

TEACHING AND LEARNING IN STEM
WITH COMPUTATION, MODELING,

AND SIMULATION PRACTICES

Purdue University Press • West Lafayette, Indiana

A Guide for Practitioners and Researchers

TEACHING AND LEARNING IN STEM
WITH COMPUTATION, MODELING,

AND SIMULATION PRACTICES

Alejandra J. Magana

Copyright 2024 by Purdue University. All rights reserved.
Printed in the United States of America.

Cataloging-in-Publication Data is on file with the Library of Congress.
978-1-61249-926-0 (print)
978-1-61249-927-7 (epub)
978-1-61249-928-4 (epdf)

Cover: Composite image using the following assets: monsitj/iStock via Getty Images;
maxkabakov/iStock via Getty Images

I dedicate this to my family,
for your constant love and support;

and to my collaborators and mentors,
for your advocacy and the

opportunity to learn from you

CONTENTS

Foreword ix
Preface xi

INTRODUCTION 1

CHAPTER 1 3

Models, Modeling, and Simulation, 3
Model-Based Reasoning and Implications for Education, 4

CHAPTER 2 7

A Curricular Framework for Integrating Modeling and
Simulation Practices, 7

Assessment Guidelines for Modeling and Simulation Practices, 11
Pedagogical Guidelines for Supporting Modeling and Simulation, 17

CHAPTER 3 21

Designing for Novice Learners, by Michael Falk, 21
Time-Dependent Partial Differential Equation Implementation With

MATLAB, 22
Designing for Capstone Courses, by Joseph Lyon, 27

Modeling Heat Transfer and Sterilization Within a Food Canning
Operation, 28

Designing for Learning in the Laboratory, by Hayden Fennell, 33
Modeling Fundamental Mechanics in Physics Labs with VPython, 33

Designing for K-12 Settings, by Camilo Vieira, 41
Modeling the Spread of an Infectious Disease, 41

CHAPTER 4 49

Toward Adaptive Expertise in Computation, 49
Cognitive Apprenticeship Models, 52
A Computational Cognitive Apprenticeship, 55
New Research Directions, 59

CONCLUSION 67

CONTENTSviii

APPENDICES 69

Appendix A. Sample Project and Solution for Designing for Novice
Learners, 69

Appendix B. Sample Project and Solution for Designing for Capstone
Courses, 81

Appendix C. Sample Project and Solution for Designing for Learning
in the Laboratory, 97

Appendix D. Sample Project and Solution for Designing for K–12
Settings, 117

Acknowledgments 123
References 125
Index 137
About the Contributors 143
About the Author 145

FOREWORD

FOR CENTURiES, WE SCiENTiSTS AND ENGiNEERS HAvE CREATED MATHEMATiCAL

models of physical objects and processes. Early astronomers predicted the future posi-
tions of the planets by modeling their motions with Kepler’s laws, which specify math-
ematically the shape of an orbit and the variations in orbital speed. Engineers estimated
fluid pressures by modeling hydraulic systems with control-volume analysis.

As our understandings of the natural and constructed worlds deepened, our mathe-
matical models became larger and more sophisticated. To efficiently perform the calcu-
lations required by these larger models, we started using electromechanical calculators
and digital computers. With computers, we can process large amounts of data to fore-
cast the weather every day. Large datasets are used by machine learning algorithms in
many contemporary applications of artificial intelligence, such as diagnostic radiology
and voice recognition. The outputs of computational simulations are often visualiza-
tions of processes, such as the gradual evolution of a forest in a warming climate, and
the rapid drift of electrons in a field-effect transistor. These visualizations display slow
and fast processes on a human time scale.

To prepare future scientists and engineers to use computation in their professional
careers, classroom instructors have begun to incorporate learning activities in which
students develop computational models and perform computational simulations. To
use computation successfully, students should learn more than how to enter data into
a commercial software package for computational fluid dynamics. They should be pre-
pared to think carefully as they write the code that defines a computational model. They
should be able to identify the limitations and potential errors, such as ineluctable errors
in converting the continuous variables of a mathematical model into the discrete vari-
ables of a computational model. The question is, How can instructors teach computa-
tional concepts and thinking skills effectively?

Recently, studies of computational thinking have been conducted by education re-
searchers as one strand of discipline-based education research (DBER) in science and
engineering. DBER publications are intended to be read by other DBER researchers,
not by classroom instructors. For example, articles in the Journal of Engineering Education,
for which I served as the editor for five years, would be difficult for engineering instruc-
tors to understand — we DBER researchers have enough difficulty understanding these
articles ourselves! Thus, there is a great need to synthesize the findings of DBER stud-
ies into recommendations for classroom instructors. This synthesis effort is an import-
ant, underappreciated form of scholarship.

In this book, Alejandra Magana and her associates bring the findings of DBER stud-
ies on computational thinking to a broad audience of classroom instructors across all sci-
ence and engineering subjects. The book applies state-of-the-art instructional frameworks

FOREwORDx

to structure comprehensive instructional modules for computational modeling and sim-
ulation and offers examples of actual instructional modules for a high school course, for
two first-year college courses, and for a capstone design course for advanced undergrad-
uates. The modules include prompts for students to think critically as they design and
debug computational models to solve authentic problems and emphasize that students
should validate and verify their models.

In summary, I believe that this book will guide and inspire instructors to create learn-
ing activities that teach skills in computational modeling and simulation, essential skills
that will enable students to become effective scientists and engineers in this century.

MICHAEL C. LOUI

PROFESSOR EMERITUS OF ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

PREFACE

COMPUTiNG HAS BECOME THE THiRD PiLLAR OF SCiENCE AND ENGiNEERiNG, DRiv-

ing discovery and innovation in industry and academia. In addition, the modern work-
force must be equipped with computing skills to fulfill the job market demands. As a
result, faculty members in higher education institutions have integrated computational
methods and tools into their teaching in the form of computation, modeling, and sim-
ulation practices. However, doing this integration successfully is not easy for faculty
members due to packed curricula, among other difficulties, nor for their students due
to the integration of multiple concepts and skills (i.e., mathematics, engineering, pro-
gramming). These difficulties often result in computation, modeling, and simulation
practices largely left untaught or narrowly introduced at the undergraduate level in the
context of science and engineering courses, except those for computer science and elec-
trical engineering majors.

One way in which faculty have identified methods to integrate computation, mod-
eling, and simulation practices in undergraduate education is by deploying computa-
tional learning modules as project assignments (e.g., two or three small projects within
a semester-long course). Such modules have mainly been deployed as homework as-
signments, final projects, or term projects. However, the issue of students experiencing
learning difficulties is hard to address without implementing proper learning strategies
and pedagogical methods. That is, while learning challenges can be addressed when
the instructor or the teaching assistant is present in the classroom, students mainly en-
gage with the computational assessments outside of the classroom (i.e., as take-home
assignments). In those instances, precisely, students need pedagogical support to guide
them in recalling prior knowledge and applying learning strategies to approach learn-
ing challenges. Supporting students’ learning processes within, but more importantly
outside of, the classroom is the main motivation for this book.

This instructor’s guide is addressed to faculty members in higher education institu-
tions who want to integrate modeling and simulation practices within science, technol-
ogy, engineering, and mathematics (STEM) disciplinary courses. It is also addressed to
discipline-based education researchers who engage in the scholarship of teaching and
learning with the goals of (1) improving the students’ learning and expertise develop-
ment and (2) contributing with new knowledge in their corresponding fields. The au-
thor assumes that the reader has the disciplinary knowledge and computational skills
to do so. Thus, this guide focuses on the instructional (how to design learning experi-
ences), pedagogical (how to deliver and support the learning experiences), and educa-
tional research (what new knowledge can be derived from the interventions) aspects. In
addition to providing guidance on designing, delivering, and evaluating instructional

PREFACExii

interventions in the context of computation, modeling, and simulation practices, this
guide also provides a collection of exemplary computational assignments.

This work results from more than 15 years of conducting education research in and
out of undergraduate STEM classroom settings. It also has had implications for K–12
education. Each classroom implementation has been performed closely between engi-
neering or science education researchers and the course instructor who implemented a
specific module or lesson. Each module or instructional unit presented in this guide has
been iteratively refined based on the findings. The author and the collaborating contrib-
utors hope that the readers and their students successfully integrate computation, mod-
eling, and simulation practices sooner, better, and with greater success.

iNTRODUCTiON

ADvANCEMENTS iN CYBERiNFRASTRUCTURE ALLOWiNG THE DEPLOYMENT OF LARGE-

scale simulations along with the deluge of accumulated scientific data have revolutionized
scientific and engineering disciplines. Furthermore, new disciplines such as simulation-
based and computational and data-enabled engineering and science, among others, have
now been recognized as distinct intellectual and technological disciplines residing at the
intersection of mathematics, statistics, computer science, and science and engineering
disciplines. While science and engineering disciplines take advantage of these advance-
ments by adopting new tools and practices to support discovery and innovation, sci-
ence and engineering education lags behind in instilling in future graduates the ability
to infer meaning from data collected from measurements or computational simulations.

To take steps toward closing this gap between research and industry needs and ac-
ademic preparation for the 21st-century skills, this guide provides a practical approach,
along with examples of curricular materials that can assist faculty in adopting these prac-
tices as part of their disciplinary courses. It also follows an approach to understanding
by design (Wiggins and McTighe 1997, 2005), which aligns the content and practices
being learned with acceptable evidence of learning, along with the planning and deliv-
ery of the experiences and instructional approach.

This instructor’s guide is organized as follows. Chapter 1 motivates the work and in-
troduces the theoretical foundation of model-based reasoning for developing under-
standings and skills associated with computation, modeling, and simulation practices.
Chapter 2 describes our approach to understanding by design for integrating computa-
tion, modeling, and simulation practices in undergraduate STEM education. Specifically,
this chapter proposes a curricular framework for introducing modeling and simulation
practices throughout the undergraduate curriculum in STEM disciplines. We then pro-
pose assessment guidelines for evaluating students’ performance when solving modeling
and simulation challenges, followed by pedagogical strategies and methods informed
by evidence-based practices.

Chapter 3 presents a selection of curricular designs that integrate computation, mod-
eling, and simulation practices for different audiences and contexts. The audiences range
from K–12 learners to novice and advanced undergraduate learners. The context and
scope range from classroom activities to support disciplinary learning, to implementa-
tion in the laboratory to support experimentation, to integration in a capstone design
course through an extended period of time, to being part of a K–12 science classroom.

Chapter 4 elaborates on the theoretical foundation of research pertaining to the in-
tegration of computation, modeling, and simulation in undergraduate STEM education,

INTRODUCTION2

summarizes findings from more than a decade of research in this area, and proposes a
pedagogical framework called a computational cognitive apprenticeship. This chapter
also elaborates on opportunities for future research.

1
CHAPTER 1 MOTivATES THE iNTEGRATiON OF COMPUTATiON, MODELiNG, AND SiM-

ulation practices in STEM education and provides the theoretical foundation for de-
veloping understandings and skills associated with computation, modeling, and sim-
ulation practices. We first define models and modeling as well as a simulation in the
context of STEM education. We then characterize model-based reasoning as the pri-
mary underlying thought process when engaging in modeling and simulation practices.

MODELS, MODELING, AND SIMULATION

A model is referred to as an abstract, simplified representation of a system or a phenome-
non that makes its essential features explicit and visible so that it can be used to generate
explanations and predictions (Harrison and Treagust 2000). Representational models, such
as diagrams, graphs, simulations, or equations, are central to scientific research (Bowen,
Roth, and McGinn 1999) as well as to the solution of complex problems in workplace en-
gineering (Jonassen, Strobel, and Lee 2006). Models are used in engineering to gain in-
sight into the material world (Carlson 2003), further interpret information about a prob-
lem (Higley et al. 2007), identify relationships between its components (Brophy and Li
2010), and provide the potential for new solutions to it (Jonassen, Strobel, and Lee 2006).

Modeling practices refer to the processes of constructing analogical models and rea-
soning through manipulating them. This ability develops as people learn domain-specific
content and techniques (Nersessian 1999). Reasoning with models entails the formation
of a conception of the mental model first, followed by further abstraction to create a for-
mal expression in the form of a mathematical model, law, axiom, or theory (Nersessian
1999). Modeling is a powerful cognitive tool because it simplifies the complexities of
the real world, allowing us to concentrate our attention on the aspects that are of great-
est interest or significance (Feurzeig and Roberts 1999). Creating this formal expression
involves (a) the representation of one system by another, (b) the self-conscious separa-
tion of a model and its referent, (c) the explicit consideration of measurement error, and
(d) the understanding of alternative models (Lehrer and Schauble 2000).

In science and engineering practice, modeling and simulation processes are com-
bined in an iterative cycle where a phenomenon is studied or a system under study is
altered. Modeling consists of producing a model to represent the inner workings of a

CHAPTER 14

system. Simulation refers to the operation of a model that can be reconfigured and ex-
plored (Maria 1997). Specifically, scientific modeling practices identify key aspects of
a theory and evidence in an expressed representation, use the representation to illus-
trate, predict, and explain phenomena, and evaluate and revise the representation as it
is used (Schwarz et al. 2009). Engineering modeling practices require both the abil-
ity to produce, manipulate, interpret, and reinterpret models and the ability to compre-
hend equivalences in different modes of expression and to learn, transform, and apply
information from one representation to another (Sigel 1999). A computational simula-
tion is often used to perform mathematical experimentation to aid these processes so
that individuals connect observed phenomena with their underlying models and causal
processes (Feurzeig and Roberts 1999).

Closely related practices to modeling and simulation are computation practices. Com-
putation practices refer to the use of advanced computing capabilities to understand and
solve complex problems by developing and using mathematical models. In the context
of science and engineering, different classes of mathematical equations need to be con-
stantly related to the modeling of physical systems (Bellomo and Preziosi 1994). Some
of the mathematical models can be solved by analytic methods, but others require nu-
merical techniques. Thus, computation is necessary to approach the solution of prob-
lems relating to the analysis of models (Bellomo and Preziosi 1994). Problems requiring
numerical techniques are often nonlinear, making them solvable only by computa-
tional methods. Thus, engaging with models — conceptual, mathematical, and computa-
tional — is at the core of computation, modeling, and simulation practices.

MODEL-BASED REASONING AND
IMPLICATIONS FOR EDUCATION

The ability to create models or representations from existing ones has been referred to
as model-based reasoning (Nersessian 2002). That is, model-based reasoning entails ab-
stracting physical phenomena into some form of a representational model. These models
are either created or adapted, connecting or transforming them into other represen ta-
tional forms such as equations or computational models during problem-solving epi-
sodes (Nersessian 2002).

Previous research has identified the reasoning processes associated with modeling
activities, including the following (Löhner et al. 2005; Shiflet and Shiflet 2014):

Analyzing the problem, where the objective is determined, and the type of prob-
lem is identified.

Formulating the problem, where the problem is decomposed and then articulated
into a model. During problem formulation sub-steps are also determined,
such as gathering data, making assumptions and simplifications, determin-
ing variables and relationships between variables, and determining equations
and functions.

CHAPTER 1 5

Implementing the model, which involves using different methods, techniques, and
computational tools at the same time as making assumptions and simplifica-
tions as they build or configure the model.

Solving the model, which consists of executing the model multiple times, interpret-
ing the output of the model, and synthesizing the results and findings.

Verifying and validating the model, which consist of determining whether the solu-
tion works correctly and the model satisfies the problem’s requirements.

Reporting the model, which concerns the documenting of the model design and
model solution, reporting results and conclusions, and recording assumptions
and limitations.

Maintaining the model, which consists of making desirable improvements, correc-
tions, and enhancements.

When promoted in educational settings, these reasoning processes have been referred
to as model-based learning and teaching. Model-based learning refers to the knowl-
edge and skills gained from constructing models, using and evaluating models, and re-
vising and elaborating models (Gobert and Buckley 2000; Louca and Zacharia 2012;
Schwarz et al. 2009). Model-based teaching refers to the instructional conditions that
implement learning activities intended to facilitate model-building at the individual
and group levels. These learning activities must be orchestrated and sequenced follow-
ing a proper pedagogy and also well supported with scaffolding (Gobert and Buckley
2000). Scaffolding refers to all types of support and guidance offered in and outside of
the classroom either by the instructor, peers, or technology (Boblett 2012). The chap-
ters that follow provide design principles and samples of learning activities that bring
together model-based teaching and learning to engage learners in modeling and sim-
ulation practices.

2
CHAPTER 2 PRESENTS A FRAMEWORK THAT ALiGNS THE ESSENTiAL ELEMENTS FOR

designing and implementing computation, modeling, and simulation practices into
STEM disciplinary coursework. Essential elements required for an instructional design
and implementation can be described through understanding by design (Wiggins and
McTighe 1997, 2005). Understanding by design is a model or framework that empha-
sizes a set of tools and practices that consist of three stages: (1) identifying the desired
learning outcomes (the content and practices to be learned), (2) determining the ac-
ceptable evidence of learning (the method of assessing learning), and (3) planning the
experiences and instructional approach (or pedagogy).

Based on the understanding by design framework, we first propose a curricular frame-
work for introducing computation, modeling, and simulation practices throughout the
undergraduate curriculum in STEM disciplines. We then propose assessment guide-
lines for evaluating students’ performance when solving computation, modeling, and
simulation challenges. Finally, we also propose pedagogical strategies and scaffolding
methods informed by the cognitive apprenticeship model. Cognitive apprenticeship is a
model of instruction that deliberately addresses the reasoning processes associated with
performing a task or solving a problem, making them visible or explicit to the learner
(Collins, Brown, and Newman 1989).

A CURRICULAR FRAMEwORK FOR INTEGRATING
MODELING AND SIMULATION PRACTICES

An important step when designing learning experiences is to clearly specify what stu-
dents must learn and do to complete a lesson or course. However, decisions about learn-
ing outcomes need to be taken within some specific context and with a particular au-
dience in mind. Context and audience definitions allow instructors to make explicit
assumptions about previous knowledge. This precise initial approach is also needed
when integrating computation, modeling, and simulation practices into our curriculum.

In our previous work (Magana and Coutinho 2017), we distinguished different com-
puting audiences by following Hu’s (2007) work. In that study, Hu made a distinction
between computation skills for “the specialists” and computation skills for “the crowds.”
Hu (2007) identified the crowds as engineers, scientists, and mathematicians evaluat-
ing and using computation and the specialists as computational scientists, engineers,

CHAPTER 28

and mathematicians who, in addition, create computational tools and algorithms. As
shown in figure 2.1, we proposed that a crowds approach is needed for integrating com-
putation, modeling, and simulation practices for STEM domains. We argued that stu-
dents in STEM majors need to become proficient at integrating computation, model-
ing, and simulation for the crowds. As proposed in figure 2.1, in a crowds perspective,
as opposed to a specialist perspective, students in STEM domains need to develop the
knowledge and skills that enable them to identify when, why, and how computation
methods work and don’t work. They must also be able to apply or modify existing nu-
merical methods or methodologies to successfully solve problems or design solutions
(Hu 2007). Excellent learning materials and resources have been created for the spe-
cialists, such as the book Introduction to Computational Science: Modeling and Simulation
for the Sciences by Angela Shiflet and George Shiflet (2014). In comparison, our book
focuses on supports for teaching and learning computation, modeling, and simulation
practices for the crowds.

Once the context and target audience have been identified, we can define the learn-
ing objectives. Disciplinary faculty often focus their learning objectives on the subject
domain, but specific practices are sometimes assumed. We would like to emphasize
that in addition to identifying specific learning objectives within specific disciplinary
courses, it is also important to thoughtfully identify computation, modeling, and sim-
ulation practices and corresponding objectives in parallel.

In our previous work, we proposed a learning progression. A learning progression
refers to a purposeful sequencing of teaching and learning expectations across multiple

The “specialists” The “crowds”

Computer Science Computational Science
and Engineering

Science and Engineering

Focuses on the systematic
study of algorithmic
processes that describe and
transform information: their
theory, analysis, design,
e�ciency, implementation,
and application (Denning
2000).

Focuses on the study and
development of
computational tools,
techniques, and methods,
which uses knowledge in
one discipline to solve
problems in another (Yasar
et al. 2000).

Focuses on the evaluation
and use of computation
techniques and tools by
applying or modifying
existing numerical methods
or methodologies to
successfully solve problems
in their respective field (Hu
2007).

FiGURE 2.1 Different audiences of computing. (Adapted from Magana and Coutinho 2017.)

CHAPTER 2 9

grade levels for using, creating, evaluating, and revising models suitable for the crowds
(Magana 2017). These expectations can directly inform the identification of learning ob-
jectives related to computational, modeling, and simulation practices. This learning pro-
gression can be used as a guideline for integrating modeling and simulation practices
within disciplinary courses in STEM. Specifically, our learning progression represents
a logical roadmap that can guide the coherent development of curriculum, assessment,
and instruction (Corcoran, Mosher, and Rogat 2009). The learning progression was
derived from eight national reports from organizations such as the US Department of
Defense (two reports), the US Department of Energy (one report), the US National
Science Foundation (three reports), the Association of Computing Machinery and
IEEE (one report), and an introductory book to modeling and simulation for the sci-
ences (Magana and Coutinho 2017). The learning progression was later revised and val-
idated by 37 science and engineering experts from industry and academia as part of a
three-round Delphi study (Magana 2017).

The proposed learning progression is organized into three levels of achievement, each
organized in practices consisting of constructing, using, evaluating, and revising mod-
els. The levels indicate higher-order learning goals. In the following sections, we pres-
ent each level and the corresponding practices.

Level 1: Essential Modeling and Simulation Skills
Level 1 is characterized by practices that can be integrated into the first and second
years of undergraduate education. These practices are also the ones identified as essen-
tial for STEM graduates. Table 2.1 describes the practices and performances for Level 1.

TABLE 2.1 Practices and performances for Level 1

Practice Performance

Constructing models Students construct visual representations of data, such as graphs, charts, tables,
and histograms, using standard domain-specific software, application program-
ming interfaces, or built-in libraries within scientific computing software.

Given a simple model, students identify the corresponding mathematical model
and use computer programming methods or APIs to implement an appropri-
ate algorithm representing abstractions of reality via mathematical formulas,
constructions, equations, inequalities, constraints, and so forth.

Using models Students use existing computational models or simulations to comprehend, char-
acterize, and draw conclusions from visual representations of data by evaluat-
ing appropriate boundary conditions, noticing patterns, identifying relationships,
assessing situations, and so forth.

Evaluating models Students compare the results of models and simulations to laboratory experi-
ments, theory, measurements, test cases, and so forth to determine their align-
ment, overlap, or goodness of fit, among other metrics.

Revising models Students extend or adapt simple models from one situation to another, either
by configuring the model through a graphical user interface or by modifying or
extending existing code.

CHAPTER 210

Level 2: Highly Desirable Modeling and Simulation Skills
Level 2 modeling and simulation practices are characterized by those skills that can be
integrated into the third and fourth years of undergraduate education. These practices
are more complex than the ones presented in Level 1 and were identified as highly de-
sired for industry and academic settings. Table 2.2 describes the practices and perfor-
mances for Level 2.

Level 3: Specialized Modeling and Simulation Skills
Level 3 modeling and simulation practices are characterized by highly complex skills
integrated into advanced degrees (i.e., master’s and doctoral students). These skills are
more specialized and often needed for research and development purposes. Table 2.3
describes the practices and performances for Level 3.

Once the learning objectives have been identified, the next step is to align the as-
sessment with those specific learning objectives. In a way, the learning objective is al-
ready prescribing the assessment method. For example, if the learning objective is as-
sociated with modeling practices of constructing models, it is then necessary that the
assessment would consist of evaluating the models students built. We elaborate more
on the assessment in the following section.

TABLE 2.2 Practices and performances for Level 2

Practice Performance

Constructing models Students connect simulation and visualization by first visualizing data using
numerical outputs from a simulation and then interacting with the visualization
to engage in critical thinking about the simulated model.

Students implement simple computational models by creating discretized mathe-
matical descriptions of an event or phenomenon using high-level programming
languages or scientific computing software.

Using models Students use simulations at different scales to deploy the correct solution method,
inputs, and other parameters to explore theories and identify relationships
between modeled phenomena.

Students use computational models or simulations to design, modify, or optimize
materials, processes, products, or systems.

Students use computational models or simulations to design experiments to test
theories, prototypes, products, materials, and so forth.

Students use computational models or simulations to infer and predict physical
phenomena or the behaviors of engineered systems.

Evaluating models Students evaluate the benefits and disadvantages of competing computational
models or simulations by determining and weighing factors such as assumptions,
limitations, precision, accuracy, reliability, validity, and complexity.

Students acknowledge and estimate uncertainty as part of the interpretation of
simulation predictions.

Revising models Students use external data, theories, or additional simulation tools to calibrate,
verify, or improve the accuracy of computational models or simulations.

CHAPTER 2 11

TABLE 2.3 Practices and performances for Level 3

Practice Performance

Constructing models Students construct new computational models or simulations by developing algo-
rithms and methods that simulate physical phenomena and engineered systems.

Using models Students interface computational models or simulations directly with measure-
ment devices such as sensors, imaging systems, real-time control systems, and so
forth.

Evaluating models Students discern between different algorithms or computational methods to
describe physical models or engineered systems as computational representations.

Students determine and quantify the reliability of computer simulations and their
predictions.

Students determine variability in data due to immeasurable or unknown factors
via uncertainty quantification methods or techniques.

Students evaluate algorithms by determining uncertainties and defining error,
stability, machine precision concepts, and the inexactness of computational
approximations (e.g., con ver gence, including truncation and round-off).

Students verify a simulation model based on software engineering protocols, bug
detection and control, and scientific programming methods.

Students validate a simulation model based on prescribed acceptance criteria such
as observations, experiments, experience, and judgment.

Revising models Students identify the mechanisms for exchanging information to bridge models
across scales and maintain computational tractability.

Students iteratively and systematically evaluate and improve their computational
models or simulations’ fidelity, accuracy, reliability, performance, and cost (mone-
tary and computational).

ASSESSMENT GUIDELINES FOR MODELING
AND SIMULATION PRACTICES

The attainment of modeling and simulation skills is difficult to assess. Especially in
higher education, in the context of STEM courses, one form of assessment often used
is examinations, which evaluate multiple learning outcomes at a time. For instance,
mid-semester and final semester examinations may assess the learning of concepts, the
application of a mathematical formulation to represent a problem, including accurate
calculations resulting in a value, and the creation or interpretation of graphs represent-
ing cause–effect relationships, among others. However, we advocate that for assess-
ing computation, modeling, and simulation practices, we need assessment methods for
higher-order skills. In such assessments, students are elicited to demonstrate their ap-
plied knowledge, creativity, problem-solving, and critical thinking skills, where a careful
alignment between intended learning outcomes and evidence of the learning is critical.
A tool that permits the careful alignment between intended learning outcomes and ev-
idence of the learning is Pellegrino’s assessment triangle (Pellegrino, Chudowsky, and
Glaser 2001), as shown in figure 2.2.

CHAPTER 212

Figure 2.2 portrays the assessment triangle (inverted) that assists educators in de-
signing assessments focused on three key elements: (1) a model of student cognition
based on beliefs about how individuals represent information and develop competence
in a particular domain; (2) observations consisting of the evidence of students’ compe-
tencies that take the form of tasks that elicit responses from students; and (3) interpre-
tations that make sense of the evidence, usually in the form of analytic tools. Applying
the guidance from Pellegrino’s assessment triangle to evaluate modeling and simula-
tion practices, we used the assessment triangle shown in figure 2.3.

Model-based reasoning refers to a form of thinking associated with how individuals
make sense of or represent phenomena (including processes, systems, or products) by
using or creating external representations in the form of models (Johnson-Laird 1995).
As shown in figure 2.3, model-based reasoning is the main intended learning, thus repre-
senting the model of cognition. Based on our curricular framework for integrating mod-
eling and simulation practices, the observations associated with model-based reasoning
need to elicit practices such as constructing models, using models, evaluating models,
and revising models (i.e., the model-eliciting activities in figure 2.3), as described in
tables 2.1, 2.2, and 2.3. The overt processes students followed or the artifacts they cre-
ated can represent evidence of such observations. For interpretation of the observations,
a common practice is the use of rubrics evaluating criteria based on specified levels of
performance. We now elaborate on these ideas.

VanLehn (2013) identified that the process of model construction can be assessed
in terms of product and process. Product assessment focuses on evaluating the quality
of artifacts (i.e., models) that students constructed, typically by identifying their level
of correctness and acceptability. Also, a common assessment approach in the product

Interpretation

Cognition

Observation

A set of specifications
for assessment tasks
that will elicit
illuminating responses
from students

Beliefs about how humans
represent information and
develop competence in a
particular academic domain

Methods and analytic
tools used to make
sense of and reason
from the assessment
observation/evidence

FiGURE 2.2 Pellegrino’s assessment triangle. (Adapted from Pellegrino, Chudowsky, and Glaser 2001.)

CHAPTER 2 13

category involves identifying students’ increased or enhanced existing domain knowl-
edge. Process assessment focuses on evaluating students’ behaviors when constructing
models and their ability to transfer those skills for the construction of similar models.
We suggest an evaluation approach that mainly focuses on products and processes di-
rectly associated with the modeling and simulation process. However, at the end of this
section, we also explore other common assessment forms in this context.

To identify whether students have acquired computation, modeling, and simulation
skills, it would be first necessary to identify whether they have engaged in model-based
reasoning. Evidence of engagement in model-based reasoning would include behaviors
associated with the modeling and simulation process. For instance, has the student an-
alyzed the problem, decomposed it, and then articulated it into a model? Has the stu-
dent identified the proper mathematical formulation and implemented a functional nu-
merical solution in the form of a computational simulation? Has the student engaged
in validation and verification processes to evaluate their solution? Has the student used
the model to solve the science or engineering problem?

Here we propose that modeling and simulation skills be assessed in processes and
products. Processes and products could be evaluated together by eliciting students’ ra-
tionale and explanations in the form of a final report, along with the produced com-
putational model (i.e., the actual executable file). Guidance to create a final report can
be provided in the form of a template. The template ought to provide some guidance
on what ideas should be described in each section of the report. Figure 2.4 presents a
sample of a template.

Interpretation

Cognition

Observation

Model-eliciting activities:
Elicit learners to the
process of creating,
testing, revising, and
using externalized
scientific models

Model-based reasoning:
A form of thinking associated with
how individuals make sense of
phenomena through di�erent
forms of external representations
in the form of models

Assessment rubrics:
Focus on the process and
the artifacts students
generated; can focus
on metacognitive
processes too

FiGURE 2.3 Application of the assessment triangle for modeling and simulation skills.

CHAPTER 214

FiGURE 2.4 Sample template for a project report. (Adapted from Shaikh et al. 2015.)

Template for a Modeling and Simulation Project Report

1. Describe the Problem

[Determine the problem’s objective and identify its characteristics.]

2. Frame the Problem

[Conduct a literature review to contextualize your problem and investigate the properties of

your model.]

3. Configure the Model

[Define a model that will help you solve the problem (define goals, information, assumptions,

boundary conditions) in terms of relevant models, concepts, or theories used in class or from

the literature. Identify assumptions and limitations.]

4. validate the Model

[Establish whether the simulation satisfies the problem’s requirements. You can validate it by

testing simple scenarios, by developing your own “toy” model (e.g., a MATLAB code of a simple

test case), by means of experimental conditions under the same assumptions, using a theoreti-

cal model, or by means of test cases using another computational tool.]

5. verify the Model

[Examine the results to determine whether the solution works correctly (verification) via testing

the solution to see if predictions agree with real data, data from industry standards, or data

published in scientific papers.]

6. Solve the Problem

[Show and explain your solution. Interpret the output and show how the proposed solution

addressed the problem/project. Identify limitations along with ranges of operation. Determine

whether the system works; if it does not work, provide an explanation/justification of why.]

In addition to the report template and additional instructions to also submit their
executable files with the implementations of their models, students should be provided
with a rubric that details performance levels and criteria to be evaluated. We suggest
the following six-step procedure for creating a rubric:

1. Select the desired modeling and simulation practices or performances from ta-
bles 2.1, 2.2, or 2.3, accordingly.

2. Identify how those practices and performances can be demonstrated by the stu-
dents either in terms of process or outcome.

3. Transform those processes or outcomes into detailed criteria to be evaluated.
4. Determine weighting for each criterion based on the level of effort required or

importance.
5. Set standards for levels of performance for each of the criteria (e.g., poor, basic,

proficient, and advanced) and determine the scoring in terms of points.
6. Identify observable factors that provide the basis for assessing which level of per-

formance has been achieved and describe those factors within each cell for stu-
dent and grader reference.

CHAPTER 2 15

Table 2.4 provides a sample rubric. This rubric can be used to evaluate students’ re-
ports as well as their created computational solutions. It was particularly designed for the
practices of constructing models (criteria 1, 2, and 3 from table 2.4), evaluating models
(criterion 3 from table 2.4), and using models (criterion 4 from table 2.4). Although the
criteria presented in the rubric have been more generally described, they can be aligned
further with specific performances from tables 2.1, 2.2, and 2.3.

Assessment methods can also evaluate the knowledge that results from engaging in
modeling and simulation practices. We briefly discuss other assessment mechanisms
proposed by VanLehn (2013). Assessments that evaluate learning or new knowledge
that resulted from engaging in modeling and simulation practices often take the form
of written exams or tests where students can be asked to do the following:

• Make predictions in the form of “what if ” questions that demonstrate student
understanding of cause–effect relationships.

• Sketch or interpret graphs demonstrating the relationship between two vari-
ables or the value of a variable over time.

• Construct explanations describing certain behaviors, including the evidence of
such behavior.

• Solve problems based on scenarios that prompt students to identify a mathemat-
ical model to solve the problem and perform handwritten calculations to solve it.

• Demonstrate conceptual understanding by explaining a concept.

TABLE 2.4 Sample rubric for a project report

Criteria Poor (0–3) Basic (3–5) Proficient (5–8) Advanced (9–10)

PROBLEM DESCRIPTION
(20%)

Describe the problem that
is proposed to be solved
and provide a justification
using literature from relevant
research papers.

An unclear
description of the
problem statement
and no relevant
research backing
provided.

Description of the
problem state-
ment needs refine-
ment. Inadequate
research relevance.

The problem is
defined appropri-
ately but needs a
little more refine-
ment in terms of
relevant literature.

The problem is
very well defined,
and the litera-
ture from rele-
vant research
work builds a
perfect case for the
problem.

PROBLEM FRAMING:
CONCEPTUAL (10%);
MATHEMATICAL (10%)

Build both a conceptual
model and a mathematical
model to solve the problem.

Interpret the problem (goals,
information, limitations, and
assumptions) in terms of
relevant models, concepts, or
theories.

No conceptual
or mathematical
model is included
in the report.

Both a concep-
tual and a mathe-
matical model are
provided but are
incorrect.

Both a concep-
tual and a math-
ematical model
are provided
but need minor
improvements.

Both the concep-
tual and mathe-
matical models
provided accu-
rately frame the
problem.

Continued

TABLE 2.4 Sample rubric for a project report

Criteria Poor (0–3) Basic (3–5) Proficient (5–8) Advanced (9–10)

PROBLEM SYNTHESIS: BUILD
(15%); VALIDATE (10%)

Evaluate the quality of the
solution approach built to
solve the problem. The simu-
lation or program needs to
be validated thoroughly with
either experimental data
or test cases. Predictively
compare and contrast alter-
nate solution processes in
terms of relevant metrics
(e.g., accuracy, precision, effi-
ciency, reliability, feasibility,
risk, impact). Use a simu-
lation or build your own
program that will help you
solve the problem.

The implementa-
tion of the solu-
tion approach is
incorrect.

The solution
approach is not
validated.

The implementa-
tion of the solu-
tion approach
serves the
purpose but needs
to be refined.

The validation
process for the
solution approach
needs to be
improved.

The implementa-
tion of the solu-
tion approach
provides the
approach to solve
the problem but
needs minor
improvements.

The validation
process for the
solution approach
needs minor
improvements.

The implementa-
tion of the solu-
tion approach is
accurate.

The solution
approach
is validated
appropriately.

PROBLEM SOLUTION
AND INTERPRETATION OF
FINDINGS (30%)

Determine whether the
executable code (i.e., the
computational model)
addresses the disciplinary
issue and solves a related
problem. Explain the output
of the model and how it
solves the problem.

No solution was
provided to the
problem.

Does not discuss
the application of
a solution for a
related problem.

A solution is
provided, but it is
incorrect or does
not adequately
address the issue
or problem.

Not a clear
description of
how the solution
can be used to
resolve a related
problem.

A solution is
provided that
would adequately
address the issue
or problem, but
it is presented
in a way that
is unclear or
improperly
documented.

A discussion is
included, which
describes the use
of the current
approach to
solving related
problems.

A solution is
provided that is
correct, clear, and
well-documented.

A very clear
description is
included, which
describes the use
of the current
approach to
solving related
problems.

ORGANIZATION OF THE
REPORT (5%)

Provide appropriate structure,
sentence construction, and
grammar.

The report is not
well structured
and contains 10 or
more grammat-
ical or sentence
construction
errors.

The report
contains 5 to 9
grammatical or
sentence construc-
tion errors.

The report is
structured well
and contains less
than 5 grammat-
ical or sentence
construction
errors.

The report
contents are well
structured. The
report contains no
grammatical or
sentence construc-
tion errors.

Source: Fennell et al. (2017).

Continued

CHAPTER 2 17

No assessment is perfect, but by focusing on the assessment of modeling and simu-
lation in products generated by students and processes enacted by them, we also increase
assessment fairness. For instance, research suggests that there tend to be discrepancies
in achievement between racial groups (Traxler et al. 2018). However, in the laboratory
or project-based courses, differences in achievement between these groups are not as
common (Traxler et al. 2018). We acknowledge that focusing the assessment of model-
ing and simulation practices on higher-order skills may bring practical challenges. Such
challenges include assessments being time-consuming and difficult to scale and requir-
ing training for graders (Diefes‐Dux et al. 2012). To balance feasibility and fairness, we
recommend giving students multiple opportunities to demonstrate what they know and,
at the same time, using a variety of assessment methods (Wiggins and McTighe 1997).
Assessment methods can range from informal checks for understanding (e.g., participa-
tion and quizzes) to knowledge evaluation (e.g., tests and exams) to performance tasks
(e.g., projects). In some instances, automated testing or assessments can assist in this
process. For instance, in cases of simple models, automated assessments can evaluate
for the correct solution, check for the use of the correct method, or evaluate the meet-
ing of tolerances. We also recommend including a balance of collaborative and individ-
ual assessments. Students could work together in developing a computational model to
be graded collaboratively but then have each student work on articulation or a reflec-
tion task individually. Examples of individual tasks could be to comment on the code,
write the final report, use the jointly created models to execute different experiments,
and submit an individual reflection assignment.

PEDAGOGICAL GUIDELINES FOR SUPPORTING
MODELING AND SIMULATION

Once the learning objectives and corresponding assessment have been identified, the
last step in the understanding by design framework is to determine the pedagogy to be
followed, along with necessary instructional support. This section introduces a pedagog-
ical model for guiding and supporting learners as they engage in modeling and simula-
tion practices. The pedagogical model is the cognitive apprenticeship model, which has
been derived from research in mathematics, reading, and writing education. The cog-
nitive apprenticeship model (Collins, Brown, and Newman 1989, 3) proposes the de-
sign of learning environments that merge “the content being taught, the pedagogical
methods employed, the sequencing of learning activities, and the sociology of learn-
ing.” Although apprenticeship models are typically thought of in connection to physical
or trade professions, the process by which individuals become proficient at integrating
modeling and simulation practices involves many of the same elements of a traditional
apprenticeship model (Sadler et al. 2010). The ultimate goal is that the instructor or in-
structional materials deliberately address the reasoning processes (i.e., the model-based
reasoning processes) associated with performing a task or solving a problem, making
them visible or explicit to the learner. Chapter 4 of this book further elaborates on the

CHAPTER 218

theoretical foundations of the cognitive apprenticeship model, its application to com-
putation, modeling, and simulation teaching and learning, and future research directions.

Our approach for integrating computation, modeling, and simulation practices into
the classroom follows the cognitive apprenticeship model guidelines to facilitate stu-
dent learning and engagement. Specifically, the cognitive apprenticeship framework has
been demonstrated to be effective in students’ learning of important content and skills
and their motivation and acceptance of course tasks and assignments. Accordingly, we
followed Collins and Kapur’s (2014) dimensions to support learning. The dimensions of
the cognitive apprenticeship framework are content, referring to the types of knowledge
required for expertise; method, referring to the pedagogical approach, learning strategies,
or teaching methods used; sequencing, referring to designing the structure and the order
of the tasks so as to optimize meaningful student engagement; and sociology, referring to
the context within which learning experiences are situated via the application of skills to
realistic problems (Collins and Kapur 2014). In the following sections, we describe each
of the elements of the cognitive apprenticeship model, including an explanation of how
each of them can be implemented in this context of modeling and simulation practice.

Content
The combination of domain knowledge with strategic knowledge has been referred to
as the content dimension. Domain knowledge refers to specialized knowledge in spe-
cific disciplines. Strategic knowledge includes (1) heuristic strategies, which are tacit
procedures that experts often use to solve common problems; (2) control strategies, in-
cluding metacognitive strategies such as monitoring, evaluating, and overcoming diffi-
culties, among others; and (3) learning strategies that deal with the identification of ef-
fective approaches for learning domain knowledge.

The content dimension is often accomplished inherently. Introducing modeling and
simulation practices within STEM domains brings together multiple types of knowl-
edge required for expertise. Specifically, combining domain knowledge with modeling
and simulation skills can bring together problem-solving, experimentation, and com-
putation skills. However, although this integration comes naturally, instructors need to
design learning experiences that combine multiple types of knowledge and skills and
at the same time help students recall their domain knowledge, facilitate its application
throughout the modeling process, and engage them in experimentation and design pro-
cesses. This means that the learning experience cannot finalize at the moment students
complete the implementation of a model into an executable code. The learning expe-
rience should be extended so that students intentionally engage in validation and ver-
ification processes. And extended so that students, once they create and evaluate their
model, then engage in experimentation practices to characterize a scientific phenome-
non or engage in design processes to solve an engineering problem or design a system.

Method
The method dimension refers to teaching approaches designed to help students acquire
integrated knowledge and skills through (1) modeling, where the instructor demon-
strates how to perform a task; (2) coaching, including observation and facilitation at the

CHAPTER 2 19

moment students perform a task; (3) scaffolding, regarding supporting methods to help
students perform a task; (4) articulation, consisting of instructors encouraging students
to state their knowledge and thinking; (5) reflection, where instructors enable students
to compare their performance with experts’ approaches; and (6) exploration, consisting
of instructors prompting students to solve problems on their own.

Different methods can be used to support learners in acquiring integrated knowl-
edge and skills. Traditional methods in higher education include modeling and coach-
ing, where the instructor demonstrates how to perform a task, and then students try it
on their own, either as a homework assignment or in the laboratory as part of an ex-
periment. Articulation is also common as students demonstrate and explain the knowl-
edge learned in the form of project reports. However, there are two methods that are
not often known or used by faculty: scaffolding and reflection. Scaffolding methods can
be thought of as those strategies that can support the student when the faculty is not
available to provide help (i.e., while solving a homework assignment). Scaffolding meth-
ods we have identified as highly effective include (1) the use of short video lectures ex-
plaining difficult concepts, (2) the use of worked-out examples (i.e., an expert solution
to a problem) demonstrating difficult calculations or implementations of a particular
function, (3) code snippets or templates of codes that can get students started with im-
plementing their computational solutions, and (4) test cases that can provide students
with opportunities to evaluate their solutions as they progress in their solution of mod-
eling challenges (Vieira et al. 2020).

However, we would like to caution the reader. Making materials available is not
enough; students often do not have the metacognitive skills to take advantage of these
resources naturally. Therefore, checkpoints need to be put in place so students benefit
from these resources. These checkpoints need to be translated into course credit that
motivates students to meaningfully engage with the material. For instance, students can
be prompted to take a quiz after watching a video lecture and get a score based on their
answers. Students can also be provided with extra credit to comment on worked-out
examples as a self-explanation strategy (Vieira et al. 2017).

Reflection methods can help students further connect their domain knowledge with
modeling and simulation practice. Reflection is an active process that must be fostered
by pedagogical design and supported through practice in the classroom (Jaiswal et al.
2021). Students can reflect on multiple aspects of their engagement with computation,
modeling, and simulation. For instance, students can reflect on their experienced chal-
lenges and the problem-solving strategies that helped them overcome those challenges
(Shaikh et al. 2015), or they can also reflect on how they evaluated and used evidence
to support their findings as part of their final reports.

Sequencing
The sequencing dimension consists of the principles and procedures used to guide the
ordering of the learning activities. Activities can be presented in three ways: (1) increas-
ing level of complexity, from simple to complex; (2) increasing level of diversity, con-
sidering a widening variety of application areas; and (3) global before local skills, where
learners first understand the relationship between concepts or principles before delving

CHAPTER 220

deeper into each of them (Collins, Brown, and Holum 1991). The sequencing princi-
ple can be adapted to provide explicit opportunities for students to engage in all stages
of the modeling and simulation process. Specifically, complete class periods can be de-
voted so that students can analyze the problem to be solved and articulate an initial
strategy. Students can submit their strategies to the instructors so they can also get spe-
cific guidance. Other class periods could be devoted to (1) the implementation of the
algorithm into a form of executable code, (2) the evaluation of their models by provid-
ing them with test cases to compare results, and (3) the simulation of the model and
interpretation of the findings.

Sociology
The sociology dimension relates to students learning skills in the context of their appli-
cation to real-world challenges and aspects of the social environment. Characteristics
affecting the sociology of learning environments include (1) learning opportunities,
where students learn in the context of working on realistic problems; (2) communities
of practice, where participants within the learning environment, such as a team, engage
and communicate while acquiring skills; (3) motivational strategies, where tasks are re-
lated to a personal goal or interest; and (4) cooperation, where students work together
in cooperative problem-solving. The sociology strategy that we have implemented in
our research consists of contextualizing the programming assignments within authen-
tic tasks (CTGV 1990). Contextualization can be used as a way to implement content
and sociology by situating the learning experiences within authentic tasks occurring in
real-life contexts. Therefore, as part of sociology, we concentrate on providing a balance
between individual and student work.

Implementing a flipped-classroom approach is one technique that can help faculty
balance individual and group work (Magana, Falk, and Reese 2013). Flipped-classroom
involves the integration of active in-class activities combined with assigned work to be
completed before and after the lecture (Abeysekera and Dawson 2015). Following this
approach, students can get some preparation before coming to class and then engage
in collaborative problem-solving during class time. Specifically, during the classroom
sessions, students can work together in groups to discuss how they could approach a
particular project and continue their discussions outside of the classroom. However,
to make each student responsible, it is important that grading accounts for individual
and group work. For instance, students can collaborate in defining and implementing a
computational model collectively, but they work individually on their reports and sub-
mit their created artifacts individually.

3
CHAPTER 3 CONSiSTS OF ExEMPLAR LEARNiNG DESiGNS THAT EMBED THE PRiNCi-

ples and procedures described in chapter 2. To provide a common ground between all
designs, each of them starts with an overview of the target audience and a lesson plan.
The lesson plan provides a detailed description of the alignment between content, as-
sessment, and pedagogy and the learning trajectory to be followed during the lesson.
Some lessons may take a day, some may take a couple of weeks, and some are four-week-
long implementations. Each learning design features a particular audience (i.e., K–12
students, first-year and advanced college students) and is delivered in a particular set-
ting (i.e., in-class teaching, laboratory settings, capstone courses, and professional de-
velopment). In addition, each is accompanied by an appendix that features (1) the in-
dications of the actual project, (2) a solution of the project, (3) a detailed description
of how the lesson was delivered, and (4) a rubric delineating assessment criteria. Each
learning design concludes with individual reflections on lessons learned by each author
during the implementation of the lesson.

DESIGNING FOR NOVICE LEARNERS
BY MICHAEL FALK

Introducing modeling and simulation practices into learning environments consisting
primarily of novice learners is challenging for the instructor and students. The main rea-
son is that computation, modeling, and simulation require the integration of multiple
disciplines and practices that students are unfamiliar with. Specifically, students have
to learn new programming concepts and combine those with scientific or engineering
concepts and advanced mathematical models that may require solving complex equa-
tions. So the question is, How do we design modeling and simulation learning experi-
ences for engineering students with minimal prior training in computing? And further-
more, What types of supports or scaffolding approaches are needed to assist students
as they engage in these learning experiences? The first question will be answered in the
first few sections of this learning design, while the second question will be answered
through the lessons learned.

CHAPTER 322

TIME-DEPENDENT PARTIAL DIFFERENTIAL
EQUATION IMPLEMENTATION wITH MATLAB

Context, Population, and Learning Need
This lesson was designed for first-year engineering students enrolled in an introductory
programming course. The programming course was a general gateway to computer sci-
ence on the intermediate level in addition to providing a computing background for
materials science and engineering students. This class was meant as a first introduc-
tion to applying algorithmic thinking and computer programming toward the solu-
tion of engineering and scientific problems. We used MATLAB as the programming
environment. The learning objectives of the class were that the student would be able
to (1) write MATLAB programs to execute well-defined algorithms, (2) design algo-
rithms to solve engineering problems by breaking these into small tractable parts, and
(2) model physical and biological systems by applying linear systems and ordinary and
partial differential equations. The class size was 20 to 30 students.

Theoretical Grounding of the Learning Design
For the theoretical grounding of this learning experience, we used the How People
Learn (HPL) framework (Bransford, Brown, and Cocking 2000). The HPL framework
is composed of four intersecting components (or lenses): (1) knowledge-centered, where
foundational knowledge skills and attitudes are the base core of the learning materials;
(2) learner-centered, where learning materials connect students’ prior knowledge and
interests; (3) community-centered, where an appropriate learning environment is pro-
vided within and outside the classroom; and (4) assessment-centered, where learners are
provided with multiple opportunities to represent their knowledge and receive feedback.

The course was knowledge-centered by combining concepts and practices of the in-
troduction of programming principles and procedures within the context of the ma-
terials science discipline. At the same time, students reinforced and developed their
computing concepts, methods, and practices through real-world applications of inter-
est to students majoring in material science engineering and related fields. The course
was learner-centered by applying an inverted classroom design method (Gannod, Burge,
and Helmick 2008; Lage, Platt, and Treglia 2000), which provided learners with mul-
tiple opportunities for practice and feedback during class time. At the same time, the
approach freed the instructor to use class time for collaborative activities in which stu-
dents worked through exercises, making the course community-centered. The instructor
helped students work through scaffolded programming activities as needed by contin-
ually monitoring student progress during class time. Specifically, students worked indi-
vidually and in informal groups during class, solo or collaboratively, solving some brief
programming exercises with short, interspersed instructor-led discussions of concepts
that required clarification. The class as a whole then collectively constructed a master
solution with instructor guidance. This provided opportunities to make the algorithm
design and programming process visible and public. Students also discussed their ap-
proaches with classmates while working on projects. The course provided learners with
multiple opportunities to demonstrate or apply their knowledge and receive feedback,

CHAPTER 3 23

thus making the course also assessment-centered. Specifically, students received feedback
in real time from the professor and teaching assistant during class. In addition, students
also received graded feedback on the project after scoring of the artifacts they gener-
ated (i.e., code, final report) with a rubric.

Problem Description and Learning Domain
The design of the project was centered on a modeling and simulation assignment to sup-
port research in devising minimally invasive and effective techniques to reverse ventric-
ular fibrillation, an important medical issue. (Ventricular fibrillation is the state where
the contraction of the lower heart chambers becomes disorganized and the heart is
no longer able to adequately pump blood to the rest of the body. It is one of the most
common causes of cardiac arrest.) Students were required to simulate the passage of
an electrical pulse through the heart muscle. For this, the problem was modeled as a
time-dependent partial differential equation.

While partial differential equations are typically advanced topics reserved for upper-
division engineering courses requiring prior mastery of vector calculus and differential
equations, in the context of modeling a physical or biological system, such equations
can be motivated in intuitive ways that are accessible to the novice learner. We based
this project on a numerical algorithm from the literature designed to efficiently model
spiral waves, such as those that develop in heart tissue, using a two-variable system of
reaction–diffusion equations (Barkley 1991). The resulting equations simulate the ex-
citability of the tissue as well as the diffusion and response of the electrical potential.
While complex to represent mathematically, the concept of diffusion itself is simple for
students to grasp when presented as a mechanism by which each simulated grid point
incrementally reverts to the mean of its nearest neighbors. Neumann boundary con-
ditions with zero normal gradients were imposed by enforcing that the grid point val-
ues on the boundary are equal to the neighboring grid point adjacent to the boundary.

Lesson Plan
The following lesson plan (table 3.1) aligns the learning objectives with the design of
the activity and its corresponding assessment. The project description, a possible project
solution, and corresponding assessment rubrics are presented in appendix A.

Reflection and Lessons Learned
The implementation of the lesson started by having students individually and on their
own time watch an online video that introduced the foundational knowledge, followed
by an online quiz. Students then worked collaboratively during class, solving a series
of short, preparatory programming exercises. These exercises took different forms, such
as providing a working code to students and having them predict the program’s out-
come. Other exercises had students debug and fix a given code that was not working or
implement a solution to generate the desired outcome. The class typically ended with
a micro-challenge where students had to apply the concepts and skills learned during
that class. Brainstorming sessions were facilitated by the instructor to elicit suggestions
on how to approach the solution to each micro-challenge. After discussing potential

CHAPTER 324

TABLE 3.1 Lesson plan for the time-dependent partial differential equation project

Instructor’s name:
Michael Falk

Discipline:
Materials Science and
Engineering

Course:
Computation for
Programing for MSE

Date:
November 28, 2017

1. Name of the topic or unit:
Time-Dependent Partial Differential Equation Implementation
2. Learning objective (from the syllabus):
Use of iteration in the simulation of partial differential equations, representation of two-dimensional data
in arrays, and boundary value problems.
3. Specific disciplinary learning objective(s) of the assignment/lab:
Students write MATLAB programs to solve mathematically well-defined problems.
4. Specific modeling and simulation practice(s):
Students implement simple computational models by creating discretized mathematical descriptions of
an event or phenomenon using high-level programming languages or scientific computing software.

• Model physical/biological systems are represented as a set of partial differential equations.
5. Assessment strategies and grading system:
A two-part project where the first part consists of the plan proposed by students to implement the solu-
tion, and the second part is the solution with the corresponding report.

Part I. Planning
• Articulated strategy identifying the design of the solution, coding approach, testing strategy, and de-

bugging approach (10%).

Part II. Solution and Documentation
• Program execution is free of syntax errors and responds to specifications (25%).
• Specification satisfaction is where the solution produces the correct output, and the output meets

specifications (25%).
• Well-structured and well-commented code (10%).
• Evidence of validation of the solution, including test cases with justification and their evaluation

(10%).
• Evaluation of the solution under the lens of the disciplinary concepts (20%).

6. Guidance materials and resources such as laboratory manuals and project templates (see appendix A):
• Instructor’s online lectures
• Worked examples for related exercises
• Example of a plan for a generic coding problem
• Test cases

7. Instrumentation and software tools:
• MATLAB software

CHAPTER 3 25

TABLE 3.1 Lesson plan for the time-dependent partial differential equation project

8. Specific instructional events:
A. Teaching method (ways to promote the development of expertise; see appendix A)
Three main teaching methods will be used:
1. Coaching, where the instructors and TAs make themselves available during lectures, lab sessions, and

extra office hours to provide feedback and individual consultations.
2. Scaffolding, provided in the following forms:

• Hints are embedded in the project description.
• Worked-out examples throughout the course provide students with approaches to solve parts of a

bigger problem.
• A first iteration where students receive feedback from the instructor/TA on their strategy before en-

gaging in the solution.
• Test cases that help students validate their solutions.

3. Articulation, where students are prompted to explain their solution via three different mechanisms:
• A preliminary strategy report where they structure their initial solution.
• In-code comments where they explain how they approached the algorithmic solution.
• A final report where they detail how they approached the problem and interpreted the solution un-

der the disciplinary problem.
4. Reflection will be facilitated in two ways:

• Allow students to discuss their own solutions with their peers during the lecture and laboratory ses-
sions.

• Have students compare their solutions against self-generated or instructor-provided test cases.

B. Sequencing of activities (ordering of learning activities; e.g., prelab, lecture, lab, homework)
The integration of the module will follow this sequence:
1. During class, the instructor introduces the theoretical background of the problem and how to model

time-dependent partial differential equation boundary value problems.
2. Requirements for the code structure, the planning report, and the final report are established over the term.
3. During the laboratory session, students start working on their planning strategy. Students continue work-

ing on their strategy after class, and once done, they submit it for initial feedback.
4. Once feedback is received on their initial strategy, students continue to work on the challenge through-

out the next week, in and outside of class. The instructor/TA provides continuous feedback.
5. After one week, students submit their solutions to the challenge (i.e., the MATLAB code) and the corre-

sponding report.

C. Sociology (social and contextual characteristics of the learning environment; e.g., individual or teamwork)
Students will be allowed to discuss their solutions with their peers during class time, but the final solu-
tion and report should be produced, debugged, and submitted individually. Also, the instructor and TA
will be available for one-on-one consultation.
9. Homework (if appropriate):
Students start the project during class time and work on it for one week.
10. General comments or observations:
N/A

Continued

CHAPTER 326

approaches, students started their problem-solving processes, and when class time was
not enough, students completed the micro-challenge outside the classroom. The in-
structor implemented this process on a weekly basis for two to three weeks. As students
worked on the weeklong projects, feedback was provided via online discussion, during
in-class workshops, and during office hours offered by the instructor and teaching as-
sistant. A lesson concluded with a weeklong modeling and simulation project, like the
one described in this lesson plan.

The first time we implemented this lesson, we learned that the course was perceived
as challenging for students (Magana, Falk, and Reese 2013). However, as we designed,
implemented, and iteratively revised this modeling and simulation project, we were
able to identify the types of benefits and challenges experienced by the students. We
also identified a collection of learning strategies that supported students’ learning. One
of the major challenges students experienced was mapping from a mathematical rep-
resentation to an algorithmic and computational representation (Magana, Falk, et al.
2017). We also noticed that students did not fully engage with the modeling and simu-
lation process. That is, students often planned and implemented their models but were
not using them effectively to solve the actual engineering problem (Magana, Brophy,
and Bodner 2012). Some students did not properly engage in the simulation aspect of
the modeling and simulation process, while others did not enact important stages of
the modeling process, such as validation and verification. We offer the following best
practices for supporting student learning in this context to overcome these challenges.

We use worked-out examples to help students make meaningful connections between
the disciplinary and computational content (Vieira, Yan, and Magana 2015). Worked-
out examples are expert solutions to a problem. For the purposes of this project, such
examples focused on helping students map from a mathematical equation to an algo-
rithm. The examples were provided in the form of short videos and written explana-
tions that were made available to students within the learning management system.
How ever, as we implemented the worked-out examples, we noticed that students did
not use the worked examples provided to them or did not engage meaningfully with
the worked examples. For this, we implemented the use of in-code comments as a way
for students to engage and self-explain the worked examples to themselves (Vieira et
al. 2017; Vieira et al. 2019).

To gradually remove the support provided with the worked-out examples, we im-
plemented an intermediate scaffolding approach consisting of providing templates of
codes or code snippets. In this way, students could assemble part of the computational
model by reusing code. These strategies gave students a starting point and allowed them
to focus their efforts on the most critical components of the computational solution.

To engage students in model-based reasoning, we also provided guidance so stu-
dents could enact each of the modeling and simulation stages (Magana et al. 2020).
Recommended stages include (1) analyze the problem, (2) formulate a model, (3) im-
plement and solve the model, (4) validate and verify the model, (5) interpret the solu-
tion, (6) report the model, and (7) maintain the model (Shiflet and Shiflet 2014). These
stages can be combined for convenience, but it is recommended that at least (1) analyze

CHAPTER 3 27

and formulate the model, (2) implement and solve the problem, and (3) evaluate and in-
terpret the solution are explicitly enacted. A simple approach to guide students through
these stages was to provide project report templates. The report was organized into dif-
ferent stages, and a brief explanation of the expectations for each section was provided.
Assessment rubrics also described the requirements and expected levels of performance
for each stage.

A critical step often overlooked by faculty when implementing modeling and simu-
lation practices is the validation and verification process. Although implementing these
practices can be considered advanced skills, some support strategies can initiate stu-
dents into the habit of validating and verifying their models. Such strategies include
the instructor providing test cases with results so that students can compare their solu-
tions. A second strategy is to provide students with data sets, theoretical models, or
even other simulations.

Conclusion
Introducing modeling and simulation practices to novice learners is challenging because
these practices require the integration of programming, disciplinary, and mathemati-
cal skills. Different forms of scaffolding can be implemented to support students in en-
acting modeling and simulation practices and help them overcome the most challeng-
ing steps of the modeling and simulation process. While worked-out examples with
in-code commenting were useful supports, more research is needed to identify other
possible struggles and corresponding supporting strategies.

DESIGNING FOR CAPSTONE COURSES
BY JOSEPH LYON

When designing computation, modeling, and simulation challenges for capstone courses,
one must consider a whole host of different issues than when designing for younger stu-
dents. For example, students in a capstone course may have already encountered many of
the concepts and skills needed to construct their models, and thus the process students
must undergo involves connecting the dots from previous courses. Additionally, further
knowledge transfer can be required as many students will have moved further toward
expert-like practices and away from the novice practices they may have had earlier in
the program. To add to the complexity, capstone students may vary widely in ability de-
pending on how much they have grasped material in their previous years of undergrad-
uate study. So the question now is, How do we help capstone students piece together
the different previous learning experiences to transfer knowledge into new modeling
and simulation contexts? And additionally, How do we account for the highly variable
levels of ability we encounter when working with capstone students? These questions
will be addressed in this learning design, along with example materials for practitioners
and researchers to use alike.

CHAPTER 328

MODELING HEAT TRANSFER AND STERILIZATION
wITHIN A FOOD CANNING OPERATION

Context and Population
This learning design was developed for students enrolled in a capstone course. The stu-
dents were enrolled in an engineering degree program focused on food and pharmaceu-
tical processing, with a mix of students wanting to pursue graduate school and others
focused on obtaining industry positions. The course was the first part of a two-part cap-
stone design course. Consequently, in addition to the modeling activities during the se-
mester, students had design groups that were working on a capstone project. The course
met for six hours a week with two one-hour lectures and two two-hour lab periods. For
each modeling project, students were expected to write a MATLAB script that mod-
eled a real-world food or pharmaceutical process. Each modeling activity took a total of
three to four weeks to complete, with four different activities across the semester. There
were multiple learning objectives for the modeling activities where the students were
able to (1) describe real-world systems with mathematical models, (2) convert math-
ematical models into computational models in MATLAB, and (3) interpret the out-
put of computational models within the real-world context of the modeling problem.

Theoretical Grounding of the Learning Design
Two primary frameworks were used to guide the pedagogical design of this project.
The first framework is productive failure, which suggests that students learn to trans-
fer knowledge into ill-structured problem contexts by being pushed to the point of
failure or an impasse (Kapur 2010). Productive failure prescribes very little instruction
prior to the intervention by encouraging students to explore the problem space on their
own (Kapur and Bielaczyc 2012). In our context with capstone students, this is a help-
ful framework in that many of the students had received most of the information they
needed in prior classes and just needed to integrate it, as opposed to first-year or nov-
ice learners, who may require much more instruction prior to beginning work on a task.
Additionally, productive failure design encourages problems to be ill-structured, which
can include giving students problems that have multiple solutions or vague or partially
unknown parameters and requiring them to make assumptions about the problem space
(Kapur 2010). In our classroom, this played out by giving students a problem that re-
quired them to model a canning sterilization operation. Students received the neces-
sary instruction on topics such as heat transfer, reaction kinetics, and finite difference
modeling. However, this task required them to pull these knowledge domains together,
and little instruction was provided on this aspect before they began to plan their solu-
tions. Additionally, the problem given had multiple variables containing ranges, multi-
ple missing variables students would need, extraneous information and values, and many
layers of assumptions to accomplish.

Additionally, the modeling projects were structured using a model-eliciting activ-
ity (MEA) framework, which has been studied extensively in engineering and broader

CHAPTER 3 29

STEM contexts (Diefes-Dux et al. 2004; Lesh et al. 2011; Lyon and Magana 2021). The
MEA framework follows six principles for designing modeling activities (Diefes-Dux
et al. 2004):

Model-construction principle: The activity should result in a mathematically fo-
cused model.

Reality principle: The activity should be set within a realistic and meaningful setting.
Self-assessment principle: The activity should be set up in a way to allow students

to evaluate how they are thinking about the modeling problem.
Model-documentation principle: The activity should require students to document

their work at each stage of the problem-solving process.
Construct shareability principle: The activity should allow students to create solu-

tions that are transferable to other solution spaces.
Effective prototype principle: The activity has students create a simple but effec-

tive solution.

These six principles were used to create the artifacts needed for the modeling project.
The problem was set within a highly realistic engineering scenario (reality principle). At
each stage in the process, students filled out project templates (model-documentation
principle). The project had an activity built in that had students evaluate how good their
model was, what they could have done differently, and in what other scenarios they might
use this type of model (self-assessment principle and construct shareability principle).
And finally, students were asked to make and defend assumptions of their model and
create a finite difference model of the process they were evaluating (model-construction
principle and effective prototype principle).

Problem Description and Learning Domain
The problem was situated as a modeling and simulation problem where students were
asked to model the sterilization of food products on a canning line. The students were
placed in the situation of an engineering consulting group that had been approached
by a systems engineer in the food industry to model the heat transfer and sterilization
of various food products as they are exposed to heat in a retort operation. This is a com-
mon unit operation within the food industry — one that is critical to food safety — that
students will likely encounter when they enter industry careers. Students needed to in-
tegrate knowledge from heat transfer in biological materials, the reaction kinetics of mi-
crobial agents and food nutrients, and finite difference modeling of differential equa-
tions to effectively solve the challenge posed to them.

Lesson Plan
The following lesson plan (table 3.2) outlines the specific details of the learning activity
implemented within this context. Corresponding rubrics, handouts, and student tem-
plates are presented in appendix B.

CHAPTER 330

TABLE 3.2 Lesson plan for the food sterilization project

Instructor’s name:
Joseph Lyon

Discipline:
Biological and Food Process
Engineering

Course:
Transport Operations in Food and
Biological Systems II

1. Name of the topic or unit:
Food Sterilization
2. Learning objective (from the syllabus):
Analyze common unit operations in the food and pharmaceutical industries.
3. Specific disciplinary learning objective(s) of the assignment/lab:

• Apply numerical modeling techniques of food processing systems in real-world contexts.
• Analyze complex heat transfer scenarios.

4. Specific modeling and simulation practice(s):
The following are modeling and simulation-specific practices to be assessed as learning objectives (LO):

• Students are able to identify useful data and justify its use.
• Students are able to convert mathematical representations of information into appropriate computa-

tional structures and justify their choice.
• Students are able to construct computational models from identified information and develop com-

putational structures.
• Students are able to interpret modeling output in relation to problem context and other student

solutions.
• Students are able to discuss the limitations of their model and additional applications of the model.

5. Assessment strategies and grading system:
Assignments will be graded following the rubric provided in appendix B. There are five deliverables from
the activity:

• Planning the model template (15%, LO1): Students will work in teams to begin mapping out how they
will do the activity.

• MATLAB coding template (30%, LO2): Students will work individually to create the mapped-out
model in the MATLAB programming environment.

• Building the model template (30%, LO3): Students will work individually to fill out a building the
model template in which they explain their design decisions, assumptions, and limitations of their
model.

• Evaluating the model template (15%, LO4): Students will fill out a note-taking template while they
meet with other students to discuss how their models differed.

• Reflecting on the model template (10%, LO5): Students individually fill out a reflection template in
which they think about the solution process and what they may do differently next time.

6. Guidance materials and resources such as laboratory manuals and project templates:
Students will be provided with multiple documents before the activity, all found in appendix B. The prob-
lem statement overviews a processing plant that has reached out to your engineering team to solve line
issues and the realistic MEA-inspired scenario. The MATLAB coding template gives overarching struc-
ture to the code as well as explains how teams should structure comments within the code. Templates are
provided for each stage of the activity.

CHAPTER 3 31

TABLE 3.2 Lesson plan for the food sterilization project

7. Instrumentation and software tools:
Access to MATLAB software will be needed for the programming portion of the assignment, as well as
access to word processing software.
8. Specific instructional events:

A. Teaching method
The teaching methods employed in this learning intervention are guided by the principles of the produc-
tive failure framework. In this framework, instructors are encouraged to create an environment with the
following pedagogical qualities (Kapur and Bielaczyc 2012):

• Instructors should aim to create an environment where problem space exploration is encouraged. For
example, if a student is stuck and looking for a way forward, instructors should push them to think of
a different way to set up the problem or different ways to think about an aspect of the problem.

• Instructors should shy away from emphasizing one correct way to solve the problem but rather stress
to students that there is no one correct solution to the problem (even though there might be better or
worse solutions).

• Whenever students mention multiple solution pathways, instructors should encourage them to con-
sider the differences between the solutions and why one might be more limited or useful than an-
other.

B. Sequencing of activities
A four-week sequence is required to cover all parts of the learning activity.
Week 0: The instructor gives a brief intro to the problem the students will be solving (~15 minutes).
Students work together in groups of four to fill out the planning model template (~90 minutes). By the
end of the class, students should each have filled out the planning model template.

Weeks 0–3: Students work individually outside of class to build their planned-out model using MATLAB
software. Students are welcome and encouraged to make changes to their plan if needed. At the end of
this period, students are expected to turn in a completed building the model template and associated
MATLAB files. During this time, the instructor will give three lectures on the topic:

• Lecture 1: A review of heat transfer in food systems.
• Lecture 2: A review of reaction kinetics of microbial systems.
• Lecture 3: A review of finite difference modeling.

Week 3: Students meet together in groups to evaluate their created models. Students meet together in
their planning groups again and rotate around to meet with other groups of students from the class.
During this time, students take notes to answer key questions, such as how their models differ and how
other students’ models work.

Weeks 3–4: Students individually fill out a reflection template outside of class, considering what they
would change about their model and what other applications their model might have.

C. Sociology (social and contextual characteristics of the learning environment, e.g., individual or teamwork)
Activity includes both group and individual components to the problem. Both the planning and eval-
uation phases are done as a group to spark creativity and new ways of thinking about the problem. The
model phase is performed individually so that each student is personally exposed to the programming
environment and solving the problem. Finally, the reflection phase is done individually to help students
work on metacognitive skills, which are largely individual in nature.

Continued

CHAPTER 332

Reflection and Lessons Learned
The first time this lesson was implemented was through a single modeling project over
the course of the semester. The project allowed students to tie together various areas of
knowledge they had previously learned in class, implemented through a programming
context. The specific context of the project was the sterilization of food materials. The
project started in a lab session of the course, in an open classroom, with students sit-
ting around tables working together on their planning assignments on their computers.
Instructors pulled up the assignment documents on projectors situated around the class-
room for all students to see. The teaching team walked around the classroom during the
two-hour planning session, answering questions and prompting student thought. While
the building phase of the model was primarily done at home by the students individu-
ally, they again met with these teams three weeks later in the same classroom. The stu-
dents evaluated their models with the teams they planned, then rotated to other tables
to meet with students from three other planning teams. After the evaluation phase, stu-
dents individually turned in a reflection report on their models. At the end of the proj-
ect, students gave feedback on the intervention via a survey.

The evidence and results indicated that the intervention got students to practice com-
putational thinking while solving these complex modeling challenges (Lyon and Magana
2021; Lyon, Magana, and Streveler 2022). Students demonstrated complex forms of ab-
straction, algorithmic thinking, and evaluation practices while solving the sterilization
challenge. Additionally, students reported multiple benefits to the intervention, such as
having a real-life simulated challenge and a hands-on learning project (Lyon, Magana,
and Okos 2019). Students largely believed that the building and evaluating phases of
the activity were the most helpful, while the reflection phase of the activity was largely
acknowledged by the students as the least beneficial (Lyon, Magana, and Okos 2019).

The subsequent iterations of the implementation had multiple modeling projects in
this format over the course of the semester. This allowed students to get into a pattern
of how the modeling process worked, going from planning to building to evaluating and,
finally, to reflecting. While productive failure was integrated to make students reach an
impasse, more introductory instruction was given in subsequent semesters to alleviate
some of the frustration and increase students’ perceived benefit to the initial planning
phase (Lyon, Magana, and Okos 2019). Subsequent semesters also included a scaffold-
ing program called MATLAB Live Scripts, which allowed instructors to integrate the
programming template with the report template for the project. Our results indicated
that by doing so, the students significantly felt more comfortable with programming by
the end of the modeling project and felt that the scaffolding through MATLAB Live
was extremely beneficial (Lyon et al. 2020).

Finally, integrating reflection not only at the end of the activity but throughout the
activity was implemented in subsequent iterations. Not only is reflection beneficial to
students in building key metacognitive skills, but it also needs to be integrated so that
students are reflecting before, during, and after any project (Ertmer and Newby 1996).
Our subsequent iterations of the intervention have integrated reflection throughout to
address low student perceived benefit to the reflection process, but also so that students
have more opportunity to practice their reflection skills throughout the semester. Future

CHAPTER 3 33

interventions should work to integrate reflection earlier in the degree program so that
by the capstone course, this practice is significantly integrated into students’ workflow.

Conclusion
Upper-division engineering courses provide prime opportunities for instructors to inte-
grate modeling and simulation projects into the engineering curriculum. Our learning
design showed that students were able to use and practice their computational thinking
skills and proved to be what many students are hungry for in the classroom: a realistic,
hands-on learning project that simulates what they will be doing in industry. Future ef-
forts should include more room for student reflection and an appropriate introduction
to the materials in order to alleviate students’ perceived drawbacks to the intervention.

DESIGNING FOR LEARNING IN THE LABORATORY
BY HAYDEN FENNELL

The undergraduate laboratory is an ideal setting in which to introduce students to mod-
eling and simulation practice. While computation is beginning to make its way into
more and more standard STEM courses, the potential of using computation in the lab-
oratory has been underutilized. Historically seen as an opportunity for students to gain

“hands-on” experience with the subject matter, traditional labs often focus on physical
experimentation and data collection. Alternatively, some labs have been converted into
entirely computational labs in which students run simulations to demonstrate the con-
cepts being learned in class (Fennell et al. 2019, Landau 2006). However, we propose
a more balanced approach to in-lab computation that uses both physical experimenta-
tion and computational simulation to solidify student learning of disciplinary material
through multiple representations of the same system.

MODELING FUNDAMENTAL MECHANICS
IN PHYSICS LABS wITH VPYTHON

Context, Population, and Learning Need
Our design for hybrid computational/experimental physics labs was implemented in the
context of Modern Mechanics, a large institution’s first-year physics course. While the
course focuses on the fundamentals of classical mechanics, the laboratory component
of the course implements programming problems to introduce students to basic com-
putational concepts in physics. The coding portions of the labs utilized VPython (an
extension of the Python language) as the programming language. Students wrote and
ran their code using GlowScript, an online VPython compiler. Labs were separated into
three components: (1) physical experiment, (2) computational simulation, and (3) com-
parison and reflection questions. After setting up and collecting data on the physical
experiment for each week, the students would use a provided VPython template to

CHAPTER 334

construct a computational model of the experiment they had just performed. Students
would then be presented with a series of questions asking them to discuss the differ-
ences and similarities between the two sets of results.

Although this physics course is offered through the physics department, it is one
of the required courses in the institution’s first-year engineering program. Students in
the first-year engineering program receive two MATLAB courses during their first
year. However, most students tend to take the physics course during their first semester,
meaning that for many, this is one of their first experiences with programming. Overall,
students in this physics course tend not to have much coding experience, particularly
in the context of code being used to model disciplinary problems. A primary benefit of
introducing computational concepts in the laboratory environment is that it offers stu-
dents a chance early in the curriculum to use computational tools to model a phenom-
enon as it is being studied through traditional experiments. In other words, the direct
application of the computational methods is made clear each week due to the immedi-
acy and hands-on nature of laboratory activities.

Theoretical Grounding of the Learning Design
The physics lab was developed using Kolb’s theory of experiential learning (Kolb, Boyat-
zis, and Mainemelis 2011). Experiential learning theory (ELT) is a constructivist learn-
ing model that posits personal experience as the most central element of the learning
process. Unlike cognitivist and behaviorist models, ELT suggests that all learning is
based on experience and that the ways in which people interact with and process their
own experiences influence how they learn. Experiential learning, therefore, acts as a
sort of synthesis of the previous constructivist work introduced by Dewey, Lewin, and
Piaget (Kolb, Boyatzis, and Mainemelis 2011). The ELT model suggests that there are
two related processes of interfacing with experience during learning: grasping experi-
ence and transforming experience. The model of grasping experience consists of two re-
lated mental processes: concrete experience and abstract conceptualization. The model
of transforming experience also consists of two related processes: reflective observation
and active experimentation. Together, these two models of grasping and transforming
experience intersect into a four-part process in which a learner (1) has an experience
and (2) takes time to reflect and think about what they have observed, which allows
for (3) the distillation of the experience into key elements of an abstract conceptualiza-
tion of the experience before (4) participating in active experimentation to create fur-
ther experiences, thereby repeating the process to refine their understanding of the phe-
nomenon or experience (and thus generate new knowledge). This learning cycle makes
up the basis of the ELT framework upon which instructional approaches can be built.

Our physics lab curriculum leverages the ELT framework through a laboratory struc-
ture that requires students to engage with this cycle in each hybrid experimental/com-
putational lab. By performing the physical experiment at the beginning of each lab ac-
tivity, students gain concrete experience of the studied phenomenon. After performing
the experiment, students engage in reflective observation through analysis of the collected
data, answering questions about the results, and making sense of the outcomes of their
experiment. This is then followed by a computational simulation of the phenomenon

CHAPTER 3 35

under study, which models the key components of the physical experiment and encour-
ages abstract conceptualization of the core elements of the phenomenon. Finally, students
are led into active experimentation by being asked to make changes to the computa-
tional model to visualize different possible system configurations. Students then com-
pare their results with the results of their experiment to draw conclusions about the ac-
curacy of the models and experimental setups. While each lab session represents only
one complete cycle of the ELT model, this cycle is repeated each week, exposing stu-
dents to many related phenomena modeled with very similar code. The labs, when taken
together, can be thought of as an extended version of the ELT cycle that lasts over the
course of the entire semester rather than a single activity that gives students opportu-
nities to iterate through the cycle multiple times in one sitting.

Problem Description and Learning Domain
Over the course of the semester, the physics lab covered a number of different topics.
The details of the progression of content are provided in figure 3.1. Here we will discuss
a module of three related labs covering the mechanics of objects under different types
of acceleration: Lab 2, Lab 3, and Lab 8. These three labs comprised the lab course’s
discussion of simple linear motion. Labs 2 and 3 involved cart and track experiments
in which carts were accelerated down a flat track, while Lab 8 focused on the air re-
sistance and drag forces of a falling object. Each of the labs was modeled in VPython
as a finite difference problem. This is a common solution method for time-dependent
models in which each iteration of the program loop calculates the current results using

Lab 2 Lab 3 Lab 8
Disciplinary:
Position tracking of
cart on track moving
at a constant velocity

Computational:
Writing while loops
for modeling motion

Disciplinary:
Momentum tracking
of cart on track
moving at a
nonconstant velocity

Computational:
Converting math to
code; repurposing
previous code
structures

Disciplinary:
Air resistance, drag,
and terminal velocity
of a falling object

Computational:
Ordering mutually
dependent
equations within an
iterative model

FiGURE 3.1 Disciplinary and computational content is covered in each lab within the linear motion module.

CHAPTER 336

the results from the previous iteration of the loop as initial value inputs (i.e., updating
the position/velocity of a moving object over time). These labs primarily covered con-
cepts of selecting appropriate time step size, loops, and conditional logic. VPython code
for the visual simulation setup was provided to the students in the form of a VPython
template. Students were primarily responsible for defining variables, setting up calcu-
lations, and determining the order of equations in the loop that ran each program. The
commands for plotting the simulation outputs were also provided in the template to
reduce the learning load (given that the lab sessions were only two hours and also con-
tained a complete physical experiment). The materials provided to the students for this
lab module are provided in full in appendix C.

Lesson Plan
The following lesson plan (table 3.3) aligns the learning objectives with the design of
the activity and its corresponding assessments. The project description for Labs 2, 3, and
8, as well as the code templates provided to the students and the corresponding assess-
ment rubrics, are presented in appendix C.

TABLE 3.3 Lesson plan for the Newtonian mechanics, linear motion/acceleration project

Instructor’s name:
Hayden Fennell

Discipline:
First-Year Engineering and Physics

Course:
Modern Mechanics

1. Name of the topic or unit:
Newtonian Mechanics, Linear Motion/Acceleration
2. Learning objective (from the syllabus):
Use loops to model motion iteratively in VPython; measure 1D position, velocity, and acceleration (Labs
2 and 3); use the drag coefficient and other parameters from the physical experiment to create a VPython
model of the falling object (Lab 8); connect physical experiment and the VPython model
3. Specific disciplinary learning objective(s) of the assignment/lab:
Students modify provided VPython code templates to create a functioning model of the physical experi-
ment performed in the first half of the lab.
4. Specific modeling and simulation practice(s):
Students modify/create simple VPython programs that leverage loops to model the motion of objects
using an iterative finite difference approach.
5. Assessment strategies and grading system:
Each lab is assessed for disciplinary (i.e., physical experiment) performance and computational (VPython
program) performance according to the rubrics found in appendix C. Scoring is less formal due to the
more relaxed lab setting and low portion of the overall course grade (10%).
6. Guidance materials and resources such as laboratory manuals and project templates:

• Guided lab worksheets/manuals
• VPython code templates

7. Instrumentation and software tools:
• VPython (Python 2.7 add-on package) delivered via GlowScript online programming environment

(http://www.glowscript.org)

http://www.glowscript.org

CHAPTER 3 37

TABLE 3.3 Lesson plan for the Newtonian mechanics, linear motion/acceleration project

8. Specific instructional events:
A. Teaching method: use-modify-create framework (Lee et al. 2011)
The UMC framework is a computational scaffolding method in which students are first exposed to fully
functioning software/programs that they use to solve a problem. Then they are asked to modify code
that is incomplete or incorrect in order to use the code to solve a problem. Finally, students are asked to
create code of their own once they have gained experience using and modifying steps. This process can be
repeated whenever new disciplinary or computational concepts are introduced in order to help students
develop an integrated body of knowledge and skills.

B. Lab activities (linear motion module)
Lab 2: VPython loops tutorial and simple cart and track experiment (recording position data as cart
moves at constant velocity). Completed simulation code is provided to students who must alter initial
parameters to produce results aligned with their experiment. (Use phase)

Lab 3: Similar cart and track experiment with fan attachment to provide constant acceleration to the
cart. Students must revise the code provided in Lab 2 to reflect the new experimental context. (Modify
phase)

Lab 8: Experiment involving air resistance of falling object and the calculation of drag coefficient from
experimental data. Students must change parameters and add equations in the current locations in a
provided template to produce a functioning simulation of the experiment. (Modify phase)

9. Homework (if appropriate):
N/A
10. General comments or observations:
It may be noted that the linear motion module discussed in point 8 does not include any examples of the
create phase of the UMC framework. This portion of the framework was excluded intentionally due to
the strict two-hour time limit of each lab session and the generally low experience with programming of
the student population. Given the limitations of the lab setting, the modify phase felt like a strong enough
challenge for the students during the fall 2018 semester. However, more create challenges were included
in the following semesters, given the students’ overall favorable performance in the labs in fall 2018 (see
the section “Reflection and Lessons Learned” for more details).

Continued

Reflection and Lessons Learned
Overall, the first semester of implementation was very successful. Aside from a few lo-
gistical challenges involved in coordinating with the team of TAs responsible for run-
ning the labs and for catching and updating small issues with the code templates as stu-
dents found them, the content of the labs themselves seemed quite approachable to the
students. Performance results from the first semester of the hybrid labs were promising
and showed that students were generally able to successfully engage with the lab mate-
rial without too much trouble. The results of a thematic analysis found several themes of
learning benefits within a selection of students’ responses to questions on the in-class lab
worksheets (Fennell et al. 2019). The themes of learning benefits are described in table 3.4.

The thematic analysis also intended to identify themes of challenge that students
faced during the semester. However, very few instances of challenges were identified
in the students’ responses. Only two distinct challenges occurred across more than one

CHAPTER 338

student, each of which appeared only twice in total. These two challenges were (1) model
is truth, in which students regard the model as the “true” physical representation rather
than the data collected in the real-world physical experiment, and (2) misidentification
of code function, in which a student leaves an in-code comment that incorrectly describes
what a line of code does. While this is heartening in the sense that it shows that the
hybrid lab material was generally not overwhelming for students, it also suggests that
the initial implementation of the labs may have been over-scaffolded and that students
are capable of meeting higher demands during the lab sessions. This over-scaffolding
effect was likely the result of a more cautious “pilot” approach to the first deployment
of the new hybrid material due to the extremely high enrollment in the class as a pre-
requisite for other required classes.

Since very few useful themes of challenges were identified during the thematic anal-
ysis, an additional round of thematic analysis was performed on the lab worksheets and
code templates themselves. This time the goal was to identify any notable issues with
the structure of the activities that may have led to the lack of observable challenges
from the students. The themes related to limitations were also organized into several
umbrella categories of issues to improve in the next iteration, as described in table 3.5.

These themes of limitation led to reflection on the learning activities and sugges-
tions for improvement in future implementations of similar content. The first and most
prominent issue with the responses to the lab activities was an overall lack of reflec-
tive description in students’ answers. Reflection questions that encouraged students to
make connections between the two portions of each lab were included each week, but
answers were generally short and to the point. While students were prompted to make
comparisons between their experimental and computational results, many settled on
simple (and sometimes superficial) responses that technically addressed the question
without saying very much. In general, it seems that students did not feel that exten-
sive or detailed explanations were required to address the prompt, leaving very few in-
stances of students clearly demonstrating their understanding (or lack of understanding)

TABLE 3.4 Themes of students’ perceptions regarding learning benefits

Theme of Benefit Description

VPython basics Evidence of understanding the basic functionality of programming
in VPython (i.e., assigning variables, conditional logic/operators,
vector math operations, etc.).

Iterative modeling Evidence of understanding that computational models can do the
same calculation repeatedly (i.e., using loops to simulate motion).

Step size and accuracy Evidence of understanding the importance of step size within a
model and its relationship to accuracy and precision.

Models are ideal and make
assumptions

Evidence of understanding that models differ from the real world
and make key assumptions and judgments about reality.

Models are contextually dependent Evidence of understanding that models are representative of a
particular context and must be updated if moved to new contexts.

CHAPTER 3 39

of the computational concepts being discussed. The wording of the questions in future
implementations of the lab material was updated to be more explicit about what stu-
dents were supposed to be reflecting on, rather than simple “why or why not” prompts
that are often overlooked. A second, related observation about how to improve the labs
was a more straightforward fix: avoid compound questions. A large amount of poten-
tial information was lost in the lab handouts due to students not fully answering ques-
tions with multiple parts. Many students would answer the first portion of a question
and move on to the next, ignoring the more critical interpretation components of the
question prompt. While this phenomenon has been identified and discussed by other
authors (Mackillop, Parker‐Swift, and Crossley 2011), we were not anticipating the ex-
tent to which it would be a problem in the hurried lab environment. Future implemen-
tations of the lab have broken all multipart questions into individual prompts to en-
courage students to fully engage with each question. While this issue is not exclusive to
modeling contexts, it is one to be especially aware of when the activity is already asking
students to split their attention across multiple areas of focus (in a hybrid experimen-
tal/computational lab assignment, for instance).

On the more modeling-specific side of things, there were two limitations that we
feel can be addressed with the design of the labs. The first suggestion is that while scaf-
folding should still be removed gradually, it can be reduced more quickly than in the
initial implementation. The first round of implementation of the labs maintained a sort
of base level of scaffolding throughout the semester, providing students with fairly de-
tailed code templates for each lab. The analysis of student performance in the labs sug-
gests that students adapt quickly to modifying previous code for use in new (but related)
settings and that less guidance is needed in the code templates later in the semester.
In short, more activities from the create portion of the use-modify-create framework
should be incorporated into the activities in order to see where students are still strug-
gling or where any misconceptions may lie. If lack of expertise is still a concern in a set-
ting where students are not exposed to much computational content, the modify step

TABLE 3.5 Themes of students’ perceptions regarding learning limitations

Theme of Limitation Description

Narrowly worded question/prompt Question/prompt in lab activity was worded in a way that produced
unanimous student responses (i.e., the question was too direct or
had very few possible answers).

Lack of meaningful reflection/
explanation

Lab activities did not provide enough opportunity (or space) for
meaningful reflection from the student.

Abbreviated answers Students provided answers that were technically correct but too
short to be informative or reflective of learning.

Incomplete answer to the
compound question

Students did not fully answer prompts containing multiple
questions.

Poor in-code commenting Students did not provide useful comments on their coding
templates, despite instructions to do so in each lab.

CHAPTER 340

can also be leveraged more heavily as a method for removing scaffolding without leav-
ing novice learners completely on their own. For example, implementations of the hy-
brid lab content after the fall 2018 pilot have students reusing and updating their cart
and track code from Lab 3 in a later lab on air resistance of a falling object rather than
simply providing the students with a content-appropriate template. The students, there-
fore, must make substantial changes to the code that border on creation levels of com-
plexity but are supported by the fact that they are not simply presented with a blank
text file (the assumption being that at least some of what they have done must be reus-
able in the current context if they are being instructed to use it).

A further issue faced on the computational side of things was that students tended
not to leave very detailed in-code comments in their submitted programs, despite be-
ing asked to do so in each lab. When comments were left at all, they tended to be brief
and mechanistic, often simply describing the programming function of a particular line
rather than how it relates to the disciplinary problem (e.g., simply typing “position up-
date equation” next to the line that updates the variable named position). Of the compli-
cations encountered with the labs, this was the most prominent. Many students simply
stopped including comments in their code after the third or fourth lab, presumably due
to time constraints or the students not seeing the value in leaving comments on things
they feel they already know. Although unfortunate, this is not a surprising issue to en-
counter, given the general lack of programming exposure that many of the physics stu-
dents had prior to the course. As such, it is worth considering how to ensure that stu-
dents are shown the value of in-code commenting as a tool both for thinking through
a problem and for communicating their understanding of a problem to other users of
the code (Vieira et al. 2020). When it comes to assessment, it is especially important
that students leave detailed comments that tie the code to the disciplinary content, as
it is often the only real way of determining how well a student understands the code in
lieu of a detailed ex post facto report about each lab assignment. Finding ways to en-
courage students to leave meaningful comments is an ongoing concern for future im-
plementations of the lab material.

Conclusion
On the whole, the implementations of the hybrid labs have been a success, and any ini-
tial reservations about the hybrid material being “too much” for students to handle in a
two-hour lab session have been assuaged by several semesters of successful implemen-
tation. The students have demonstrated that working with computational content in
their labs is useful to their learning without detracting from the overall content of the
labs. While the results from the first implementation showed that students were gen-
erally not overloaded by the labs, the quality of the responses to many questions indi-
cated that more specificity was needed in the lab worksheet questions to encourage stu-
dents to more fully demonstrate their knowledge. Finding ways for students to show
their understanding of computational concepts in a disciplinary-focused course is an
ongoing challenge for discipline-based computing that will greatly benefit from further
work in a variety of other contexts.

CHAPTER 3 41

DESIGNING FOR K–12 SETTINGS
BY CAMILO VIEIRA

Computational practices, including modeling and simulation, are now being integrated
into K–12 curricula around the globe. Countries such as the United Kingdom (Depart-
ment for Education 2013), the United States (CSTA 2017), and Australia (ACARA n.d.;
Yadav, Stephenson, and Hong 2017) have now established a curriculum or a set of guide-
lines to integrate computational thinking from early childhood. Bringing these com-
plex topics into the classroom is not an easy task for middle and high school teachers.
They are often not prepared with the knowledge and skills to design these learning en-
vironments, which are actually complex for students and require appropriate scaffold-
ing. Moreover, it is important to make this knowledge accessible and relevant for stu-
dents, who may think that computer programming is only for computer scientists. The
learning design that follows describes a learning environment that supports students
in modeling the spread of infectious diseases. This learning environment also provides
scaffolding to student learning using an interactive tutorial.

MODELING THE SPREAD OF AN INFECTIOUS DISEASE

Context and Population
This learning design models the spread of infectious diseases such as COVID-19 using
a simple epidemiological model called Susceptible-Infected-Recovered (SIR). We pro-
pose that this learning design can be implemented in 10th grade, when students have
developed some basic skills of programming and understand algebra concepts, such as
variables. Before introducing this learning design within the K–12 level, we conducted
a comparison of existing K–12 computing curricula in different countries, including the
United Kingdom (Department for Education 2013), the United States (CSTA 2017),
and Australia (ACARA n.d.). We identified that initially the learning outcomes should
be very concrete and context-independent (e.g., using loops to automate a repetitive
task) and start in the early years of middle school. Then, instructors can build toward
more open-ended context-dependent learning outcomes (e.g., design, use, and evalu-
ate computational abstractions that model the state and behavior of real-world prob-
lems and physical systems; Department of Education 2013).

Theoretical Grounding of the Learning Design
Cognitive load theory (CLT) informs this learning design, as it scaffolds student learn-
ing following a use-modify-create progression to reduce the cognitive loads. CLT sug-
gests a cognitive architecture that comprises a working memory (WM) and a long-term
memory (LTM) (Sweller, van Merriënboer, and Paas 2019). The WM is limited in
time and space, while the LTM is vast. When we learn a new concept or skill, we load
these new pieces of information into our WM and try to make sense of the informa-
tion using the schemata we have organized in our LTM. Since our WM is limited in

CHAPTER 342

space (i.e., it can only process between four and seven chunks of information at a time),
complex learning processes such as computer programming may overload it, affecting
our learning process.

Computer programming is a complex skill to learn (Mselle and Twaakyondo 2012;
Vieira et al. 2019). Novice programmers need to learn simultaneously about algorithm
design, the programming language syntax and semantics, the program’s goal, and how
the computer processes information. Hence, to support student learning of computer
programming, it is important to reduce extraneous cognitive loads. While some strate-
gies have focused on reducing the number of things students need to learn (e.g., using
block-based programming to avoid syntax errors), others suggest focusing on develop-
ing early schemata by scaffolding the student learning process (Vieira et al. 2017). A
way to scaffold the learning process could be via worked examples. A worked example
is an expert’s solution to a problem. When novice learners actively explore a worked ex-
ample, they may identify basic concepts and strategies that will enable them to engage
in problem-solving activities later. Once the learner starts developing such schemata,
they prefer to try to solve problems on their own instead of studying someone else’s
work (Vieira et al. 2019). In the context of computational thinking and programming
education, researchers and educators suggest the progression of use-modify-create to
scaffold the student learning process (Vieira et al. 2023). In this progression, students
first actively explore an example (i.e., use), predict the outcome, and self-explain or ex-
plain to each other. Then, students work on an activity to make some change or exten-
sion to the example program (i.e., modify). Once the students have developed the re-
quired schemata, they work on a challenge (i.e., create) through an iterative cycle of
create-test-analyze-refine until they find a solution to the problem.

Problem Description and Learning Domain
This lesson plan models the spread of a disease using a traditional epidemiological model
called Susceptible-Infected-Recovered (SIR), which is used to depict how a disease (e.g.,
COVID-19) spreads within a given population. The SIR model assumes that each in-
dividual can be in one of four states:

Susceptible (S): Individuals who have not been infected with the disease, so they
are susceptible to being infected within a given probability of disease trans-
mission (i.e., transmission rate) and an average number of contacts per person
per time (i.e., contact rate).

Infected (I): Individuals who are infected and can be infectious to others. There
is a probability of both recovery and death associated with leaving this state.

Recovered (R): Individuals who were already infected but are now recovered.
These individuals cannot be reinfected since they have developed antibodies.
(Note: This is not necessarily the case for COVID-19, as the evidence about it
is inconclusive at this point, but this is the case for other diseases and an as-
sumption of this model.)

CHAPTER 3 43

Deceased (D): Individuals who were infected and died as a result of the disease.

To identify how many people will move from one state to another, we use the fol-
lowing variables:

Contact rate: Average number of contacts per person per day.
Transmission rate: Probability of disease transmission when a susceptible person

comes in contact with an infected person.
Recovery rate: Probability of recovery after being infected.
Mortality rate: Probability of dying after being infected.
Recovery time: Average number of days that the disease stays in the body.

To simulate this model, we need to compute the number of new infections, recover-
ies, and deaths per day and then update the number of susceptible, infected, recovered,
and deceased as follows:

NewInfections: Infected × Contact rate × (Susceptibles / Total population) ×
Trans mission rate

NewRecoveries: Infected × Recovery rate / Recovery time
NewDeaths: Infected × Mortality rate / Recovery time
Susceptibles: Susceptibles − NewInfections
Infected: Infected + NewInfections – (NewRecoveries + NewDeaths)
Recovered: Recovered + NewRecoveries
Deceased: Deceased + NewDeaths

As one may expect, there are some variables that we can manipulate and see the ef-
fects on the number of infected people and the number of deaths. For instance, clos-
ing public events and banning large gatherings of people may decrease the contact rate,
which has a direct effect on the number of new infections and the number of deaths.
Likewise, if doctors find effective treatments for the disease, we may have a lower mor-
tality rate, which will reduce the number of deaths. The plots in figure 3.2 show the re-
sults from a simulation configured for a city of one million people over the course of
365 days. As you may have already identified, the three figures correspond to three dif-
ferent scenarios where the recovery rate and the contact rate were modified.

Lesson Plan
The following lesson plan (table 3.6) aligns the learning objectives with the design of
the activity and its corresponding assessments. The project description, the code hand-
out provided to the students, and the corresponding assessment rubrics are presented
in appendix D.

CHAPTER 344

FiGURE 3.2 Three scenarios of the SIR model represent the four possible states over a year (365 days): Recovered
(R), Susceptible (S), Infected (I), and Deceased (F).

CHAPTER 3 45

TABLE 3.6 Lesson plan for modeling the spread of an infectious disease project

Instructor’s name:
Camilo Vieira

Discipline:
Natural Sciences

Course:
10th Grade Science

1. Name of the topic or unit:
Modeling the Spread of an Infectious Disease
2. Learning objective (from the syllabus):
Model the spread of infectious disease using the SIR model in Python.
3. Specific disciplinary learning objective(s) of the assignment/lab:

• Describe the effects of different prevention strategies on the spread of an infectious disease.
• Explain how the SIR model can be used to prevent the spread of an infectious disease.

4. Specific modeling and simulation practice(s):
Given a simple model to simulate the spread of infectious disease, students identify the correspond-
ing mathematical model and use computer programming methods to extend an appropriate algorithm
representing abstractions of reality via mathematical formulas, constructions, equations, inequalities,
constraints, and so forth.
5. Assessment strategies and grading system:
See homework assignment. This will be analyzed using the rubric in appendix D.
6. Guidance materials and resources such as laboratory manuals and project templates:

• Problem description (from this learning design)
• Sample Jupyter Notebook, including a simplified version of this model

7. Instrumentation and software tools:
Jupyter Notebooks — Python
8. Specific instructional events:

A. Teaching method
The instructor will model the start of the lesson by demonstrating how to start the simulation on a
Jupyter Notebook. The instructor will then provide scaffolding as discussed in the section “Theoretical
Grounding of the Learning Design” with a pre-developed model in a Jupyter Notebook. Students will
first use this model by explaining to each other how it works. They will then engage in modifying the
example, using the same Notebook to complete the model as described in the homework assignment.
Finally, students will individually complete the homework assignments.

B. Sequencing of activities
• The instructor will present an introduction to the SIR model and will provide the handout that in-

troduces the model to the students. The students will explore the handout and will discuss it in
groups to raise any questions before getting into the code.

• Next, the instructor will model the work with the Jupyter Notebook and will show the sample
Notebook containing a simplified version of the model (see appendix D). The students will work in
dyads to explore the Notebook, explain it to each other, and start working together on completing
the simulation according to the homework assignment.

• The students will then work individually on the homework assignment, which includes the reflection
on disciplinary concepts of the spread of an infectious disease.

Continued

CHAPTER 346

Reflection and Lessons Learned
Students, just like everyone living through the COVID pandemic that started in 2020,
experienced an uncommon sanitary emergency that had a huge impact on the way we
live. Schools and universities closed and moved into an online education modality with-
out enough time to prepare for it. The students needed to stay at home and be aware of
not getting their relatives or themselves infected by COVID-19 as well as become skilled
at new ways of communicating, interacting, and learning. Over the first few months,
the common message in the media was “We need to flatten the curve,” emphasizing
the value of confinement, masks, and handwashing. However, nobody explained where
that curve came from or how we may have a direct impact on the flattening process.

This lesson plan provides an authentic learning experience for 10th graders to learn to
program while identifying the value of computing for any subject, including understand-
ing how disease spreads. The lesson plan was piloted with freshmen engineering col-
lege students enrolled in an introduction to programming course. Most of the students
successfully completed the challenge and highlighted the value of having such a rele-
vant project for something they were experiencing in real life. The lesson plan presented

TABLE 3.6 Lesson plan for modeling the spread of an infectious disease project

C. Sociology
The students will work in dyads to explore the sample Jupyter Notebook and explain to each other how it
works. They will complete the homework individually.
9. Homework (if appropriate):
For this activity, we will simulate the SIR model for a 365-day period and a one million population. The
disease we will model has an average recovery time of 15 days and a transmission rate of 15%.

We will simulate three different values for interaction rate and recovery/mortality rates so that we can
identify their effect on the number of infected people and on the number of deaths. The following values
are suggested as a starting point to run the simulation, but you should propose at least two additional
values for each rate:

• Contact rate: 2.5
• Recovery rate: 95%
• Mortality rate: 5%
In the end, you should present the following indicators and discuss the implications of (1) having

a higher or lower contact rate (e.g., with or without confinement) and (2) increasing or decreasing the
recovery rate (e.g., finding new treatments or having limited resources to treat those who are infected):

• Total number of people who got infected
• Total number of people who recovered
• Total number of unaffected people
• Total number of deaths
• Max number of people infected on a given date
• Max number of infections in one day
• Max number of recovered people in one day
• Max number of deaths in one day

Continued

CHAPTER 3 47

in this learning design provided additional scaffolding (the Jupyter Notebook) for the
high school students to be able to engage in the activity, reducing their cognitive load
and allowing them to focus on understanding and using the simulation.

Conclusion
This learning design described the lesson plan Modeling the Spread of an Infectious
Disease following the cognitive apprenticeship model. The lesson plan engages 10th grad-
ers in an authentic task to model the spread of infectious diseases such as COVID-19.
The model represents the effects of different measures that we all were exposed to during
the pandemic, such as confinement (i.e., reducing the contact rate) and emergent treat-
ments and vaccines (i.e., affecting the recovery rate and the infection rate), with the
common goal of “flattening the curve” of infections and deaths.

4
CHAPTER 4 ELABORATES ON THE THEORETiCAL FOUNDATiONS USED TO HELP STU-

dents develop computing adaptive expertise and the supports that have resulted in a
pedagogical model called computational cognitive apprenticeship. In addition, the chap-
ter discusses the implications for discipline-based education research — that is, a meth-
odological approach for performing education research in the classroom — along with
opportunities for future work.

TOwARD ADAPTIVE EXPERTISE IN COMPUTATION

Hatano and Inagaki (1986) introduced the concept of adaptive expertise in their work
with Japanese school children. Hatano and Inagaki described the process of how stu-
dents learn and grow by following two courses of expertise: routine and adaptive. Routine
expertise is often defined by procedural knowledge (i.e., practical knowledge; knowing
how), in which an individual develops efficient skills in a task through long-term repe-
tition and practice. Adaptive expertise is generally characterized by conceptual knowl-
edge (i.e., understanding principles and relationships; knowing why) and the ability to
learn skills in a way that allows them to be transferred between contexts (Bransford,
Brown, and Cocking 2000); in other words, adaptive experts have the ability to quickly
become accustomed to changes in their discipline or work requirements (Hatano and
Inagaki 1986). Adaptive and routine expertise are often depicted as two splitting “paths,”
with routine expertise focused on refining procedural knowledge and adaptive exper-
tise focused on acquiring transferable conceptual knowledge (Bransford, Brown, and
Cocking 2000). This idea of balancing knowledge and skills is further elaborated upon
by Schwartz, Bransford, and Sears (2005) in their two-dimensional model of adaptive
expertise. This model conceptualizes adaptive expertise as a balance of innovation and
efficiency, as shown in figure 4.1.

Efficiency is the ability to “rapidly retrieve and accurately apply appropriate knowl-
edge and skills to solve a problem or understand an explanation” (Schwartz, Bransford,
and Sears 2005, 28). Innovation, on the other hand, is the ability to create new solutions
to problems by altering, modifying, or building upon existing knowledge (and sometimes
even creating new knowledge in the process). Innovation involves recognizing and cre-
atively departing from routine approaches, applying multiple strategies to solve novel

CHAPTER 450

problems (Schwartz, Bransford, and Sears 2005), and applying strategies for assessing
learners’ current approaches and attempting to move beyond them (Bransford, Brown,
and Cocking 2000). With innovation, individuals need to apply their prior knowledge,
identify what they do not know, and utilize their monitoring skills to overcome their
difficulties (Hatano and Oura 2003).

Efficiency is important in many domains, particularly in high-production corpora-
tions, manufacturing companies, and in many medical positions, such as specialized
surgeon. However, a strong focus on developing efficiency often comes at a cost to in-
novation, as strategies and skills become more familiar and more narrowly applicable
to common problems. Likewise, an overfocus on innovation can negatively impact ef-
ficiency. Lack of design constraints and too much time spent on any problem may lead
to frustration and/or avoidable financial risks during a project. Schwartz, Bransford, and
Sears (2005) proposed a new method of thinking about the efficiency–innovation bal-
ance by proposing an “optimal adaptability corridor” that learners should be assisted in
navigating during university or other training programs. Curricula designed with this
adaptability corridor in mind would give students ample time to participate in activ-
ities that allow them to work on both sharpening their routine efficiency and flexing
their adaptive innovation skills and strategies, with the goal of producing more pre-
pared adaptive experts who are ready to transfer their knowledge into the workforce.
With this in mind, three sets of expertise trajectories can be applied to the innovation
vs. efficiency model, as shown in figure 4.2.

Trajectory A represents a situation in which too much focus is placed on efficiency
and procedural knowledge. This trajectory tends to send students out of the optimal
adaptivity corridor and produce routine experts. Although routine expertise is useful in
many fields and is the cornerstone of adaptive expertise, it also risks producing a form
of cognitive entrenchment in the learner (Dane 2010). Cognitive entrenchment in-
volves viewing currently effective knowledge and methods as the “best” methods, and

FiGURE 4.1 The development of adaptive
expertise through both innovation and effi-
ciency. (Adapted from Schwartz, Bransford,
and Sears 2005.)

Frustrated
novice?

Novice

Adaptive
expert

Routine
expert

Optimal
adaptivity
corridor

IN
N

O
V

A
T

IO
N

EFFICIENCY

CHAPTER 4 51

adopting new approaches becomes difficult. Trajectory B represents a situation where
too much focus is placed on innovation and self-directed learning. This trajectory is sim-
ilar to trajectory A in that it sends students out of the optimal adaptivity corridor, but
in the opposite direction, resulting in what we refer to here as an “innovative amateur.”
These learners are able to devise creative conceptual solutions to new problems but ul-
timately struggle to implement those solutions effectively due to a lack of procedural
expertise. Trajectory C can be considered a more efficient trajectory, where innovation
and self-directed learning are balanced by expert guidance (or instructor support) with
regard to efficient strategies and the use of procedural knowledge. The goal is for stu-
dents to develop a more flexible approach to problem-solving and to understand the
need to consider novel methods when highly practiced rules and principles do not ap-
ply. Therefore, a program focused on the development of adaptive expertise should pro-
vide a combination of innovation-oriented and efficiency-oriented constructivist learn-
ing activities in order to keep students aligned with trajectory C. How to do this can be
a complicated and involved process, as the methods by which learners acquire expertise
are still under investigation (Chi 2011).

In our own previous work, we qualitatively characterized the efficiency and inno-
vation dimensions of first-year engineering students’ approaches to solving computa-
tional modeling and simulation challenges. In our study (Magana et al. 2019), cognitive
knowledge, referring to knowledge comprehension, application, analysis, and synthesis,
was considered the efficiency dimension of adaptive expertise. Metacognitive knowl-
edge refers to knowledge about the application of strategies and the when, how, and
why to apply them, which was considered the innovation dimension of adaptive ex-
pertise. Our findings identified four categories; two for the efficiency dimension and
two for the innovation dimension. Briefly, in the efficiency dimension, the two main
approaches students followed were implementation-oriented and knowledge-oriented.

EFFICIENCY

Path B Path C

Path A
Optim

al a
daptiv

ity
 corri

dor

Innovative amateur Adaptive expert

Novice Routine expert

IN
N

O
V

A
T

IO
N

FiGURE 4.2 Three trajectories within the
expertise model.

CHAPTER 452

While implementation-oriented students tended to focus on making their code work, the
knowledge-oriented students tried to focus on understanding and connecting the disci-
plinary knowledge with their computing knowledge. Regarding the innovation dimen-
sion, the two main approaches students followed were action-oriented and plan-oriented.
While action-oriented students tended to jump right into a solution with little or no
planning, plan-oriented students tended to spend significant time planning their ap-
proach before starting to code their solution.

Once we identified each of the four categories (i.e., orientations), we then further in-
spected how students’ experiences and performances related to these categories to un-
cover the interplay between those four. Two clear and distinct patterns of students’ behav-
iors were noted. Students who exhibited action-oriented and implementation-oriented
behaviors were more aligned with novice approaches to expertise. On the other hand,
students who exhibited plan-oriented and knowledge-oriented behaviors were more
aligned with adaptive expertise. Informed by the work from Riel (2023), we used our
findings and mapped them to the different dimensions of adaptive expertise and de-
fined a preliminary characterization of different approaches to expertise in computa-
tional modeling and simulation. Table 4.2 in the next section provides descriptions for
the four quadrants of the adaptive expertise model that map to each of the corners of
figure 4.2. While novices focus on completion, innovative amateurs focus on invention.
And while routine experts focus on automaticity, adaptive experts focus on understand-
ing. In the case of adaptive expertise in computation, modeling, and simulation, that
understanding takes the form of model-based reasoning (see chapter 2). Table 4.1 elab-
orates on the four quadrants of the adaptive expertise model, providing descriptions
adapted to the context of modeling and simulation.

The question is, How can we support students in their learning and attainment of
modeling and simulation practices so they develop adaptive expertise in computation?
Based on our previous research, we propose a computational cognitive apprenticeship.

COGNITIVE APPRENTICESHIP MODELS

This section describes the theoretical foundation of a proposed computational cognitive
apprenticeship. Informed by more than 15 years of education research in the teaching
of computation at the undergraduate level, we have adapted the cognitive apprentice-
ship model from Collins et al. (1989) to support the teaching and learning of compu-
tation in science and engineering education (Fennell et al. 2020; Sanchez-Peña, Vieira,
Magana 2022). Apprenticeship models have been used to teach knowledge and skills to
train novices to become expert practitioners since the beginning of written history. In
many skilled trades, the apprenticeship model is still used to great effect to train indi-
viduals in the knowledge and skills needed for a trade or profession. The apprenticeship
models employed by many trades and other skill-based professions are, in many ways,
inherently situated in their practical context. Apprentices learn in context by observing
their instructors as they engage in the practice and taking in the key features of what
expert practice “looks like” in that field. The apprentices then hone their skills through

CHAPTER 4 53

TABLE 4.1 Operationalization of types of computational expertise

Novice: Focus on completion

Emphasis on basic performance of the task. Generally unskilled practice with a focus on
fulfilling assignment requirements before understanding the content. Low confidence in their
practice with a high emphasis on broad, sometimes directionless trial and error until require-
ments are met. Often results in unsuccessful or inefficient approaches, despite the effort. Focus
is placed on producing adequate results and completing assignments for the grade rather than
on understanding the content.
Innovative amateur: Focus on invention

Emphasis on making the code run. Highly creative practice with a strong emphasis on trial
and error using new practices or procedures. While often successful in generating execut-
able code, there is often little understanding of what factors caused success, and the next effort
might be less successful. Willing to try new things and apply a variety of methods to solve the
problem, but may lack understanding of why those methods worked, as well as whether or not
those methods are the most efficient or appropriate options.
Routine expert: Focus on automaticity

Emphasis on the computational solution. Follows familiar routines or best practices that have
been identified as what works, with a strong emphasis on debugging, the efficiency of code,
and getting the correct or expected answer. This style of expertise focuses on reducing the time
and effort required to produce a computational solution or result. While this form of expertise
works well in familiar settings, it is often not well suited to ill-structured problems or prob-
lems requiring significant variations to known solution methods. Often focuses on the proce-
dural understanding of how the solution produces results rather than on what those results
mean to the solution and/or overall problem.
Adaptive expert: Focus on understanding

Emphasis on combining knowledge and skills. Highly able to connect disciplinary knowledge
with computational problem-solving by engaging in computational practices. This form of
expertise seeks balance between new and tested methods by allowing the flexibility to gener-
ate innovative solutions to problems while still identifying and incorporating elements of
known solutions where that will increase efficiency. Adaptive expertise views knowledge as
contextual, evolving, and requiring continual adjustment. Therefore, it relies upon and seeks a
deeper understanding of the interactions between content knowledge and computational skill.
Focuses both on the procedural understanding of the solution and on how results impact the
interpretation of the solution, as well as future applications of the method.
Source: Adapted from Riel (2023) and Magana et al. (2019).

a process of “legitimate peripheral participation” (Lave and Wenger 1991) by situating
themselves and understanding the practice first, then gradually become more experi-
enced by participating in applying their knowledge to practice in real-world contexts.
These activities are often guided and/or monitored by the instructor or are structured in
a way that reduces or removes the risk of professional practice (i.e., peripheral), but the
learner is nevertheless participating in a “real” (i.e., legitimate) component of the trade
or discipline while engaged with peers and superiors within their community of practice.

CHAPTER 454

Apprenticeships are often used in trades and other industries of skilled labor. In
contrast, cognitive apprenticeships focus on the didactic methods traditionally used in
academic disciplines such as biology or engineering. As discussed in chapter 2, these
fields are often taught as a series of courses delivering a body of required background
knowledge and testing students through the use of hypothetical or highly abstract
pen-and-paper assessments. While pen-and-paper exams are still an effective method
of assessing recall and conceptual application of content knowledge, the pedagogy sur-
rounding these assessments often neglects the development of other important skills,
critical thinking lenses, and problem-solving strategies associated with the profession.
In other words, traditional “lecture and exam” structures often fail to teach students how
to think like a practitioner in their discipline.

Collins et al. (1989) proposed a framework for adapting the apprenticeship method
to teaching cognitive skills within modern academic topics. Known simply as cogni-
tive apprenticeship, this framework has since been more formalized into a construc-
tivist pedagogical design tool for teaching complex topics both in STEM fields and
in other areas of study. The cognitive apprenticeship framework breaks the design of
a given learning environment into four key dimensions: content, method, sequencing,
and sociology. Each of these dimensions — as well as their subcomponents — are briefly
described in table 4.2.

Due to its historical roots, cognitive apprenticeship has been most influential in the
laboratory or professional development contexts. The training and professional develop-
ment of allied health professionals and students often use principles of cognitive appren-
ticeship (Lyons et al. 2017). Similarly, cognitive apprenticeship principles are frequently
used in the professional development of K–12 teachers (Davis, Parker, and Fogle 2019;
Peters-Burton et al. 2015) and faculty (Merritt et al. 2018). Additionally, education re-
searchers have repeatedly used cognitive apprenticeship to understand undergraduate and

TABLE 4.2 Cognitive apprenticeship components with descriptions

Component Description

Content The actual content, knowledge, and skills intended to be taught during the
learner’s engagement with the course or curriculum. These are divided into
domain knowledge, heuristics, control, and learning strategies.

Method The pedagogical approach, learning strategies, and teaching methods are used
to promote the development of expertise. The methods dimension consists of
six components: modeling, coaching, scaffolding, articulation, reflection, and
exploration.

Sequencing How activities are ordered to best support learning. Activities can be ordered
according to increasing complexity, increasing diversity, and shifting from
global to local skills.

Sociology The social characteristics of the learning environment. This includes teaching
through situated learning, establishing a community of practice, promoting a
community of practice, and taking advantage of cooperation.

Source: Collins, Brown, and Holum (1991).

CHAPTER 4 55

graduate research training experiences (Feldon, Shukla, and Maher 2016; Gilmore et al.
2015). The use of cognitive apprenticeship as an instructional approach in classroom settings
has been more limited. Among the few available examples are cognitive apprenticeship–
based instruction interventions in chemistry and physics (Amalia et al. 2018).

A COMPUTATIONAL COGNITIVE APPRENTICESHIP

With this apprenticeship framework in mind, we can begin to lay out our case for a new
cognitive apprenticeship intended to build adaptive expertise in computation, model-
ing, and simulation. As elaborated in chapter 2 of this book, many of the principles dis-
cussed in the cognitive apprenticeship framework can clearly be applied when teach-
ing programming and other computational skills, such as data science (Sanchez-Peña,
Vieira, and Magana 2022). However, the acquisition of computational adaptive expertise
within the STEM disciplines in which they are now needed is a unique challenge that
can be aided by the use of a new type of computation-oriented cognitive apprenticeship:
a computational cognitive apprenticeship. The computational cognitive apprenticeship
framework stems partly from recent research on incorporating computational methods
into undergraduate science and engineering courses using the cognitive apprenticeship
approach (Fennell et al. 2020). Such efforts have introduced students to meaningful
computational practices through a series of large-scale, discipline-situated program-
ming projects. Here, we describe the unique aspects of applying cognitive apprentice-
ship to the computational realm and the supporting evidence derived from research.

Content
Design principle: Combine disciplinary domain knowledge with computation, mod-
eling, and simulation practices, techniques, and tools (Fennell et al. 2019; Magana,
Ortega-Alvarez, et al. 2017; Ortega-Alvarez, Sanchez, and Magana 2018; Vieira et
al. 2018).

This principle can be achieved by utilizing anchored instruction (CTGV 1990), con-
sisting of contextualizing the learning experiences within authentic tasks. Such authen-
tic tasks should occur in real-life contexts and establish meaningful associations between
learning experiences and the knowledge, skills, and practices of a discipline (Choi and
Hannafin 1995; Magana et al. 2016).

Traditionally, courses designed to teach computational thinking practices, typically
within departments of computer science, have a strong focus on programming con-
cepts, principles, and procedures (Tew and Guzdial 2010). Many introductory comput-
ing courses that have been developed within engineering disciplines continue to teach
much of this basic programming knowledge but expand the scope of their courses to
include additional topics (e.g., Narayanan 2007; Stickel 2011). Many courses include
computing applications in specific contexts, such as data visualization, data analysis
techniques like linear regression, solutions of linear equations, and methods of solu-
tion of differential and partial differential equations (Morris et al. 1996). In other
courses, the focus expands further to include linking mathematical modeling practices

CHAPTER 456

to algorithmic representations in the form of simulations (Magana, Falk, and Reese
2013). A few even touch on tool building in the form of the development of graphi-
cal user interfaces.

While expanding the range of computational learning objectives is imperative for
STEM disciplines, this expansion runs significant risks. The most obvious risk is the lim-
itation posed by time constraints. Introducing additional disciplinarily focused learning
objectives may cause the abandonment of others that are critical to the development of
computational thinking (Magana and Coutinho 2017). Furthermore, literature in com-
puter science education has identified for a long time that learning to program is dif-
ficult (Lister et al. 2004; McCracken et al. 2001; Soloway and Spohrer 1989). Some of
the difficulties learners experience include identifying (1) the purpose of the program-
ming task; (2) the general properties or functionality of the machine that one intends to
control; (3) the syntax and semantics of the programming language; (4) structure, where
the learner needs to deal with the difficulties of acquiring standard patterns or sche-
mas that can be implemented to attain small-scale goals; and (5) pragmatics, where the
learner develops the skills to be able to specify, develop, test, and debug programs using
whatever tools are available (Du Boulay 1986; Pea and Kurland 1983).

Our prior research also indicates that in addition to programming challenges, cer-
tain practices, particularly those that demand the integration of differing representa-
tions (i.e., physical, mathematical, and algorithmic such as occur in modeling and sim-
ulation), run significant risks of causing cognitive overload (Magana, Falk, and Reese,
2013; Vieira, Roy, et al. 2016). Cognitive load happens when short-term memory is in-
sufficient to successfully undertake complex processes that interrelate multiple novel
concepts. During our research performed in classroom settings, we have identified that
programming preparation grounded in anchored instruction provided an important
foundation beyond increasing students’ control self-beliefs (i.e., one’s appraisals of con-
trol over achievement activities and outcomes). This preparation seemed to effectively
enable students to leverage computational practices for the purpose of acquiring dis-
ciplinary concepts (Magana et al. 2016). That is, although the students generally came
into the course with a limited, novice-like ability to engage with computational tools
and procedures, research on the outcomes of the course over multiple semesters showed
that more intensive exposure to modeling and simulation methods tended to improve
students’ self-efficacy beliefs about their ability to use computational tools and inter-
pret simulation data (Magana, Falk, and Reese 2013; Magana et al. 2016).

Method
Design principle: Provide scaffolding to students in the form of code snippets, test
cases, and worked-out examples (Vieira et al. 2019; Vieira, Roy, et al. 2016; Vieira, Yan,
and Magana 2015), and consider providing students agency to select the scaffolding
they need (Vieira et al. 2020), or fade the scaffolding progressively (Fennell et al. 2019;
Vieira et al. 2017; Vieira et al. 2019).

The method dimension is particularly broad in the context of computing education. In
our own prior work (Magana, Falk, and Reese 2013), we considered a course developed

CHAPTER 4 57

using the How People Learn (HPL) framework (Bransford, Brown, and Cocking 2000)
that emphasized, among other dimensions, knowledge-centered and learner-centered
instructional practices. In that course, a sequence was adopted in which in-class exer-
cises would proceed from students being presented with a working code to read and ex-
ecute. Next, students were provided with a code, but that code was either malfunction-
ing, incomplete, or required an extension. The final exercise involved developing a code
to meet a specification that was at least conceptually related to the first two codes. The
course was observed to result in high student self-assessments of knowledge of pro-
gramming, the utility of computation, and intention to continue pursuing computing
opportunities in their studies and careers.

Based on our initial explorations of how we could provide instructional support to
students, we then formalized a worked-out example approach that was deployed and
evaluated as a means to mitigate the issue of cognitive overload discussed in the prior
section (Vieira, Roy, et al. 2016, Vieira, Yan, and Magana 2015). In the most successful
deployment, students were provided with access to step-by-step examples of sample
solutions to programming problems. These solutions included conceptualization of the
problem, algorithm development, and programming, resulting in a final working but
uncommented code. In our work, we identified that a very effective strategy to engage
students in understanding worked-out examples was having them write in-code com-
ments (Vieira et al. 2017). Students were required to comment on this code for the first
four such examples as a strategy to self-explain them. These were graded. Subsequently,
worked-out examples could be commented on for extra credit. Students reported such
practices to be useful for their learning.

Sequencing
Design principle: Enact the problem-solving process as steps for guiding the modeling
and simulation process (Fennell et al. 2017; Shaikh et al. 2015; Vieira, Magana, et al. 2016).

Sequencing plays a key role in structuring student learning by providing experiences
that support the acquisition of knowledge and its deployment by embedding it within
clear and, in some instances, familiar contexts and then gradually removing these con-
textual supports. In this way, sequencing can provide stepping stones toward increasing
adaptive expertise by encouraging students to deploy their new knowledge in succes-
sively less structured and more unfamiliar contexts. For instance, scaffolding at a course
level has been used as an approach in which current student learning of computation
content is anchored or bridged by a generalization of what the student has already as-
similated from previous learning (Sticklen et al. 2004). Specifically, the course in ques-
tion built on familiar concepts by beginning with scalar operations and then moving to
vector and array operations (Sticklen et al. 2004).

Another scaffolding technique is the use-modify-create approach (Malyn-Smith and
Lee 2012; NRC 2011), which has been identified as a potential strategy to introduce
computational practices to novice learners. These three phases guide students to a pro-
cess where they first inspect the code (use), then transition to changing the code to fit an
intended action (modify), and finally generate a new model (create), having ownership

CHAPTER 458

over its development (Lee et al. 2011). In a comparative study, Lytle et al. (2019) iden-
tified that the use-modify-create sequence provided students a natural learning evolu-
tion while giving them more ownership over the artifacts they created.

A different sequencing strategy was deployed in our own design-based research to
help students structure their work on complex projects (Vieira, Roy, et al. 2016). During
the initial problem recognition phase, the student works to understand the problem and
create a plan to work toward a solution. The student uses verbal and mathematical rep-
resentations for this purpose. In the second phase, called problem framing, the student
executes the plan to create a solution in the form of an algorithm instantiated as a pro-
gram. Finally, in the problem synthesis phase, the student completes the plan by evalu-
ating the solution according to both instructor-provided and student-generated crite-
ria. The implementation of test cases is one of the most challenging phases for students
and one of the most valuable for those who go on to programming practice in any con-
text (Vieira et al. 2015).

Sociology
Design principle: Implement pedagogical approaches that promote collaboration
within a context or culture of disciplinary practices (Lyon and Magana 2021).

This design principle goes hand in hand with the content principle, as sociology
also emphasizes learning within the context of realistic tasks (CTGV 1990). Previous
work that focuses on integrating the sociology component has primarily described the
way programming content has been combined with engineering problem-solving (e.g.,
Azemi and Pauley 2006; Devens 1999; Hrynuk et al. 2008; Luchini, Colbry, and Punch
2007; Morrell 2007; Morris et al. 1996). However, the sociology component is one of the
least explored aspects of integrating computation in engineering education. As part of
the content principle, we have elaborated on how we utilized anchored instruction as a
sociology approach for integrating computation within disciplinary engineering prac-
tices (Magana et al. 2016). But more research is needed on how to properly orchestrate
the sociology of learning inside and outside of the classroom.

In our classroom implementations, we have deployed a flipped-classroom design to
free up class time for more hands-on and group learning activities, which were mon-
itored closely during class by the instructor and the TAs. This gave students extended
periods of time (in and out of class) to complete each project, allowing plenty of time
for students to seek help from the instructional staff when they get stuck and for them
to work together with their peers throughout the problem-solving process.

Another well-known approach in computer science and electrical and computer en-
gineering that can effectively integrate the sociology aspect into programming assign-
ments is pair programming (Braught, Wahls, and Eby 2011; Fila and Loui 2014). This
approach is usually implemented in dyads where two students work on the same com-
puter. One of the students takes the role of the driver and has the keyboard control to
perform the programming, while the other takes the copilot role. The copilot thinks
about the problem and shares some ideas without touching the keyboard. Students may
alternate roles from time to time, usually every 5 to 10 minutes. This strategy would be
worth exploring in engineering education.

CHAPTER 4 59

In our most recent work implementing modeling and simulation challenges within
the context of a capstone course, we saw success in having students work within teams as
they planned and evaluated their modeling solutions (Arigye, Udosen, et al. 2023; Lyon
and Magana 2021). Having students work in teams or groups as they plan their model-
ing solution allows individuals to exchange different ideas and ways of solving a prob-
lem, something that is beneficial for students as they explore a new modeling problem
(Diefes‐Dux, Hjalmarson, and Zawojewski 2013). Allowing students to compare their
solutions with other students and teams as they evaluate their models enables them to
see multiple ways of solving a problem. This experience gives students the opportunity
to see how certain modeling solutions are better or worse, as well as different limitations
and assumptions that can be made during the problem-solving process. Seeing multi-
ple ways of solving a modeling problem can aid students in future problem-solving en-
deavors (Kapur and Bielaczyc 2012).

NEw RESEARCH DIRECTIONS

Computational cognitive apprenticeship brings an understanding of the learning en-
vironment of the higher education classroom into the fold, adding much-needed ped-
agogical and sociological considerations to the study of computation in the context of
STEM domains. This new framework of computational cognitive apprenticeship has im-
plications for and leads to new research directions in discipline-based education research
generally (NASEM 2012) and the computational and data science education space spe-
cifically (NASEM 2018). First, specific cases of how to apply computational appren-
ticeship are needed within higher education contexts, along with a deeper understand-
ing of the impact this framework has in building these skills as students head into the
workforce. Design-based research and action research are two methods in which these
specific experiences and pedagogies can be investigated within the classroom (Barab
and Squire 2004; Brydon-Miller, Greenwood, and Maguire 2003). Specifically, by doing
practitioner research through design-based research, researchers can build pedagogy to
answer national calls for computational and data science in the context of STEM do-
mains and study the application of and extend theory around the use of computational
apprenticeship within the classroom. Figure 4.3 presents the stages of design-based re-
search and the outcomes and contributions derived from its implementation.

Design-based research is similar to engineering design as it starts by identifying a
need. As shown in figure 4.3, design-based research starts with a learning need, as elab-
orated in chapter 1 of this book. We have made a case that students need to develop
model-based reasoning to effectively engage in computation, modeling, and simulation
practices in STEM. The left side of figure 4.3 depicts stages involved with the design of
learning interventions grounded in evidence-based practices, as elaborated in chapter
2 of this book. As researchers and practitioners engage in the design and implementa-
tion of learning interventions, new knowledge is created in the form of (1) new peda-
gogies or scaffolding methods, (2) design knowledge in the form of pedagogical princi-
ples, (3) useful artifacts such as computational tools and methods, and (4) exemplars of

CHAPTER 460

practice including how materials and pedagogies are orchestrated and enacted in class-
room settings. In addition, design-based research allows researchers and practitioners
to develop theoretical contributions as learning interventions are evaluated and inves-
tigated in classroom settings. The right side of figure 4.3 depicts the stages involved in
researching the effects of learning interventions. As innovations are used in the class-
room or other educational settings, data is generated that can further provide insights
into how students learn, how students interact with the technology, and artifacts and
process data created in the process. To make meaning of this data, new research meth-
ods can be developed in the space of educational data mining and learning analytics. As
data is analyzed and interpreted under specific conceptual, theoretical, or methodological
frameworks, new knowledge can be derived, contributing to findings in discipline-based
education research (Magana 2022). As shown in figure 4.3, iterative cycles are performed
in order to refine the learning innovation and the theoretical contributions.

Research is also needed to investigate whether principles derived from computa-
tional cognitive apprenticeship can be applied to teaching and learning other compu-
tational thinking practices and result in computational adaptive expertise. Weintrop et
al. (2016) identified a taxonomy for the use and application of computational thinking
in the context of science and mathematics. Although originally proposed for K–12 ed-
ucation, this taxonomy can also be adopted and adapted for undergraduate STEM ed-
ucation. Figure 4.4 presents a modified version of the taxonomy. As shown in figure 4.4,

Use

Evaluate

Analyze

TheoryDesign

Develop

Deploy

Exemplars
of practice

New forms of
multimodal data

Useful
artifacts

Design
knowledge

Research
 methods

New pedagogies
or sca�olding

methods

Theoretical
contributions

Learningneed

FiGURE 4.3 Stages of design-based research and potential outcomes and contributions from each stage.

CHAPTER 4 61

the taxonomy considers data practices, computational problem-solving practices, model-
ing and simulation practices, systems thinking practices, and intelligent machine design
practices. Weintrop’s taxonomy considers only the first four of these practices (starting
at the bottom of figure 4.4). However, due to the relevance of artificial intelligence (AI)
in society, learning AI concepts and practices at the K–12 and undergraduate levels has
become critical. To take steps toward introducing AI concepts in the curriculum, the
Artificial Intelligence for K–12 Initiative (AI4K12 2020) identified five big ideas in AI.
These five big ideas are guidelines that serve as a framework to assist curricular devel-
opers with AI concepts, essential knowledge, and skills. We have adopted and adapted
elements of those ideas, incorporating them at the top of figure 4.4. The guidelines and
lessons learned presented in this book have mainly focused on modeling and simula-
tion practices, with elements of computational problem-solving practices. But more
classroom-based or naturalistic research is needed to further identify whether the same
suggestions, guidelines, and design principles apply to all practices depicted in figure 4.4.

The development of adaptive expertise is dependent on a balance of innovation
and efficiency during the learning process. While efficiency in specific skills can be
built through rote practice and repetition, the integration of skills required to form

Intelligent machine
design practices

Systems thinking
practices

Modeling and
simulation practices

Computational
problem-solving

practices

Data practices

• Engineering of intelligent machines and programs (AI)
• Creating systems able to learn without being explicitly programmed (ML)
• Implementing systems capable of learning based on deep neural
 networks (DL)

• Investigating systems as a whole
• Understanding the relationships/subsystems within a system
• Communicating a system’s component

• Using computational models to characterize phenomena
• Constructing computational models
• Validating and verifying computational models

• Programming
• Creating computational abstractions
• Troubleshooting and debugging

• Collecting and creating data
• Curating and manipulating data
• Analyzing and visualizing data

FiGURE 4.4 A conceptual framework for characterizing computational thinking
practices in STEM. (Adapted from Weintrop 2016.)

CHAPTER 462

capabilities occurs when learners are prompted to combine skills in new ways in order
to solve unfamiliar or ill-structured problems. The computational cognitive apprentice-
ship framework is key in facilitating the development of computational adaptive exper-
tise, as it provides a safe, guided environment in which students may engage in compu-
tational innovation. This allows for the broadening and combination of individual skills
as the learner moves through the apprenticeship toward an adaptive capability for com-
putational modeling and simulation. However, it is also possible that pedagogies with
less scaffolding that delay instruction and feedback can be equally effective. Such ped-
agogies are aligned with productive failure approaches (Kapur 2010; Lyon and Magana
2021; Schwartz et al. 2011). Productive failure approaches provide parameters to guide
students to invent solutions before receiving formal instruction (Schwartz et al. 2011).
Considering figure 4.2, it is possible that productive failure approaches can be equally
effective as cognitive apprenticeship approaches but perhaps promote a learning tra-
jectory as path B (see figure 4.2). We have implemented productive failure approaches
in our research, but more in the context of capstone courses (Lyon and Magana 2021,
2019). This design decision was made based on the students’ level of disciplinary knowl-
edge. This population of students was in their last semester before graduating; thus, we
deemed it feasible to implement a pedagogy with less scaffolding and guidance and
more articulation and reflection (Jaiswal et al. 2021). However, more research is needed
in this direction to identify the trajectories students may follow toward adaptive exper-
tise and whether there is a variation in the level of innovation or efficiency depending
on the pedagogical supports.

Additionally, the understanding of how to fairly measure and assess computational
practices will need to continue to develop within research trajectories. One major lim-
itation of empirical studies so far within the literature has been the difficulty of mea-
suring and assessing computational thinking, which is highly interconnected with com-
putational modeling and simulation (Lyon and Magana 2020; Magana and Coutinho
2017). While some taxonomies of computational thinking exist (Malyn-Smith and Lee
2012; Weintrop et al. 2016), as well as computational thinking knowledge tests that fo-
cus heavily on programming knowledge (Caceffo et al. 2016; Tang et al. 2020), contin-
ued work on assessing these skills is needed to understand the effectiveness of the com-
putational apprenticeship framework.

Longitudinal studies on the effects of implementing computational cognitive appren-
ticeship pedagogy over the course of multiple years are needed to understand the cu-
mulative effects of these experiences on student outcomes. Forms of curricular models
such as spiral curricula are reported as being useful for integrating skills such as com-
putational modeling and simulation into the classroom (Magana and Silva Coutinho
2017). More work is needed to identify the evolution of pedagogical practices as stu-
dents develop their skills. We have made an argument that productive failure approaches
could be more suitable for advanced students, while cognitive apprenticeship approaches
could be more suitable for novice learners. However, research is needed to identify the
transition from heavily supported scaffolding and fading approaches to removing sup-
port (Noroozi et al. 2018). For instance, figure 4.5 proposes a progression for providing
support at the beginning of the learning process and gradually removing supports by

CHAPTER 4 63

eliciting articulation from students and by providing more autonomy in the learning
process. This progression aligns with the instructional strategies proposed by Collins et
al. (1991): modeling, coaching, scaffolding, articulation, reflection, and exploration. In
the case of the progression proposed in figure 4.5, students are guided by (1) providing
worked-out examples that explicitly connect disciplinary concepts with variables and
behaviors of the computational model; (2) providing incomplete programming tasks
for students to complete a model or to program simple models; (3) eliciting students to
make their thinking explicit by writing in-code comments of their code or that of oth-
ers, and making explicit connections between the disciplinary concepts and the com-
putational solution; and (4) removing all supports, providing students autonomy in
creating their own computational solutions, and providing additional practice and op-
portunities to reflect. This progression needs to be validated through classroom research.

Furthermore, different types of scaffolding methods can be used to better support
students in the development of the cognitive and metacognitive skills needed to de-
velop computational adaptive expertise. Specifically, Quintana et al. (2004) proposed
a scaffolding framework consisting of four different methods, as shown in figure 4.6:

Sensemaking scaffolding: Helping students relate to and transform different rep-
resentations.

Articulation scaffolding: Guiding students in integrating their prior knowledge with
new knowledge and making this connection explicit.

Process management scaffolding: Providing explicit guidance to enact disciplinary
practices and problem-solving strategies used by experts.

Reflection scaffolding: Leading to students improving their skills and processes
through personal reflection on their lived experiences.

Introducing and
modeling

Approximating and
sca�olding

Meaning-making
and fading

Autonomizing and
generalizing

Demonstrate
how to perform
a task and have
students
observe.

Provide a
step-by-step
detailed
worked-out
example.

Engage the
student with the
worked-out
example.

Provide practice
opportunities
via a simple task
to complete.

Provide a tem-
plate of code,
an incomplete
example, or an
example to
expand.

Encourage
students to
make their
knowledge and
thinking explicit.

Ask students to
explain their
thinking by
adding in-code
comments to
their code, write
explanations of
output, or write
a reflection.

Promote valida-
tion and
verification
practices.

Decrease or
remove support
in subsequent
practice.

Let the learner
operate
autonomously
to generate new
knowledge and
communicate it
through
computational
narratives
describing the
modeling and
simulation
cycle.

FiGURE 4.5 A progression from increasing to fading scaffolding in computation.

CHAPTER 464

The pedagogical methods evaluated through research presented in this book (e.g., fig-
ure 4.5) have primarily aligned with sensemaking scaffolding (e.g., worked-out examples
and code snippets). However, there are articulation scaffolding methods, such as elic-
iting students’ explanations of their thinking in the form of arguments. Arguments are
scientific explanations that help students connect claims, evidence, and reasoning. An
argumentation framework can be used to guide students and help them connect claims
by making predictions before executing a computational model, connect evidence by
making explicit observations on the graphs and plots derived from the model execu-
tion, and connect reasoning back to disciplinary knowledge (McNeill and Krajcik 2008).
Process management scaffolding could include project or laboratory templates that guide
students through the problem-based learning cycle, the inquiry cycle, or the modeling
and simulation cycle. Many of the stages of these cycles are often assumed. For exam-
ple, the planning stage is sometimes overlooked by faculty. In chapter 2, we made an ar-
gument about the relevance of process and product learning outcomes. With guidance
through process stages, students could also develop metacognitive skills required in the
enactment of computation, modeling, and simulation practices, such as model valida-
tion and verification. Finally, reflection scaffolding could also help reinforce the devel-
opment of metacognitive knowledge by guiding learners through personal reflection on
their learning and learning processes and enacted collaborative learning and team pro-
cesses. Reflective practices could also elicit students to think about strategies to change
in future iterations or implementations. For instance, students could reflect upon strat-
egies to improve troubleshooting or team coordination processes.

Our work has focused on understanding how computational cognitive apprentice-
ship can be used in a specific class or instructional unit. However, investigation of how
computational adaptive expertise develops and plays out over an entire undergraduate
curriculum is needed to fully understand the impact of the proposed computational
cognitive apprenticeship. The scope should not be limited to undergraduate years, as
these highly needed professional skills require studying in professional and continu-
ing education contexts. Thus, there is a need to understand how these skills develop all

Sensemaking Articulation
Process

management Reflection

Supports ways to
understand real-
world phenomena
or experiences and
transform those
into formal repre-
sentations.

Supports ways of
making thinking
explicit, synthesiz-
ing explanations,
and creating argu-
ments.

Supports the use of
disciplinary practi-
ces, problem-
solving, and strate-
gic approaches.

Supports the re-
viewing, reflecting
on, and evaluating
results, including
elements of collab-
oration.

FiGURE 4.6 Scaffolding methods to support cognitive and metacognitive processes.

CHAPTER 4 65

the way through the undergraduate years and even into graduate coursework and pro-
fessional years.

Using cognitive apprenticeship within computing courses has also been shown to sig-
nificantly lower dropout rates (Vihavainen, Paksula, and Luukkainen 2011). The compu-
tational apprenticeship framework offers a constructivist perspective on understanding
and addressing these issues. For example, several studies have demonstrated that scaf-
folding computing instruction within authentic problem-solving contexts can support
underrepresented groups’ interests and academic achievement in computing (Goode and
Margolis 2011; Kafai et al. 2014; Yardi and Bruckman 2007). More research is needed to
investigate the effectiveness of these methods among students with diverse backgrounds.

In addition, the social coding movement continues to produce platforms such as in-
teractive computational documents or notebooks that permit integrating multi media re-
sources (e.g., equations, text, visualizations) with code (Klever 2020). Markdown, Azure,
Data bricks, Google Collaboratory, MATLAB Live, and Jupyter are some of the most
widely adopted (Chattopadhyay et al. 2020). Computational documents permit author-
ing and executing code within a single document launched through a web browser, which
can lower initial barriers to programming. This environment is suitable for novice pro-
grammers as they can program without dealing with the installation of compilers or in-
tegrated development environments (Lucas Lacal 2020). These platforms can facilitate
the use of scaffolding approaches such as fill-in-the-blank and use-modify-create (Lee
et al. 2011) that integrate sequencing into computational lessons. Additionally, the ability
to comment and embed rich text can help to make observable the heuristics and other
metacognitive processes employed by experts during computational problem-solving
processes. Furthermore, computational documents can provide students with oppor-
tunities to share work, keep track of details, and collaborate in the process (Wang et al.
2019), thus enabling the sociology of learning. Because of such affordances, it is not sur-
prising that interactive documents have now been adopted in educational environments
(O’Hara, Blank, and Marshall 2015). In our more recent work (i.e., Arigye, Magana, et
al. 2023), we have successfully used computational notebooks to deploy all elements of
the computational cognitive apprenticeship, where students were guided through sen-
semaking, articulation, process management, and reflection scaffolding.

CONCLUSiON

THE NEED FOR COMPUTATiON iS SPREADiNG ACROSS STEM DiSCiPLiNES. iN LiGHT

of this, computational adaptive experts has never been more necessary within all dis-
ciplines and in every industry sector. The pairing of adaptive expertise models with a
cognitive apprenticeship within computational disciplines, a framework we have pro-
posed as computational cognitive apprenticeship, may be best suited to address this grow-
ing challenge. Through the use of authentic disciplinary experiences to advance stu-
dents from routine experts or frustrated novices to adaptive experts, a computational
cognitive apprenticeship can meet the increasing demands for computational thinking–
enabled professionals.

The goal of the computational apprenticeship model is to help learners turn the skills
acquired during training into broader capabilities in future practice while they are still
in training. Teaching through the apprenticeship model helps prepare students to ad-
dress unfamiliar problems in the field by making the thinking and experience of experts
in the discipline visible throughout the learning process. This paves the way for adaptive
expertise, as practitioners who are well-prepared to apply computation in the field by
thinking like an expert will be better able to address unfamiliar problems as they arise.
While a skilled practitioner may be able to address common problems quickly and effi-
ciently, a capable practitioner can apply known skills efficiently and develop new skills
as needed. The computational apprenticeship framework builds capability rather than
just skills by providing the learner with a discipline-situated environment that reflects
the knowledge structures and hands-on experience needed to turn knowledge and skills
into flexible capabilities.

The computational cognitive apprenticeship framework helps develop more adap-
tive expert capabilities by facilitating carefully guided learning of practical and trans-
ferable skills. The generalization of specific computational thinking skills into a holis-
tic set of core computational capabilities prepares the learner to address new problems
in practice. The computational apprenticeship framework helps students to gradually
expand the integration (and therefore usefulness) of their skill sets over time. This en-
ables them to address more and more complex and varied problems, until they are pre-
pared to set off on their own in the workforce or academia.

Many areas need further exploration in order to formalize and operationalize this
framework in educational settings. These explorations can be accomplished mainly
through the use of design-based and longitudinal research settings. Additionally, knowl-
edge of how to measure and assess computational modeling and simulation practices is
required for us to progress in our understanding of how to build the transfer needed to
create computational adaptive experts. But once implemented, these authentic learning

CONCLUSION68

experiences provide the opportunity to increase the knowledge and abilities of those in
the current pipelines of computational fields and increase and broaden the participa-
tion of those entering the pipelines to begin with.

APPENDix A
Sample Project and Solution for

Designing for Novice Learners

PROJECT DESCRIPTION

introduction
The most common cause of cardiac arrest is a heart rhythm disorder or arrhyth-
mia called ventricular fibrillation (VF). The heart has a built-in electrical system.
In a healthy heart, a “pacemaker” triggers the heartbeat, then electrical impulses
run along pathways in the heart, causing it to contract in a regular, rhythmic way.
When a contraction happens, blood is pumped. But in ventricular fibrillation, the
electrical signals that control the pumping of the heart suddenly become rapid and
chaotic. As a result, the lower chambers of the heart, the ventricles, begin to quiver
(fibrillate) instead of contract, and they can no longer pump blood from the heart
to the rest of the body. If blood cannot flow to the brain, it becomes starved of ox-
ygen, and the person loses consciousness in seconds. Unless an emergency shock
is delivered to the heart to restore its regular rhythm using a machine called a de-
fibrillator, death can occur within minutes. It’s estimated that more than 70% of
ventricular fibrillation victims die before reaching the hospital.

 — Heart Rhythm Society (https://www.hrsonline.org/)

This week you will be writing a computer program that will simulate the passage of an
electrical pulse through the heart muscle. The model we will use is extremely oversim-
plified (e.g., Ottesen, Olufsen, and Larsen 2006), but it has the ability to model a phe-
nomenon that is suspected to lie at the heart of one of the most common causes of car-
diac arrest: ventricular fibrillation. This is the state where the contraction of the muscle
becomes disorganized and is no longer able to adequately pump blood. This condition
is familiar to anyone who watches medical dramas on television. When this happens
on Gray’s Anatomy or ER, someone grabs “the cart,” yells “Clear!” and gives the per-
son who just passed out a jolt of electricity in an effort to reestablish a normal cardiac
rhythm. Unfortunately, in real life, 85% of those who go into ventricular fibrillation will
not be able to get help in time to save their life. Devising minimally invasive and effec-
tive techniques to reverse ventricular fibrillation is therefore an important medical issue.

HTTPS://WWW.HRSONLINE.ORG/

APPENDIX A70

Modeling Heart Tissue
We will keep track of two aspects of the heart tissue: the local potential, which we will
call U, and the depletion of the tissue, V. We will define V as follows: when it is zero,
the tissue is most excitable, and when it increases, the tissue has used up all its local abil-
ity to create a potential. While tissue remains at a high potential, it gradually becomes
more depleted. But when the tissue is not at high potential, its depletion reduces and
it becomes more excitable. To model this, we say that the rate of depletion is propor-
tional to U − V. That is to say, the degree of depletion goes up as U goes up, but it will
go down if U is less than V.

We can model this process by considering how much the tissue is depleted at time
t + Δt if we know the depletion in the tissue at time t, and the potential at time t:

V(t + Δt) = V(t) + Δt (U(t) − V(t)) = (1 − Δt) V(t) + Δt U(t) (0.1)

Here Δt is the step in time we are making at each tick of our clock. For our pur-
poses Δt = 0.0494. So, if we know U and V at any time, we can predict V at a later time.

The behavior of the potential is more complex. In fact, there are three cases we will
consider. To discern these cases, we must define a critical value of U that we will call
U*. U* is the value of U above which the electrical potential has to get to excite the tis-
sue. U* depends on the level of depletion in the region of tissue. We define U* to be

U*(t) = (V(t) + 0.01) / 0.3 (0.2)

Case 1: U < 0.0001

In this case, the system is unexcited, and we can just assume U = 0 and will stay 0.
Note in this case

Uexcite(t + Δt) = 0 (1.1)

V(t + Δt) = (1 − Δt) V(t) (1.2)

Case 2: 0.0001 < U < U*

In this case, the system is not yet above the excitement threshold. In this case

 (2.1)

V(t + Δt) = (1 − Δt) V(t) + Δt U(t) (2.2)

Uexcite(t + Δt) =
U(t)

1 − 10,000Δt[1 − U(t)][U(t) − U*(t)]

APPENDIX A 71

Case 3: U > U*

In this case, the tissue has been excited

 (3.1)

V(t + Δt) = (1 − Δt) V(t) + Δt U(t) (3.2)

Diffusion of the Electrical Potential
When the electrical potential is excited, it doesn’t stay in one place. It spreads out. As
a result, the potential tends to even out over time. Areas of particularly high potential
tend to decrease. Areas of low potential next to regions of high potential increase. This
process is called diffusion.

Consider the concentration as being defined on a square grid with rows r and col-
umns c (as shown in figure A.1). To figure out if the potential in a location (r,c) goes up
or down, we have to compare it to the average concentration in the neighboring boxes.
The way we can simulate this numerically is to define the average concentration in the
boxes adjacent to (r,c) at time t to be

UAVG(r, c, t) = [U(r − 1, c, t) + U(r + 1, c, t) + U(r, c − 1, t) + U(r, c + 1, t)] / 4 (4.1)

Then the change in U at time t would be

U(r, c, t + Δt) = Uexcite(r, c, t + Δt) + Δt D (UAVG(r, c, t) − U(r, c, t)) (4.2)

So, if the average potential in the surrounding boxes is higher than U, then UAVG > U
and U will increase. If the surrounding boxes are, on average, lower in potential than U,
then U will decrease. D gives the rate at which this process occurs. We will use a value
of D = 4.1. Note that this change is in addition to and simultaneous with any changes
to U from equations 1.1, 2.1, or 3.1 above. So, for example, when simulating a cell that
fits Case 2, you would then have

 (4.3)

The other consideration we must worry about is what happens along the edge of our
piece of heart tissue. Since there are no neighboring boxes along the edge, the above
procedure is not well-defined for boxes along the boundary. What you will do is com-
pute the new concentrations everywhere on the grid and then set the edge boxes to be
equal in concentration to the neighboring boxes just inside the edge (as shown in fig-
ure A.2). This ensures that the profiles are flat at the boundary.

Uexcite(t + Δt) =
U(t){1 + 10,000Δt[U(t) − U*(t)]}
1 + 10,000Δt U(t)[U(t) − U*(t)]

U(r, c, t + Δt) =
U(r, c, t)

+ Δt D [UAVG(r, c, t) − U(r, c, t)]
1 − 10,000[1 − U(r, c, t)][U(r, c, t) − U*(r, c, t)]

APPENDIX A72

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64FiGURE A.1 An 8 × 8 matrix labeled sequentially row
by row, illustrating the initial data in the 64 cells.

10 10 11 12 13 14 15 15

10 10 11 12 13 14 15 15

18 18 19 20 21 22 23 23

26 26 27 28 29 30 31 31

34 34 35 36 37 38 39 39

42 42 43 44 45 46 47 47

50 50 51 52 53 54 55 55

50 50 51 52 53 54 55 55

FiGURE A.2 The same matrix as shown in figure A.1,
but where the data in the outermost rows and columns
has been replaced by the data in the next-innermost
cell to impose an outgoing-wave boundary condition.

The diagrams in figures A.1 and A.2 represent the originally calculated concentra-
tion. The black squares are not calculated properly because they have no neighbors. In
the grid to the right, they are replaced by the values from neighboring cells.

Code Structure
Write a program that will simulate the above process. It should contain the following
procedures:

function U = StimTissue(U, r, c)
% Takes an N × N array and stimulates a circular region with radius N / 8
% centered at row r and column c by setting the values of U in that
% region to 0.8.

APPENDIX A 73

function [U, V] = InitTissue(N)
% This function will create an initial condition where U and V are
% N × N arrays that are zero everywhere except for a circle of radius
% N / 8 centered at row (N + 1) / 2 and col (N + 1) / 2, which should have U = 0.8.
% Use the StimTissue procedure defined above.

function [newU, newV] = StepTissue(U, V, D, dt)
% This procedure will advance the clock on U and V by one time step.

function SimTissue(N, T, stime, ptime, D, dt)
% Simulates a tissue that is represented by two N × N arrays. The
% simulation lasts T time steps. It is initially set up with a
% stimulus at the center using InitTissue. Every stime steps a randomly
% located region of radius N / 8 is electrically stimulated. The values
% in U should be plotted as a pcolor plot every ptime steps.

function TestTissue(N, T, stime, r, c, ptime, D, dt)
% Simulates a tissue that is represented by two N × N arrays. The
% simulation lasts T time steps. It is initially set up with a
% stimulus at the center using InitTissue. Once, after stime steps,
% a region centered on row r and column c of radius N / 8 is
% stimulated. The values in U should be plotted as a pcolor plot
% every ptime steps.

Hints

1. There is a built-in function called del2 that may be helpful.
2. It is important to note that once a pcolor plot happens in an axis, any button click

will be captured by the surface object returned by the pcolor plot, not by the axis.

Part i: Planning
You are required to plan your approach to this project and submit this plan by Friday
at 6:00 p.m. To give you an idea of what we are looking for, an example plan for a ge-
neric coding problem is provided on the Blackboard website. The purpose of submitting
your plan is for you to take the time to think through the different parts of the project
so that you have a roadmap for your work. Note that there are four parts of the work
that should be addressed in your plan:

Designing: What is the design for the solution? What are the critical parts of the
problem? What are the inputs and outputs? If there is graphical output, what
will this output look like? How will parts of your solution utilize or connect
to other parts?

Coding: What control structures, iteration techniques, built-in functions, or other
programming techniques will you need to use? Diagram flow charts of some
of your subroutines.

APPENDIX A74

Testing: What are some example cases you would want to test to make sure the
subroutines work along the way? What are some example cases you could think
of to test the final program?

Debugging: How will you check for bugs, particularly those that do not result in
syntax errors? Are there parts that you anticipate will create problems due to
their complexity? Could these be broken down into simpler pieces that could
be debugged separately?

Make sure your pan references the project description and identifies the most rele-
vant aspects of the project. Your plan will be judged according to how well thought out
it is. We will try to provide feedback on this plan by Sunday.

To communicate your plan, feel free to use regular paper, a whiteboard, sticky notes,
or any medium of choice. Submit these by saving them as pdfs using a scanner or an app
like iScanner, Turbo Scan, Tiny Scan for iPhone, or similar to produce a good quality
and reasonably sized single pdf file that you can submit via Blackboard. You may work
in a team on this plan as long as you include all team members’ names on the submis-
sion. All other parts of the assignment must be done on your own.

Part ii: Coding and Testing
The programming part of your assignment should be contained in five files called
StimTissue.m, InitTissue.m, StepTissue.m, SimTissue.m, and TestTissue.m. In
addition, you should submit a pdf that shows the results from running your code on
the provided test cases and three additional test cases of your own design. Make sure
to document why you chose these test cases and what output you expect.

Part iii: Application
Once you have completed your coding and testing, use your code to answer the fol-
lowing questions in a separate pdf file. Include at least two images that illustrate your
points. To explore these, make sure your simulation size is at least N = 160. You will need
to simulate times of approximately 100 steps or more to make adequate observations.

1. What happens when you stimulate the tissue only once at the beginning and
not at subsequent times? Describe. Would this represent normal or abnormal
heart function? (5 points)

2. Under what conditions do self-sustaining excitations occur in the cardiac tis-
sue? What do these look like? Describe a controlled numerical experiment with
only two stimulations of the tissue that can trigger this abnormal behavior. Give
the timing and the location of the second stimulation with respect to the first.

APPENDIX A 75

PROJECT SOLUTION

i. Solution for the Modeling of Heart Tissue

function U = StimTissue(U, r, c)
%% this procedure will stimulate the field U at a location (r,c) in a
%% circular region of radius N/8

N = length(U); %% find N
[cols, rows] = meshgrid(1:N,1:N); %% specify stimulated region
where = (rows-r).^2+(cols-c).^2 < (N/8)^2;
U(where)=0.8; %% set stimulated region

end

function [U, V] = InitTissue(N)
%% this procedure will initialize two N × N matrices called U and V
%% V will be zeroed everywhere
%% U will have a stimulated region in the center

U=zeros(N);
V=zeros(N);
U=StimTissue(U,(N+1)/2,(N+1)/2);

end

function [newU, newV] = StepTissue(U, V, D, dt)
%% this procedure will advance the clock on U and V by one time step

newU=U; %% initialize matrices for the values at the future time
newV=V; %% compute a value used to discriminate different regions
UminusUstar = U - (V + 0.01) / 0.3;
%% calculate logical masks for regions depending on U value
case1 = U<0.0001;
case2 = UminusUstar<0;
%% calculate the new U value differently depending on the region
newU(case1)=0;
newU(~case1 & case2) = U(~case1 & case2)./...

(1-10000*dt.*(1-U(~case1 & case2)).*UminusUstar(~case1 &
case2));
newU(~case2) = U(~case2).*(1+10000*dt.*UminusUstar(~case2))./...

(1+10000*dt.*U(~case2).*UminusUstar(~case2));
%% include the effect of diffusion
newU = newU + D*dt*del2(U);
%% calculate the new V value differently depending on the region
newV(case1) = (1-dt).*V(case1);
newV(~case1) = (1-dt).*V(~case1) + dt*U(~case1);
%% enforce boundary conditions by calling the sub-function boundary()
newU=boundary(newU);
newV=boundary(newV);

APPENDIX A76

function X = boundary(X)
%% This subfunction enforces zero gradient at the boundary

X(:,1) = X(:,2);
X(:,end) = X(:,end-1);
X(1,:) = X(2,:);
X(end,:) = X(end-1,:);

function SimTissue(N, T, stime, ptime, D, dt)
%% this procedure simulates T time steps on an N × N region of tissue
%% every stime steps the tissue will be stimulated at a random location
%% every ptime steps the figure will be updated
%% D sets the diffusion rate and dt sets the time step

[U,V]=InitTissue(N);
for t=1:T

[U,V]=StepTissue(U,V,D,dt);
if mod(t,stime)==0

U=StimTissue(U,ceil(rand(1)*N),ceil(rand(1)*N));
end
if mod(t,ptime)==0

figure(1);
pcolor(U);
caxis([0 1]);
colormap copper
shading interp
drawnow;

end
end

function TestTissue(N, T, stime, r, c, ptime, D, dt)
%% this procedure simulates T time steps on an N × N region of tissue
%% once, at stime steps the tissue will be stimulated at (r,c)
%% every ptime steps the figure will be updated
%% D sets the diffusion rate and dt sets the time step

[U,V]=InitTissue(N);
for t=1:T

[U,V]=StepTissue(U,V,D,dt);
if t==stime

U=StimTissue(U,r,c);
end
if mod(t,ptime)==0

figure(1);
pcolor(U);
caxis([0 1]);
colormap copper
shading interp
drawnow;

end
end

APPENDIX A 77

ii. interpretation of the Results
Figure A.3 shows what happens under normal heart conditions. The wave begins at the
center and runs to the edges and the excitation ends. Figure A.4 shows what happens
when we have induced fibrillation by having a second shock shortly after the initial
excitation. The image was obtained by shocking a 160 × 160 system a second time 90
steps after the initial excitation at a location slightly off-center (80,90). The secondary
shock causes the development of spiral waves that continue to self-generate indefinitely.

FiGURE A.3 The propagation of a wave as a circular front in the simulated
heart tissue. This represents a simulation of normal heart function where waves
move regularly through the tissue in a way that terminates after the tissue is
fully stimulated.

FiGURE A.4 The propagation of a wave interrupted by a second shock induc-
ing fibrillation. Fibrillation is characterized by a spiral wave pattern that never
ceases as the spiral continues to trigger a response in the tissue.

APPENDIX A78

ASSESSMENT RUBRICS

TABLE A.1 Assessment rubric to evaluate students’ strategies before getting into the solution

Criterion Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

PLANNING/PROGRAM
DESIGN

Evaluates the student’s plan
for completing the project.

Student Instructions

Summarize the nature of
the algorithm briefly, iden-
tifying the most relevant
information from the proj-
ect description.

Articulate a
well-thought-out strategy
for designing, coding, test-
ing, and debugging your
work. (10%)

No strategy is
articulated for
the design,
coding, test-
ing, or
debugging.

The strategy
provided consid-
ers two or fewer of
the defined areas
(designing, coding,
testing, debugging).

The strategy is
poorly articulated
and does not repre-
sent a coherent
plan.

The strategy articu-
lated is generic and
does not address
the specifics of the
project.

The strategy includes
all but one of
the defined areas
(designing, coding,
testing, debugging).

The nature of the
algorithm is not
summarized, or the
summary does not
reference aspects
of the project
description.

The description of the
strategy is unclear or
misguided in one or
more aspects.

All four areas
(designing, coding,
testing, debugging)
are addressed clearly
in the context of the
project.

The summary refer-
ences the proj-
ect description
and identifies rele-
vant aspects of the
project.

The strategy is artic-
ulated clearly and
is logical and well
thought out.

TABLE A.2 Assessment rubric to evaluate students’ solutions in terms of product and process

Criterion Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

PROGRAM EXECUTION

Evaluates the extent
to which the program
functions in a way
that conforms to
specifications.

Does the program
execute?

Is the input and output
of the expected form?
(25%)

The program does
not run at all.

The program
contains two
or more easily
correctable syntax
errors that impede
execution.

Program input or
output is not as
described in the
specifications of
the project.

The program is free
of syntax errors that
impede execution.

Program takes the
expected input param-
eters and returns the
expected output as
required in the spec-
ification except in
minor respects.

The program is free
of syntax errors that
impede execution.

Program takes
the expected
input parameters
and returns the
expected output
as required in the
specification in all
respects.

SPECIFICATION
SATISFACTION

Evaluates the degree
to which the solu-
tion satisfies the
specification.

Is the solution accurate
and robust?

Does it conform to the
problem specifica-
tions regarding format,
order, and presenta-
tion? (25%)

The solution
produces wholly
incorrect output
under all of the
tests run.

The solution
produces incor-
rect output under
a number of the
tests.

Output is correct,
but does not meet
specifications
in one or more
respects.

The solution produces
incorrect output in
particular cases.

Output always meets
specifications regard-
ing format, order and
presentation when
correct.

The solution
produces correct
output in all cases
with only minor
exceptions.

All output
meets specifica-
tions regarding
format, order, and
presentation.

CODING STYLE

Measures the extent
to which the code is
presented in a manner
that is clearly readable
by others.

Is the code indented
and commented, and
are variable and func-
tion names chosen to
enhance readability?

Does the code appro-
priately deploy
language capabilities
to avoid redundant
structures, global vari-
ables, and unnecessar-
ily lengthy blocks of
code? (10%)

Code is entirely
uncommented.

Global variables
are used without
justification due
to exceptional
circumstances.

Code is not
differentiated
into functions
or m-files (i.e.,
spaghetti code).

Code is poorly
commented.

Code is not prop-
erly indented.

Variable and func-
tion names are
chosen without
consideration.

Code is unnec-
essarily complex
due to the
underuse of func-
tions, control
constructs, or
other language
capabilities.

Code is adequately
commented.

Code is properly
indented, and variable
and function names
are well chosen.

Code could be made
more readable in one
or more ways by addi-
tional commenting
or by more logi-
cally organizing its
structure.

Code is well
commented.

Code is properly
indented, and vari-
able and func-
tion names are well
chosen.

Code is well
structured.

Continued

APPENDIX A80

TABLE A.2 Assessment rubric to evaluate students’ solutions in terms of product and process

Criterion Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

VALIDATION OF THE
SOLUTION

Establishes whether
the proposed solu-
tion satisfies the prob-
lem’s requirements
and produces correct
output for a range of
test cases.

Students are expected
to run provided test
cases and compare
them to provide
output, as well as
propose at least three
additional well-chosen
test cases for the
purpose of validation.
(10%)

No evidence of
validation.

or
Only provided
test cases are run.

or
Test cases are run,
but the output
is not discussed
regarding its
implications for
validation.

All provided test
cases are run,
and output is
provided.

At least one test
case is proposed.

Comparisons are
made between
program output
and student test
cases, and some
discussion is
provided.

All provided test cases
are run, and valid
output is provided.

Three test cases are
proposed, but they
are perhaps not
well-chosen to test
a range of indepen-
dent solutions, or
the answers are not
well-justified.

Comparisons are made
to the student test
cases, and these are
discussed adequately.

All provided test
cases are run, and
valid output is
provided.

Three well-chosen
and indepen-
dent test cases are
proposed, and the
anticipated output
is well-justified.

Comparisons are
made to the student
test cases, and these
are passed.

DEPLOYMENT OF
DISCIPLINARY
CONCEPTS

Evaluates whether the
student can use the
solution to approach a
disciplinary problem.

Can the student use
their code to address
the disciplinary issue
or to solve a related
problem? (20%)

No solution
provided.

A solution is
provided, but it is
incorrect or does
not adequately
address the issue
or problem.

A solution is provided
that would adequately
address the issue or
problem, but it is
presented in a way
that is unclear or
improperly docu-
mented (e.g., graphs
without axes, no writ-
ten description when
requested).

A solution is
provided that is
correct, clear, and
well documented.

Continued

APPENDix B

* Parts of this appendix are republished with permission from Lyon, Joseph A., and Alejandra J.
Magana. 2021. “The Use of Engineering Model‐Building Activities to Elicit Computational
Thinking: A Design‐Based Research Study.” Journal of Engineering Education 110 (1): 184–206.

Copyright and Copying: Copyright © 2023 by American Society for Engineering Education.
All rights reserved. No part of this publication may be reproduced, stored or transmitted in
any form or by any means without the prior permission in writing from the copyright holder.
Authorization to photocopy items for internal and personal use is granted by the copyright holder
for libraries and other users registered with their local Reproduction Rights Organization (RRO),
e.g. Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, USA (www
.copyright.com), provided the appropriate fee is paid directly to the RRO. This consent does not
extend to other kinds of copying such as copying for general distribution, for advertising or pro-
motional purposes, for republication, for creating new collective works or for resale. Permissions
for such reuse can be obtained using the Rights Link “Request Permissions” link on Wiley Online
Library. Special requests should be addressed to permissions@wiley.com.

Sample Project and Solution for
Designing for Capstone Courses

Sections of this appendix and supporting documentation have been previously reported
in Lyon and Magana (2021)* and Lyon, Magana, and Streveler (2022).

PROJECT DESCRIPTION

introduction
You are a team of new project engineers at FOODSCorp. Your engineering team re-
ceived the following email (figure B.1) regarding a new job your company, FOODSCorp,
has been contracted to do. Your engineering team has been given the following infor-
mation (figures B.1, B.2, and B.3).

mailto:permissions@wiley.com
http://www.copyright.com
http://www.copyright.com

APPENDIX B82

-----Original Message-----

From: Jennifer Gonzalez [mailto: jgonzalez@lyoncorp.com]

Sent: Tuesday, March 10, 2017 7:00 AM

To: Purdue Engineering Team

Subject: Sterilization Line Malfunction

Hey FOODSCorp team,

We know we have done work with you before and are confident we will get great results
again. Last night one of our heaters before the filler went out for our canning sterilization line.
The manufacturer of the filler is unfortunately in Germany and this is a specialty part, so we
don’t expect to get the new heating element for a couple of months. In addition, we reached
out to general machining; however, they, too, cannot generate the new heating element. The
line is working about 10k an hour and runs four different products, so anything we can do to
get it running again the company is willing to try.

Our hope is within the next two weeks to get the line back up and running by adjusting
processing parameters. However, we do not have the capabilities in-house to model the
process using MATLAB software. The heating element was originally able to heat the food
material prior to canning to 200°F, but the replacement part we found can only achieve a
filling temperature of 180°F currently. After the food is canned, it is heated to commercial
sterilization and then cooled with water. Our micro team has asked per company policy that
we achieve a 12–15 log reduction in microbial load prior to production. Our quality team has
asked that we maximize our vitamin B1 and vitamin C intact in all products.

I’ve attached a document overviewing the properties of the food materials as well as a
blueprint overviewing our production process. Please deliver us an appropriate computational
model via MATLAB software that is capable of outputting visuals of the sterilization process
for all four food products showing temperature at various points along the radius as a function
of time in addition to plots describing micro load and nutrition degradation. This program
should also be able to describe optimal conditions for nutrient retention. In addition, if you
could inform us of potential additional energy and time costs from our normal process, that
would be helpful. The production runs primarily in the midwestern United States.

Thanks!

Jenn

CAUTION: This email originates from outside of FOODSCorp. Please consider carefully
whether you should click on any link, open any attachment, or provide any information.

FiGURE B.1 Email prompt given to students that overviews problem statement.

mailto:jgonzalez@lyoncorp.com

Properties of the food materials and microbes
Production Line Time Breakdown
Food Material Moisture

Content (%)
Can Size
(Can #)

Water
Activity (aw)

Percentage of
Production (%)

Tomato Soup 81-84 2 .96 42
Apple Sauce 73-77 10 .99 25
Pumpkin Pie
Filling

45-50 3 .98 23

Nacho Cheese 80-85 1 tall .96 10
*Assume a conduction process inside the can.
Kinetic properties of food components
Component Z-value (oF) Ea (kcal/mole) D250-value
Thiamine 47-49 21-27 246.9 min
Ascorbic Acid 48-52 22-24 1.12 days
Cobalamin 46-49 20-24 1.94 days

Kinetic properties of microorganisms
Microorganism Z-value (oF) Ea (kcal/mole) D250-value
C. Botulinum 12-19 64-82 .1-.2 min
C. Perfringens 15-19 72-79 .02-.04 min
B. Cereus 14-18 65-71 .005-.008 min

Properties of food materials
Food Material Emissivity pH Light Transmittance (%)
Tomato Soup .87 4.6 5.0
Apple Sauce .89 3.6 4.0
Pumpkin Pie Filling .75 5.1 .01
Nacho Cheese .80 5.8 .05

FiGURE B.2 Modeling parameters for students to build and test their modeled solution.

Material fill
temp: 200°F

Outside room
temp: 85°F

FILLING

BLUEPRINT — CANNING PRODUCTION LINE

FULL STEAM
IMMERSION RETORT

COOLING WATER
IMMERSION

Residence time: User selects

Maximum steam
temp: 250°F

Maximum rotation speed:
10 RPM

Target exit temp: 100°F
(average temp in the can)

Cooling water temp:
Randomly fluctuates
between 50°F and 60°F

FiGURE B.3 Simple system diagram of retort system to be modeled.

APPENDIX B84

Please deliver the following to FOODSCorp as the engineering team that is solv-
ing this problem. There will be four deliverables for this assignment.

Deliverable 1: Planning the model template Working with your group, outline the
proposed solution in the provided template report (individually). This will be done
during lab time. During this time, decide which food product each member of the
group will model. (Table B.1.)

Deliverable 2: Building the model template/modeling report Individually, com-
plete a building the model template report (provided on Blackboard) using MATLAB
Live containing the commented and explained model (bring a printout to class). Each
member of the group should code and comment their own model, with each group
member modeling the process for one of the four different foods produced. (Table B.2.)

Deliverable 3: Evaluating your model notes Each group will meet with two to three
other groups to discuss differences in how they approached the problem, in both a
mathe matical and a computational sense. An evaluating the model notes template will
be provided. This activity will be completed in class during the first hour of lab time.
(Table B.3.)

Deliverable 4: Reflecting on your model Complete an individual reflection report
template that overviews the difference observed from the second in-class activity and
allows for reflection as to how your model could be improved or useful in future iter-
ations. (Table B.4.)

TABLE B.1 Template: In-class activity for planning for the model

In-class activity (individual working with group): Planning the model
What properties are needed/not needed for the model? For each food property, give reasoning as to why.
Food property: Why is/is not used:

How do you intend to address each property where a range or raw data is given in the final model? For
each property listed, please give reasoning as to why you are choosing your current strategy.
Food property: How will you use or address it? Why?

APPENDIX B 85

TABLE B.1 Template: In-class activity for planning for the model

Are there food properties needed that are not given in the problem statement? If any, please justify why
they are needed and what source you will obtain them from.
Food property needed: Why is it needed? Why did you use the source you

did?

What assumptions will you make to solve the problem? For each assumption, explain why you made it
and what it may limit about your model.
Assumption: Why did you choose it? What will this limit?

Provide the mathematical equations necessary to solve the problem. For each equation, please explain
why it was chosen and any assumptions your model will make about it. Please list all equations necessary.
Feel free to use the course textbook or online materials.
Equation needed: Why is this needed? What assumptions does this

equation make?

What computational technique will you use to solve the system? Explain why this technique was chosen,
what the benefits are, and what the limitations are (e.g., implicit finite difference, explicit finite difference,
finite element method, Crank-Nicolson method, Monte Carlo method).
Computational technique chosen:

What are the benefits of this technique?

What are the limitations of this technique?

Why did you choose this technique over alternatives?

Continued

APPENDIX B86

TABLE B.2 Template: Take-home assignment for building the model

Take-home assignment (individual): Building the model
Please outline and describe how your model works in terms of computational structures. For each struc-
ture, please explain why the programming technique or process used was chosen. Include as much detail
as possible, doing this for each computational structure within your model (e.g., groups of variables,
loops, conditional statements, sets of equations).

Computational structure: How does it work? Why was it programmed this way?
Ex. Nested for loop in lines
15–25 of function X.

Ex. The nested for loop indexes through both rows and columns to
move through both time and space. It was used because there was a
set endpoint, thus it was more efficient than a while loop that exits
upon an unknown number of iterations. This is useful given it is
unknown how long heat will take to transfer.

Ex. Define thermal variables in
lines 26–33.

Ex. These statements define how heat moves through the material.
These variables are necessary to be defined previous to the equations
in line 45 as they are used there. Variable X does . . . and interacts
with variable Y in this way . . .

Please describe any assumptions made during the modeling process and why those may have been good
or appropriate assumptions.
Assumption: Why did you make this

assumption?
How does this impact how your
model works?

What process parameters are you using for each of the food materials?
1. What microorganism is your program targeting? All of them? Only one? Why?

2. What is the new time needed to commercially sterilize the product and the time needed to cool the prod-
uct to the required average temperature?

APPENDIX B 87

TABLE B.2 Template: Take-home assignment for building the model

3. What optimum temperatures were used for sterilization to retain nutrients? How do you know this is
the optimum? Compare the optimum between the original (200°F fill temperature) with the alternate
(180°F fill temperature).

4. Insert a graph of the heating and cooling profile of the center of the can during the process. How do
specific physical properties of the food impact this graph?

5. Insert a graph of the biological activity profile in the product at the center of the can vs. time. Why would
the center of the can make the most sense to monitor?

6. Insert a graph of the average nutrient activity profile throughout the entire can vs. time. Why would we
use the average nutrient content across the can rather than at a single point?

How do parameters such as food composition, thermal properties of the food, geometry (can size), and
processing parameters (times and temperatures) seem to impact the heating profile?

How did you test how these properties affected the heating profile?

For your process, how are vitamin B1 and vitamin C affected? How much of these vitamins remain? How
much more vitamin loss is there in the new process (180°F fill temperature) than the original (200°F fill
temperature)?

What is your estimate of additional energy and time costs due to the impacted filling temperature for
your product?

Continued

Continued

APPENDIX B88

TABLE B.2 Template: Take-home assignment for building the model

What recommendations would you make to the systems engineer, R&D, and microbiology to improve
costs and efficiencies on this line moving forward?

Continued

TABLE B.3 Template: In-class activity for evaluating the model

In-class activity (individual with the group): Evaluate your model
Questions to discuss during group rotation meetings. For these meetings, focus on how and why you
solved and programmed the problem the way you did.
1. What are the different assumptions you made about the physical properties of the system? Did you use

different data? How would these differences impact the model?

2. Make a line-by-line comparison with the other students’ programming files. How did your program-
ming strategies differ? What advantages do you see in how they did their model? What advantages do
you see in your own?

APPENDIX B 89

TABLE B.4 Template: Take-home assignment for reflecting on the model

Take-home assignment (individual): Reflect on your model
What approaches did other students take with respect to the data they used (justifications, assumptions,
and limitations) and the way they programmed their model? Be as detailed as possible in listing various
differences between models. For each difference, talk about why you think the other students chose to do
it the way they did. Be detailed.

How did these differ from your own approach? When would your own approach make the most sense?
When would different assumptions that other groups made make the most sense?
Differences I saw: What approach makes the most

sense:
Why the approach makes the
most sense:

If you were to do this assignment again, what different assumptions would you make, and what do you
believe to be the optimal solution to the problem?
Things I would do differently: Why I would do them differently:

What was the most challenging piece of this assignment?

Why do you think it was the most challenging?

How did you overcome this challenge?

APPENDIX B90

PROJECT SOLUTION

i. Example Solution in MATLAB Code

clc;
clear;
count=0; %counter variable 1
t=0; %initial time
%Tomato Soup
xw=.8079;
xc=.1412;
xp=.0146;
xft=.0044;
xash=.0209;
xfib=.011;
radius=43.7;%mm
nodes=200;
%Mesh Size
delx=radius/nodes;
delt=.05;%seconds
%Initial Temp
maxcount=1
Tcount=121;
lethal=0; %initial lethality
Tinitial=82;%Celcius
T=zeros(1,nodes);
T=T+Tinitial;
T(1,1)=Tcount;%Celcius
Tnew=zeros(1,nodes);
%Kinetics of C bot.
D250=.2;%min
D250seconds=.2*60;%seconds
Zvalue=15;%F
Ea=73;%kcal/mole
ZvalueC=15*5/9;%C
heatcycle=0;
xxx=0;
while xxx<2
 if lethal<12
while lethal<12
alpha = choiokos(xc, xp, xw, xft, xfib, xash, T);
%Check for stability
M=(delx^2)./(alpha.*delt);
if min(M<4)
 print(‘solution became unstable’);
 return
end

APPENDIX B 91

for n=2:1:nodes
Tnew(1)=T(1,1);
if n<nodes
 Tnew(n)=(1./M(n)).*(((2.*n+1)./(2.*n)).*T(n+1)+(M(n)-
2).*T(n)+((2.*n-1)./(2.*n)).*T(n-1));
else
 Tnew(n)=(4./M(n)).*T(n-1)+((M(n)-4)/M(n)).*T(n);
End
end
%display(Tnew(nodes))
t=t+delt;
count=count+1;
tvec_center(count)=t;
Tvec_center(count)=Tnew(nodes);
T=Tnew;
Ksterile=1*D250seconds*10^((121-Tvec_center(count))./Zvalue);
lethal_new=2.303./(Ksterile).*delt;
lethal=lethal+lethal_new;
display(lethal)
end
tsterilize=t;
 else
T(1,1)=15;%C cooling water
Taverage=39;
while Taverage>38; %C
alpha = choiokos(xc, xp, xw, xft, xfib, xash, T);
M=(delx^2)./(alpha.*delt);
T(1,1)=15;
Taverage=T(1)*(3.14*((nodes-1)*delx)^2-(3.14*((nodes-2)*delx)^2))/
(3.14*(delx*(nodes-1)^2));
for n=2:1:nodes
if n<nodes
 Tnew(n)=(1./M(n)).*(((2.*n+1)./(2.*n)).*T(n+1)+(M(n)-
2).*T(n)+((2.*n-1)./(2.*n)).*T(n-1));
 Taverage=Taverage+Tnew(n)*(((3.14*((nodes-n)*delx)^2)-
(3.14*(((nodes-n-1)
*delx)^2))))/((((nodes-1)*delx)^2)*3.14);
else
 Tnew(n)=(4./M(n)).*T(n-1)+((M(n)-4)/M(n)).*T(n);
End
end
t=t+delt;
count=count+1;
tvec_center(count)=t;
Tvec_center(count)=Tnew(nodes);
T=Tnew;
end

 end

APPENDIX B92

xxx=xxx+1;
Tcountvector(maxcount)=Tcount;
maximizetimevector(maxcount)=t;
maxcount=maxcount+1;
end
formatspec=’The time to sterilize is %f minutes’;
fprintf(formatspec, tsterilize./60)
formatspec2=’The total time is %f minutes’;
fprintf(formatspec2, t./60)
plot(tvec_center./60,Tvec_center)
%formatspec3=’The optimum sterilzation temperature is %f degrees C’;
%fprintf(formatspec3, max(Tcountvector))

ii. interpretation of the Results
Figures B.4, B.5, B.6, and B.7 show how the temperature changes in the center of the
can for various systems provided to the teams (different foods and sized cans). In each
figure, as the temperature rises in the can the material continues to be sterilized. The
curve then takes a sharp downward turn as cooling begins. This results in two pieces
of information for each team: the total time to sterilize (temperature rising) and total
time including cooling (from beginning to final time).

1. Tomato soup heating profile at center at 121°C heating condition in radius 43 mm
can.

FiGURE B.4 Temperature change as a
function of time at the center of 43 mm
can of tomato soup.

The time to sterilize 100.7 minutes. Total time is 326 minutes.

APPENDIX B 93

2. Apple sauce heating profile at center at 121°C heating condition in radius 78 mm
can (num 10).

FiGURE B.5 Temperature change as a
function of time at the center of 78 mm
can of apple sauce.

The time to sterilize is 203 minutes. Total time is 904 minutes.

3. Pumpkin pie filling heating profile at center at 121°C heating condition in radius
54 mm can.

FiGURE B.6 Temperature change as a
function of time at the center of 54 mm
can of pie filling.

The time to sterilize is 127 minutes. Total time is 450 minutes.

APPENDIX B94

4. Nacho cheese heating profile at center at 121°C heating condition in radius 34.29
mm can.

FiGURE B.7 Temperature change as a
function of time at the center of 34.29 mm
can of cheese sauce.

The time to sterilize is 73 minutes. Total time is 214 minutes.

ASSESSMENT RUBRIC

TABLE B.5 Assessment rubric to evaluate students’ implementation and solutions

Learning Objective Unsuccessful (0) Successful (5) Above Successful (10)

Students are able to identify useful data
and justify its use. (15%)

ARTIFACT

Solution proposal (week 1); students are
asked to set up the problem using infor-
mation from the problem statement.

Students use pieces
of irrelevant data
with an irrational or
missing justification
for its use.

Students correctly
identify relevant data;
however, they have
irrational or missing
justifications.

Students correctly iden-
tify relevant data and
rationally justify its use.

Students are able to convert mathemat-
ical representations of information into
appropriate computational structures
and justify their choice. (30%)

ARTIFACT

Student m.files (week 2) that are
required to have in-code comments
justifying each line of code.

Students are not
successful in inter-
preting mathemat-
ical structures in
relation to compu-
tational abstractions.

Students successfully
interpret mathemati-
cal structures in rela-
tion to computational
abstractions.

Students successfully
interpret mathematical
structures in relation to
computational abstrac-
tions and justify appro-
priateness and efficiency
of choice.

APPENDIX B 95

TABLE B.5 Assessment rubric to evaluate students’ implementation and solutions

Learning Objective Unsuccessful (0) Successful (5) Above Successful (10)

Students are able to construct compu-
tational models from identified infor-
mation and develop computational
structures. (30%)

ARTIFACT

Student final report (week 2) that
requires an outline of the model,
answers to specific discipline questions,
and presentation to the class.

The computa-
tional model does
not function/has
multiple errors or
does not answer the
identified question.

The computational
model functions
properly with mini-
mal errors. The model
provides reasonable
answers to the identi-
fied question.

The computational
model functions with
no errors and provides
a relevant answer to the
identified question.

Students are able to interpret model-
ing output in relation to the problem
context. (15%)

ARTIFACT

Student evaluation report (week 3) asks
for an interpretation of own model and
for results from class discussion around
other approaches to the same problem
obtained from week 2 presentations.

Student either fail
to provide other
approaches or incor-
rectly interpret their
own approach.

Students provide
other approaches
but fail to iden-
tify the strengths and
weaknesses of each
approach in relation to
their own.

Students provide a
correct interpreta-
tion of their own
approach, in addition
to other approaches,
and a comparison of
the strengths and weak-
nesses of each approach
is created.

Students are able to reflect on their
learning experiences and discuss what
they would do differently in the future.
(10%)

ARTIFACT

Student reflection report (week 4)
that asks students to discuss what they
would do differently in the future and
the benefits and drawbacks of their
approach.

Student either fail
to provide detailed
challenges or fail
to identify areas of
improvement.

Students iden-
tify challenges and
weaknesses of their
approach but fail to
identify the reason-
ing as to why it was
a weakness or the
reasoning for taking a
new approach.

Students are able to
identify the challenges
of their approach, what
they would do differ-
ently in the future, and
why they would change
their approach.

Continued

APPENDix C

Sample Project and Solution for Designing
for Learning in the Laboratory

THE DESiGN OF THE COMPUTATiONAL LABORATORY ASSiGNMENTS WAS BASED ON

learning materials created by professors Sanjay Rebello and Carina Rebello, with the
help of Yuri Piedrahita, at Purdue University.

PROJECT DESCRIPTION

LAB 2: Position, velocity, and Acceleration
Goal: After completing this activity, you should be able to

• Use loops to model motion iteratively in VPython.
• Measure 1D position, velocity, and acceleration.
• Connect physical experiment and a VPython model.

i. iterative vector Modeling

A loop is a set of code instructions that repeatedly runs until some condition is met. In
VPython, one example of a loop is the while loop (figure C.1).

A while loop starts with a condition (e.g., x < 10) followed by commands that are exe-
cuted as long as that condition is met. When the condition is no longer met (e.g., x ≥ 10),
the program moves on to the line of code following the loop. Notice that all of the in-
struction lines are indented one tab past the while condition. This tells GlowScript what

Code
before loop

Code
after loop

Loop
statement

Check
condition

Loop
instructions

While [condition]
instruction 1
instruction 2
instruction 3
. . .
instruction x

FiGURE C.1 Example of a while loop.

APPENDIX C98

lines of code are contained within the while loop. Returning to standard non-indented
lines indicates the end of the loop. Let’s look at an actual example in VPython.

1. From any internet browser, go to http://www.glowscript.org.
2. Sign in with your Google account (e.g., Gmail, YouTube).
3. Open your programs by clicking on “Your programs are here.”
4. Open your Public folder. You should see your programs from Lab 1.
5. In your Public folder, create a new program called Loops.
6. Click on the following link and copy the code from WhileLoopTutorial into your

new Loops.py program: https://www.glowscript.org/#/user/HaydenFennell
/folder/Lab2/. (Note: The code is provided in full at the end of this appendix.)

7. Uncomment Part 1 by removing one # before each sentence. Lines with ## will
continue to remain as comments.

8. Examine the code and read through the comments following each line to deter-
mine what the code is doing.

Q: How many times do you predict that the loop in Part 1 will execute?
Explain why.

Q: Run the code. How many times does the code run? Does this match
your prediction?

9. Re-comment Part 1 of the code by adding one # in front of each line. Uncomment
Part 2.

10. Examine the code and read through the comments after each line to determine
what the code is doing.

Q: What is the conditional statement checking in Loop 2?

Q: How many times do you predict that the loop in Part 2 will execute?

Q: Run the code. How many times does the code run? Does this match
your prediction?

ii. Pushcart vPython Simulation

Now you will use loops to model motion using the position update formula:
 .

Q: How do you think we can use while loops to predict the motion of an
object using position update?

Next, we analyze a computational model of pushcart that you will use in the next
section. In the simulation, the cart is moving along the track for 2 meters at a constant
velocity.

𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 + �⃗�𝑣𝑣𝑣∆𝑡𝑡𝑡𝑡

http://www.glowscript.org
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/

APPENDIX C 99

1. In your Public GlowScript folder, create a new program called PushCartSimula tion.
2. Copy the code from the following link into your new program: https://www

.glowscript.org/#/user/HaydenFennell/folder/Lab2/. (Note: The code is pro-
vided in full at the end of this appendix.)

3. Carefully review the PushCartSimulation code.
4. Add comments to the code to explain what each part does.

Q: Which section of the code models the motion of our pushcart? Ex-
plain why.

5. Run the code and observe what happens.
Q: At what time after starting the simulation does the pushcart pass the
1-meter mark?

6. Modify the code so that it provides a more accurate estimate of the time at 1
meter.

Q: Describe below what changes you made to the code. Explain why. (Hint:
Think about the experiment with the physical cart-and-rail device. What did
you modify to change how often data was recorded by the system?)

Q: How does the rate at which we record (or generate) data influence our
results?

7. Now imagine that our simulation was tracking the motion of a proton being ac-
celerated through a linear particle accelerator.

Q: If we wanted to accurately estimate the time at which the proton passes
through a specific checkpoint in the accelerator, what might need to differ
from the pushcart example above? Why?

iii. Pushcart Physical Experiment

You will now compare the VPython simulation above with a real experiment.

1. Plug the motion sensor into the interface.
2. Open the PASCO Capstone program and check that the motion sensor is detected.
3. Set three graphs to measure position, velocity, and acceleration vs. time simul-

taneously.
a. Open a graph display: Double-click on the Graph button on the display bar

at the right side of the screen.
b. Add two new plot areas to the graph display. Click on the Correspond tool

on the top bar in the graph display.
c. Select the measurements for each plot in the graph display. Time on the

hori zontal axis; position, velocity, and acceleration on the vertical. (Click on
the <Select Measurement> button beside the axes and select the respective
measurements.)

https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab2/

APPENDIX C100

4. Dock the motion sensor on one extreme of the dynamic cart track as shown in
figure C.2.

5. Put the dynamic cart on the track in the opposite extreme of the motion sen-
sor. Make sure the vertical metal sheet in the cart is facing straight toward the
motion sensor.

6. Make sure the motion sensor is adjusted in cart mode, selecting the cart symbol
with the top button on the motion sensor.

7. With the dynamic cart and the motion sensor at opposite extremes on the track,
start to collect data by clicking on the Record button in the control bar at the
bottom of the screen. Just after you start to record, give a gentle push on the dy-
namic cart such that it starts to move at a kind of constant velocity. Stop the re-
cording after a little while.

8. Analyze with your colleagues the three different paths in each plot (position, ve-
locity, and acceleration) as shown in figure C.3.

FiGURE C.2 Dynamic cart track with
motion sensor.

FiGURE C.3 Graph plotting the position, velocity, and acceleration.

APPENDIX C 101

Q: Identify in the velocity graph an interval of time where the velocity of
the cart was approximately constant. (Hint: If your data is too irregular, you
can use the Smoothing tool as shown in figure C.7, located on the toolbar
in the graph display, to smooth the data of your experiment so that you can
easily decide in which period of time the path is closest to constant veloc-
ity.) What interval of time is that?

9. Take a screenshot of the relevant portion of the velocity vs. time graph and up-
load it (one per group).

Q: Looking at the position graph on the screen, what are the initial and
final positions of the dynamic cart in the period of time that you chose in
the last question? It is the period when the cart moved with constant veloc-
ity. (Hint: You can find the mean of the collected data, using the tool to cal-
culate statistics of the active data. Click on the ∑ button in the toolbar at the
top of the graph display. Note: To select a specific interval of data, you need
to use the tool Highlight Range in the same toolbar used in the last item.)

10. Take a screenshot of the relevant portion of the position vs. time graph and up-
load it (one per group).

iv. Connecting the vPython Model with the Physical Experiment

Now that you have collected data in a real experiment to measure position, velocity, and
acceleration, it is possible to modify the computational model from Part 2 to represent
the physical experiment during the period of time that you identified as constant velocity.

1. Take your code from the pushcart program and copy it into a new file in your
Public folder (call this program PushCartSimulation2).

2. Adjust the numerical values in the code to model the physical experiment done
with the dynamic cart, during the period where the cart had a motion with con-
stant velocity.

3. Compare the graphs obtained in the real experiment with the ones obtained with
the new model in VPython and answer the questions below.

Q: How do the two graphs — VPython model and physical experiment —
differ from each other?

Q: What assumptions about the cart system does the computational model
make? Are these valid assumptions?

Q: How do these assumptions affect the accuracy of our results? For the
pushcart simulation, are these assumptions negligible? Why or why not?

4. To conclude today’s lab, each student must create share the link to their fin-
ished programs.

APPENDIX C102

Q: To share your programs, simply navigate to your Public folder tab and
copy the URL from the browser bar into the space below.

LAB 3: Changing Momentum: Measuring velocity and Force
Goal: After completing this activity, you should be able to

• Measure force and velocity of a fan-cart system.
• Use loops to model change of momentum due to a constant force.
• Connect physical experiment and VPython model.

i. Fan-Cart Physical Experiment

1. Plug the motion and force sensors into the interface(s).
2. Open the PASCO Capstone program and check that the sensors are detected.
3. Dock the motion sensor at one end of the track and put the cart with fan on the

track about 15 cm from the motion sensor as shown in figure C.4.
4. Make sure the motion sensor is in cart mode by selecting the cart symbol with

the top button on sensor.
5. Set three graphs to measure position, velocity, and acceleration vs. time simul-

taneously as shown in figure C.5.
6. Double click the Graph button. Add two new plot areas to the graph display.
7. Start to collect data by clicking on the Record button in the control bar in the

bottom of the screen. Just after you start to record, turn on the fan such that the
cart starts moving away from the sensor. Be sure to stop the cart with your hand
before it reaches the end. Then stop recording.

8. Observe the three different graphs (position, velocity, and acceleration).
Q: Identify on the velocity graph an interval of time where the velocity
is increasing linearly. (Hint: If your data is too irregular, you can use the
Smoothing tool on the toolbar in the graph display to smooth the data.)
What interval of time is that? What is the slope of the velocity vs. time graph
in that time interval? (Hint: You can fit the portion of the graph to a linear

FiGURE C.4 Cart with a fan
on the track.

APPENDIX C 103

curve and find the slope. Note: To select a specific interval of data, you need
to use the tool Highlight Range in the same toolbar used in the last item.)

Q: Measure the mass of the cart–fan system with a scale and using the mo-
mentum principle and the data that you recorded above, to calculate the force
exerted by the fan (assume negligible friction). (Hint: Momentum principle:
 .)

9. Now you will compare your calculation above with a measurement. Set a new
graph display to measure force vs. time. Open a graph display: Double-click on
the Graph button on the display bar. When the graph display is open, select
Force (N) in <SelectMeasurement>.

10. Dock the fan on the cart, and connect the cart to the force sensor with a string.
Push the ZERO button on the force sensor when the string is relaxed, as shown
in figure C.6.

11. Turn on the fan and hold the cart at rest by holding the force sensor until an-
other group member clicks Record. The string is connected to the force sensor,
and you are holding the cart stationary by holding the force sensor as shown
in figure C.7, so the sensor measures the force exerted by the fan. Stop record-
ing when the force is stable for a few seconds. (Note: The resolution of the force
sensor is 0.03N.)

Q: What is the measured force? How does it compare with the calculated
force? What might cause any discrepancies?

∆�⃗�𝑝𝑝𝑝 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚∆�⃗�𝑣𝑣𝑣 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑚𝑚(∆�⃗�𝑣𝑣𝑣 ∆𝑡𝑡𝑡𝑡⁄)

FiGURE C.5 Graph plotting the position, velocity, and acceleration.

APPENDIX C104

ii. Revisiting Computational Models

You will update the Lab 2 simulation (original, before you modified it) to model this
week’s experiment.

1. Go to www.glowscript.org. In your Public folder, create a new program called
FanCartSim. Copy and paste the code from the following link in FanCartSim:
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab3/. (Note: The
code is provided in full at the end of this appendix.)

Q: Last week, you updated only position, not momentum. Why was that?
Why must you update momentum now?

2. Now you will modify the above code. Recall that momentum and position up-
dates can be used iteratively:

Momentum update:

Position update:

 𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + �𝐹𝐹𝐹𝐹
𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡

𝑟𝑟𝑟𝑟𝑝𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑝𝑖𝑖𝑖𝑖 + �𝑝𝑝𝑝𝑝
𝑝𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑝𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑝𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓∆𝑡𝑡𝑡𝑡

 𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + �𝐹𝐹𝐹𝐹
𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡

𝑟𝑟𝑟𝑟𝑝𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑝𝑖𝑖𝑖𝑖 + �𝑝𝑝𝑝𝑝
𝑝𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑝𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑝𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓∆𝑡𝑡𝑡𝑡

 𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑝𝑖𝑖𝑖𝑖 + �𝐹𝐹𝐹𝐹
𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡

𝑟𝑟𝑟𝑟𝑝𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑝𝑖𝑖𝑖𝑖 + �𝑝𝑝𝑝𝑝
𝑝𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚
�∆𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑝𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑟𝑟𝑝𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑣𝑣𝑝𝑓𝑓𝑓𝑓∆𝑡𝑡𝑡𝑡

FiGURE C.6 ZERO button on the force sensor.

FiGURE C.7 String connected
to the force sensor.

http://www.glowscript.org
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab3

APPENDIX C 105

Q: Change the code to accommodate momentum update. Comment the
changes that you make.

Q: What new variables/factors need to be taken into account? (Note: Re-
member that when you use new variables, you usually define them at the be-
ginning of the program.)

Q: What sections of the code need to be changed? What sections of the
code stay the same?

Q: Fix the parameters of your program to model the experiment of the cart–
fan during the interval of linear velocity increment that you chose in the ex-
perimental part (initial time, initial position, initial velocity, deltaT, total time).
Compare the simulation graphs with those from the experiment. How are
they similar? How are they different?

Q: What assumptions about the cart system does the computational model
make?

Q: How do these assumptions affect the accuracy of our results? For the
pushcart simulation (last week), are these assumptions valid? Why or why not?

LAB 8 Baking Cups Falling: Air Resistance
Goal: After completing this activity, you should be able to

• Measure the position and velocity of a baking cup falling.
• Determine the drag coefficient C of the baking cup from its terminal velocity.
• Use the drag coefficient C and other parameters from the physical experiment

to create a VPython model of the baking cup falling.
• Connect physical experiment and VPython model.

i. Falling Cupcake Physical Experiment

1. Using a cellphone, make two videos of baking cups falling vertically from a
height of L (see figures C.8 and C.9). If your group number is even, make the
videos of one cup falling and three cups falling together. If your group number
is odd, make the videos of two cups falling and four cups falling. The L value is
up to you; it should be between 1.5 and 2.0 meters. You can do this in the hall
outside the room. Make sure the videos cover the same height from top to bot-
tom of the image on your cellphone screen and the height from which you re-
lease the cups is the same. You can use the long ruler to keep the height constant
in both videos. Make sure you are recording in the middle of the total distance
traveled by the cup, and remember to measure the value of the distance L (you
should have the cellphone plane completely parallel to the baking cup falling
plane), as shown in figure C.9.

APPENDIX C106

2. Download your video onto the lab computer.
3. Open the program PASCO Capstone and open a video analysis display (double-

click on the Video Analysis tool). Click on Open Movie File and open your
video of the baking cup falling.

4. The video should appear on the video analysis display with two yellow tools: the
Coordinates tool (x and y axes) and the Calibration tool. The Coordinates tool
determines the direction of the position change that the video analysis will mea-
sure. The Calibration tool indicates the real scale of the measurements to ana-
lyze. Drag the Calibration tool to cover the total distance traveled by the bak-
ing cup when it is falling. Adjust the Coordinates tool such that the position
of the baking cup falling is measured as positive. Make sure the horizontal axis
of the Coordinates tool matches with one of the extremes of the Coordinates
tool. (This guarantees that the vertical measurements start in an initial position
equal to zero.)

5. Set the real distance traveled by the cup in the Calibration tool. To do that, click
on the 1.00 m that appears on one of the ends of the Calibration tool and change
that value to the real distance traveled by the cup.

FiGURE C.8 Snapshots of baking cups falling.

FiGURE C.9 Diagram demonstrating the
recording of a falling object.

APPENDIX C 107

6. The video analysis software permits you to run the video frame by frame when
you click the mouse. If the resolution of your video is 240 frames per second,
it will take too long to analyze your video. In that case, change the number of
frames per click to a reasonable number. To do that, identify the frames per sec-
ond of your video file by clicking again in the Properties tool, click on Movie
Playback, and read the value in Playback Frame Rate. If that number is greater
than 30, you need to adjust the frame increment number in the option Overlay.
For a playback frame rate of 240, you need to set the frame increment to 5. This
means that when you are tracking the motion of the cup in video analysis, each
time you click the mouse, five frames of the video will play. If your video has
only 30 to 60 frames per second, you do not need to change the frame increment.

7. Add one graph display. Set the <SelectMeasurement> of the graph in Video
Analysis Object #1 xy, Object # 1 (m/s) vs. Time. You will measure the ve-
locity of the cup vs. time. After setting the graph, play the video until the mo-
ment when you release the cup. Put the cursor on the center of the cup and start
to track its path as it falls. When a cross appears on the cup, click the mouse
and wait until the cup moves to the next position. An example of this process is
shown in figure C.10. After each click, you can see how the graph is showing the
data collected in the video analysis. Insert a table to visualize the data collected.

∆�⃗�𝑝𝑝𝑝 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚∆�⃗�𝑣𝑣𝑣 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑚𝑚(∆�⃗�𝑣𝑣𝑣 ∆𝑡𝑡𝑡𝑡⁄)

∆�⃗�𝑝𝑝𝑝 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚∆�⃗�𝑣𝑣𝑣 = �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∆𝑡𝑡𝑡𝑡 �⃗�𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑚𝑚(∆�⃗�𝑣𝑣𝑣 ∆𝑡𝑡𝑡𝑡⁄)

FiGURE C.10 Tracking the position
of the object (i.e., baking cup) as it
descends.

8. You can smooth the curve using the Smoothing tool in the toolbar.
Q: Look at the velocity graph and discuss with your team members whether
the graphs make sense. Summarize your comments. What is the value of the
terminal velocity in the graph? (Recall that terminal velocity is the veloc-
ity achieved when the weight of the cup equals the drag resistance of the air
on the cup.)

9. Repeat the last procedure with the second video with two or four cups falling de-
pending on your group number (two cups for an even group number, four cups

APPENDIX C108

for an odd group number). You need to start by opening a video analysis display
(double-click on the Video Analysis tool). It will appear in a window. Click on
<Create New Run>, then click on OK. From that point, you can proceed as you
did for the first video.

Q: What is the value of the terminal velocity in your second video?

10. To find the drag coefficient C, you need to use the terminal velocity values of
your even/odd neighbor group.

Q: What are the terminal velocity values of your even/odd neighbor group
in their two videos?

11. Measure the mass of a baking cup and make a graph of mass m (kg) vs. terminal
velocity squared The resistance force is Fd ≈ ½CAρv2, where C is the
drag coefficient, A is the transversal area of the baking cup, ρ is the air density in
the classroom, and v is the terminal velocity of the falling cup.

Q: Given the information about the air resistance force and with the graph
of m (kg) vs. , how can you find the value for the drag coefficient C ?
Describe your procedure.

Q: Calculate the value for the drag coefficient C.

12. Using the video data collected and Excel, graph the velocity vs. time for one, two,
three, and four baking cups falling in the same graph so that you can compare
them. (Use the data of your neighbor group to complete the data you did not
collect in your two videos.)

Q: Add the graph of the four curves of velocity vs. time to your final hand-
out and submit it together via Blackboard.

Q: Discuss with your team members the graph of the four velocity vs. time
curves. Are all of them different? Do they make sense? Why or why not?

ii. Computational Model of the Baking Cup Falling

You will now use VPython to model the falling baking cup that you analyzed in the
physical experiment.

1. Go to www.glowscript.com. In your Public folder, create a new program called
AirResistanceSim.

2. Follow the link below and copy and paste the code from AirResistanceSim into
your new program: https://www.glowscript.org/#/user/HaydenFennell/folder
/Lab8/. (Note: The code is provided in full at the end of this appendix.)

3. Read through the code carefully. Comment these lines in your code, indicating
what they do.

4. Identify the lines of code that accomplish (a) velocity (or momentum) update,

v2(m2).s2

v2(m2)s2

http://www.glowscript.com
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab8/
https://www.glowscript.org/#/user/HaydenFennell/folder/Lab8/

APPENDIX C 109

(b) position update, and (c) force update. Add comments to your code explaining
what each of these lines do.

Q: Write down the line numbers of the code associated with (a), (b), and (c).

Q: Run the code and observe what happens. What is the terminal velocity
of the simulated cup? How long does it take to reach this velocity?

Q: Change the size (diameter) of your baking cup. What effect does this
have on terminal velocity? Report each value you used in your answer.

Q: Change the size (diameter) to its original value, and now change the
mass of the cup. What effect does this have on terminal velocity? Change
the value of the mass to its original value and try changing the initial height
as well. Does this impact your results? Report each value for mass and height
in your answer.

5. Now you will modify the code to reflect the values found during today’s experi-
ment.

6. Change the parameters of the simulation to use your values from your experi-
mental data collection (drag coefficient C, initial time, initial velocity, cup’s mass,
density of the air, area of the cup, etc.)

Q: What assumptions does the simulation make about the falling cup? How
do these assumptions affect the data? (Hint: Think about how shape affects
your results.)

Q: Compare simulation vs. experiment for velocity vs. time. How are they
similar? How are they different?

Q: Suppose that the baking cup that you were dropping was conical in shape.
What would need to change in the simulation to represent this difference?
How would you expect the graphs to change?

PROJECT SOLUTION

Lab 2 vPython Template
GlowScript 2.7 vPython

from __future__ import division
from visual import *
###--
------------------------------###
#Please provide detailed comments explaining the purpose/function of each
line of code in the program below.

APPENDIX C110

#Be sure to scroll down after running your program to view all of the
output data.
###--
------------------------------###
#Parameters of Simulation (all units are in meters and seconds)
velocity = vector(0.3,0,0)
initialDisplacement = 0
startPosition = vector(initialDisplacement,0,0)
distanceTraveled = 0
totalDistance = 1
t = 0
totalTime = 10
deltaT = 0.5
###------------------Objects in Simulation---------------------###
#This section sets up the visual elements used in the simulation
#You are not required to comment the following section.
###--###
scene=display(center=vector((totalDistance/2),0,0), background=color.white)
#set the background color
cartTrack=box(pos=vector((totalDistance/2),0,0),
size=vector(totalDistance,0.01,0.05), color=color.black) #Pushcart track
(scales to totalDistance)
pushCart=cone(pos=(startPosition+vector(0,0.05,0)), axis=vector(1,0,0),
radius=0.05, length=0.1, color=color.red) #Pushcart at starting position
label(pos=vector(0,-0.05,0), text=”Start”, color=color.blue) #Start Line
label(pos=vector(totalDistance,-0.05,0), text=”End”, color=color.blue) #2
meter marker
scene.autoscale=0 #turn off camera scaling
gd=graph(xtitle=’time (s)’, ytitle=’position (m)’) #create graph object
plt=gcurve(color=color.cyan, label=’position’) #create curve
gd2=graph(xtitle=’time (s)’, ytitle=’velocity (m/s)’) #create graph object
plt2=gcurve(color=color.red, label=’velocity’) #create curve
###------------------End of Objects Section--------------------###
#Please resume commenting for the lines below
###--###
while (t < totalTime and distanceTraveled < totalDistance):
rate(5) #The rate(n) command tells the computer to halt computation for 1/n
seconds before proceeding. This allows us to slow down the visual refresh
rate of the simulation so that we can actually perceive the motion.
pushCart.pos = pushCart.pos + velocity * deltaT
distanceTraveled = pushCart.pos.x
t = t + deltaT
print(“The pushcart is”,distanceTraveled,”meters down the track at”,
t,”seconds.”)
plt.plot(t, distanceTraveled)
plt2.plot(t, velocity.x)

APPENDIX C 111

Lab 3 vPython Template
GlowScript 2.7 vPython

from __future__ import division
from visual import *
###--
------------------------------###
#Please provide detailed comments explaining the purpose/function of each
line of code in the program below.
#Be sure to scroll down after running your program to view all of the
output data.
###--
------------------------------###
#Parameters of Simulation (all units are in meters and seconds)
velocity = vector(0.3,0,0)
initialDisplacement = 0
startPosition = vector(initialDisplacement,0,0)
distanceTraveled = 0
totalDistance = 1
t = 0
totalTime = 10
deltaT = 0.5
###------------------Objects in Simulation---------------------###
#This section sets up the visual elements used in the simulation
#You are not required to comment the following section.
###--###
scene=display(center=vector((totalDistance/2),0,0), background=color.white)
#set the background color
cartTrack=box(pos=vector((totalDistance/2),0,0),
size=vector(totalDistance,0.01,0.05), color=color.black) #Pushcart track
(scales to totalDistance)
pushCart=cone(pos=(startPosition+vector(0,0.05,0)), axis=vector(1,0,0),
radius=0.05, length=0.1, color=color.red) #Pushcart at starting position
label(pos=vector(0,-0.05,0), text=”Start”, color=color.blue) #Start Line
label(pos=vector(totalDistance,-0.05,0), text=”End”, color=color.blue) #2
meter marker
scene.autoscale=0 #turn off camera scaling
gd=graph(xtitle=’time (s)’, ytitle=’position (m)’) #create graph object
plt=gcurve(color=color.cyan, label=’position’) #create curve
gd2=graph(xtitle=’time (s)’, ytitle=’velocity (m/s)’) #create graph object
plt2=gcurve(color=color.red, label=’velocity’) #create curve
###------------------End of Objects Section--------------------###
#Please resume commenting for the lines below
###--###
while (t < totalTime and distanceTraveled < totalDistance):

rate(5) #The rate(n) command tells the computer to halt computation for 1/n

seconds before proceeding. This allows us to slow down the visual refresh

APPENDIX C112

rate of the simulation so that we can actually perceive the motion.
pushCart.pos = pushCart.pos + velocity * deltaT
distanceTraveled = pushCart.pos.x
t = t + deltaT
print(“The pushcart is”,distanceTraveled,”meters down the track at”,
t,”seconds.”)
plt.plot(t, distanceTraveled)
plt2.plot(t, velocity.x)

Lab 8 vPython Template
GlowScript 2.7 vPython

from __future__ import division
from visual import *
###--
------------------------------###
#Please provide detailed comments explaining the purpose/function of each
line of code in the program below.
#Be sure to scroll down after running your program to view all of the
output data.
###--
------------------------------###
#Variables of Simulation (all units are in meters and seconds)
mass = 0.005 #kg
g = 9.81 #m/s^2
diameter = 0.1 #m
A = pi * pow((diameter/2), 2) #m^2
rho = 1.225 #kg/m^3
C = 1.15
height = 3 #m
t = 0 #s
totalTime = 10 #s
deltaT = 0.01 #s
initialVelocity = 0 #s
velocity = vector(0,initialVelocity,0)
speed = mag(velocity)
fG = mass*g
fAir = (1/2)*C*rho*A*pow(velocity.y, 2)
fNet = vector(0,(fAir-fG),0)
###--
------------------------------###

APPENDIX C 113

#Visual components of simulation.
#You do not have to edit this section.
#Note that the simulation models the coffee filter as a short cylinder.
###--
------------------------------###
scene=display(center=vector(0,height/2,0), background=color.white) #set the
background color
floor=box(pos=vector(0,0,0), size=vector(2,0.05,0.15), color=color.black)
#Pushcart track (scales to totalDistance)
coffeeFilter=cylinder(pos=vector(0,height,0), axis=vector(0,0.08,0),
radius=diameter/2, color=color.orange) #Pushcart at starting position
scene.autoscale=0 #turn off camera scaling
gd=graph(xtitle=’time (s)’, ytitle=’Distance Fallen (m)’) #create graph
object
plt=gcurve(color=color.cyan, label=’Distance Fallen’) #create curve
gd2=graph(xtitle=’time (s)’, ytitle=’Speed (m/s)’) #create graph object
plt2=gcurve(color=color.red, label=’Speed’) #create curve
###--
------------------------------###
#Simulation code section
###--
------------------------------###
while (coffeeFilter.pos.y > 0 and t < totalTime):
rate(10) #The rate(n) command tells the computer to halt computation for
1/n seconds before proceeding. This allows us to slow down the visual
refresh rate of the simulation so that we can actually perceive the motion.
fAir = (1/2)*C*rho*A*pow(velocity.y, 2)
fNet = vector(0,(fAir-fG),0)
velocity.y = velocity.y + (fNet.y/mass) * deltaT
coffeeFilter.pos.y = coffeeFilter.pos.y + (velocity.y * deltaT)
t = t + deltaT
distanceFallen = height-coffeeFilter.pos.y
speed = mag(velocity)
plt.plot(t, distanceFallen)
plt2.plot(t, speed)

APPENDIX C114

ASSESSMENT RUBRICS

TABLE C.1 Disciplinary scoring rubric

Category Below Basic (0) Basic (1) Proficient (2) Advanced (3)

Accuracy of results Student does not
provide results or
provides clearly
inaccurate results
(i.e., results are
nonphysical).

Student does not
provide neces-
sary data (graphs,
plots, and/or Excel
sheets).

Student provides
results, but some
results are incorrect.

Reported answers
conflict with values
from data (graphs,
plots, and/or Excel
data).

Student always
provides accurate
results.

Reported answers
agree with values
from data (graphs,
plots, and/or Excel
data).

Student always
provides accurate
results.

and
Answers speak to the
validity of the given
results.

Connection and
application of
results

Student does not
provide any connec-
tions between the
physical and compu-
tational models.

Student provides
obvious or basic
connections (i.e., air
resistance, friction,
human error).

Student provides
obvious or basic
connections (i.e.,
air resistance, fric-
tion, human error)
but also gives basic
explanations of how
the specific connec-
tions work.

Student provides
nonobvious connec-
tions (i.e., beyond air
resistance, friction)
between the physical
and computational
models similarities
and differences.

Quality of results One-word answers
(student does not
provide justification
and reasoning).

Answers provide
minimal/unclear
justification of
reported values.

Answers provide
more detailed justi-
fication of the
reported values.

Answers provide
detailed interpreta-
tions that connect to
physical principles.
Student may also
periodically provide
analogies or sche-
matic comparisons.

APPENDIX C 115

TABLE C.2 Computational scoring rubric

Category Below Basic (0) Basic (1) Proficient (2) Advanced (3)

Accuracy of results Code does not
produce results.

Code produces
unreasonable or
incorrect results or
simulation results do
not match reported
values.

Results are inaccu-
rate due to issues
within the code (i.e.,
variables are rede-
fined inappropri-
ately within loop
calculations).

Code produces
correct results.

and
Simulation results
align with reported
values.

Code produces
correct results.

Simulation results
align with reported
values.

Results have been
verified/validated
against external
criteria.

Function and
efficiency

Code does not run.
or

Code is needlessly
redundant or
confusing.

Code functions with
minimal warnings
or error corrections.

Code follows
template guidelines,
but may include
minor inefficiencies
(i.e., unnecessarily
small step size).

Code functions
without error.

Code follows
template guidelines
and uses efficient
parameters/settings
(i.e., step size is
appropriate).

Code functions
without error and
has been altered to
include additional
output information.

or
Code includes
evidence of moni-
toring/debugging
strategies.

Commenting No comments.
or

Comments are
included, but either
indicate a misunder-
standing of the code
or are confusing or
poorly stated.

Comments simply
restate the code
parameters or
simply state variable
units.

Comments are
limited to the vari-
able definition
portion of the code
or code includes
less than two qual-
ity comments in the
body of the program
(i.e., the while loop
and calculations).

Comments describe
the computational
function of individ-
ual lines or blocks of
code in detail.

Code includes at
least two to three
quality comments
in the body of the
program (i.e., the
while loop and
calculations).

Comments describe
the computational
function of individ-
ual lines or blocks of
code in detail.

and
Comments describe
the function of the
code in terms of
how it represents
the disciplinary
material

APPENDix D

Sample Project and Solution for
Designing for K–12 Settings

PROJECT DESCRIPTION

This document describes the model Susceptible Infected Recovered (SIR) that rep-
resents the spread of an infectious disease. This model is used to describe how a disease
(e.g., COVID-19) spreads within a given population and assumes that each individual
can be in one of four states:

Susceptible (S): Individuals who have not been infected with the disease, so they
are susceptible to being infected within a given probability of disease trans-
mission (i.e., transmission rate) and an average number of contacts per person
per time (i.e., contact rate).

Infected (I): Individuals who are infected and can be infectious to others. There
is a probability of both recovery and death associated with leaving this state.

Recovered (R): Individuals who were already infected but are now recovered.
These individuals cannot be reinfected since they have developed antibodies.
(Note: This is not necessarily the case for COVID-19, as the evidence about it
is inconclusive at this point, but this is the case for other diseases and an as-
sumption of this model.)

Deceased (D): Individuals who were infected and died as a result of the disease.

To identify how many people will move from one state to another, we use the fol-
lowing variables:

Contact rate: Average number of contacts per person per day.
Transmission rate: Probability of disease transmission when a susceptible person

comes in contact with an infected person.
Recovery rate: Probability of recovery after being infected.
Mortality rate: Probability of dying after being infected.
Recovery time: Average number of days that the disease stays in the body.

APPENDIX D118

To simulate this model, we need to compute the number of new infections, recov-
eries, and deaths per day, and then update the number of susceptible, infected, recov-
ered, and deceased as follows:

NewInfections: Infected × Contact rate × (Susceptibles / Total population) ×
Transmission rate

NewRecoveries: Infected × Recovery rate / Recovery time
NewDeaths: Infected × Mortality rate / Recovery time
Susceptibles: Susceptibles − NewInfections
Infected: Infected + NewInfections – (NewRecoveries + NewDeaths)
Recovered: Recovered + NewRecoveries
Deceased: Deceased + NewDeaths

As one may expect, there are some variables that we can manipulate and see the ef-
fects on the number of infected people and the number of deaths. For instance, closing
public events and banning large gatherings of people, may decrease the contact rate, which
has a direct effect on the number of new infections and the number deaths. Likewise,
if doctors find effective treatments to the disease, we may have a lower mortality rate,
which will reduce the number of deaths.

Appendix d 119

FIGURE D.1 Screenshot of a Sample Jupyter Notebook, which shows the Python code initializing the
model parameters, a brief explanation, and the incomplete provided example.
https://github.com/cvieiram/introPythonIngenieria/blob/master/Sample%20Jupyter%20Notebook.ipynb

pROJeCT TeMpLATeS

Sample Jupyter Notebook: Figure D.1 depicts a screenshot of the sample Jupyter Note
book provided to the students for them to complete the SIR model.

https://github.com/cvieiram/introPythonIngenieria/blob/master/Sample%20Jupyter%20Notebook.ipynb

Appendix d120

FIGURE D.2 Screenshot of the Jupyter Notebook with the full solution to the SIR model.
https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb

pROJeCT SOLUTiOn

Completed Jupyter Notebook: Figure D.2 shows the screenshot of the solution to the
SIR model in a Jupyter Notebook. Figure D.3 shows the Python code that reports
the outcomes of the SIR model once the simulation is completed.

https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb

Appendix d 121

FIGURE D.3 Screenshot of the section in the Jupyter notebook that reports the outcomes of the model.
https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb

https://github.com/cvieiram/introPythonIngenieria/blob/master/Completed%20Jupyter%20Notebook.ipynb

APPENDIX D122

ASSESSMENT RUBRIC

TABLE D.1 Assessment rubric for the project solution

Criteria Poor (0–2) Fair (3–5) Good (6–8) Excellent (9–10)

PROGRAM EXECUTION

Evaluates the level of detail
and explicitness in the writ-
ten procedure. Does the
program execute correctly?
(30%)

Program does not
compile or run at
all.

Program runs, but
mostly incorrectly
(correct output
30%–74% of the
time).

Program produces
correct output
most of the time
(75% of the time
or more).

Program runs
correctly.

SPECIFICATION
SATISFACTION

Evaluates the degree under
which the solution satis-
fies the specification. Is the
solution accurate and of
high quality? Does it satisfy
the problem specifications?
(30%)

The solution is
incomplete and
lacks quality.

Program does
not satisfy the
specifications.

Many parts of the
specifications are
not implemented.

Solution is low
quality.

Only some of the
specifications are
satisfied.

Most parts of the
solution are accu-
rate (75% or
more).

Most of it depicts a
model of quality.

Program satisfies
most of the speci-
fications (75%).

The solution is very
accurate and of
high quality.

Program satis-
fies specifications
completely and
correctly.

CODING STYLE

Measures how well the
solution is written.

Is the code ease to follow?
Does it appropriately use
the language capabilities?
(10%)

Incomprehensible
code.

Appropriate
language capabili-
ties unused.

Code hard to
follow in one
reading.

Poor use of
language
capabilities.

Code basically
organized.

Code does not
follow basic
coding standards.

Well-formatted,
understandable
code.

Appropriate use
of language
capabilities.

DEPLOYMENT OF
DISCIPLINARY CONCEPTS

Evaluates whether the
student can use the solu-
tion to approach a disci-
plinary problem.

Can the student use their
code as applied to some
disciplinary problem or to
solve some related ques-
tion? (30%)

There is no
solution.

The student is
not able to apply
the solution to
the disciplinary
problem.

The student is able
to roughly align
the solution to
the disciplinary
problem.

The student does
not fully under-
stand the output.

The student is
able to apply
the solution to
the disciplinary
knowledge with
certain changes or
constraints.

The student
explains the
results but depicts
some misconcep-
tions about disci-
plinary concepts.

The student is
able to seamlessly
apply the solution
to the disciplinary
knowledge.

The student is able
to explain the
results in terms of
the discipline.

ACKNOWLEDGMENTS

THiS BOOK WOULD NOT HAvE BEEN POSSiBLE WiTHOUT THE SUPPORT AND EN-

couragement of my beloved husband, Bedrich Benes. You inspired me to pursue this
project and continuously motivated me throughout the process.

I am eternally grateful to my former students, now my colleagues, and my collabo-
rators for joining me on this journey. Thank you for entrusting me as your mentor and
contributing to the project with your unique expertise as we investigated this topic
jointly. More importantly, thank you for sharing your enthusiasm and passion for do-
ing research in this area. Thank you for your significant contributions to this work and
the many revisions to each of the chapters.

Thank you to the reviewers, anonymized and named, for your comments and sug-
gested revisions to this manuscript. Thank you, Michael Loui, for your critical comments
and insightful feedback that continuously helped me “speak” to engineering educators
and researchers. Thank you, Ruth Streveler, for your valuable comments and suggestions
that helped improve the connections to theory. Thank you, Brian Hong, for helping me
make this content more accessible to practitioners. Also, thank you, Mariana Silva, for
piloting the ideas and materials of this book as part of your ongoing professional de-
velopment efforts. Finally, thank you to all the students and faculty members who par-
ticipated in the studies. I appreciate all of you taking time from your busy schedules to
share your learning experiences and expertise.

This material is based upon work supported in part by the National Science Founda-
tion under award numbers EEC-1449238, EEC-1329262, EEC-1137006, EEC-1826099,
CMMI-2134667, DBI-2120200, and DGE-1842166.

REFERENCES

Abeysekera, Lakmal, and Phillip Dawson. 2015. “Motivation and Cognitive Load in the Flipped
Classroom: Definition, Rationale and a Call for Research.” Higher Education Research & Develop-
ment 34 (1): 1–14. https://doi.org/10.1080/07294360.2014.934336.

ACARA (Australian Curriculum, Assessment and Reporting Authority). n.d. “Understanding How
Technologies Works.” https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/.

AI4K12. 2020. “The Artificial Intelligence (AI) for K–12 Initiative (AI4K12).” Association for the
Advancement of Artificial Intelligence and the Computer Science Teacher Association. https://
ai4k12.org/.

Amalia, Fitriana Rizqi, S. Ibnu, H. R. Widarti, and H. Wuni. 2018. “Students’ Mental Models of
Acid and Base Concepts Taught Using Cognitive Apprenticeship Learning Model.” Journal
Pendidikan IPA Indonesia 7 (2): 187–92. https://doi.org/10.15294/jpii.v7i2.14264.

Arigye, Joreen, Alejandra J. Magana, Joseph A. Lyon, and Elsje Pienaar. 2023. “Biomedical and
Agricultural Engineering Undergraduate Students Programming Self-Beliefs and Changes Re-
sulting from Computational Pedagogy.” In Proceedings of the 2023 American Society for Engineer-
ing Education Annual Conference & Exposition. ASEE Conferences. https://peer.asee.org/42275.

Arigye, Joreen, Aabas Udosen, Parth Pravin, and Alejandra J. Magana. 2023. “The Evolution of
Team Coordination Commitments in the Context of Computational Projects.” Paper presented
at the 2023 IEEE ASEE Frontiers in Education Conference. College Station, Texas, October
18–21, 2023.

Azemi, Asad, and Laura L. Pauley. 2006. “Teaching the Introductory Computer Programming Course
for Engineers Using Matlab and Some Exposure to C.” In Proceedings of the 2006 Ameri can So-
ciety for Engineering Education Annual Conference & Exposition. ASEE Conferences. https://doi
.org/10.18260/1-2--670.

Barab, Sasha A., and Kurt Squire. 2004. “Introduction: Design-Based Research: Putting a Stake in the
Ground.” Journal of the Learning Sciences 13 (1): 1–14. https://doi.org/10.1207/s15327809jls1301_1.

Barkley, Dwight. 1991. “A Model for Fast Computer Simulation of Waves in Excitable Media.”
Phys ica D: Nonlinear Phenomena 49 (1–2): 61–70. https://doi.org/10.1016/0167-2789(91)90194-E.

Bellomo, Nicola, and Luigi Preziosi. 1994. Modelling Mathematical Methods and Scientific Computa-
tion. CRC Press.

Boblett, Nancy. 2012. “Scaffolding: Defining the Metaphor.” Studies in Applied Linguistics and
TESOL 12 (2). https://doi.org/10.7916/salt.v12i2.1357.

Bowen, G. Michael, Wolff-Michael Roth, and Michelle K. McGinn. 1999. “Interpretations of
Graphs by University Biology Students and Practicing Scientists: Toward a Social Practice
View of Scientific Representation Practices.” Journal of Research in Science Teaching 36 (9): 1020–
43. https://doi.org/10.1002/(SICI)1098-2736(199911)36:9<1020::AID-TEA4>3.0.CO;2-%23.

Bransford, John D., Ann L. Brown, and Rodney R. Cocking. 2000. How People Learn: Brain, Mind,
Experience, and School (Expanded Edition). Washington, DC: National Academy Press.

https://doi.org/10.1080/07294360.2014.934336
https://www.australiancurriculum.edu.au/f-10-curriculum/technologies
https://ai4k12.org/
https://ai4k12.org/
https://doi.org/10.15294/jpii.v7i2.14264
https://peer.asee.org/42275
https://doi.org/10.18260/1-2--670
https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.1016/0167-2789(91)90194-E
https://doi.org/10.7916/salt.v12i2.1357
https://doi.org/10.1002/(SICI)1098-2736(199911)36:9<1020::AID-TEA4>3.0.CO;2-%23
https://doi.org/10.18260/1-2--670

REFERENCES126

Braught, Grant, Tim Wahls, and L. Marlin Eby. 2011. “The Case for Pair Programming in the Com-
puter Science Classroom.” ACM Transactions on Computing Education (TOCE) 11 (1): 2. https://
doi.org/10.1145/1921607.1921609.

Brophy, Sean P., and Sensen Li. 2010. “A Framework for Using Graphical Representations as
Assessments of Engineering Thinking.” In Proceedings of the 117th American Society for En gin-
eer ing Education Annual Conference & Exposition. ASEE Conferences. https://doi.org/10.18260
/1-2--16769.

Brydon-Miller, Mary, Davydd Greenwood, and Patricia Maguire. 2003. Why Action Research? Action
Research 1 (1): 9–28. https://doi.org/10.1177/14767503030011002.

Caceffo, Ricardo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo. 2016. “Developing a
Computer Science Concept Inventory for Introductory Programming.” In SIGCSE ’16: Proceed-
ings of the 47th ACM Technical Symposium on Computing Science Education, 364–69. Association
for Computing Machinery. https://doi.org/10.1145/2839509.2844559.

Carlson, W. Bernard. 2003. “Toward a Philosophy of Engineering: The Fundamental Role of Rep-
resentation.” In Proceedings of the 110th American Society for Engineering Education Annual Con-
ference & Exposition. ASEE Conferences. https://doi.org/10.18260/1-2--12063.

Chattopadhyay, Souti, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus Barik. 2020. “What’s
Wrong With Computational Notebooks? Pain Points, Needs, and Design Opportunities.” In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. https://doi.org
/10.1145/3313831.3376729.

Chi, Michelene T. H. 2011. “Theoretical Perspectives, Methodological Approaches, and Trends
in the Study of Expertise.” In Expertise in Mathematics Instruction: An International Perspective.
Edited by Yeping Li and Gabriele Kaiser, 17–39. Boston: Springer.

Choi, Jeong-Im, and Michael Hannafin. 1995. “Situated Cognition and Learning Environments:
Roles, Structures, and Implications for Design.” Educational Technology Research and Development
43 (2): 53–69. https://doi.org/10.1007/BF02300472.

Collins, Allan, John Seely Brown, and Ann Holum. 1991. “Cognitive Apprenticeship: Making
Thinking Visible.” American Educator 15 (3): 6–11.

Collins, Allan, John Seely Brown, and Susan E. Newman. 1989. “Cognitive Apprenticeship: Teaching
the Crafts of Reading, Writing, and Mathematics.” In Knowing, Learning, and Instruction: Essays
in Honor of Robert Glaser. Edited by Lauren B. Resnick, 32–42. Mahwah, NJ: Lawrence Erlbaum.

Collins, Allan, and Manu Kapur. 2014. “Cognitive Apprenticeship.” In The Cambridge Handbook of
the Learning Sciences. Edited by R. Keith Sawyer, 109–27. New York: Cambridge University Press.

CSTA (Computer Science Teachers Association). 2017. “CSTA K–12 Computer Science Standards,
Revised 2017.” https://csteachers.org/k12standards/.

Corcoran, Thomas B., Frederic A. Mosher, and Aaron Rogat. 2009. Learning Progressions in Sci-
ence: An Evidence-Based Approach to Reform. CPRE Research Report # RR-63. Consortium
for Policy Research in Education. https://www.cpre.org/sites/default/files/researchreport/829

_lpsciencerr63.pdf.
CTGV (The Cognition Technology Group at Vanderbilt). 1990. “Anchored Instruction and Its

Relationship to Situated Cognition.” Educational Researcher 19 (6): 2–10. https://doi.org/10.3102
/0013189X019006002.

Dane, Erik. 2010. “Reconsidering the Trade-Off Between Expertise and Flexibility: A Cognitive

https://doi.org/10.1145/1921607.1921609
https://doi.org/10.1145/1921607.1921609
https://doi.org/10.18260/1-2--16769
https://doi.org/10.1177/14767503030011002
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.18260/1-2--12063
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1007/BF02300472
https://csteachers.org/k12standards/
https://www.cpre.org/sites/default/files/researchreport/829_lpsciencerr63.pdf
https://doi.org/10.3102/0013189X019006002
https://doi.org/10.18260/1-2--16769
https://doi.org/10.1145/3313831.3376729
https://www.cpre.org/sites/default/files/researchreport/829_lpsciencerr63.pdf
https://doi.org/10.3102/0013189X019006002

REFERENCES 127

Entrenchment Perspective.” Academy of Management Review 35 (4): 579–603. https://doi.org/10
.5465/amr.35.4.zok579.

Davis, Rebekah, Kerri Brown Parker, and Laura Fogle. 2019. “A Case of Course Revision: Cognitive
Apprenticeship and Critical Reflection for ICT in Teacher Preparation.” In Proceedings of Society
for Information Technology & Teacher Education International Conference, 1779–84. Association for
the Advancement of Computing in Education (AACE).

Denning, Peter J. 2000. “Computer Science: The Discipline.” In Encyclopedia of Computer Science.
Edited by Anthony Ralston and David Hemmendinger. New York: Wiley.

Department for Education. 2013. National Curriculum in England: Computing Programmes of Study.
https://www.gov.uk/government/publications/national-curriculum-in-england-computing

-programmes-of-study.
Devens, P. E. 1999. “MATLAB & Freshman Engineering.” In Proceedings of the 1999 American

Society for Engineering Education Annual Conference & Exposition. ASEE Conferences. https://
peer.asee.org/7830.

Diefes‐Dux, Heidi A., Margret A. Hjalmarson, and Judith S. Zawojewski. 2013. “Student Team
Solutions to an Open‐Ended Mathematical Modeling Problem: Gaining Insights for Edu-
cational Improvement.” Journal of Engineering Education 102 (1): 179–216. https://doi.org/10
.1002/jee.20002.

Diefes-Dux, Heidi A., Tamara Moore, Judith Zawojewski, P. K. Imbrie, and Deborah Follman. 2004.
“A Framework for Posing Open-Ended Engineering Problems: Model-Eliciting Activities.” In
34th Annual Frontiers in Education, 2004. FIE 2004. IEEE. https://doi.org/10.1109/FIE.2004
.1408556.

Diefes‐Dux, Heidi A., Judith S. Zawojewski, Margret A. Hjalmarson, and Monica E. Cardella. 2012.
“A Framework for Analyzing Feedback in a Formative Assessment System for Mathematical
Modeling Problems.” Journal of Engineering Education 101 (2): 375–406. https://doi.org/10.1002
/j.2168-9830.2012.tb00054.x.

DuBoulay, Benedict. 1986. “Some Difficulties of Learning to Program.” In Studying the Novice Pro-
grammer. Edited by Elliot Soloway and James C. Spohrer. Mahwah, NJ: Lawrence Erlbaum.

Ertmer, Peggy A., and Timothy J. Newby. 1996. “The Expert Learner: Strategic, Self-Regulated, and
Reflective.” Instructional Science 24:1–24. https://doi.org/10.1007/BF00156001.

Feldon, David F., Kathan D. Shukla, and Michelle Anne Maher. 2016. “Faculty–Student Coauthor-
ship as a Means to Enhance STEM Graduate Students’ Research Skills.” International Journal
for Researcher Development 7 (2): 178–91. https://doi.org/10.1108/IJRD-10-2015-0027.

Fennell, Hayden W., Genisson Silva Coutinho, Alejandra J. Magana, David Restrepo, and Pablo D.
Zavattieri. 2017. “Enhancing Student Meaning-Making of Threshold Concepts via Computation:
The Case of Mohr’s Circle.” Proceedings of the 2017 American Society for Engineering Education
Annual Conference & Exposition. ASEE Conferences. https://doi.org/10.18260/1-2--28279.

Fennell, Hayden W., Joseph A. Lyon, Aasakiran Madamanchi, and Alejandra J. Magana. 2020.
“Toward Computational Apprenticeship: Bringing a Constructivist Agenda to Computational
Pedagogy.” Journal of Engineering Education 109 (2): 170–76. https://doi.org/10.1002/jee.20316.

Fennell, Hayden W., Joseph A. Lyon, Alejandra J. Magana, Sanjay Rebello, Carina M. Rebello,
and Yuri B. Peidrahita. 2019. “Designing Hybrid Physics Labs: Combining Simulation and
Experiment for Teaching Computational Thinking in First-Year Engineering.” In 2019 IEEE

https://doi.org/10.5465/amr.35.4.zok579
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://peer.asee.org/7830
https://peer.asee.org/7830
https://doi.org/10.1002/jee.20002
https://doi.org/10.1109/FIE.2004
https://doi.org/10.1002/j.2168-9830.2012.tb00054.x
https://doi.org/10.1007/BF00156001
https://doi.org/10.1108/IJRD-10-2015-0027
https://doi.org/10.18260/1-2--28279
https://doi.org/10.1002/jee.20316
https://doi.org/10.5465/amr.35.4.zok579
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://doi.org/10.1002/jee.20002
https://doi.org/10.1109/FIE.2004
https://doi.org/10.1002/j.2168-9830.2012.tb00054.x

REFERENCES128

Frontiers in Education Conference (FIE). https://doi.org/10.1109/FIE43999.2019.9028390.
Feurzeig, Wallace, and Nancy Roberts, eds. 1999. Modeling and Simulation in Science and Mathematics

Education. New York: Springer.
Fila, Nicholas D., and Michael C. Loui. 2014. “Structured Pairing in a First-Year Electrical and

Computer Engineering Laboratory: The Effects on Student Retention, Attitudes, and Team-
work.” International Journal of Engineering Education 30 (4): 848–61.

Gannod, Gerald C., Janet E. Burge, and Michael T. Helmick. 2008. Using the Inverted Classroom
to Teach Software Engineering. Technical report MU-SEAS-CSA-2007-001. Retrieved from
Scholarly Commons at Miami University. https://sc.lib.miamioh.edu/bitstream/handle/2374.
MIA/206/fulltext.pdf.

Gilmore, Joanna, Michelle Vieyra, Briana Timmerman, David Feldon, and Michelle Maher. 2015.
“The Relationship Between Undergraduate Research Participation and Subsequent Research
Performance of Early Career STEM Graduate Students.” Journal of Higher Education 86 (6):
834–63. https://doi.org/10.1080/00221546.2015.11777386.

Gobert, Janice D., and Barbara C. Buckley. 2000. “Introduction to Model-Based Teaching and
Learning in Science Education.” International Journal of Science Education 22 (9): 891–94. https://
doi.org/10.1080/095006900416839.

Goode, Joanna, and Jane Margolis. 2011. “Exploring Computer Science: A Case Study of School
Reform.” ACM Transactions on Computing Education (TOCE) 11 (2): 1–16. https://doi.org/10
.1145/1993069.1993076.

Harrison, Allan G., and David F. Treagust. 2000. “A Typology of School Science Models.” Interna-
tional Journal of Science Education 22 (9): 1011–26. https://doi.org/10.1080/095006900416884.

Hatano, Giyoo, and Kayoko Inagaki. 1986. “Two Courses of Expertise.” In Child Development and
Education in Japan. Edited by Harold Stevenson, Hiroshi Azuma, and Kenji Hakuta, 262–72.
New York: W. H. Freeman.

Hatano, Giyoo, and Yoko Oura. 2003. “Commentary: Reconceptualizing School Learning Using
Insight from Expertise Research.” Educational Researcher 32 (8): 26–29. https://doi.org/10.3102
/0013189X032008026.

Higley, Kelli, Thomas Litzinger, Peggy Van Meter, Christine B. Masters, and Jonna Kulikowich. 2007.
“Effects of Conceptual Understanding, Math and Visualization Skills on Problem-Solving in
Statics.” In Proceedings of the 114th American Society for Engineering Education Annual Conference
& Exposition. ASEE Conferences. https://doi.org/10.18260/1-2--2382.

Hrynuk, John, Matthew Pennington, David Illig, and John P. Dempsey. 2008. “Freshman En gin-
eering: An Introductory Computer Course Teaching MATLAB and LABVIEW.” In Pro ceedings
of the 2008 American Society for Engineering Education Annual Conference & Exposition. ASEE
Conferences. https://doi.org/10.18260/1-2--3841.

Hu, Chenglie. 2007. “Integrating Modern Research Into Numerical Computation Education.” Com-
puting in Science & Engineering 9 (5): 78–81. https://doi.org/10.1109/MCSE.2007.100.

Jaiswal, Aparajita, Joseph A. Lyon, Yiqun Zhang, and Alejandra J. Magana. 2021. “Supporting Stu-
dent Reflective Practices Through Modelling-Based Learning Assignments.” European Journal
of En gineering Education 46 (6): 987–1006. https://doi.org/10.1080/03043797.2021.1952164.

Johnson-Laird, Philip N. 1995. “Mental Models, Deductive Reasoning, and the Brain.” The Cognitive
Neurosciences 65:999–1008.

Jonassen, David, Johannes Strobel, and Chwee Beng Lee. 2006. “Everyday Problem Solving in

https://doi.org/10.1109/FIE43999.2019.9028390
https://sc.lib.miamioh.edu/bitstream/handle/2374.MIA/206/fulltext.pdf
https://doi.org/10.1080/00221546.2015.11777386
https://doi.org/10.1080/095006900416839
https://doi.org/10.1080/095006900416839
https://doi.org/10.1145/1993069.1993076
https://doi.org/10.1080/095006900416884
https://doi.org/10.3102/0013189X032008026
https://doi.org/10.18260/1-2--2382
https://doi.org/10.18260/1-2--3841
https://doi.org/10.1109/MCSE.2007.100
https://doi.org/10.1080/03043797.2021.1952164
https://doi.org/10.1145/1993069.1993076
https://doi.org/10.3102/0013189X032008026
https://sc.lib.miamioh.edu/bitstream/handle/2374.MIA/206/fulltext.pdf

REFERENCES 129

Engineering: Lessons for Engineering Educators.” Journal of Engineering Education 95 (2): 139–
51. https://doi.org/10.1002/j.2168-9830.2006.tb00885.x.

Kafai, Yasmin, Kristin Searle, Crîstobal Martinez, and Bryan Brayboy. 2014. “Ethnocomputing
With Electronic Textiles: Culturally Responsive Open Design to Broaden Participation in Com-
puting in American Indian Youth and Communities.” In SIGCSE ’14: Proceedings of the 45th
ACM Technical Symposium on Computer Science Education, 241–46. Association for Computing
Machinery. https://doi.org/10.1145/2538862.2538903.

Kapur, Manu. 2010. “Productive Failure in Mathematical Problem Solving.” Instructional Science 38
(6): 523–50. https://doi.org/10.1007/s11251-009-9093-x.

Kapur, Manu, and Katerine Bielaczyc. 2012. “Designing for Productive Failure.” Journal of the Learn-
ing Sciences 21 (1): 45–83. https://doi.org/10.1080/10508406.2011.591717.

Klever, Nik. 2020. “Jupyter Notebook, JupyterHub and Nbgrader.” In Becoming Greener — Digi-
talization in My Work. Edited by T. Mirola, 37–43. Lappeenranta, Finland: LAB University of
Applied Sciences.

Kolb, David A., Richard E. Boyatzis, and Charalampos Mainemelis. 2011. “Experiential Learning
Theory: Previous Research and New Directions.” In Perspectives on Thinking, Learning, and Cog-
nitive Styles. Edited by Robert J. Sternberg, Li-fang Zhang, 227–48. New York: Routledge.

Lage, Maureen J., Glenn J. Platt, and Michael Treglia. 2000. “Inverting the Classroom: A Gateway
to Creating an Inclusive Learning Environment.” Journal of Economic Education 31 (1): 30–43.
https://doi.org/10.1080/00220480009596759.

Landau, Rubin. 2006. “Computational Physics: A Better Model for Physics Education?” Computing
in Science & Engineering 8 (5): 22–30. https://doi.org/10.1109/MCSE.2006.85.

Lave, Jean, and Wenger, Etienne. 1991. Situated Learning: Legitimate Peripheral Participation. Cam-
bridge University Press.

Lee, Irene, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-Smith,
and Linda Werner. 2011. “Computational Thinking for Youth in Practice.” ACM Inroads 2 (1):
32–37. https://users.soe.ucsc.edu/~linda/pubs/ACMInroads.pdf.

Lehrer, Richard, and Leona Schauble. 2000. “Developing Model-Based Reasoning in Mathematics
and Science.” Journal of Applied Developmental Psychology 21 (1): 39–48. https://doi.org/10.1016
/S0193-3973(99)00049-0.

Lesh, Richard, Mark Hoover, Bonnie Hole, Anthony Kelly, and Thomas Post. 2011. “Principles for
Developing Thought-Revealing Activities for Students and Teachers.” In Handbook of Research
Design in Mathematics and Science Education. Edited by Anthony E. Kelly and Richard A. Lesh,
591–645. New York: Routledge.

Lister, Raymond, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lind-
holm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto Seppälä, Beth Simon, and
Lynda Thomas. 2004. “A Multi-National Study of Reading and Tracing Skills in Novice Pro-
grammers.” ACM SIGCSE Bulletin 36 (4): 119–50. https://doi.org/10.1145/1041624.1041673.

Löhner, Simone, Wouter R. van Joolingen, Elwin R. Savelsbergh, and Bernadette van Hout-Wolters.
2005. “Students’ Reasoning during Modeling in an Inquiry Learning Environment.” Computers
in Human Behavior 21 (3): 441–61. https://doi.org/10.1016/j.chb.2004.10.037.

Louca, Loucas T., and Zacharias C. Zacharia. 2012. “Modeling-Based Learning in Science Edu-
cation: Cognitive, Metacognitive, Social, Material and Epistemological Contributions.” Edu-
cational Review 64 (4): 471–92. https://doi.org/10.1080/00131911.2011.628748.

https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1145/2538862.2538903
https://doi.org/10.1007/s11251-009-9093-x
https://doi.org/10.1080/10508406.2011.591717
https://doi.org/10.1080/00220480009596759
https://doi.org/10.1109/MCSE.2006.85
https://users.soe.ucsc.edu/~linda/pubs/ACMInroads.pdf
https://doi.org/10.1016/S0193-3973(99)00049-0
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1016/j.chb.2004.10.037
https://doi.org/10.1080/00131911.2011.628748
https://doi.org/10.1016/S0193-3973(99)00049-0

REFERENCES130

Lucas Lacal, Miguel. 2020. “Platform for Automatically Generating and Correcting Python Pro-
gramming Exercises.” BS thesis, informatics engineering, industrial, informatics, and tele commu-
nication engineering, Universidad Publica de Navarra. https://academica-e.unavarra.es/xmlui
/handle/2454/37600.

Luchini, K., D. Colbry, and W. Punch. 2007. “Designing Introductory Programming Courses for
Graduate and Undergraduate Students: A Parallel Case Study.” In Proceedings of the 2007 Ameri-
can Society for Engineering Education Annual Conference & Exposition. ASEE Conferences.

Lyon, Joseph A., Aparajita Jaiswal, and Alejandra J. Magana. 2020. “The Use of MATLAB Live
as a Technology-Enabled Learning Environment for Computational Modeling Activities
Within a Capstone Engineering Course.” In Proceedings of the 127th Annual American Society
for Engineering Education Annual Conference & Exposition. ASEE Conferences. https://doi.org
/10.18260/1-2--35380.

Lyon, Joseph A., and Alejandra J. Magana. 2020. “Computational Thinking in Higher Education:
A Review of the Literature.” Computer Applications in Engineering Education 28 (5): 1174–89.
https://doi.org/10.1002/cae.22295.

Lyon, Joseph A., and Alejandra J. Magana. 2021. “The Use of Engineering Model‐Building Activities
to Elicit Computational Thinking: A Design‐Based Research Study.” Journal of Engineering
Education 110 (1): 184–206. https://doi.org/10.1002/jee.20372.

Lyon, Joseph A., Alejandra J. Magana, and Martin R. Okos. 2019. “Work in Progress: Designing
Modeling-Based Learning Environments Within a Capstone Engineering Course.” In Proceed-
ings of the 126th Annual American Society for Engineering Education Annual Conference & Exposi-
tion. ASEE Conferences. https://doi.org 10.18260/1-2--33604/.

Lyon, Joseph A., Alejandra J. Magana, and Ruth A. Streveler. 2022. “Characterizing Computational
Thinking in the Context of Model-Planning Activities.” Modelling 3 (3): 344–58. https://doi
.org/10.3390/modelling3030022.

Lyons, Kayley, Jacqueline E. McLaughlin, Julia Khanova, and Mary T. Roth. 2017. “Cognitive Ap-
prenticeship in Health Sciences Education: A Qualitative Review.” Advances in Health Sciences
Education 22 (2017): 723–39. https://doi.org/10.1007/s10459-016-9707-4.

Lytle, Nicholas, Veronica Cateté, Danielle Boulden, Yihuan Dong, Jennifer Houchins, Alexandra
Milliken, Amy Isvik, Dolly Bounajim, Eric Wiebe, and Tiffany Barnes. 2019. “Use, Modify, Cre-
ate: Comparing Computational Thinking Lesson Progressions for Stem Classes.” In ITiCSE ’19:
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Edu-
cation, 395–401. https://doi.org/10.1145/3304221.3319786.

Mackillop, Lucy, Jo Parker‐Swift, and Jim Crossley. 2011. “Getting the Questions Right: Non‐
compound Questions Are More Reliable Than Compound Questions on Matched Multi‐source
Feedback Instruments.” Medical Education 45 (8): 843–48. https://doi.org/10.1111/j.1365-2923
.2011.03996.x.

Magana, Alejandra J. 2017. “Modeling and Simulation in Engineering Education: A Learning Pro-
gression.” Journal of Professional Issues in Engineering Education and Practice 143 (4): 1–19. https://
doi.org/10.1061/(ASCE)EI.1943-5541.0000338.

Magana, Alejandra J. 2022. “The Role of Frameworks in Engineering Education Research.” Journal
of Engineering Education 111 (1): 9–13. https://doi.org/10.1002/jee.20443.

Magana, Alejandra J., Sean P. Brophy, and George M. Bodner. 2012. “Student Views of Engineering
Professors Technological Pedagogical Content Knowledge for Integrating Computational

https://academica-e.unavarra.es/xmlui/handle/2454/37600
https://doi.org/10.18260/1-2--35380
https://doi.org/10.1002/cae.22295
https://doi.org/10.1002/jee.20372
https://doi.org10.18260/1-2--33604/
https://doi.org/10.3390/modelling3030022
https://doi.org/10.1007/s10459-016-9707-4
https://doi.org/10.1145/3304221.3319786
https://doi.org/10.1111/j.1365-2923.2011.03996.x
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000338
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000338
https://doi.org/10.1002/jee.20443
https://academica-e.unavarra.es/xmlui/handle/2454/37600
https://doi.org/10.18260/1-2--35380
https://doi.org/10.3390/modelling3030022
https://doi.org/10.1111/j.1365-2923.2011.03996.x

REFERENCES 131

Sim u lation Tools in Nanoscale Science and Engineering.” International Journal of Engineering
Education 28 (5): 1033–45.

Magana, Alejandra J., and Genisson Silva Coutinho. 2017. “Modeling and Simulation Practices
for a Computational Thinking-Enabled Engineering Workforce.” Computer Applications in En-
gineering Education 25 (1): 62–78. https://doi.org/10.1002/cae.21779.

Magana, Alejandra J., Michael L. Falk, and Michael J. Reese. 2013. “Introducing Discipline-Based
Computing in Undergraduate Engineering Education.” ACM Transactions on Computing Edu-
cation 13 (4): 1–22. https://doi.org/10.1145/2534971.

Magana, Alejandra J., Michael L. Falk, Camilo Vieira, and Michael J. Reese Jr. 2016. “A Case
Study of Undergraduate Engineering Students’ Computational Literacy and Self-Beliefs About
Computing in the Context of Authentic Practices.” Computers in Human Behavior 61:427–42.
https://doi.org/10.1016/j.chb.2016.03.025.

Magana, Alejandra J., Michael L. Falk, Camilo Vieira, Micharl J. Reese Jr., Oluwatosin Alabi, and
Sylvain Patinet. 2017. “Affordances and Challenges of Computational Tools for Supporting Mod-
eling and Simulation Practices.” Computer Applications in Engineering Education 25 (3): 352–75.
https://doi.org/10.1002/cae.21804.

Magana, Alejandra J., Hayden W. Fennell, Camilo Vieira, and Michael L. Falk. 2019. “Characterizing
the Interplay of Cognitive and Metacognitive Knowledge in Computational Modeling and
Simulation Practices.” Journal of Engineering Education 108 (2): 276–303. https://doi.org/10.1002
/jee.20264.

Magana, Alejandra J., Juan D. Ortega-Alvarez, Ryan Lovan, Daniel Gómez Pizano, Johannio
Marulanda, and Shirley Dyke. 2017. “Virtual, Local and Remote Laboratories for Conceptual
Un derstanding of Dynamic Systems.” International Journal of Engineering Education 33 (1): 91–105.

Magana, Alejandra J., Camilo Vieira, Hayden W. Fennell, Anindya Roy, and Michael L. Falk. 2020.
“Undergraduate Engineering Students’ Types and Quality of Knowledge Used in Synthetic
Mod eling.” Cognition and Instruction. 38 (4): 503–37. https://doi.org/10.1080/07370008.2020
.1792912.

Malyn-Smith, Joyce, and Irene Lee. 2012. “Application of the Occupational Analysis of Computa-
tional Thinking-Enabled STEM Professionals as a Program Assessment Tool.” Journal of Com-
putational Science Education 3 (1): 2–10. https://doi.org/10.22369/issn.2153-4136/3/1/1.

Maria, Anu. 1997. “Introduction to Modeling and Simulation.” In WSC ’97: Proceedings of the 29th
Conference on Winter Simulation. https://doi.org/10.1145/268437.268440.

McCracken, Michael, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-
David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001. “A Multi-
national, Multi-institutional Study of Assessment of Programming Skills of First-Year CS Stu-
dents.” ACM SIGCSE Bulletin 33 (4): 125–80. https://doi.org/10.1145/572133.572137.

McNeill, Katherine L., and Joseph Krajcik. 2008. “Inquiry and Scientific Explanations: Helping
Students Use Evidence and Reasoning.” In Science as Inquiry in the Secondary Setting. Edited by
Julie Luft, Randy L. Bell, and Julie Gess-Newsome, 121–34. Arlington, VA: National Science
Teachers Association.

Merritt, Chris, Michelle Daniel, Brendan W. Munzer, Mariann Nocera, Joshua C. Ross, and Sally
A. Santen. 2018. “A Cognitive Apprenticeship-Based Faculty Development Intervention for
Emergency Medicine Educators.” Western Journal of Emergency Medicine 19 (1): 198–204. https://
doi.org/10.5811/westjem.2017.11.36429.

https://doi.org/10.1002/cae.21779
https://doi.org/10.1145/2534971
https://doi.org/10.1016/j.chb.2016.03.025
https://doi.org/10.1002/cae.21804
https://doi.org/10.1002/jee.20264
https://doi.org/10.1080/07370008.2020.1792912
https://doi.org/10.22369/issn.2153-4136/3/1/1
https://doi.org/10.1145/268437.268440
https://doi.org/10.1145/572133.572137
https://doi.org/10.5811/westjem.2017.11.36429
https://doi.org/10.5811/westjem.2017.11.36429
https://doi.org/10.1002/jee.20264
https://doi.org/10.1080/07370008.2020.1792912

REFERENCES132

Morrell, Darryl. 2007. “Design of an Introductory MATLAB Course for Freshman Engineering
Students.” In Proceedings of the 2007 American Society for Engineering Education Annual Conference
& Exposition. ASEE Conferences. https://doi.org/10.18260/1-2--1654.

Morris, Phillip J., Lyle N. Long, and Ali Haghighat, and Martin L. Brady. 1996. “Curriculum De-
vel op ment in Advanced Computation.” In Proceedings of the 1996 American Society for Engineering
Education Annual Conference & Exposition. ASEE Conferences. https://doi.org/10.18260/1-2

--5954.
Mselle, Leonard J., and Hashim Twaakyondo. 2012. “The Impact of Memory Transfer Language

(MTL) on Reducing Misconceptions in Teaching Programming to Novices.” International Jour-
nal of Machine Learning and Applications 1 (1): 6.

Narayanan, Ganapathy. 2007. “Teaching of Essential MATLAB Commands in Applied Mathe-
matics Course for Engineering Technology.” In Proceedings of the 2007 American Society for En-
gineering Education Annual Conference & Exposition. ASEE Conferences. https://doi.org/10
.18260/1-2--3052.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2018. Data Science for
Undergraduates: Opportunities and Options. Washington, DC: The National Academies Press.

Nersessian, Nancy J. 1999. “Model-Based Reasoning in Conceptual Change.” In Model-Based
Reasoning in Scientific Discovery. Edited by Lorenzo Magnani, Nancy J. Nersessian and Paul
Thagard, 5–57. New York: Kluwer Academic/Plenum Publishers.

Nersessian, Nancy J. 2002. “The Cognitive Basis of Model-Based Reasoning in Science.” In The
Cognitive Basis of Science. Edited by Peter Carruthers, Stephen Stich, and Michael Siegal, 133–
53. Cambridge: Cambridge University Press.

Noroozi, Omid, Paul A. Kirschner, Harm J. A. Biemans, and Martin Mulder. 2018. “Promoting
Argumentation Competence: Extending from First-To Second-Order Scaffolding Through
Adaptive Fading.” Educational Psychology Review 30 (1): 153–76. https://doi.org/10.1007/s10648

-017-9400-z.
NRC (National Research Council). 2011. Report of a Workshop on the Pedagogical Aspects of Compu-

tational Thinking. Washington, DC: National Research Council of the National Academies.
NRC (National Research Council). 2012. Discipline-Based Education Research. Understanding and

Improving Learning in Undergraduate Science and Engineering. Washington, DC: National Re-
search Council of the National Academies.

O’Hara, Keith J., Doug Blank, and James Marshall. 2015. “Computational Notebooks for AI Edu-
cation.” In Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Re search
Society Conference. Association for the Advancement of Artificial Intelligence. https://repository
.brynmawr.edu/cgi/viewcontent.cgi?article=1030&context=compsci_pubs.

Ortega-Alvarez, Juan D., William Sanchez, and Alejandra J. Magana. 2018. “Exploring Undergrad-
uate Students’ Computational Modeling Abilities and Conceptual Understanding of Electric Cir-
cuits.” IEEE Transactions on Education 66 (3): 204–13. https://doi.org/0.1109/TE.2018.2822245.

Ottesen, Johnny T., Mette S. Olufsen, and Jesper K. Larsen. 2006. Applied Mathematical Models in
Human Physiology. Roskilde, Denmark: Roskilde University.

Pea, Roy D., and D. Midian Kurland. 1983. On the Cognitive Prerequisites of Learning Computer Pro-
gramming. Technical Report No. 18. Washington, DC: National Institute of Education. https://
eric.ed.gov/?id=ED249931.

https://doi.org/10.18260/1-2--1654
https://doi.org/10.18260/1-2--5954
https://doi.org/10.18260/1-2--3052
https://doi.org/10.1007/s10648-017-9400-z
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1030&context=compsci_pubs
https://doi.org/0.1109/TE.2018.2822245
https://eric.ed.gov/?id=ED249931
https://eric.ed.gov/?id=ED249931
https://doi.org/10.18260/1-2--5954
https://doi.org/10.18260/1-2--3052
https://doi.org/10.1007/s10648-017-9400-z
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1030&context=compsci_pubs

REFERENCES 133

Pellegrino, James W., Naomi Chudowsky, and Robert Glaser. 2001. Knowing What Students Know:
The Science and Design of Educational Assessment. Washington, DC: National Academy Press.

Peters-Burton, Erin E., Sydney A. Merz, Erin M. Ramirez, and Maryam Saroughi. 2015. “The Effect of
Cognitive Apprenticeship-Based Professional Development on Teacher Self-Efficacy of Science
Teaching, Motivation, Knowledge Calibration, and Perceptions of Inquiry-Based Teaching.”
Journal of Science Teacher Education 26:525–48. https://doi.org/10.1007/s10972-015-9436-1.

Quintana, Chris, Brian J. Reiser, Elizabeth A. Davis, Joseph Krajcik, Eric Fretz, Ravit Golan Duncan,
Eleni Kyza, Daniel Edelson, and Elliot Soloway. 2004. “A Scaffolding Design Framework for
Software to Support Science Inquiry.” Journal of the Learning Sciences 13 (3): 337–86. https://doi.
org/10.1207/s15327809jls1303_4.

Riel, M. 2023. “Understanding Action Research.” Center for Collaborative Action Research. Ac-
cessed October 2023. https://www.ccarweb.org/what-is-action-research.

Sadler, Troy D., Stephen Burgin, Lyle McKinney, and Luis Ponjuan. 2010. “Learning Science
Through Research Apprenticeships: A Critical Review of the Literature.” Journal of Research in
Science Teaching 47 (3): 235–56. https://doi.org/10.1002/tea.20326.

Sanchez-Peña, Matilde, Camilo Vieira, and Alejandra J. Magana. 2022. “Data Science Knowledge
Integration: Affordances of a Computational Cognitive Apprenticeship on Student Conceptual
Understanding.” Computer Applications in Engineering Education. https://doi.org/10.1002/
cae .22580.

Schwartz, Daniel L., John D. Bransford, and David Sears. 2005. “Efficiency and Innovation in
Transfer.” In Transfer of Learning from a Modern Multidisciplinary Perspective. Edited by Jose P.
Mestre, 1–51. Greenwich, CT: Information Age Publishing.

Schwartz, Daniel L., Catherine C. Chase, Marily A. Oppezzo, and Doris B. Chin. 2011. “Practicing
versus Inventing With Contrasting Cases: The Effects of Telling First on Learning and Transfer.”
Journal of Educational Psychology 103 (4): 759–75. https://doi.org/10.1037/a0025140.

Schwarz, Christina V., Brian J. Reiser, Elizabeth A. Davis, Lisa Kenyon, Andres Achér, David
Fortus, Yael Shwartz, Barbara Hug, and Joe Krajcik. 2009. “Developing a Learning Progression
for Scientific Modeling: Making Scientific Modeling Accessible and Meaningful for Learners.”
Journal of Research in Science Teaching 46 (6): 632–54. https://doi.org/10.1002/tea.20311.

Shaikh, Uzma, Alejandra J. Magana, Camilo Vieira, and R. Edwin Garcia. 2015. “An Exploratory
Study of the Role of Modeling and Simulation in Supporting or Hindering Engineering Stu-
dents’ Problem-Solving Skills.” In Proceedings of the 2015 American Society for Engineering Edu-
cation Annual Conference & Exposition. ASEE Conferences. https://doi.org/10.18260/p.23524.

Shiflet, Angela B., and George W. Shiflet. 2014. Introduction to Computational Science: Modeling and
Simulation for the Sciences. Princeton, NJ: Princeton University Press.

Sigel, Irving E. 1999. Development of Mental Representation: Theories and Applications. Mahwah, NJ:
Lawrence Erlbaum.

Soloway, Elliot, and James C. Spohrer, eds. 1989. Studying the Novice Programmer. Mahwah, NJ:
Lawrence Erlbaum.

Stickel, Micah. 2011. “Putting Mathematics in Context: An Integrative Approach Using MATLAB.”
In Proceedings of the 2011 American Society for Engineering Education Annual Conference & Expo-
sition. ASEE Conferences. https://doi.org/10.18260/1-2--18843.

Sticklen, Jon, Marilyn Amey, Taner Eskil, Timothy Hinds, and Mark Urban-Lurain. 2004. “Ap-

https://doi.org/10.1007/s10972-015-9436-1
https://doi.org/10.1207/s15327809jls1303_4
https://www.ccarweb.org/what-is-action-research
https://doi.org/10.1002/tea.20326
https://doi.org/10.1002
https://doi.org/10.1037/a0025140
https://doi.org/10.1002/tea.20311
https://doi.org/10.18260/p.23524
https://doi.org/10.18260/1-2--18843
https://doi.org/10.1002
https://doi.org/10.1207/s15327809jls1303_4

REFERENCES134

plication of Object-Centered Scaffolding to Introductory MATLAB.” In Proceedings of the 2004
American Society for Engineering Education Annual Conference & Exposition. ASEE Con ferences.
https://doi.org/10.18260/1-2--13123.

Sweller, John, Jeroen J. G. van Merriënboer, and Fred Paas. 2019. “Cognitive Architecture and In-
structional Design: 20 Years Later.” Educational Psychology Review 31 (2): 261–92. https://doi.org
/10.1007/s10648-019-09465-5.

Tang, Xiaodan, Yue Yin, Qiao Lin, Roxana Hadad, and Xiaoming Zhai. 2020. “Assessing Com-
putational Thinking: A Systematic Review of Empirical Studies.” Computers & Education 148
(April): 103798. https://doi.org/10.1016/j.compedu.2019.103798.

Tew, Allison Elliott, and Mark Guzdial. 2010. “Developing a Validated Assessment of Fundamental
CS1 Concepts.” In SIGCSE ’10: Proceedings of the 41st ACM Technical Symposium on Computer
Science Education. Association for Computing Machinery. https://doi.org/10.1145/1734263.1734297.

Traxler, Adrienne, Rachel Henderson, John Stewart, Gay Stewart, Alexis Papak, and Rebecca Lindell.
2018. “Gender Fairness Within the Force Concept Inventory.” Physical Review Physics Education
Research 14 (1): 010103. https://doi.org/10.1103/PhysRevPhysEducRes.14.010103.

VanLehn, Kurt. 2013. “Model Construction as a Learning Activity: A Design Space and Review.”
Interactive Learning Environments 21 (4): 371–13. https://doi.org/10.1080/10494820.2013.803125.

Vieira, Camilo, Ricardo L. Gómez, Margarita Gómez, Michael Canu, and Mauricio Duque. 2023.
“Implementing Unplugged CS and Use-Modify-Create to Develop Student Computational
Thinking Skills.” Educational Technology & Society 26 (3): 155–75. https://www.jstor.org/stable
/48734328.

Vieira, Camilo, Alejandra J. Magana, Michael L. Falk, and R. Edwin García. 2017. “Writing In-Code
Comments to Self-Explain in Computational Science and Engineering Education.” ACM Trans-
actions on Computing Education (TOCE) 17 (4): 17:01–17:21. https://doi.org/10.1145/3058751.

Vieira, Camilo, Alejandra J. Magana, R. Edwin García, Aniruddha Jana, and Matthew Krafcik. 2018.
“Integrating Computational Science Tools into a Thermodynamics Course.” Journal of Science
Education and Technology 27 (1): 1–12. https://doi.org/10.1007/s10956-017-9726-9.

Vieira, Camilo, Alejandra J. Magana, Anindya Roy, and Michael L. Falk. 2019. “Student Explana-
tions in the Context of Computational Science and Engineering Education.” Cognition and
Instruction 32 (7): 201–31. https://doi.org/10.1080/07370008.2018.1539738.

Vieira, Camilo, Alejandra J. Magana, Anindya Roy, and Michael Falk. 2020. “Providing Students
With Agency to Self-Scaffold in a Computational Science and Engineering Course.” Journal of
Computing in Higher Education 33:328–66. https://doi.org/10.1007/s12528-020-09267-7.

Vieira, Camilo, Alejandra J. Magana, Anindya Roy, Michael L. Falk, and Michael J. Reese Jr. 2015.
“Exploring Undergraduate Students’ Computational Literacy in the Context of Problem Solving.”
In Proceedings of the 122nd American Society for Engineering Education Annual Conference & Expo-
sition ASEE Conferences. https://doi.org/10.18260/p.24081.

Vieira, Camilo, Alejandra J. Magana, Anindya Roy, Michael L. Falk, and Michael J. Reese Jr. 2016.
“Exploring Undergraduate Students’ Computational Literacy in the Context of Problem Solv-
ing.” Computers in Education Journal 7 (1): 100–12. https://coed.asee.org/wp-content/uploads
/2020/08/11-Exploring-Undergraduate-Students-Computational-Literacy-in-the-Context-of

-Problem-Solving.pdf.
Vieira, Camilo, Anindya Roy, Alejandra J. Magana, Michael L. Falk, and Michael J. Reese Jr. 2016.

“In-Code Comments as a Self-Explanation Strategy for Computational Science Education.” In

https://doi.org/10.18260/1-2--13123
https://doi.org/10.1007/s10648-019-09465-5
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1103/PhysRevPhysEducRes.14.010103
https://doi.org/10.1080/10494820.2013.803125
https://www.jstor.org/stable/48734328
https://doi.org/10.1145/3058751
https://doi.org/10.1007/s10956-017-9726-9
https://doi.org/10.1080/07370008.2018.1539738
https://doi.org/10.1007/s12528-020-09267-7
https://doi.org/10.18260/p.24081
https://coed.asee.org/wp-content/uploads/2020/08/11-Exploring-Undergraduate-Students-Computational-Literacy-in-the-Context-of-Problem-Solving.pdf
https://doi.org/10.1007/s10648-019-09465-5
https://www.jstor.org/stable/48734328
https://coed.asee.org/wp-content/uploads/2020/08/11-Exploring-Undergraduate-Students-Computational-Literacy-in-the-Context-of-Problem-Solving.pdf
https://coed.asee.org/wp-content/uploads/2020/08/11-Exploring-Undergraduate-Students-Computational-Literacy-in-the-Context-of-Problem-Solving.pdf

REFERENCES 135

Proceedings of the 123rd American Society for Engineering Education Annual Conference & Exposition.
ASEE Conferences. https://doi.org/10.18260/p.25642.

Vieira, Camilo, Junchao Yan, and Alejandra J. Magana. 2015. “Exploring Design Characteristics of
Worked Examples to Support Programming and Algorithm Design.” Journal of Computational
Science Education 6 (1): 2–15. https://doi.org/10.22369/issn.2153-4136/6/1/1.

Vihavainen, Arto, Matti Paksula, and Matti Luukkainen. 2011. “Extreme Apprenticeship Method
in Teaching Programming for Beginners.” In SIGCSE ’11: Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, 93–98. Association for Computing Machinery. https://
doi.org/10.1145/1953163.1953196.

Wang, April Yi, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. “How Data Scientists
Use Computational Notebooks for Real-Time Collaboration.” In Proceedings of the ACM on
Human-Computer Interaction 3 (CSCW): 9:1–9:30. https://doi.org/10.1145/3359141.

Weintrop, David, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura Trouille, and Uri
Wilensky. 2016. “Defining Computational Thinking for Mathematics and Science Class rooms.”
Journal of Science Education and Technology 25 (1): 127–47. https://doi.org/10.1007/s10956-015

-9581-5.
Wiggins, Grant, and Jay McTighe. 1997. Understanding by Design. Alexandria, VA: Association for

Supervision and Curriculum Development.
Wiggins, Grant, and Jay McTighe. 2005. Understanding by Design. Expanded 2nd ed. San Francisco:

Pearson Education.
Yadav, Aman, Chris Stephenson, and Hai Hong. 2017. “Computational Thinking for Teacher Edu-

cation.” Communications of the ACM 60 (4): 55–62. https://doi.org/10.1145/2994591.
Yardi, Sarita, and Amy Bruckman. 2007. “What Is Computing? Bridging the Gap Between Teen-

agers’ Perceptions and Graduate Students’ Experiences.” In ICER ’07: Proceedings of the Third
International Workshop on Computing Education Research, 39–50. Association for Computing
Ma chinery.

Yasar, Osman, Kulathur S. Rajasethupathy, Robert E. Tuzun, R. Alan McCoy, and Joseph Harkin.
2000. “A New Perspective Computational Science Education.” Computational Science Engineering
5 (September/October): 74–79.

https://doi.org/10.18260/p.25642
https://doi.org/10.22369/issn.2153-4136/6/1/1
https://doi.org/10.1145/1953163.1953196
https://doi.org/10.1145/1953163.1953196
https://doi.org/10.1145/3359141
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/2994591
https://doi.org/10.1007/s10956-015-9581-5

iNDEx

Page numbers in italics indicate figures and tables

A

abstract conceptualization, in ELT
framework, 35

action-oriented students, 52
active experimentation, in ELT

framework, 35
adaptive expertise in computation:

action- or plan-oriented stu-
dents, 52; implementation- or
knowledge-oriented students, 52;
innovation and efficiency in, 49–
52, 50, 51

analytic methods, for mathematical
models, 4

articulation: in cognitive apprentice-
ship framework method, 19; scaf-
folding, 63–64, 64

assessment: guidelines for model-
ing and simulation practices solv-
ing, 1, 7, 11–17, 12, 13, 14, 15–16;
Pellegrino’s triangle for, 11, 12, 13

assessment-centered component, of
HPL framework, 22–23

assessment rubric: in capstone
courses sample project and solu-
tion design, 94–95; in K–12 set-
tings sample project and solution
design, 122; in laboratory sam-
ple project and solution for de-
sign, 114–15; in novice learners
sample project and solution de-
sign, 78–80

Association of Computing
Machinery and IEEE, 9

audience: computing, 7–8, 8; of
crowds, 7–8, 8; in modeling and
simulation practices curricular

framework, 7–8, 8; of specialists,
7–8, 8

Azure coding platform, 65

B

baking cups falling and air resistance,
in laboratory sample project
and solution for design: compu-
tational model of, 108–9; fall-
ing cupcake physical experiment,
105–8, 106, 107

building model template, for cap-
stone sample project and solution
design, 84, 86–88

C

capstone courses learning design, of
Lyon, 27; on modeling heat trans-
fer and sterilization in food can-
ning operation, 28–33, 29

capstone courses sample project and
solution design: assessment rubric,
94–95; building model template/
modeling report, 84, 86–88; eval-
uation model template, 84, 86–88;
introduction, 81–82; modeling pa-
rameters, 83; planning model tem-
plate for, 84, 84–85; project de-
scription, 81–89; project solution,
90–95; reflection on model, 84, 89;
simple system diagram, 83

CLT. See cognitive load theory
code structure, in VF novice learners

sample project and solution de-
sign, 72–73

coding: Azure platform, 65;
Databricks platform, 65; Google

Collaboratory platform, 65;
Jupyter platform, 65, 119, 120–21;
Markdown platform, 65; in plan-
ning novice learners sample proj-
ect and solution design, 73; so-
cial coding movement, 65. See
also GlowScript online VPython
compiler; VPython compiler for
laboratory

coding and testing, for novice learn-
ers sample project and solution
design, 74

cognition, in Pellegrino’s assessment
triangle, 12, 12, 13

cognitive apprenticeship framework,
17, 67–68; components with de-
scriptions, 54; computational ex-
pertise types, 53; content in, 18,
54, 55–56; method in, 5, 7, 18–19,
54, 56, 57–58, 63, 63–64, 64; se-
quencing in, 18, 19–20, 54, 57; so-
ciology in, 18, 20, 54, 58–59

cognitive load theory (CLT), WM
and LTM in, 41–42

community-centered component, of
HPL framework, 22–23

community of practice, in cognitive
apprenticeship framework sociol-
ogy, 20

complexity, in cognitive apprentice-
ship framework sequencing, 19

computation: adaptive expertise in,
49–52, 50, 51; model-based rea-
soning for, 1; practices defined, 4;
simulation, 4

computation, modeling, simulation
practices, in STEM education, 3

INDEX138

computational engineering and sci-
ence, 1

computational expertise types, in
cognitive apprenticeship frame-
work, 53

computational model, 4; of bak-
ing cups falling and air resis-
tance laboratory sample project
and solution for design, 108–9;
of momentum change laboratory
sample project and solution for
design, 104–5

computer science, 1
computing audience, specialists and

crowds in, 7–8, 8
conceptual model, 4
configuration of model, in project

report, 14
construct shareability principle, in

MEA, 29
content, in cognitive apprenticeship

framework, 18, 54; design princi-
ple in, 55–56

context, in modeling and simulation
practices curricular framework, 7

context, population, learning need:
in MATLAB novice learners
learning design, 22; in model-
ing fundamental mechanics in
physics lab with VPython labo-
ratory learning design, 33–34; in
modeling heat transfer and ster-
ilization in food canning oper-
ation capstone learning design,
28; in modeling infectious dis-
ease spread K–12 learning de-
sign, 41

cooperation, in cognitive apprentice-
ship framework sociology, 20

COVID-19 pandemic, 41, 42, 46–
47; K–12 settings sample proj-
ect and solution design on spread
of, 117–22

creation, of rubric, 14–15
crowds, 8; defined, 7
cyber infrastructure advancements,

1

D

Databricks coding platform, 65
data-enabled engineering and sci-

ence, 1
debugging, in planning novice learn-

ers sample project and solution
design, 74

Department of Defense, US, 9
Department of Energy, US, 9
description and learning domain, in

modeling fundamental mechan-
ics in physics lab with VPython
laboratory learning design, 35,
35–36

design-based research, 59–60, 60
designing, in planning for novice

learners sample project and solu-
tion design, 73

diffusion of electrical potential, on
VF novice learners sample proj-
ect and solution design of VF, 71–
72, 72

diversity, in cognitive apprenticeship
framework sequencing, 19

E

effective prototype principle, in
MEA, 29

efficiency, in adaptive expertise, 49–
52, 50, 51

ELT. See experiential learning theory
engagement evidence, in model-

based reasoning, 13
engineering, 1
engineering modeling, 4
evaluation model template, for cap-

stone sample project and solution
design, 84, 86–88

experiential learning theory (ELT)
framework: abstract conceptual-
ization in, 35; active experimenta-
tion in, 35; reflective observation
in, 34–35

F

Falk, Michael, 21–27
Fennell, Hayden, 33–40

flipped-classroom approach, cogni-
tive apprenticeship framework
sociology, 20

G

global before local skills, in cognitive
apprenticeship framework se-
quencing, 19

GlowScript online VPython com-
piler, 33, 36, 97–99, 104, 109–13

Google Collaboratory coding plat-
form, 65

H

Heart Rhythm Society, on VP, 69
heart tissue, modeling of, 70–71,

75–76
How People Learn (HPL) frame-

work, 57
How People Learn (HPL) frame-

work, in MATLAB nov-
ice learners learning design:
assessment-centered component
in, 22–23; community-centered
component in, 22–23;
knowledge-centered component
in, 22; learner-centered compo-
nent in, 22

HPL. See How People Learn

i

implementation of model, in model-
based reasoning, 5

implementation-oriented students, 52
innovation, in adaptive expertise,

49–52, 50, 51
instructional design, understanding

by design framework in, 7
interpretation, in Pellegrino’s assess-

ment triangle, 12, 12, 13
Introduction to Computation Science

(Shiflet, A., and Shiflet, G.), 8
iterative cycle, of modeling and sim-

ulation processes, 3
iterative vector modeling, in labora-

tory sample project and solution
for design, 97, 97–98

INDEX 139

J

Jupyter coding platform, 65; for
K–12 settings sample project and
solution design, 119, 120–21

K

K–12 settings learning design, mod-
eling infectious disease spread,
41–47

K–12 settings sample project and
solution design, on COVID-19
spread: assessment rubric, 122;
Jupyter notebook for, 119; popu-
lation states of S, I, R, D, 117–18;
project description, 117–18; proj-
ect solution, 120–21

knowledge-centered component, in
HPL framework, 22

knowledge-oriented students, 52

L

laboratory learning design, by
Fennell, modeling fundamen-
tal mechanics in physics lab with
VPython, 33–40, 35–39

laboratory sample project and solu-
tion for design, with VPython:
assessment rubric, 114–15; on
baking cups falling and air re-
sistance, 105–9, 106, 107; on mo-
mentum change and measur-
ing velocity and force, 102, 102–4,
103, 104; on position, velocity, ac-
celeration, 97, 97–102, 100; proj-
ect description, 97–109; project
solution, 109–13

learner-centered component, of
HPL framework, 22

learning designs, 1; for capstone
courses, by Lyon, 27–33, 29; for
K–12 settings, by Vieira, 41–47,
44, 45–46; learning in labora-
tory by Fennell, 33–40, 35–39;
for novice learners, by Falk, 21–
27, 24–25

learning domain: in MATLAB nov-
ice learners learning design, 23; in

modeling heat transfer and ster-
ilization in food canning oper-
ation capstone learning design,
29; in modeling infectious dis-
ease spread K–12 learning de-
sign, 42–43

learning need. See context, popula-
tion, learning need

learning objectives, in modeling and
simulation practices curricular
framework, 8–9

learning opportunities, in cognitive
apprenticeship framework sociol-
ogy, 20

learning progression, in modeling
and simulation practices curricu-
lar framework, 8; Level 1 essential
practices and performances, 9, 9;
Level 2 highly desirable practices
and performances, 10, 10; Level 3
specialized practices and perfor-
mances, 10, 11; from national re-
ports, 9

lesson plan: in MATLAB nov-
ice learners learning design, 23,
24–25; in modeling fundamen-
tal mechanics in physics lab
with VPython laboratory learn-
ing design, 36, 36–37; in model-
ing heat transfer and steriliza-
tion in food canning operation
capstone learning design, 29, 30–
31; in modeling infectious dis-
ease spread K–12 learning design,
43, 45–46

lessons learned. See reflection and
lessons learned

Live Scripts program, of MATLAB,
32, 65, 84

long-term memory (LTM), in CLT,
41–42

Lyon, Joseph, 27–33

M

maintenance of model, in model-
based reasoning, 5

Markdown coding platform, 65

mathematical model: analytic meth-
ods for, 4; numerical techniques
for, 4

mathematics, 1
MATLAB software: for capstone

course, 28, 30–31, 82, 90–92; in
laboratory, 34; Live Scripts pro-
gram, 32, 65, 84; for novice learn-
ers learning design, 21–27, 24, 25;
for project report, 14

MATLAB time-dependent par-
tial differential equation, in nov-
ice learners learning design: con-
text, population, learning need in,
22; HPL framework in theoret-
ical grounding of, 22–23; lesson
plan, 23, 24–25; problem descrip-
tion and learning domain, 23; re-
flection and lessons learned, 23,
26–27

MEA. See model-eliciting activity
method, in cognitive apprenticeship

framework, 18, 54; articulation in,
19; design principle in, 56; reflec-
tion in, 19; scaffolding in, 5, 7, 19,
57–58, 63, 63–64, 64

model: computational, 4; conceptual,
4; defined, 3; mathematical, 4;
traditional apprenticeship, 17

model-based learning, 5
model-based reasoning: for com-

putation, modeling, simulation
practices, 1; engagement evi-
dence in, 13; implementation
of model in, 5; maintenance of
model in, 5; model reporting in,
5; Pellegrino’s assessment trian-
gle application, 12–13, 13; prob-
lem analysis and formulation in,
4; solving of model in, 5; verifi-
cation and validation of model
in, 5

model-based teaching: defined, 5;
scaffolding in, 5, 7, 19, 57–58, 63,
63–64, 64

model-construction principle, in
MEA, 29

INDEX140

model-documentation principle, in
MEA, 29

model-eliciting activity (MEA)
framework, 28; construct share-
ability principle in, 29; effec-
tive prototype principle in, 29;
model-construction principle in,
29; model-documentation princi-
ple in, 29; reality principle in, 29;
self-assessment principle in, 29

modeling: capstone courses sample
project and solution design pa-
rameters in, 83; defined, 3–4; for-
mal expression of, 3; model-based
reasoning for, 1; of physical sys-
tems, 4; practices, 3

modeling and simulation practices:
assessment guidelines for solving,
1, 7, 11–17, 12, 13, 14, 15–16; com-
bination in iterative cycle, 3

modeling and simulation prac-
tices assessment guidelines, 1,
7; Pellegrino’s assessment trian-
gle for, 11–13, 12, 13; process as-
sessment, 12–13, 17; product as-
sessment in, 12–13, 17; rubric for,
14–15, 15–16; template for project
report, 14

modeling and simulation practices
curricular framework: audience
in, 7–8, 8; context in, 7; learning
objectives in, 8–9; learning pro-
gression in, 8–9, 9, 10, 11

modeling and simulation practices
pedagogical guidelines, 18–20;
cognitive apprenticeship model, 17

modeling fundamental mechanics
in physics lab with VPython lab-
oratory learning design: context,
population, learning need, 33–
34; description and learning do-
main, 35, 35–36; ELT framework
theoretical grounding of, 34–35;
lesson plan, 36, 36–37; reflection
and lessons learned, 37–40, 38, 39

modeling heat transfer and steriliza-
tion in food canning operation

capstone learning design: con-
text and population in, 28; les-
son plan, 29, 30–31; MEA frame-
work theoretical grounding of,
28–29; problem description and
learning domain in, 29; produc-
tive failure theoretical ground-
ing of, 28; reflection and lessons
learned, 32–33

modeling infectious disease spread,
in K–12 learning design: CLT
theoretical grounding, 41–42;
context and population, 41; lesson
plan, 43, 45–46; problem descrip-
tion and learning domain, 42–
43; reflection and lessons learned,
46–47; SIR model in, 42–43, 44

modeling parameters, for capstone
courses sample project and solu-
tion design, 83

momentum change, in laboratory
sample project and solution for
design: computational models re-
visited, 104–5; fan-cart physical
experiment, 102, 102–4, 103, 104

motivational strategies, in cognitive
apprenticeship framework sociol-
ogy, 20

N

National Science Foundation, US, 9
nonlinear numerical techniques, 4
novice learners learning design, by

Falk, 21; MATLAB time-
dependent partial differential
equation implementation, 22–27

novice learners sample project and
solution design, on VF: applica-
tion for, 74; assessment rubrics,
78–80; code structure, 72–73;
coding and testing for, 74; diffu-
sion of electrical potential, 71–
72, 72; introduction to, 69; mod-
eling heart tissue, 70–71, 75–76;
planning for, 73–74; project de-
scription, 69–74; project solution,
75–78

numerical techniques, nonlinear for
mathematical model, 4

O

observation, in Pellegrino’s assess-
ment triangle, 12, 12, 13

P

pedagogical strategies, 7
Pellegrino’s assessment triangle, 11;

cognition in, 12, 12, 13; interpre-
tation in, 12, 12, 13; observation
in, 12, 12, 13

physical systems, modeling of, 4
Piedrahita, Yuri, 97
planning, for novice learners sample

project and solution design, on
VF: coding in, 73; debugging in,
74; designing in, 73; testing in, 74

planning model template, for cap-
stone sample project and solution
design, 84, 84–85

plan-oriented students, 52
population. See context, population,

learning need
position, velocity, acceleration, in lab-

oratory sample project and solu-
tion for design: iterative vec-
tor modeling, 97, 97–98; pushcart
physical experiment, 99–101, 100;
pushcart VPython simulation, 98–
99; VPython model connecting
with physical experiment, 101–2

problem analysis, in model-based
reasoning, 4

problem description: in MATLAB
novice learners learning design,
23; in modeling heat transfer and
sterilization in food canning op-
eration capstone learning design,
29; in modeling infectious disease
spread K–12 learning design, 42–
43; in project report, 14

problem formulation, in model-
based reasoning, 4

problem framing, in project report, 14
problem solution, in project report, 14

INDEX 141

process assessment, 12–13, 17
process management scaffolding,

63–64, 64
product assessment, 12–13, 17
productive failure framework, 28
project description, for capstone

courses sample project and solu-
tion design: building model tem-
plate/modeling report, 84, 86–
88; evaluation model template,
84, 86–88; introduction to, 81–82;
modeling parameters, 83; plan-
ning model template for, 84, 84–
85; reflection on model, 84, 89;
simple system diagram, 83

project description, for labora-
tory sample project and solution
for design: on baking cups fall-
ing and air resistance, 105–9; on
changing momentum and mea-
suring velocity and force, 102–
4; on position, velocity, accelera-
tion, 97–102

project description, for novice learn-
ers sample project and solution
design: application in, 74; code
structure for, 72–73; coding and
testing in, 74; diffusion of elec-
trical potential in, 71–72, 72; in-
troduction to, 69; modeling heart
tissue in, 70–71; planning in,
73–74

project report: configuration of
model in, 14; MATLAB soft-
ware for, 14; problem descrip-
tion, framing and solution in, 14;
rubric, 14–15, 15–16 ; template,
14; validation and verification of
model in, 14

project solution, in capstone courses
sample project and solution de-
sign: MATLAB code example,
90–92; results interpretation, 92,
92–94

project solution, in K–12 settings
sample project and solution de-
sign, 120–21

project solution, in laboratory sam-
ple project and solution for de-
sign: VPython template with
GlowScript, 109–13

project solution, in novice learners
sample project and solution de-
sign, on VF: assessment rubric
for, 78–80 ; results interpretation,
77, 77; solution for modeling of
heart tissue, 75–76

pushcart physical experiment, in lab-
oratory sample project and solu-
tion for design, 99–101, 100

pushcart VPython simulation, in
laboratory sample project and
solution for design, 98–99

R

reality principle, in MEA, 29
reasoning, with models, 3
Rebello, Carina, 97
Rebello, Sanjay, 97
reflection: in cognitive apprentice-

ship framework method, 19; scaf-
folding, 63–64, 64

reflection and lessons learned: in
MATLAB novice learners learn-
ing design, 23, 26–27; in model-
ing fundamental mechanics in
physics lab with VPython labo-
ratory learning design, 37–40, 38,
39; in modeling heat transfer and
sterilization in food canning op-
eration capstone learning design,
32–33; in modeling infectious
disease spread K–12 learning de-
sign, 46–47

reflection model template, for cap-
stone sample project and solution
design, 84, 89

reflective observation, in ELT
framework, 34

reporting of model, in model-based
reasoning, 5

representational models, 3
research, 3; design-based, 59–60,

60; new directions in, 59–65; on

scaffolding in computation, 62–
63, 63; social coding movement
and, 65; Weintrop’s taxonomy,
60–62, 61

results interpretation, in capstone
courses sample project and solu-
tion design, 92, 92–94

rubric: assessment in capstone
courses sample project and solu-
tion design, 94–95; assessment in
K–12 settings sample project and
solution design, 122; assessment
in laboratory sample project and
solution for design, 114–15; as-
sessment in novice learners sam-
ple project and solution design,
78–80; creation of, 14–15; sample
for project report, 14–15, 15–16

S

sample project and solution de-
sign: for capstone courses, 81–95,
83, 84–85, 86–88, 89, 94–95; for
K–12 settings, 117–22, 119, 120–
21, 122; for laboratory, 97, 97–115,
100, 102, 104, 106, 107, 114–15 ; for
novice learners, 69–80, 72, 78–80

scaffolding, 7; articulation, 63–64,
64; in cognitive apprenticeship
framework method, 19; defined,
5; process management, 63–64,
64; reflection, 63–64, 64; research
on, 62–64, 63, 64; sensemaking,
63–64, 64; use-modify-create ap-
proach to, 57–58

science, 1
scientific modeling, 4
scientific research, workplace mod-

els for, 3
self-assessment principle, in MEA

framework, 29
sensemaking scaffolding, 63–64, 64
sequencing, in cognitive apprentice-

ship framework, 18, 20, 54; com-
plexity increase in, 19; design
principle, 57; diversity increase in,
19; global before local skills in, 19

INDEX142

Shiflet, Angela, 8
Shiflet, George, 8
simple system diagram, for capstone

courses sample project and solu-
tion design, 83

simulation: defined, 4; model-based
reasoning for, 1

simulation practices. See modeling
and simulation practices

SIR. See Susceptible-Infected-
Recovered model

social coding movement, 65
sociology, in cognitive apprentice-

ship framework, 18, 54; com-
munity of practice in, 20; coop-
eration in, 20; design principle,
58–59; flipped-classroom ap-
proach for, 20; learning opportu-
nities in, 20; motivational strate-
gies in, 20

solving of model, in model-based
reasoning, 5

specialists, 8; defined, 7–8
statistics, 1
STEM undergraduate education:

crowds and specialists perspec-
tive in, 8, 8; curricular framework
for, 1, 7–11, 8, 9, 10, 11; modeling
and simulation practices in, 1; re-
search for, 1–2

stimulus-based engineering and sci-
ence, 1

students: action- or plan-oriented,
52; implementation- or
knowledge-oriented, 52

Susceptible-Infected-Recovered
(SIR) model, 42–43, 44, 117–18

T

testing, in planning novice learners
sample project and solution de-
sign, 74

theoretical foundations: adaptive ex-
pertise in computation, 49–52,
50, 51; cognitive apprenticeship
models, 52–55; computational
cognitive apprenticeship, 55–59;
new research directions, 59–65

theoretical grounding: of CLT, 41–
42; of ELT framework, 34–35;
of HPL framework, 22–23; in
MATLAB novice learners learn-
ing design, 22–23; of MEA
framework, 28–29; in modeling
fundamental mechanics in phys-
ics lab with VPython laboratory
learning design, 34–35; in mod-
eling heat transfer and steriliza-
tion in food canning operation
capstone learning design, 28–29;
in modeling infectious disease
spread K–12 learning design, 41–
42; of productive failure, 28

traditional apprenticeship model, 17

U

understanding by design framework,
in instructional design, 7

use-modify-create approach, to scaf-
folding, 57–58

v

validation of model: in model-based
reasoning, 5; in project report, 14

ventricular fibrillation (VF), Heart
Rhythm Society on, 69. See also
novice learners sample project
and solution design, on VF

verification of model: in
model-based reasoning, 5; in
project report, 14

VF. See ventricular fibrillation
Vierira, Camilo, 41–47
VPython compiler for laboratory:

connecting with physical experi-
ment, in laboratory sample proj-
ect and solution for design, 101–
2; laboratory sample project and
solution for design with, 97–115;
modeling fundamental mechan-
ics in physics lab with, 33–40,
35–39

W

Weintrop’s taxonomy, 60–62, 61
while loop, 35, 86, 97, 97–98, 115
working memory (WM), in CLT,

41–42
workplace engineering, representa-

tional models for, 3

ABOUT THE CONTRiBUTORS

Michael L. Falk is a professor of materials science and engineering, mechanical engin-
eering, and physics at Johns Hopkins University, where he currently serves as the vice
dean for undergraduate education in the Whiting School of Engineering. Professor Falk
earned a bachelor’s degree in physics and a master’s degree in computer science from
Johns Hopkins University and a PhD in physics from the University of California, Santa
Barbara. His research focuses on utilizing computer simulation at the atomic scale to
understand what happens when materials are pushed out of equilibrium by processes
such as bending, breaking, charging, and undergoing frictional sliding. He has also un-
der taken educational research on how engineering students best learn computing and
two National Science Foundation–funded partnerships with the Baltimore City Schools
to increase the engagement of students, teachers, and communities in STEM learning.
Professor Falk has also been a strong advocate for diversity, particularly in creating a
welcoming climate for LGBTQ people within the engineering and physics professions.
He is a fellow of the American Physical Society and a recipient of the Materials Research
Society Impact Award.

Hayden W. Fennell, MSE, is a researcher in the Department of Intelligent Systems
Engineering at Indiana University Bloomington. He holds a BS in mechanical engineer-
ing from the University of South Carolina and an MSE in materials science and engineer ing
from Johns Hopkins University. His current work focuses on the development of effective
instructional tools for teaching computational modeling of virtual tissues and other
biological systems to learners from a broad range of backgrounds. His research interests
include characterizing and optimizing the development of transferrable computational
expertise during the undergraduate engineering curriculum, as well as the design of
pedagogical structures for teaching discipline-situated computational modeling skills
in a variety of STEM settings.

Joseph A. Lyon, PhD, is a continuing lecturer for the College of Engineering at Purdue
University in West Lafayette, Indiana. He holds a BS in bioengineering and an MS in
industrial engineering, both from Purdue and earned his PhD in engineering education
at Purdue, studying how engineering students best learn to program in classroom en-
vironments. Dr. Lyon is a 2018 recipient of the National Science Foundation’s Grad-
uate Research Fellowship. He spent multiple years working as an engineer in the food
industry. His research interests focus on how computer programming is best learned in
the engineering classroom and how to create computational pedagogy that broadens
participation, increases engagement, and ensures retention across the undergraduate
curriculum.

ABOUT THE CONTRIBUTORS144

Camilo Vieira, PhD, is an assistant professor in the Department of Education at Uni-
versidad del Norte (UniNorte, Barranquilla, Colombia). He holds a BSc in systems en-
gineering and a master’s degree in engineering from Universidad Eafit (Colombia) and
a PhD in technology (major concentration in computational sciences and engineering)
from Purdue University. Dr. Vieira completed a postdoctoral experience at Purdue in
information visualization and has been working at UniNorte since 2019, where he co-
ordinates the research group Informática Educativa. In 2022, he was a Fulbright Visit-
ing Scholar in the Department of Curriculum, Instruction, and Special Education at
the University of Virginia. He investigates how to support student complex learning
and how instructors teach complex topics, particularly in computing and engineering
education. He also explores how to use computational methods to understand educa-
tional phenomena.

ABOUT THE AUTHOR

ALEJANDRA J. MAGANA, PHD, iS THE W.C. FURNAS PROFESSOR iN ENTERPRiSE Ex-

cellence in the Department of Computer and Information Technology and professor
in the School of Engineering Education at Purdue University. Dr. Magana holds a BE
in information systems and an MS in technology, both from Tec de Monterrey, and an
MS in educational technology and a PhD in engineering education, both from Purdue
University. Her research program investigates how model-based cognition in science,
technology, engineering, and mathematics (STEM) can be better supported by compu-
tational disciplinary practices such as computation, modeling and simulation, data sci-
ence practices, and artificial intelligence. Currently Dr. Magana serves as deputy editor
for the Journal of Engineering Education, co-editor of the Education Department for
IEEE Computer Graphics & Applications, and associate editor for Computer Applications
in Engineering Education.

As of 2023, Dr. Magana has published 92 refereed journal articles along with 105
peer-reviewed conference proceedings. Her work has been cited over 2,500 times since
2012 with an h-index of 28, and she has performed over 160 manuscript reviews. In
2015, Dr. Magana received the Faculty Early Career Development (CAREER) Award,
the National Science Foundation’s most prestigious award for faculty who exemplify
the role of teacher-scholar through outstanding research, excellent education, and their
integration within the context of the mission of their organization. In addition, she has
secured over $23 million in federal funding from the National Science Foundation serv-
ing as principal or co-principal investigator.

Dr. Magana has been honored at the national level with three early career faculty
awards: in 2010 from the American Educational Research Association, in 2012 from the
American Society of Engineering Education, and in 2014 from the International Society
of the Learning Sciences. In 2016, she was conferred the status of Purdue Faculty Scholar
for being on an accelerated path toward academic distinction. In 2022, she was inducted
into the Purdue University Teaching Academy, recognizing her excellence in teaching.

	Cover�������������������������������
	TEACHING AND LEARNING IN STEM WITH COMPUTATION, MODELING, AND SIMULATION PRACTICES��
	Title�������������������������������
	Copyright���
	Dedication��
	CONTENTS��
	Foreword��
	Preface�������������������������������������
	INTRODUCTION��
	CHAPTER 1���
	Models, Modeling, and Simulation��
	Model-Based Reasoning and Implications for Education��

	CHAPTER 2���
	A Curricular Framework for Integrating Modeling and Simulation Practices��
	Assessment Guidelines for Modeling and Simulation Practices���
	Pedagogical Guidelines for Supporting Modeling and Simulation���

	CHAPTER 3���
	Designing for Novice Learners, by Michael Falk��
	Time-Dependent Partial Differential Equation Implementation With MATLAB���

	Designing for Capstone Courses, by Joseph Lyon��
	Modeling Heat Transfer and Sterilization Within a Food Canning Operation��

	Designing for Learning in the Laboratory, by Hayden Fennell���
	Modeling Fundamental Mechanics in Physics Labs with VPython���

	Designing for K-12 Settings, by Camilo Vieira���
	Modeling the Spread of an Infectious Disease��

	CHAPTER 4���
	Toward Adaptive Expertise in Computation��
	Cognitive Apprenticeship Models���
	A Computational Cognitive Apprenticeship��
	New Research Directions���

	CONCLUSION��
	APPENDICES
	Appendix A. Sample Project and Solution for Designing for Novice Learners
	Appendix B. Sample Project and Solution for Designing for Capstone Courses
	Appendix C. Sample Project and Solution for Designing for Learning in the Laboratory
	Appendix D. Sample Project and Solution for Designing for K–12 Settings

	Acknowledgments
	References
	Index
	About the Contributors
	About the Author

