Thedeveloped
system, logic, and learning method are designed to address AI-specific challenges
such as increased processing load and learning techniques, and their performance
is validated through simulations and real-world tests. The results show that this
system performs on par with those using dedicated sensors.

Keywords: Chassis Control · Semi-active Suspension · Neural Network ·
Damping Force Control

1 Introduction

Recently, various sensor configurations for semi-active suspension systems have been
mass-produced. Among these, sensor-less systems, which use wheel speed data instead
of dedicated sensors to reduce costs, remain relatively rare [1–4]. This study applies
neural networks (NN) to a sensor-less system that omits conventional dedicated sensors,
proposing a solution that combines high performance with low cost [5, 6].

2 Sensor-Less AI Semi-active Suspension System

2.1 Overview of Sensor-Less AI Semi-active Suspension

Figure 1 illustrates the sensor-less AI semi-active suspension logic configuration. The
system estimates vehicle states using wheel speeds without sensors like G-sensors.
Recurrent neural networks (RNN) replace formula-based logic, using CAN signals such
as wheel speeds that vary with road surface inputs. The system outputs the vehicle
body’s vertical speed and the suspension’s stroke speed, eliminating the need for dedi-
cated sensors and enabling a cost-effective semi-active suspension system that enhances
ride comfort.
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Fig. 1. AI semi-active suspension logic configuration

2.2 Learning Data

This system is designed to control frequencies related to primary and secondary rides.
Consequently, the learning data focuses on vehicle vibrations within the 0.8 to 5 Hz
range. Figure 2 illustrates the frequency distribution of the training data.

Fig. 2. An example of the frequency distribution of the training data
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3 Features of AI Semi-active Suspension

3.1 Using Synthetic Data to Enhance Ride Comfort

A notable advantage of AI is the ability to use synthetic data for learning. Synthetic data
is artificially generated rather than naturally occurring. Figure 3 depicts the NN learning
flow.

Fig. 3. NN learning flow with synthetic data

Using a test vehicle, we measure CAN data such as wheel speed and the corre-
sponding vehicle behavior. The measured vehicle behavior undergoes frequency axis
integration, allowing the calculation of body speed and piston speed with optimal fre-
quency characteristics for artificial control. Training the NN with this CAN data and
the artificially generated vehicle behavior results in an NN with characteristics that are
difficult to achieve with traditional formulas. The integral characteristic is shown in
Figure 4.

Fig. 4. Integral characteristics

The integral filter characteristic used in formulas reduces low-frequency gain to
minimize the impact of gradients and sensor tilt. However, this causes the control band’s
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phase to shift from the ideal characteristics. In contrast, the frequency axis integral
characteristic prevents phase shift in the control band while reducing low-frequency
gain. This improvement reduces the impact of gradients and enhances ride comfort near
the sprung resonance frequency.

3.2 Enhanced Robustness with Relative Wheel Speed

AI robustness is a significant challenge, requiring accurate state estimation even under
unlearned conditions. By setting the input signal’s wheel speed as a relative value to
other wheels rather than an absolute value, it becomes easier to detect wheel speed
variations caused by road surface inputs. This approach improves robustness across
various unlearned road surfaces and vehicle speeds.

4 Result

4.1 NN Estimation Results

Figure 5 displays the measured and estimated vertical body velocity. The NN provides
high estimation accuracy over a wide range by learning the suspension’s characteristics.

Fig. 5. Measured and estimated vertical body velocity of uneven road

Figure 6 shows the transfer function of the learning data and the NN output. Due to
the small amplitude of the NN output, a gain error occurs in the control band. However,
the phase at the sprung resonance frequency matches the learning data, exhibiting the
intended phase characteristics.

5 Ride Comfort Evaluation Results

Figure 7 shows the floor displacement, pitch angle, and sprung acceleration PSD when
driving on a swell road with the AI system without sensors and a non-AI system with
sensors. The AI system’s displacement and sprung acceleration PSD match those of the
sensor-equipped system, but the pitch angle is smaller, enhancing ride comfort.

Figure 8 illustrates the floor displacement, pitch angle, roll angle, and sprung accel-
eration PSD when driving on an uneven road with the AI system without sensors and
a non-AI system with sensors. The AI system’s displacement, roll angle, and sprung
acceleration PSD are similar to those of the sensor-equipped system, but the pitch angle
is smaller, enhancing ride comfort.
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Fig. 6. Transfer function of the learning data and the NN output

Fig. 7. Floor displacement, pitch angle and floor acceleration PSDwhen driving a swell road with
AI system without sensor and non-AI system with sensor
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Fig. 8. Floor displacement, pitch angle and floor acceleration PSD when driving a uneven road
with AI system without sensor and non-AI system with sensor

6 Conclusion

We have developed a dedicated sensor-less semi-active suspension system using AI and
confirmed its performance surpasses that of sensor-equipped systems.
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Abstract. Narrow Tilting Vehicles (NTVs) have been proposed as a solution to
traffic problems such as congestion and limited parking spaces. However, their
small footprint can lead to a reduction in postural stability. To address this issue,
NTVs have been designed to reduce the lateral acceleration experienced by occu-
pants by tilting the vehicle body inwards during turns, depending on the driving
situation. Three types of tilt control methods have been proposed for NTVs: direct
tilt control (DTC), steering tilt control (STC), and combined steering and direct tilt
control (SDTC). In this study, we proposed a simplified method to control SDTC
using a single roll directional motion equation, focusing on the yaw angular accel-
eration and roll inertia of the vehicle body. The proposed method was found to
result in a 84% reduction in the lateral acceleration experienced by occupants
during turning maneuvers in the evaluation of real-vehicle dynamic tests.

Keywords: Narrow tilting vehicles · Tilt control · Posture stability · Lateral
acceleration

1 Introduction

As the demand for personal mobility increases in urban areas, traffic problems such as
congestion, fuel consumption, air pollution, and limited parking space are expected to
worsen. To address these issues, one- and two-seater personal mobility vehicles, known
as Narrow Tilting Vehicles (NTVs), have been developed. NTVs are expected to help
alleviate traffic congestion during commuting hours.However, compared to conventional
vehicles, NTVs are prone to impairing postural stability, making it essential to address
this issue. As a solution, NTVs equippedwith lean actuators that can control the vehicle’s
posture in the roll direction have been proposed [1–3].

In NTVs with lean actuators, the method of directly controlling the roll angle via
the lean actuator is referred to as Direct Tilt Control (DTC), while the method of tilting
the vehicle body via centrifugal force generated by counter-steering, as seen in motor-
bikes and bicycles, is known as Steering Tilt Control (STC). DTC is superior in roll
angle stability at low speeds, but requires a large roll torque to change the roll angle and
generates large lateral acceleration to the occupants along with the roll angular acceler-
ation [4–8]. In contrast, STC does not require a lean actuator because to tilt the vehicle
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body by counter-steering, and the lateral acceleration to the occupant is relatively small.
However, the roll angle becomes unstable at low speeds and the roll angle cannot be
controlled when the vehicle is stationary [9, 10].

Based on the aforementioned considerations, two primary control challenges for
NTVs are identified: (i) reducing the lateral acceleration experienced by occupants,
thereby enhancing postural stability, and (ii) maintaining stable roll angle control across
all vehicle speeds. To address these challenges, a control strategy has been proposed that
either switches between DTC and STC based on vehicle speed, or employs a combined
control approach integrating both DTC and STC, referred to as SDTC [11, 12]. One
of the factors complicating the control of NTVs is the necessity for counter-steering
in steering control. Front-wheel steering NTVs require counter-steering similar to that
used in motorcycles and bicycles to reduce lateral acceleration caused by roll angle
acceleration, thereby complicating steering angle control during turns. For example, a
counter-steering control method utilizing a transfer function with unstable zeros has
been proposed [13].

The authors proposed a method to control leaning and steering based on a single roll
direction equation of motion, focuses on the yaw angular acceleration and roll inertia
of the vehicle body. This approach aimed to avoid the complex combination control of
STC and DTC in front-wheel steering vehicles while ensuring that occupants do not
experience significant lateral acceleration. The effectiveness of this method was verified
through driving simulations using a multi-degree-of-freedom dynamic model [14].

In this study, we conducted real vehicle evaluations using the proposed method
and confirmed its effectiveness. Figure 1 and Table 1 show the appearance and main
specifications of an NTV used in this research.

Fig. 1. A view of narrow tilting vehicle
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Table 1. Specifications of Narrow Tilting Vehicle.

Length 2.1 [m]

Height 1.55 [m]

Tread 0.55 [m]

Wheel base 1.575 [m]

Tire size 130/60R13

Minimum turning radius 3.0 [m]

Occupancy 1

Powertrain 2 electric motors

Maximum speed 50 [km/h]

Battery type Lithium-ion

2 Vehicle and Control Specification

2.1 Vehicle Specification

Figure 2 shows the vehicle configuration of the NTV used in this study. This vehicle is
a four-wheeled model with two front wheels and two rear wheels. It is equipped with
lean actuators on both the front and rear wheels, which determine the target roll angle
based on the driver’s steering input. The lean actuators rotate the parallel links to raise
and lower the left and right wheels, thereby tilting the vehicle body. Additionally, the
front wheels are fitted with a steering actuator that controls the steering torque according
to the proposed control method. Each rear wheel is equipped with an in-wheel motor
that drives the wheels based on the driver’s throttle input. Furthermore, the vehicle has
a very narrow tread width of 550 mm, aiming to achieve stable driving with a width
comparable to that of a motorcycle.

2.2 Control Specification

Figure 3 shows a block diagram of the proposed control system. The “in-wheel motor” is
the in-wheel motor for the left and right rear wheels, “Steer act.” is the steering actuator,
“Lean act.” is the lean actuator, and “Controller” is a control system that adds a steering
torque based on roll speed to the control method proposed in a previous paper [14].
The term τwh denotes the torque command to the in-wheel motor, determined by the
driver’s accelerator opening, V is the translational speed, and θ , ψ̇ , and ψ̈ denote the
roll angle, yaw rate, and yaw angle acceleration of the vehicle’s upper body, estimated
by the inertial sensor, respectively. The term θd denotes the roll command angle, derived
from the steering wheel angle and vehicle speed, LeanTrq and SteerTrq are the torque
command derived from θd to the lean actuator and to the steering actuator.
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Fig. 2. Mechanical structure.

Fig. 3. Control block diagram of Narrow Tilting Vehicle.

3 Validation

To verify the effectiveness of the proposed method, a 180° turning maneuver was con-
ducted using the experimental vehicle. Figure 4 shows the results for DTC, while Fig. 5
shows the results for the proposed method. The lean angle was varied from 0° to 18° and
back to 0°, and the vehicle speed was maintained at 20 km/h. Graph [a] represents the
roll angle, graph [b] represents the yaw rate, and graph [c] represents the lateral acceler-
ation near the sprung mass center of gravity. In the DTC, significant lateral acceleration
occurred during transitions from straight to turning and from turning to straight, with a
maximum value of 0.19G, causing uncomfortable G-force variations for the occupants.
In contrast, the maximum lateral acceleration with the proposed method was 0.03G, and
the occupants barely felt any G-force variations. This indicates that the proposed method
can reduce the lateral acceleration experienced by occupants during turning maneuvers
by 84%, thereby enhancing passenger comfort. Additionally, concerns about degraded
line tracing due to counter-steering were largely unfounded.
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In the future, we will verify the effectiveness of the proposed method during 180°
turning maneuvers at different speeds and during slalom maneuvers, ensuring that sig-
nificant reductions in lateral acceleration are achieved, consistent with the simulation
results.

Fig. 4. Results of the DTC.
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Fig. 5. Results of the Proposal.

4 Conclusion

The following conclusions can be drawn from this study:

(1) Using the method proposed in our previous paper, which focuses on the yaw angular
acceleration and roll inertia of the vehicle body to determine the torque distribution
between the lean actuator and the steering actuator, we conducted an evaluation
with a developed experimental vehicle. This evaluation confirmed that the lateral
acceleration experienced by occupants can be reduced by 84%.

(2) By employing the proposed method, the maximum lateral acceleration during turn-
ing maneuvers was reduced to 0.03G, ensuring that occupants barely perceive any
variations in lateral acceleration.

(3) The deterioration in line tracing performance due to counter-steering, which was a
concern with the proposed method, was barely perceptible.

In the future, we will verify the effectiveness of the proposed method during 180°
turning maneuvers at different speeds and during slalom maneuvers, ensuring that sig-
nificant reductions in lateral acceleration are achieved, consistent with the simulation
results.
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Abstract. Distributed stochastic gradient descent techniques have
gained significant attention in recent years as a prevalent approach
for reinforcement learning. Current distributed learning predominantly
employs synchronous or asynchronous training strategies. While the
asynchronous scheme avoids idle computing resources present in syn-
chronous methods, it grapples with the stale gradient issue. This paper
introduces a novel gradient correction algorithm aimed at alleviating the
stale gradient problem. By leveraging second-order information within
the worker node and incorporating current parameters from both the
worker and server nodes, the gradient correction algorithm yields a
refined gradient closer to the desired value. Initially, we outline the chal-
lenges associated with asynchronous update schemes and derive a gradi-
ent correction algorithm employing local second-order approximations.
Subsequently, we propose an asynchronous training scheme incorporat-
ing gradient correction within the generalized policy iteration frame-
work. Lastly, in the context of trajectory tracking tasks, we compare the
impact of employing gradient correction versus its absence in an asyn-
chronous update scheme. Simulation results underscore the superiority of
our proposed training scheme, demonstrating notably faster convergence
and higher policy performance compared to the existing asynchronous
update methods.
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1 Introduction

Reinforcement learning (RL) embodies a learning paradigm inspired by biolog-
ical systems and demonstrates significant potential in various domains such as
computer games [1,2], robotics [3,4], and autonomous driving [5–7]. However, RL
often requires extensive data gathering, making distributed training techniques
like synchronous and asynchronous stochastic gradient descent (SGD) essential.

Synchronous SGD, as used in OpenAI’s advantageous synchronous advantage
actor-critic (A2C), requires servers to wait for gradient updates from all workers
before updating models. While enabling linear scaling, this approach suffers from
delays caused by slower workers that can undermine intended acceleration [8].
Asynchronous SGD methods like DeepMind’s asynchronous advantage actor-
critic (A3C) mitigate this issue by allowing more frequent model updates without
synchronization [9,10]. However, asynchronous training faces the challenge of
potentially using outdated model gradients, which can disrupt training stability
[11]. Mitigating gradient staleness is thus a critical challenge. Dutta et al. [12]
proposed an adaptive algorithm to balance straggling and staleness by regulating
synchronous workers. Chen et al. [11] suggested using backup workers to handle
stragglers and prevent staleness. However, these methods merely aim to strike
a delicate balance between the challenges of gradient straggling and gradient
staleness, without effectively addressing the underlying systemic issues that lead
to these problems in distributed training.

To tackle this issue, this paper proposes a gradient correction algorithm
designed specifically for asynchronous SGD in RL, with a primary focus on
addressing the stale gradient issue in asynchronous parallelism. Our primary
contributions can be summarized as follows:

1. We propose a gradient correction algorithm that leverages second-order infor-
mation within the worker process and incorporates current parameters from
both worker and server processes. This approach yields an improved gradi-
ent closer to the target value, effectively harnessing parallel resources while
ensuring model convergence and stability.

2. We present an asynchronous training scheme incorporating gradient correc-
tion within the generalized policy iteration framework. The simulation results
on an autonomous vehicle demonstrate that this innovative approach exhibits
significantly improved convergence speed and policy performance compared
to the current asynchronous update scheme.

2 Preliminaries

Reinforcement Learning. RL involves an agent interacting with the environment
to learn behaviors that maximize the objective. Given state xt P X at time
t, the agent takes action ut P U based on its policy πθ : X Ñ U parameter-
ized by θ. It then receives utility lt and transitions to the next state xt`1. The
primary goal of RL is to find the optimal policy π∗

θ that minimizes expected
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accumulated utilities, i.e., minJ(θ) “ E
∑T

t“0 l(xt, πθ(xt)). The generalized pol-
icy iteration (GPI) framework is commonly employed to iteratively solve RL
problems. Specifically, the policy evaluation step utilizes the current policy to
forecast accumulated future utilities, while the policy improvement step updates
the policy parameters θ in order to minimize the objective J [7].

Stochastic Gradient Descent Optimization. RL commonly employs stochastic
gradient descent (SGD) optimization. At iteration k, given the stochastic gra-
dient ∇θJ(θk) obtained by utilizing a batch of randomly sampled data, the
parameter updating rule is as follows:

θk`1 “ θk ´ α∇θJ(θk), (1)

where α is the learning rate that determines the extent of parameter adjustments.

Synchronous Training. In synchronous training, a parameter server aggregates
gradients from all worker nodes. Upon accumulating gradients from all work-
ers, the parameter server updates the policy parameters and communicates the
updated parameters back to the workers, ensuring all workers maintain consis-
tent and up-to-date parameters. However, this synchronization can introduce
delays from waiting for all workers to synchronize, potentially leading to the
slow straggler issue where updates only occur after the slowest worker completes
the batch assembly and gradient computation.

Asynchronous Training. In the asynchronous approach, workers independently
update shared policy parameters without waiting for synchronization, enabling
immediate parameter updates once each worker finishes gradient computation.
However, this naive asynchronous approach is vulnerable to the stale gradi-
ent issue, where workers compute gradients based on outdated networks. For
instance, while one worker is still processing data, other workers may have
already updated the network multiple times due to variations in their computing
intervals.

3 Asynchronous Training with Gradient Correction

In this section, we propose a gradient correction algorithm to mitigate the stale
gradient issue that arises from the lack of synchronization during the asyn-
chronous training process. For simplicity, we consider a scenario where only two
workers (A and B) are involved in the asynchronous training process. However,
it is worth noting that our analysis also applies to more general cases.



Gradient Correction for Asynchronous Stochastic 907

∇

Objective Contour

Using A worker update
Using B worker update
Desired gradient

Gradient correction

∇

∇

Fig. 1. Gradient correct process.

The gradient correction process is shown in Fig. 1, where purple ellipses out-
line the objective contours. We assume that both workers A and B have identi-
cal policy parameters θw, and worker A completes the gradient calculation first.
However, when the server uses worker A’s gradient to update parameters to θs,
worker B’s gradient becomes stale as it lags behind the policy parameters on the
server. Specifically, at point θs, the desired gradient ∇J(θs) should resemble the
dotted purple line, deviating from the stale gradient ∇J(θw) represented by the
solid blue line.

To correct the stale gradient by aligning it with the desired gradient, we first
employ Taylor expansion on the objective, yielding:

J(θs) “ J(θw) ` ∇J(θw)�(θs ´ θw) ` 1
2
(θs ´ θw)�H(θs)(θs ´ θw). (2)

By deriving both sides and treating higher-order terms as infinitesimal, we
further derive:

∇J(θs) “ ∇J(θw) ` H(θw)(θs ´ θw), (3)

where H is the Hessian matrix, and the gradient correction can be defined as

Δ “ H(θw)(θs ´ θw). (4)

Hence, the utilization of second-order information enables the correction
of stale gradients caused by parameter discrepancies between the worker and
server. Moreover, we seamlessly integrate this gradient correction mechanism
into asynchronous training, where workers are required to transmit gradient,
Hessian matrix, and local parameters to the server for computing the corrected
gradient:

Gc “ Gi ` Hi(θi)(θk ´ θi), (5)

where Gi,Hi, θi denote the gradient, Hessian matrix, and policy parameters
from worker i respectively, θk are the current parameters on the server, and Gc

represents the corrected gradient. Figure 2 illustrates the proposed asynchronous
training scheme with gradient correction within the GPI framework.
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Fig. 2. Asynchronous training with gradient correction.

4 Simulation

In this section, the efficacy of our proposed asynchronous training scheme with
gradient correction is evaluated in sinusoidal trajectory tracking tasks for an
autonomous vehicle. The learning curves are depicted in Fig. 3, where the naive
asynchronous scheme is labeled as “Async”, and our proposed approach is
denoted as “Modify”.

Fig. 3. Learning curves.

Figure 3a illustrates loss curves plotted against training iterations. For a fair
comparison, we employ identical random seeds and hyperparameters for two
training schemes. It is evident that both loss curves initially decrease from the
same level. However, our scheme exhibits a more rapid decline and achieves
convergence in approximately only 1,000 iterations. Conversely, the naive scheme
displays a slower reduction in loss and fails to converge within the specified
maximum iterations set for the experiment. These findings indicate that our
scheme demonstrates superior effectiveness in algorithm convergence without
being affected by stale gradients.
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Figure 3b demonstrates the comparison of gradient accuracy between the
two distinct training schemes during the training process. In both schemes, the
server consistently retains and updates the latest policy parameters, which are
considered as ground truth for computing desired gradients. On the other hand,
the stale gradient is derived from gradients returned by workers. Therefore, we
quantify gradient accuracy through error analysis between these two gradients.
As shown in Fig. 3b, our proposed scheme initially exhibits higher gradient errors
but rapidly reduces this error to ultimately converge to zero. In contrast, the
naive scheme demonstrates a relatively slow decline in gradient error over itera-
tions. These results highlight the effectiveness of our proposed training scheme
in mitigating stale gradient issues by incorporating second-order information,
further supporting experimental observations depicted in Fig. 3a.

Figure 3c presents the tracking performance on the sinusoidal curve. By uti-
lizing the policy parameters saved at the maximal iteration and starting from
the same initialization, our proposed training scheme successfully achieves pre-
cise trajectory tracking, closely following the reference trajectory. Conversely,
employing the naive training scheme results in a policy that merely learns a
rudimentary feedback control, demonstrating poor tracking capabilities.

5 Conclusion

This paper presents a gradient correction algorithm aimed at tackling the stale
gradient issue in asynchronous RL training. By leveraging second-order infor-
mation from the worker and considering the current parameters from both the
worker and server, this algorithm refines the stale gradient to closely align with
the desired one. Moreover, we incorporate this gradient correction mechanism
into an asynchronous training scheme, offering a novel approach. Validation
through sinusoidal trajectory tracking tasks of an autonomous vehicle demon-
strates its accelerated convergence speed and effective resolution of gradient
staleness. An avenue for future exploration involves addressing the challenge of
generalizing neural network approximate functions while utilizing second-order
information. Additionally, our method holds promise for comprehensive investi-
gation into its application in enhancing training speed and driving policy per-
formance in autonomous vehicles.
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Abstract. Tyre characteristics can strongly affect bicycle dynamics, therefore
the overall bicycle performances. However, it may be hard to measure lateral
characteristics with low uncertainty. Proper test-rigs are needed to obtain reliable
tyre parameters, to be used then formodelling. The paper presentsVeTyT, acronym
of “Velo Tyre Testing”, a new test-rig specifically developed for bicycle tyres at
the Department of Mechanical Engineering of Politecnico di Milano. It is the first
test-rig for bicycle tyres in compliance with the standard ISO 9001-2015. We also
present the results of an experimental campaign conducted on a road racing bicycle
tyre. In particular, the impact of rim stiffness is relevant to tyre characteristics,
leading to a 13% increase in cornering stiffness under the same test conditions.

Keywords: Tyre · test-rig · modeling · lateral characteristics · bicycle

1 Introduction

Theuse of bicycles as a cheap andhealthyway to travel the “lastmile” iswidely spreading
in cities. This new way of dealing with short trips in the city, labeled “micro-mobility”,
is even fostered by the new awareness on the global impact of ICE vehicles as well as
the fluctuations of fuel prices.

As the popularity of two-wheeled vehicles grows, concerns about road safety are
growing aswell. Injuries related to bicycle andmoped falls have increased in recent years,
enlightening the need to prevent them with proper strategies. With the aim of improving
the self-stability and deepening the knowledge on bicycle dynamics, advanced numer-
ical models are required [1, 2]. Furthermore, existing mechanical models of bicycles
mostly ignore tyre dynamics and need to be complemented with realistic tyre models
[3]. Therefore it is necessary to characterize bicycle tyres to proper understand the bicy-
cle dynamics. At the Department of Mechanical Engineering of Politecnico di Milano,
a new test bench has been designed specifically for the characterization of bicycle tyres
[4–6]. It is possible to measure the lateral force and the self-aligning torque at varying
slip and camber angle, vertical load and inflation pressure.
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The aim of this study is present a new test-rig able to ensure accurate measurements
on bicycle tyres lateral characteristics, varying working parameters such as vertical load
and inflation pressure. This may be really useful to assess tyres, and set the proper
strategy for improving both performances and bicycle stability. A number of previous
works on test-rigs for bicycle tyre testing have been investigated in the last decades [5].
The still existing gaps are as follows. First, the values of uncertainty are generally not
declared. Second, there is the request of both accuracy and data production efficiency.
Reliable tyre data have to be exploited both by tyre and bicycle manufacturers. VeTyT
tries to bridge the gap between accuracy and efficiency.

We also present the verification procedure of the test-rig, necessary to fulfill the
requirements for ISO 9001 (Sect. 3). In Sect. 4, we show the results of an experimental
campaign conducted on a 26 mm wide road racing bicycle tyre. In particular, we focus
on the impact of inflation pressure and rim stiffness to the cornering stiffness (Sect. 4).

2 Test-Rig

VeTyT (short of “Velo Tyre Testing”) is a testing machine specifically designed for
bicycle tyres (Fig. 1). It can measure lateral forces and self-aligning moment of bicycle
type tyres, varying many parameters, including slip angle α, camber (or lean) angle, and
vertical load. It consists of a welded Aluminum 6060 T6 square-section bars, reinforced
with plates and steel rods to ensure lightness and sufficient stiffness. It is connected to
the ground by means of Watt’s linkage (Fig. 2(a)) and universal joint. The kinematics of
Watt’s linkage allows for a sufficient vertical displacement while it constrains the lateral
motion of the structure. The lateral force Fy can be derived by mounting two load cells
in between rods.

VeTyT has been conceived so that the longitudinal axis passes from the universal
joint, the contact point tyre/surface and the center of the Watt’s linkage (Fig. 2(b)). In
this way, by rotating a shaft rigidly connected to the universal joint, the camber angle can
be set. Furthermore, this solution allows compensating vertical vibrations of the wheel
due to unevenness on the rolling surface. The tyre/road contact point can be displayed
only in vertical direction, resulting in zero longitudinal speed [1].

The test-rig can be placed both on a drum or on a flat track (Fig. 1). The drum has
an outer diameter of 2.6 m, and it can reach a peripheral speed of 122 m/s. The flat track
consists of a poly-V belt moved by a 5 kW three-phase asynchronous electric motor. A
maximum speed of 21 m/s can be achieved. An aluminum plate supports the flat track
belt in the contact region. Pressured air mixed with silicone oil is blown between the
plate and the flat track belt to reduce the friction. As the shape of a bicycle tyre contact
patch is similar to an ellipse [7], i.e. narrow and elongated, the flat track results the best
tool to appreciate the forces exchanged along the entire contact area.

In addition to standard commercial rims, the apparatus has been designed to accom-
modate special high-stiffness laboratory rim (the one mounted on in Fig. 2). In this way,
the compliance of the rim does not affect the experimental measurements.

A vertical shaft used to hold thewheel represents the vertical axis of VeTyT. It crosses
the longitudinal axis in the contact point tyre/surface (Fig. 2). The slip angle α can be
adjusted by rotating the steering shaft. Once the desired slip angle is set, the position can
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be fixed, and the test can start. An axial load cell used to fix the set slip anglemeasures the
reaction force generated by the steered tyre. The self-aligning moment can be derived
being the distance between the steering shaft axis and the load cell longitudinal axis
known. The vertical load acting on the wheel can be varied by adding masses on the
frame. Its magnitude Fz is recorded by a load cell positioned at the top of the steering
shaft.

Fig. 1. VeTyT test-rig. The frame carries the bicycle tyre running on flat track. In this picture,
tyre is mounted on high-stiffness laboratory rim [7].

3 Static Verification

VeTyT has been statically verified, to ensure the effectiveness of the measurements. In
this way, we can compensate for any possible systematic error. The procedure has been
conducted both for lateral force and self-aligning torque by using special set-up (Fig. 3).

Regarding the lateral force, the fork for commercial rimwas mounted on the steering
shaft. It was loaded with a treaded bar in series with a load cell, proper placed to ensure
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Fig. 2. (a) Watt’s linkage on VeTyT. The central part is connected to VeTyT, the rods with load
cells are fixed to the ground [4]. (b) VeTyT main axes are enlightened in yellow. The vertical axis
defined by the steering shaft crosses the longitudinal axis in the center of tyre contact patch [4].

the perpendicularity with respect to the longitudinal axis of VeTyT. Assuming the self-
aligning torque equal to zero by hypothesis, the applied force was compared to the
actual value of lateral force given by the test-rig [4]. The measured force was found to
be slightly higher than the applied one, for a systematic error of about 4.5 N. Referring
to accuracy, the lateral force read by VeTyT corresponds to the actual applied force with
a mean error less than 0.3%. Referring to precision, the standard deviation is less than
2% with respect to the mean value.

As for the self-aligning torque, we used the high-stiffness rim and an instrumented
threaded bar fixed at a given distance from the hub. The torque can be generated by
applying a force to the bar. Then, we measure the output given by the test-rig VeTyT
[4]. The measured self-aligning torque was underestimated with respect to the actual
torque applied. The deformation of chassis during the tests may slightly misalign the
bearings, thus increasing the declared friction. During experimental tests, the maximum
difference between measured and applied torque was equal to 0.55 Nm.

In this case, referring to accuracy self-aligning torque measured by VeTyT corre-
sponded to the actual applied torque with a mean error lower than 1%. The standard
deviation was found to be less than 2.5% with respect to the mean value.

4 Tests and Results

Several tests can be conducted with VeTyT. The static tests involve tyre not rolling on the
contact surface, e.g. tyre deflection and contact patch measurements varying inflation
pressure and vertical load. The dynamic tests are performed with tyre rolling on the
contact surface to measure the lateral force and the self-aligning torque [8]. In this
paper, we focus on dynamic tests, in particular on the role of rim stiffness and inflation
pressure on the cornering stiffness CFy .

We conducted the test on a 26 mm wide road racing bicycle tyre, under different
vertical loads, inflation pressure and mounted on a commercial aluminum rim and the
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Fig. 3. (a) Watt’s linkage on VeTyT. The central part is connected to VeTyT, the rods with load
cells are fixed to the ground. (Adapted from [4]) (b) Set-up used to verify the measurement of
self-aligning torque. We used the high-stiffness rim with a threaded bar fixed to the rim at a known
distance from the hub. (Adapted from [4]).

laboratory high-stiffness rim. The latter is approximately five times stiffer in lateral
direction than a standard aluminum rim [8]. Flat track surface was covered by sand of
controlled granulometry (1.2 mm).

The value of CFy largely changes with inflation pressure. As depicted in Fig. 4,
the values at inflation pressure of 7.5 bar are higher than those at inflation pressure of
3.5 bar. The peak of cornering stiffness for inflation pressure 7.5 bar corresponds to
the maximum tested vertical load of 490 N. As for lower inflation pressures, the peak
of cornering stiffness can be found for lower vertical loads. Mounting the same tyre
on high-stiffness rim (also named “Rigid rim”), we obtain larger values of cornering
stiffness under the same test conditions (inflation pressure and vertical load, Fig. 5).
Independently on the inflation pressure or on the vertical load, the value of CFy is on
average 13% higher for the high-stiffness rim. The values of cornering stiffnessCFy were
then interpolated with high-order polynomial, to show the trend of cornering stiffness
over the applied vertical load.
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Fig. 4. Cornering stiffness CFy as function of the vertical load Fz [kN]. The red curve is for
inflation pressure of 7.5 bar, the blue one is for 3.5 bar. Tyre was tested on flat track, mounted on
aluminum commercial rim [8].
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Fig. 5. Cornering stiffness CFy as function of the vertical load Fz [kN]. The red curve is for
inflation pressure of 7.5 bar, the blue one is for 3.5 bar. Tyre was tested on flat track, mounted on
high-stiffness rim [8].

5 Conclusion

This paper presents VeTyT, a test-rig specifically designed for bicycle tyres. An exper-
imental verification of the results was carried out. Given known loads, measurements
were performed through VeTyT. We found a systematic error of about 4.5 N for the lat-
eral force, which can be easily compensated in post-processing. As for the self-aligning
torque, we found a mean error for the measured torque lower than 1%. The standard
deviation was found to be less than 2.5% with respect to the mean value.

The results of an experimental campaign were then presented. A 26 mm wide road
racing bicycle tyre mounted on aluminum commercial rim and on high-stiffness rim was
tested to derive the cornering stiffness by varying some working parameters (inflation
pressure and vertical load). The stiffness of the rim largely affects the lateral character-
istics of the tyre. It was found that the use of high-stiffness rim can ensure up to 13%
higher cornering stiffness for tyres tested under the same working conditions.

The upgrades made to VeTyT allowed it to fulfill the requirements of standard ISO
9001-15. To our knowledge, VeTyT is first test-rig to measure the lateral characteristics
of bicycle tyres in compliance with ISO standards.
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Abstract. The paper presents an Instrumented Steering Wheel (ISW) that mea-
sures the forces and moments that the driver applies at each hand. The ISW is
equipped with two six-axis load cells and has the same inertia of a reference
steering wheel fitted on normal production cars. The ISW is used to assess the
conscious or unconscious application of forces at the steering wheel during a set of
manoeuvres. The conscious steering actions refer both to sinusoidal steering input
and handling circuit driving. A statistical analysis is performed to characterize the
conscious driver behaviour. Referring to unconscious activation ofmuscles, a kick-
plate pass-by manoeuvre is studied. Several drivers are employed for such tests.
Typical behavioural patterns are found, describing how drivers apply forces and
moments in conscious steering actions. The unconscious moment applied during
a kick-plate manoeuvre may be even 20% of the maximum torque applied during
counter-steering. The results can be used to develop new driver models, addition-
ally, the ISW is proposed as a tool for properly defining the ADAS intervention
logic to reduce the intrusiveness feeling felt by the driver and increase safety in
case of unconscious steering actions.

Keywords: Driver-Vehicle Systems · ADAS · Sensors and Actuators

1 Introduction

The knowledge of the forces applied by the driver to the steering wheel is of great
utility for assessing the driver-vehicle interaction, either for normal or emergency driving
manoeuvres. Such a knowledge is crucial for developing new driver models based on
Neuro-Muscular System (NMS) activation [1]. NMS can be activated consciously or
unconsciously, if a kick or a shock is applied to the vehicle. Improving ADAS requires
the knowledge of forces applied by the hands at the steering wheel [2]. During normal
driving, the driver controls the steering wheel by applying forces and moments in all the
directions and not only tangentially, the investigation of such a fact has been attempted
in the literature. Simple torque sensors have been successfully employed for a long time
for measuring the torque applied to the steering wheel and developing the control logic
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of Electric Power Steering (EPS) systems. In [3], an ISW able to measure the three
forces and moments was presented. Such a device was made from a normal steering
wheel divided into three sectors. The ISW was tested on a driving simulator. In this
paper, an innovative ISW has been used to measure the forces and the moments applied
by the driver during steering manoeuvres. The steering wheel has been designed for the
application on real vehicles. The mass, the stiffness, the eigenfrequencies, the power
system have been defined for the use on a passenger vehicle. In Sect. 2, the ISW is
shown and a brief description of its components is provided, in particular the six axis
load cells and the grip force detection system. In Sect. 3, the forces and moments applied
by each hand on the ISW have been considered to analyse the behaviour of different
drivers in certain driving scenarios. The common attitudes and behaviours of the drivers
have been highlighted and analysed. Two cases have been considered, namely conscious
and unconscious steering actions.

2 Experimental Setup

2.1 Instrumented Steering Wheel

An ISWwhichmeasures the six forces and sixmoments applied by the driver is presented
[2]. The ISW, shown in Fig. 1, has a carbon fiber composite body, two six-axis load cells
tomeasure forces andmoments, two handles that the drivermust grasp and an electronic-
box for signal conditioning. Furthermore, by six mono-axial load cells positioned in the
handles, it is possible to measure the grip forces at each hand.

The force and moment signals are sent to an on-board vehicle acquisition system
which stores the data, together with the vehicle dynamics data published on the CAN
network. Due to the fast transient manoeuvres in which the steering wheel has been used,
the compensation of the static weight and of the inertial contribution due to the vehicle
dynamics [2] and to the steering rotation is necessary.

2.2 Test Setup

The kinematics of the vehicle were acquired with an OxTS inertial measurement unit,
capable of measuring vehicle accelerations in three directions, together with roll, pitch,
yaw angles and their derivatives. AGPS antennawas used to track the path of the vehicle.
Speed and steering angle data were obtained from the vehicle’s CAN network.

Conscious SteeringAction: SineTest. In the sine test the task of the driver is to steer the
vehicle at a fixed frequency and fixed amplitude of steering wheel angle oscillation. This
sine input is chosen as a high-consistency method, due to its “open-loop” characteristic.

Conscious Steering Action: Handling Circuit Test. The drivers are asked to follow
a reference trajectory as close as possible, while driving at high speed. The reference
trajectory is a white solid line at the inner edge of the racetrack’s width, and it does not
correspond to a racing line.
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Fig. 1. Instrumented Steering Wheel

UnconsciousSteeringAction. Thevehicle is driven in a kick-plate test,where amoving
platform introduces a lateral sliding to the rear axle of the vehicle when it passes over it.
In this way, an emergency situation is simulated inwhich the driver suffers an unexpected
lateral disturbance and must keep the vehicle in trajectory by acting on the steering.

3 Data Analysis

3.1 Conscious Steering Action

Sine Test Results. When asked to perform the sine test manoeuvre, different drivers
show different approaches when comparing tangential forces applied on the steering
wheel. Considering that tangential forces are the main contributors to the steering action,
Fig. 2 shows that the more experienced driver (in green) uses a balanced approach, with
the two hands mostly cooperating during the steering action. The other two drivers show
a “4th quadrant” behaviour, which means that the tangential forces do not cooperate but
rather fight each other.

In other words, less experienced drivers prefer to pull downwards with the inner
hand rather than pushing upwards with the outer hand and as a result, the force applied
by the inner hand has a higher absolute value for them with respect to the professional
driver.

Handling Circuit Test Results. In this test the same pattern of dominance of the inner
hand is seen once again, as shown in Fig. 3. In this example, as drivers turn the steering
wheel clockwise, the tangential force exerted by the inner hand (right one) increases
significantly, while the left hand exerts a smaller force in the opposite direction (i.e.
without cooperation). In this test all drivers showed a similar behaviour, regardless of
skill level.
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Fig. 2. Tangential Forces in sine test, comparison of 3 different drivers

Fig. 3. Tangential forces during a left-to-right chicane, dominant inner hand of different drivers

Steering Quality Index. The classification of the drivers’ behaviour is based on heuris-
tic algorithms [4, 5]. For each driving scenario, various analyses have been completed
and, when possible, some Key Performance Indicators (KPI) have been calculated to
reflect the driving perception. A KPI for the correlation between objective performance
of the vehicle and subjective evaluation of the drivers has been defined as follows [4]:
The steering quality index is the standard deviation of the intersection points between
the sum of the resultant forces for both hands and a plane perpendicular to the average
sum of resultant forces, set at a fixed distance of 0.5 [m]. This index has been measured
during the end of the steer-in phase, where the steering wheel torque |SWT| has a local
minimum. The idea behind this objective indicator is that a subjectively bad steer-in
manoeuvre is characterized by a high jerkiness of forces at the end of this phase. This
jerkiness is reflected both by a change in direction of the forces and by a change in
amplitude, the former being the main contributor.
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In Table 1, the steering quality index has been computed for 5 vehicle setups used
by the professional driver. Vehicle 2 has been used as a benchmark for its well-known
good steering characteristics. The steering quality index correctly ranks the benchmark
vehicle as the better one.

Table 1. Steering quality index

Steering quality index Ranking Vehicle + tyre

0.0113 3 V1_T1

0.0120 4 V1_T2

0.0139 5 V1_T3

0.0100 2 V1_T4

0.0070 1 V2_T5

3.2 Unconscious Steering Action

The ISW is used to assess the unconscious application of forces and moments at the
steering wheel during a kick-plate pass-by manoeuvre. The vehicle passes over a plate
that is kicked sideways to cause a spin. A prompt counter-steering action is requested to
the driver. Due to the side kick, an unconscious steering action is generated, due to the
activation of the Neuro-Muscular System.

Fig. 4. Unconscious activation of NMS and steering action due to side kick applied.

In Fig. 4, the unconscious activation of the NMS is shown. Actually, at t = 53.7 s
the vehicle is kicked, as is possible to note from the lateral acceleration graph. Then, at
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t= 53.87 s the unconscious reflex action reaches its maximum to counter the undesired
vehicle motion. At t = 54.2 s the conscious steering action is initiated. The uncon-
scious torque is 20% of the absolute value of the maximum torque during the recovering
manoeuvre. Analysing a panel of nine different drivers, themaximumof the reflex torque
occurs at 0.13 ± 0.03 s after the vehicle disturbance and at 0.28 ± 0.11 s before of the
actual steering. Moreover, the unconscious moment applied by the driver influences
the vehicle dynamics, e.g. the yaw acceleration. Such an effect highlights the need of a
proper modelling of the unconscious driver action, because of its influence on the vehicle
dynamics.

4 Conclusion

The presented ISW appears to be the most accurate device for detecting forces and
moments applied to the steering wheel by each hand of the driver. The ISW has been
used to characterize driving patterns of both professional and regular drivers. Relevant
differences exist between forces andmoments applied by regular and professional drivers
during the sine wave test or the handling circuit test: the professional driver is more effi-
cient in using tangential forces to perform the steering action. The steady state turning
analysis has also been considered for analyzing the distribution of tangential forces that
is different at the two arms. These forces distribution looks quite consistent between dif-
ferent drivers. A steering quality index has been computed to correlate themeasurements
of the ISW with the subjective evaluation of the professional driver. Further validation
of the index could focus on more repeatable manoeuvres such as U-turns, lane changes
and 90° corners as well as on a robust detection of the steer-in phase. Referring to uncon-
scious manoeuvres, occurring when a kick or shock is applied to the vehicle, the forces
and moments due to the muscular unconscious activation are considerable, up to 20%
of the maximum ones. The muscular activation occurs tenths of second before of the
actual steering of the steering wheel, influencing the vehicle dynamics and highlighting
the need to model the unconscious reflex muscular activation in the NMS driver models.
Such an information could be helpful in designing innovative ADAS (Advanced Driver
Assistance Systems) that can intervene in much less time that the actual control systems,
increasing the road safety.
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Abstract. Automated Driving (AD) technologies are rapidly transform-
ing road transportation, emphasizing the critical role of Human-Machine
Interaction (HMI). In this regard, the paper examines the interaction
between Level 4 Autonomous Vehicles (L4 AVs) and human drivers in
take-over scenarios within Italian traffic environments. Employing the
Dynamic Driving Simulator at Politecnico di Milano, the study presents
two simulation environments: an urban roundabout and a Ligurian high-
way. The research aims to measure the driver response during take-
over requests. Questionnaires are used to psychologically analyse the
participants. Physiological signals, including ECG, EEG, and EDA, are
acquired throughout the entire simulation.

Keywords: Automated driving · L4 AVs · Dynamic Driving Simulator

1 Introduction

The rapid advancement of Automated Driving (AD) technologies and their con-
nection to Intelligent Transportation Systems (ITS) is revolutionizing road trans-
port, promising safer roads, reduced pollution, and human-centred solutions
[1,2]. In this regard, Human-machine interaction in Autonomous Vehicles (AVs),
particularly during take-over scenarios, emerges as a pivotal research domain.
Many are the factors to be carefully studied. The Take-Over Time (TOT) [3]
and its relation to the driver state and performance. The Operational Design
Domains (ODDs), its correct definition and extension, considering geographi-
cal, technological and design limitations [4]. Furthermore, bidirectional human-
machine interaction should drive all the technologies related to advanced Auto-
mated Vehicles. Specifically, the current trust paradigm, in which the human
evaluates the vehicle’s ability to drive in a given condition, should be assessed,
investigating whether an AV should let the driver regain control [5]. This research
aims to study L4 AVs, employing the state-of-the-art Dynamic Driving Simula-
tor at DriSMi Laboratory of Politecnico di Milano [6,7]. Specifically, the paper
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analyzes the take-over manoeuvre, during which the driver is asked to regain
control of the vehicle. The study is part of “Interaction of Humans with Level 4
AVs in an Italian Environment - HL4IT” project, stemmed from the necessity to
test the admittance of Level 4 AVs in a unique scenario, such as the Italian one.
The project, therefore, aims to deploy automated mobility in Italy, pursuing the
subsequent objectives:

– the psychophysiological characterization of the driver, interacting with an
automated vehicle Level 4 in the Italian environment;

– the definition of an Operational Design Domain adequately representing 80%
of the Italian road network and traffic conditions.

Hence three scenarios, representative of the majority of Italian traffic networks,
were selected to assess the humans’ capability of regaining control after a TOR
respectively in an urban, suburban and highway environment:

1. A urban four-leg roundabout replicated from a real one in Milan.
2. The industrial area of a town located in Friuli-Venezia Giulia, near Udine.
3. An highway scenario, modelled on Ligurian motorways.

The paper is organized as follows. Firstly, it presents a brief literature review to
frame the topic covered. Secondly, the two currently developed simulation sce-
narios are described, focusing on the factor causing ODD exit. The last chapter
collects the sensors employed to measure the driver’s response and interaction
with the vehicle and the surrounding road elements.

2 Literature Review

L4 AVs, as defined by the Society of Automotive Engineers (SAE), can perform
all driving tasks within specific Operational Design Domains (ODDs) [8]. ODDs
can be contained by different limitations, such as geographical or technological,
making it highly mutable [4]. If an event causes the exit from the ODD, they must
give back the control to the human driver or achieve a minimal risk condition.
During these events, a Take-Over-Request (TOR) is issued, prompting the driver
to take over [9]. The critical period between the TOR and the driver regaining
control is known as the Take-Over Time (TOT). Many factors influence the
extent of TOT, such as handheld device usage, non-visual tasks, auditory or
vibrotactile TORs, and anticipatory cues [3]. Furthermore, studies suggest that
a time budget of 10 s is generally adequate for a safe take-over.

Monitoring driver states during this process is complex, possibly involving
bio-telemetry systems, such as Electrocardiography (ECG), Electroencephalog-
raphy (EEG) and Electrodermal Activity (EDA) [10]. Effective warning meth-
ods, including auditory, visual, and haptic stimuli, are essential to improve driver
response and reduce TOT [11].
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2.1 Roundabout Scenario

To test the interaction between humans and AVs Level 4 in an urban context,
a network constituted by an orbital and intercity roads and a mini-roundabout
has been developed, as shown in Fig. 1. Specifically, a four-leg, single-lane mini-
roundabout, located in Milan, was selected as one of the most representative
scenarios of the Italian urban environment. The following roundabouts’ charac-
teristics justified the choice:

– The presence of a crosswalk at each leg, positioned directly before the entrance
to the roundabout.

– The high volume of traffic at two of the legs of the roundabout.
– The standard roundabout’s configuration, widely spread in Italy.

Fig. 1. Simulation environment created using VI-WorldSim.

The simulation environment created was divided into three zones:

1. Zone 1 (blue section in Fig. 1): in the initial part of the route, going from
point A to point B and corresponding to an orbital road, the DDT is entirely
performed by the ADS. Hence the human being is not driving and is, instead,
asked to watch a video on a hand-held device.

2. Zone 2 (red section in Fig. 1): the central part of the route, going from point B
to point C, corresponds to the roundabout, where the presence of roadworks
caused an alteration of the traffic flow. Specifically, the direction of traffic
became clockwise, causing the exit from the ODD. Hence the driver is asked
to regain control of the vehicle, within the time budget, and to proceed along
the route, following the instructions provided on the dashboard. If the driver
could not take control of the vehicle, they were asked to remain inside the
cockpit, while the Automated Driving System (ADS) achieved the minimal
risk condition.
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3. Zone 3 (orange section in Fig. 1): the last part of the route, going from point
C to point A and corresponding to an orbital road, is travelled solely in the
case the driver regained control of the vehicle. While driving in this zone, the
driver had to comply with ordinary road rules. An auditory signal warns the
driver of exceeding the speed limit, simulating warnings usually installed on
the most recent vehicles.

2.2 Highway Scenario

To further investigate the interaction between humans and AVs Level 4, a sim-
ulation environment representing a Ligurian motorway has been developed, as
shown in Fig. 2. Specifically, a three-lane highway has been selected, including the
emergency lane. The subsequent motorway’s characteristics justified the choice:

– The presence of tunnels and bridges;
– The risk of wind gusts;
– The standard highway configuration, widely spread in the Italian coastline.

Fig. 2. Simulation environment created using VI-WorldSim.

During the simulation, three driving phases are considered:

1. Phase 1 (blue section in Fig. 2): in the first part of the manoeuvre, going
from point A to point B and corresponding primarily to a tunnel, the DDT
is entirely performed by the ADS. Hence the human being is not driving and
they are asked to watch a video on a hand-held device.

2. Phase 2 : At the exit of the tunnel, corresponding to point B, a wind gust
caused the exit from the ODD. Hence the ADS prompted a TOR to the driver,
who was asked to regain control of the vehicle within the TOT, proceeding
along the route. If the driver could not perform the DDT, they were asked to
remain inside the cockpit, while the ADS achieved the minimal risk condition.

3. Phase 3: (orange section in Fig. 1): the last part of the route, starting from
point C, was travelled solely in the event the driver regained control of the
vehicle.
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3 Overview of the Collected Physiological
and Psychological Measures from Drivers

Drivers’ physiological signals are continuously monitored throughout the driv-
ing simulation. Figure 3 illustrates the recorded set of data, which includes ECG
[12,13], EEG, and EDA [15] signals, as well as eye-tracking data and the forces
applied to the steering wheel [14,16]. Additionally, questionnaires are used to
describe the drivers’ psychological status. Before the driving session, partici-
pants completed several psychological measures. Specifically, the Technological
Optimism Scale (TOS), assesses views on technology, the Perception of Driving
an Automated Vehicles Scale (PDAV) gauges disposition towards automated
vehicles, and the Differential Emotions Scale (DES) rates emotional states,
based on a 5-point and a 7-point Likert’s scale, respectively. Furthermore, the
Manchester Driver Behaviour Questionnaire (DBQ) measures self-reported driv-
ing behaviours and the Big Five Inventory (BFI) evaluates personality traits are
also considered. After the driving session, additional measures, such as the Simu-
lator Sickness Questionnaire (SSQ), the Presence Questionnaire (PQ), measuring
the sense of presence in the virtual scenario, and the PDAV and the DES, were
administered.

Fig. 3. Outline of the physiological and psychological data collected from each subject,
along with relevant parameters. The EEG signals shown in the figure illustrate actual
pre-processed data from three exemplary midline electrodes, acquired during a driving
simulation session.

The project has been funded by NextGenerationEU, M4C2 I1.1, Progetto
PRIN 2022 “HL4IT”, Prot. 2022L3M25K - CUP D53D23003750006.
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Components Safety Testing (MoLAS)
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Abstract. The MoLAS is a moving laboratory able to fully characterize
the tire behavior in the real working environment. The basic structure
of the moving laboratory is represented by a semi-trailer. A rotating
frame that supports the measuring system is used to set the camber
level by using an electric actuator. An electric steering actuation system
guarantees high output torque and high output power. A pneumatic
actuator is used to apply the vertical load, allowing to generate a large
range of vertical force up to SUVs values. A complex driveline including
an internal combustion engine (ICE) coupled with the gearbox and an
electromagnetic (EM) retarder is used to apply both driving and braking
torques. This aspect constitutes a new feature of the system.

Keywords: tire testing · outdoor · driving/braking torque

1 Introduction

With the aim of designing and developing safe and efficient vehicles, tire char-
acterization covers a crucial role. Multi-body models employed for vehicle han-
dling simulations require detailed descriptions of forces and moments exchanged
at the tire-terrain contact area [10]. Pacejka’s Magic Formula (MF) is the most
employed tire model for simulating vehicle handling in different conditions, offer-
ing a good compromise among accuracy, reliability and computational effort.
However, MF model requires the identification of a set of coefficients, which
has to be done by means of a curve fitting procedure over a large number of
physical tests. For this reason, proper testing facilities are mandatory to accu-
rately measure tire forces and tire slip in well defined loading conditions [12].
Concerning with tire testing facilities, both indoor and outdoor test rigs can be
found [10,12]. Indoor-type testing facilities allow to replicate tire working con-
ditions within a controlled laboratory environment. On the other hand, outdoor
test rigs allow for tire testing under more realistic operative conditions, i.e. on
real road surfaces like asphalt or tarmac. Such kind of machines are generally
mounted on moving trailers that can be driven on public roads like the Simcen-
ter Tire (formerly TNO/TASS Delft Tyre) semi-trailer [11] and the skid trailers
by Dufournier Industries [4]. The Simcenter Tire semi-trailer, developed by the

c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 933–939, 2024.
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TU-Delft university, features a structure able to accommodate up to two wheels
(one per side), one side has car tire measurement setup, while the other allows to
apply camber angles up to 70◦ for motorcycle tire measurement. The Dufournier
skid-trailer test rig is composed by a dual-axle lightweight trailer and it is able to
characterize C1 and C2 car tires. The wheel is mounted on an actuated tower,
while 6 axes hub sensor is located on the spindle and allows to measure tire
contact forces and moments. In the mentioned outdoor test rigs, dedicated actu-
ators are able to control vertical load, camber angle, steering angle and braking
force. However, the main limitation of these laboratories lies in the fact that lon-
gitudinal forces can be applied only by braking, meaning that only longitudinal
positive slip conditions can be actually investigated. In this paper, an innovative
Moving Laboratory for Automotive components Safety (MoLAS) assessment is
presented. MoLAS is a moving laboratory for tire testing and its aim is that of
providing a comprehensive suite of testing conditions within a single unit. Its
main innovation with respect to current state of the art test rigs relies in the pos-
sibility of testing tires both in traction and braking slip condition, allowing for a
complete characterization of the tire. This is obtained thanks to the introduction
of an internal combustion engine (ICE) in the drive line, enabling testing the
tire also in traction slip conditions. The MoLAS is able to characterize tire sizes
ranging from 16 to 24 in., with a width up to 345 mm. Tire forces are measured
by means of a 6-axis measuring wheel mounted on the spindle.

2 MoLAS Equipment

The basic structure of the moving laboratory is represented by a semi-trailer
frame, characterized by three different containers: the electric generator and
warehouse container, the measuring unit and the control room. The total length
of the semi-trailer is approximately 11 m, with a total mass of 17000 kg (Fig. 1,
left).

Fig. 1. MoLAS test system (left), MoLAS measuring unit structure (right).

The core structure of the measuring unit (Fig. 1, right), is represented by a
double-framed solution
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– a fixed frame (orange in Fig. 1, right) linked to the semi-trailer chassis, pro-
viding stiffness and supporting all the suspended parts;

– a rotating frame (gray in Fig. 1, right), pinned to the fixed frame and able to
rotate to apply the desired camber angle.

A double stage suspension system, designed to filter out vertical disturbances
coming from road irregularity, holds the wheel. The vertical load (up to 20kN) is
imposed by means of a pneumatic spring placed on top of the wheel supporting
structure (see the red arrow in Fig. 1, right).

The camber angle is provided by an electro-mechanical linear actuator
mounted on top of the structure (see the green arrow in Fig. 1, right). The
linear actuator is moved by a three-phase 230 V electric motor coupled with a
linear ball screw drive, reaching a maximum force of 13 kN and a camber angle
in the range ±5◦. The steering angle, varying between ±20◦, is controlled by
means of a second electric motor mounted on the steering axis. The electric
motor features an output power of 3 kW and is coupled with a planetary gear
reduction, the maximum deliverable output torque is around 1250 Nm. Thanks
to this arrangement, the steering axis falls exactly in the middle plane of the
wheel, removing any tire scrub effect during the steering maneuver. Moreover,
being the steering system mounted on the moving frame, this condition holds
also for any value of imposed camber angle.

The main innovation introduced by the MoLAS system is the possibility of
testing tires both in braking and traction slip conditions, thanks to its complex
driveline, which is composed by a V6 2.9 liters ICE coupled with a 8-speed auto-
matic transmission, providing the driving torque; an electromagnetic retarder,
applying and controlling the braking torque; an electro-magnetic clutch able to
decouple the wheel from the transmission; two angular drives, transferring the
rotating motion between perpendicular axes; three torsional joints, connecting
the shafts.

2.1 Forces and Moments Acquisition

Contact forces and moments acting at the wheel center are measured by means
of the six-axis dynamometric wheel sensor shown in Fig. 2, right.

The sensor is constituted by a three-spoked structure connected to an outer
ring by means of specifically designed laminae. The proposed structure realizes
a “quasi”-statically determined structure, which allows to obtain the highest
measuring accuracy [2,7,9]. A set of strain gauges is able to compute the three
forces and three moments acting at the hub by measuring the bending strain
on the three spokes. The proposed structure has been successfully employed for
the realization of six-axis load cells [2,3,7,9] and smart wheels for road vehicles
[6] and motorcycles [5]. A wireless communication system has been specifically
set up to transmit the signals related to the six-forces/moments and to the
wheel rotation angle to the telemetry system located on board of MoLAS. The
computed signals are sent to an on-board receiver via Bluetooth connection; the
receiver is connected to a Controlled Area Network (CAN) and transmits the
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Fig. 2. Six-axis force sensor telemetry system (left), six-axis hub sensor for tire forces
and moments measurement (right).

signals to the MoLAS datalogger. The scheme of the wheel telemetry system is
depicted in Fig. 2, left.

3 Indoor Tire Characterization

A complete characterization of a 245/45 R18 100 Y radial tire was performed on
the MoLAS test bench. The characterization was done by placing the MoLAS
semi-trailer over the RuotaVia drum at the Laboratory for the Safety of Trans-
portation (LaST) of Politecnico di Milano as shown in Fig. 3.

Fig. 3. MoLAS semi-trailer on the RuotaVia drum.

The tire was inflated at 210 kPa, the drum tangential speed was set to
22.2 m/s and a series of tests in pure lateral, pure longitudinal and com-
bined lateral-longitudinal conditions have been conducted. The drum surface
was covered with a specific sandpaper tape (see Fig. 3) to replicate high-grip dry
asphalt conditions. Three different vertical loads were set for the tests, namely
2900 N, 4000 N and 5200 N. The lateral force was applied by imposing a steering
motion law in the range ±10◦ following a triangular waveform. The longitudi-
nal force was applied by setting different levels of the retarder brake intensity.
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Signals related to the tire forces, actuators position and angular speeds were
synchronously sampled at a frequency of 500 Hz and filtered down to 25 Hz in
post-processing stage. Experimental data were used for characterizing the tire
behavior under pure cornering, pure longitudinal and combined slip conditions.
A curve fitting procedure was implemented to identify the MF parameters. Post-
processed experimental data, coming from the tests, were collected in different
TYDEX files [13] which were used as input for the Adams tire data fitting toolkit
(TDFT) [1]. The PAC 2002 MF tire model [1,10] was selected for interpolating
the experimental data. The selected model was proven to be applicable for tires
with camber angles not exceeding 15◦, travelling on smooth roads up to frequen-
cies of 12 Hz [8]. The Adams TDFT outputs the coefficients of the MF in a tire
property file (*.tir), containing all the information regarding the tire behavior
under the possible operative conditions. In Fig. 4, the experimental data (circles)
and the MF model (solid lines) are reported. On the left, the identified curves
of the lateral force Fy for pure cornering slip condition under three different
vertical loads and zero camber angle. On the right side, the longitudinal force
Fx as function of the longitudinal slip is shown for pure braking conditions. The
comparison shows that the identified model is well fitting the experimental data
for the three considered vertical loads, showing a good agreement both in the
linear and saturation regions.
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Fig. 4. Characteristic curves of 245/45 R18 tire. Circles represent experimental data,
solid lines represent PAC2002 fitted curve.

4 Conclusions

The MoLAS is a cutting edge testing laboratory, as it allows to obtain a complete
characterization of road vehicles tires under a large variety of working conditions
in a single unit. The main innovation introduced by this test rig relies in the
ability to test the tire under both braking and traction slip conditions, thanks
to the combined action of a controlled electromagnetic brake retarder and an ICE
installed on the driveline. Tire-terrain contact forces and moments are measured
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by means of a specifically designed 6-axes force sensor mounted on the rotating
hub. In this paper, the MoLAS trailer was placed on on the RuotaVia drum of the
LaST laboratory of Politecnico di Milano for a complete indoor characterization
of a 245/45 R18 100 Y radial tire. A PAC 2002 MF tire model was selected to
characterize the tire behaviour under lateral, longitudinal and combined steady-
state conditions. Experimental data were employed to identify the required set
of coefficients of the MF model, by means of the TDFT implemented in Adams.
Results confirmed the ability of the MoLAS to provide reliable experimental
data to be used for tire characterization and modelling, which are essential for
accurately create vehicle dynamics simulations.
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Abstract. Force and moment measurement within road vehicles plays
a break-through role in automotive engineering. Both wheel force trans-
ducers and instrumented hub carriers are considered in the paper. Both
technologies have advantages and disadvantages. Active safety systems
(ABS, ESP, up to full automated driving) are expected to be impacted
by the measurement of forces and moments at the wheels. Friction poten-
tial evaluation and driver model development and monitoring are major
field of research. Force and moment measurement technology may also
be exploited for lightweight construction purposes. Promising technolo-
gies are the ones that don’t need RF data transfer, providing low latency
for data transfer and are resiliency against cyber-attacks.

Keywords: Force and moment sensor · active safety · stability
enhancement systems · structural safety · cooperative connected and
automated

1 Introduction

Most of the algorithms used in Vehicle Dynamics Control are based on on-line
measurements of the state of the vehicle. Some measurements are directly taken,
such as wheels angular velocities [21]. The measure of the force can be provided
by components that measure the forces exchanged at the tyres. A state-of the-
art review on the topic is provided in [12]. In [3,6,8,9], the development of an
instrumented wheel to measure the forces acting at the wheel hub is presented.
The measure is obtained through a patented six-axis load cell [11]. The same
technology can be adapted and used by resorting to an instrumented hub carrier
[13,20]. Differently to the RF data transfer implemented on the wheel, the hub
carrier permits to use a wired measurement system that leads to a lower latency.
The component includes a three-spokes structure. The spokes connect the hub
case to the external case. To make the structure statically determined, the spokes
have an additional degree of freedom along their own axis. On the spokes surface
a system of strain gauges detect the deformation of the material that is converted
into force measurement. The moment around the wheel axis cannot be detected
since it is the degree of freedom of the wheel respect to the suspension. An
instrumented brake caliper can be fitted in order to measure the brake torque.
c© The Author(s) 2024
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Active safety systems (ABS, ESP, up to full automated driving) are impacted
by the measurement of forces and moments at the wheels [1,8,12,13,21]. New
strategies for the control of road vehicles dynamics based on the measurements
of the forces acting on the tyres can be implemented

2 Method

Several control algorithm can be applied to ABS system and the main ones
are analyzed in [14]. Rule-based ABS are robust to disturbances coming from
changes in the road friction coefficient. This is due to the fact that these sys-
tems work with the level of acceleration and deceleration of the wheel. As these
levels depend only on the difference between the brake and road torque, and
not their actual magnitudes, road friction coefficient has little influence on the
performance of the system [21]. On the other hand, if the ABS control algorithm
is supposed to work based on tyre force measurements (as in this case), the
algorithm must be robust enough to guarantee an equivalent performance in the
presence of disturbances, model inaccuracies and so on. Under these assumptions,
Sliding Mode Control (SMC) seems to meet all the requirements for this particu-
lar application. Force based Anti-Lock Braking Systems (ABS) can be developed
by using Sliding Mode Control. In literature it is possible to see many example
of its application [1,2,4,7,15–18]. A complex four-wheels multibody model (14
degrees of freedom) has been used to simulate the force based implementation
of the ABS logic in comparison with the standard one. The model represents
an high-performance sportscar for motorsport applications. Each wheel has an
independent ABS control respect to the other wheels. The control computes the
optimal brake torque that is applied to the wheel. To the brake torque is applied
a filter that modifies the signal with a time delay, a first order delay, a 100 Hz
signal resampling and a random noise addition. Two straight braking events
have been selected to compare the two ABSs. The first is a 100 km/h braking
with high friction coefficient (μ = 1.12) to simulate a dry road. The second is a
mixed surface (high μ = 1.4 and low μ = 0.7) μ-split road. Every 4 m, the high
μ and low μ sections are inverted giving to the road the shape of a chessboard.
The initial speed for this maneuver is 90 km/h.

2.1 Rule-Based ABS Control Logic

Rule-based ABS control logic is based on thresholds on the wheel rotational
speed and wheel slip. The check on the variables is done sequentially: firstly the
brake torque is adjusted to maintain the wheel acceleration inside the predefined
thresholds. If the acceleration is acceptable, the brake torque is adjusted to
maintain the wheel slip inside the predefined thresholds.
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Fig. 1. Race motorcycle smart wheel (a). Instrumented wheel carrier featuring a six-
axis load cell (b).

2.2 Sliding Mode Control ABS

The SMC is based on the sliding surface defined as:

s = κ − κdes + Ki

∫
(κ − κdes)dt (1)

where κ is the slip defined as κ = V −ΩR
V , κdes is the desired slip target, Ki is

the coefficient of the integral term. The sliding surface was chosen based on the
work conducted in [1,2,4,10,15,18,19].

From the sliding surface it is possible to obtain the value of braking torque
to be applied to the wheel. The SMC calculates the optimal braking torque to
keep the wheel from locking and to maintain the slip close to the desired slip
target. The braking torque Tb is defined as:

Tb = T̂b − Ksat(
s

φ
) (2)

To have a complete mathematical derivation of Eq. 2, please refer to [1,2,4,7,10,
15,18]. The presented work to exploit the capabilities of the SMC, it integrates
an online tyre-road friction coefficient estimation. Based on the work conducted
in [3,20], the measured forces are used to estimate the friction coefficient. The
information is then used to calculate the optimal slip target in order to maximize
the braking force [5,21].
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Fig. 2. Wheels angular speed(a) and wheel slips (b). Emergency braking maneuver on
high-μ road (μ = 1.12).

3 Results

The results confirm the relevant improvement by using the direct measurement
of the wheel forces respect to the actual ABS technology. The simulations have
been performed on an emergency brake test in different scenario conditions. The
dry braking scenario is representative of conditions where ABS should not be
stressed heavily in maintaining the optimal braking force. Results are shown
only for the left wheels of the vehicle for symmetry in the results. In both Fig. 2a
and Fig. 2b it is possible to see how the rule-based ABS is prone to oscillation.
Instead, it is possible to appreciate how the SMC ABS is more precise and
less affected by them. figure 2b shows with the black dotted line, the online
estimation of the optimal slip target. Once identified the optimal slip target,
the SMC ABS is able to almost overlap the real slip to the target one. This
lead to the force based ABS to stop the car in 38.9 m respect to the 41.2 m
required by the rule-based ABS. While considering a mixed surface, the benefit
is particularly relevant. The force based ABS formulation allows to stop the car
in 36.7 m, while the rule-based requires 40.8 m. In Fig. 2b it is possible to see
even better how the optimal slip target changes whenever the wheel passes from
one type of asphalt to the other. On the other hand, the rule-based ABS struggle
to keep the wheel from locking when the wheel runs on the low adherence block.
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Fig. 3. Wheels angular speed (a) and wheel slip (b). Emergency braking maneuver on
a mixed surface road.
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Abstract. Model predictive control (MPC) is an effective method
in lateral-longitudinal integrated control with safety guarantee for
autonomous vehicles. But its computational burden is significant, making
it challenging to meet real-time requirements. The contribution of this
paper is to propose an explicitly solvable autonomous vehicle motion
controller with lateral-longitudinal integrated characteristics and safety
guarantee, achieved by integrating input-output controllers from expo-
nential control Lyapunov function (ECLF) and exponential control bar-
rier function (ECBF). We performed simulations using a high-fidelity
dynamics model in CarSim for simple urban traffic scenarios. The simu-
lation results demonstrate that our designed controller has good trajec-
tory tracking performance, safety guarantee, low computational burden
and a certain level of robustness.

Keywords: autonomous vehicles motion control · lateral-longitudinal
integration · safety guarantee · explicit · nonlinear system · high-order

1 Introduction

Lateral-longitudinal integrated control is an important research direction in
autonomous vehicle motion control [1,8]. Integrated control can more fully con-
sider the coupling characteristics between the longitudinal and lateral dynamics
of the vehicle, thereby having a higher performance potential [6]. However, due
to the increase in the number of system states and the nonlinearity of the sys-
tem, the design of control law becomes more challenging, and the computational
load during usage is also increased.
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Another important research direction is to design motion controllers with
safety guarantee. Due to the tracking error and lag, collisions may still occur
even if path planning includes safety constraints. While MPC does offer safety
guarantee, it comes with a significant computational burden [4,5]. Therefore,
designing a vehicle lateral-longitudinal integrated controller that ensures safety
and has a low computational burden is of significant importance.

Control Lyapunov function (CLF) given by Artstein in [3] is an essential
tool for the stable control design of affine nonlinear system. Later, based on
the idea of CLF and the foundation of barrier certificates theory [9], Wieland
introduced the control barrier function (CBF) in [10], a widely favored approach
for designing safety control laws among scholars. However, the aforementioned
works can only address problems with relative degree 1. Exponential stablilizing
control Lyapunov function (ES-CLF) were introduced in [2] to acheive stability
of zero dynamics, and later evolved into exponential control Lyapunov function
(ECLF) which was commonly used in the stability design of higher-order sys-
tems. Inspired by ECLF, exponential control barrier functions (ECBF) were first
introduced in [7] as a way to easily enforce high relative-degree safety constraints.

The contribution of this paper is to propose an explicitly solvable autonomous
vehicle motion controller with lateral-longitudinal integrated characteristic and
safety guarantee, achieved by using exponential control Lyapunov function to
address high-order tracking problem and using exponential control barrier func-
tion to address high-order constriant problem. We performed simulations using
a high-fidelity dynamics model in CarSim for simple urban traffic scenarios. The
simulation results demonstrate that our designed controller has good trajectory
tracking performance, safety guarantee, low computational burden and a certain
level of robustness.

2 Contribution

2.1 Autonomous Vehicles Trajectory Tracker Using Exponential
Control Lyapunov Function

The vehicle dynamics model used in the controller design is a six-state system
with relative degree 2, given by the following equation:

⎡
⎢⎢⎢⎢⎢⎢⎣

Ẋ

Ẏ
ϕ̇

U̇

V̇
ω̇

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U cos ϕ − V sinϕ
U sinϕ + V cos ϕ

ω
V ω

−Uω + kf

m

(
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lfkf
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(
V +lfω
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)
− lrkr
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(
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U

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 −kf

m

(
V +lfω

U

)

0 −kf

m

0 − lfkf

Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
a
δ

]
(1)

All the variables are illustrated in Fig. 1. To facilitate future use, define x =[
x1 x2

]T , x1 =
[
X Y ϕ

]T and x2 =
[
U V ω

]T . The reference trajectory is a time

dependent sequence of reference state xref
1 (t) =

[
Xref(t) Y ref(t) ϕref(t)

]T
which
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is located at a distance L from the perpendicular foot of mass center along the
reference path, it is also illustrated in Fig. 1. L is proportionally related to the
reference speed, and the scale factor is set to 0.5.

Fig. 1. Vehicle dynamics model and design of reference trajectory

For tracking problem with time-varying reference state xref(t), to use ECLF
for tracker design, we can treating time-varying reference states as time-varying
equilibria. The neglect of the derivatives of reference states may result in some
loss of tracking performance, but the impact is minimal, especially when the
derivatives is not significant. The original exponential control Lyapunov function
for autonomous vehicles trajectory tracker is designed as follows

V (x) = (x1 − xref
1 )T

⎡
⎣

0.3 0 0
0 0.3 0
0 0 500

⎤
⎦ (x1 − xref

1 ) (2)

It can be determined that the relative degree of V is 2 under the system (1).
According to the theory of ECLF, we can establish a linear system as follows

η̇v(x) = Fηv(x) + Gμ, (3a)
V (x) = Cηv(x) (3b)

where ηv(x) =
[
V (x)
V̇ (x)

]
=

[
V (x)

LfV (x)

]
, F =

[
0 1
0 0

]
, G =

[
0
1

]
, C =

[
1 0

]
and

μ = L2
f V (x)+LgLfV (x)u. Using linear control design techniques, we can choose

μ = −Kvηv(x), with Kv ensuring that Av = F − GKv has eigenvalues with
negative real parts. Furthermore, we can obtain the following control law

utrack = (LgLfV (x))+(−Kvηv(x) − L2
f V (x)) (4)

Under the assumption that ego vehicle and the obstacle are treated as point
masses, the constraint h(x) can be formulated as follows

h(x) = (X − Xobs)
2 + (Y − Yobs)

2 − d2safe < 0 (5)
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where Xobs and Yobs are the coordinates of the obstacle, and dsafe is the minimum
safe distance that must be maintained between the vehicle and any obstacles.
We construct the following ECBF by h(x)

B(x) = kbh(x) = kb[d2safe − (X − Xobs)
2 − (Y − Yobs)

2] (6)

where kb ∈ R+. Likewise, the relative degree of B under the system (1) is also
2. According to the theory of ECBF, we can establish a linear system as follows

η̇b(x) = Fηb(x) + Gμ, (7a)
B(x) = Cηb(x) (7b)

where ηb(x) =
[
B(x)
Ḃ(x)

]
=

[
B(x)

LfB(x)

]
, F =

[
0 1
0 0

]
, G =

[
0
1

]
, C =

[
1 0

]
and μ =

L2
fB(x)+LgLfB(x)u. Likewise, we can choose μ ≥ −Kbηb(x), with Kb ensuring

that Ab = F − GKb has eigenvalues with negative real parts. Furthermore, we
can obtain the following control law

usafe = (LgLfB(x))+(−Kbηb(x) + τ − L2
fB(x)) (8)

where τ ∈ R+. The final step is to fuse utrack and usafe, resulting in a controller
that achieves both tracking performance and safety. We adopt the method pro-
posed by Wieland in [10], replacing CBF with ECBF. The method is as follows

u =

⎧
⎪⎨
⎪⎩

utrack if B(x) ≤ −ε,

σutrack + (1 − σ)usafe if B(x) ∈ (−ε, 0),
usafe if B(x) ≥ 0,

(9)

where σ = −2
(

B(x)
ε

)3

− 3
(

B(x)
ε

)2

+ 1, ε ∈ R+.

3 Simulation

The controller parameters are selected as follows: Kv =
[
2 3

]
, Kb =

[
2 3

]
, kb =

0.2, τ = 1 and ε = 0.25. The control object in the simulation is the CarSim
high-fidelity vehicle dynamics model.

3.1 Pure Trajectory Tracking

Pure trajectory tracking simulation including straight through intersection and
right turn through intersection. In the multi-lane setup, the reference driving
speed is established at 10 m/s. However, this speed is adjusted to 8 m/s at
intersections, and further reduced to 5 m/s when executing turns at intersections.
The simulation results are shown in Fig. 2 and Fig. 3.
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Fig. 2. Parameters in Variable-Speed Straight-Line Scenario
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Fig. 3. Parameters in Variable-Speed Right-Turn Scenario
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3.2 Trajectory Tracking with Collision Avoidance

The vehicle is traveling in a straight line when a stationary obstacle suddenly
appears ahead. dsafe is set to 6 m. It was observed that the vehicle executed a
reasonable braking maneuver, ultimately coming to a stop at a distance of 6.24 m
from the obstacle. The simulation results are shown in Fig. 4.

4 Conclusion

The simulation results demonstrate that our designed controller has good tra-
jectory tracking performance, safety guarantee, low computational burden and
a certain level of robustness. As a next step, we aim to propose an integrated
optimization method for the tunable parameters in the controller to enhance its
optimality.
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Abstract. The present contribution provides preliminary empirical
findings concerning the first-in-literature independent experimental char-
acterization of a commercially viable automated driving system in
Europe. In particular, the paper reports on the testing campaign involv-
ing a type-approved Automated Lane Keeping System (ALKS) equipped
vehicle and its comparison with the comparable driving assistance fea-
ture technology from the same vehicle: the Adaptive Cruise Control
(ACC) system. The results suggest that the ALKS shows substantially
enhanced performances with respect to ACC. In particular, both the
string stability metrics and the reaction time show remarkable improve-
ments. Additionally, the increased stability is not obtained via resorting
to a significantly higher time gap which further motivates that string
stable car-following is indeed feasible.

Keywords: Adaptive Cruise Control · Automated Lane Keeping
System · Driving Automation

1 Introduction

The Automated Lane Keeping System (ALKS) was the first Automated Driving
System (ADS) application to have been regulated by the United Nations Eco-
nomic Commission for Europe (UNECE) via Regulation 157 (UN-R157). ALKS
is a system enabling automated driving on motorways with physical separation
among opposite driving lanes at a cruising speed of up to 60 km/h. The lat-
est amendment increased the operational speed up to 130 km/h and introduced
automatic lane change [5]. A stand-out feature of any ADS feature with respect
to Advanced Driver Assistance Systems (ADAS) is that the driver is no longer
responsible for the driving task when the system is engaged. Thus, an ADS
achieves automation Level 3 or 4 according to SAE J3016 [4]. At the time of
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writing, only two vehicles exist in Europe that were type-approved according to
the ALKS provisions: the Mercedes S-Class and Mercedes EQS.

In terms of user-perceived functionality and target operational domain, the
ALKS L3 automation is in direct competition with the Adaptive Cruise Con-
trol (ACC) L2 assistance. In contrast to ALKS, ACCs are envisioned as SAE
J3016 Level 1/2 systems meaning that the driver shall always be ready to take
back control and the same will remain legally liable. ACCs have reached nowa-
days a substantial market penetration which eases carrying out testing to under-
stand real-world behavior. Despite the undoubted comfort benefit that ACC can
deliver, several concerns have been raised in the literature about the traffic impli-
cations [1]. For instance, the empirical evidence suggests that ACCs exhibit poor
string stability performances and slow reaction times thus contradicting many
fundamental hypotheses which advocated for the introduction of such systems.

To the end of providing an empirically-informed study that could give prac-
titioners more realistic assumptions and monitor the implementation of the legal
provisions, the authors have organized a testing campaign in Germany involving
one of those ALKS-featured vehicles. The objective was to provide a quantitative
assessment of the system’s capabilities with respect to the competing ACC. Due
to the limited Operational Design Domain (ODD) of the ALKS feature (the
manufacturer according to UN-R 157 is free to select the ODD), the authors
could only test the system in a selection of German motorways where the follow-
ing conditions applied simultaneously: no roadworks, no tunnel, good weather,
good visibility, and traffic speed up to 60 km/h due to congestion.

This paper provides the preliminary findings of a testing campaign aimed
at assessing the real impact of driving automation on public roads. The first
results suggest that ALKS show remarkably better string stability performance
when traveling under comparable headway in relation to the traditional Adaptive
Cruise Control (ACC) system.

2 Methodology

2.1 Testing Campaign

The experimental campaign took place in November 2023, about 3000 km were
driven in Germany using 2 vehicles equipped with state-of-the-art ADAS and
a vehicle equipped with ALKS from different OEMs while trying to maximize
the use of the driving assistance/automation features. The vehicles were instru-
mented with external GNSS antennas to record the positions and velocities to
enable the later post-processing vehicle-independent analysis.

2.2 String Stability

String stability refers to the capability of a platoon to absorb a traffic pertur-
bation. Conversely, a string stable platoon will dampen disturbances whereas



956 R. Donà et al.

a string unstable platoon will magnify the same leading to potentially unsafe
driving scenarios. String stability, wSS , is given by

wSS =
vFF,leader − min(vfollow)
vFF,leader − min(vleader)

, (1)

where vFF,leader is the free-flow velocity of the leader before the perturbation
occurs, min(vfollow) is the minimum velocity recorded for the follower, and
min(vleader) is the minimum velocity recorded for the leader. wSS ≤ 1 indicates
a string stable platoon.

2.3 Headway Policy

The headway refers to the spacing policy adopted by a follower vehicle when
cruising at equilibrium in car-following mode. The headway policy and string
stability have been demonstrated to exist in a trade-off interconnection. On one
side, a low spacing policy enables high theoretical flow. However, the poor string
stability associated with such reduced distances will in practice deteriorate the
flow as soon as a perturbation occurs or due to the intrinsic instability of the
system. On the other hand, increasing the headway will make the platoon more
robust against traffic perturbations but at the expense of reduced theoretical
maximum flow. As such, the quantification of the string stability cannot be
decoupled from the corresponding headway characterization.

In our testing campaign, we included in the dataset long portions of con-
stant speed driving segments to estimate at the post-processing phase the corre-
sponding headway settings. From the collected evidence the time-gap tg, which
together with the length of the vehicle originates the headway, can be estimated
as

tg =
distlong

vfollow
, (2)

where distlong is the bumper-to-bumper longitudinal distance at equilibrium.

2.4 Reaction Time

The reaction time is a relevant metrics for the safety assessment of a driving
automation technology. In the following, the definition suggested in [3] is adopted
where the reaction time tr is the time offset that maximizes the Pearson corre-
lation r(·) between the speed difference of two adjacent traffic participants (Δv)
and the follower’s produced acceleration (afollow) in response to a perturbation
as of

tr = arg max(rΔv,afollow
(Δv(t), afollow(t + tr))). (3)

3 Results

3.1 String Stability

Figure 1 depicts, on the left, the string unstable behavior denoted for the ACC
system whereas, on the right, the completely different behavior reported when
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the same vehicle traveled in ALKS mode is shown. The behavior illustrated
for one specific scenario in Fig. 1 has been consistent throughout the several
perturbations recorded in the testing campaign.

Fig. 1. ACC (left) string unstable behavior vs. ALKS (right) string stable behavior.

By aggregating the string stability metrics computed per each disturbance
scenario reported, Fig. 2 can be obtained which shows the median values and
the corresponding Q1/Q3 quartiles. Overall, significantly better performances
can be denoted for the ALKS since the entire distribution is contained in the
region wSS < 1 suggesting that the system has always been string stable in
the dataset collected. The same considerations do not apply to the ACC where
the distribution is always above the string stability threshold. Concerning the
numerical assessment, the median wSS for the ALKS is 0.83 with an Inter Quar-
tile Range (IQR) of 0.14. Conversely, the ACC displays a median wSS of 1.31
and an IQR of 0.20.

Fig. 2. ACC vs. ALKS aggregated string stability margins.
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3.2 Headway Policy

Figure 3 depicts the aggregated data concerning the time-gap tg for the ACC
and ALKS. The numerical assessment returns a median tg for the ALKS equal
to 1.60 s with an IQR of 0.07 s. Conversely, the ACC displays a median tg of
1.50 s and an IQR deviation of 0.41 s.

Fig. 3. ACC vs. ALKS aggregated headway policies.

The ACC has a slightly lower median headway (≈ 6%) than the ALKS
which would imply a theoretically higher maximum flow. However, the poor
string stability performance as of Fig. 2 while operating such a short time-gap
will most likely annihilate any potential theoretical advantage in traffic flow
in a real-world scenario. Additionally, the ALKS has a minimum time-gap of
1.60 s when traveling at 60km/h as mandated by UN-R157, a provision which
is proven to be fulfilled. Eventually, the ACC also exhibits a substantially larger
dispersion that can be ascribed to the mentioned poorer stability performance
and generally less precise tracking of the leader’s speed.

3.3 Reaction Time

Figure 4 depicts the aggregated data concerning the reaction time for the ACC
and ALKS estimated using (3). The same perturbations used to identify the
string stability margin were adopted to compute the aggregate reaction time.
The median reaction time for the ALKS has been identified as 0.80 s with an
IQR of 0.20 s. The ACC is significantly slower with a median rt of 2.60 s and
IQR of 0.90 s.

The results show the clearly different nature of ALKS vs ACC. The automa-
tion system is tuned to be more reactive to traffic disturbance since it is not only
designed for comfort applications, in contrast to its driving assistance counterpart,
but for tackling safety-critical scenarios as it bears the driving responsibility.
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Fig. 4. ACC vs. ALKS aggregated reaction time.

4 Conclusion

The study summarized the results of the first commercially available ALKS
system in Europe. To the best of the authors’ knowledge, this scientific effort
is the first independently assessed documented evidence regarding commercial
automation solutions moving beyond SAE J3016 Level 2.

The preliminary outcomes look encouraging. The ALKS managed to substan-
tially improve the string stability metrics with negligible impact on the headway
policy thus contributing to increased real-world flow and potentially better fuel
consumption. Additionally, the legal provisions mandating a minimum level of
safety culminate in a safety less prone to delayed reaction.

Still, the very limited ODD remains the main challenge OEMs will have
to face in order for the benefits to become tangible to the wider transportation
network. Further work will be devoted to extending the performance comparison
to embrace also previously tested ACC systems in the past [2] and to release
publicly the data to the wider practitioners’ community.
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Abstract. Adaptive Cruise Control (ACC) systems under short head-
way configurations have been found to have a potentially detrimental
impact on the transport network due to the string instability effect. Such
phenomenon results in traffic perturbations amplification downstream
causing increasing fuel consumption and posing safety threats. How-
ever, recent findings summarized in this paper show how even the sim-
pler platoon stability might not be attained with current ACC-equipped
vehicles raising additional concerns regarding their unregulated oper-
ation. In fact, as part of a recent campaign involving state-of-the-art
assisted vehicles, an ACC displayed a low-frequency oscillatory behavior
around the equilibrium speed. This work, by leveraging a mixed simula-
tion/empirical approach, uncovers the harmful influences of such behav-
ior. Ultimately, we found that despite the poor stability phenomenon
might not be impactful for one vehicle, the overall repercussions on the
transportation network can be dramatically detrimental raising the need
for a regulatory framework for lower-level automation.

Keywords: Adaptive Cruise Control · Asymptotic/String Stability

1 Introduction

Adaptive Cruise Control (ACC) is a driving assistance feature that provides
the driver with additional comfort when traveling on highways by adjusting the
speed while following a leader vehicle. ACC is commonly classified as an SAE
J3016 Level 1 system (or Level 2 when coupled with lane-centering assistance)
meaning that the driver will always have to be ready to take control at any
time and the same will remain legally liable. ACCs have been investigated for
a long time both via theoretical simulation studies [7] and, more recently, via
real-world experiments [1,5]. Frequently, the two types of assessment have led to
contrasting outcomes: on one side theoretical studies have envisaged a beneficial
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effect of ACC introduction based on the adopted assumptions, on the other
side, the actual mass-market ACCs did not prove to deliver increased stability
performance with respect to human driving [1].

Albeit higher-level automation systems, i.e., systems where the feature pro-
vides proper driving automation thus transferring the legal liability to the man-
ufacturer in contrast to driving assistance, are gradually approaching the market
[2], driving assistance still has the largest market penetration share.

To the end of monitoring the evolution of driving assistance technologies, the
authors have organized a testing campaign in Germany involving three vehicles
featuring advanced Level 2 systems. During the testing, it became apparent to
the driver sitting in one specific vehicle that the same was never able to achieve
a constant speed while following a leader. The present contribution character-
izes the specific instability phenomenon. The paper reports on the effect and
the potential implications of a similar ACC design on the transportation net-
work if left uncorrected by the car manufacturer. The effort leverages a mixture
of experimental characterization together with a simulation-based approach to
enlarge the scope.

2 Methodology

2.1 Perturbation Identification

The experimental campaign took place in November 2023, about 3000 km were
driven in Germany using 3 vehicles equipped with state-of-the-art SAE J3016
Level 2 systems while trying to maximize the use of the driving assistance fea-
tures. The vehicles were instrumented with external GNSS antennas to record
the positions and velocities. To isolate the oscillation effect, the testers drove
for long sections of the motorway while the leader kept a constant speed with
no disturbance upfront. By repeating the procedure multiple times, 40 intervals
were identified covering a range of different target speeds. The oscillations were
analyzed by removing the mean component of the speed and fitting a sine wave
to the residual speed profile. The sine functions calibration procedure returned
the wave’s frequency, amplitude, and phase. The latter signal was disregarded as
it did not provide useful information. On the contrary, two distributions could be
obtained for the oscillation frequency and amplitude, respectively, by repeating
the sine function fitting procedure to all the 40 intervals produced.

Additionally, the extra fuel consumption associated with the oscillation
behavior was characterized using the CO2MPAS software tool (https://code.
europa.eu/jrc-ldv/co2mpas) developed by the Joint Research Centre for Euro-
pean Commission to establish the fuel/energy consumption of passenger cars
and light duty vehicles. The CO2MPAS microsimulation tool has been executed
on the trajectory exhibiting the oscillation and on the same trajectory subject
to a non-causal low-pass filter removing the oscillatory component while main-
taining the same average speed to match the distance traveled. The procedure
was repeated for the whole set of identified perturbations to identify the average
additional energy expenditure.

https://code.europa.eu/jrc-ldv/co2mpas
https://code.europa.eu/jrc-ldv/co2mpas
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2.2 Traffic Flow Implications

Following the characterization of the oscillation abnormality, a stochastic simu-
lation study was put in place to assess the foreseen implications on longer and
heterogeneous platoons which were not possible to accomplish during the public
road testing. A thorough validation effort for the simple simulation model to
match the behavior of the vehicle under test goes beyond the article’s aim.
Instead, the simulation uses a stochastic approach to enlarge the scope to
embrace vehicles with different controllers’ tuning but similar undamped follow
behavior.

The simulation setup was derived from earlier authors’ work [3,4] and lever-
aged a simple car-following model where the well-known linear controller model
gives the car-following control law [6]:

uACC(t) = kd(vL(t − T ) − v(t)) + kp(s(t − T ) − tgv(t) − η). (1)

In Eq. (1), s(·) represents the ego-leader distance, vL(·) the leader’s speed,
v(·) the ego’s speed and u(·) the control action. kd and kp are the con-
troller’s gains, tg the desired time-gap, T is the estimation delay, and η is
the standstill spacing. The target acceleration uACC is saturated in the inter-
val [−5.0, 2.0] m/s2. Each virtual vehicle is calibrated by randomly sampling
its parameters from the intervals reported Table 1 assuming uniform distribu-
tion assumptions. The intervals are derived from real-world characterizations of
ACC behavior as of [5].

Table 1. Vehicle platoon simulation parameters.

kp (s2) kd (s) tg (s) τa (s) T (s) η (m)

[0.03, 0.10] [0.25, 0.70] [1.20, 2.50] [0.20, 0.50] [0.75, 1.50] [2.00, 3.00]

The simulation setup is such that a platoon of ACC-equipped vehicles, start-
ing from a steady-state condition, is subject to a perturbation induced by the
leader vehicle. In particular, a set of 15 mild perturbations derived from the
“highD” dataset [8] were adopted for the purpose. To replicate the effect of the
leader vehicle experiencing the oscillatory behavior observed during the testing
campaign, which is not present in the highD dataset, a sinusoidal wave speed
profile has been superimposed on top of the original leader’s trajectory. Each
simulation is repeated 20 times by randomizing over the vehicle parameters in
Table 1 and over the calibrated oscillation parameters frequency and amplitude
as described in Sect. 2.1. The analysis was repeated twice for two platoon refer-
ence lengths: 5 vehicles and 20 vehicles (including the leader). Thus, the impact
of the oscillation propagation can be better grasped. The assessment is carried
out via computing the average root mean square (RMS) platoon longitudinal
acceleration ax,RMS and the number of rear-end collisions as a proxy for comfort
and safety degradation metrics.
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3 Results

3.1 Oscillations Characterization

Figure 1 shows a recorded oscillation (blue dots) together with the calibrated sine
wave (red line) and leader’s speed (black dots). Albeit the leader is traveling at
constant velocity the follower is exhibiting a clearly undamped oscillation which
can be effectively fitted with a sine function.

Fig. 1. Example of recorded oscillation and fitted sine wave.

The computation of the Pearson correlation between the amplitude of the
oscillatory component and the mean speed component returns a negative statis-
tic (–0.0108) and a p-value equal to 0.947 suggesting that the quantities are
uncorrelated.

The median oscillation corresponds to a low-frequency 0.225 rad/s (T =
27.3 s) wave having a mean 0.873 m/s amplitude as shown in Fig. 2. The standard
deviations are 0.00248 (rad/s) and 0.0955 (m/s) respectively. The statistical test
assessing the normality of the distributions returns a value higher than 0.05,
suggesting that the null hypothesis of the distributions being normal cannot be
rejected.

Concerning the fuel consumption analysis, for the particular vehicle model
considered, an average reduction of 3.30% could be accomplished by filtering
the oscillatory component of speed while maintaining the same traveled dis-
tance. Overall, the oscillation only contributes to a marginal increase in fuel
consumption that would be barely noticeable in a real-world scenario consider-
ing an individual vehicle only.

3.2 Traffic Simulation Results

The simulation assessment of longer platoons provides insightful findings.
Figure 3 displays the 5-vehicles long platoon aggregated results in terms of

ax,RMS and virtual crashes. Similarly, Fig. 4 shows the outcome associated with
the longer 20 vehicles platoon.
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Fig. 2. Histogram of oscillation frequencies (left) and amplitude (right).

Fig. 3. Bar charts: acceleration RMS (left) and collision (right). 5 vehicles platoon.

The introduction of the oscillatory components marks a clear surge in the
acceleration RMS value which is increased by approximately 50% in the 5 vehi-
cles long platoon suggesting that comfort and energy consumption are sensibly
affected. On the contrary, safety is marginally reduced. The situation gets sub-
stantially worse when the longer platoon is considered. In this case, the RMS
acceleration more than doubles and the platoon is hardly capable of maintaining
a stable car-follow with a substantial increase in rear-end collisions.

Fig. 4. Bar charts: acceleration RMS (left) and collision flow (right). 20 vehicles pla-
toon.
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4 Conclusion

The study summarized the testing results of SAE J3016 Level 2 assisted driving
vehicles, highlighting concerns about poor stability in one vehicle’s ACC mode.
Firstly, the phenomenon has been characterized in terms of its frequency and
amplitude showing that the oscillation has a relatively slow period of T ≈ 27 s
and a mean amplitude slightly inferior to 1 m/s. The energy consumption anal-
ysis demonstrated how, for one vehicle only, the phenomenon yields only a slight
increase in fuel consumption which could be hardly measurable. However, once
the phenomenon is enlarged via simulation to multiple vehicles exhibiting a
string unstable behavior significant safety and comfort/energy worsening effects
were reported, in particular in longer platoons. The results support the need
for a regulation framework for lower automation systems to prevent potentially
harmful impacts on traffic networks.
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Abstract. Knowledge of the sideslip angle is significant in development,
testing and validation of advanced driver assistance systems and vehicle
control systems, to enhance vehicle performance and stability. This arti-
cle investigates the influence of having additional information about tran-
sient tire behavior during estimation of the sideslip angle. Since transient
behavior depends on the dynamic excitation, the effect during different
driving maneuvers (excitations) such as steady-state cornering, slalom
and general handling as well as on different road surfaces is investigated.
The results show that considering transient force transmission even by a
pragmatic approach leads to a significant improvement.

Keywords: Sideslip angle · State estimation · Transient tire behavior ·
Tire force dynamics · Tire relaxation · Vehicle handling dynamics

1 Introduction

The sideslip angle β, as a main indicator of dynamic stability, describes the
orientation of the horizontal velocity in the center of gravity (COG) of a
vehicle and is given as a function of longitudinal vx and lateral velocity vy

by β = arctan (vy/vx). Estimating β has garnered significant attention from
researchers over the past few decades and observer-based methods such as
Kalman filters (KF) or sliding-mode observers (SMO) are often used. Within
such observers, different types of uncertainties in the lateral tire forces are typ-
ically modeled without distinction. These uncertainties include deviations from
the real cornering stiffness, deviations from the real vertical force, transient tire
behavior, effects based on nonlinear tire behavior, e.g. assuming linear force
transmission, as well as imperfect or missing knowledge of the maximum coef-
ficient of tire-road friction. Being able to distinguish these effects will enable
improved modeling of the uncertainties in the observers, especially of effects
such as transient tire forces and vertical load, that can be linked to a certain
dynamic excitation.

2 Transient Tire Force Transmission

The theory of steady-state (static) tire force transmission F S
x,y is based on the

fundamental assumption that when the sliding condition in the contact patch
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Fig. 1. Principles of modeling visco-elastic tire compliance ye by a Kelvin-Voigt
element (left), based on [6], and resulting transient tire force transmission FD

y (right)

changes, a certain steady-state force value is reached immediately. In general, a
certain time delay between a change of the sliding velocity and the build up of
a steady-state tire force value occurs. Consequently, transient effects and a hys-
teresis behavior of horizontal force characteristics FD

x,y occur, see Fig. 1 (right).
A simple and widely used approach in vehicle handling dynamics analyses is to
approximate the dynamic behavior of tire forces by first-order systems

τx,y ḞD
x,y + FD

x,y = F S
x,y with τx,y =

rx,y

vt
. (1)

The key parameter in such approaches is the relaxation time τx,y, which is linked
to the relaxation length rx,y and the transport velocity of the tire tread elements
through the contact patch vt. Relaxation time and length are only constant in a
specific operating point. Several literature sources deal with a detailed modeling
of these two parameters and their dependencies on e.g. slip sx,y, vertical load Fz

and visco-elastic effects dy and cy of tire compliance ye, see Fig. 1 (left) and e.g. [5,
6]. The determination of relaxation lengths based on experimental investigations
with a certain accuracy is still a cumbersome and challenging task as well as a
research topic, see e.g. [2].

Based on the enhanced first-order tire force dynamics of the semi-physical
TMeasy 5 handling tire model, [6], relaxation time and length for pure lateral
slip are given by

τy =
vt dy + fy

vt cy
=

dy

cy
+

fy

vt cy
and ry = vt τy , (2)

where nonlinear steady-state tire force characteristics F S
y = F S

y (sy, Fz) are
described by the global derivative fy = F S

y /sy with respect to the lateral slip
sy = −vy/vt = tan α or slip angle α. For pure lateral slip, vt = |vx| holds. Based
on the considerations in Eqs. (1)–(2), the transient behavior of the lateral tire
force transmission FD

y is fully determined by nonlinear steady-state contact force
characteristics fy as well as visco-elastic stiffness cy and damping properties dy

of the tire structure. Thus, tire force dynamics are approximated in an effective
and efficient semi-physical manner by a Kelvin-Voigt element.
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Fig. 2. Identified relaxation length ry = ry(α, Fz) and time τy = τy(α, Fz) (bot-
tom left and right) of a tire of size 245/40 R 20 99 W based on measured lateral tire force
responses Fmeas

y (top) at different vertical loads Fz = const. and vt = |vx| = 60 km/h

An extensive tire testing series with five different tires was conducted on an
industrial flat track tire test rig, as presented in [4] for two tires. An example
of measured dynamic responses of the lateral tire force Fmeas

y of a tire of size
of 245/40 R 20 99 W due to a frequency based sine sweep maneuver of the slip
angle α from 0 → 5 Hz at constant tire load Fz and velocity vt is presented
in Fig. 2 (top). Based on such measurements, the Kelvin-Voigt parameters,
lateral tire stiffness cy and damping dy, can be identified by optimization of the
computed transient lateral tire force FD

y , see also [4]. Consequently, a reasonable
prediction of the behavior of relaxation length ry = ry(α, Fz) and time τy =
τy(α, Fz) according to Eq. (2) is possible, see Fig. 2 (bottom left and right).

3 Sideslip Angle Estimation

The cascaded observer structure from [1] was implemented. First, a discrete-
time extended Kalman filter (EKF) is used to estimate front longitudinal Fx1,
front and rear lateral tire forces Fyi. System and measurement models for the
force observer are given by Eqs. (1)–(10) in [1]. Subsequently, these estimates are
treated as inputs to the sideslip angle observer.

The sideslip angle observer is based on a combination of a single track vehicle
model and a linear adaptive tire force model, where the cornering stiffness Cαi

is corrected by ΔCαi(t). The lateral tire force is Fyi(t) = (Cαi + ΔCαi(t)) αi(t)
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Table 1. System model for both sideslip angle observers (first set) and measurement
models for observer O1 (second set) and O2 (third set)

with i = 1, 2 distinguishing between front and rear axle, respectively. By adjust-
ing the cornering stiffness, ΔCαi(t) accounts for nonlinear effects as well as differ-
ent uncertainties that can arise. This adjustment is included as a state variable
and modeled as the random walk. The system model is given in Table 1 (first set)
with the state x = [β ΔCα1 ΔCα2]T and input vector u = [δ ψ̇ v Fx1]T, where
δ is the steering angle, ψ̇ the yaw rate, and v the vehicle velocity in the COG.
The measurement model is given in Table 1 (second set) with measurement vector
y = [Fy1 Fy2 ay]T, where ay is the lateral acceleration. Together with the EKF,
this forms the basis of the first observer named O1. The model covariance matrix
is set to Q = diag(10−12, 109, 109), whereas measurement covariance matrix is
set to R = diag(103, 103, 10−5).

The present work investigates the impact of additional information regarding
transient tire forces, represented by τyi, on the sideslip angle estimation. The
estimated lateral force Fyi is the dynamic force in Eq. (1), i.e. Fyi = FD

yi. With
this information and the knowledge of τyi, the static force F S

yi can be obtained
using the discrete version of Eq. (1). The static force in the linear region can be
described by a linear model, F S

yi,k = Cαi αi,k, where k represents the current
time step. Consequently, αi,k = αmeas

i,k can be calculated in every time step by

F S
yi,k = τyi

FD
yi,k − FD

yi,k−1

Δt
+ FD

yi,k and αmeas
i,k =

F S
yi,k

Cαi
, i = 1, 2 . (3)

Therefore, if the observer is operating within the linear region of tire force char-
acteristics, sufficiently accurate values of the slip angle αi,k are obtained. Hence,
the measurement vector can be augmented by incorporating this values, for
both front and rear, y = [Fy1 Fy2 ay α1 α2]T. The index k is omitted but
implied. Relationships between the slip angles αi and the sideslip angle β read
α1 = δ − β − l1 ψ̇/v and α2 = −β + l2 ψ̇/v. These equations are combined with
the measurement model from O1 to form the novel measurement model of the
second observer named O2, see Table 1 (third set). The system model is the same
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Fig. 3. Algorithm structure with the proposed adapted sideslip angle observer O2

for both observers. Discrete-time EKF is employed and the algorithm struc-
ture with O2 is shown in Fig. 3. Using the Popov-Belevitch-Hautus (PBH)
criterion, [3], it is proven that the system is locally observable. However, only
in the linear region, sufficiently accurate slip angle values are obtained. Con-
sequently, the values of R corresponding to slip angles are changed depending
on the region. In the linear region, the corresponding value is set to 10−7 rad2,
while in the nonlinear region, it is 5 · 10−1 rad2. This is done for both the front
and rear separately. To decide whether the observer is in the linear or nonlinear
region, pragmatic threshold values of Fyi = {5, 3.5} kN are implemented.

4 Results and Discussion

Observers O1 and O2 were tested based on vehicle dynamics measurements
obtained with a front wheel driven standard VW Golf 7 GTI TCR with tires
of size 235/35 R 19 91 Y. The total vehicle mass is m = 1574 kg, the distances
between the COG and the front and rear axle are li = {0.992, 1.634} m. The
cornering stiffnessess of the front and rear axle are Cαi = {150, 142.4} kN/rad.

Different driving maneuvers with a mean vehicle speed of v ≈ 60 km/h for
a wide range of sideslip angle values were performed on road surfaces with dif-
ferent maximum tire-road friction. Although the tires of the test vehicle were
not part of the tire testing series, similar tire properties were assumed. Based on
the measured vertical tire load Fzi and slip angle αi variations during different
sinusoidal steering maneuvers, overall mean values of the relaxation times were
determined with τyi = {38, 31} ms by Eq. (2), cf. Figure 2 (bottom right), and
were assumed constant for all maneuvers.

The results show that the proposed adapted observer O2 can improve the
estimate of β, see Fig. 4. Significant improvement can be seen in steady-state
cornering (top right), where the result of O1 drifts from the real value. Due to
the steady-state inputs, the errors accumulate over time. However, O2 is able to
correct this error and track the true value of β. Additionally, the performance
of O2 is quite robust against uncertainties of τyi. This is supported by tests on
different road surfaces. Figure 4 (bottom) shows that both O1 and O2 perform
well on the ice-like surface around t = 20 s, although no information on the
surface is available to the observers. In both observers, the change in tire-road
friction is compensated in the estimates of ΔCαi(t). However, during the low
excitation on wet asphalt, O1 again drifts and is not able to converge again until
around t ≈ 115 s. In contrast, O2 is again able to correct the error.
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Fig. 4. Comparison of measurement and estimation results of observers O1 and O2 for
different maneuvers (excitation) and on different road surfaces (tire-road friction)

To summarize, the overall results show that including even simplified and
pragmatic assumptions on the transient tire force transmission can significantly
improve the estimation of the sideslip angle.
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Abstract. In the rapidly evolving landscape of hybrid commercial vehi-
cle technology, integrating artificial intelligence (AI) with fuel cell appli-
cations offers a promising frontier for efficient, sustainable and eco-
friendly road freight system. There has been many different approaches
on optimization of power split between the electric motor and the fuel
cell system (FCS). Conventional approaches use quadratic optimization
to determine the optimal power from the electric motor at each dis-
crete grid point along the route, with initial and final battery state of
charge (SoC) as constraints. This paper proposes a deep reinforcement
learning-based approach to optimize the power split between the electric
motor and the FCS in a hybrid vehicle at every time point during the
vehicle’s trip. The agent demonstrated the ability to autonomously learn
and improve power split decisions, resulting in enhanced fuel efficiency.

Keywords: hybrid commercial vehicles · power split strategy ·
artificial intelligence · machine learning · deep reinforcement learning

1 Introduction

1.1 Hybrid Commercial Vehicles

Hybrid commercial vehicles with hydrogen Fuel Cell System (FCS)are powered
by a combination of fuel cell system and an electric propulsion system. We
are considering hybrid vehicles in which both the power sources can drive the
vehicle independently and simultaneously and the battery of the electric motor
is charged from recuperation. Most of the power requirement is met by the FCS.
This type of hybrid systems are called series-parallel hybrid system. Along with
the FCS, electric motor and battery pack, this type of vehicle contains a power
split device which manages the distribution of power between the FCS and the
electric motor. The power split device runs on certain logic to split the total
required power at a particular instance between the FCS and the electric motor.
It also charges the battery from recuperation when the total required energy
goes negative. We use deep reinforcement learning for deriving the logic to split
the required power between the above power sources.
c© The Author(s) 2024
G. Mastinu et al. (Eds.): AVEC 2024, LNME, pp. 975–981, 2024.
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1.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique where an agent
learns to make decisions in an environment to maximize returns based on spe-
cific objectives. The environment is a bounded system that changes its state in
response to the agent’s actions. An agent, an external entity, observes the sys-
tem’s state and influences it to achieve and maintain a favorable state. Therefore,
the agent’s objective is to learn the action-state dynamics and control the system
with actions that result in the desired system state.

Rewards are defined to meet the system’s output objectives and are calcu-
lated based on the observed state of the system. During the learning phase, the
agent observes the system’s state, performs actions to change it, and evaluates
the new state by calculating the return. The return consists of the immediate
reward and the discounted future reward at the new state. Over time, the agent
adjusts its actions based on the returns to transition from the current state to a
favorable state.

Artificial neural networks, which can learn complex non-linear relationships
between variables, are used to represent the agent in deep reinforcement learning.
These networks serve as universal function approximators, enabling the agent
to learn and adapt effectively. The objective of the agent is to learn a policy
π(�|∼, θ), which is a mapping from state s to a probability distribution over
action a, parameterized by a neural network θ, that maximizes the expected
return Jθ = Eπ[Gt]. The returnGt =

∑∞
k=0 γkRt+k+1 where γ is the discounting

factor for future rewards and Rt+k+1 is the reward at time step t + k + 1. The
policy is improved over iterations by updating θ from the gradient of the return
∇θJθ = Eπ

[∇θlogπ(a|s, θ)Qπ(s, a)
]
.

2 Related Work

Ferrara et al. [2] used quadratic optimization for optimal power split in hybrid
commercial vehicles. Liessner et al. [6] addressed the power split problem using
RL with Deep Deterministic Policy Gradient (DDPG) [7] algorithm. DDPG is a
breakthrough in off-policy continuous action space RL applications, but is sen-
sitive to hyper parameters [3]. Manio et al. [8] used Q-learning to address the
problem with explicit inclusion of SoC conservation in the reward function. Hu et
al. [4] uses deep Q-learning with reward function discretized on the value of SoC.
Q-learning suffers from over estimation bias. We use Soft Actor Critic (SAC) [3]
algorithm for learning the optimal power split. SAC is robust to hyper parame-
ters and converges fast in high dimensional control problems. SAC avoids hyper
parameter sensitivity by incorporating policy entropy term in policy update,
thereby encouraging exploration.

3 Training Architecture

The objective of this exercise is to develop a model that optimally splits the
total required power between the electric motor and the FCS. Optimal power
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split involves minimizing hydrogen fuel consumption, preventing battery drain,
and battery charging when the wheels do not require power (e.g. during downhill
travel). The model considers look ahead information on the next downhill travel
and the total battery charge during the next downhill travel. The architecture
consists of two main components: the vehicle model and the reinforcement learn-
ing (RL) module. The RL module receives observations from the vehicle model
at each time instance and outputs the power split ratio between the FCS and
electric motor. Based on this ratio, the vehicle model calculates the power from
the FCS and the electric motor at every time point of the trip (Fig. 1).

Fig. 1. Training architecture. The agent forms a deep reinforcement learning algorithm,
which takes observations from the vehicle model as inputs and outputs the action. The
environment sends a step/reset command along with the action to the vehicle model.
The vehicle model integrates the next step’s power requirement and the current power
split observations based on the action and sends it back to the environment. The
environment checks for termination/truncation of the episode based on the observations
from the vehicle model. The environment then calculates the reward, which is used to
update the agent’s network. Additionally, the environment normalizes the observations
and feeds them back into the network.

3.1 Vehicle

The vehicle model consist of two sub modules- vehicle configuration and road
data. Vehicle configuration consist of vehicle mass, FCS configuration, bat-
tery configuration, auxiliary power and vehicle dynamics including acceleration,
deceleration, velocity, traction power and driving resistance. Road data consist
of road slope, curvature, speed limits etc. which are captured using sensors on
vehicle while driving along 8 different routes in Austria. Driving mode is a vari-
able in the range (0,1) representing economy to aggressive driving. From the road
data, vehicle dynamics and the driving mode, the required power for the vehicle
at each instant of time is calculated. When the RL module sends the power split
ratio as an action through the environment module, the vehicle model calculates
the power from FCS as (total power * power split ratio) and power from electric
motor as (total power * (1-power split ratio)). The SoC expenditure from the
battery for the power from electric motor is calculated according to the battery
configuration and dynamics. Subsequently, the remaining SoC is calculated as
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the difference between the current SoC and the SoC expenditure for the power.
The FCS fuel consumption and efficiency are then determined from the FCS
model. When the total power goes negative, the battery is charged and FCS
power is kept at zero.

3.2 Deep RL Module

This is an episodic task involving finding the optimal power split at any given
time point of truck’s trip.

Observation Space: The observations space consist of the total required power
at the wheels at the moment in time, the battery SoC at the moment, altitude
and curvature of the road, desired velocity, time steps to episode end, time steps
till next downhill descent and total SoC charge in the next descent. The total
required power is a continuous value in kW and is derived from the vehicle and
route data. The battery SoC is also a continuous value ranging from 0 to 1.

Action Space: The action space is the power split ratio between FCS and
electric motor which is a continuous value in the range [0,1].

Algorithm:With the episodic task setting with continuous action space, Soft
Actor Critic (SAC) [3] algorithm best suits the problem. SAC is an off-policy
actor critic deep reinforcement algorithm suited for continuous action space.
Off-policy algorithms are sample efficient algorithms which uses past experience
gathered in a replay buffer for learning. This suits our scenario where the route
and vehicle dynamics are constants and environment exploration is bounded.

Reward: Table 1 shows the observations used for reward calculation. A reward
of 100 is given when the agent navigates successfully to the end of the episode
without SoC drain. A small reward is given for every step towards the episode
end which promotes saving SoC since the episode gets terminated when the SoC
goes to 0. A negative reward is given for cumulative H2 consumption during the
travel with the objective of reducing H2 consumption. A penalty is given when
the SoC goes below 10%.

Table 1. Reward components, positive/negative (+/-) contribution and their weights.

Component +/- Weight

Truncated (episode end) + 100

Non terminated + 0.1

Cumulative H2 consumption – 10

SoC below 10% – 100
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4 Experiment

4.1 Setup

Building on the methodology and tool chain by Bukic et al. [1] created around
Ray [5], an open-source distributed computing framework, we trained the net-
work with 16 CPUs and 1 GPU. A vehicle model with 40 ton weight, initial bat-
tery SoC of 0.5 and driving style of 0.5 were used for training. The driving style
effect the acceleration, deceleration and velocity calculation and subsequently
the required power at the wheels. Total of 8 routes were used for training. Policy
and Q value network used 256,256 fully connected network with a learning rate
of 0.003 for both the networks. A prioritized replay buffer with a capacity of
10,00,000 was used and a train batch size of 512 was used. Training was done
for 50,000 iterations.

4.2 Results

Figure 2 shows the power split between FCS and electric motor using SAC
method on the Brenner route. The approach splits the total power almost equally.
The battery charges when the total power goes negative. The Brenner route is
a high uphill/downhill route.

Fig. 2. Power split by Soft Actor Critic(SAC) method on the Brenner route. P total is
the total required power, P FCS is the power from FCS and P Bat is the power from
battery(electric motor)

Figure 3 shows the battery SoC comparison between SAC and QO approaches
on Brenner route. The red line shows the altitude of the route. Table 2 shows
the comparison of H2 consumption with SAC power split method and Quadratic
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Fig. 3. Battery SoC with Soft Actor Critic(SAC) method and Quadratic Optimiza-
tion(QO) method on the Brenner route against the altitude of the road.

Optimization method on the 8 routes. On all routes, SAC approach has shown
less H2 consumption with an highest improvement of 6% and the lowest improve-
ment of 1.4 % compared to quadratic optimization approach.

Table 2. Drive cycles, distance covered and H2 consumption with SAC power split
approach and quadratic optimization(QO) approach from Ferrara et al. [2]

Drive Cycle Distance(km) H2 Consumption(kg)
SAC QO

Improvement(%)

Steyr ⇒ Linz 43 2.39 2.81 1.4

Graz ⇔ Wiener Neustadt 358 31.49 32.71 3.7

Graz ⇒ Wiener Neustadt 181 14.64 15.09 2.9

Goettingen ⇒ Ulm 428 42.56 44.52 4.4

Ulm ⇒ Trient 383 33.16 35.30 6.0

Innsbruck ⇒ Bozen (Brenner) 120 8.70 9.82 11

Steyr ⇒ Graz 200 16.90 17.37 2.7

Graz ⇒ Wiener Neustadt 187 16.22 17.10 5.1

4.3 Conclusion

RL based power split strategy has demonstrated its effectiveness in reducing
fuel consumption in hybrid vehicles. The above approach relies on offline pre-
determined route information and ideal velocity profile to calculate the power
requirement. However, enhancing this strategy by predicting real-time power
requirements using sensor data from the moving vehicle will improve its applica-
bility and accuracy in real-world scenarios. Additionally, incorporating battery
health parameters into the model will yield more sustainable battery perfor-
mance. The current experiment is limited to vehicles of a specific weight.
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Abstract. This research introduces a method for autonomous driving systems to
safely overtake bicycles in urban environments. It identifies the risk of sudden
crossing when overtaking a bicycle and proposes a solution to minimize this risk.
The method classifies the situation into three conditions related to the drivable
space of the road and speed of the bicycle, and it determines the target speed and
positions. The proposed algorithm uses onboard sensor information and assump-
tions of the bicycle’s virtual sudden-crossing motion, enabling real-time calcula-
tions in a practical environment. Simulations demonstrate the method’s effective-
ness, showing it can generate a natural overtaking speed and lateral gap based on
road width and bicycle speed. The proposed method is compatible with waypoint-
based path generation methods we have proposed in previous research, making it
a promising solution for future autonomous driving systems. Future research will
discuss the method’s implementation in automated vehicles, contributing to safer
and more efficient autonomous driving systems.

Keywords: Autonomous Driving System · Risk Prediction · Crossing Bicycle ·
Overtake · Urban Area

1 Introduction

Autonomous driving systems or advanced driver assistance systems in urban environ-
ment presents a significant challenge, particularly when navigating narrow roads shared
with other traffic participants, including vulnerable road users (VRUs). Human drivers,
when navigating these scenarios, maintain a safe longitudinal and lateral distance from
objects to prepare for unexpected crossing.At the same time, drivers select an appropriate
speed for overtaking objects. In particular, we focused on the scenario when a bicycle
suddenly drifts out or crosses the ego vehicle’s driving lane while the ego vehicle is
overtaking. According to a near-miss incident database HHDB, the near-miss incidents
involving overtaking bicycles have reached 624 cases out of 3005 of entire bicycles’
near-miss incidents that are recorded in the database [1].

As legislative measures for overtaking bicycle, the Japanese Cabinet decided to
impose on car drivers a duty to make an effort to overtake the bicycles at a safe speed
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when the lateral gap is insufficient [2]. In the United States, 3-foot passing laws were
widely employed across states [3]. However, neither the safe speed nor the sufficient
lateral gap has been quantitatively defined by the Japanese Cabinet. Also, the research
investigated the effect of 3-foot law suggested that the effect to the driver behavior by
the law was limited [4]. In addition, much research has been conducted on autonomous
driving for overtakingbicycles [5, 6]. This research required huge amounts of drivingdata
of the real drivers. Moreover, motion prediction and path planning with MPC requires
more computational resources. Furthermore, the stochastic method seems to reasonably
defines the motion of the object, however, we must note that most high-risk scenarios
occur due to behaviors that happen in low probabilities. Therefore, it may be difficult to
avoid the collision like the case that unusually happens with the stochastic method.

Therefore, this research aims to define, both theoretically and geometrically, the risk
of sudden crossing in risk predictive scenario especially when overtaking bicycle in the
same driving lane. Also, it proposes a method to minimize this risk to avoid collisions
within the context of Autonomous Driving Systems and Advanced Driver Assistance
Systems in urban driving. Previous research conducted by our team has revealed the
safe speed and safe lateral gap to manage potential risks from blind object, such as
blind intersections and parked vehicles [7]. Building on this research, this paper aims to
geometrically determine and calculate the safe speed and lateral overtaking distance to
safely overtake the ongoing bicycles, with a rationally lower computational cost.

2 Definitions of Safe Lateral Gap and Safe Speed

2.1 Conditions for Overtaking Bicycle

In this study, a following collision avoidance scenario by an autonomous vehicle was
considered. A bicycle is driving straight on the same lane of the autonomous vehicle and
the vehicle is catching up to the bicycle. When an onboard sensor on the autonomous
vehicle detects a target bicycle, the system assumes that the object virtually moves into
the driving trajectory. In generating the trajectory and speedprofiles, the systemconsiders
three conditions to handle the scenario, as shown in Fig. 1. To prevent collisions, the
system is designed to ensure side-face collision avoidance by maintaining sufficient
lateral time gap, as in condition (a), or to decelerate to a safe speed to ensure frontal
collision avoidance, as in condition (b). As another option, when the lateral gap is not
enough to ensure both frontal and side-face collision, the system needs to judge to follow
the object as condition (c).

As previously explained, we considered three conditions related to the width of the
lateral drivable space. The virtual target object is presumed to start crossing at a certain
time while maintaining the speed vobj. The timing t1 is derived from the geometrical
relationships as depicted in the figures. Subsequently, the virtual target object sways out
at an angle ψvir . The crossing angle is determined from the statistical measurements in
a previous study [8]. The following subsections introduces the definitions of safe speed
and safe lateral gap for each condition.
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Ego vehicleEgo vehicle

a) When road has sufficient width 
to avoid poten�al risk. 

b) When road has insufficient width
to avoid side-face collision. 

Completely avoided by 
steering maneuvers.

Taking lateral space and 
decelerating to safe speed.

Ego vehicle

c) When road has insufficient width 
to avoid poten�al risk. 

Decelerating and 
following the object.

Fig. 1. Three conditions to handle the preceding slower bicycle.

2.2 Condition (a): Avoiding Through Steering Maneuvers

When the road has enough width, the system aims to avoid the virtual crossing object by
providing a safe-sufficient time-to-conflict of the virtual object tvir . We have defined the
lateral gap distance when the ego vehicle can completely avoid the collision as the safe
lateral gap Dsafe (see Fig. 2). When the vehicle can maneuver to keep the safe lateral
gap, it avoids entering the virtual crossing area and traverses the area at the current speed
or higher as in condition (a). The safe lateral gap Dsafe is calculated using the following
equation:

Dsafe(t) = vobj(t)tvir sin(ψvir) + C (1)

ψvir

Virtual 
dar�ng out

Ego vehicle

X

Y

vobj(t) t1(t)

Target object

Dego1(t) ≈ vego(t) t1(t)

Dsafe(t)vego(t)
vego(t) vego(t)

Dego2(t) = vego(t) tvir

C

Fig. 2. Schematic definitions of safe speed, lateral gap, and parameters at condition (a).

Under condition (a), the vehicle needs to complete the overtaking, therefore, the
collision avoidance is guaranteed only when the vehicle is driving faster than the current
velocity vego. In this scenario, the target speed vtar and target position (Xtar , Ytar) for
the vehicle control are as:

⎧
⎨

⎩

vtar(t) = vego(t)
Xtar(t) = Xego(t) + Dego1(t)
Ytar(t) = Yobj(t) − Dsafe(t) −Wego

/
2

(2)

2.3 Condition (b): Avoiding Through Deceleration and Steering Maneuvers

Conversely, as in the scenario (b), when the situation presents insufficient drivable space,
the system maintains the maximum possible lateral gap Dmax without deviating from
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the road boundary. Then the vehicle decelerates to the safe speed vsafe that can avoid the
collision with the virtual crossing object by performing emergency braking (see Fig. 3).
The formula for calculating the safe speed vsafe is as follows:

vsafe(t) = −aEB(t2(t) − τEB) + vobj(t) cosψvir (3)

where aEB is the estimated acceleration of emergency braking and τEB is the latency
before emergency braking activation. The time t2 can be calculated using the following
equation:

t2(t) = (Dmax(t) − C)
/(

vobj(t) sinψvir
)

(4)

Ego vehicle

X

Y

Target object

Dego1(t) ≈ 

(vego(t)+vsafe(t))t1(t) / 2
Dego2(t)

vobj(t) t1(t)

vego(t)

vobj(t)cosψvir

Dmargin

vsafe(t)

Dmax(t)

vobj(t) t2(t)

Road boundary

Fig. 3. Schematic definitions of safe speed, lateral gap, and parameters at condition (b).

By decelerating the vehicle speed to the safe speed vsafe and taking the safe lateral
gap Dsafe = Dmax at the collision estimated point, the system can guarantee the frontal
collision avoidance by performing emergency braking. In this scenario, the target speed
vtar and target position (Xtar , Ytar) are as:

⎧
⎨

⎩

vtar(t) = vsafe(t)
Xtar(t) = Xego(t) + Dego1(t)
Ytar(t) = Yobj(t) − Dsafe(t) −Wego

/
2

(5)

2.4 Condition (c): Following Object

When the time t2 is shorter than the latency τEB, the emergency braking may not be able
to stop the vehicle if the ongoing object starts crossing in front of the vehicle. In this
scenario, regarding t2 = τEB, the target speed vtar and target position (Xtar , Ytar) are as:

⎧
⎨

⎩

vtar(t) = vobj(t)
Xtar(t) = Xego(t) + Dego1(t)
Ytar(t) = Yego(t)

(6)
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2.5 Summary

The proposed algorithm can determine the target speed, positions, and longitudinal
acceleration simply from the onboard sensor information and several assumptions of
the virtual motion of the bicycle. This simple calculation method enables real-time
calculations in practical environment. Therefore, the target speed and positions will be
iteratively updated until the loss of detection of the target object.

The target points can be used as control waypoints, and the path generation methods
that follow thewaypoint enable automated driving [7].Moreover, the proposed algorithm
allows easy combination with other waypoint generation methods and can extend the
scenario to more complex and practical scenes [7].

3 Simulations and Results

From the definitions of safe speed and lateral gap, and considering the environmental
factors, the safe speed and lateral gap are determined from the road width and speed of
the ongoing target object. Simulations were conducted to demonstrate the calculation of
safe speed and safe lateral gap. In the simulations, parameters for the algorithm were set
as follows: ψvir = 30 [deg], tvir = 1.5 [s], aEB = − 5.0 [m/s2], and the lateral position
of target object was set to 1.0 m from the left road boundary.

Figure 4 schematically explains the features of how the safe speed and safe lateral
gap are influenced by the object speed and road width. The figure represents three areas
corresponding to the conditions (a), (b), and (c). In the area under of condition (a), the
safe speed cannot be defined, so the safe speed was stated as 0 km/h, and for the area of
condition (c), it is not possible to define the safe lateral gap, therefore, the safe lateral
gap is stated as 0 m.

Fig. 4. Characteristics of safe speed and safe lateral gap regarding road width and object speed.

As an example case of the simulation, we set the target object speed vobj to 12.0 km/h
and the road width to 6.0 m. From the definitions, the scenario is classified as condition
(b), and the safe speed and safe lateral speed were calculated as vsafe = 20.2 [km/h] and
Dsafe = 2.9 [m]. Therefore, the target speed and target positions are defined from Eq. (4).
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Displacement X [m]
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Y
[m

]

Ego vehicle Target object Road boundary

Fig. 5. Path of the autonomous driving vehicle and target object in the simulation.

Figure 5 shows the example simulation of the overtaking scenario. In the simulation, the
vehicle model simply decelerates to the safe speed before reaching the target point and
reaccelerates after overtaking. For the lateral control, the Triclothoidal path generation
was used to maintain the safe lateral gap [9]. From the figure, the method overtook the
target with a natural path within the road.

4 Conclusions

This paper proposed a method for autonomous driving system to safely overtake the
bicycles. The method can theoretically and geometrically determine the safe speed and
safe lateral gap with a low-calculation cost by anticipating the virtual sudden crossing.
The method classifies the situation into three conditions related to the drivable space of
the road and bicycle speed. The method simply provides the target position and speed
that can guarantee collision avoidance with the assumed sudden crossing. Simulations
revealed that the method could generate the natural overtaking speed and lateral gap.
The advantage of the proposed method is that the method can designate the safe target
as a point and speed, therefore, it is compatible with waypoint-based path generation
methods. As a future extension of the research, the compatibility of the method and test
on the real automated vehicle will be discussed.
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