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FOREWORD

FOR CENTURiES, WE SCiENTiSTS AND ENGiNEERS HAvE CREATED MATHEMATiCAL 

models of physical objects and processes. Early astronomers predicted the future posi-
tions of the planets by modeling their motions with Kepler’s laws, which specify math-
ematically the shape of an orbit and the variations in orbital speed. Engineers estimated 
fluid pressures by modeling hydraulic systems with control-volume analysis.

As our understandings of the natural and constructed worlds deepened, our mathe-
matical models became larger and more sophisticated. To efficiently perform the calcu-
lations required by these larger models, we started using electromechanical calculators 
and digital computers. With computers, we can process large amounts of data to fore-
cast the weather every day. Large datasets are used by machine learning algorithms in 
many contemporary applications of artificial intelligence, such as diagnostic radiology 
and voice recognition. The outputs of computational simulations are often visualiza-
tions of processes, such as the gradual evolution of a forest in a warming climate, and 
the rapid drift of electrons in a field-effect transistor. These visualizations display slow 
and fast processes on a human time scale.

To prepare future scientists and engineers to use computation in their professional 
careers, classroom instructors have begun to incorporate learning activities in which 
students develop computational models and perform computational simulations. To 
use computation successfully, students should learn more than how to enter data into 
a commercial software package for computational fluid dynamics. They should be pre-
pared to think carefully as they write the code that defines a computational model. They 
should be able to identify the limitations and potential errors, such as ineluctable errors 
in converting the continuous variables of a mathematical model into the discrete vari-
ables of a computational model. The question is, How can instructors teach computa-
tional concepts and thinking skills effectively?

Recently, studies of computational thinking have been conducted by education re-
searchers as one strand of discipline-based education research (DBER) in science and 
engineering. DBER publications are intended to be read by other DBER researchers, 
not by classroom instructors. For example, articles in the Journal of Engineering Education, 
for which I served as the editor for five years, would be difficult for engineering instruc-
tors to understand — we DBER researchers have enough difficulty understanding these 
articles ourselves! Thus, there is a great need to synthesize the findings of DBER stud-
ies into recommendations for classroom instructors. This synthesis effort is an import-
ant, underappreciated form of scholarship.

In this book, Alejandra Magana and her associates bring the findings of DBER stud-
ies on computational thinking to a broad audience of classroom instructors across all sci-
ence and engineering subjects. The book applies state-of-the-art instructional frameworks 
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to structure comprehensive instructional modules for computational modeling and sim-
ulation and offers examples of actual instructional modules for a high school course, for 
two first-year college courses, and for a capstone design course for advanced undergrad-
uates. The modules include prompts for students to think critically as they design and 
debug computational models to solve authentic problems and emphasize that students 
should validate and verify their models.

In summary, I believe that this book will guide and inspire instructors to create learn-
ing activities that teach skills in computational modeling and simulation, essential skills 
that will enable students to become effective scientists and engineers in this century.

MICHAEL C. LOUI

PROFESSOR EMERITUS OF ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN



PREFACE

COMPUTiNG HAS BECOME THE THiRD PiLLAR OF SCiENCE AND ENGiNEERiNG, DRiv-

ing discovery and innovation in industry and academia. In addition, the modern work-
force must be equipped with computing skills to fulfill the job market demands. As a 
result, faculty members in higher education institutions have integrated computational 
methods and tools into their teaching in the form of computation, modeling, and sim-
ulation practices. However, doing this integration successfully is not easy for faculty 
members due to packed curricula, among other difficulties, nor for their students due 
to the integration of multiple concepts and skills (i.e., mathematics, engineering, pro-
gramming). These difficulties often result in computation, modeling, and simulation 
practices largely left untaught or narrowly introduced at the undergraduate level in the 
context of science and engineering courses, except those for computer science and elec-
trical engineering majors.

One way in which faculty have identified methods to integrate computation, mod-
eling, and simulation practices in undergraduate education is by deploying computa-
tional learning modules as project assignments (e.g., two or three small projects within 
a semester-long course). Such modules have mainly been deployed as homework as-
signments, final projects, or term projects. However, the issue of students experiencing 
learning difficulties is hard to address without implementing proper learning strategies 
and pedagogical methods. That is, while learning challenges can be addressed when 
the instructor or the teaching assistant is present in the classroom, students mainly en-
gage with the computational assessments outside of the classroom (i.e., as take-home 
assignments). In those instances, precisely, students need pedagogical support to guide 
them in recalling prior knowledge and applying learning strategies to approach learn-
ing challenges. Supporting students’ learning processes within, but more importantly 
outside of, the classroom is the main motivation for this book.

This instructor’s guide is addressed to faculty members in higher education institu-
tions who want to integrate modeling and simulation practices within science, technol-
ogy, engineering, and mathematics (STEM) disciplinary courses. It is also addressed to 
discipline-based education researchers who engage in the scholarship of teaching and 
learning with the goals of (1) improving the students’ learning and expertise develop-
ment and (2) contributing with new knowledge in their corresponding fields. The au-
thor assumes that the reader has the disciplinary knowledge and computational skills 
to do so. Thus, this guide focuses on the instructional (how to design learning experi-
ences), pedagogical (how to deliver and support the learning experiences), and educa-
tional research (what new knowledge can be derived from the interventions) aspects. In 
addition to providing guidance on designing, delivering, and evaluating instructional 
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interventions in the context of computation, modeling, and simulation practices, this 
guide also provides a collection of exemplary computational assignments.

This work results from more than 15 years of conducting education research in and 
out of undergraduate STEM classroom settings. It also has had implications for K–12 
education. Each classroom implementation has been performed closely between engi-
neering or science education researchers and the course instructor who implemented a 
specific module or lesson. Each module or instructional unit presented in this guide has 
been iteratively refined based on the findings. The author and the collaborating contrib-
utors hope that the readers and their students successfully integrate computation, mod-
eling, and simulation practices sooner, better, and with greater success.



iNTRODUCTiON

ADvANCEMENTS iN CYBERiNFRASTRUCTURE ALLOWiNG THE DEPLOYMENT OF LARGE- 

scale simulations along with the deluge of accumulated scientific data have revolutionized 
scientific and engineering disciplines. Furthermore, new disciplines such as simulation- 
based and computational and data-enabled engineering and science, among others, have 
now been recognized as distinct intellectual and technological disciplines residing at the 
intersection of mathematics, statistics, computer science, and science and engineering 
disciplines. While science and engineering disciplines take advantage of these advance-
ments by adopting new tools and practices to support discovery and innovation, sci-
ence and engineering education lags behind in instilling in future graduates the ability 
to infer meaning from data collected from measurements or computational simulations.

To take steps toward closing this gap between research and industry needs and ac-
ademic preparation for the 21st-century skills, this guide provides a practical approach, 
along with examples of curricular materials that can assist faculty in adopting these prac-
tices as part of their disciplinary courses. It also follows an approach to understanding 
by design (Wiggins and McTighe 1997, 2005), which aligns the content and practices 
being learned with acceptable evidence of learning, along with the planning and deliv-
ery of the experiences and instructional approach.

This instructor’s guide is organized as follows. Chapter 1 motivates the work and in-
troduces the theoretical foundation of model-based reasoning for developing under-
standings and skills associated with computation, modeling, and simulation practices. 
Chapter 2 describes our approach to understanding by design for integrating computa-
tion, modeling, and simulation practices in undergraduate STEM education. Specifically, 
this chapter proposes a curricular framework for introducing modeling and simulation 
practices throughout the undergraduate curriculum in STEM disciplines. We then pro-
pose assessment guidelines for evaluating students’ performance when solving modeling 
and simulation challenges, followed by pedagogical strategies and methods informed 
by evidence-based practices.

Chapter 3 presents a selection of curricular designs that integrate computation, mod-
eling, and simulation practices for different audiences and contexts. The audiences range 
from K–12 learners to novice and advanced undergraduate learners. The context and 
scope range from classroom activities to support disciplinary learning, to implementa-
tion in the laboratory to support experimentation, to integration in a capstone design 
course through an extended period of time, to being part of a K–12 science classroom.

Chapter 4 elaborates on the theoretical foundation of research pertaining to the in-
tegration of computation, modeling, and simulation in undergraduate STEM education, 
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summarizes findings from more than a decade of research in this area, and proposes a 
pedagogical framework called a computational cognitive apprenticeship. This chapter 
also elaborates on opportunities for future research.



1
CHAPTER 1 MOTivATES THE iNTEGRATiON OF COMPUTATiON, MODELiNG, AND SiM-

ulation practices in STEM education and provides the theoretical foundation for de-
veloping understandings and skills associated with computation, modeling, and sim-
ulation practices. We first define models and modeling as well as a simulation in the 
context of STEM education. We then characterize model-based reasoning as the pri-
mary underlying thought process when engaging in modeling and simulation practices.

MODELS, MODELING, AND SIMULATION

A model is referred to as an abstract, simplified representation of a system or a phenome-
non that makes its essential features explicit and visible so that it can be used to generate 
explanations and predictions (Harrison and Treagust 2000). Representational models, such 
as diagrams, graphs, simulations, or equations, are central to scientific research (Bowen, 
Roth, and McGinn 1999) as well as to the solution of complex problems in workplace en-
gineering ( Jonassen, Strobel, and Lee 2006). Models are used in engineering to gain in-
sight into the material world (Carlson 2003), further interpret information about a prob-
lem (Higley et al. 2007), identify relationships between its components (Brophy and Li 
2010), and provide the potential for new solutions to it ( Jonassen, Strobel, and Lee 2006).

Modeling practices refer to the processes of constructing analogical models and rea-
soning through manipulating them. This ability develops as people learn domain-specific 
content and techniques (Nersessian 1999). Reasoning with models entails the formation 
of a conception of the mental model first, followed by further abstraction to create a for-
mal expression in the form of a mathematical model, law, axiom, or theory (Nersessian 
1999). Modeling is a powerful cognitive tool because it simplifies the complexities of 
the real world, allowing us to concentrate our attention on the aspects that are of great-
est interest or significance (Feurzeig and Roberts 1999). Creating this formal expression 
involves (a) the representation of one system by another, (b) the self-conscious separa-
tion of a model and its referent, (c) the explicit consideration of measurement error, and 
(d) the understanding of alternative models (Lehrer and Schauble 2000).

In science and engineering practice, modeling and simulation processes are com-
bined in an iterative cycle where a phenomenon is studied or a system under study is 
altered. Modeling consists of producing a model to represent the inner workings of a 
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system. Simulation refers to the operation of a model that can be reconfigured and ex-
plored (Maria 1997). Specifically, scientific modeling practices identify key aspects of 
a theory and evidence in an expressed representation, use the representation to illus-
trate, predict, and explain phenomena, and evaluate and revise the representation as it 
is used (Schwarz et al. 2009). Engineering modeling practices require both the abil-
ity to produce, manipulate, interpret, and reinterpret models and the ability to compre-
hend equivalences in different modes of expression and to learn, transform, and apply 
information from one representation to another (Sigel 1999). A computational simula-
tion is often used to perform mathematical experimentation to aid these processes so 
that individuals connect observed phenomena with their underlying models and causal 
processes (Feurzeig and Roberts 1999).

Closely related practices to modeling and simulation are computation practices. Com-
putation practices refer to the use of advanced computing capabilities to understand and 
solve complex problems by developing and using mathematical models. In the context 
of science and engineering, different classes of mathematical equations need to be con-
stantly related to the modeling of physical systems (Bellomo and Preziosi 1994). Some 
of the mathematical models can be solved by analytic methods, but others require nu-
merical techniques. Thus, computation is necessary to approach the solution of prob-
lems relating to the analysis of models (Bellomo and Preziosi 1994). Problems requiring 
numerical techniques are often nonlinear, making them solvable only by computa-
tional methods. Thus, engaging with models — conceptual, mathematical, and computa-
tional — is at the core of computation, modeling, and simulation practices.

MODEL-BASED REASONING AND 
IMPLICATIONS FOR EDUCATION

The ability to create models or representations from existing ones has been referred to 
as model-based reasoning (Nersessian 2002). That is, model-based reasoning entails ab-
stracting physical phenomena into some form of a representational model. These models 
are either created or adapted, connecting or transforming them into other represen ta-
tional forms such as equations or computational models during problem-solving epi-
sodes (Nersessian 2002).

Previous research has identified the reasoning processes associated with modeling 
activities, including the following (Löhner et al. 2005; Shiflet and Shiflet 2014):

Analyzing the problem, where the objective is determined, and the type of prob-
lem is identified.

Formulating the problem, where the problem is decomposed and then articulated 
into a model. During problem formulation sub-steps are also determined, 
such as gathering data, making assumptions and simplifications, determin-
ing variables and relationships between variables, and determining equations 
and functions.
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Implementing the model, which involves using different methods, techniques, and 
computational tools at the same time as making assumptions and simplifica-
tions as they build or configure the model.

Solving the model, which consists of executing the model multiple times, interpret-
ing the output of the model, and synthesizing the results and findings.

Verifying and validating the model, which consist of determining whether the solu-
tion works correctly and the model satisfies the problem’s requirements.

Reporting the model, which concerns the documenting of the model design and 
model solution, reporting results and conclusions, and recording assumptions 
and limitations.

Maintaining the model, which consists of making desirable improvements, correc-
tions, and enhancements.

When promoted in educational settings, these reasoning processes have been referred 
to as model-based learning and teaching. Model-based learning refers to the knowl-
edge and skills gained from constructing models, using and evaluating models, and re-
vising and elaborating models (Gobert and Buckley 2000; Louca and Zacharia 2012; 
Schwarz et al. 2009). Model-based teaching refers to the instructional conditions that 
implement learning activities intended to facilitate model-building at the individual 
and group levels. These learning activities must be orchestrated and sequenced follow-
ing a proper pedagogy and also well supported with scaffolding (Gobert and Buckley 
2000). Scaffolding refers to all types of support and guidance offered in and outside of 
the classroom either by the instructor, peers, or technology (Boblett 2012). The chap-
ters that follow provide design principles and samples of learning activities that bring 
together model-based teaching and learning to engage learners in modeling and sim-
ulation practices.





2
CHAPTER 2 PRESENTS A FRAMEWORK THAT ALiGNS THE ESSENTiAL ELEMENTS FOR 

designing and implementing computation, modeling, and simulation practices into 
STEM disciplinary coursework. Essential elements required for an instructional design 
and implementation can be described through understanding by design (Wiggins and 
McTighe 1997, 2005). Understanding by design is a model or framework that empha-
sizes a set of tools and practices that consist of three stages: (1) identifying the desired 
learning outcomes (the content and practices to be learned), (2) determining the ac-
ceptable evidence of learning (the method of assessing learning), and (3) planning the 
experiences and instructional approach (or pedagogy).

Based on the understanding by design framework, we first propose a curricular frame-
work for introducing computation, modeling, and simulation practices throughout the 
undergraduate curriculum in STEM disciplines. We then propose assessment guide-
lines for evaluating students’ performance when solving computation, modeling, and 
simulation challenges. Finally, we also propose pedagogical strategies and scaffolding 
methods informed by the cognitive apprenticeship model. Cognitive apprenticeship is a 
model of instruction that deliberately addresses the reasoning processes associated with 
performing a task or solving a problem, making them visible or explicit to the learner 
(Collins, Brown, and Newman 1989).

A CURRICULAR FRAMEwORK FOR INTEGRATING 
MODELING AND SIMULATION PRACTICES

An important step when designing learning experiences is to clearly specify what stu-
dents must learn and do to complete a lesson or course. However, decisions about learn-
ing outcomes need to be taken within some specific context and with a particular au-
dience in mind. Context and audience definitions allow instructors to make explicit 
assumptions about previous knowledge. This precise initial approach is also needed 
when integrating computation, modeling, and simulation practices into our curriculum.

In our previous work (Magana and Coutinho 2017), we distinguished different com-
puting audiences by following Hu’s (2007) work. In that study, Hu made a distinction 
between computation skills for “the specialists” and computation skills for “the crowds.” 
Hu (2007) identified the crowds as engineers, scientists, and mathematicians evaluat-
ing and using computation and the specialists as computational scientists, engineers, 
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and mathematicians who, in addition, create computational tools and algorithms. As 
shown in figure 2.1, we proposed that a crowds approach is needed for integrating com-
putation, modeling, and simulation practices for STEM domains. We argued that stu-
dents in STEM majors need to become proficient at integrating computation, model-
ing, and simulation for the crowds. As proposed in figure 2.1, in a crowds perspective, 
as opposed to a specialist perspective, students in STEM domains need to develop the 
knowledge and skills that enable them to identify when, why, and how computation 
methods work and don’t work. They must also be able to apply or modify existing nu-
merical methods or methodologies to successfully solve problems or design solutions 
(Hu 2007). Excellent learning materials and resources have been created for the spe-
cialists, such as the book Introduction to Computational Science: Modeling and Simulation 
for the Sciences by Angela Shiflet and George Shiflet (2014). In comparison, our book 
focuses on supports for teaching and learning computation, modeling, and simulation 
practices for the crowds.

Once the context and target audience have been identified, we can define the learn-
ing objectives. Disciplinary faculty often focus their learning objectives on the subject 
domain, but specific practices are sometimes assumed. We would like to emphasize 
that in addition to identifying specific learning objectives within specific disciplinary 
courses, it is also important to thoughtfully identify computation, modeling, and sim-
ulation practices and corresponding objectives in parallel.

In our previous work, we proposed a learning progression. A learning progression 
refers to a purposeful sequencing of teaching and learning expectations across multiple 

The “specialists” The “crowds”

Computer Science Computational Science
and Engineering 

Science and Engineering

Focuses on the systematic 
study of algorithmic 
processes that describe and 
transform information: their 
theory, analysis, design, 
e�ciency, implementation, 
and application (Denning 
2000).

Focuses on the study and 
development of 
computational tools, 
techniques, and methods, 
which uses knowledge in 
one discipline to solve 
problems in another (Yasar 
et al. 2000).

Focuses on the evaluation 
and use of computation 
techniques and tools by 
applying or modifying 
existing numerical methods 
or methodologies to 
successfully solve problems 
in their respective field (Hu 
2007).

FiGURE 2.1 Different audiences of computing. (Adapted from Magana and Coutinho 2017.)
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grade levels for using, creating, evaluating, and revising models suitable for the crowds 
(Magana 2017). These expectations can directly inform the identification of learning ob-
jectives related to computational, modeling, and simulation practices. This learning pro-
gression can be used as a guideline for integrating modeling and simulation practices 
within disciplinary courses in STEM. Specifically, our learning progression represents 
a logical roadmap that can guide the coherent development of curriculum, assessment, 
and instruction (Corcoran, Mosher, and Rogat 2009). The learning progression was 
derived from eight national reports from organizations such as the US Department of 
Defense (two reports), the US Department of Energy (one report), the US National 
Science Foundation (three reports), the Association of Computing Machinery and 
IEEE (one report), and an introductory book to modeling and simulation for the sci-
ences (Magana and Coutinho 2017). The learning progression was later revised and val-
idated by 37 science and engineering experts from industry and academia as part of a 
three-round Delphi study (Magana 2017).

The proposed learning progression is organized into three levels of achievement, each 
organized in practices consisting of constructing, using, evaluating, and revising mod-
els. The levels indicate higher-order learning goals. In the following sections, we pres-
ent each level and the corresponding practices.

Level 1: Essential Modeling and Simulation Skills
Level 1 is characterized by practices that can be integrated into the first and second 
years of undergraduate education. These practices are also the ones identified as essen-
tial for STEM graduates. Table 2.1 describes the practices and performances for Level 1.

TABLE 2.1 Practices and performances for Level 1

Practice Performance

Constructing models Students construct visual representations of data, such as graphs, charts, tables, 
and histograms, using standard domain-specific software, application program-
ming interfaces, or built-in libraries within scientific computing software.

Given a simple model, students identify the corresponding mathematical model 
and use computer programming methods or APIs to implement an appropri-
ate algorithm representing abstractions of reality via mathematical formulas, 
constructions, equations, inequalities, constraints, and so forth.

Using models Students use existing computational models or simulations to comprehend, char-
acterize, and draw conclusions from visual representations of data by evaluat-
ing appropriate boundary conditions, noticing patterns, identifying relationships, 
assessing situations, and so forth.

Evaluating models Students compare the results of models and simulations to laboratory experi-
ments, theory, measurements, test cases, and so forth to determine their align-
ment, overlap, or goodness of fit, among other metrics.

Revising models Students extend or adapt simple models from one situation to another, either 
by configuring the model through a graphical user interface or by modifying or 
extending existing code.
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Level 2: Highly Desirable Modeling and Simulation Skills
Level 2 modeling and simulation practices are characterized by those skills that can be 
integrated into the third and fourth years of undergraduate education. These practices 
are more complex than the ones presented in Level 1 and were identified as highly de-
sired for industry and academic settings. Table 2.2 describes the practices and perfor-
mances for Level 2.

Level 3: Specialized Modeling and Simulation Skills
Level 3 modeling and simulation practices are characterized by highly complex skills 
integrated into advanced degrees (i.e., master’s and doctoral students). These skills are 
more specialized and often needed for research and development purposes. Table 2.3 
describes the practices and performances for Level 3.

Once the learning objectives have been identified, the next step is to align the as-
sessment with those specific learning objectives. In a way, the learning objective is al-
ready prescribing the assessment method. For example, if the learning objective is as-
sociated with modeling practices of constructing models, it is then necessary that the 
assessment would consist of evaluating the models students built. We elaborate more 
on the assessment in the following section.

TABLE 2.2 Practices and performances for Level 2

Practice Performance

Constructing models Students connect simulation and visualization by first visualizing data using 
numerical outputs from a simulation and then interacting with the visualization 
to engage in critical thinking about the simulated model.

Students implement simple computational models by creating discretized mathe-
matical descriptions of an event or phenomenon using high-level programming 
languages or scientific computing software.

Using models Students use simulations at different scales to deploy the correct solution method, 
inputs, and other parameters to explore theories and identify relationships 
between modeled phenomena.

Students use computational models or simulations to design, modify, or optimize 
materials, processes, products, or systems.

Students use computational models or simulations to design experiments to test 
theories, prototypes, products, materials, and so forth.

Students use computational models or simulations to infer and predict physical 
phenomena or the behaviors of engineered systems.

Evaluating models Students evaluate the benefits and disadvantages of competing computational 
models or simulations by determining and weighing factors such as assumptions, 
limitations, precision, accuracy, reliability, validity, and complexity.

Students acknowledge and estimate uncertainty as part of the interpretation of 
simulation predictions.

Revising models Students use external data, theories, or additional simulation tools to calibrate, 
verify, or improve the accuracy of computational models or simulations.
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TABLE 2.3 Practices and performances for Level 3

Practice Performance

Constructing models Students construct new computational models or simulations by developing algo-
rithms and methods that simulate physical phenomena and engineered systems.

Using models Students interface computational models or simulations directly with measure-
ment devices such as sensors, imaging systems, real-time control systems, and so 
forth.

Evaluating models Students discern between different algorithms or computational methods to 
describe physical models or engineered systems as computational representations.

Students determine and quantify the reliability of computer simulations and their 
predictions.

Students determine variability in data due to immeasurable or unknown factors 
via uncertainty quantification methods or techniques.

Students evaluate algorithms by determining uncertainties and defining error, 
stability, machine precision concepts, and the inexactness of computational 
approximations (e.g., con ver gence, including truncation and round-off ).

Students verify a simulation model based on software engineering protocols, bug 
detection and control, and scientific programming methods.

Students validate a simulation model based on prescribed acceptance criteria such 
as observations, experiments, experience, and judgment.

Revising models Students identify the mechanisms for exchanging information to bridge models 
across scales and maintain computational tractability.

Students iteratively and systematically evaluate and improve their computational 
models or simulations’ fidelity, accuracy, reliability, performance, and cost (mone-
tary and computational).

ASSESSMENT GUIDELINES FOR MODELING 
AND SIMULATION PRACTICES

The attainment of modeling and simulation skills is difficult to assess. Especially in 
higher education, in the context of STEM courses, one form of assessment often used 
is examinations, which evaluate multiple learning outcomes at a time. For instance, 
mid-semester and final semester examinations may assess the learning of concepts, the 
application of a mathematical formulation to represent a problem, including accurate 
calculations resulting in a value, and the creation or interpretation of graphs represent-
ing cause–effect relationships, among others. However, we advocate that for assess-
ing computation, modeling, and simulation practices, we need assessment methods for 
higher-order skills. In such assessments, students are elicited to demonstrate their ap-
plied knowledge, creativity, problem-solving, and critical thinking skills, where a careful 
alignment between intended learning outcomes and evidence of the learning is critical. 
A tool that permits the careful alignment between intended learning outcomes and ev-
idence of the learning is Pellegrino’s assessment triangle (Pellegrino, Chudowsky, and 
Glaser 2001), as shown in figure 2.2.



CHAPTER 212

Figure 2.2 portrays the assessment triangle (inverted) that assists educators in de-
signing assessments focused on three key elements: (1) a model of student cognition 
based on beliefs about how individuals represent information and develop competence 
in a particular domain; (2) observations consisting of the evidence of students’ compe-
tencies that take the form of tasks that elicit responses from students; and (3) interpre-
tations that make sense of the evidence, usually in the form of analytic tools. Applying 
the guidance from Pellegrino’s assessment triangle to evaluate modeling and simula-
tion practices, we used the assessment triangle shown in figure 2.3.

Model-based reasoning refers to a form of thinking associated with how individuals 
make sense of or represent phenomena (including processes, systems, or products) by 
using or creating external representations in the form of models ( Johnson-Laird 1995). 
As shown in figure 2.3, model-based reasoning is the main intended learning, thus repre-
senting the model of cognition. Based on our curricular framework for integrating mod-
eling and simulation practices, the observations associated with model-based reasoning 
need to elicit practices such as constructing models, using models, evaluating models, 
and revising models (i.e., the model-eliciting activities in figure 2.3), as described in 
tables 2.1, 2.2, and 2.3. The overt processes students followed or the artifacts they cre-
ated can represent evidence of such observations. For interpretation of the observations, 
a common practice is the use of rubrics evaluating criteria based on specified levels of 
performance. We now elaborate on these ideas.

VanLehn (2013) identified that the process of model construction can be assessed 
in terms of product and process. Product assessment focuses on evaluating the quality 
of artifacts (i.e., models) that students constructed, typically by identifying their level 
of correctness and acceptability. Also, a common assessment approach in the product 

Interpretation

Cognition

Observation

A set of specifications
for assessment tasks
that will elicit
illuminating responses
from students

Beliefs about how humans
represent information and
develop competence in a
particular academic domain

Methods and analytic
tools used to make
sense of and reason
from the assessment
observation/evidence

FiGURE 2.2 Pellegrino’s assessment triangle. (Adapted from Pellegrino, Chudowsky, and Glaser 2001.)
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category involves identifying students’ increased or enhanced existing domain knowl-
edge. Process assessment focuses on evaluating students’ behaviors when constructing 
models and their ability to transfer those skills for the construction of similar models. 
We suggest an evaluation approach that mainly focuses on products and processes di-
rectly associated with the modeling and simulation process. However, at the end of this 
section, we also explore other common assessment forms in this context.

To identify whether students have acquired computation, modeling, and simulation 
skills, it would be first necessary to identify whether they have engaged in model-based 
reasoning. Evidence of engagement in model-based reasoning would include behaviors 
associated with the modeling and simulation process. For instance, has the student an-
alyzed the problem, decomposed it, and then articulated it into a model? Has the stu-
dent identified the proper mathematical formulation and implemented a functional nu-
merical solution in the form of a computational simulation? Has the student engaged 
in validation and verification processes to evaluate their solution? Has the student used 
the model to solve the science or engineering problem?

Here we propose that modeling and simulation skills be assessed in processes and 
products. Processes and products could be evaluated together by eliciting students’ ra-
tionale and explanations in the form of a final report, along with the produced com-
putational model (i.e., the actual executable file). Guidance to create a final report can 
be provided in the form of a template. The template ought to provide some guidance 
on what ideas should be described in each section of the report. Figure 2.4 presents a 
sample of a template.

Interpretation

Cognition

Observation

Model-eliciting activities:
Elicit learners to the
process of creating,
testing, revising, and
using externalized
scientific models

Model-based reasoning:
A form of thinking associated with
how individuals make sense of
phenomena through di�erent
forms of external representations
in the form of models

Assessment rubrics:
Focus on the process and
the artifacts students
generated; can focus
on metacognitive
processes too

FiGURE 2.3 Application of the assessment triangle for modeling and simulation skills.
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FiGURE 2.4 Sample template for a project report. (Adapted from Shaikh et al. 2015.)

Template for a Modeling and Simulation Project Report

1. Describe the Problem

[Determine the problem’s objective and identify its characteristics.]

2. Frame the Problem

[Conduct a literature review to contextualize your problem and investigate the properties of 

your model.]

3. Configure the Model

[Define a model that will help you solve the problem (define goals, information, assumptions, 

boundary conditions) in terms of relevant models, concepts, or theories used in class or from 

the literature. Identify assumptions and limitations.]

4. validate the Model

[Establish whether the simulation satisfies the problem’s requirements. You can validate it by 

testing simple scenarios, by developing your own “toy” model (e.g., a MATLAB code of a simple 

test case), by means of experimental conditions under the same assumptions, using a theoreti-

cal model, or by means of test cases using another computational tool.]

5. verify the Model

[Examine the results to determine whether the solution works correctly (verification) via testing 

the solution to see if predictions agree with real data, data from industry standards, or data 

published in scientific papers.]

6. Solve the Problem

[Show and explain your solution. Interpret the output and show how the proposed solution 

addressed the problem/project. Identify limitations along with ranges of operation. Determine 

whether the system works; if it does not work, provide an explanation/justification of why.]

In addition to the report template and additional instructions to also submit their 
executable files with the implementations of their models, students should be provided 
with a rubric that details performance levels and criteria to be evaluated. We suggest 
the following six-step procedure for creating a rubric:

1. Select the desired modeling and simulation practices or performances from ta-
bles 2.1, 2.2, or 2.3, accordingly.

2. Identify how those practices and performances can be demonstrated by the stu-
dents either in terms of process or outcome.

3. Transform those processes or outcomes into detailed criteria to be evaluated.
4. Determine weighting for each criterion based on the level of effort required or 

importance.
5. Set standards for levels of performance for each of the criteria (e.g., poor, basic, 

proficient, and advanced) and determine the scoring in terms of points.
6. Identify observable factors that provide the basis for assessing which level of per-

formance has been achieved and describe those factors within each cell for stu-
dent and grader reference.
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Table 2.4 provides a sample rubric. This rubric can be used to evaluate students’ re-
ports as well as their created computational solutions. It was particularly designed for the 
practices of constructing models (criteria 1, 2, and 3 from table 2.4), evaluating models 
(criterion 3 from table 2.4), and using models (criterion 4 from table 2.4). Although the 
criteria presented in the rubric have been more generally described, they can be aligned 
further with specific performances from tables 2.1, 2.2, and 2.3.

Assessment methods can also evaluate the knowledge that results from engaging in 
modeling and simulation practices. We briefly discuss other assessment mechanisms 
proposed by VanLehn (2013). Assessments that evaluate learning or new knowledge 
that resulted from engaging in modeling and simulation practices often take the form 
of written exams or tests where students can be asked to do the following:

• Make predictions in the form of “what if ” questions that demonstrate student 
understanding of cause–effect relationships.

• Sketch or interpret graphs demonstrating the relationship between two vari-
ables or the value of a variable over time.

• Construct explanations describing certain behaviors, including the evidence of 
such behavior.

• Solve problems based on scenarios that prompt students to identify a mathemat-
ical model to solve the problem and perform handwritten calculations to solve it.

• Demonstrate conceptual understanding by explaining a concept.

TABLE 2.4 Sample rubric for a project report

Criteria Poor (0–3) Basic (3–5) Proficient (5–8) Advanced (9–10)

PROBLEM DESCRIPTION 
(20%)

Describe the problem that 
is proposed to be solved 
and provide a justification 
using literature from relevant 
research papers.

An unclear 
description of the 
problem statement 
and no relevant 
research backing 
provided.

Description of the 
problem state-
ment needs refine-
ment. Inadequate 
research relevance.

The problem is 
defined appropri-
ately but needs a 
little more refine-
ment in terms of 
relevant literature.

The problem is 
very well defined, 
and the litera-
ture from rele-
vant research 
work builds a 
perfect case for the 
problem.

PROBLEM FRAMING: 
CONCEPTUAL (10%); 
MATHEMATICAL (10%)

Build both a conceptual 
model and a mathematical 
model to solve the problem.

Interpret the problem (goals, 
information, limitations, and 
assumptions) in terms of 
relevant models, concepts, or 
theories.

No conceptual 
or mathematical 
model is included 
in the report.

Both a concep-
tual and a mathe-
matical model are 
provided but are 
incorrect.

Both a concep-
tual and a math-
ematical model 
are provided 
but need minor 
improvements.

Both the concep-
tual and mathe-
matical models 
provided accu-
rately frame the 
problem.

Continued



TABLE 2.4 Sample rubric for a project report

Criteria Poor (0–3) Basic (3–5) Proficient (5–8) Advanced (9–10)

PROBLEM SYNTHESIS: BUILD 
(15%); VALIDATE (10%)

Evaluate the quality of the 
solution approach built to 
solve the problem. The simu-
lation or program needs to 
be validated thoroughly with 
either experimental data 
or test cases. Predictively 
compare and contrast alter-
nate solution processes in 
terms of relevant metrics 
(e.g., accuracy, precision, effi-
ciency, reliability, feasibility, 
risk, impact). Use a simu-
lation or build your own 
program that will help you 
solve the problem.

The implementa-
tion of the solu-
tion approach is 
incorrect.

The solution 
approach is not 
validated.

The implementa-
tion of the solu-
tion approach 
serves the 
purpose but needs 
to be refined.

The validation 
process for the 
solution approach 
needs to be 
improved.

The implementa-
tion of the solu-
tion approach 
provides the 
approach to solve 
the problem but 
needs minor 
improvements.

The validation 
process for the 
solution approach 
needs minor 
improvements.

The implementa-
tion of the solu-
tion approach is 
accurate.

The solution 
approach 
is validated 
appropriately.

PROBLEM SOLUTION 
AND INTERPRETATION OF 
FINDINGS (30%)

Determine whether the 
executable code (i.e., the 
computational model) 
addresses the disciplinary 
issue and solves a related 
problem. Explain the output 
of the model and how it 
solves the problem.

No solution was 
provided to the 
problem.

Does not discuss 
the application of 
a solution for a 
related problem.

A solution is 
provided, but it is 
incorrect or does 
not adequately 
address the issue 
or problem.

Not a clear 
description of 
how the solution 
can be used to 
resolve a related 
problem.

A solution is 
provided that 
would adequately 
address the issue 
or problem, but 
it is presented 
in a way that 
is unclear or 
improperly 
documented.

A discussion is 
included, which 
describes the use 
of the current 
approach to 
solving related 
problems.

A solution is 
provided that is 
correct, clear, and 
well-documented.

A very clear 
description is 
included, which 
describes the use 
of the current 
approach to 
solving related 
problems.

ORGANIZATION OF THE 
REPORT (5%)

Provide appropriate structure, 
sentence construction, and 
grammar.

The report is not 
well structured 
and contains 10 or 
more grammat-
ical or sentence 
construction 
errors.

The report 
contains 5 to 9 
grammatical or 
sentence construc-
tion errors.

The report is 
structured well 
and contains less 
than 5 grammat-
ical or sentence 
construction 
errors.

The report 
contents are well 
structured. The 
report contains no 
grammatical or 
sentence construc-
tion errors.

Source: Fennell et al. (2017).

Continued



CHAPTER 2 17

No assessment is perfect, but by focusing on the assessment of modeling and simu-
lation in products generated by students and processes enacted by them, we also increase 
assessment fairness. For instance, research suggests that there tend to be discrepancies 
in achievement between racial groups (Traxler et al. 2018). However, in the laboratory 
or project-based courses, differences in achievement between these groups are not as 
common (Traxler et al. 2018). We acknowledge that focusing the assessment of model-
ing and simulation practices on higher-order skills may bring practical challenges. Such 
challenges include assessments being time-consuming and difficult to scale and requir-
ing training for graders (Diefes‐Dux et al. 2012). To balance feasibility and fairness, we 
recommend giving students multiple opportunities to demonstrate what they know and, 
at the same time, using a variety of assessment methods (Wiggins and McTighe 1997). 
Assessment methods can range from informal checks for understanding (e.g., participa-
tion and quizzes) to knowledge evaluation (e.g., tests and exams) to performance tasks 
(e.g., projects). In some instances, automated testing or assessments can assist in this 
process. For instance, in cases of simple models, automated assessments can evaluate 
for the correct solution, check for the use of the correct method, or evaluate the meet-
ing of tolerances. We also recommend including a balance of collaborative and individ-
ual assessments. Students could work together in developing a computational model to 
be graded collaboratively but then have each student work on articulation or a reflec-
tion task individually. Examples of individual tasks could be to comment on the code, 
write the final report, use the jointly created models to execute different experiments, 
and submit an individual reflection assignment.

PEDAGOGICAL GUIDELINES FOR SUPPORTING 
MODELING AND SIMULATION

Once the learning objectives and corresponding assessment have been identified, the 
last step in the understanding by design framework is to determine the pedagogy to be 
followed, along with necessary instructional support. This section introduces a pedagog-
ical model for guiding and supporting learners as they engage in modeling and simula-
tion practices. The pedagogical model is the cognitive apprenticeship model, which has 
been derived from research in mathematics, reading, and writing education. The cog-
nitive apprenticeship model (Collins, Brown, and Newman 1989, 3) proposes the de-
sign of learning environments that merge “the content being taught, the pedagogical 
methods employed, the sequencing of learning activities, and the sociology of learn-
ing.” Although apprenticeship models are typically thought of in connection to physical 
or trade professions, the process by which individuals become proficient at integrating 
modeling and simulation practices involves many of the same elements of a traditional 
apprenticeship model (Sadler et al. 2010). The ultimate goal is that the instructor or in-
structional materials deliberately address the reasoning processes (i.e., the model-based 
reasoning processes) associated with performing a task or solving a problem, making 
them visible or explicit to the learner. Chapter 4 of this book further elaborates on the 
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theoretical foundations of the cognitive apprenticeship model, its application to com-
putation, modeling, and simulation teaching and learning, and future research directions.

Our approach for integrating computation, modeling, and simulation practices into 
the classroom follows the cognitive apprenticeship model guidelines to facilitate stu-
dent learning and engagement. Specifically, the cognitive apprenticeship framework has 
been demonstrated to be effective in students’ learning of important content and skills 
and their motivation and acceptance of course tasks and assignments. Accordingly, we 
followed Collins and Kapur’s (2014) dimensions to support learning. The dimensions of 
the cognitive apprenticeship framework are content, referring to the types of knowledge 
required for expertise; method, referring to the pedagogical approach, learning strategies, 
or teaching methods used; sequencing, referring to designing the structure and the order 
of the tasks so as to optimize meaningful student engagement; and sociology, referring to 
the context within which learning experiences are situated via the application of skills to 
realistic problems (Collins and Kapur 2014). In the following sections, we describe each 
of the elements of the cognitive apprenticeship model, including an explanation of how 
each of them can be implemented in this context of modeling and simulation practice.

Content
The combination of domain knowledge with strategic knowledge has been referred to 
as the content dimension. Domain knowledge refers to specialized knowledge in spe-
cific disciplines. Strategic knowledge includes (1) heuristic strategies, which are tacit 
procedures that experts often use to solve common problems; (2) control strategies, in-
cluding metacognitive strategies such as monitoring, evaluating, and overcoming diffi-
culties, among others; and (3) learning strategies that deal with the identification of ef-
fective approaches for learning domain knowledge.

The content dimension is often accomplished inherently. Introducing modeling and 
simulation practices within STEM domains brings together multiple types of knowl-
edge required for expertise. Specifically, combining domain knowledge with modeling 
and simulation skills can bring together problem-solving, experimentation, and com-
putation skills. However, although this integration comes naturally, instructors need to 
design learning experiences that combine multiple types of knowledge and skills and 
at the same time help students recall their domain knowledge, facilitate its application 
throughout the modeling process, and engage them in experimentation and design pro-
cesses. This means that the learning experience cannot finalize at the moment students 
complete the implementation of a model into an executable code. The learning expe-
rience should be extended so that students intentionally engage in validation and ver-
ification processes. And extended so that students, once they create and evaluate their 
model, then engage in experimentation practices to characterize a scientific phenome-
non or engage in design processes to solve an engineering problem or design a system.

Method
The method dimension refers to teaching approaches designed to help students acquire 
integrated knowledge and skills through (1) modeling, where the instructor demon-
strates how to perform a task; (2) coaching, including observation and facilitation at the 
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moment students perform a task; (3) scaffolding, regarding supporting methods to help 
students perform a task; (4) articulation, consisting of instructors encouraging students 
to state their knowledge and thinking; (5) reflection, where instructors enable students 
to compare their performance with experts’ approaches; and (6) exploration, consisting 
of instructors prompting students to solve problems on their own.

Different methods can be used to support learners in acquiring integrated knowl-
edge and skills. Traditional methods in higher education include modeling and coach-
ing, where the instructor demonstrates how to perform a task, and then students try it 
on their own, either as a homework assignment or in the laboratory as part of an ex-
periment. Articulation is also common as students demonstrate and explain the knowl-
edge learned in the form of project reports. However, there are two methods that are 
not often known or used by faculty: scaffolding and reflection. Scaffolding methods can 
be thought of as those strategies that can support the student when the faculty is not 
available to provide help (i.e., while solving a homework assignment). Scaffolding meth-
ods we have identified as highly effective include (1) the use of short video lectures ex-
plaining difficult concepts, (2) the use of worked-out examples (i.e., an expert solution 
to a problem) demonstrating difficult calculations or implementations of a particular 
function, (3) code snippets or templates of codes that can get students started with im-
plementing their computational solutions, and (4) test cases that can provide students 
with opportunities to evaluate their solutions as they progress in their solution of mod-
eling challenges (Vieira et al. 2020).

However, we would like to caution the reader. Making materials available is not 
enough; students often do not have the metacognitive skills to take advantage of these 
resources naturally. Therefore, checkpoints need to be put in place so students benefit 
from these resources. These checkpoints need to be translated into course credit that 
motivates students to meaningfully engage with the material. For instance, students can 
be prompted to take a quiz after watching a video lecture and get a score based on their 
answers. Students can also be provided with extra credit to comment on worked-out 
examples as a self-explanation strategy (Vieira et al. 2017).

Reflection methods can help students further connect their domain knowledge with 
modeling and simulation practice. Reflection is an active process that must be fostered 
by pedagogical design and supported through practice in the classroom ( Jaiswal et al. 
2021). Students can reflect on multiple aspects of their engagement with computation, 
modeling, and simulation. For instance, students can reflect on their experienced chal-
lenges and the problem-solving strategies that helped them overcome those challenges 
(Shaikh et al. 2015), or they can also reflect on how they evaluated and used evidence 
to support their findings as part of their final reports.

Sequencing
The sequencing dimension consists of the principles and procedures used to guide the 
ordering of the learning activities. Activities can be presented in three ways: (1) increas-
ing level of complexity, from simple to complex; (2) increasing level of diversity, con-
sidering a widening variety of application areas; and (3) global before local skills, where 
learners first understand the relationship between concepts or principles before delving 
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deeper into each of them (Collins, Brown, and Holum 1991). The sequencing princi-
ple can be adapted to provide explicit opportunities for students to engage in all stages 
of the modeling and simulation process. Specifically, complete class periods can be de-
voted so that students can analyze the problem to be solved and articulate an initial 
strategy. Students can submit their strategies to the instructors so they can also get spe-
cific guidance. Other class periods could be devoted to (1) the implementation of the 
algorithm into a form of executable code, (2) the evaluation of their models by provid-
ing them with test cases to compare results, and (3) the simulation of the model and 
interpretation of the findings.

Sociology
The sociology dimension relates to students learning skills in the context of their appli-
cation to real-world challenges and aspects of the social environment. Characteristics 
affecting the sociology of learning environments include (1) learning opportunities, 
where students learn in the context of working on realistic problems; (2) communities 
of practice, where participants within the learning environment, such as a team, engage 
and communicate while acquiring skills; (3) motivational strategies, where tasks are re-
lated to a personal goal or interest; and (4) cooperation, where students work together 
in cooperative problem-solving. The sociology strategy that we have implemented in 
our research consists of contextualizing the programming assignments within authen-
tic tasks (CTGV 1990). Contextualization can be used as a way to implement content 
and sociology by situating the learning experiences within authentic tasks occurring in 
real-life contexts. Therefore, as part of sociology, we concentrate on providing a balance 
between individual and student work.

Implementing a flipped-classroom approach is one technique that can help faculty 
balance individual and group work (Magana, Falk, and Reese 2013). Flipped-classroom 
involves the integration of active in-class activities combined with assigned work to be 
completed before and after the lecture (Abeysekera and Dawson 2015). Following this 
approach, students can get some preparation before coming to class and then engage 
in collaborative problem-solving during class time. Specifically, during the classroom 
sessions, students can work together in groups to discuss how they could approach a 
particular project and continue their discussions outside of the classroom. However, 
to make each student responsible, it is important that grading accounts for individual 
and group work. For instance, students can collaborate in defining and implementing a 
computational model collectively, but they work individually on their reports and sub-
mit their created artifacts individually.
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CHAPTER 3 CONSiSTS OF ExEMPLAR LEARNiNG DESiGNS THAT EMBED THE PRiNCi-

ples and procedures described in chapter 2. To provide a common ground between all 
designs, each of them starts with an overview of the target audience and a lesson plan. 
The lesson plan provides a detailed description of the alignment between content, as-
sessment, and pedagogy and the learning trajectory to be followed during the lesson. 
Some lessons may take a day, some may take a couple of weeks, and some are four-week-
long implementations. Each learning design features a particular audience (i.e., K–12 
students, first-year and advanced college students) and is delivered in a particular set-
ting (i.e., in-class teaching, laboratory settings, capstone courses, and professional de-
velopment). In addition, each is accompanied by an appendix that features (1) the in-
dications of the actual project, (2) a solution of the project, (3) a detailed description 
of how the lesson was delivered, and (4) a rubric delineating assessment criteria. Each 
learning design concludes with individual reflections on lessons learned by each author 
during the implementation of the lesson.

DESIGNING FOR NOVICE LEARNERS 
BY MICHAEL FALK

Introducing modeling and simulation practices into learning environments consisting 
primarily of novice learners is challenging for the instructor and students. The main rea-
son is that computation, modeling, and simulation require the integration of multiple 
disciplines and practices that students are unfamiliar with. Specifically, students have 
to learn new programming concepts and combine those with scientific or engineering 
concepts and advanced mathematical models that may require solving complex equa-
tions. So the question is, How do we design modeling and simulation learning experi-
ences for engineering students with minimal prior training in computing? And further-
more, What types of supports or scaffolding approaches are needed to assist students 
as they engage in these learning experiences? The first question will be answered in the 
first few sections of this learning design, while the second question will be answered 
through the lessons learned.
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TIME-DEPENDENT PARTIAL DIFFERENTIAL 
EQUATION IMPLEMENTATION wITH MATLAB

Context, Population, and Learning Need
This lesson was designed for first-year engineering students enrolled in an introductory 
programming course. The programming course was a general gateway to computer sci-
ence on the intermediate level in addition to providing a computing background for 
materials science and engineering students. This class was meant as a first introduc-
tion to applying algorithmic thinking and computer programming toward the solu-
tion of engineering and scientific problems. We used MATLAB as the programming 
environment. The learning objectives of the class were that the student would be able 
to (1) write MATLAB programs to execute well-defined algorithms, (2) design algo-
rithms to solve engineering problems by breaking these into small tractable parts, and 
(2) model physical and biological systems by applying linear systems and ordinary and 
partial differential equations. The class size was 20 to 30 students.

Theoretical Grounding of the Learning Design
For the theoretical grounding of this learning experience, we used the How People 
Learn (HPL) framework (Bransford, Brown, and Cocking 2000). The HPL framework 
is composed of four intersecting components (or lenses): (1) knowledge-centered, where 
foundational knowledge skills and attitudes are the base core of the learning materials; 
(2) learner-centered, where learning materials connect students’ prior knowledge and 
interests; (3) community-centered, where an appropriate learning environment is pro-
vided within and outside the classroom; and (4) assessment-centered, where learners are 
provided with multiple opportunities to represent their knowledge and receive feedback.

The course was knowledge-centered by combining concepts and practices of the in-
troduction of programming principles and procedures within the context of the ma-
terials science discipline. At the same time, students reinforced and developed their 
computing concepts, methods, and practices through real-world applications of inter-
est to students majoring in material science engineering and related fields. The course 
was learner-centered by applying an inverted classroom design method (Gannod, Burge, 
and Helmick 2008; Lage, Platt, and Treglia 2000), which provided learners with mul-
tiple opportunities for practice and feedback during class time. At the same time, the 
approach freed the instructor to use class time for collaborative activities in which stu-
dents worked through exercises, making the course community-centered. The instructor 
helped students work through scaffolded programming activities as needed by contin-
ually monitoring student progress during class time. Specifically, students worked indi-
vidually and in informal groups during class, solo or collaboratively, solving some brief 
programming exercises with short, interspersed instructor-led discussions of concepts 
that required clarification. The class as a whole then collectively constructed a master 
solution with instructor guidance. This provided opportunities to make the algorithm 
design and programming process visible and public. Students also discussed their ap-
proaches with classmates while working on projects. The course provided learners with 
multiple opportunities to demonstrate or apply their knowledge and receive feedback, 
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thus making the course also assessment-centered. Specifically, students received feedback 
in real time from the professor and teaching assistant during class. In addition, students 
also received graded feedback on the project after scoring of the artifacts they gener-
ated (i.e., code, final report) with a rubric.

Problem Description and Learning Domain
The design of the project was centered on a modeling and simulation assignment to sup-
port research in devising minimally invasive and effective techniques to reverse ventric-
ular fibrillation, an important medical issue. (Ventricular fibrillation is the state where 
the contraction of the lower heart chambers becomes disorganized and the heart is 
no longer able to adequately pump blood to the rest of the body. It is one of the most 
common causes of cardiac arrest.) Students were required to simulate the passage of 
an electrical pulse through the heart muscle. For this, the problem was modeled as a 
time-dependent partial differential equation.

While partial differential equations are typically advanced topics reserved for upper- 
division engineering courses requiring prior mastery of vector calculus and differential 
equations, in the context of modeling a physical or biological system, such equations 
can be motivated in intuitive ways that are accessible to the novice learner. We based 
this project on a numerical algorithm from the literature designed to efficiently model 
spiral waves, such as those that develop in heart tissue, using a two-variable system of 
reaction–diffusion equations (Barkley 1991). The resulting equations simulate the ex-
citability of the tissue as well as the diffusion and response of the electrical potential. 
While complex to represent mathematically, the concept of diffusion itself is simple for 
students to grasp when presented as a mechanism by which each simulated grid point 
incrementally reverts to the mean of its nearest neighbors. Neumann boundary con-
ditions with zero normal gradients were imposed by enforcing that the grid point val-
ues on the boundary are equal to the neighboring grid point adjacent to the boundary.

Lesson Plan
The following lesson plan (table 3.1) aligns the learning objectives with the design of 
the activity and its corresponding assessment. The project description, a possible project 
solution, and corresponding assessment rubrics are presented in appendix A.

Reflection and Lessons Learned
The implementation of the lesson started by having students individually and on their 
own time watch an online video that introduced the foundational knowledge, followed 
by an online quiz. Students then worked collaboratively during class, solving a series 
of short, preparatory programming exercises. These exercises took different forms, such 
as providing a working code to students and having them predict the program’s out-
come. Other exercises had students debug and fix a given code that was not working or 
implement a solution to generate the desired outcome. The class typically ended with 
a micro-challenge where students had to apply the concepts and skills learned during 
that class. Brainstorming sessions were facilitated by the instructor to elicit suggestions 
on how to approach the solution to each micro-challenge. After discussing potential 
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TABLE 3.1 Lesson plan for the time-dependent partial differential equation project

Instructor’s name:
Michael Falk

Discipline:
Materials Science and 
Engineering

Course:
Computation for 
Programing for MSE

Date:
November 28, 2017

1. Name of the topic or unit:
Time-Dependent Partial Differential Equation Implementation
2. Learning objective (from the syllabus):
Use of iteration in the simulation of partial differential equations, representation of two-dimensional data 
in arrays, and boundary value problems.
3. Specific disciplinary learning objective(s) of the assignment/lab:
Students write MATLAB programs to solve mathematically well-defined problems.
4. Specific modeling and simulation practice(s):
Students implement simple computational models by creating discretized mathematical descriptions of 
an event or phenomenon using high-level programming languages or scientific computing software.

• Model physical/biological systems are represented as a set of partial differential equations.
5. Assessment strategies and grading system:
A two-part project where the first part consists of the plan proposed by students to implement the solu-
tion, and the second part is the solution with the corresponding report.

Part I. Planning
• Articulated strategy identifying the design of the solution, coding approach, testing strategy, and de-

bugging approach (10%).

Part II. Solution and Documentation
• Program execution is free of syntax errors and responds to specifications (25%).
• Specification satisfaction is where the solution produces the correct output, and the output meets 

specifications (25%).
• Well-structured and well-commented code (10%).
• Evidence of validation of the solution, including test cases with justification and their evaluation 

(10%).
• Evaluation of the solution under the lens of the disciplinary concepts (20%).

6. Guidance materials and resources such as laboratory manuals and project templates (see appendix A):
• Instructor’s online lectures
• Worked examples for related exercises
• Example of a plan for a generic coding problem
• Test cases

7. Instrumentation and software tools:
• MATLAB software
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TABLE 3.1 Lesson plan for the time-dependent partial differential equation project

8. Specific instructional events:
A. Teaching method (ways to promote the development of expertise; see appendix A)
Three main teaching methods will be used:
1. Coaching, where the instructors and TAs make themselves available during lectures, lab sessions, and 

extra office hours to provide feedback and individual consultations.
2. Scaffolding, provided in the following forms:

• Hints are embedded in the project description.
• Worked-out examples throughout the course provide students with approaches to solve parts of a 

bigger problem.
• A first iteration where students receive feedback from the instructor/TA on their strategy before en-

gaging in the solution.
• Test cases that help students validate their solutions.

3. Articulation, where students are prompted to explain their solution via three different mechanisms:
• A preliminary strategy report where they structure their initial solution.
• In-code comments where they explain how they approached the algorithmic solution.
• A final report where they detail how they approached the problem and interpreted the solution un-

der the disciplinary problem.
4. Reflection will be facilitated in two ways:

• Allow students to discuss their own solutions with their peers during the lecture and laboratory ses-
sions.

• Have students compare their solutions against self-generated or instructor-provided test cases.

B. Sequencing of activities (ordering of learning activities; e.g., prelab, lecture, lab, homework)
The integration of the module will follow this sequence:
1. During class, the instructor introduces the theoretical background of the problem and how to model 

time-dependent partial differential equation boundary value problems.
2. Requirements for the code structure, the planning report, and the final report are established over the term.
3. During the laboratory session, students start working on their planning strategy. Students continue work-

ing on their strategy after class, and once done, they submit it for initial feedback.
4. Once feedback is received on their initial strategy, students continue to work on the challenge through-

out the next week, in and outside of class. The instructor/TA provides continuous feedback.
5. After one week, students submit their solutions to the challenge (i.e., the MATLAB code) and the corre-

sponding report.

C. Sociology (social and contextual characteristics of the learning environment; e.g., individual or teamwork)
Students will be allowed to discuss their solutions with their peers during class time, but the final solu-
tion and report should be produced, debugged, and submitted individually. Also, the instructor and TA 
will be available for one-on-one consultation.
9. Homework (if appropriate):
Students start the project during class time and work on it for one week.
10. General comments or observations:
N/A

Continued
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approaches, students started their problem-solving processes, and when class time was 
not enough, students completed the micro-challenge outside the classroom. The in-
structor implemented this process on a weekly basis for two to three weeks. As students 
worked on the weeklong projects, feedback was provided via online discussion, during 
in-class workshops, and during office hours offered by the instructor and teaching as-
sistant. A lesson concluded with a weeklong modeling and simulation project, like the 
one described in this lesson plan.

The first time we implemented this lesson, we learned that the course was perceived 
as challenging for students (Magana, Falk, and Reese 2013). However, as we designed, 
implemented, and iteratively revised this modeling and simulation project, we were 
able to identify the types of benefits and challenges experienced by the students. We 
also identified a collection of learning strategies that supported students’ learning. One 
of the major challenges students experienced was mapping from a mathematical rep-
resentation to an algorithmic and computational representation (Magana, Falk, et al. 
2017). We also noticed that students did not fully engage with the modeling and simu-
lation process. That is, students often planned and implemented their models but were 
not using them effectively to solve the actual engineering problem (Magana, Brophy, 
and Bodner 2012). Some students did not properly engage in the simulation aspect of 
the modeling and simulation process, while others did not enact important stages of 
the modeling process, such as validation and verification. We offer the following best 
practices for supporting student learning in this context to overcome these challenges.

We use worked-out examples to help students make meaningful connections between 
the disciplinary and computational content (Vieira, Yan, and Magana 2015). Worked- 
out examples are expert solutions to a problem. For the purposes of this project, such 
examples focused on helping students map from a mathematical equation to an algo-
rithm. The examples were provided in the form of short videos and written explana-
tions that were made available to students within the learning management system. 
How ever, as we implemented the worked-out examples, we noticed that students did 
not use the worked examples provided to them or did not engage meaningfully with 
the worked examples. For this, we implemented the use of in-code comments as a way 
for students to engage and self-explain the worked examples to themselves (Vieira et 
al. 2017; Vieira et al. 2019).

To gradually remove the support provided with the worked-out examples, we im-
plemented an intermediate scaffolding approach consisting of providing templates of 
codes or code snippets. In this way, students could assemble part of the computational 
model by reusing code. These strategies gave students a starting point and allowed them 
to focus their efforts on the most critical components of the computational solution.

To engage students in model-based reasoning, we also provided guidance so stu-
dents could enact each of the modeling and simulation stages (Magana et al. 2020). 
Recommended stages include (1) analyze the problem, (2) formulate a model, (3) im-
plement and solve the model, (4) validate and verify the model, (5) interpret the solu-
tion, (6) report the model, and (7) maintain the model (Shiflet and Shiflet 2014). These 
stages can be combined for convenience, but it is recommended that at least (1) analyze 
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and formulate the model, (2) implement and solve the problem, and (3) evaluate and in-
terpret the solution are explicitly enacted. A simple approach to guide students through 
these stages was to provide project report templates. The report was organized into dif-
ferent stages, and a brief explanation of the expectations for each section was provided. 
Assessment rubrics also described the requirements and expected levels of performance 
for each stage.

A critical step often overlooked by faculty when implementing modeling and simu-
lation practices is the validation and verification process. Although implementing these 
practices can be considered advanced skills, some support strategies can initiate stu-
dents into the habit of validating and verifying their models. Such strategies include 
the instructor providing test cases with results so that students can compare their solu-
tions. A second strategy is to provide students with data sets, theoretical models, or 
even other simulations.

Conclusion
Introducing modeling and simulation practices to novice learners is challenging because 
these practices require the integration of programming, disciplinary, and mathemati-
cal skills. Different forms of scaffolding can be implemented to support students in en-
acting modeling and simulation practices and help them overcome the most challeng-
ing steps of the modeling and simulation process. While worked-out examples with 
in-code commenting were useful supports, more research is needed to identify other 
possible struggles and corresponding supporting strategies.

DESIGNING FOR CAPSTONE COURSES 
BY JOSEPH LYON

When designing computation, modeling, and simulation challenges for capstone courses, 
one must consider a whole host of different issues than when designing for younger stu-
dents. For example, students in a capstone course may have already encountered many of 
the concepts and skills needed to construct their models, and thus the process students 
must undergo involves connecting the dots from previous courses. Additionally, further 
knowledge transfer can be required as many students will have moved further toward 
expert-like practices and away from the novice practices they may have had earlier in 
the program. To add to the complexity, capstone students may vary widely in ability de-
pending on how much they have grasped material in their previous years of undergrad-
uate study. So the question now is, How do we help capstone students piece together 
the different previous learning experiences to transfer knowledge into new modeling 
and simulation contexts? And additionally, How do we account for the highly variable 
levels of ability we encounter when working with capstone students? These questions 
will be addressed in this learning design, along with example materials for practitioners 
and researchers to use alike.
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MODELING HEAT TRANSFER AND STERILIZATION 
wITHIN A FOOD CANNING OPERATION

Context and Population
This learning design was developed for students enrolled in a capstone course. The stu-
dents were enrolled in an engineering degree program focused on food and pharmaceu-
tical processing, with a mix of students wanting to pursue graduate school and others 
focused on obtaining industry positions. The course was the first part of a two-part cap-
stone design course. Consequently, in addition to the modeling activities during the se-
mester, students had design groups that were working on a capstone project. The course 
met for six hours a week with two one-hour lectures and two two-hour lab periods. For 
each modeling project, students were expected to write a MATLAB script that mod-
eled a real-world food or pharmaceutical process. Each modeling activity took a total of 
three to four weeks to complete, with four different activities across the semester. There 
were multiple learning objectives for the modeling activities where the students were 
able to (1) describe real-world systems with mathematical models, (2) convert math-
ematical models into computational models in MATLAB, and (3) interpret the out-
put of computational models within the real-world context of the modeling problem.

Theoretical Grounding of the Learning Design
Two primary frameworks were used to guide the pedagogical design of this project. 
The first framework is productive failure, which suggests that students learn to trans-
fer knowledge into ill-structured problem contexts by being pushed to the point of 
failure or an impasse (Kapur 2010). Productive failure prescribes very little instruction 
prior to the intervention by encouraging students to explore the problem space on their 
own (Kapur and Bielaczyc 2012). In our context with capstone students, this is a help-
ful framework in that many of the students had received most of the information they 
needed in prior classes and just needed to integrate it, as opposed to first-year or nov-
ice learners, who may require much more instruction prior to beginning work on a task. 
Additionally, productive failure design encourages problems to be ill-structured, which 
can include giving students problems that have multiple solutions or vague or partially 
unknown parameters and requiring them to make assumptions about the problem space 
(Kapur 2010). In our classroom, this played out by giving students a problem that re-
quired them to model a canning sterilization operation. Students received the neces-
sary instruction on topics such as heat transfer, reaction kinetics, and finite difference 
modeling. However, this task required them to pull these knowledge domains together, 
and little instruction was provided on this aspect before they began to plan their solu-
tions. Additionally, the problem given had multiple variables containing ranges, multi-
ple missing variables students would need, extraneous information and values, and many 
layers of assumptions to accomplish.

Additionally, the modeling projects were structured using a model-eliciting activ-
ity (MEA) framework, which has been studied extensively in engineering and broader 
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STEM contexts (Diefes-Dux et al. 2004; Lesh et al. 2011; Lyon and Magana 2021). The 
MEA framework follows six principles for designing modeling activities (Diefes-Dux 
et al. 2004):

Model-construction principle: The activity should result in a mathematically fo-
cused model.

Reality principle: The activity should be set within a realistic and meaningful setting.
Self-assessment principle: The activity should be set up in a way to allow students 

to evaluate how they are thinking about the modeling problem.
Model-documentation principle: The activity should require students to document 

their work at each stage of the problem-solving process.
Construct shareability principle: The activity should allow students to create solu-

tions that are transferable to other solution spaces.
Effective prototype principle: The activity has students create a simple but effec-

tive solution.

These six principles were used to create the artifacts needed for the modeling project. 
The problem was set within a highly realistic engineering scenario (reality principle). At 
each stage in the process, students filled out project templates (model-documentation 
principle). The project had an activity built in that had students evaluate how good their 
model was, what they could have done differently, and in what other scenarios they might 
use this type of model (self-assessment principle and construct shareability principle). 
And finally, students were asked to make and defend assumptions of their model and 
create a finite difference model of the process they were evaluating (model-construction 
principle and effective prototype principle).

Problem Description and Learning Domain
The problem was situated as a modeling and simulation problem where students were 
asked to model the sterilization of food products on a canning line. The students were 
placed in the situation of an engineering consulting group that had been approached 
by a systems engineer in the food industry to model the heat transfer and sterilization 
of various food products as they are exposed to heat in a retort operation. This is a com-
mon unit operation within the food industry — one that is critical to food safety — that 
students will likely encounter when they enter industry careers. Students needed to in-
tegrate knowledge from heat transfer in biological materials, the reaction kinetics of mi-
crobial agents and food nutrients, and finite difference modeling of differential equa-
tions to effectively solve the challenge posed to them.

Lesson Plan
The following lesson plan (table 3.2) outlines the specific details of the learning activity 
implemented within this context. Corresponding rubrics, handouts, and student tem-
plates are presented in appendix B.
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TABLE 3.2 Lesson plan for the food sterilization project

Instructor’s name:
Joseph Lyon

Discipline:
Biological and Food Process 
Engineering

Course:
Transport Operations in Food and 
Biological Systems II

1. Name of the topic or unit:
Food Sterilization
2. Learning objective (from the syllabus):
Analyze common unit operations in the food and pharmaceutical industries.
3. Specific disciplinary learning objective(s) of the assignment/lab:

• Apply numerical modeling techniques of food processing systems in real-world contexts.
• Analyze complex heat transfer scenarios.

4. Specific modeling and simulation practice(s):
The following are modeling and simulation-specific practices to be assessed as learning objectives (LO):

• Students are able to identify useful data and justify its use.
• Students are able to convert mathematical representations of information into appropriate computa-

tional structures and justify their choice.
• Students are able to construct computational models from identified information and develop com-

putational structures.
• Students are able to interpret modeling output in relation to problem context and other student 

solutions.
• Students are able to discuss the limitations of their model and additional applications of the model.

5. Assessment strategies and grading system:
Assignments will be graded following the rubric provided in appendix B. There are five deliverables from 
the activity:

• Planning the model template (15%, LO1): Students will work in teams to begin mapping out how they 
will do the activity.

• MATLAB coding template (30%, LO2): Students will work individually to create the mapped-out 
model in the MATLAB programming environment.

• Building the model template (30%, LO3): Students will work individually to fill out a building the 
model template in which they explain their design decisions, assumptions, and limitations of their 
model.

• Evaluating the model template (15%, LO4): Students will fill out a note-taking template while they 
meet with other students to discuss how their models differed.

• Reflecting on the model template (10%, LO5): Students individually fill out a reflection template in 
which they think about the solution process and what they may do differently next time.

6. Guidance materials and resources such as laboratory manuals and project templates:
Students will be provided with multiple documents before the activity, all found in appendix B. The prob-
lem statement overviews a processing plant that has reached out to your engineering team to solve line 
issues and the realistic MEA-inspired scenario. The MATLAB coding template gives overarching struc-
ture to the code as well as explains how teams should structure comments within the code. Templates are 
provided for each stage of the activity.
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TABLE 3.2 Lesson plan for the food sterilization project

7. Instrumentation and software tools:
Access to MATLAB software will be needed for the programming portion of the assignment, as well as 
access to word processing software.
8. Specific instructional events:

A. Teaching method
The teaching methods employed in this learning intervention are guided by the principles of the produc-
tive failure framework. In this framework, instructors are encouraged to create an environment with the 
following pedagogical qualities (Kapur and Bielaczyc 2012):

• Instructors should aim to create an environment where problem space exploration is encouraged. For 
example, if a student is stuck and looking for a way forward, instructors should push them to think of 
a different way to set up the problem or different ways to think about an aspect of the problem.

• Instructors should shy away from emphasizing one correct way to solve the problem but rather stress 
to students that there is no one correct solution to the problem (even though there might be better or 
worse solutions).

• Whenever students mention multiple solution pathways, instructors should encourage them to con-
sider the differences between the solutions and why one might be more limited or useful than an-
other.

B. Sequencing of activities
A four-week sequence is required to cover all parts of the learning activity.
Week 0: The instructor gives a brief intro to the problem the students will be solving (~15 minutes). 
Students work together in groups of four to fill out the planning model template (~90 minutes). By the 
end of the class, students should each have filled out the planning model template.

Weeks 0–3: Students work individually outside of class to build their planned-out model using MATLAB 
software. Students are welcome and encouraged to make changes to their plan if needed. At the end of 
this period, students are expected to turn in a completed building the model template and associated 
MATLAB files. During this time, the instructor will give three lectures on the topic:

• Lecture 1: A review of heat transfer in food systems.
• Lecture 2: A review of reaction kinetics of microbial systems.
• Lecture 3: A review of finite difference modeling.

Week 3: Students meet together in groups to evaluate their created models. Students meet together in 
their planning groups again and rotate around to meet with other groups of students from the class. 
During this time, students take notes to answer key questions, such as how their models differ and how 
other students’ models work.

Weeks 3–4: Students individually fill out a reflection template outside of class, considering what they 
would change about their model and what other applications their model might have.

C. Sociology (social and contextual characteristics of the learning environment, e.g., individual or teamwork)
Activity includes both group and individual components to the problem. Both the planning and eval-
uation phases are done as a group to spark creativity and new ways of thinking about the problem. The 
model phase is performed individually so that each student is personally exposed to the programming 
environment and solving the problem. Finally, the reflection phase is done individually to help students 
work on metacognitive skills, which are largely individual in nature.

Continued
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Reflection and Lessons Learned
The first time this lesson was implemented was through a single modeling project over 
the course of the semester. The project allowed students to tie together various areas of 
knowledge they had previously learned in class, implemented through a programming 
context. The specific context of the project was the sterilization of food materials. The 
project started in a lab session of the course, in an open classroom, with students sit-
ting around tables working together on their planning assignments on their computers. 
Instructors pulled up the assignment documents on projectors situated around the class-
room for all students to see. The teaching team walked around the classroom during the 
two-hour planning session, answering questions and prompting student thought. While 
the building phase of the model was primarily done at home by the students individu-
ally, they again met with these teams three weeks later in the same classroom. The stu-
dents evaluated their models with the teams they planned, then rotated to other tables 
to meet with students from three other planning teams. After the evaluation phase, stu-
dents individually turned in a reflection report on their models. At the end of the proj-
ect, students gave feedback on the intervention via a survey.

The evidence and results indicated that the intervention got students to practice com-
putational thinking while solving these complex modeling challenges (Lyon and Magana 
2021; Lyon, Magana, and Streveler 2022). Students demonstrated complex forms of ab-
straction, algorithmic thinking, and evaluation practices while solving the sterilization 
challenge. Additionally, students reported multiple benefits to the intervention, such as 
having a real-life simulated challenge and a hands-on learning project (Lyon, Magana, 
and Okos 2019). Students largely believed that the building and evaluating phases of 
the activity were the most helpful, while the reflection phase of the activity was largely 
acknowledged by the students as the least beneficial (Lyon, Magana, and Okos 2019).

The subsequent iterations of the implementation had multiple modeling projects in 
this format over the course of the semester. This allowed students to get into a pattern 
of how the modeling process worked, going from planning to building to evaluating and, 
finally, to reflecting. While productive failure was integrated to make students reach an 
impasse, more introductory instruction was given in subsequent semesters to alleviate 
some of the frustration and increase students’ perceived benefit to the initial planning 
phase (Lyon, Magana, and Okos 2019). Subsequent semesters also included a scaffold-
ing program called MATLAB Live Scripts, which allowed instructors to integrate the 
programming template with the report template for the project. Our results indicated 
that by doing so, the students significantly felt more comfortable with programming by 
the end of the modeling project and felt that the scaffolding through MATLAB Live 
was extremely beneficial (Lyon et al. 2020).

Finally, integrating reflection not only at the end of the activity but throughout the 
activity was implemented in subsequent iterations. Not only is reflection beneficial to 
students in building key metacognitive skills, but it also needs to be integrated so that 
students are reflecting before, during, and after any project (Ertmer and Newby 1996). 
Our subsequent iterations of the intervention have integrated reflection throughout to 
address low student perceived benefit to the reflection process, but also so that students 
have more opportunity to practice their reflection skills throughout the semester. Future 
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interventions should work to integrate reflection earlier in the degree program so that 
by the capstone course, this practice is significantly integrated into students’ workflow.

Conclusion
Upper-division engineering courses provide prime opportunities for instructors to inte-
grate modeling and simulation projects into the engineering curriculum. Our learning 
design showed that students were able to use and practice their computational thinking 
skills and proved to be what many students are hungry for in the classroom: a realistic, 
hands-on learning project that simulates what they will be doing in industry. Future ef-
forts should include more room for student reflection and an appropriate introduction 
to the materials in order to alleviate students’ perceived drawbacks to the intervention.

DESIGNING FOR LEARNING IN THE LABORATORY 
BY HAYDEN FENNELL

The undergraduate laboratory is an ideal setting in which to introduce students to mod-
eling and simulation practice. While computation is beginning to make its way into 
more and more standard STEM courses, the potential of using computation in the lab-
oratory has been underutilized. Historically seen as an opportunity for students to gain 

“hands-on” experience with the subject matter, traditional labs often focus on physical 
experimentation and data collection. Alternatively, some labs have been converted into 
entirely computational labs in which students run simulations to demonstrate the con-
cepts being learned in class (Fennell et al. 2019, Landau 2006). However, we propose 
a more balanced approach to in-lab computation that uses both physical experimenta-
tion and computational simulation to solidify student learning of disciplinary material 
through multiple representations of the same system.

MODELING FUNDAMENTAL MECHANICS 
IN PHYSICS LABS wITH VPYTHON

Context, Population, and Learning Need
Our design for hybrid computational/experimental physics labs was implemented in the 
context of Modern Mechanics, a large institution’s first-year physics course. While the 
course focuses on the fundamentals of classical mechanics, the laboratory component 
of the course implements programming problems to introduce students to basic com-
putational concepts in physics. The coding portions of the labs utilized VPython (an 
extension of the Python language) as the programming language. Students wrote and 
ran their code using GlowScript, an online VPython compiler. Labs were separated into 
three components: (1) physical experiment, (2) computational simulation, and (3) com-
parison and reflection questions. After setting up and collecting data on the physical 
experiment for each week, the students would use a provided VPython template to 
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construct a computational model of the experiment they had just performed. Students 
would then be presented with a series of questions asking them to discuss the differ-
ences and similarities between the two sets of results.

Although this physics course is offered through the physics department, it is one 
of the required courses in the institution’s first-year engineering program. Students in 
the first-year engineering program receive two MATLAB courses during their first 
year. However, most students tend to take the physics course during their first semester, 
meaning that for many, this is one of their first experiences with programming. Overall, 
students in this physics course tend not to have much coding experience, particularly 
in the context of code being used to model disciplinary problems. A primary benefit of 
introducing computational concepts in the laboratory environment is that it offers stu-
dents a chance early in the curriculum to use computational tools to model a phenom-
enon as it is being studied through traditional experiments. In other words, the direct 
application of the computational methods is made clear each week due to the immedi-
acy and hands-on nature of laboratory activities.

Theoretical Grounding of the Learning Design
The physics lab was developed using Kolb’s theory of experiential learning (Kolb, Boyat-
zis, and Mainemelis 2011). Experiential learning theory (ELT) is a constructivist learn-
ing model that posits personal experience as the most central element of the learning 
process. Unlike cognitivist and behaviorist models, ELT suggests that all learning is 
based on experience and that the ways in which people interact with and process their 
own experiences influence how they learn. Experiential learning, therefore, acts as a 
sort of synthesis of the previous constructivist work introduced by Dewey, Lewin, and 
Piaget (Kolb, Boyatzis, and Mainemelis 2011). The ELT model suggests that there are 
two related processes of interfacing with experience during learning: grasping experi-
ence and transforming experience. The model of grasping experience consists of two re-
lated mental processes: concrete experience and abstract conceptualization. The model 
of transforming experience also consists of two related processes: reflective observation 
and active experimentation. Together, these two models of grasping and transforming 
experience intersect into a four-part process in which a learner (1) has an experience 
and (2) takes time to reflect and think about what they have observed, which allows 
for (3) the distillation of the experience into key elements of an abstract conceptualiza-
tion of the experience before (4) participating in active experimentation to create fur-
ther experiences, thereby repeating the process to refine their understanding of the phe-
nomenon or experience (and thus generate new knowledge). This learning cycle makes 
up the basis of the ELT framework upon which instructional approaches can be built.

Our physics lab curriculum leverages the ELT framework through a laboratory struc-
ture that requires students to engage with this cycle in each hybrid experimental/com-
putational lab. By performing the physical experiment at the beginning of each lab ac-
tivity, students gain concrete experience of the studied phenomenon. After performing 
the experiment, students engage in reflective observation through analysis of the collected 
data, answering questions about the results, and making sense of the outcomes of their 
experiment. This is then followed by a computational simulation of the phenomenon 
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under study, which models the key components of the physical experiment and encour-
ages abstract conceptualization of the core elements of the phenomenon. Finally, students 
are led into active experimentation by being asked to make changes to the computa-
tional model to visualize different possible system configurations. Students then com-
pare their results with the results of their experiment to draw conclusions about the ac-
curacy of the models and experimental setups. While each lab session represents only 
one complete cycle of the ELT model, this cycle is repeated each week, exposing stu-
dents to many related phenomena modeled with very similar code. The labs, when taken 
together, can be thought of as an extended version of the ELT cycle that lasts over the 
course of the entire semester rather than a single activity that gives students opportu-
nities to iterate through the cycle multiple times in one sitting.

Problem Description and Learning Domain
Over the course of the semester, the physics lab covered a number of different topics. 
The details of the progression of content are provided in figure 3.1. Here we will discuss 
a module of three related labs covering the mechanics of objects under different types 
of acceleration: Lab 2, Lab 3, and Lab 8. These three labs comprised the lab course’s 
discussion of simple linear motion. Labs 2 and 3 involved cart and track experiments 
in which carts were accelerated down a flat track, while Lab 8 focused on the air re-
sistance and drag forces of a falling object. Each of the labs was modeled in VPython 
as a finite difference problem. This is a common solution method for time-dependent 
models in which each iteration of the program loop calculates the current results using 

Lab 2 Lab 3 Lab 8
Disciplinary:
Position tracking of
cart on track moving
at a constant velocity

Computational:
Writing while loops
for modeling motion

Disciplinary:
Momentum tracking
of cart on track
moving at a 
nonconstant velocity

Computational:
Converting math to
code; repurposing
previous code
structures

Disciplinary:
Air resistance, drag,
and terminal velocity
of a falling object

Computational:
Ordering mutually 
dependent
equations within an
iterative model

FiGURE 3.1 Disciplinary and computational content is covered in each lab within the linear motion module.
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the results from the previous iteration of the loop as initial value inputs (i.e., updating 
the position/velocity of a moving object over time). These labs primarily covered con-
cepts of selecting appropriate time step size, loops, and conditional logic. VPython code 
for the visual simulation setup was provided to the students in the form of a VPython 
template. Students were primarily responsible for defining variables, setting up calcu-
lations, and determining the order of equations in the loop that ran each program. The 
commands for plotting the simulation outputs were also provided in the template to 
reduce the learning load (given that the lab sessions were only two hours and also con-
tained a complete physical experiment). The materials provided to the students for this 
lab module are provided in full in appendix C.

Lesson Plan
The following lesson plan (table 3.3) aligns the learning objectives with the design of 
the activity and its corresponding assessments. The project description for Labs 2, 3, and 
8, as well as the code templates provided to the students and the corresponding assess-
ment rubrics, are presented in appendix C.

TABLE 3.3 Lesson plan for the Newtonian mechanics, linear motion/acceleration project

Instructor’s name:
Hayden Fennell

Discipline:
First-Year Engineering and Physics

Course:
Modern Mechanics

1. Name of the topic or unit:
Newtonian Mechanics, Linear Motion/Acceleration
2. Learning objective (from the syllabus):
Use loops to model motion iteratively in VPython; measure 1D position, velocity, and acceleration (Labs 
2 and 3); use the drag coefficient and other parameters from the physical experiment to create a VPython 
model of the falling object (Lab 8); connect physical experiment and the VPython model
3. Specific disciplinary learning objective(s) of the assignment/lab:
Students modify provided VPython code templates to create a functioning model of the physical experi-
ment performed in the first half of the lab.
4. Specific modeling and simulation practice(s):
Students modify/create simple VPython programs that leverage loops to model the motion of objects 
using an iterative finite difference approach.
5. Assessment strategies and grading system:
Each lab is assessed for disciplinary (i.e., physical experiment) performance and computational (VPython 
program) performance according to the rubrics found in appendix C. Scoring is less formal due to the 
more relaxed lab setting and low portion of the overall course grade (10%).
6. Guidance materials and resources such as laboratory manuals and project templates:

• Guided lab worksheets/manuals
• VPython code templates

7. Instrumentation and software tools:
• VPython (Python 2.7 add-on package) delivered via GlowScript online programming environment 

(http://www.glowscript.org)

http://www.glowscript.org
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TABLE 3.3 Lesson plan for the Newtonian mechanics, linear motion/acceleration project

8. Specific instructional events:
A. Teaching method: use-modify-create framework (Lee et al. 2011)
The UMC framework is a computational scaffolding method in which students are first exposed to fully 
functioning software/programs that they use to solve a problem. Then they are asked to modify code 
that is incomplete or incorrect in order to use the code to solve a problem. Finally, students are asked to 
create code of their own once they have gained experience using and modifying steps. This process can be 
repeated whenever new disciplinary or computational concepts are introduced in order to help students 
develop an integrated body of knowledge and skills.

B. Lab activities (linear motion module)
Lab 2: VPython loops tutorial and simple cart and track experiment (recording position data as cart 
moves at constant velocity). Completed simulation code is provided to students who must alter initial 
parameters to produce results aligned with their experiment. (Use phase)

Lab 3: Similar cart and track experiment with fan attachment to provide constant acceleration to the 
cart. Students must revise the code provided in Lab 2 to reflect the new experimental context. (Modify 
phase)

Lab 8: Experiment involving air resistance of falling object and the calculation of drag coefficient from 
experimental data. Students must change parameters and add equations in the current locations in a 
provided template to produce a functioning simulation of the experiment. (Modify phase)

9. Homework (if appropriate):
N/A
10. General comments or observations:
It may be noted that the linear motion module discussed in point 8 does not include any examples of the 
create phase of the UMC framework. This portion of the framework was excluded intentionally due to 
the strict two-hour time limit of each lab session and the generally low experience with programming of 
the student population. Given the limitations of the lab setting, the modify phase felt like a strong enough 
challenge for the students during the fall 2018 semester. However, more create challenges were included 
in the following semesters, given the students’ overall favorable performance in the labs in fall 2018 (see 
the section “Reflection and Lessons Learned” for more details).

Continued

Reflection and Lessons Learned
Overall, the first semester of implementation was very successful. Aside from a few lo-
gistical challenges involved in coordinating with the team of TAs responsible for run-
ning the labs and for catching and updating small issues with the code templates as stu-
dents found them, the content of the labs themselves seemed quite approachable to the 
students. Performance results from the first semester of the hybrid labs were promising 
and showed that students were generally able to successfully engage with the lab mate-
rial without too much trouble. The results of a thematic analysis found several themes of 
learning benefits within a selection of students’ responses to questions on the in-class lab 
worksheets (Fennell et al. 2019). The themes of learning benefits are described in table 3.4.

The thematic analysis also intended to identify themes of challenge that students 
faced during the semester. However, very few instances of challenges were identified 
in the students’ responses. Only two distinct challenges occurred across more than one 
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student, each of which appeared only twice in total. These two challenges were (1) model 
is truth, in which students regard the model as the “true” physical representation rather 
than the data collected in the real-world physical experiment, and (2) misidentification 
of code function, in which a student leaves an in-code comment that incorrectly describes 
what a line of code does. While this is heartening in the sense that it shows that the 
hybrid lab material was generally not overwhelming for students, it also suggests that 
the initial implementation of the labs may have been over-scaffolded and that students 
are capable of meeting higher demands during the lab sessions. This over-scaffolding 
effect was likely the result of a more cautious “pilot” approach to the first deployment 
of the new hybrid material due to the extremely high enrollment in the class as a pre-
requisite for other required classes.

Since very few useful themes of challenges were identified during the thematic anal-
ysis, an additional round of thematic analysis was performed on the lab worksheets and 
code templates themselves. This time the goal was to identify any notable issues with 
the structure of the activities that may have led to the lack of observable challenges 
from the students. The themes related to limitations were also organized into several 
umbrella categories of issues to improve in the next iteration, as described in table 3.5.

These themes of limitation led to reflection on the learning activities and sugges-
tions for improvement in future implementations of similar content. The first and most 
prominent issue with the responses to the lab activities was an overall lack of reflec-
tive description in students’ answers. Reflection questions that encouraged students to 
make connections between the two portions of each lab were included each week, but 
answers were generally short and to the point. While students were prompted to make 
comparisons between their experimental and computational results, many settled on 
simple (and sometimes superficial) responses that technically addressed the question 
without saying very much. In general, it seems that students did not feel that exten-
sive or detailed explanations were required to address the prompt, leaving very few in-
stances of students clearly demonstrating their understanding (or lack of understanding) 

TABLE 3.4 Themes of students’ perceptions regarding learning benefits

Theme of Benefit Description

VPython basics Evidence of understanding the basic functionality of programming 
in VPython (i.e., assigning variables, conditional logic/operators, 
vector math operations, etc.).

Iterative modeling Evidence of understanding that computational models can do the 
same calculation repeatedly (i.e., using loops to simulate motion).

Step size and accuracy Evidence of understanding the importance of step size within a 
model and its relationship to accuracy and precision.

Models are ideal and make 
assumptions

Evidence of understanding that models differ from the real world 
and make key assumptions and judgments about reality.

Models are contextually dependent Evidence of understanding that models are representative of a 
particular context and must be updated if moved to new contexts.
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of the computational concepts being discussed. The wording of the questions in future 
implementations of the lab material was updated to be more explicit about what stu-
dents were supposed to be reflecting on, rather than simple “why or why not” prompts 
that are often overlooked. A second, related observation about how to improve the labs 
was a more straightforward fix: avoid compound questions. A large amount of poten-
tial information was lost in the lab handouts due to students not fully answering ques-
tions with multiple parts. Many students would answer the first portion of a question 
and move on to the next, ignoring the more critical interpretation components of the 
question prompt. While this phenomenon has been identified and discussed by other 
authors (Mackillop, Parker‐Swift, and Crossley 2011), we were not anticipating the ex-
tent to which it would be a problem in the hurried lab environment. Future implemen-
tations of the lab have broken all multipart questions into individual prompts to en-
courage students to fully engage with each question. While this issue is not exclusive to 
modeling contexts, it is one to be especially aware of when the activity is already asking 
students to split their attention across multiple areas of focus (in a hybrid experimen-
tal/computational lab assignment, for instance).

On the more modeling-specific side of things, there were two limitations that we 
feel can be addressed with the design of the labs. The first suggestion is that while scaf-
folding should still be removed gradually, it can be reduced more quickly than in the 
initial implementation. The first round of implementation of the labs maintained a sort 
of base level of scaffolding throughout the semester, providing students with fairly de-
tailed code templates for each lab. The analysis of student performance in the labs sug-
gests that students adapt quickly to modifying previous code for use in new (but related) 
settings and that less guidance is needed in the code templates later in the semester. 
In short, more activities from the create portion of the use-modify-create framework 
should be incorporated into the activities in order to see where students are still strug-
gling or where any misconceptions may lie. If lack of expertise is still a concern in a set-
ting where students are not exposed to much computational content, the modify step 

TABLE 3.5 Themes of students’ perceptions regarding learning limitations

Theme of Limitation Description

Narrowly worded question/prompt Question/prompt in lab activity was worded in a way that produced 
unanimous student responses (i.e., the question was too direct or 
had very few possible answers).

Lack of meaningful reflection/
explanation

Lab activities did not provide enough opportunity (or space) for 
meaningful reflection from the student.

Abbreviated answers Students provided answers that were technically correct but too 
short to be informative or reflective of learning.

Incomplete answer to the 
compound question

Students did not fully answer prompts containing multiple 
questions.

Poor in-code commenting Students did not provide useful comments on their coding 
templates, despite instructions to do so in each lab.
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can also be leveraged more heavily as a method for removing scaffolding without leav-
ing novice learners completely on their own. For example, implementations of the hy-
brid lab content after the fall 2018 pilot have students reusing and updating their cart 
and track code from Lab 3 in a later lab on air resistance of a falling object rather than 
simply providing the students with a content-appropriate template. The students, there-
fore, must make substantial changes to the code that border on creation levels of com-
plexity but are supported by the fact that they are not simply presented with a blank 
text file (the assumption being that at least some of what they have done must be reus-
able in the current context if they are being instructed to use it).

A further issue faced on the computational side of things was that students tended 
not to leave very detailed in-code comments in their submitted programs, despite be-
ing asked to do so in each lab. When comments were left at all, they tended to be brief 
and mechanistic, often simply describing the programming function of a particular line 
rather than how it relates to the disciplinary problem (e.g., simply typing “position up-
date equation” next to the line that updates the variable named position). Of the compli-
cations encountered with the labs, this was the most prominent. Many students simply 
stopped including comments in their code after the third or fourth lab, presumably due 
to time constraints or the students not seeing the value in leaving comments on things 
they feel they already know. Although unfortunate, this is not a surprising issue to en-
counter, given the general lack of programming exposure that many of the physics stu-
dents had prior to the course. As such, it is worth considering how to ensure that stu-
dents are shown the value of in-code commenting as a tool both for thinking through 
a problem and for communicating their understanding of a problem to other users of 
the code (Vieira et al. 2020). When it comes to assessment, it is especially important 
that students leave detailed comments that tie the code to the disciplinary content, as 
it is often the only real way of determining how well a student understands the code in 
lieu of a detailed ex post facto report about each lab assignment. Finding ways to en-
courage students to leave meaningful comments is an ongoing concern for future im-
plementations of the lab material.

Conclusion
On the whole, the implementations of the hybrid labs have been a success, and any ini-
tial reservations about the hybrid material being “too much” for students to handle in a 
two-hour lab session have been assuaged by several semesters of successful implemen-
tation. The students have demonstrated that working with computational content in 
their labs is useful to their learning without detracting from the overall content of the 
labs. While the results from the first implementation showed that students were gen-
erally not overloaded by the labs, the quality of the responses to many questions indi-
cated that more specificity was needed in the lab worksheet questions to encourage stu-
dents to more fully demonstrate their knowledge. Finding ways for students to show 
their understanding of computational concepts in a disciplinary-focused course is an 
ongoing challenge for discipline-based computing that will greatly benefit from further 
work in a variety of other contexts.
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DESIGNING FOR K–12 SETTINGS 
BY CAMILO VIEIRA

Computational practices, including modeling and simulation, are now being integrated 
into K–12 curricula around the globe. Countries such as the United Kingdom (Depart-
ment for Education 2013), the United States (CSTA 2017), and Australia (ACARA n.d.; 
Yadav, Stephenson, and Hong 2017) have now established a curriculum or a set of guide-
lines to integrate computational thinking from early childhood. Bringing these com-
plex topics into the classroom is not an easy task for middle and high school teachers. 
They are often not prepared with the knowledge and skills to design these learning en-
vironments, which are actually complex for students and require appropriate scaffold-
ing. Moreover, it is important to make this knowledge accessible and relevant for stu-
dents, who may think that computer programming is only for computer scientists. The 
learning design that follows describes a learning environment that supports students 
in modeling the spread of infectious diseases. This learning environment also provides 
scaffolding to student learning using an interactive tutorial.

MODELING THE SPREAD OF AN INFECTIOUS DISEASE

Context and Population
This learning design models the spread of infectious diseases such as COVID-19 using 
a simple epidemiological model called Susceptible-Infected-Recovered (SIR). We pro-
pose that this learning design can be implemented in 10th grade, when students have 
developed some basic skills of programming and understand algebra concepts, such as 
variables. Before introducing this learning design within the K–12 level, we conducted 
a comparison of existing K–12 computing curricula in different countries, including the 
United Kingdom (Department for Education 2013), the United States (CSTA 2017), 
and Australia (ACARA n.d.). We identified that initially the learning outcomes should 
be very concrete and context-independent (e.g., using loops to automate a repetitive 
task) and start in the early years of middle school. Then, instructors can build toward 
more open-ended context-dependent learning outcomes (e.g., design, use, and evalu-
ate computational abstractions that model the state and behavior of real-world prob-
lems and physical systems; Department of Education 2013).

Theoretical Grounding of the Learning Design
Cognitive load theory (CLT) informs this learning design, as it scaffolds student learn-
ing following a use-modify-create progression to reduce the cognitive loads. CLT sug-
gests a cognitive architecture that comprises a working memory (WM) and a long-term 
memory (LTM) (Sweller, van Merriënboer, and Paas 2019). The WM is limited in 
time and space, while the LTM is vast. When we learn a new concept or skill, we load 
these new pieces of information into our WM and try to make sense of the informa-
tion using the schemata we have organized in our LTM. Since our WM is limited in 
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space (i.e., it can only process between four and seven chunks of information at a time), 
complex learning processes such as computer programming may overload it, affecting 
our learning process.

Computer programming is a complex skill to learn (Mselle and Twaakyondo 2012; 
Vieira et al. 2019). Novice programmers need to learn simultaneously about algorithm 
design, the programming language syntax and semantics, the program’s goal, and how 
the computer processes information. Hence, to support student learning of computer 
programming, it is important to reduce extraneous cognitive loads. While some strate-
gies have focused on reducing the number of things students need to learn (e.g., using 
block-based programming to avoid syntax errors), others suggest focusing on develop-
ing early schemata by scaffolding the student learning process (Vieira et al. 2017). A 
way to scaffold the learning process could be via worked examples. A worked example 
is an expert’s solution to a problem. When novice learners actively explore a worked ex-
ample, they may identify basic concepts and strategies that will enable them to engage 
in problem-solving activities later. Once the learner starts developing such schemata, 
they prefer to try to solve problems on their own instead of studying someone else’s 
work (Vieira et al. 2019). In the context of computational thinking and programming 
education, researchers and educators suggest the progression of use-modify-create to 
scaffold the student learning process (Vieira et al. 2023). In this progression, students 
first actively explore an example (i.e., use), predict the outcome, and self-explain or ex-
plain to each other. Then, students work on an activity to make some change or exten-
sion to the example program (i.e., modify). Once the students have developed the re-
quired schemata, they work on a challenge (i.e., create) through an iterative cycle of 
create-test-analyze-refine until they find a solution to the problem.

Problem Description and Learning Domain
This lesson plan models the spread of a disease using a traditional epidemiological model 
called Susceptible-Infected-Recovered (SIR), which is used to depict how a disease (e.g., 
COVID-19) spreads within a given population. The SIR model assumes that each in-
dividual can be in one of four states:

Susceptible (S): Individuals who have not been infected with the disease, so they 
are susceptible to being infected within a given probability of disease trans-
mission (i.e., transmission rate) and an average number of contacts per person 
per time (i.e., contact rate).

Infected (I): Individuals who are infected and can be infectious to others. There 
is a probability of both recovery and death associated with leaving this state.

Recovered (R): Individuals who were already infected but are now recovered. 
These individuals cannot be reinfected since they have developed antibodies. 
(Note: This is not necessarily the case for COVID-19, as the evidence about it 
is inconclusive at this point, but this is the case for other diseases and an as-
sumption of this model.)
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Deceased (D): Individuals who were infected and died as a result of the disease.

To identify how many people will move from one state to another, we use the fol-
lowing variables:

Contact rate: Average number of contacts per person per day.
Transmission rate: Probability of disease transmission when a susceptible person 

comes in contact with an infected person.
Recovery rate: Probability of recovery after being infected.
Mortality rate: Probability of dying after being infected.
Recovery time: Average number of days that the disease stays in the body.

To simulate this model, we need to compute the number of new infections, recover-
ies, and deaths per day and then update the number of susceptible, infected, recovered, 
and deceased as follows:

NewInfections: Infected × Contact rate × (Susceptibles / Total population) × 
Trans mission rate

NewRecoveries: Infected × Recovery rate / Recovery time
NewDeaths: Infected × Mortality rate / Recovery time
Susceptibles: Susceptibles − NewInfections
Infected: Infected + NewInfections – (NewRecoveries + NewDeaths)
Recovered: Recovered + NewRecoveries
Deceased: Deceased + NewDeaths

As one may expect, there are some variables that we can manipulate and see the ef-
fects on the number of infected people and the number of deaths. For instance, clos-
ing public events and banning large gatherings of people may decrease the contact rate, 
which has a direct effect on the number of new infections and the number of deaths. 
Likewise, if doctors find effective treatments for the disease, we may have a lower mor-
tality rate, which will reduce the number of deaths. The plots in figure 3.2 show the re-
sults from a simulation configured for a city of one million people over the course of 
365 days. As you may have already identified, the three figures correspond to three dif-
ferent scenarios where the recovery rate and the contact rate were modified.

Lesson Plan
The following lesson plan (table 3.6) aligns the learning objectives with the design of 
the activity and its corresponding assessments. The project description, the code hand-
out provided to the students, and the corresponding assessment rubrics are presented 
in appendix D.
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FiGURE 3.2 Three scenarios of the SIR model represent the four possible states over a year (365 days): Recovered 
(R), Susceptible (S), Infected (I), and Deceased (F).
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TABLE 3.6 Lesson plan for modeling the spread of an infectious disease project

Instructor’s name:
Camilo Vieira

Discipline:
Natural Sciences

Course:
10th Grade Science

1. Name of the topic or unit:
Modeling the Spread of an Infectious Disease
2. Learning objective (from the syllabus):
Model the spread of infectious disease using the SIR model in Python.
3. Specific disciplinary learning objective(s) of the assignment/lab:

• Describe the effects of different prevention strategies on the spread of an infectious disease.
• Explain how the SIR model can be used to prevent the spread of an infectious disease.

4. Specific modeling and simulation practice(s):
Given a simple model to simulate the spread of infectious disease, students identify the correspond-
ing mathematical model and use computer programming methods to extend an appropriate algorithm 
representing abstractions of reality via mathematical formulas, constructions, equations, inequalities, 
constraints, and so forth.
5. Assessment strategies and grading system:
See homework assignment. This will be analyzed using the rubric in appendix D.
6. Guidance materials and resources such as laboratory manuals and project templates:

• Problem description (from this learning design)
• Sample Jupyter Notebook, including a simplified version of this model

7. Instrumentation and software tools:
Jupyter Notebooks — Python
8. Specific instructional events:

A. Teaching method
The instructor will model the start of the lesson by demonstrating how to start the simulation on a 
Jupyter Notebook. The instructor will then provide scaffolding as discussed in the section “Theoretical 
Grounding of the Learning Design” with a pre-developed model in a Jupyter Notebook. Students will 
first use this model by explaining to each other how it works. They will then engage in modifying the 
example, using the same Notebook to complete the model as described in the homework assignment. 
Finally, students will individually complete the homework assignments.

B. Sequencing of activities
• The instructor will present an introduction to the SIR model and will provide the handout that in-

troduces the model to the students. The students will explore the handout and will discuss it in 
groups to raise any questions before getting into the code.

• Next, the instructor will model the work with the Jupyter Notebook and will show the sample 
Notebook containing a simplified version of the model (see appendix D). The students will work in 
dyads to explore the Notebook, explain it to each other, and start working together on completing 
the simulation according to the homework assignment.

• The students will then work individually on the homework assignment, which includes the reflection 
on disciplinary concepts of the spread of an infectious disease.

Continued
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Reflection and Lessons Learned
Students, just like everyone living through the COVID pandemic that started in 2020, 
experienced an uncommon sanitary emergency that had a huge impact on the way we 
live. Schools and universities closed and moved into an online education modality with-
out enough time to prepare for it. The students needed to stay at home and be aware of 
not getting their relatives or themselves infected by COVID-19 as well as become skilled 
at new ways of communicating, interacting, and learning. Over the first few months, 
the common message in the media was “We need to flatten the curve,” emphasizing 
the value of confinement, masks, and handwashing. However, nobody explained where 
that curve came from or how we may have a direct impact on the flattening process.

This lesson plan provides an authentic learning experience for 10th graders to learn to 
program while identifying the value of computing for any subject, including understand-
ing how disease spreads. The lesson plan was piloted with freshmen engineering col-
lege students enrolled in an introduction to programming course. Most of the students 
successfully completed the challenge and highlighted the value of having such a rele-
vant project for something they were experiencing in real life. The lesson plan presented 

TABLE 3.6 Lesson plan for modeling the spread of an infectious disease project

C. Sociology
The students will work in dyads to explore the sample Jupyter Notebook and explain to each other how it 
works. They will complete the homework individually.
9. Homework (if appropriate):
For this activity, we will simulate the SIR model for a 365-day period and a one million population. The 
disease we will model has an average recovery time of 15 days and a transmission rate of 15%.

We will simulate three different values for interaction rate and recovery/mortality rates so that we can 
identify their effect on the number of infected people and on the number of deaths. The following values 
are suggested as a starting point to run the simulation, but you should propose at least two additional 
values for each rate:

• Contact rate: 2.5
• Recovery rate: 95%
• Mortality rate: 5%
In the end, you should present the following indicators and discuss the implications of (1) having 

a higher or lower contact rate (e.g., with or without confinement) and (2) increasing or decreasing the 
recovery rate (e.g., finding new treatments or having limited resources to treat those who are infected):

• Total number of people who got infected
• Total number of people who recovered
• Total number of unaffected people
• Total number of deaths
• Max number of people infected on a given date
• Max number of infections in one day
• Max number of recovered people in one day
• Max number of deaths in one day

Continued
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in this learning design provided additional scaffolding (the Jupyter Notebook) for the 
high school students to be able to engage in the activity, reducing their cognitive load 
and allowing them to focus on understanding and using the simulation.

Conclusion
This learning design described the lesson plan Modeling the Spread of an Infectious 
Disease following the cognitive apprenticeship model. The lesson plan engages 10th grad-
ers in an authentic task to model the spread of infectious diseases such as COVID-19. 
The model represents the effects of different measures that we all were exposed to during 
the pandemic, such as confinement (i.e., reducing the contact rate) and emergent treat-
ments and vaccines (i.e., affecting the recovery rate and the infection rate), with the 
common goal of “flattening the curve” of infections and deaths.
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CHAPTER 4 ELABORATES ON THE THEORETiCAL FOUNDATiONS USED TO HELP STU-

dents develop computing adaptive expertise and the supports that have resulted in a 
pedagogical model called computational cognitive apprenticeship. In addition, the chap-
ter discusses the implications for discipline-based education research — that is, a meth-
odological approach for performing education research in the classroom — along with 
opportunities for future work.

TOwARD ADAPTIVE EXPERTISE IN COMPUTATION

Hatano and Inagaki (1986) introduced the concept of adaptive expertise in their work 
with Japanese school children. Hatano and Inagaki described the process of how stu-
dents learn and grow by following two courses of expertise: routine and adaptive. Routine 
expertise is often defined by procedural knowledge (i.e., practical knowledge; knowing 
how), in which an individual develops efficient skills in a task through long-term repe-
tition and practice. Adaptive expertise is generally characterized by conceptual knowl-
edge (i.e., understanding principles and relationships; knowing why) and the ability to 
learn skills in a way that allows them to be transferred between contexts (Bransford, 
Brown, and Cocking 2000); in other words, adaptive experts have the ability to quickly 
become accustomed to changes in their discipline or work requirements (Hatano and 
Inagaki 1986). Adaptive and routine expertise are often depicted as two splitting “paths,” 
with routine expertise focused on refining procedural knowledge and adaptive exper-
tise focused on acquiring transferable conceptual knowledge (Bransford, Brown, and 
Cocking 2000). This idea of balancing knowledge and skills is further elaborated upon 
by Schwartz, Bransford, and Sears (2005) in their two-dimensional model of adaptive 
expertise. This model conceptualizes adaptive expertise as a balance of innovation and 
efficiency, as shown in figure 4.1.

Efficiency is the ability to “rapidly retrieve and accurately apply appropriate knowl-
edge and skills to solve a problem or understand an explanation” (Schwartz, Bransford, 
and Sears 2005, 28). Innovation, on the other hand, is the ability to create new solutions 
to problems by altering, modifying, or building upon existing knowledge (and sometimes 
even creating new knowledge in the process). Innovation involves recognizing and cre-
atively departing from routine approaches, applying multiple strategies to solve novel 
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problems (Schwartz, Bransford, and Sears 2005), and applying strategies for assessing 
learners’ current approaches and attempting to move beyond them (Bransford, Brown, 
and Cocking 2000). With innovation, individuals need to apply their prior knowledge, 
identify what they do not know, and utilize their monitoring skills to overcome their 
difficulties (Hatano and Oura 2003).

Efficiency is important in many domains, particularly in high-production corpora-
tions, manufacturing companies, and in many medical positions, such as specialized 
surgeon. However, a strong focus on developing efficiency often comes at a cost to in-
novation, as strategies and skills become more familiar and more narrowly applicable 
to common problems. Likewise, an overfocus on innovation can negatively impact ef-
ficiency. Lack of design constraints and too much time spent on any problem may lead 
to frustration and/or avoidable financial risks during a project. Schwartz, Bransford, and 
Sears (2005) proposed a new method of thinking about the efficiency–innovation bal-
ance by proposing an “optimal adaptability corridor” that learners should be assisted in 
navigating during university or other training programs. Curricula designed with this 
adaptability corridor in mind would give students ample time to participate in activ-
ities that allow them to work on both sharpening their routine efficiency and flexing 
their adaptive innovation skills and strategies, with the goal of producing more pre-
pared adaptive experts who are ready to transfer their knowledge into the workforce. 
With this in mind, three sets of expertise trajectories can be applied to the innovation 
vs. efficiency model, as shown in figure 4.2.

Trajectory A represents a situation in which too much focus is placed on efficiency 
and procedural knowledge. This trajectory tends to send students out of the optimal 
adaptivity corridor and produce routine experts. Although routine expertise is useful in 
many fields and is the cornerstone of adaptive expertise, it also risks producing a form 
of cognitive entrenchment in the learner (Dane 2010). Cognitive entrenchment in-
volves viewing currently effective knowledge and methods as the “best” methods, and 

FiGURE 4.1 The development of adaptive 
expertise through both innovation and effi-
ciency. (Adapted from Schwartz, Bransford, 
and Sears 2005.)
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adopting new approaches becomes difficult. Trajectory B represents a situation where 
too much focus is placed on innovation and self-directed learning. This trajectory is sim-
ilar to trajectory A in that it sends students out of the optimal adaptivity corridor, but 
in the opposite direction, resulting in what we refer to here as an “innovative amateur.” 
These learners are able to devise creative conceptual solutions to new problems but ul-
timately struggle to implement those solutions effectively due to a lack of procedural 
expertise. Trajectory C can be considered a more efficient trajectory, where innovation 
and self-directed learning are balanced by expert guidance (or instructor support) with 
regard to efficient strategies and the use of procedural knowledge. The goal is for stu-
dents to develop a more flexible approach to problem-solving and to understand the 
need to consider novel methods when highly practiced rules and principles do not ap-
ply. Therefore, a program focused on the development of adaptive expertise should pro-
vide a combination of innovation-oriented and efficiency-oriented constructivist learn-
ing activities in order to keep students aligned with trajectory C. How to do this can be 
a complicated and involved process, as the methods by which learners acquire expertise 
are still under investigation (Chi 2011).

In our own previous work, we qualitatively characterized the efficiency and inno-
vation dimensions of first-year engineering students’ approaches to solving computa-
tional modeling and simulation challenges. In our study (Magana et al. 2019), cognitive 
knowledge, referring to knowledge comprehension, application, analysis, and synthesis, 
was considered the efficiency dimension of adaptive expertise. Metacognitive knowl-
edge refers to knowledge about the application of strategies and the when, how, and 
why to apply them, which was considered the innovation dimension of adaptive ex-
pertise. Our findings identified four categories; two for the efficiency dimension and 
two for the innovation dimension. Briefly, in the efficiency dimension, the two main 
approaches students followed were implementation-oriented and knowledge-oriented. 
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While implementation-oriented students tended to focus on making their code work, the 
knowledge-oriented students tried to focus on understanding and connecting the disci-
plinary knowledge with their computing knowledge. Regarding the innovation dimen-
sion, the two main approaches students followed were action-oriented and plan-oriented. 
While action-oriented students tended to jump right into a solution with little or no 
planning, plan-oriented students tended to spend significant time planning their ap-
proach before starting to code their solution.

Once we identified each of the four categories (i.e., orientations), we then further in-
spected how students’ experiences and performances related to these categories to un-
cover the interplay between those four. Two clear and distinct patterns of students’ behav-
iors were noted. Students who exhibited action-oriented and implementation-oriented 
behaviors were more aligned with novice approaches to expertise. On the other hand, 
students who exhibited plan-oriented and knowledge-oriented behaviors were more 
aligned with adaptive expertise. Informed by the work from Riel (2023), we used our 
findings and mapped them to the different dimensions of adaptive expertise and de-
fined a preliminary characterization of different approaches to expertise in computa-
tional modeling and simulation. Table 4.2 in the next section provides descriptions for 
the four quadrants of the adaptive expertise model that map to each of the corners of 
figure 4.2. While novices focus on completion, innovative amateurs focus on invention. 
And while routine experts focus on automaticity, adaptive experts focus on understand-
ing. In the case of adaptive expertise in computation, modeling, and simulation, that 
understanding takes the form of model-based reasoning (see chapter 2). Table 4.1 elab-
orates on the four quadrants of the adaptive expertise model, providing descriptions 
adapted to the context of modeling and simulation.

The question is, How can we support students in their learning and attainment of 
modeling and simulation practices so they develop adaptive expertise in computation? 
Based on our previous research, we propose a computational cognitive apprenticeship.

COGNITIVE APPRENTICESHIP MODELS

This section describes the theoretical foundation of a proposed computational cognitive 
apprenticeship. Informed by more than 15 years of education research in the teaching 
of computation at the undergraduate level, we have adapted the cognitive apprentice-
ship model from Collins et al. (1989) to support the teaching and learning of compu-
tation in science and engineering education (Fennell et al. 2020; Sanchez-Peña, Vieira, 
Magana 2022). Apprenticeship models have been used to teach knowledge and skills to 
train novices to become expert practitioners since the beginning of written history. In 
many skilled trades, the apprenticeship model is still used to great effect to train indi-
viduals in the knowledge and skills needed for a trade or profession. The apprenticeship 
models employed by many trades and other skill-based professions are, in many ways, 
inherently situated in their practical context. Apprentices learn in context by observing 
their instructors as they engage in the practice and taking in the key features of what 
expert practice “looks like” in that field. The apprentices then hone their skills through 
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TABLE 4.1 Operationalization of types of computational expertise

Novice: Focus on completion

Emphasis on basic performance of the task. Generally unskilled practice with a focus on 
fulfilling assignment requirements before understanding the content. Low confidence in their 
practice with a high emphasis on broad, sometimes directionless trial and error until require-
ments are met. Often results in unsuccessful or inefficient approaches, despite the effort. Focus 
is placed on producing adequate results and completing assignments for the grade rather than 
on understanding the content.
Innovative amateur: Focus on invention

Emphasis on making the code run. Highly creative practice with a strong emphasis on trial 
and error using new practices or procedures. While often successful in generating execut-
able code, there is often little understanding of what factors caused success, and the next effort 
might be less successful. Willing to try new things and apply a variety of methods to solve the 
problem, but may lack understanding of why those methods worked, as well as whether or not 
those methods are the most efficient or appropriate options.
Routine expert: Focus on automaticity

Emphasis on the computational solution. Follows familiar routines or best practices that have 
been identified as what works, with a strong emphasis on debugging, the efficiency of code, 
and getting the correct or expected answer. This style of expertise focuses on reducing the time 
and effort required to produce a computational solution or result. While this form of expertise 
works well in familiar settings, it is often not well suited to ill-structured problems or prob-
lems requiring significant variations to known solution methods. Often focuses on the proce-
dural understanding of how the solution produces results rather than on what those results 
mean to the solution and/or overall problem.
Adaptive expert: Focus on understanding

Emphasis on combining knowledge and skills. Highly able to connect disciplinary knowledge 
with computational problem-solving by engaging in computational practices. This form of 
expertise seeks balance between new and tested methods by allowing the flexibility to gener-
ate innovative solutions to problems while still identifying and incorporating elements of 
known solutions where that will increase efficiency. Adaptive expertise views knowledge as 
contextual, evolving, and requiring continual adjustment. Therefore, it relies upon and seeks a 
deeper understanding of the interactions between content knowledge and computational skill. 
Focuses both on the procedural understanding of the solution and on how results impact the 
interpretation of the solution, as well as future applications of the method.
Source: Adapted from Riel (2023) and Magana et al. (2019).

a process of “legitimate peripheral participation” (Lave and Wenger 1991) by situating 
themselves and understanding the practice first, then gradually become more experi-
enced by participating in applying their knowledge to practice in real-world contexts. 
These activities are often guided and/or monitored by the instructor or are structured in 
a way that reduces or removes the risk of professional practice (i.e., peripheral), but the 
learner is nevertheless participating in a “real” (i.e., legitimate) component of the trade 
or discipline while engaged with peers and superiors within their community of practice.
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Apprenticeships are often used in trades and other industries of skilled labor. In 
contrast, cognitive apprenticeships focus on the didactic methods traditionally used in 
academic disciplines such as biology or engineering. As discussed in chapter 2, these 
fields are often taught as a series of courses delivering a body of required background 
knowledge and testing students through the use of hypothetical or highly abstract 
pen-and-paper assessments. While pen-and-paper exams are still an effective method 
of assessing recall and conceptual application of content knowledge, the pedagogy sur-
rounding these assessments often neglects the development of other important skills, 
critical thinking lenses, and problem-solving strategies associated with the profession. 
In other words, traditional “lecture and exam” structures often fail to teach students how 
to think like a practitioner in their discipline.

Collins et al. (1989) proposed a framework for adapting the apprenticeship method 
to teaching cognitive skills within modern academic topics. Known simply as cogni-
tive apprenticeship, this framework has since been more formalized into a construc-
tivist pedagogical design tool for teaching complex topics both in STEM fields and 
in other areas of study. The cognitive apprenticeship framework breaks the design of 
a given learning environment into four key dimensions: content, method, sequencing, 
and sociology. Each of these dimensions — as well as their subcomponents — are briefly 
described in table 4.2.

Due to its historical roots, cognitive apprenticeship has been most influential in the 
laboratory or professional development contexts. The training and professional develop-
ment of allied health professionals and students often use principles of cognitive appren-
ticeship (Lyons et al. 2017). Similarly, cognitive apprenticeship principles are frequently 
used in the professional development of K–12 teachers (Davis, Parker, and Fogle 2019; 
Peters-Burton et al. 2015) and faculty (Merritt et al. 2018). Additionally, education re-
searchers have repeatedly used cognitive apprenticeship to understand undergraduate and 

TABLE 4.2 Cognitive apprenticeship components with descriptions

Component Description

Content The actual content, knowledge, and skills intended to be taught during the 
learner’s engagement with the course or curriculum. These are divided into 
domain knowledge, heuristics, control, and learning strategies.

Method The pedagogical approach, learning strategies, and teaching methods are used 
to promote the development of expertise. The methods dimension consists of 
six components: modeling, coaching, scaffolding, articulation, reflection, and 
exploration.

Sequencing How activities are ordered to best support learning. Activities can be ordered 
according to increasing complexity, increasing diversity, and shifting from 
global to local skills.

Sociology The social characteristics of the learning environment. This includes teaching 
through situated learning, establishing a community of practice, promoting a 
community of practice, and taking advantage of cooperation.

Source: Collins, Brown, and Holum (1991).
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graduate research training experiences (Feldon, Shukla, and Maher 2016; Gilmore et al. 
2015). The use of cognitive apprenticeship as an instructional approach in classroom settings 
has been more limited. Among the few available examples are cognitive apprenticeship– 
based instruction interventions in chemistry and physics (Amalia et al. 2018).

A COMPUTATIONAL COGNITIVE APPRENTICESHIP

With this apprenticeship framework in mind, we can begin to lay out our case for a new 
cognitive apprenticeship intended to build adaptive expertise in computation, model-
ing, and simulation. As elaborated in chapter 2 of this book, many of the principles dis-
cussed in the cognitive apprenticeship framework can clearly be applied when teach-
ing programming and other computational skills, such as data science (Sanchez-Peña, 
Vieira, and Magana 2022). However, the acquisition of computational adaptive expertise 
within the STEM disciplines in which they are now needed is a unique challenge that 
can be aided by the use of a new type of computation-oriented cognitive apprenticeship: 
a computational cognitive apprenticeship. The computational cognitive apprenticeship 
framework stems partly from recent research on incorporating computational methods 
into undergraduate science and engineering courses using the cognitive apprenticeship 
approach (Fennell et al. 2020). Such efforts have introduced students to meaningful 
computational practices through a series of large-scale, discipline-situated program-
ming projects. Here, we describe the unique aspects of applying cognitive apprentice-
ship to the computational realm and the supporting evidence derived from research.

Content
Design principle: Combine disciplinary domain knowledge with computation, mod-
eling, and simulation practices, techniques, and tools (Fennell et al. 2019; Magana, 
Ortega-Alvarez, et al. 2017; Ortega-Alvarez, Sanchez, and Magana 2018; Vieira et 
al. 2018).

This principle can be achieved by utilizing anchored instruction (CTGV 1990), con-
sisting of contextualizing the learning experiences within authentic tasks. Such authen-
tic tasks should occur in real-life contexts and establish meaningful associations between 
learning experiences and the knowledge, skills, and practices of a discipline (Choi and 
Hannafin 1995; Magana et al. 2016).

Traditionally, courses designed to teach computational thinking practices, typically 
within departments of computer science, have a strong focus on programming con-
cepts, principles, and procedures (Tew and Guzdial 2010). Many introductory comput-
ing courses that have been developed within engineering disciplines continue to teach 
much of this basic programming knowledge but expand the scope of their courses to 
include additional topics (e.g., Narayanan 2007; Stickel 2011). Many courses include 
computing applications in specific contexts, such as data visualization, data analysis 
techniques like linear regression, solutions of linear equations, and methods of solu-
tion of differential and partial differential equations (Morris et al. 1996). In other 
courses, the focus expands further to include linking mathematical modeling practices 
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to algorithmic representations in the form of simulations (Magana, Falk, and Reese 
2013). A few even touch on tool building in the form of the development of graphi-
cal user interfaces.

While expanding the range of computational learning objectives is imperative for 
STEM disciplines, this expansion runs significant risks. The most obvious risk is the lim-
itation posed by time constraints. Introducing additional disciplinarily focused learning 
objectives may cause the abandonment of others that are critical to the development of 
computational thinking (Magana and Coutinho 2017). Furthermore, literature in com-
puter science education has identified for a long time that learning to program is dif-
ficult (Lister et al. 2004; McCracken et al. 2001; Soloway and Spohrer 1989). Some of 
the difficulties learners experience include identifying (1) the purpose of the program-
ming task; (2) the general properties or functionality of the machine that one intends to 
control; (3) the syntax and semantics of the programming language; (4) structure, where 
the learner needs to deal with the difficulties of acquiring standard patterns or sche-
mas that can be implemented to attain small-scale goals; and (5) pragmatics, where the 
learner develops the skills to be able to specify, develop, test, and debug programs using 
whatever tools are available (Du Boulay 1986; Pea and Kurland 1983).

Our prior research also indicates that in addition to programming challenges, cer-
tain practices, particularly those that demand the integration of differing representa-
tions (i.e., physical, mathematical, and algorithmic such as occur in modeling and sim-
ulation), run significant risks of causing cognitive overload (Magana, Falk, and Reese, 
2013; Vieira, Roy, et al. 2016). Cognitive load happens when short-term memory is in-
sufficient to successfully undertake complex processes that interrelate multiple novel 
concepts. During our research performed in classroom settings, we have identified that 
programming preparation grounded in anchored instruction provided an important 
foundation beyond increasing students’ control self-beliefs (i.e., one’s appraisals of con-
trol over achievement activities and outcomes). This preparation seemed to effectively 
enable students to leverage computational practices for the purpose of acquiring dis-
ciplinary concepts (Magana et al. 2016). That is, although the students generally came 
into the course with a limited, novice-like ability to engage with computational tools 
and procedures, research on the outcomes of the course over multiple semesters showed 
that more intensive exposure to modeling and simulation methods tended to improve 
students’ self-efficacy beliefs about their ability to use computational tools and inter-
pret simulation data (Magana, Falk, and Reese 2013; Magana et al. 2016).

Method
Design principle: Provide scaffolding to students in the form of code snippets, test 
cases, and worked-out examples (Vieira et al. 2019; Vieira, Roy, et al. 2016; Vieira, Yan, 
and Magana 2015), and consider providing students agency to select the scaffolding 
they need (Vieira et al. 2020), or fade the scaffolding progressively (Fennell et al. 2019; 
Vieira et al. 2017; Vieira et al. 2019).

The method dimension is particularly broad in the context of computing education. In 
our own prior work (Magana, Falk, and Reese 2013), we considered a course developed 
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using the How People Learn (HPL) framework (Bransford, Brown, and Cocking 2000) 
that emphasized, among other dimensions, knowledge-centered and learner-centered 
instructional practices. In that course, a sequence was adopted in which in-class exer-
cises would proceed from students being presented with a working code to read and ex-
ecute. Next, students were provided with a code, but that code was either malfunction-
ing, incomplete, or required an extension. The final exercise involved developing a code 
to meet a specification that was at least conceptually related to the first two codes. The 
course was observed to result in high student self-assessments of knowledge of pro-
gramming, the utility of computation, and intention to continue pursuing computing 
opportunities in their studies and careers.

Based on our initial explorations of how we could provide instructional support to 
students, we then formalized a worked-out example approach that was deployed and 
evaluated as a means to mitigate the issue of cognitive overload discussed in the prior 
section (Vieira, Roy, et al. 2016, Vieira, Yan, and Magana 2015). In the most successful 
deployment, students were provided with access to step-by-step examples of sample 
solutions to programming problems. These solutions included conceptualization of the 
problem, algorithm development, and programming, resulting in a final working but 
uncommented code. In our work, we identified that a very effective strategy to engage 
students in understanding worked-out examples was having them write in-code com-
ments (Vieira et al. 2017). Students were required to comment on this code for the first 
four such examples as a strategy to self-explain them. These were graded. Subsequently, 
worked-out examples could be commented on for extra credit. Students reported such 
practices to be useful for their learning.

Sequencing
Design principle: Enact the problem-solving process as steps for guiding the modeling 
and simulation process (Fennell et al. 2017; Shaikh et al. 2015; Vieira, Magana, et al. 2016).

Sequencing plays a key role in structuring student learning by providing experiences 
that support the acquisition of knowledge and its deployment by embedding it within 
clear and, in some instances, familiar contexts and then gradually removing these con-
textual supports. In this way, sequencing can provide stepping stones toward increasing 
adaptive expertise by encouraging students to deploy their new knowledge in succes-
sively less structured and more unfamiliar contexts. For instance, scaffolding at a course 
level has been used as an approach in which current student learning of computation 
content is anchored or bridged by a generalization of what the student has already as-
similated from previous learning (Sticklen et al. 2004). Specifically, the course in ques-
tion built on familiar concepts by beginning with scalar operations and then moving to 
vector and array operations (Sticklen et al. 2004).

Another scaffolding technique is the use-modify-create approach (Malyn-Smith and 
Lee 2012; NRC 2011), which has been identified as a potential strategy to introduce 
computational practices to novice learners. These three phases guide students to a pro-
cess where they first inspect the code (use), then transition to changing the code to fit an 
intended action (modify), and finally generate a new model (create), having ownership 
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over its development (Lee et al. 2011). In a comparative study, Lytle et al. (2019) iden-
tified that the use-modify-create sequence provided students a natural learning evolu-
tion while giving them more ownership over the artifacts they created.

A different sequencing strategy was deployed in our own design-based research to 
help students structure their work on complex projects (Vieira, Roy, et al. 2016). During 
the initial problem recognition phase, the student works to understand the problem and 
create a plan to work toward a solution. The student uses verbal and mathematical rep-
resentations for this purpose. In the second phase, called problem framing, the student 
executes the plan to create a solution in the form of an algorithm instantiated as a pro-
gram. Finally, in the problem synthesis phase, the student completes the plan by evalu-
ating the solution according to both instructor-provided and student-generated crite-
ria. The implementation of test cases is one of the most challenging phases for students 
and one of the most valuable for those who go on to programming practice in any con-
text (Vieira et al. 2015).

Sociology
Design principle: Implement pedagogical approaches that promote collaboration 
within a context or culture of disciplinary practices (Lyon and Magana 2021).

This design principle goes hand in hand with the content principle, as sociology 
also emphasizes learning within the context of realistic tasks (CTGV 1990). Previous 
work that focuses on integrating the sociology component has primarily described the 
way programming content has been combined with engineering problem-solving (e.g., 
Azemi and Pauley 2006; Devens 1999; Hrynuk et al. 2008; Luchini, Colbry, and Punch 
2007; Morrell 2007; Morris et al. 1996). However, the sociology component is one of the 
least explored aspects of integrating computation in engineering education. As part of 
the content principle, we have elaborated on how we utilized anchored instruction as a 
sociology approach for integrating computation within disciplinary engineering prac-
tices (Magana et al. 2016). But more research is needed on how to properly orchestrate 
the sociology of learning inside and outside of the classroom.

In our classroom implementations, we have deployed a flipped-classroom design to 
free up class time for more hands-on and group learning activities, which were mon-
itored closely during class by the instructor and the TAs. This gave students extended 
periods of time (in and out of class) to complete each project, allowing plenty of time 
for students to seek help from the instructional staff when they get stuck and for them 
to work together with their peers throughout the problem-solving process.

Another well-known approach in computer science and electrical and computer en-
gineering that can effectively integrate the sociology aspect into programming assign-
ments is pair programming (Braught, Wahls, and Eby 2011; Fila and Loui 2014). This 
approach is usually implemented in dyads where two students work on the same com-
puter. One of the students takes the role of the driver and has the keyboard control to 
perform the programming, while the other takes the copilot role. The copilot thinks 
about the problem and shares some ideas without touching the keyboard. Students may 
alternate roles from time to time, usually every 5 to 10 minutes. This strategy would be 
worth exploring in engineering education.
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In our most recent work implementing modeling and simulation challenges within 
the context of a capstone course, we saw success in having students work within teams as 
they planned and evaluated their modeling solutions (Arigye, Udosen, et al. 2023; Lyon 
and Magana 2021). Having students work in teams or groups as they plan their model-
ing solution allows individuals to exchange different ideas and ways of solving a prob-
lem, something that is beneficial for students as they explore a new modeling problem 
(Diefes‐Dux, Hjalmarson, and Zawojewski 2013). Allowing students to compare their 
solutions with other students and teams as they evaluate their models enables them to 
see multiple ways of solving a problem. This experience gives students the opportunity 
to see how certain modeling solutions are better or worse, as well as different limitations 
and assumptions that can be made during the problem-solving process. Seeing multi-
ple ways of solving a modeling problem can aid students in future problem-solving en-
deavors (Kapur and Bielaczyc 2012).

NEw RESEARCH DIRECTIONS

Computational cognitive apprenticeship brings an understanding of the learning en-
vironment of the higher education classroom into the fold, adding much-needed ped-
agogical and sociological considerations to the study of computation in the context of 
STEM domains. This new framework of computational cognitive apprenticeship has im-
plications for and leads to new research directions in discipline-based education research 
generally (NASEM 2012) and the computational and data science education space spe-
cifically (NASEM 2018). First, specific cases of how to apply computational appren-
ticeship are needed within higher education contexts, along with a deeper understand-
ing of the impact this framework has in building these skills as students head into the 
workforce. Design-based research and action research are two methods in which these 
specific experiences and pedagogies can be investigated within the classroom (Barab 
and Squire 2004; Brydon-Miller, Greenwood, and Maguire 2003). Specifically, by doing 
practitioner research through design-based research, researchers can build pedagogy to 
answer national calls for computational and data science in the context of STEM do-
mains and study the application of and extend theory around the use of computational 
apprenticeship within the classroom. Figure 4.3 presents the stages of design-based re-
search and the outcomes and contributions derived from its implementation.

Design-based research is similar to engineering design as it starts by identifying a 
need. As shown in figure 4.3, design-based research starts with a learning need, as elab-
orated in chapter 1 of this book. We have made a case that students need to develop 
model-based reasoning to effectively engage in computation, modeling, and simulation 
practices in STEM. The left side of figure 4.3 depicts stages involved with the design of 
learning interventions grounded in evidence-based practices, as elaborated in chapter 
2 of this book. As researchers and practitioners engage in the design and implementa-
tion of learning interventions, new knowledge is created in the form of (1) new peda-
gogies or scaffolding methods, (2) design knowledge in the form of pedagogical princi-
ples, (3) useful artifacts such as computational tools and methods, and (4) exemplars of 
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practice including how materials and pedagogies are orchestrated and enacted in class-
room settings. In addition, design-based research allows researchers and practitioners 
to develop theoretical contributions as learning interventions are evaluated and inves-
tigated in classroom settings. The right side of figure 4.3 depicts the stages involved in 
researching the effects of learning interventions. As innovations are used in the class-
room or other educational settings, data is generated that can further provide insights 
into how students learn, how students interact with the technology, and artifacts and 
process data created in the process. To make meaning of this data, new research meth-
ods can be developed in the space of educational data mining and learning analytics. As 
data is analyzed and interpreted under specific conceptual, theoretical, or methodological 
frameworks, new knowledge can be derived, contributing to findings in discipline-based 
education research (Magana 2022). As shown in figure 4.3, iterative cycles are performed 
in order to refine the learning innovation and the theoretical contributions.

Research is also needed to investigate whether principles derived from computa-
tional cognitive apprenticeship can be applied to teaching and learning other compu-
tational thinking practices and result in computational adaptive expertise. Weintrop et 
al. (2016) identified a taxonomy for the use and application of computational thinking 
in the context of science and mathematics. Although originally proposed for K–12 ed-
ucation, this taxonomy can also be adopted and adapted for undergraduate STEM ed-
ucation. Figure 4.4 presents a modified version of the taxonomy. As shown in figure 4.4, 
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the taxonomy considers data practices, computational problem-solving practices, model-
ing and simulation practices, systems thinking practices, and intelligent machine design 
practices. Weintrop’s taxonomy considers only the first four of these practices (starting 
at the bottom of figure 4.4). However, due to the relevance of artificial intelligence (AI) 
in society, learning AI concepts and practices at the K–12 and undergraduate levels has 
become critical. To take steps toward introducing AI concepts in the curriculum, the 
Artificial Intelligence for K–12 Initiative (AI4K12 2020) identified five big ideas in AI. 
These five big ideas are guidelines that serve as a framework to assist curricular devel-
opers with AI concepts, essential knowledge, and skills. We have adopted and adapted 
elements of those ideas, incorporating them at the top of figure 4.4. The guidelines and 
lessons learned presented in this book have mainly focused on modeling and simula-
tion practices, with elements of computational problem-solving practices. But more 
classroom-based or naturalistic research is needed to further identify whether the same 
suggestions, guidelines, and design principles apply to all practices depicted in figure 4.4.

The development of adaptive expertise is dependent on a balance of innovation 
and efficiency during the learning process. While efficiency in specific skills can be 
built through rote practice and repetition, the integration of skills required to form 
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• Engineering of intelligent machines and programs (AI)
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    networks (DL)

• Investigating systems as a whole
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• Using computational models to characterize phenomena
• Constructing computational models
• Validating and verifying computational models
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• Creating computational abstractions
• Troubleshooting and debugging

• Collecting and creating data
• Curating and manipulating data
• Analyzing and visualizing data

FiGURE 4.4 A conceptual framework for characterizing computational thinking 
practices in STEM. (Adapted from Weintrop 2016.)
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capabilities occurs when learners are prompted to combine skills in new ways in order 
to solve unfamiliar or ill-structured problems. The computational cognitive apprentice-
ship framework is key in facilitating the development of computational adaptive exper-
tise, as it provides a safe, guided environment in which students may engage in compu-
tational innovation. This allows for the broadening and combination of individual skills 
as the learner moves through the apprenticeship toward an adaptive capability for com-
putational modeling and simulation. However, it is also possible that pedagogies with 
less scaffolding that delay instruction and feedback can be equally effective. Such ped-
agogies are aligned with productive failure approaches (Kapur 2010; Lyon and Magana 
2021; Schwartz et al. 2011). Productive failure approaches provide parameters to guide 
students to invent solutions before receiving formal instruction (Schwartz et al. 2011). 
Considering figure 4.2, it is possible that productive failure approaches can be equally 
effective as cognitive apprenticeship approaches but perhaps promote a learning tra-
jectory as path B (see figure 4.2). We have implemented productive failure approaches 
in our research, but more in the context of capstone courses (Lyon and Magana 2021, 
2019). This design decision was made based on the students’ level of disciplinary knowl-
edge. This population of students was in their last semester before graduating; thus, we 
deemed it feasible to implement a pedagogy with less scaffolding and guidance and 
more articulation and reflection ( Jaiswal et al. 2021). However, more research is needed 
in this direction to identify the trajectories students may follow toward adaptive exper-
tise and whether there is a variation in the level of innovation or efficiency depending 
on the pedagogical supports.

Additionally, the understanding of how to fairly measure and assess computational 
practices will need to continue to develop within research trajectories. One major lim-
itation of empirical studies so far within the literature has been the difficulty of mea-
suring and assessing computational thinking, which is highly interconnected with com-
putational modeling and simulation (Lyon and Magana 2020; Magana and Coutinho 
2017). While some taxonomies of computational thinking exist (Malyn-Smith and Lee 
2012; Weintrop et al. 2016), as well as computational thinking knowledge tests that fo-
cus heavily on programming knowledge (Caceffo et al. 2016; Tang et al. 2020), contin-
ued work on assessing these skills is needed to understand the effectiveness of the com-
putational apprenticeship framework.

Longitudinal studies on the effects of implementing computational cognitive appren-
ticeship pedagogy over the course of multiple years are needed to understand the cu-
mulative effects of these experiences on student outcomes. Forms of curricular models 
such as spiral curricula are reported as being useful for integrating skills such as com-
putational modeling and simulation into the classroom (Magana and Silva Coutinho 
2017). More work is needed to identify the evolution of pedagogical practices as stu-
dents develop their skills. We have made an argument that productive failure approaches 
could be more suitable for advanced students, while cognitive apprenticeship approaches 
could be more suitable for novice learners. However, research is needed to identify the 
transition from heavily supported scaffolding and fading approaches to removing sup-
port (Noroozi et al. 2018). For instance, figure 4.5 proposes a progression for providing 
support at the beginning of the learning process and gradually removing supports by 
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eliciting articulation from students and by providing more autonomy in the learning 
process. This progression aligns with the instructional strategies proposed by Collins et 
al. (1991): modeling, coaching, scaffolding, articulation, reflection, and exploration. In 
the case of the progression proposed in figure 4.5, students are guided by (1) providing 
worked-out examples that explicitly connect disciplinary concepts with variables and 
behaviors of the computational model; (2) providing incomplete programming tasks 
for students to complete a model or to program simple models; (3) eliciting students to 
make their thinking explicit by writing in-code comments of their code or that of oth-
ers, and making explicit connections between the disciplinary concepts and the com-
putational solution; and (4) removing all supports, providing students autonomy in 
creating their own computational solutions, and providing additional practice and op-
portunities to reflect. This progression needs to be validated through classroom research.

Furthermore, different types of scaffolding methods can be used to better support 
students in the development of the cognitive and metacognitive skills needed to de-
velop computational adaptive expertise. Specifically, Quintana et al. (2004) proposed 
a scaffolding framework consisting of four different methods, as shown in figure 4.6:

Sensemaking scaffolding: Helping students relate to and transform different rep-
resentations.

Articulation scaffolding: Guiding students in integrating their prior knowledge with 
new knowledge and making this connection explicit.

Process management scaffolding: Providing explicit guidance to enact disciplinary 
practices and problem-solving strategies used by experts.

Reflection scaffolding: Leading to students improving their skills and processes 
through personal reflection on their lived experiences.

Introducing and 
modeling

Approximating and 
sca�olding

Meaning-making 
and fading

Autonomizing and 
generalizing

Demonstrate 
how to perform 
a task and have 
students 
observe.

Provide a 
step-by-step 
detailed 
worked-out 
example.

Engage the 
student with the 
worked-out 
example.

Provide practice 
opportunities 
via a simple task 
to complete.

Provide a tem-
plate of code, 
an incomplete 
example, or an 
example to 
expand.

Encourage 
students to 
make their 
knowledge and 
thinking explicit.

Ask students to 
explain their 
thinking by 
adding in-code 
comments to 
their code, write 
explanations of 
output, or write 
a reflection.

Promote valida-
tion and 
verification 
practices.

Decrease or 
remove support 
in subsequent 
practice.

Let the learner 
operate 
autonomously 
to generate new 
knowledge and 
communicate it 
through 
computational 
narratives 
describing the 
modeling and 
simulation 
cycle.

FiGURE 4.5 A progression from increasing to fading scaffolding in computation.
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The pedagogical methods evaluated through research presented in this book (e.g., fig-
ure 4.5) have primarily aligned with sensemaking scaffolding (e.g., worked-out examples 
and code snippets). However, there are articulation scaffolding methods, such as elic-
iting students’ explanations of their thinking in the form of arguments. Arguments are 
scientific explanations that help students connect claims, evidence, and reasoning. An 
argumentation framework can be used to guide students and help them connect claims 
by making predictions before executing a computational model, connect evidence by 
making explicit observations on the graphs and plots derived from the model execu-
tion, and connect reasoning back to disciplinary knowledge (McNeill and Krajcik 2008). 
Process management scaffolding could include project or laboratory templates that guide 
students through the problem-based learning cycle, the inquiry cycle, or the modeling 
and simulation cycle. Many of the stages of these cycles are often assumed. For exam-
ple, the planning stage is sometimes overlooked by faculty. In chapter 2, we made an ar-
gument about the relevance of process and product learning outcomes. With guidance 
through process stages, students could also develop metacognitive skills required in the 
enactment of computation, modeling, and simulation practices, such as model valida-
tion and verification. Finally, reflection scaffolding could also help reinforce the devel-
opment of metacognitive knowledge by guiding learners through personal reflection on 
their learning and learning processes and enacted collaborative learning and team pro-
cesses. Reflective practices could also elicit students to think about strategies to change 
in future iterations or implementations. For instance, students could reflect upon strat-
egies to improve troubleshooting or team coordination processes.

Our work has focused on understanding how computational cognitive apprentice-
ship can be used in a specific class or instructional unit. However, investigation of how 
computational adaptive expertise develops and plays out over an entire undergraduate 
curriculum is needed to fully understand the impact of the proposed computational 
cognitive apprenticeship. The scope should not be limited to undergraduate years, as 
these highly needed professional skills require studying in professional and continu-
ing education contexts. Thus, there is a need to understand how these skills develop all 

Sensemaking Articulation
Process

management Reflection

Supports ways to 
understand real-
world phenomena 
or experiences and 
transform those 
into formal repre-
sentations. 

Supports ways of 
making thinking 
explicit, synthesiz-
ing explanations, 
and creating argu-
ments.

Supports the use of 
disciplinary practi-
ces, problem-
solving, and strate-
gic approaches.

Supports the re-
viewing, reflecting 
on, and evaluating 
results, including 
elements of collab-
oration.

FiGURE 4.6 Scaffolding methods to support cognitive and metacognitive processes.
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the way through the undergraduate years and even into graduate coursework and pro-
fessional years.

Using cognitive apprenticeship within computing courses has also been shown to sig-
nificantly lower dropout rates (Vihavainen, Paksula, and Luukkainen 2011). The compu-
tational apprenticeship framework offers a constructivist perspective on understanding 
and addressing these issues. For example, several studies have demonstrated that scaf-
folding computing instruction within authentic problem-solving contexts can support 
underrepresented groups’ interests and academic achievement in computing (Goode and 
Margolis 2011; Kafai et al. 2014; Yardi and Bruckman 2007). More research is needed to 
investigate the effectiveness of these methods among students with diverse backgrounds.

In addition, the social coding movement continues to produce platforms such as in-
teractive computational documents or notebooks that permit integrating multi media re-
sources (e.g., equations, text, visualizations) with code (Klever 2020). Markdown, Azure, 
Data bricks, Google Collaboratory, MATLAB Live, and Jupyter are some of the most 
widely adopted (Chattopadhyay et al. 2020). Computational documents permit author-
ing and executing code within a single document launched through a web browser, which 
can lower initial barriers to programming. This environment is suitable for novice pro-
grammers as they can program without dealing with the installation of compilers or in-
tegrated development environments (Lucas Lacal 2020). These platforms can facilitate 
the use of scaffolding approaches such as fill-in-the-blank and use-modify-create (Lee 
et al. 2011) that integrate sequencing into computational lessons. Additionally, the ability 
to comment and embed rich text can help to make observable the heuristics and other 
metacognitive processes employed by experts during computational problem-solving 
processes. Furthermore, computational documents can provide students with oppor-
tunities to share work, keep track of details, and collaborate in the process (Wang et al. 
2019), thus enabling the sociology of learning. Because of such affordances, it is not sur-
prising that interactive documents have now been adopted in educational environments 
(O’Hara, Blank, and Marshall 2015). In our more recent work (i.e., Arigye, Magana, et 
al. 2023), we have successfully used computational notebooks to deploy all elements of 
the computational cognitive apprenticeship, where students were guided through sen-
semaking, articulation, process management, and reflection scaffolding.





CONCLUSiON

THE NEED FOR COMPUTATiON iS SPREADiNG ACROSS STEM DiSCiPLiNES. iN LiGHT 

of this, computational adaptive experts has never been more necessary within all dis-
ciplines and in every industry sector. The pairing of adaptive expertise models with a 
cognitive apprenticeship within computational disciplines, a framework we have pro-
posed as computational cognitive apprenticeship, may be best suited to address this grow-
ing challenge. Through the use of authentic disciplinary experiences to advance stu-
dents from routine experts or frustrated novices to adaptive experts, a computational 
cognitive apprenticeship can meet the increasing demands for computational thinking– 
enabled professionals.

The goal of the computational apprenticeship model is to help learners turn the skills 
acquired during training into broader capabilities in future practice while they are still 
in training. Teaching through the apprenticeship model helps prepare students to ad-
dress unfamiliar problems in the field by making the thinking and experience of experts 
in the discipline visible throughout the learning process. This paves the way for adaptive 
expertise, as practitioners who are well-prepared to apply computation in the field by 
thinking like an expert will be better able to address unfamiliar problems as they arise. 
While a skilled practitioner may be able to address common problems quickly and effi-
ciently, a capable practitioner can apply known skills efficiently and develop new skills 
as needed. The computational apprenticeship framework builds capability rather than 
just skills by providing the learner with a discipline-situated environment that reflects 
the knowledge structures and hands-on experience needed to turn knowledge and skills 
into flexible capabilities.

The computational cognitive apprenticeship framework helps develop more adap-
tive expert capabilities by facilitating carefully guided learning of practical and trans-
ferable skills. The generalization of specific computational thinking skills into a holis-
tic set of core computational capabilities prepares the learner to address new problems 
in practice. The computational apprenticeship framework helps students to gradually 
expand the integration (and therefore usefulness) of their skill sets over time. This en-
ables them to address more and more complex and varied problems, until they are pre-
pared to set off on their own in the workforce or academia.

Many areas need further exploration in order to formalize and operationalize this 
framework in educational settings. These explorations can be accomplished mainly 
through the use of design-based and longitudinal research settings. Additionally, knowl-
edge of how to measure and assess computational modeling and simulation practices is 
required for us to progress in our understanding of how to build the transfer needed to 
create computational adaptive experts. But once implemented, these authentic learning 
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experiences provide the opportunity to increase the knowledge and abilities of those in 
the current pipelines of computational fields and increase and broaden the participa-
tion of those entering the pipelines to begin with.



APPENDix A
Sample Project and Solution for 

Designing for Novice Learners

PROJECT DESCRIPTION

introduction
The most common cause of cardiac arrest is a heart rhythm disorder or arrhyth-
mia called ventricular fibrillation (VF). The heart has a built-in electrical system. 
In a healthy heart, a “pacemaker” triggers the heartbeat, then electrical impulses 
run along pathways in the heart, causing it to contract in a regular, rhythmic way. 
When a contraction happens, blood is pumped. But in ventricular fibrillation, the 
electrical signals that control the pumping of the heart suddenly become rapid and 
chaotic. As a result, the lower chambers of the heart, the ventricles, begin to quiver 
(fibrillate) instead of contract, and they can no longer pump blood from the heart 
to the rest of the body. If blood cannot flow to the brain, it becomes starved of ox-
ygen, and the person loses consciousness in seconds. Unless an emergency shock 
is delivered to the heart to restore its regular rhythm using a machine called a de-
fibrillator, death can occur within minutes. It’s estimated that more than 70% of 
ventricular fibrillation victims die before reaching the hospital.

 — Heart Rhythm Society (https://www.hrsonline.org/)

This week you will be writing a computer program that will simulate the passage of an 
electrical pulse through the heart muscle. The model we will use is extremely oversim-
plified (e.g., Ottesen, Olufsen, and Larsen 2006), but it has the ability to model a phe-
nomenon that is suspected to lie at the heart of one of the most common causes of car-
diac arrest: ventricular fibrillation. This is the state where the contraction of the muscle 
becomes disorganized and is no longer able to adequately pump blood. This condition 
is familiar to anyone who watches medical dramas on television. When this happens 
on Gray’s Anatomy or ER, someone grabs “the cart,” yells “Clear!” and gives the per-
son who just passed out a jolt of electricity in an effort to reestablish a normal cardiac 
rhythm. Unfortunately, in real life, 85% of those who go into ventricular fibrillation will 
not be able to get help in time to save their life. Devising minimally invasive and effec-
tive techniques to reverse ventricular fibrillation is therefore an important medical issue.

HTTPS://WWW.HRSONLINE.ORG/
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Modeling Heart Tissue
We will keep track of two aspects of the heart tissue: the local potential, which we will 
call U, and the depletion of the tissue, V. We will define V as follows: when it is zero, 
the tissue is most excitable, and when it increases, the tissue has used up all its local abil-
ity to create a potential. While tissue remains at a high potential, it gradually becomes 
more depleted. But when the tissue is not at high potential, its depletion reduces and 
it becomes more excitable. To model this, we say that the rate of depletion is propor-
tional to U − V. That is to say, the degree of depletion goes up as U goes up, but it will 
go down if U is less than V.

We can model this process by considering how much the tissue is depleted at time 
t + Δt if we know the depletion in the tissue at time t, and the potential at time t:

V(t + Δt) = V(t) + Δt (U(t) − V(t)) = (1 − Δt) V( t ) + Δt U( t ) (0.1)

Here Δt is the step in time we are making at each tick of our clock. For our pur-
poses Δt = 0.0494. So, if we know U and V at any time, we can predict V at a later time.

The behavior of the potential is more complex. In fact, there are three cases we will 
consider. To discern these cases, we must define a critical value of U that we will call 
U*. U* is the value of U above which the electrical potential has to get to excite the tis-
sue. U* depends on the level of depletion in the region of tissue. We define U* to be

U*(t) = (V(t) + 0.01) / 0.3 (0.2)

Case 1: U < 0.0001

In this case, the system is unexcited, and we can just assume U = 0 and will stay 0.
Note in this case

Uexcite(t + Δt) = 0 (1.1)

V(t + Δt) = (1 − Δt) V(t) (1.2)

Case 2: 0.0001 < U < U*

In this case, the system is not yet above the excitement threshold. In this case

 (2.1)

V(t + Δt) = (1 − Δt) V(t) + Δt U(t) (2.2)

Uexcite(t + Δt) =
U(t)

1 − 10,000Δt[1 − U(t)][U(t) − U*(t)]
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Case 3: U > U*

In this case, the tissue has been excited

 (3.1)

V(t + Δt) = (1 − Δt) V( t ) + Δt U( t ) (3.2)

Diffusion of the Electrical Potential
When the electrical potential is excited, it doesn’t stay in one place. It spreads out. As 
a result, the potential tends to even out over time. Areas of particularly high potential 
tend to decrease. Areas of low potential next to regions of high potential increase. This 
process is called diffusion.

Consider the concentration as being defined on a square grid with rows r and col-
umns c (as shown in figure A.1). To figure out if the potential in a location (r,c) goes up 
or down, we have to compare it to the average concentration in the neighboring boxes. 
The way we can simulate this numerically is to define the average concentration in the 
boxes adjacent to (r,c) at time t to be

UAVG(r, c, t) = [U(r − 1, c, t) + U(r + 1, c, t) + U(r, c − 1, t) + U(r, c + 1, t)] / 4  (4.1)

Then the change in U at time t would be

U(r, c, t + Δt) = Uexcite(r, c, t + Δt) + Δt D (UAVG(r, c, t) − U(r, c, t))  (4.2)

So, if the average potential in the surrounding boxes is higher than U, then UAVG > U 
and U will increase. If the surrounding boxes are, on average, lower in potential than U, 
then U will decrease. D gives the rate at which this process occurs. We will use a value 
of D = 4.1. Note that this change is in addition to and simultaneous with any changes 
to U from equations 1.1, 2.1, or 3.1 above. So, for example, when simulating a cell that 
fits Case 2, you would then have

 (4.3)

The other consideration we must worry about is what happens along the edge of our 
piece of heart tissue. Since there are no neighboring boxes along the edge, the above 
procedure is not well-defined for boxes along the boundary. What you will do is com-
pute the new concentrations everywhere on the grid and then set the edge boxes to be 
equal in concentration to the neighboring boxes just inside the edge (as shown in fig-
ure A.2). This ensures that the profiles are flat at the boundary.

Uexcite(t + Δt) =
U(t){1 + 10,000Δt[U(t) − U*(t)]}
1 + 10,000Δt U(t)[U(t) − U*(t)]

U(r, c, t + Δt) =
U(r, c, t)

+ Δt D [UAVG(r, c, t) − U(r, c, t)]
1 − 10,000[1 − U(r, c, t)][U(r, c, t) − U*(r, c, t)]
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64FiGURE A.1 An 8 × 8 matrix labeled sequentially row 
by row, illustrating the initial data in the 64 cells.

10 10 11 12 13 14 15 15

10 10 11 12 13 14 15 15

18 18 19 20 21 22 23 23

26 26 27 28 29 30 31 31

34 34 35 36 37 38 39 39

42 42 43 44 45 46 47 47

50 50 51 52 53 54 55 55

50 50 51 52 53 54 55 55

FiGURE A.2 The same matrix as shown in figure A.1, 
but where the data in the outermost rows and columns 
has been replaced by the data in the next-innermost 
cell to impose an outgoing-wave boundary condition.

The diagrams in figures A.1 and A.2 represent the originally calculated concentra-
tion. The black squares are not calculated properly because they have no neighbors. In 
the grid to the right, they are replaced by the values from neighboring cells.

Code Structure
Write a program that will simulate the above process. It should contain the following 
procedures:

function U = StimTissue(U, r, c)
% Takes an N × N array and stimulates a circular region with radius N / 8
% centered at row r and column c by setting the values of U in that
% region to 0.8.
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function [U, V] = InitTissue(N)
% This function will create an initial condition where U and V are
% N × N arrays that are zero everywhere except for a circle of radius
% N / 8 centered at row (N + 1) / 2 and col (N + 1) / 2, which should have U = 0.8.
% Use the StimTissue procedure defined above.

function [newU, newV] = StepTissue(U, V, D, dt)
% This procedure will advance the clock on U and V by one time step.

function SimTissue(N, T, stime, ptime, D, dt)
% Simulates a tissue that is represented by two N × N arrays. The
% simulation lasts T time steps. It is initially set up with a
% stimulus at the center using InitTissue. Every stime steps a randomly
% located region of radius N / 8 is electrically stimulated. The values
% in U should be plotted as a pcolor plot every ptime steps.

function TestTissue(N, T, stime, r, c, ptime, D, dt)
% Simulates a tissue that is represented by two N × N arrays. The
% simulation lasts T time steps. It is initially set up with a
% stimulus at the center using InitTissue. Once, after stime steps,
% a region centered on row r and column c of radius N / 8 is
% stimulated. The values in U should be plotted as a pcolor plot
% every ptime steps.

Hints

1. There is a built-in function called del2 that may be helpful.
2. It is important to note that once a pcolor plot happens in an axis, any button click 

will be captured by the surface object returned by the pcolor plot, not by the axis.

Part i: Planning
You are required to plan your approach to this project and submit this plan by Friday 
at 6:00 p.m. To give you an idea of what we are looking for, an example plan for a ge-
neric coding problem is provided on the Blackboard website. The purpose of submitting 
your plan is for you to take the time to think through the different parts of the project 
so that you have a roadmap for your work. Note that there are four parts of the work 
that should be addressed in your plan:

Designing: What is the design for the solution? What are the critical parts of the 
problem? What are the inputs and outputs? If there is graphical output, what 
will this output look like? How will parts of your solution utilize or connect 
to other parts?

Coding: What control structures, iteration techniques, built-in functions, or other 
programming techniques will you need to use? Diagram flow charts of some 
of your subroutines.
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Testing: What are some example cases you would want to test to make sure the 
subroutines work along the way? What are some example cases you could think 
of to test the final program?

Debugging: How will you check for bugs, particularly those that do not result in 
syntax errors? Are there parts that you anticipate will create problems due to 
their complexity? Could these be broken down into simpler pieces that could 
be debugged separately?

Make sure your pan references the project description and identifies the most rele-
vant aspects of the project. Your plan will be judged according to how well thought out 
it is. We will try to provide feedback on this plan by Sunday.

To communicate your plan, feel free to use regular paper, a whiteboard, sticky notes, 
or any medium of choice. Submit these by saving them as pdfs using a scanner or an app 
like iScanner, Turbo Scan, Tiny Scan for iPhone, or similar to produce a good quality 
and reasonably sized single pdf file that you can submit via Blackboard. You may work 
in a team on this plan as long as you include all team members’ names on the submis-
sion. All other parts of the assignment must be done on your own.

Part ii: Coding and Testing
The programming part of your assignment should be contained in five files called 
StimTissue.m, InitTissue.m, StepTissue.m, SimTissue.m, and TestTissue.m. In 
addition, you should submit a pdf that shows the results from running your code on 
the provided test cases and three additional test cases of your own design. Make sure 
to document why you chose these test cases and what output you expect.

Part iii: Application
Once you have completed your coding and testing, use your code to answer the fol-
lowing questions in a separate pdf file. Include at least two images that illustrate your 
points. To explore these, make sure your simulation size is at least N = 160. You will need 
to simulate times of approximately 100 steps or more to make adequate observations.

1. What happens when you stimulate the tissue only once at the beginning and 
not at subsequent times? Describe. Would this represent normal or abnormal 
heart function? (5 points)

2. Under what conditions do self-sustaining excitations occur in the cardiac tis-
sue? What do these look like? Describe a controlled numerical experiment with 
only two stimulations of the tissue that can trigger this abnormal behavior. Give 
the timing and the location of the second stimulation with respect to the first.
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PROJECT SOLUTION

i. Solution for the Modeling of Heart Tissue

function U = StimTissue(U, r, c)
%% this procedure will stimulate the field U at a location (r,c) in a
%% circular region of radius N/8

N = length(U);    %% find N
[cols, rows] = meshgrid(1:N,1:N); %% specify stimulated region
where = (rows-r).^2+(cols-c).^2 < (N/8)^2;
U(where)=0.8;    %% set stimulated region

end

function [U, V] = InitTissue(N)
%% this procedure will initialize two N × N matrices called U and V
%% V will be zeroed everywhere
%% U will have a stimulated region in the center

U=zeros(N);
V=zeros(N);
U=StimTissue(U,(N+1)/2,(N+1)/2);

end

function [newU, newV] = StepTissue(U, V, D, dt)
%% this procedure will advance the clock on U and V by one time step

newU=U; %% initialize matrices for the values at the future time
newV=V; %% compute a value used to discriminate different regions
UminusUstar = U - ( V + 0.01 ) / 0.3;
%% calculate logical masks for regions depending on U value
case1 = U<0.0001;
case2 = UminusUstar<0;
%% calculate the new U value differently depending on the region
newU(case1)=0;
newU(~case1 & case2) = U(~case1 & case2)./...

(1-10000*dt.*(1-U(~case1 & case2)).*UminusUstar(~case1 & 
case2));
newU(~case2) = U(~case2).*(1+10000*dt.*UminusUstar(~case2))./...

(1+10000*dt.*U(~case2).*UminusUstar(~case2));
%% include the effect of diffusion
newU = newU + D*dt*del2(U);
%% calculate the new V value differently depending on the region
newV(case1) = (1-dt).*V(case1);
newV(~case1) = (1-dt).*V(~case1) + dt*U(~case1);
%% enforce boundary conditions by calling the sub-function boundary()
newU=boundary(newU);
newV=boundary(newV);
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function X = boundary(X)
%% This subfunction enforces zero gradient at the boundary

X(:,1) = X(:,2);
X(:,end) = X(:,end-1);
X(1,:) = X(2,:);
X(end,:) = X(end-1,:);

function SimTissue(N, T, stime, ptime, D, dt)
%% this procedure simulates T time steps on an N × N region of tissue
%% every stime steps the tissue will be stimulated at a random location
%% every ptime steps the figure will be updated
%% D sets the diffusion rate and dt sets the time step

[U,V]=InitTissue(N);
for t=1:T

[U,V]=StepTissue(U,V,D,dt);
if mod(t,stime)==0

U=StimTissue(U,ceil(rand(1)*N),ceil(rand(1)*N));
end
if mod(t,ptime)==0

figure(1);
pcolor(U);
caxis([0 1]);
colormap copper
shading interp
drawnow;

end
end

function TestTissue(N, T, stime, r, c, ptime, D, dt)
%% this procedure simulates T time steps on an N × N region of tissue
%% once, at stime steps the tissue will be stimulated at (r,c)
%% every ptime steps the figure will be updated
%% D sets the diffusion rate and dt sets the time step

[U,V]=InitTissue(N);
for t=1:T

[U,V]=StepTissue(U,V,D,dt);
if t==stime

U=StimTissue(U,r,c);
end
if mod(t,ptime)==0

figure(1);
pcolor(U);
caxis([0 1]);
colormap copper
shading interp
drawnow;

end
end
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ii. interpretation of the Results
Figure A.3 shows what happens under normal heart conditions. The wave begins at the 
center and runs to the edges and the excitation ends. Figure A.4 shows what happens 
when we have induced fibrillation by having a second shock shortly after the initial 
excitation. The image was obtained by shocking a 160 × 160 system a second time 90 
steps after the initial excitation at a location slightly off-center (80,90). The secondary 
shock causes the development of spiral waves that continue to self-generate indefinitely.

FiGURE A.3 The propagation of a wave as a circular front in the simulated 
heart tissue. This represents a simulation of normal heart function where waves 
move regularly through the tissue in a way that terminates after the tissue is 
fully stimulated.

FiGURE A.4 The propagation of a wave interrupted by a second shock induc-
ing fibrillation. Fibrillation is characterized by a spiral wave pattern that never 
ceases as the spiral continues to trigger a response in the tissue.
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ASSESSMENT RUBRICS

TABLE A.1 Assessment rubric to evaluate students’ strategies before getting into the solution

Criterion Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

PLANNING/PROGRAM 
DESIGN

Evaluates the student’s plan 
for completing the project.

Student Instructions

Summarize the nature of 
the algorithm briefly, iden-
tifying the most relevant 
information from the proj-
ect description.

Articulate a 
well-thought-out strategy 
for designing, coding, test-
ing, and debugging your 
work. (10%)

No strategy is 
articulated for 
the design, 
coding, test-
ing, or 
debugging.

The strategy 
provided consid-
ers two or fewer of 
the defined areas 
(designing, coding, 
testing, debugging).

The strategy is 
poorly articulated 
and does not repre-
sent a coherent 
plan.

The strategy articu-
lated is generic and 
does not address 
the specifics of the 
project.

The strategy includes 
all but one of 
the defined areas 
(designing, coding, 
testing, debugging).

The nature of the 
algorithm is not 
summarized, or the 
summary does not 
reference aspects 
of the project 
description.

The description of the 
strategy is unclear or 
misguided in one or 
more aspects.

All four areas 
(designing, coding, 
testing, debugging) 
are addressed clearly 
in the context of the 
project.

The summary refer-
ences the proj-
ect description 
and identifies rele-
vant aspects of the 
project.

The strategy is artic-
ulated clearly and 
is logical and well 
thought out.



TABLE A.2 Assessment rubric to evaluate students’ solutions in terms of product and process

Criterion Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

PROGRAM EXECUTION

Evaluates the extent 
to which the program 
functions in a way 
that conforms to 
specifications.

Does the program 
execute?

Is the input and output 
of the expected form? 
(25%)

The program does 
not run at all.

The program 
contains two 
or more easily 
correctable syntax 
errors that impede 
execution.

Program input or 
output is not as 
described in the 
specifications of 
the project.

The program is free 
of syntax errors that 
impede execution.

Program takes the 
expected input param-
eters and returns the 
expected output as 
required in the spec-
ification except in 
minor respects.

The program is free 
of syntax errors that 
impede execution.

Program takes 
the expected 
input parameters 
and returns the 
expected output 
as required in the 
specification in all 
respects.

SPECIFICATION 
SATISFACTION

Evaluates the degree 
to which the solu-
tion satisfies the 
specification.

Is the solution accurate 
and robust?

Does it conform to the 
problem specifica-
tions regarding format, 
order, and presenta-
tion? (25%)

The solution 
produces wholly 
incorrect output 
under all of the 
tests run.

The solution 
produces incor-
rect output under 
a number of the 
tests.

Output is correct, 
but does not meet 
specifications 
in one or more 
respects.

The solution produces 
incorrect output in 
particular cases.

Output always meets 
specifications regard-
ing format, order and 
presentation when 
correct.

The solution 
produces correct 
output in all cases 
with only minor 
exceptions.

All output 
meets specifica-
tions regarding 
format, order, and 
presentation.

CODING STYLE

Measures the extent 
to which the code is 
presented in a manner 
that is clearly readable 
by others.

Is the code indented 
and commented, and 
are variable and func-
tion names chosen to 
enhance readability?

Does the code appro-
priately deploy 
language capabilities 
to avoid redundant 
structures, global vari-
ables, and unnecessar-
ily lengthy blocks of 
code? (10%)

Code is entirely 
uncommented.

Global variables 
are used without 
justification due 
to exceptional 
circumstances.

Code is not 
differentiated 
into functions 
or m-files (i.e., 
spaghetti code).

Code is poorly 
commented.

Code is not prop-
erly indented.

Variable and func-
tion names are 
chosen without 
consideration.

Code is unnec-
essarily complex 
due to the 
underuse of func-
tions, control 
constructs, or 
other language 
capabilities.

Code is adequately 
commented.

Code is properly 
indented, and variable 
and function names 
are well chosen.

Code could be made 
more readable in one 
or more ways by addi-
tional commenting 
or by more logi-
cally organizing its 
structure.

Code is well 
commented.

Code is properly 
indented, and vari-
able and func-
tion names are well 
chosen.

Code is well 
structured.

Continued



APPENDIX A80

TABLE A.2 Assessment rubric to evaluate students’ solutions in terms of product and process

Criterion Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

VALIDATION OF THE 
SOLUTION

Establishes whether 
the proposed solu-
tion satisfies the prob-
lem’s requirements 
and produces correct 
output for a range of 
test cases.

Students are expected 
to run provided test 
cases and compare 
them to provide 
output, as well as 
propose at least three 
additional well-chosen 
test cases for the 
purpose of validation. 
(10%)

No evidence of 
validation.

or
Only provided 
test cases are run.

or
Test cases are run, 
but the output 
is not discussed 
regarding its 
implications for 
validation.

All provided test 
cases are run, 
and output is 
provided.

At least one test 
case is proposed.

Comparisons are 
made between 
program output 
and student test 
cases, and some 
discussion is 
provided.

All provided test cases 
are run, and valid 
output is provided.

Three test cases are 
proposed, but they 
are perhaps not 
well-chosen to test 
a range of indepen-
dent solutions, or 
the answers are not 
well-justified.

Comparisons are made 
to the student test 
cases, and these are 
discussed adequately.

All provided test 
cases are run, and 
valid output is 
provided.

Three well-chosen 
and indepen-
dent test cases are 
proposed, and the 
anticipated output 
is well-justified.

Comparisons are 
made to the student 
test cases, and these 
are passed.

DEPLOYMENT OF 
DISCIPLINARY 
CONCEPTS

Evaluates whether the 
student can use the 
solution to approach a 
disciplinary problem.

Can the student use 
their code to address 
the disciplinary issue 
or to solve a related 
problem? (20%)

No solution 
provided.

A solution is 
provided, but it is 
incorrect or does 
not adequately 
address the issue 
or problem.

A solution is provided 
that would adequately 
address the issue or 
problem, but it is 
presented in a way 
that is unclear or 
improperly docu-
mented (e.g., graphs 
without axes, no writ-
ten description when 
requested).

A solution is 
provided that is 
correct, clear, and 
well documented.

Continued
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* Parts of this appendix are republished with permission from Lyon, Joseph A., and Alejandra J. 
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Sample Project and Solution for 
Designing for Capstone Courses

Sections of this appendix and supporting documentation have been previously reported 
in Lyon and Magana (2021)* and Lyon, Magana, and Streveler (2022).

PROJECT DESCRIPTION

introduction
You are a team of new project engineers at FOODSCorp. Your engineering team re-
ceived the following email (figure B.1) regarding a new job your company, FOODSCorp, 
has been contracted to do. Your engineering team has been given the following infor-
mation (figures B.1, B.2, and B.3).

mailto:permissions@wiley.com
http://www.copyright.com
http://www.copyright.com
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-----Original Message-----

From: Jennifer Gonzalez [mailto: jgonzalez@lyoncorp.com ]

Sent: Tuesday, March 10, 2017 7:00 AM

To: Purdue Engineering Team

Subject: Sterilization Line Malfunction

Hey FOODSCorp team,

We know we have done work with you before and are confident we will get great results 
again. Last night one of our heaters before the filler went out for our canning sterilization line. 
The manufacturer of the filler is unfortunately in Germany and this is a specialty part, so we 
don’t expect to get the new heating element for a couple of months. In addition, we reached 
out to general machining; however, they, too, cannot generate the new heating element. The 
line is working about 10k an hour and runs four different products, so anything we can do to 
get it running again the company is willing to try.

Our hope is within the next two weeks to get the line back up and running by adjusting 
processing parameters. However, we do not have the capabilities in-house to model the 
process using MATLAB software. The heating element was originally able to heat the food 
material prior to canning to 200°F, but the replacement part we found can only achieve a 
filling temperature of 180°F currently. After the food is canned, it is heated to commercial 
sterilization and then cooled with water. Our micro team has asked per company policy that 
we achieve a 12–15 log reduction in microbial load prior to production. Our quality team has 
asked that we maximize our vitamin B1 and vitamin C intact in all products.

I’ve attached a document overviewing the properties of the food materials as well as a 
blueprint overviewing our production process. Please deliver us an appropriate computational 
model via MATLAB software that is capable of outputting visuals of the sterilization process 
for all four food products showing temperature at various points along the radius as a function 
of time in addition to plots describing micro load and nutrition degradation. This program 
should also be able to describe optimal conditions for nutrient retention. In addition, if you 
could inform us of potential additional energy and time costs from our normal process, that 
would be helpful. The production runs primarily in the midwestern United States.

Thanks!

Jenn

________________________________

CAUTION: This email originates from outside of FOODSCorp. Please consider carefully 
whether you should click on any link, open any attachment, or provide any information.

FiGURE B.1 Email prompt given to students that overviews problem statement.

mailto:jgonzalez@lyoncorp.com


Properties of the food materials and microbes 
Production Line Time Breakdown 
Food Material Moisture 

Content (%) 
Can Size 
(Can #) 

Water 
Activity (aw) 

Percentage of 
Production (%) 

Tomato Soup 81-84 2 .96 42 
Apple Sauce 73-77 10 .99 25 
Pumpkin Pie 
Filling 

45-50 3 .98 23 

Nacho Cheese 80-85 1 tall .96 10 
*Assume a conduction process inside the can.
Kinetic properties of food components
Component Z-value (oF) Ea (kcal/mole) D250-value 
Thiamine 47-49 21-27 246.9 min 
Ascorbic Acid 48-52 22-24 1.12 days 
Cobalamin 46-49 20-24 1.94 days 

Kinetic properties of microorganisms 
Microorganism Z-value (oF) Ea (kcal/mole) D250-value 
C. Botulinum 12-19 64-82 .1-.2 min 
C. Perfringens 15-19 72-79 .02-.04 min 
B. Cereus 14-18 65-71 .005-.008 min 

Properties of food materials 
Food Material Emissivity pH Light Transmittance (%) 
Tomato Soup .87 4.6 5.0 
Apple Sauce .89 3.6 4.0 
Pumpkin Pie Filling .75 5.1 .01 
Nacho Cheese .80 5.8 .05 

FiGURE B.2 Modeling parameters for students to build and test their modeled solution.

Material fill
temp: 200°F

Outside room
temp: 85°F

FILLING

BLUEPRINT — CANNING PRODUCTION LINE

FULL STEAM 
IMMERSION RETORT

COOLING WATER
IMMERSION

Residence time: User selects

Maximum steam
temp: 250°F

Maximum rotation speed:
10 RPM

Target exit temp: 100°F
(average temp in the can)

Cooling water temp:
Randomly fluctuates
between 50°F and 60°F

FiGURE B.3 Simple system diagram of retort system to be modeled.
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Please deliver the following to FOODSCorp as the engineering team that is solv-
ing this problem. There will be four deliverables for this assignment.

Deliverable 1: Planning the model template Working with your group, outline the 
proposed solution in the provided template report (individually). This will be done 
during lab time. During this time, decide which food product each member of the 
group will model. (Table B.1.)

Deliverable 2: Building the model template/modeling report Individually, com-
plete a building the model template report (provided on Blackboard) using MATLAB 
Live containing the commented and explained model (bring a printout to class). Each 
member of the group should code and comment their own model, with each group 
member modeling the process for one of the four different foods produced. (Table B.2.)

Deliverable 3: Evaluating your model notes Each group will meet with two to three 
other groups to discuss differences in how they approached the problem, in both a 
mathe matical and a computational sense. An evaluating the model notes template will 
be provided. This activity will be completed in class during the first hour of lab time. 
(Table B.3.)

Deliverable 4: Reflecting on your model Complete an individual reflection report 
template that overviews the difference observed from the second in-class activity and 
allows for reflection as to how your model could be improved or useful in future iter-
ations. (Table B.4.)

TABLE B.1 Template: In-class activity for planning for the model

In-class activity (individual working with group): Planning the model
What properties are needed/not needed for the model? For each food property, give reasoning as to why.
Food property: Why is/is not used:

How do you intend to address each property where a range or raw data is given in the final model? For 
each property listed, please give reasoning as to why you are choosing your current strategy.
Food property: How will you use or address it? Why?
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TABLE B.1 Template: In-class activity for planning for the model

Are there food properties needed that are not given in the problem statement? If any, please justify why 
they are needed and what source you will obtain them from.
Food property needed: Why is it needed? Why did you use the source you 

did?

What assumptions will you make to solve the problem? For each assumption, explain why you made it 
and what it may limit about your model.
Assumption: Why did you choose it? What will this limit?

Provide the mathematical equations necessary to solve the problem. For each equation, please explain 
why it was chosen and any assumptions your model will make about it. Please list all equations necessary. 
Feel free to use the course textbook or online materials.
Equation needed: Why is this needed? What assumptions does this 

equation make?

What computational technique will you use to solve the system? Explain why this technique was chosen, 
what the benefits are, and what the limitations are (e.g., implicit finite difference, explicit finite difference, 
finite element method, Crank-Nicolson method, Monte Carlo method).
Computational technique chosen:

What are the benefits of this technique?

What are the limitations of this technique?

Why did you choose this technique over alternatives?

Continued
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TABLE B.2 Template: Take-home assignment for building the model

Take-home assignment (individual): Building the model
Please outline and describe how your model works in terms of computational structures. For each struc-
ture, please explain why the programming technique or process used was chosen. Include as much detail 
as possible, doing this for each computational structure within your model (e.g., groups of variables, 
loops, conditional statements, sets of equations).

Computational structure: How does it work? Why was it programmed this way?
Ex. Nested for loop in lines 
15–25 of function X.

Ex. The nested for loop indexes through both rows and columns to 
move through both time and space. It was used because there was a 
set endpoint, thus it was more efficient than a while loop that exits 
upon an unknown number of iterations. This is useful given it is 
unknown how long heat will take to transfer.

Ex. Define thermal variables in 
lines 26–33.

Ex. These statements define how heat moves through the material. 
These variables are necessary to be defined previous to the equations 
in line 45 as they are used there. Variable X does . . . and interacts 
with variable Y in this way . . .

Please describe any assumptions made during the modeling process and why those may have been good 
or appropriate assumptions.
Assumption: Why did you make this 

assumption?
How does this impact how your 
model works?

What process parameters are you using for each of the food materials?
1. What microorganism is your program targeting? All of them? Only one? Why?

2. What is the new time needed to commercially sterilize the product and the time needed to cool the prod-
uct to the required average temperature?
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TABLE B.2 Template: Take-home assignment for building the model

3. What optimum temperatures were used for sterilization to retain nutrients? How do you know this is 
the optimum? Compare the optimum between the original (200°F fill temperature) with the alternate 
(180°F fill temperature). 

4. Insert a graph of the heating and cooling profile of the center of the can during the process. How do 
specific physical properties of the food impact this graph?

5. Insert a graph of the biological activity profile in the product at the center of the can vs. time. Why would 
the center of the can make the most sense to monitor?

6. Insert a graph of the average nutrient activity profile throughout the entire can vs. time. Why would we 
use the average nutrient content across the can rather than at a single point?

How do parameters such as food composition, thermal properties of the food, geometry (can size), and 
processing parameters (times and temperatures) seem to impact the heating profile? 

How did you test how these properties affected the heating profile?

For your process, how are vitamin B1 and vitamin C affected? How much of these vitamins remain? How 
much more vitamin loss is there in the new process (180°F fill temperature) than the original (200°F fill 
temperature)?

What is your estimate of additional energy and time costs due to the impacted filling temperature for 
your product?

Continued

Continued
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TABLE B.2 Template: Take-home assignment for building the model

What recommendations would you make to the systems engineer, R&D, and microbiology to improve 
costs and efficiencies on this line moving forward?

Continued

TABLE B.3 Template: In-class activity for evaluating the model

In-class activity (individual with the group): Evaluate your model
Questions to discuss during group rotation meetings. For these meetings, focus on how and why you 
solved and programmed the problem the way you did.
1. What are the different assumptions you made about the physical properties of the system? Did you use 

different data? How would these differences impact the model?

2. Make a line-by-line comparison with the other students’ programming files. How did your program-
ming strategies differ? What advantages do you see in how they did their model? What advantages do 
you see in your own?
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TABLE B.4 Template: Take-home assignment for reflecting on the model

Take-home assignment (individual): Reflect on your model
What approaches did other students take with respect to the data they used (justifications, assumptions, 
and limitations) and the way they programmed their model? Be as detailed as possible in listing various 
differences between models. For each difference, talk about why you think the other students chose to do 
it the way they did. Be detailed.

How did these differ from your own approach? When would your own approach make the most sense? 
When would different assumptions that other groups made make the most sense?
Differences I saw: What approach makes the most 

sense:
Why the approach makes the 
most sense:

If you were to do this assignment again, what different assumptions would you make, and what do you 
believe to be the optimal solution to the problem?
Things I would do differently: Why I would do them differently:

What was the most challenging piece of this assignment?

Why do you think it was the most challenging?

How did you overcome this challenge?
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PROJECT SOLUTION

i. Example Solution in MATLAB Code

clc;
clear;
count=0; %counter variable 1
t=0; %initial time
%Tomato Soup
xw=.8079;
xc=.1412;
xp=.0146;
xft=.0044;
xash=.0209;
xfib=.011;
radius=43.7;%mm
nodes=200;
%Mesh Size
delx=radius/nodes;
delt=.05;%seconds
%Initial Temp
maxcount=1
Tcount=121;
lethal=0; %initial lethality
Tinitial=82;%Celcius
T=zeros(1,nodes);
T=T+Tinitial;
T(1,1)=Tcount;%Celcius
Tnew=zeros(1,nodes);
%Kinetics of C bot.
D250=.2;%min
D250seconds=.2*60;%seconds
Zvalue=15;%F
Ea=73;%kcal/mole
ZvalueC=15*5/9;%C
heatcycle=0;
xxx=0;
while xxx<2
 if lethal<12
while lethal<12
alpha = choiokos(xc, xp, xw, xft, xfib, xash, T );
%Check for stability
M=(delx^2)./(alpha.*delt);
if min(M<4)
 print(‘solution became unstable’);
 return
end
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for n=2:1:nodes
Tnew(1)=T(1,1);
if n<nodes
 Tnew(n)=(1./M(n)).*(((2.*n+1)./(2.*n)).*T(n+1)+(M(n)-
2).*T(n)+((2.*n-1)./(2.*n)).*T(n-1));
else
 Tnew(n)=(4./M(n)).*T(n-1)+((M(n)-4)/M(n)).*T(n);
End
end
%display(Tnew(nodes))
t=t+delt;
count=count+1;
tvec_center(count)=t;
Tvec_center(count)=Tnew(nodes);
T=Tnew;
Ksterile=1*D250seconds*10^((121-Tvec_center(count))./Zvalue);
lethal_new=2.303./(Ksterile).*delt;
lethal=lethal+lethal_new;
display(lethal)
end
tsterilize=t;
 else
T(1,1)=15;%C cooling water
Taverage=39;
while Taverage>38; %C
alpha = choiokos(xc, xp, xw, xft, xfib, xash, T );
M=(delx^2)./(alpha.*delt);
T(1,1)=15;
Taverage=T(1)*(3.14*((nodes-1)*delx)^2-(3.14*((nodes-2)*delx)^2))/
(3.14*(delx*(nodes-1)^2));
for n=2:1:nodes
if n<nodes
 Tnew(n)=(1./M(n)).*(((2.*n+1)./(2.*n)).*T(n+1)+(M(n)-
2).*T(n)+((2.*n-1)./(2.*n)).*T(n-1));
 Taverage=Taverage+Tnew(n)*(((3.14*((nodes-n)*delx)^2)-
(3.14*(((nodes-n-1) 
*delx)^2))))/((((nodes-1)*delx)^2)*3.14);
else
 Tnew(n)=(4./M(n)).*T(n-1)+((M(n)-4)/M(n)).*T(n);
End
end
t=t+delt;
count=count+1;
tvec_center(count)=t;
Tvec_center(count)=Tnew(nodes);
T=Tnew;
end

 end
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xxx=xxx+1;
Tcountvector(maxcount)=Tcount;
maximizetimevector(maxcount)=t;
maxcount=maxcount+1;
end
formatspec=’The time to sterilize is %f minutes’;
fprintf(formatspec, tsterilize./60)
formatspec2=’The total time is %f minutes’;
fprintf(formatspec2, t./60)
plot(tvec_center./60,Tvec_center)
%formatspec3=’The optimum sterilzation temperature is %f degrees C’;
%fprintf(formatspec3, max(Tcountvector))

ii. interpretation of the Results
Figures B.4, B.5, B.6, and B.7 show how the temperature changes in the center of the 
can for various systems provided to the teams (different foods and sized cans). In each 
figure, as the temperature rises in the can the material continues to be sterilized. The 
curve then takes a sharp downward turn as cooling begins. This results in two pieces 
of information for each team: the total time to sterilize (temperature rising) and total 
time including cooling (from beginning to final time).

1. Tomato soup heating profile at center at 121°C heating condition in radius 43 mm 
can.

FiGURE B.4 Temperature change as a 
function of time at the center of 43 mm 
can of tomato soup.

The time to sterilize 100.7 minutes. Total time is 326 minutes.
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2. Apple sauce heating profile at center at 121°C heating condition in radius 78 mm 
can (num 10).

FiGURE B.5 Temperature change as a 
function of time at the center of 78 mm 
can of apple sauce.

The time to sterilize is 203 minutes. Total time is 904 minutes.

3. Pumpkin pie filling heating profile at center at 121°C heating condition in radius 
54 mm can.

FiGURE B.6 Temperature change as a 
function of time at the center of 54 mm 
can of pie filling.

The time to sterilize is 127 minutes. Total time is 450 minutes.
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4. Nacho cheese heating profile at center at 121°C heating condition in radius 34.29 
mm can.

FiGURE B.7 Temperature change as a 
function of time at the center of 34.29 mm 
can of cheese sauce.

The time to sterilize is 73 minutes. Total time is 214 minutes.

ASSESSMENT RUBRIC

TABLE B.5 Assessment rubric to evaluate students’ implementation and solutions

Learning Objective Unsuccessful (0) Successful (5) Above Successful (10)

Students are able to identify useful data 
and justify its use. (15%)

ARTIFACT

Solution proposal (week 1); students are 
asked to set up the problem using infor-
mation from the problem statement.

Students use pieces 
of irrelevant data 
with an irrational or 
missing justification 
for its use.

Students correctly 
identify relevant data; 
however, they have 
irrational or missing 
justifications.

Students correctly iden-
tify relevant data and 
rationally justify its use.

Students are able to convert mathemat-
ical representations of information into 
appropriate computational structures 
and justify their choice. (30%)

ARTIFACT

Student m.files (week 2) that are 
required to have in-code comments 
justifying each line of code.

Students are not 
successful in inter-
preting mathemat-
ical structures in 
relation to compu-
tational abstractions.

Students successfully 
interpret mathemati-
cal structures in rela-
tion to computational 
abstractions.

Students successfully 
interpret mathematical 
structures in relation to 
computational abstrac-
tions and justify appro-
priateness and efficiency 
of choice.
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TABLE B.5 Assessment rubric to evaluate students’ implementation and solutions

Learning Objective Unsuccessful (0) Successful (5) Above Successful (10)

Students are able to construct compu-
tational models from identified infor-
mation and develop computational 
structures. (30%)

ARTIFACT

Student final report (week 2) that 
requires an outline of the model, 
answers to specific discipline questions, 
and presentation to the class.

The computa-
tional model does 
not function/has 
multiple errors or 
does not answer the 
identified question.

The computational 
model functions 
properly with mini-
mal errors. The model 
provides reasonable 
answers to the identi-
fied question.

The computational 
model functions with 
no errors and provides 
a relevant answer to the 
identified question.

Students are able to interpret model-
ing output in relation to the problem 
context. (15%)

ARTIFACT

Student evaluation report (week 3) asks 
for an interpretation of own model and 
for results from class discussion around 
other approaches to the same problem 
obtained from week 2 presentations.

Student either fail 
to provide other 
approaches or incor-
rectly interpret their 
own approach.

Students provide 
other approaches 
but fail to iden-
tify the strengths and 
weaknesses of each 
approach in relation to 
their own.

Students provide a 
correct interpreta-
tion of their own 
approach, in addition 
to other approaches, 
and a comparison of 
the strengths and weak-
nesses of each approach 
is created.

Students are able to reflect on their 
learning experiences and discuss what 
they would do differently in the future. 
(10%)

ARTIFACT

Student reflection report (week 4) 
that asks students to discuss what they 
would do differently in the future and 
the benefits and drawbacks of their 
approach.

Student either fail 
to provide detailed 
challenges or fail 
to identify areas of 
improvement.

Students iden-
tify challenges and 
weaknesses of their 
approach but fail to 
identify the reason-
ing as to why it was 
a weakness or the 
reasoning for taking a 
new approach.

Students are able to 
identify the challenges 
of their approach, what 
they would do differ-
ently in the future, and 
why they would change 
their approach.

Continued
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Sample Project and Solution for Designing 
for Learning in the Laboratory

THE DESiGN OF THE COMPUTATiONAL LABORATORY ASSiGNMENTS WAS BASED ON 

learning materials created by professors Sanjay Rebello and Carina Rebello, with the 
help of Yuri Piedrahita, at Purdue University.

PROJECT DESCRIPTION

LAB 2: Position, velocity, and Acceleration
Goal: After completing this activity, you should be able to

• Use loops to model motion iteratively in VPython.
• Measure 1D position, velocity, and acceleration.
• Connect physical experiment and a VPython model.

i. iterative vector Modeling

A loop is a set of code instructions that repeatedly runs until some condition is met. In 
VPython, one example of a loop is the while loop (figure C.1).

A while loop starts with a condition (e.g., x < 10) followed by commands that are exe-
cuted as long as that condition is met. When the condition is no longer met (e.g., x ≥ 10), 
the program moves on to the line of code following the loop. Notice that all of the in-
struction lines are indented one tab past the while condition. This tells GlowScript what 

Code
before loop 

Code 
after loop 

Loop
statement 

Check
condition 

Loop
instructions 

While [condition]
instruction 1
instruction 2
instruction 3
. . .
instruction x

FiGURE C.1 Example of a while loop.
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lines of code are contained within the while loop. Returning to standard non-indented 
lines indicates the end of the loop. Let’s look at an actual example in VPython.

1. From any internet browser, go to http://www.glowscript.org.
2. Sign in with your Google account (e.g., Gmail, YouTube).
3. Open your programs by clicking on “Your programs are here.”
4. Open your Public folder. You should see your programs from Lab 1.
5. In your Public folder, create a new program called Loops.
6. Click on the following link and copy the code from WhileLoopTutorial into your 

new Loops.py program: https://www.glowscript.org/#/user/HaydenFennell 
/folder/Lab2/. (Note: The code is provided in full at the end of this appendix.)

7. Uncomment Part 1 by removing one # before each sentence. Lines with ## will 
continue to remain as comments.

8. Examine the code and read through the comments following each line to deter-
mine what the code is doing.

Q: How many times do you predict that the loop in Part 1 will execute? 
Explain why.

Q: Run the code. How many times does the code run? Does this match 
your prediction?

9. Re-comment Part 1 of the code by adding one # in front of each line. Uncomment 
Part 2.

10. Examine the code and read through the comments after each line to determine 
what the code is doing.

Q: What is the conditional statement checking in Loop 2?

Q: How many times do you predict that the loop in Part 2 will execute?

Q: Run the code. How many times does the code run? Does this match 
your prediction?

ii. Pushcart vPython Simulation

Now you will use loops to model motion using the position update formula:
                      .

Q: How do you think we can use while loops to predict the motion of an 
object using position update?

Next, we analyze a computational model of pushcart that you will use in the next 
section. In the simulation, the cart is moving along the track for 2 meters at a constant 
velocity.

𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 + �⃗�𝑣𝑣𝑣∆𝑡𝑡𝑡𝑡 

http://www.glowscript.org
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/
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1. In your Public GlowScript folder, create a new program called PushCartSimula tion.
2. Copy the code from the following link into your new program: https://www 

.glowscript.org/#/user/HaydenFennell/folder/Lab2/. (Note: The code is pro-
vided in full at the end of this appendix.)

3. Carefully review the PushCartSimulation code.
4. Add comments to the code to explain what each part does.

Q: Which section of the code models the motion of our pushcart? Ex-
plain why.

5. Run the code and observe what happens.
Q: At what time after starting the simulation does the pushcart pass the 
1-meter mark?

6. Modify the code so that it provides a more accurate estimate of the time at 1 
meter.

Q: Describe below what changes you made to the code. Explain why. (Hint: 
Think about the experiment with the physical cart-and-rail device. What did 
you modify to change how often data was recorded by the system?)

Q: How does the rate at which we record (or generate) data influence our 
results?

7. Now imagine that our simulation was tracking the motion of a proton being ac-
celerated through a linear particle accelerator.

Q: If we wanted to accurately estimate the time at which the proton passes 
through a specific checkpoint in the accelerator, what might need to differ 
from the pushcart example above? Why?

iii. Pushcart Physical Experiment

You will now compare the VPython simulation above with a real experiment.

1. Plug the motion sensor into the interface.
2. Open the PASCO Capstone program and check that the motion sensor is detected.
3. Set three graphs to measure position, velocity, and acceleration vs. time simul-

taneously.
a. Open a graph display: Double-click on the Graph button on the display bar 

at the right side of the screen.
b. Add two new plot areas to the graph display. Click on the Correspond tool 

on the top bar in the graph display.
c. Select the measurements for each plot in the graph display. Time on the 

hori zontal axis; position, velocity, and acceleration on the vertical. (Click on 
the <Select Measurement> button beside the axes and select the respective 
measurements.)

https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/
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4. Dock the motion sensor on one extreme of the dynamic cart track as shown in 
figure C.2.

5. Put the dynamic cart on the track in the opposite extreme of the motion sen-
sor. Make sure the vertical metal sheet in the cart is facing straight toward the 
motion sensor.

6. Make sure the motion sensor is adjusted in cart mode, selecting the cart symbol 
with the top button on the motion sensor.

7. With the dynamic cart and the motion sensor at opposite extremes on the track, 
start to collect data by clicking on the Record button in the control bar at the 
bottom of the screen. Just after you start to record, give a gentle push on the dy-
namic cart such that it starts to move at a kind of constant velocity. Stop the re-
cording after a little while.

8. Analyze with your colleagues the three different paths in each plot (position, ve-
locity, and acceleration) as shown in figure C.3.

FiGURE C.2 Dynamic cart track with 
motion sensor.

FiGURE C.3 Graph plotting the position, velocity, and acceleration.
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Q: Identify in the velocity graph an interval of time where the velocity of 
the cart was approximately constant. (Hint: If your data is too irregular, you 
can use the Smoothing tool as shown in figure C.7, located on the toolbar 
in the graph display, to smooth the data of your experiment so that you can 
easily decide in which period of time the path is closest to constant veloc-
ity.) What interval of time is that?

9. Take a screenshot of the relevant portion of the velocity vs. time graph and up-
load it (one per group).

Q: Looking at the position graph on the screen, what are the initial and 
final positions of the dynamic cart in the period of time that you chose in 
the last question? It is the period when the cart moved with constant veloc-
ity. (Hint: You can find the mean of the collected data, using the tool to cal-
culate statistics of the active data. Click on the ∑ button in the toolbar at the 
top of the graph display. Note: To select a specific interval of data, you need 
to use the tool Highlight Range in the same toolbar used in the last item.)

10. Take a screenshot of the relevant portion of the position vs. time graph and up-
load it (one per group).

iv. Connecting the vPython Model with the Physical Experiment

Now that you have collected data in a real experiment to measure position, velocity, and 
acceleration, it is possible to modify the computational model from Part 2 to represent 
the physical experiment during the period of time that you identified as constant velocity.

1. Take your code from the pushcart program and copy it into a new file in your 
Public folder (call this program PushCartSimulation2).

2. Adjust the numerical values in the code to model the physical experiment done 
with the dynamic cart, during the period where the cart had a motion with con-
stant velocity.

3. Compare the graphs obtained in the real experiment with the ones obtained with 
the new model in VPython and answer the questions below.

Q: How do the two graphs — VPython model and physical experiment — 
differ from each other?

Q: What assumptions about the cart system does the computational model 
make? Are these valid assumptions?

Q: How do these assumptions affect the accuracy of our results? For the 
pushcart simulation, are these assumptions negligible? Why or why not?

4. To conclude today’s lab, each student must create share the link to their fin-
ished programs.
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Q: To share your programs, simply navigate to your Public folder tab and 
copy the URL from the browser bar into the space below.

LAB 3: Changing Momentum: Measuring velocity and Force
Goal: After completing this activity, you should be able to

• Measure force and velocity of a fan-cart system.
• Use loops to model change of momentum due to a constant force.
• Connect physical experiment and VPython model.

i. Fan-Cart Physical Experiment

1. Plug the motion and force sensors into the interface(s).
2. Open the PASCO Capstone program and check that the sensors are detected.
3. Dock the motion sensor at one end of the track and put the cart with fan on the 

track about 15 cm from the motion sensor as shown in figure C.4.
4. Make sure the motion sensor is in cart mode by selecting the cart symbol with 

the top button on sensor.
5. Set three graphs to measure position, velocity, and acceleration vs. time simul-

taneously as shown in figure C.5.
6. Double click the Graph button. Add two new plot areas to the graph display.
7. Start to collect data by clicking on the Record button in the control bar in the 

bottom of the screen. Just after you start to record, turn on the fan such that the 
cart starts moving away from the sensor. Be sure to stop the cart with your hand 
before it reaches the end. Then stop recording.

8. Observe the three different graphs (position, velocity, and acceleration).
Q: Identify on the velocity graph an interval of time where the velocity 
is increasing linearly. (Hint: If your data is too irregular, you can use the 
Smoothing tool on the toolbar in the graph display to smooth the data.) 
What interval of time is that? What is the slope of the velocity vs. time graph 
in that time interval? (Hint: You can fit the portion of the graph to a linear 

FiGURE C.4 Cart with a fan 
on the track.
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curve and find the slope. Note: To select a specific interval of data, you need 
to use the tool Highlight Range in the same toolbar used in the last item.)

Q: Measure the mass of the cart–fan system with a scale and using the mo-
mentum principle and the data that you recorded above, to calculate the force 
exerted by the fan (assume negligible friction). (Hint: Momentum principle:
                                                                                      .)

9. Now you will compare your calculation above with a measurement. Set a new 
graph display to measure force vs. time. Open a graph display: Double-click on 
the Graph button on the display bar. When the graph display is open, select 
Force (N) in <SelectMeasurement>.

10. Dock the fan on the cart, and connect the cart to the force sensor with a string. 
Push the ZERO button on the force sensor when the string is relaxed, as shown 
in figure C.6.

11. Turn on the fan and hold the cart at rest by holding the force sensor until an-
other group member clicks Record. The string is connected to the force sensor, 
and you are holding the cart stationary by holding the force sensor as shown 
in figure C.7, so the sensor measures the force exerted by the fan. Stop record-
ing when the force is stable for a few seconds. (Note: The resolution of the force 
sensor is 0.03N.)

Q: What is the measured force? How does it compare with the calculated 
force? What might cause any discrepancies?

∆�⃗�𝑝𝑝𝑝 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡  𝑚𝑚𝑚𝑚∆�⃗�𝑣𝑣𝑣 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡  �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑚𝑚(∆�⃗�𝑣𝑣𝑣 ∆𝑡𝑡𝑡𝑡⁄ ) 

 

FiGURE C.5 Graph plotting the position, velocity, and acceleration.
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ii. Revisiting Computational Models

You will update the Lab 2 simulation (original, before you modified it) to model this 
week’s experiment.

1. Go to www.glowscript.org. In your Public folder, create a new program called 
FanCartSim. Copy and paste the code from the following link in FanCartSim: 
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab3/. (Note: The 
code is provided in full at the end of this appendix.)

Q: Last week, you updated only position, not momentum. Why was that? 
Why must you update momentum now?

2. Now you will modify the above code. Recall that momentum and position up-
dates can be used iteratively:

Momentum update:

Position update:

 𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡  𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡  𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + �𝐹𝐹𝐹𝐹
𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡 

𝑟𝑟𝑟𝑟𝑝𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑝𝑖𝑖𝑖𝑖 + �𝑝𝑝𝑝𝑝
𝑝𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚
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 𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡  𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡  𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + �𝐹𝐹𝐹𝐹
𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡 
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𝑝𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚
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𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡 
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FiGURE C.6 ZERO button on the force sensor.

FiGURE C.7 String connected 
to the force sensor.

http://www.glowscript.org
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab3
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Q: Change the code to accommodate momentum update. Comment the 
changes that you make.

Q: What new variables/factors need to be taken into account? (Note: Re-
member that when you use new variables, you usually define them at the be-
ginning of the program.)

Q: What sections of the code need to be changed? What sections of the 
code stay the same?

Q: Fix the parameters of your program to model the experiment of the cart–
fan during the interval of linear velocity increment that you chose in the ex-
perimental part (initial time, initial position, initial velocity, deltaT, total time). 
Compare the simulation graphs with those from the experiment. How are 
they similar? How are they different?

Q: What assumptions about the cart system does the computational model 
make?

Q: How do these assumptions affect the accuracy of our results? For the 
pushcart simulation (last week), are these assumptions valid? Why or why not?

LAB 8 Baking Cups Falling: Air Resistance
Goal: After completing this activity, you should be able to

• Measure the position and velocity of a baking cup falling.
• Determine the drag coefficient C of the baking cup from its terminal velocity.
• Use the drag coefficient C and other parameters from the physical experiment 

to create a VPython model of the baking cup falling.
• Connect physical experiment and VPython model.

i. Falling Cupcake Physical Experiment

1. Using a cellphone, make two videos of baking cups falling vertically from a 
height of L (see figures C.8 and C.9). If your group number is even, make the 
videos of one cup falling and three cups falling together. If your group number 
is odd, make the videos of two cups falling and four cups falling. The L value is 
up to you; it should be between 1.5 and 2.0 meters. You can do this in the hall 
outside the room. Make sure the videos cover the same height from top to bot-
tom of the image on your cellphone screen and the height from which you re-
lease the cups is the same. You can use the long ruler to keep the height constant 
in both videos. Make sure you are recording in the middle of the total distance 
traveled by the cup, and remember to measure the value of the distance L (you 
should have the cellphone plane completely parallel to the baking cup falling 
plane), as shown in figure C.9.
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2. Download your video onto the lab computer.
3. Open the program PASCO Capstone and open a video analysis display (double- 

click on the Video Analysis tool). Click on Open Movie File and open your 
video of the baking cup falling.

4. The video should appear on the video analysis display with two yellow tools: the 
Coordinates tool (x and y axes) and the Calibration tool. The Coordinates tool 
determines the direction of the position change that the video analysis will mea-
sure. The Calibration tool indicates the real scale of the measurements to ana-
lyze. Drag the Calibration tool to cover the total distance traveled by the bak-
ing cup when it is falling. Adjust the Coordinates tool such that the position 
of the baking cup falling is measured as positive. Make sure the horizontal axis 
of the Coordinates tool matches with one of the extremes of the Coordinates 
tool. (This guarantees that the vertical measurements start in an initial position 
equal to zero.)

5. Set the real distance traveled by the cup in the Calibration tool. To do that, click 
on the 1.00 m that appears on one of the ends of the Calibration tool and change 
that value to the real distance traveled by the cup.

FiGURE C.8 Snapshots of baking cups falling.

FiGURE C.9 Diagram demonstrating the 
recording of a falling object.
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6. The video analysis software permits you to run the video frame by frame when 
you click the mouse. If the resolution of your video is 240 frames per second, 
it will take too long to analyze your video. In that case, change the number of 
frames per click to a reasonable number. To do that, identify the frames per sec-
ond of your video file by clicking again in the Properties tool, click on Movie 
Playback, and read the value in Playback Frame Rate. If that number is greater 
than 30, you need to adjust the frame increment number in the option Overlay. 
For a playback frame rate of 240, you need to set the frame increment to 5. This 
means that when you are tracking the motion of the cup in video analysis, each 
time you click the mouse, five frames of the video will play. If your video has 
only 30 to 60 frames per second, you do not need to change the frame increment.

7. Add one graph display. Set the <SelectMeasurement> of the graph in Video 
Analysis      Object #1      xy, Object # 1 (m/s) vs. Time. You will measure the ve-
locity of the cup vs. time. After setting the graph, play the video until the mo-
ment when you release the cup. Put the cursor on the center of the cup and start 
to track its path as it falls. When a cross appears on the cup, click the mouse 
and wait until the cup moves to the next position. An example of this process is 
shown in figure C.10. After each click, you can see how the graph is showing the 
data collected in the video analysis. Insert a table to visualize the data collected.
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FiGURE C.10 Tracking the position 
of the object (i.e., baking cup) as it 
descends.

8. You can smooth the curve using the Smoothing tool in the toolbar.
Q: Look at the velocity graph and discuss with your team members whether 
the graphs make sense. Summarize your comments. What is the value of the 
terminal velocity in the graph? (Recall that terminal velocity is the veloc-
ity achieved when the weight of the cup equals the drag resistance of the air 
on the cup.)

9. Repeat the last procedure with the second video with two or four cups falling de-
pending on your group number (two cups for an even group number, four cups 
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for an odd group number). You need to start by opening a video analysis display 
(double-click on the Video Analysis tool). It will appear in a window. Click on 
<Create New Run>, then click on OK. From that point, you can proceed as you 
did for the first video.

Q: What is the value of the terminal velocity in your second video?

10.  To find the drag coefficient C, you need to use the terminal velocity values of 
your even/odd neighbor group.

Q: What are the terminal velocity values of your even/odd neighbor group 
in their two videos?

11. Measure the mass of a baking cup and make a graph of mass m (kg) vs. terminal 
velocity squared                  The resistance force is Fd ≈ ½CAρv2, where C is the 
drag coefficient, A is the transversal area of the baking cup, ρ is the air density in 
the classroom, and v is the terminal velocity of the falling cup.

Q: Given the information about the air resistance force and with the graph 
of m (kg) vs.            , how can you find the value for the drag coefficient C ? 
Describe your procedure.

Q: Calculate the value for the drag coefficient C.

12. Using the video data collected and Excel, graph the velocity vs. time for one, two, 
three, and four baking cups falling in the same graph so that you can compare 
them. (Use the data of your neighbor group to complete the data you did not 
collect in your two videos.)

Q: Add the graph of the four curves of velocity vs. time to your final hand-
out and submit it together via Blackboard.

Q: Discuss with your team members the graph of the four velocity vs. time 
curves. Are all of them different? Do they make sense? Why or why not?

ii. Computational Model of the Baking Cup Falling

You will now use VPython to model the falling baking cup that you analyzed in the 
physical experiment.

1. Go to www.glowscript.com. In your Public folder, create a new program called 
AirResistanceSim.

2. Follow the link below and copy and paste the code from AirResistanceSim into 
your new program: https://www.glowscript.org/#/user/HaydenFennell/folder 
/Lab8/. (Note: The code is provided in full at the end of this appendix.)

3. Read through the code carefully. Comment these lines in your code, indicating 
what they do.

4. Identify the lines of code that accomplish (a) velocity (or momentum) update, 

v2(m2).s2

v2(m2)s2

http://www.glowscript.com
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab8/
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab8/
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(b) position update, and (c) force update. Add comments to your code explaining 
what each of these lines do.

Q: Write down the line numbers of the code associated with (a), (b), and (c).

Q: Run the code and observe what happens. What is the terminal velocity 
of the simulated cup? How long does it take to reach this velocity?

Q: Change the size (diameter) of your baking cup. What effect does this 
have on terminal velocity? Report each value you used in your answer.

Q: Change the size (diameter) to its original value, and now change the 
mass of the cup. What effect does this have on terminal velocity? Change 
the value of the mass to its original value and try changing the initial height 
as well. Does this impact your results? Report each value for mass and height 
in your answer.

5. Now you will modify the code to reflect the values found during today’s experi-
ment.

6. Change the parameters of the simulation to use your values from your experi-
mental data collection (drag coefficient C, initial time, initial velocity, cup’s mass, 
density of the air, area of the cup, etc.)

Q: What assumptions does the simulation make about the falling cup? How 
do these assumptions affect the data? (Hint: Think about how shape affects 
your results.)

Q: Compare simulation vs. experiment for velocity vs. time. How are they 
similar?  How are they different?

Q: Suppose that the baking cup that you were dropping was conical in shape. 
What would need to change in the simulation to represent this difference? 
How would you expect the graphs to change?

PROJECT SOLUTION

Lab 2 vPython Template
GlowScript 2.7 vPython

from __future__ import division
from visual import *
###------------------------------------------------------------------------
------------------------------###
#Please provide detailed comments explaining the purpose/function of each 
line of code in the program below.
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#Be sure to scroll down after running your program to view all of the 
output data.
###------------------------------------------------------------------------
------------------------------###
#Parameters of Simulation (all units are in meters and seconds)
velocity = vector(0.3,0,0)
initialDisplacement = 0
startPosition = vector(initialDisplacement,0,0)
distanceTraveled = 0
totalDistance = 1
t = 0
totalTime = 10
deltaT = 0.5
###------------------Objects in Simulation---------------------###
#This section sets up the visual elements used in the simulation
#You are not required to comment the following section.
###------------------------------------------------------------###
scene=display(center=vector((totalDistance/2),0,0), background=color.white) 
#set the background color
cartTrack=box(pos=vector((totalDistance/2),0,0), 
size=vector(totalDistance,0.01,0.05), color=color.black) #Pushcart track 
(scales to totalDistance)
pushCart=cone(pos=(startPosition+vector(0,0.05,0)), axis=vector(1,0,0), 
radius=0.05, length=0.1, color=color.red) #Pushcart at starting position
label(pos=vector(0,-0.05,0), text=”Start”, color=color.blue) #Start Line
label(pos=vector(totalDistance,-0.05,0), text=”End”, color=color.blue) #2 
meter marker
scene.autoscale=0 #turn off camera scaling
gd=graph(xtitle=’time (s)’, ytitle=’position (m)’) #create graph object
plt=gcurve(color=color.cyan, label=’position’) #create curve
gd2=graph(xtitle=’time (s)’, ytitle=’velocity (m/s)’) #create graph object
plt2=gcurve(color=color.red, label=’velocity’) #create curve
###------------------End of Objects Section--------------------###
#Please resume commenting for the lines below
###------------------------------------------------------------###
while (t < totalTime and distanceTraveled < totalDistance):
rate(5) #The rate(n) command tells the computer to halt computation for 1/n 
seconds before proceeding. This allows us to slow down the visual refresh 
rate of the simulation so that we can actually perceive the motion.
pushCart.pos = pushCart.pos + velocity * deltaT
distanceTraveled = pushCart.pos.x
t = t + deltaT
print(“The pushcart is”,distanceTraveled,”meters down the track at”, 
t,”seconds.”)
plt.plot(t, distanceTraveled)
plt2.plot(t, velocity.x)



APPENDIX C 111

Lab 3 vPython Template
GlowScript 2.7 vPython

from __future__ import division
from visual import *
###------------------------------------------------------------------------
------------------------------###
#Please provide detailed comments explaining the purpose/function of each 
line of code in the program below.
#Be sure to scroll down after running your program to view all of the 
output data.
###------------------------------------------------------------------------
------------------------------###
#Parameters of Simulation (all units are in meters and seconds)
velocity = vector(0.3,0,0)
initialDisplacement = 0
startPosition = vector(initialDisplacement,0,0)
distanceTraveled = 0
totalDistance = 1
t = 0
totalTime = 10
deltaT = 0.5
###------------------Objects in Simulation---------------------###
#This section sets up the visual elements used in the simulation
#You are not required to comment the following section.
###------------------------------------------------------------###
scene=display(center=vector((totalDistance/2),0,0), background=color.white) 
#set the background color
cartTrack=box(pos=vector((totalDistance/2),0,0), 
size=vector(totalDistance,0.01,0.05), color=color.black) #Pushcart track 
(scales to totalDistance)
pushCart=cone(pos=(startPosition+vector(0,0.05,0)), axis=vector(1,0,0), 
radius=0.05, length=0.1, color=color.red) #Pushcart at starting position
label(pos=vector(0,-0.05,0), text=”Start”, color=color.blue) #Start Line
label(pos=vector(totalDistance,-0.05,0), text=”End”, color=color.blue) #2 
meter marker
scene.autoscale=0 #turn off camera scaling
gd=graph(xtitle=’time (s)’, ytitle=’position (m)’) #create graph object
plt=gcurve(color=color.cyan, label=’position’) #create curve
gd2=graph(xtitle=’time (s)’, ytitle=’velocity (m/s)’) #create graph object
plt2=gcurve(color=color.red, label=’velocity’) #create curve
###------------------End of Objects Section--------------------###
#Please resume commenting for the lines below
###------------------------------------------------------------###
while (t < totalTime and distanceTraveled < totalDistance):

rate(5) #The rate(n) command tells the computer to halt computation for 1/n 

seconds before proceeding. This allows us to slow down the visual refresh 
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rate of the simulation so that we can actually perceive the motion.
pushCart.pos = pushCart.pos + velocity * deltaT
distanceTraveled = pushCart.pos.x
t = t + deltaT
print(“The pushcart is”,distanceTraveled,”meters down the track at”, 
t,”seconds.”)
plt.plot(t, distanceTraveled)
plt2.plot(t, velocity.x)

Lab 8 vPython Template
GlowScript 2.7 vPython

from __future__ import division
from visual import *
###------------------------------------------------------------------------
------------------------------###
#Please provide detailed comments explaining the purpose/function of each 
line of code in the program below.
#Be sure to scroll down after running your program to view all of the 
output data.
###------------------------------------------------------------------------
------------------------------###
#Variables of Simulation (all units are in meters and seconds)
mass = 0.005 #kg
g = 9.81 #m/s^2
diameter = 0.1 #m
A = pi * pow((diameter/2), 2) #m^2
rho = 1.225 #kg/m^3
C = 1.15
height = 3 #m
t = 0 #s
totalTime = 10 #s
deltaT = 0.01 #s
initialVelocity = 0 #s
velocity = vector(0,initialVelocity,0)
speed = mag(velocity)
fG = mass*g
fAir = (1/2)*C*rho*A*pow(velocity.y, 2)
fNet = vector(0,(fAir-fG),0)
###------------------------------------------------------------------------
------------------------------###
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#Visual components of simulation.
#You do not have to edit this section.
#Note that the simulation models the coffee filter as a short cylinder.
###------------------------------------------------------------------------
------------------------------###
scene=display(center=vector(0,height/2,0), background=color.white) #set the 
background color
floor=box(pos=vector(0,0,0), size=vector(2,0.05,0.15), color=color.black) 
#Pushcart track (scales to totalDistance)
coffeeFilter=cylinder(pos=vector(0,height,0), axis=vector(0,0.08,0), 
radius=diameter/2, color=color.orange) #Pushcart at starting position
scene.autoscale=0 #turn off camera scaling
gd=graph(xtitle=’time (s)’, ytitle=’Distance Fallen (m)’) #create graph 
object
plt=gcurve(color=color.cyan, label=’Distance Fallen’) #create curve
gd2=graph(xtitle=’time (s)’, ytitle=’Speed (m/s)’) #create graph object
plt2=gcurve(color=color.red, label=’Speed’) #create curve
###------------------------------------------------------------------------
------------------------------###
#Simulation code section
###------------------------------------------------------------------------
------------------------------###
while (coffeeFilter.pos.y > 0 and t < totalTime):
rate(10) #The rate(n) command tells the computer to halt computation for 
1/n seconds before proceeding. This allows us to slow down the visual 
refresh rate of the simulation so that we can actually perceive the motion.
fAir = (1/2)*C*rho*A*pow(velocity.y, 2)
fNet = vector(0,(fAir-fG),0)
velocity.y = velocity.y + (fNet.y/mass) * deltaT
coffeeFilter.pos.y = coffeeFilter.pos.y + (velocity.y * deltaT)
t = t + deltaT
distanceFallen = height-coffeeFilter.pos.y
speed = mag(velocity)
plt.plot(t, distanceFallen)
plt2.plot(t, speed)
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ASSESSMENT RUBRICS

TABLE C.1 Disciplinary scoring rubric

Category Below Basic (0) Basic (1) Proficient (2) Advanced (3)

Accuracy of results Student does not 
provide results or 
provides clearly 
inaccurate results 
(i.e., results are 
nonphysical).

Student does not 
provide neces-
sary data (graphs, 
plots, and/or Excel 
sheets).

Student provides 
results, but some 
results are incorrect.

Reported answers 
conflict with values 
from data (graphs, 
plots, and/or Excel 
data).

Student always 
provides accurate 
results.

Reported answers 
agree with values 
from data (graphs, 
plots, and/or Excel 
data).

Student always 
provides accurate 
results.

and 
Answers speak to the 
validity of the given 
results.

Connection and 
application of 
results

Student does not 
provide any connec-
tions between the 
physical and compu-
tational models.

Student provides 
obvious or basic 
connections (i.e., air 
resistance, friction, 
human error).

Student provides 
obvious or basic 
connections (i.e., 
air resistance, fric-
tion, human error) 
but also gives basic 
explanations of how 
the specific connec-
tions work.

Student provides 
nonobvious connec-
tions (i.e., beyond air 
resistance, friction) 
between the physical 
and computational 
models similarities 
and differences.

Quality of results One-word answers 
(student does not 
provide justification 
and reasoning).

Answers provide 
minimal/unclear 
justification of 
reported values.

Answers provide 
more detailed justi-
fication of the 
reported values.

Answers provide 
detailed interpreta-
tions that connect to 
physical principles. 
Student may also 
periodically provide 
analogies or sche-
matic comparisons.
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TABLE C.2 Computational scoring rubric

Category Below Basic (0) Basic (1) Proficient (2) Advanced (3)

Accuracy of results Code does not 
produce results.

Code produces 
unreasonable or 
incorrect results or 
simulation results do 
not match reported 
values.

Results are inaccu-
rate due to issues 
within the code (i.e., 
variables are rede-
fined inappropri-
ately within loop 
calculations).

Code produces 
correct results.

and 
Simulation results 
align with reported 
values.

Code produces 
correct results.

Simulation results 
align with reported 
values.

Results have been 
verified/validated 
against external 
criteria.

Function and 
efficiency

Code does not run.
or

Code is needlessly 
redundant or 
confusing.

Code functions with 
minimal warnings 
or error corrections.

Code follows 
template guidelines, 
but may include 
minor inefficiencies 
(i.e., unnecessarily 
small step size).

Code functions 
without error.

Code follows 
template guidelines 
and uses efficient 
parameters/settings 
(i.e., step size is 
appropriate).

Code functions 
without error and 
has been altered to 
include additional 
output information.

or
Code includes 
evidence of moni-
toring/debugging 
strategies.

Commenting No comments.
or

Comments are 
included, but either 
indicate a misunder-
standing of the code 
or are confusing or 
poorly stated.

Comments simply 
restate the code 
parameters or 
simply state variable 
units.

Comments are 
limited to the vari-
able definition 
portion of the code 
or code includes 
less than two qual-
ity comments in the 
body of the program 
(i.e., the while loop 
and calculations).

Comments describe 
the computational 
function of individ-
ual lines or blocks of 
code in detail.

Code includes at 
least two to three 
quality comments 
in the body of the 
program (i.e., the 
while loop and 
calculations).

Comments describe 
the computational 
function of individ-
ual lines or blocks of 
code in detail.

and
Comments describe 
the function of the 
code in terms of 
how it represents 
the disciplinary 
material
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Sample Project and Solution for 
Designing for K–12 Settings

PROJECT DESCRIPTION

This document describes the model Susceptible Infected Recovered (SIR) that rep-
resents the spread of an infectious disease. This model is used to describe how a disease 
(e.g., COVID-19) spreads within a given population and assumes that each individual 
can be in one of four states:

Susceptible (S): Individuals who have not been infected with the disease, so they 
are susceptible to being infected within a given probability of disease trans-
mission (i.e., transmission rate) and an average number of contacts per person 
per time (i.e., contact rate).

Infected (I): Individuals who are infected and can be infectious to others. There 
is a probability of both recovery and death associated with leaving this state.

Recovered (R): Individuals who were already infected but are now recovered. 
These individuals cannot be reinfected since they have developed antibodies. 
(Note: This is not necessarily the case for COVID-19, as the evidence about it 
is inconclusive at this point, but this is the case for other diseases and an as-
sumption of this model.)

Deceased (D): Individuals who were infected and died as a result of the disease.

To identify how many people will move from one state to another, we use the fol-
lowing variables:

Contact rate: Average number of contacts per person per day.
Transmission rate: Probability of disease transmission when a susceptible person 

comes in contact with an infected person.
Recovery rate: Probability of recovery after being infected.
Mortality rate: Probability of dying after being infected.
Recovery time: Average number of days that the disease stays in the body.
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To simulate this model, we need to compute the number of new infections, recov-
eries, and deaths per day, and then update the number of susceptible, infected, recov-
ered, and deceased as follows:

NewInfections: Infected × Contact rate × (Susceptibles / Total population) × 
Transmission rate

NewRecoveries: Infected × Recovery rate / Recovery time
NewDeaths: Infected × Mortality rate / Recovery time
Susceptibles: Susceptibles − NewInfections
Infected: Infected + NewInfections – (NewRecoveries + NewDeaths)
Recovered: Recovered + NewRecoveries
Deceased: Deceased + NewDeaths

As one may expect, there are some variables that we can manipulate and see the ef-
fects on the number of infected people and the number of deaths. For instance, closing 
public events and banning large gatherings of people, may decrease the contact rate, which 
has a direct effect on the number of new infections and the number deaths. Likewise, 
if doctors find effective treatments to the disease, we may have a lower mortality rate, 
which will reduce the number of deaths.



Appendix d 119

FIGURE D.1 Screenshot of a Sample Jupyter Notebook, which shows the Python code initializing the  
model parameters, a brief explanation, and the incomplete provided example.  
https://github.com/cvieiram/introPythonIngenieria/blob/master/Sample%20Jupyter%20Notebook.ipynb

pROJeCT TeMpLATeS

Sample Jupyter Notebook: Figure D.1 depicts a screenshot of the sample Jupyter Note
book provided to the students for them to complete the SIR model.

https://github.com/cvieiram/introPythonIngenieria/blob/master/Sample%20Jupyter%20Notebook.ipynb
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FIGURE D.2 Screenshot of the Jupyter Notebook with the full solution to the SIR model.  
https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb

pROJeCT SOLUTiOn

Completed Jupyter Notebook: Figure D.2 shows the screenshot of the solution to the 
SIR model in a Jupyter Notebook. Figure D.3 shows the Python code that reports 
the outcomes of the SIR model once the simulation is completed.

https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb
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FIGURE D.3 Screenshot of the section in the Jupyter notebook that reports the outcomes of the model.  
https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb

https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb
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ASSESSMENT RUBRIC

TABLE D.1 Assessment rubric for the project solution

Criteria Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

PROGRAM EXECUTION

Evaluates the level of detail 
and explicitness in the writ-
ten procedure. Does the 
program execute correctly? 
(30%)

Program does not 
compile or run at 
all.

Program runs, but 
mostly incorrectly 
(correct output 
30%–74% of the 
time).

Program produces 
correct output 
most of the time 
(75% of the time 
or more).

Program runs 
correctly.

SPECIFICATION 
SATISFACTION

Evaluates the degree under 
which the solution satis-
fies the specification. Is the 
solution accurate and of 
high quality? Does it satisfy 
the problem specifications? 
(30%)

The solution is 
incomplete and 
lacks quality.

Program does 
not satisfy the 
specifications.

Many parts of the 
specifications are 
not implemented.

Solution is low 
quality.

Only some of the 
specifications are 
satisfied.

Most parts of the 
solution are accu-
rate (75% or 
more).

Most of it depicts a 
model of quality.

Program satisfies 
most of the speci-
fications (75%).

The solution is very 
accurate and of 
high quality.

Program satis-
fies specifications 
completely and 
correctly.

CODING STYLE

Measures how well the 
solution is written.

Is the code ease to follow? 
Does it appropriately use 
the language capabilities? 
(10%)

Incomprehensible 
code.

Appropriate 
language capabili-
ties unused.

Code hard to 
follow in one 
reading.

Poor use of 
language 
capabilities.

Code basically 
organized.

Code does not 
follow basic 
coding standards.

Well-formatted, 
understandable 
code.

Appropriate use 
of language 
capabilities.

DEPLOYMENT OF 
DISCIPLINARY CONCEPTS

Evaluates whether the 
student can use the solu-
tion to approach a disci-
plinary problem.

Can the student use their 
code as applied to some 
disciplinary problem or to 
solve some related ques-
tion? (30%)

There is no 
solution.

The student is 
not able to apply 
the solution to 
the disciplinary 
problem.

The student is able 
to roughly align 
the solution to 
the disciplinary 
problem.

The student does 
not fully under-
stand the output.

The student is 
able to apply 
the solution to 
the disciplinary 
knowledge with 
certain changes or 
constraints.

The student 
explains the 
results but depicts 
some misconcep-
tions about disci-
plinary concepts.

The student is 
able to seamlessly 
apply the solution 
to the disciplinary 
knowledge.

The student is able 
to explain the 
results in terms of 
the discipline.
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