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Emmanuel Gillain
1 Preface and introduction

Academic review by Professor Hendrik Blockeel

1.1 Fast progress in artificial intelligence (AI)

The artificial intelligence (AI) wave comes like a tsunami at a speed that our common
senses have difficulties to fully grasp and the pace of progress is accelerating. The last
decade has seen rapid progress in AI research, with advancements in machine learn-
ing, deep learning specifically, fast progress in computer vision and natural language
processing, with an increased focus on ethical considerations.

Figure 1.1, from “The 2023 AI Index Annual report,1” illustrates the global growth in
AI publications over the years. The period from 2010 to 2021 saw a more than twofold

Figure 1.1: Number of AI publications worldwide, 2010–2021. Chart from public data, available at Charts
– Google Drive, source: Center for Security and Emerging Technology, 2022 | Chart: 2023 AI Index Report.

1 Nestor Maslej, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons,
James Manyika, Helen Ngo, Juan Carlos Niebles, Vanessa Parli, Yoav Shoham, Russell Wald, Jack Clark,

Disclaimer: Due to the rapidly evolving nature of AI developments and the 5-year book writing process,
the information provided may not be the most up to date. Nevertheless, the knowledge acquired should
empower the reader with concepts that facilitate an understanding of more recent advancements.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111426143-001



2 � E. Gillain

Figure 1.2: Number of AI patent applications from 2017 to 2021, according to the public Global AI Vibrancy
tool.2

increase in the number of publications, with a noticeable acceleration over the past 4 to
5 years. “The Global AI Vibrancy Tool,” an interactive visualization tool featured on the
same AI Index website, also reports a remarkable annual compounded growth rate of
235% in the number of AI patent applications from 2017 to 2021 (Fig. 1.2).

Out of the different fields of AI, much of the attention over the last years has been fo-
cused on the field ofmachine learning (ML), its subfield zrtificial neural network with
deep learning, and natural language processing (NLP), as illustrated by the evolution
of AI research application areas in Figure 1.3.

Supported by an ever-increasing amount of data and processing power to train the
algorithms, those research efforts resulted in a series of breakthroughs that can be il-
lustrated by impressive progress made across very different fields like image classifi-
cation, object detection, or image generation in computer vision, machine translation,
the creation or recognition of speech, text understanding and writing, complex board
games, etc. In a matter of a few years, complex systems that leverage deep learning and
NLP techniques hit historic records, exceeding human-level performance3 in different
tasks:
– In the field of computer vision, for example, algorithms that could meet and some-

times exceed human-level performance on image classification tasks were already
announced in December 2015 (see, e. g., ImageNet Computer Vision Challenge, De-

and Raymond Perrault, “The AI Index 2023 Annual Report,” AI Index Steering Committee, Institute for
Human-Centered AI, Stanford University, Stanford, CA, April 2023. The “AI Index Report 2023” is an in-
dependent initiative at the Stanford Institute for Human-Centered artificial intelligence. It is led by the
AI Index Steering Committee, an interdisciplinary group of experts from across academia and industry.
2 https://aiindex.stanford.edu/vibrancy/
3 often called “human parity,” which doesn’t mean perfect.
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Figure 1.3: Source of data: OpenAlex. OECD.AI (2023), visualizations powered by JSI using data from
OpenAlex, accessed on 8/12/2023, www.oecd.ai.

cember 20154). Performance and accuracy consistently increased, surpassing 90%
by 2020–2021.5

– In the field of speech recognition, a team of researchers at Microsoft Corporation
(further referred to as Microsoft) announced in October 2016 a speech recognition
systemachieving 5.9%Word Error Rate claiming the same or fewer errors than pro-
fessional transcribers, followed less than a year later by a new industry milestone
reaching 5.1% Word Error Rate.6

– In the field of translation, Microsoft AI & Research announced in 2018 a system that
translates Chinese to English news, and performs on par with professional human
translators

– In the field of machine reading comprehension of text,7 the first models that
scored higher than humans in the SQuAD8 test were announced in January 2018 by
Microsoft and Alibaba, at least for one of the two performancemetrics. More recent
models outperform human performance on both metrics.

4 Microsoft researchers win ImageNet computer vision challenge—The AI Blog.
5 top-1 accuracy, how well the algorithm can assign the correct label to an image.
6 a commonmetric defined as the sumof the number of substitutions, insertions, and omissions, divided
by the number of words in the reference. TheMicrosoft 2017 Conversational Speech Recognition System.
7 useful to have search engines and virtual assistants to answer questions from text.
8 Stanford Question Answering Dataset, The Stanford Question Answering Dataset tests the ability of a
system to answer reading comprehension questions.
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– At the intersection of computer vision and natural language processing, Mi-
crosoft Research announced in October 20209 that it achieved human parity in
Novel Object Captioning, which not only describe novel objects in an image but also
the relation between those objects (describing an image with a caption such as “a
man with glasses sitting on a chair”).

As the field advances very quickly, more demanding benchmarks are required to mea-
sure progress. For instance, NLP has increasingly becomemultitasks, with the need to
create new standards to assess their performance on a set of tasks. The general lan-
guage understanding evaluation (GLUE) benchmark, established in 2018, evaluated
models on nine sentence understanding tasks. Within only a year, models outpaced hu-
man benchmarks. Subsequently, SuperGLUE, a more challenging benchmark, was in-
troduced in 2019. Oncemore, scores changed rapidly: by January 2021, newmodels from
Microsoft and Google exceeded human baselines for that benchmark. To advance fur-
ther research, another harder test, known as themassive multitask language under-
standing (MMLU)was presented between September 2020 and January 2021: the evalu-
ation aims tomeasure the languagemodel’smultitask accuracy over 57 tasks, frommath-
ematics and history to social sciences and law and problem-solving ability. The progress
made against this newbenchmark over the past 3 to 4 years has again been impressive as
we can see for examplewith the evolution of the generative pre-trained transformers
(GPT) family of models (Figure 1.4). This family of models has been released byOpenAI,
an artificial intelligence research and deployment company that operates as a capped-
profit entity, with the mission to ensure that artificial general intelligence benefits all of
humanity. Althought GPT models are often cited as examples, it’s important to note that
there are numerous other large language models available in the market. More about
GPT and the language models in Chapter 2 and Chapter 8.

Figure 1.4: A simplified view of the progress made by the GPT family of models against the MMLU bench-
mark, for illustrative purposes only. More about GPT and the language models in Chapter 2 and Chapter 8.

These examples are provided solely to demonstrate the rapid pace of progress, but
they no longer reflect the current state of the art. The interested reader will find an

9 Novel object captioning surpasses human performance on benchmarks – Microsoft Research.
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updated list of more than 11,000 benchmarks for a very diverse set of more than 4,500
different AI related tasks supported by a broad range of AI techniques on the website
“Browse the State-of-the-Art in Machine Learning,” developed by Papers with Code, an
open community project launched by a core team from Meta AI Research. The portal
encompasses a wide range of AI techniques and benchmarks, spanning from computer
vision, speech recognition, and wider natural language processing tasks to robotics. It
also includes other AI fields such as diagnosis, theorem proving, knowledge bases, rea-
soning, etc.

Although the definition and threshold of human parity can be debated and bench-
marks challenged, the rapid progress made by the AI techniques over the past few years
is undeniable and the number of useful industrial applications has been exploding.

Not only have accuracy and models quality quickly improved over the last few
years, but also the speed to train those has been drastically reduced, thanks to advance-
ments in hardware, algorithms, parallel computing, and network architecture: as an
example, the time to train convolutional neural networks (CNN), one of the deep learn-
ing techniques commonly used to classify images went down from 14 days in 2016 to 15
minutes at the end of 2017.

Note that the advancements in deep learning and NLP techniques, which have
recently garnered significant attention, are emphasized here as illustrations, and
shouldn’t however make the reader forget about the importance and the complemen-
tarity of other AI disciplines, such as planning, deductive reasoning, probabilistic
reasoning, decision making, etc. The diversity and richness of different AI techniques
is an important aspect that will be highlighted and covered in this book.

1.2 Convergence of factors

Over the last years, a convergence of different factors mutually reinforced their effects,
which have thereby accelerated the pace of innovation in artificial intelligence tech-
niques. The widespread access to the internet with cheaper and simpler access to hy-
perscale computing resources in the cloud, an ever-increasing volumeof accessible data,
AI-specific innovations that ease the adoption by the industry, and the dynamics of the
open-source software development model are some of the key ingredients that have to-
gether played a significant role in the rapid acceleration of the progress inAI, specifically
in machine learning, deep learning and the natural language processing techniques,
which heavily rely on deep learning.
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1.2.1 The globalization and democratization of access to
computing and AI resources

As of 2023, approximately 5 billion people, that is, 65% of the world’s population, prob-
ably more than 80% of the developed world’s population, have internet access. In to-
day’s digital age, it appears virtually unfeasible for businesses or organizations to op-
erate without internet connectivity. The internet has enabled hundreds of millions of
people, including over 25 million developers and a few million researchers, to tap into
hyperscale computing resources. In a remarkably brief period, the ability to access and
utilize cutting-edge technologies — once unimaginable just a few years ago — has be-
come simultaneously more affordable, straightforward, and rapid. Let’s take a couple of
examples to illustrate those points.

Supported by Moore’s law and hardware innovation, computing resources have
become much cheaper to access. Storage capacity of a terabyte (10^12 bytes), which was
worth $1,5b in the early 1980s, can now be rented for less than $10/month in the cloud.
In the 1980s, only a few supercomputers had access to a GigaFLOPS,10 estimated at about
$45 billion; nowadays, one of AMD’s11 latest graphics processing units can deliver a Gi-
gaFLOPS for just $0.01. . .

Naturally, this has yielded and continues to yield advantages for the field of AI: the
cost to train an image recognition system, for example, went down by around 150 times
from 2017 to 2020. For data scientists, on-demand access to storage and computing re-
sources in the cloud has not only become much cheaper but also much simpler and
faster to get. Enabling extensive parallel processing and computing capabilities in the
cloud, along with the latest data science tools and AI models, can now be accomplished
within a matter of minutes. Cloud services also often include collections of machine
learning templates contributed by the community. These templates can be then explored
and reused by data scientists, streamlining the process of building machine learning so-
lutions.

Furthermore, in an even simpler approach, software developers without any data
science knowledge can benefit today from using advanced AI algorithms through sim-
ple application program interface API12 calls: their software can initiate a request to
another software module, which then executes an AI function and returns the result
as a transaction. Thereby, access to powerful and advanced AI algorithms developed by
the giants of the AI industry enable developers to develop rich AI based applications in

10 A GigaFLOPS is a billion numerical operations (e. g. addition, multiplication). It serves as a measure
for the computing speed. See FLOPS – Wikipedia.
11 Advanced Micro Devices, Inc. (AMD) is an international American semiconductor company based in
California.
12 Application programming interface, a type of software interface that allows applications to commu-
nicate with each other through a documented interface.
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a matter of days. Big tech companies are routinely launching new APIs that developers
can easily leverage in multiple categories of applications. For example, in:
– speech services, including transforming text-to-speech and speech-to-text, auto-

mated transcripts and translation services
– image and vision services, to detect and identify objects in pictures and videos,

recognize handwriting, extract text from scanned documents or pictures
– language services, to automatically summarize content, extract intent predefined

concepts, or answer questions from text
– decision services, to detect anomalies, suggest action to take, or learn from real-

time user behavior and make recommendations
– and many more

AI based toolkits are even made accessible in the so-called “low-code, no-code” mode,
an approach in software development that allows non-tech people to develop AI based
applications, typically by connecting high-level, ready-made modules, without writing
lower-level code.

1.2.2 Dematerialization, digitization, and exponential growth of
data

Whether on the consumer side or on the business side, cheaper storage and processing
power have paved the way to the explosion of digital content creation. The proliferation
of social networks, easy ways to publish rich content online, connected objects sending
data, physical tools and objects (such as books) replaced or mimicked by digital content
or by their digital twins, etc. are all sources of exploitable data, which can then fuel the
algorithms to improve, for example, the quality of predictions, classifications, or to grow
some knowledge base when semantic meaning can be attached to the data. The volume
and diversity of publicly available data on the internet (text, images, audio and video
recordings) have boosted the take-up of deep learning and natural language process-
ing techniques, as a free lunch for training their models. It also helps grow knowledge
bases, such as for the semantic web, a vision of the World Wide Web, in which all the
information may be linked to each other by the semantic meaning of the data (i. e., by
their metadata13). This is exploited, for example, by search engines to provide answers
based on the meaning of a text, rather than on the strings of texts.

According to the document “The Digitization of the World from Edge to Core,” by
IDC, a market intelligence and consultancy firm, the amount of data that was generated,
stored, or replicated in 2018 was around 33 ZettaBytes (ZB). According to the same com-
pany, that amount almost doubled to reach 64 ZB in 2020, for about 6.7 ZB stored (IDC

13 data about data, structured data describing what the data is about.
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report, Worldwide Global DataSphere Forecast, 2021–2025). 6.7 ZB is like giving a library
of approximately 300 to 350 Netflix High-Definition quality movies on average to each
internet user on the planet.

1.2.3 AI accelerators: AI techniques that speed up the adoption by
the industry

Hardware and software innovation,14 the availability of ever-increasing computing
power and ever-increasing amount of data have supported the fundamental research
in AI. Some specific AI techniques also contribute to the acceleration of the overall
uptake by the industry. Without being exhaustive, here are a few examples.

Developing performant traditional machine learning systems require a pipeline of
tasks with multiple choices and fine-tuning decisions to achieve the most optimal re-
sult (the predictors, the model itself with configuration and hyperparameters, etc. See
Chapter 7). The search space to find the optimal parameters is sometimes complex with
multiple dimensions, so that mathematicians would classify the data scientist’s tasks
as “high-dimensional combinatorial optimization” tasks. automated machine learn-
ing (AutoML) is an idea that emerged in the 1990s and whose objective is essentially
to automate the generation and selection of the most performing algorithms and op-
timize their performance without the help of data scientists: a data scientist applying
AutoML techniques would typically only require a couple of lines of codes to test mul-
tiple models with multiple hyperparameters in parallel, and let the algorithm select the
bestmodel under some defined qualitymetrics. Thesemethods have progressively been
making their way into standard commercial products (2018–2019) as a productivity tool
that helps data scientists work faster and better. AutoML techniques clearly speed up
the model development cycle, often with more performant models.

Self-supervised learning (see Chapter 7 and Chapter 8) is another type of accelera-
tor that fastens AI application development. It is a form of learning that doesn’t require
a manually labeled dataset but generates the labels by itself as a pre-task, to train the al-
gorithm with only a few labels as a downstream task. Self-supervised learning methods
speed up the creation of models because they do not require human involvement for
labor-intensivemanual-labeling tasks (as in traditional supervised learning, for exam-
ple).

A third accelerator that emerged over time is based on the concept of transfer
learning (see Chapter 7 and Chapter 8): some of those models can be pretrained on ex-
tremely large datasets, so that developers can get accurate results even faster: instead of

14 AI algorithms are compute-intensive: progress in specific hardware chips specifically designed as
“AI accelerators” (such as GPU, Google’s TPU, ASIC, FPGA) and innovation in software development to
distribute the tasks and the processing of big data with parallel executions, both with the ultimate goal
to speed up computations.
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starting the learning process from scratch, developers can start from patterns that have
been learned from solving a related task (or evenmultiple tasks in recent developments)
and customize the “last miles” of the learning to their specific tasks. Pretrained NLP
models, for example, can be fine-tuned with just one additional learning layer to create
models for a wide range of tasks, such as question answering. With the advancement of
NLP techniques in recent years, companies can even now use state-of-the-art pretrained
models that can handle different NLP tasks without requiring any fine-tuning to a spe-
cific task or any large datasets.

Finally, machine learning requires both a lot of data and data scientist expertise. So,
another emerging AI field that can dramatically speed upmodel-building time is known
asmachine teaching. Machine teaching focuses on the efficacy of teachers, domain ex-
perts, to guide a learning algorithm. It seeks to leverage knowledge fromdomain experts
in a more efficient way than using labeled training data alone. By designing the optimal
training dataset to drive the learning algorithm to a target goal, subject matter exper-
tise is used to help machine learning models find important hints about how to find a
solution faster.

1.2.4 The dynamics of software, amplified by open-source: reuse,
iterative improvement and innovation

The AI algorithms are developed in software written by people, sometimes bymachines
when AI techniques assist the developers to write code (especially generative AI tech-
niques).15 Software is easily copied and shared across networks and a digital medium,
so fast reuse and iterative improvements are inherent characteristics of software. The
reuse and iterative improvement of software have been further accelerated by theopen-
source softwaremovement. Open-source authors make their source code available to
users that, under open-source specific licensing terms, you can view it, copy it, learn
from it, alter it, distribute it, thereby favoring sharing and an open collaboration: for
example, the code used to create Linux, probably the most widely known open-source
software, is free and available to anyone to view, edit, and contribute to it. Originating in
the mid-1980s as a free software movement, open-source was later formally established
by theOpen-Source Initiative in 1998 and then also considered as amethod. Open-source
has become a component of corporate innovation strategy. Even if the software was cre-
ated, ormodified, andmay ormay not bemade available for free,16 such trend has accel-
erated improvement and innovation through open, shared, collaborative development

15 AI techniques can also assist software developers to write code faster, understand the comment and
prepopulate software code.
16 “the term “free” in free open-source software refers to freedom, not monetary cost. Though most
free open-source software is indeed free in price, the term “free” is referring to the freedom to use the
software and source code as you please, as long as you attribute copyright to the person (or group) that
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between communities of developers across the world. Software development isn’t lim-
ited to company boundaries anymore, as it benefits from the power of collective work
at scale.

The open-source movement as a shared, open, collaborative software development
approach has favored virtuous circles of improvement and boosted algorithmic innova-
tion. “In an international software industry that is characterized by very short innovation
cycles, open source projects have proven to be important incubators for new product lines
and branch-defining infrastructures” (Open-Source Projects as Incubators of Innovation:
from Niche Phenomenon to Integral Part of the Software Industry, Jan-Felix Schrape,
2017).

The field of AI has made no exception to this. The open-source community has been
a prolific source of innovation and progress in artificial intelligence. Whether originally
developed by the open-source community (like the Apache Software foundation17), re-
leased by universities to the community or released by companies to the community,
the source codes of many well-known AI software used in applications today have been
made available for free in web-based repositories, such as GitHub,18 commonly used to
host open-source software projects supported by a community of more than 100million
developers. All types of AI techniques covered in this book have somewhere an open-
source version. All at their disposal! Some industry examples in this book also leverage
open-source codes and modules.

Beyond reusable libraries, databases of pretrainedmodels also exist as open-source,
allowing to easily discover, experiment, and contribute to newer, state-of-the-artmodels.
These software libraries and pretrainedmodels that are “ready to use” help speed up the
progress of AI by reducing the time, the resources, and sometimes the expertise needed
to create models from the ground up.

1.3 Opportunities and challenges for the industry

AI techniques are already widespread. They already power applications and use cases
in the consumer space, in the enterprise market, and in the public sector around the
world. AI technologies are already embedded in our daily life, in one or another form.
When using a navigation system to find the fastest path to reach a destination, activating

created the software and the software stays free and open source when it is distributed to others.” The
value of free open-source software and collaborative communities | Opensource.com.
17 The Apache Software foundation is an all-volunteer community, established in 1999 to provide soft-
ware for the public good.
18 GitHub is a web-based hosting and version control service for software development, based on the
free open-source Git software, a distributed version control version for tracking changes in software
development.
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a spam filter, using a voice-enabled personal assistant, selecting music on Spotify or a
movie on Netflix, searching for content on the web, getting personalized ads, playing
a game against a machine, interacting online through chatbots, and using automated
translation services, you are interacting with an application that uses some of the AI
techniques.

While the technology companies, the telecom industry, and the financial services
industry seem to lead AI adoption, AI applications already touch the business across
all the industries and functions: whether to boost companies’ productivity through the
automation of their operations, to improve their decision making, to anticipate future
outcomes with predictions, to better manage the risks and the cyber security threats, to
get better customer’s insights for better products or customer’s experiences, or to enable
new products and services. To name a very few examples only:
– telecom companies improve their customer support operation, reduce customers’

churn, improve the reliability and security of their network with AI techniques
– retailers rely onAI-powered robots to run theirwarehouses, automatically reorder

stock, optimize their supply chain and inventories, or improve customers’ retention
using AI

– utility companies use AI to forecast energy consumption requirements, better bal-
ance the grid, or make more efficient use of renewable energy technologies

– manufacturers improve yield, throughput, or apply predictive maintenance to
avoid machine and process downtimes or to extend the lifetime of their assets
beyond the planned maintenance schedules

– fraud detection, risk analysis, and management are typical use cases in the finan-
cial industry

– lawyers and consultants in professional services companies are assisted by appli-
cations that automatically extract meaningful insights from documents, help sum-
marize text or answer questions in natural language

– news publishers use AI to write simple stories, like financial summaries and sports
recaps, without any human intervention

– AI powered computers assist doctors in their diagnosis, synthesize medical knowl-
edge at scale, or scan and analyze medical images better than humans can

– AI algorithms aid scientists in the process of discovering new efficient drugs, and
faster

– . . .

It even impacts more traditional sectors, such as agriculture, where crops, for exam-
ple, are forecasted. AI applications also support generic, nonsector specific, corporate
functions:
– sales representatives can receive assistance in their forecasting efforts, prioritiz-

ing their sales leads, and determining the next steps based on suggested actions
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– Human Resources departments can benefit from AI in their recruitment process
through automated resume screening, or in identifying potential churn in their
company

– service and call centers can benefit from online virtual assistants, or chatbots, to
handle the first customers interactions and their agents can take advantage of AI to
automatically summarize and resolve some customers queries

– AI techniques can be utilized by IT departments to automate a variety of IT pro-
cesses

– knowledge workers can benefit from Autonomous and Robotic Process Automa-
tion (RPA), a form of business process automation, that brings AI into the automa-
tion of routine tasks across different company processes

– last but not least, AI techniques and automation are also widely used to detect and
respond to the increasing number of cyber security threats

This short enumeration is far from exhaustive. Twenty-two case studies in this book
illustrate how AI techniques support applications in different industry sectors, from the
banking and insurance sector to manufacturing and agriculture.

— Before continuing with some statistics about the take-up of AI in the corporate world, we need
to warn the reader: AI isn’t covered only by one family of techniques, it is rather a broad set of
different categories of techniques depending on the tasks to address. In recent years, the fields of
machine learning, deep learning, and natural language processing have garnered most attention
and investment. So, the term “AI” is oftenmisused by overgeneralizing these specific AI fields to the
much broader domain of AI. —

Those applications reflect how important AI techniques have become for industry. The
results of McKinsey Global Survey on artificial intelligence released in November 2020
revealed that about 50% of the 2,395 participants19 confirmed their organizations had
adopted AI20 in at least one function (“The state of AI in 2020,” McKinsey), and although
a big part still struggle to scale it across their business, nearly 85% of about 1,500 C-suite
executives interviewed by Accenture, a multinational professional services company
specialized in consulting and IT services, believe that they must leverage AI to achieve
their growth objectives (“AI built to scale,” Accenture, November 2019). For those compa-
nies that already adoptedAI technologies, Deloitte, amultinational professional services
network and accounting organization, concludes in a survey of more than 2,700 IT and
business executives that the competitive differentiation brought by AI might even al-
ready soon diminish: “Early-mover advantage may fade soon. As adoption becomes ubiq-
uitous, AI-powered organizationsmay have towork harder tomaintain an edge over their
industry peers. An indicator of a leveling of the playing field: Most adopters expect that

19 a random sampling across a broad range of regions, industries, company size.
20 with the same precaution about the meaning of the term “AI”.
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AI will soon be integrated into more and more widely available applications.” (Thriving
in the era of pervasive AI, Deloitte’s State of AI in the Enterprise, 3rd Edition). This be-
ing said, business investments in AI, machine learning and NLP specifically, keep on
increasing and fueling new innovation. According to Statista, a provider of market and
consumer data, the total corporate investment in AI has grown over six times since 2016
to reach almost $92 billion in 2022.21

AI techniques also help to address societal challenges. It helps with medical di-
agnosis, aiding doctors with examining medical images or with recommending treat-
ments, or in speeding up the drug creation process. AI techniques can also contribute to
a more sustainable future by tackling climate change challenges: in climate predictions,
in accelerating the discovery of new materials, in energy production and smart grids,
in the industry and transportation system, and many more. The collaborative research
document “Tackling Climate Change withMachine Learning,” written by prominent sci-
entists and engineers from 16 different organizations and universities, presents 13 solu-
tion domains wheremachine learning could bring a positive contribution to the climate
challenges.

Therefore, artificial intelligence is increasingly essential for companies to survive,
and the effects of those technologies are transformative for both the economy and the
society.

At the same time, such rapid and widespread adoption of AI based applications
also poses challenges for the labor market and brings ethical risks for the safety of
consumers and the rights of citizens.

The impact of technology on jobs isn’t new and has been constant, especially since
the industrial revolution, going from hand production methods to machines. What is,
however, unique is the accelerated speed of change, fueled by the convergence of mul-
tiple factors. Probably less visible than the automation of the manual work replaced
by physical robots, the automation of knowledge work by AI systems in information
intensive processes will also impact skilled and educated people. At the same time, tech-
nology and innovation are essential to improving gross domestic product (GDP) and
productivity growth, which our economy is looking for. Research released by Pricewa-
terhouseCoopers22 in 2017 (“Sizing the prize: What’s the real value of AI for your busi-
ness and how can you capitalize”) suggested that AI could boost global GDP by as much
as 14% in 2030 with an uplift initially coming from improved productivity factors, over-
taken over time by consumption-side effects. Instead of just eliminating jobs, economic
growth andwealthwill also generate a need for new skills, new professions, supplemen-
tary and enhanced jobs. In its document “The Future of Jobs 2018,” the World Economic
Forum even indicated a positive impact of AI technologies in favor of net jobs creation

21 Total global AI investment 2015–2022 | Statista.
22 also known as PwC. A global network of firms that provides professional services such as audit, tax,
and consulting.
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and reports “Our analysis finds that increased demand for new roles will offset the de-
creasing demand for others. However, these net gains are not a foregone conclusion. They
entail difficult transitions for millions of workers and the need for proactive investment in
developing a new surge of agile learners and skilled talent globally.′′While AI will cause
considerable upheaval in the labor market, the more recent World Economic Forum
report released in April 2023 still predicts a net positive overall. While forecasts remain
uncertain, one can be confident to state that AI will increase productivity and economic
growth while some people will need to switch jobs or upgrade skills, a transition that
must be accompanied.

AI also presents ethical risks. Besides the intentional harmful uses that could im-
pact people’s privacy or safety, or that could influence public opinion by spreading false
information on socialmedia, AI systems also have their inherent limitations. As AI appli-
cations increasingly help to make decisions that affect people, ethical issues arise from
those imperfections: for example, how someone is hired, whether someone receives a
bank loan, or how people are treated. AI systems must be aligned with fairness, trans-
parency, justice goals to avoid the negative outcomes of decisions taken or suggested
by AI systems. Consensus emerges that AI systems should respect
– privacy,
– be understandable by humans,
– fair and inclusive to treat all people and groups the same way,
– accountable to provide people that have been harmed with a remedy,
– perform reliably,
– and be safe for humans.

The European Commission released inApril 2021 a proposal for a regulatory framework,
called the “Artificial Intelligence Act,” to ensure that AI systems are used in ways that
respect fundamental rights and European values including human oversight, safety, pri-
vacy, transparency, nondiscrimination, and social and environmental well-being. At this
time of writing, a draft text of the legislation serves as the negotiating position for talks
between themember states and the European Parliament (see EU AI Act: first regulation
on artificial intelligence).

In conclusion, those technologies present both fantastic opportunities andmajor so-
cioeconomic and societal risks that require strong attention and action from leaders and
governments to ensure both that the wealth created doesn’t worsen a socioeconomic
divide and that AI based systems remain human-centered and designed in a way that
guarantees the ethical values that we want for our society.

In a world that’s changing so quickly with many opportunities and risks, educa-
tion is key to helping people and society to adapt: enlighten the leaders so that they
can take informed decisions, educate law makers so that they devise the appropriate
legal framework, assist individuals in adapting to changes, capitalizing on opportuni-
ties, and participating in democratic dialogues necessary for fair and ethical AI. It’s
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widely recognized that education and democracy are closely linked, with studies indi-
cating that nations with higher levels of education tend to uphold democracy more ef-
fectively (Why does democracy need education? National Bureau of Economic Research,”
https://www.nber.org/papers/w12128.pdf).

Unfortunately, skills and knowledge in AI are a shortage. O’Reilly, a global company
that provides learning resources, found out in a survey of 3,570 business leaders that the
first and most significant barrier to AI adoption is the lack of skilled people and the
difficulty of hiring knowledgeable people in that field; a scarcity that has been reported
for several years (O’Reilly, “AI Adoption in the Enterprise 2021”).

1.4 Purpose and target audience of the book:
enlighten the business practitioners

For about 70 years, a lot has been said and written about artificial intelligence: from
academic books and research papers to business literature and computer science pop-
ularization. At the same time, the authors of this book also think that there is room for
more efforts to connect the academic world and the corporate world, which still suffers
from a lack of understanding AI: readings for business and political leaders focus on the
economic benefits or social impacts but tend to oversimplify the concepts, sometimes to
a point that leads to misconceptions and wrong conclusions; education materials for
technical people in the field are often application or vendor-specific but don’t neces-
sarily cover the fundamentals. Training for software developers emphasizes practical
hands-onmethods but often neglects to explain the underlying principles of the AI tools
they use.

The authors of this book care about clarifying some of the basic AI concepts and how
or when they can be applied: the impressive results of certain AI applications shouldn’t
mislead leaders, technicians, or developers about the scope and limitations of the tech-
niques. Business and political leaders could benefit from understanding the core issues
at stake beyond themere short-term economic impact: a better understanding of key no-
tions should help them to not only better understand the opportunities but also to gain
more strategic insights andmitigate the risks.Moreover, if the outcomes are incorrect, or
if the advantages come with a loss of a bare comprehension of how they are achieved, it
seems worthwhile revisiting some essential concepts. Developers that leverage AI more
andmore in their applications also need to understand some of those fundamentals and
limitations behind the APIs that they use.

Acquiring a correct, even high-level understanding of those AI techniques can how-
ever represent a significant effort and time investment. Reducing that effort for the
reader is the challenge that the authors of this book have decided to address. In an at-
tempt to democratize the understanding of different AI fields and techniques, this book
aims at giving a rather holistic, but nonexhaustive, view of AI while finding a digestible
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middle ground between the academic theory and the oversimplified explanations that
we may find outside of the academic world. Built as a collaborative effort involving a
mix of professors teaching AI, researchers and business practitioners, this book de-
mystifies what the core pillars of AI are made of by explaining their fundamental con-
cepts and the core principles behind the mathematics and the algorithms that support
those. Its originality lies in three key aspects:
– a balance between the complexity of the academic theory and anoversimplification,
– its approach to explain the concepts by answering common sense questions,
– the illustration of the theory by 22 real world industry examples.

With a didactic purpose in mind, the authors have strived to explain those technologies
in simple terms, limiting when possible some mathematical and algorithmic develop-
ments,23 yet preserving the scientific rigor to have a solid understanding of the funda-
mental concepts.

Readable as awhole or by chapters, this book is intended for business practition-
ers, leaders, or developers, who have a Bachelor or Master’s degree outside of the field
of computer science or AI but still want to understand the fundamental concepts of AI,
their applications and limitations, in a relatively limited number of pages. Such reading
can also be useful as a general introduction for students taking anMBA class, or similar.

The reader will find here a solid, yet digestible, overview of the different AI tech-
niques supporting systems that search and plan, reason with facts, with or without
some uncertainties, learn and adapt, “understand” and interact. All these terms are
demystified in this book. It covers the two dominant and traditional paradigms in AI,
which is also a coarse way to bring a holistic view of the domain:
1. the statistical AI, or data-driven AI systems, that learn and perform by ingesting

millions of data points into learning algorithms, and
2. the “consciously modelled” AI systems, known as symbolic AI systems, that explic-

itly represent the world by means of symbols and are more deliberate in their ac-
tions.

Rather than opposing those two paradigms, the book also shows how those different
fields can complement each other and can be combined for even richer applications.

Chapter 2 serves as an introduction to the rest of the book: it gives a first high-level
overview of the different concepts, their applications, limitations, and complementari-
ties. Chapters 3 to 8 form the core of the book as they address the key pillars that make
up the backbone of most AI based applications. Those chapters are all structured in a
pragmatic way that answers common sense questions:
1. Why is this field of AI important within the broader AI domain?
2. What category of problems does this field solve?

23 some sections are shaded for advanced readers that want to go deeper in their understanding.
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3. How are these problems solved?
4. What are the limitations of this field of AI?

Each of the chapters also provides concrete and real-world examples coming from the
industry. The theory supported by industry examples should give a clear understanding
of the concepts, their applicability, limitations, and how theyfit together. As itwas briefly
introduced, AI technologies also raise important ethical challenges. Chapter 9 explores
some of the ethical dangers and techniques that can mitigate them. Chapter 10 shows
examples of applications that combine different AI techniques to illustrate their com-
plementarity.

Bibliography
AI built to scale, Accenture, November 2019, https://www.accenture.com/_acnmedia/Thought-Leadership-

Assets/PDF-2/Accenture-Built-to-Scale-PDF-Report.pdf#zoom=50.
Apache Software foundation, http://www.apache.org/.
Browse the State-of-the-Art in Machine Learning, https://paperswithcode.com/sota.
Charts – Google Drive, https://drive.google.com/drive/folders/1sU7o-uPs2k5nBCNsU5sDZq0YmQyAOrG5.
EU AI Act: first regulation on artificial intelligence, https://www.europarl.europa.eu/news/en/headlines/

society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence.
FLOPS – Wikipedia, https://en.wikipedia.org/wiki/FLOPS#Hardware_costs.
IDC report, Worldwide Global DataSphere Forecast, 2021–2025, https://www.businesswire.com/news/

home/20210324005175/en/Data-Creation-and-Replication-Will-Grow-at-a-Faster-Rate-Than-Installed-
Storage-Capacity-According-to-the-IDC-Global-DataSphere-and-StorageSphere-Forecasts.

Microsoft researchers win ImageNet computer vision challenge—The AI Blog, https://blogs.microsoft.com/
ai/microsoft-researchers-win-imagenet-computer-vision-challenge/.

Novel object captioning surpasses human performance on benchmarks – Microsoft Research, https:
//www.microsoft.com/en-us/research/blog/novel-object-captioning-surpasses-human-performance-
on-benchmarks/.

O’Reilly, AI Adoption in the Enterprise 2021, https://www.oreilly.com/radar/ai-adoption-in-the-enterprise-
2021/.

Schrape Jan-Felix, 2017, Open Source Projects as Incubators of Innovation: from Niche Phenomenon to
Integral Part of the Software Industry, https://www.sowi.uni-stuttgart.de/dokumente/forschung/soi/
soi_2017_3_Schrape.Open.Source.Projects.Incubators.Innovation.pdf.

Sizing the prize: What’s the real value of AI for your business and how can you capitalize, https://www.pwc.
com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report.pdf.

Statista, https://www.statista.com/.
Tackling Climate Change with Machine Learning, https://arxiv.org/abs/1906.05433v1.
The Digitization of the World from Edge to Core, https://www.seagate.com/files/www-content/our-

story/trends/files/idc-seagate-dataage-whitepaper.pdf.
The Future of Jobs, 2018, http://reports.weforum.org/future-of-jobs-2018/key-findings/.
The Microsoft 2017 Conversational Speech Recognition System, https://arxiv.org/abs/1708.06073.
The Stanford Question Answering Dataset, https://rajpurkar.github.io/SQuAD-explorer/.
The state of AI in 2020, McKinsey, https://www.mckinsey.com/business-functions/mckinsey-analytics/our-

insights/global-survey-the-state-of-ai-in-2020.



18 � E. Gillain

The value of free open-source software and collaborative communities | Opensource.com, https:
//opensource.com/education/12/7/clearing-open-source-misconceptions.

Thriving in the era of pervasive AI, Deloitte’s State of AI in the Enterprise, 3rd Edition, https://www2.
deloitte.com/us/en/insights/focus/cognitive-technologies/state-of-ai-and-intelligent-automation-
in-business-survey.html.

Total global AI investment 2015–2022 | Statista, https://www.statista.com/statistics/941137/ai-investment-
and-funding-worldwide/.

Why does democracy need education? National Bureau of Economic Research, https://www.nber.org/
papers/w12128.pdf.

OECD.AI, 2023, https://oecd.ai/en/data?selectedArea=ai-research&selectedVisualization=trends-in-ai-
application-areas-by-country.

Microsoft AI & Research, 2018, https://www.microsoft.com/en-us/research/uploads/prod/2018/03/final-
achieving-human.pdf.



Emmanuel Gillain
2 A holistic view of AI techniques, their
limitations and complementarities

Academic review by Professor Hendrik Blockeel

The purpose of this chapter is to introduce the rest of the book by providing a simplified
summary of the various AI concepts that are covered in this book, as well as their ap-
plications, limitations and synergies. It gives a general idea of some of the core concepts
behind the AI methods that will be discussedmore in the following chapters. As already
noted in the introduction, this book is not meant to be exhaustive, nor to include the
most recent and cutting-edge AI techniques, which evolve extremely fast since the be-
ginning of this book writing process. The concepts covered in this book should however
enable the reader to grasp some of the fundamentals of the newer techniques as well.

2.1 What is artificial intelligence (AI)?

AI is not one universal technology, it rather covers several categories of different tech-
niques, that alone or combined together, add some form of intelligence to applications.

Many formal and informal definitions of intelligencehave been proposed but there
is no scientific consensus around any single definition. Rather than defining intelligence
Alan Turing himself readdressed the question by a behavior that can fool human ob-
servers, the famousTuring testhe proposed in 1950 (test of amachine’s ability to exhibit
a behavior that human benchmark can’t distinguish). More recently, Legg and Hutter
noted in a 2007 survey of intelligence definitions and evaluation methods: “to the best
of our knowledge, no general survey of tests and definitions has been published” and the
authors attempted to summarize no fewer than 70 definitions from the literature into
a single statement: “Intelligence measures an agent’s ability to achieve goals in a wide
range of environments. (Shane Legg and Marcus Hutter, 2007).

The AI researcher François Chollet presents two different and contrasting views of
intelligence in a research paper titled “On the Measure of Intelligence” (Chollet, 2019).
The first one defines intelligence as a collection of task-specific skills, benchmarked
by task specific performance and somehow similar to Minsky’s1 definition of AI (1968):
“AI is the science of making machines capable of performing tasks that would require

1 Marvin Lee Minsky was an American cognitive and computer scientist, largely concerned with re-
search of AI, cofounder of the Massachusetts Institute of Technology’s AI laboratory, author of several AI
books. He received multiple scientific awards, including the 1969 Turing Award, the greatest distinction
in computer science.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111426143-002
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intelligence if done by humans.” The other vision considers intelligence as a general
learning ability, an ability to acquire new skills through learning and handle situations
(or tasks) that differ from previously encountered situations. Here again, generalization
must be defined, something we’ll cover later in this book. Chollet continues by propos-
ing an interesting approach describing intelligence as skill-acquisition efficiency, with
concepts that go beyond the scope of this book.

Themajor successes of AI have been so far in building special-purpose systems capa-
ble of handling well-described tasks, sometimes at above human-level performance:
AI systems specialized in particular tasks in specific contexts, are classified as narrow
AI (a term coined by Ray Kurzweil in 2005), as opposed to systems capable of broad
generalization, adaptable to new tasks and environments without human intervention,
broadly referred to as strong AI or artificial general intelligence (AGI), for which no
single definition exists, despite a broad agreement on the general intuitive nature of
AGI.

One approach to understanding general intelligence proposed is to look at the var-
ious competencies and capabilities that humans display: perception and actuation,
memory, learning, reasoning, planning, attention, motivation, emotion, modeling, so-
cial interaction, communication, quantitative skills, building and creation skills (Ben
Goertzel, “Artificial General Intelligence: Concept, State of the Art, and Future Prospects,”
January 2014).

There seems to be a consensus thatwe’re still far from reaching AGI. For example, in
the survey titled “When Will AI Exceed Human Performance? Evidence from AI Experts”
(Katja Grace et al., 2018), over 350 AI researchers across the world concur that at some
point within the next 100 years, “unaidedmachines will accomplish every task better and
more cheaply than human workers,” which again takes a task-oriented criteria. Some of
them think that such an eventmay occurwithin 10 years, others a 100, with an aggregate
forecast of 50% chance that it happens around 2060.

At the same time, the current AI techniques of narrowAI systemswill probably pave
the way, in some shape or format, to reach such AGI. Therefore, a pragmatic way to look
at AI is to consider the different categories of problems and tasks currently solved by
the different techniques and the environment in which they operate (static or dynamic,
deterministic, or stochastic). For our purpose, we’ll therefore take a pragmatic approach
to have a holistic, but not exhaustive, look at a series of AI techniques that can solve
problems to assist human in decision-making, by
– searching and planning (Chapter 3),
– reasoning with symbolic, logic-based, AI in deterministic settings (Chapter 4

and Chapter 5)
– reasoning with uncertainties in nondeterministic environments (Chapter 6)
– learning from data or from rewards in interacting with the environment

(Chapter 7)



2 A holistic view of AI techniques, their limitations and complementarities � 21

Chapter 8 covers how natural language processing techniques help humans interact
with the machines, that is, how human language can be either analyzed or generated
by a machine. All those terms will be demystified by giving them a more precise mean-
ing over the course of the book. Discussing some limitations of the different techniques
will also give the reader a better sense of where the apparent magic stops and how the
different techniques can potentially complement each other.

2.2 Decision by search and how an AI agent can
construct a plan of actions

2.2.1 Overview and key concepts

The main purpose of search related techniques is to help take a decision to reach a
specific goal; search agents built for that purpose are classified as goal-based agents.
The decision must be understood here as: “what are the series of actions to take in or-
der to reach a particular goal state?” The environment is modeled by so-called states
and by legal actions to transition from one state to another one. In such a model where
the set of states are discrete,2 the environment can be represented as graph of a state
space: nodes represent all possible states, edges representing a transition from a state
to another, sometimes associated with specific weight or cost. For example, if we want
to know how to reach a particular destination as quickly as possible, a position can be
modeled as a state, the possible actions as “left, right, up, down,” each of which action
lands in another specific position. For this paragraph, we’ll assume that the environ-
ment is observable (i. e., can be modeled), known (outcome of actions are known) and
deterministic (transitions are certain). Some of those assumptions will be relaxed later.

The algorithms will then systematically explore the state space by progressively
building a search tree on the state space graph. Once the goal state is found, the algo-
rithm then simply follows the optimal path found. In cases where reaching an end-goal
state with a minimum cost is all what matters, and not the path to reach it, we then talk
about local search algorithms such as hill climbing or genetic algorithms, which can
typically address optimization problems.

2.2.2 Industry applications and examples in the book

Applications of search-related techniques are typically found in path-finding related
problems, navigation system like the GPS, to help robots or vehicles find their waywhile

2 Discrete as opposed to continuous. As a reminder, continuous variables have real number value and
so aren’t limited in the number of values they can take. Discrete variables have a finite domain.
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avoiding obstacles orminimizing costs (time, distance, fuel, etc.), in road-building appli-
cations, or in other optimization and planning applications. Search-related techniques
will be illustrated in Chapter 3 withMicrosoft Bing Maps, which offers a set of routing
tools to get directions and route information. Search techniques are also a key pillar to
support other AI techniques: in propositional logic, for example, logic inference can
leverage search techniques to conclude whether a logical statement is true in at least
1 model,3 by systematically searching in a space of Boolean values that represent the
knowledge of the environment, to search for finding a proof, or also as a way to solve
more complex planning problems. See the section about SAT solvers in Chapter 3.

2.2.3 Moving to constraint search

Classical search techniques build a planning agent: a known environment is modeled,
and the agent performs computations to anticipate possiblemoves until it finds the goal.
So, the agent thinks ahead in a known environment that can be modeled, and whose
transitions are deterministic. In its simplest form of modeling, search techniques solve
problems by using atomic representations of the states: atomic in the sense that they are
indivisible representationswith no data structure associated to it. Such representations,
however, are domain specific (including its heuristic to guide the algorithm to find the
goal faster) and raises the challenges of a possible explosion of the number of possible
states, which makes some problems too complex or even intractable.

Rather than using atomic representation for the states as in classical search, we can,
and sometimes need to, have richer models, to represent the states with a set of vari-
ables, each with a set of constraints over those variables. Such richer representation,
called a factored representation, will lead the reader to another section of Chapter 3
to solve constraint satisfaction problems (CSP). CSP techniques will associate a set of
variables to each state, variables bound and linked by constraints: each state is defined
by a possible assignment of values to variables (e. g., unary constraints to restrict the
value of a single variable, binary constraints to restrict the combinations of 2 variables,
etc.) and by explicit rules that define the legal combinations of the variable values. By
identifying variable-value combinations that violate the constraints, large portions of
the search space can then be eliminated, reducing the search space: such logic checks,
based on constraints, are then combined with the classical search approach described
in the previous section. CSP solving systems can be more efficient than pure state space
searchers as they take advantage of the structure of states. In a stockmanagement appli-
cation, for example, a company could have the following constraints: a set of 10 possible
products, available in 5 possible colors, with binary constraints that rule which color
can be associated to which product, and ternary constraints that rule in which of their

3 A model in propositional logic fixes the truth value, true or false (Boolean value), to every symbol.
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5 warehouses a specific product with a specific color can be found, like “only blue or red
(color) socks (product) are available in Brussels and Londonwarehouses.” Constraint sat-
isfaction propagation algorithms will then check the consistency of the variable values
with the constraints, thereby reducing thenumber of possible values, and combine those
constraint satisfaction checks with the classical search techniques (i. e., assignment of a
value to the variables to search for the goal state) to find maybe the optimal way to de-
liver red socks from a warehouse to a retailer. Another example of constraints: if X can
have the values 1, 2, 3, andY , the values 1, 2, 3, 4, an additional binary constraint ofY = X2

between X and Y would already limit the possible values of the search problem to the
values X = 1, 2 and Y = 1, 4. As the reader can see, applying the constraints and propa-
gating the consequences of those constraints checks reduces the overall search space to
find a solution.

When the goal adds the objective to maximize or minimize an objective function,
like a cost, it is referred as a constraint optimization problem. In cases where find-
ing rapidly a good solution is more important than finding the best solution, then local
search algorithms such as hill climbing or genetic algorithms, etc. can be applied. Chap-
ter 3 will go through the details and illustrate some of those techniques.

2.2.4 Constraint satisfaction propagation: applications and
examples in the book

Constraint satisfaction propagation algorithms can enable helpful applications, for ex-
ample, in so-called “configure, price, quote” (CPQ) systems to help sellers quote com-
plex and configurable products that follow production rules. Maersk Container In-
dustry A/S, for example, has built a constraint-based product configurator to help its
sales team generate valid customer and production-ready orders (Chapter 3). Besides
the configuration of manufactured products, those techniques are also commonly used
in scheduling problems, like job shop scheduling in manufacturing, where different
jobs on the shop floor have to go through several manufacturing operations (drilling,
painting, polishing, etc.) provided by a set of resources (machines, experts, tools, etc.).

2.2.5 Limitations of search-based techniques

As we have seen, search-based techniques rely on a simple representation of the world,
but some planning problemsmight need amore complex way of representing the world
to account for the consequences of the agent’s actions. More elaborate environments
might involve complex constraints with many states and variables that basic model-
based representations can’t handle. Factored representation with a set of values for
attributes, such as CSP discussed above, improve the modeling but even more sophisti-
cated relational representations of states and actionsmight be needed, using declarative
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languages4 such as first-order logic briefly introduced later (Chapter 4), or even richer
planning forms based on first-order logic.5 They express higher level concepts and re-
lations such as: “At(container, BrusselsAirport) ∧ At(Truck, Antwerpen),” could express
that a container is at Brussels Airport, while a truck is in Antwerpen. The planning al-
gorithms will then either search for a solution or prove the existence of a solution using
logic reasoning techniques, typically using techniques described in Chapter 4. Robots,
for example, also need task planning algorithms to sequence their actions toward ac-
complishing specific goals.

Besides dealing with the difficulties of a huge number of states and working at a
higher level of abstraction, logic methods such as first-order logic, or variations, also
have the benefit of having general purpose solvers that can use common solvingmeth-
ods to different particular domains. As we saw for the decision and planning problems
above, richer expressiveness helps reduce the search space to reason or infer overmore
abstract concepts and reason in more general terms. That’s a smooth transition to the
next paragraph about symbolic AI.

2.3 Represent knowledge and reason with
symbolic AI

Artificial intelligence has long been divided into two main paradigms: symbolic AI, or
AI based on logic, and the data driven6 AI, which is a coarse way to look at the AI field
as a whole.

Despite some coexistence with research works and applications of neural networks
(the first real-life application of neural networks dates from the early 1960s), symbolic
AI has been the initial and most dominant paradigm of AI research for about 40 years.
It defines structured and symbolic representations of the problem and its domain:
domain experts model the world and the problem to solve with an explicit represen-
tation of a specific knowledge by means of facts and rules through symbols, symbols
of different levels of expressiveness, according to the knowledge representation lan-
guage chosen. Those symbols of facts and rules define a syntax to which domain an-
alysts map some semantics to represent things, concepts, states, actions in the world.

4 Programming paradigm that expresses the “what,” the logic of a computation (e. g., with Microsoft
Excel® formulas), rather than the “how” like in imperative programming languages.
5 Planning Domain Definition Language is a popular language used in the planning community, and
Answer Set Programming a general knowledge representation and reasoning language used in a variety
of task planning problems.
6 Sometimes called statistical AI, the term data-driven AI is used here to ensure the reader doesn’t con-
fuse with probabilistic reasoning techniques, which not only applies statistics techniques and can learn
from data but also associates some symbolic representation and models to solve problems.
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Logic inference is then done by applying the rules and logical formulas to those sym-
bols, at the syntax level. Object-oriented programming (OOP, such as C++, C#, Java),
for example, can be seen as an example to create symbolic AI programs: OOP languages
define classes, specify their properties, and organize them in hierarchies. Instances of
these classes create objects, on which you can perform actions, rule-based instructions,
queries that might read and change the properties of objects.

2.3.1 Overview and key concepts

One of the simplest forms of knowledge representation and of logic reasoning uses
what is called propositional logic: knowledge composed of facts, axioms, and sen-
tences, encoded by a combination of simple symbols and logical operators (such as and,
or, not, equivalent, etc.), attached to Boolean values, true or false. The objective is then
for logical systems to determine what logically works, reasons about the truth, or false-
hood of logical expressions: either infer new logical sentences or determine whether a
new logical sentence is valid or satisfiable7 with the knowledge base. As explained in
Chapter 3, the same product configuration problem of Maersk Container Industries A/S
can also be solved by such techniques. More about propositional logic and this example
in the section about Boolean satisfiability problems in Chapter 3.

Although useful to solve multiple problems, propositional logic can’t represent the
knowledge of complex worlds. It lacks the expressive power to represent an environ-
ment in a concise way: it only states the facts; it can’t express relations among objects,
and it is instance-specific. Therefore, more expressive knowledge representation lan-
guages, such as first-order logic, exist. First-order logic offers a powerful formalism to
make more general statements about an environment: it assumes a world with objects,
relations8 among those objects, and functions on those objects, for example, the objects
“employee,” “skill,” “task” with a binary relation “HasSkill(p,s)” to relate an employee
and a skill, with a ternary relation “Assignment(e,s,t)” to assign an employee to a shift
for a task and a function “Manager(e)” tomap an employee to his/hermanager. The facts
or statements can be true, false, or unknown. First-order logic can also express concepts
like “some” or general rules like “all” to express the properties of entire collections of
objects, instead of enumerating them like in propositional logic. Such knowledge rep-
resentation language facilitates a more concise and richer representation of the world.
It not only allows queries to a knowledge base, but also allows to perform automated
logic reasoning to infer new facts and prove theorems. See Chapter 4.

First-order logic can be extended to express some constraints with more flexibility,
for example, to add numerical constraints such as “there should at least 2 people to be

7 Amodel in propositional logic fixes the truth value, true or false, to every symbol. Valid means true in
all possible models; satisfiable means true in some models.
8 A set of t-uples that are related. Relationships might be unary, binary, ternary, n-ary.
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married.” Amajor limitation however of first-order logic though is that deductive infer-
ence is undecidable.9 Some logical queries might not be answered in a finite number
of steps. Other formal knowledge representation languages, such as description logics
have been developed as decidable fragments or subsets of first-order logic. Those lan-
guages apply when the only objective is to enable the deduction of implicit knowledge
by inference from a knowledge base. As explained in Chapter 5, many description logics
are more expressive than propositional logic but less expressive than first-order logic.
In contrast to the latter, the core reasoning problems for description logics aremostly de-
cidable, and efficient decision procedures exist. Each family of description logic features
a different balance between expressive power and reasoning complexity, defined by
allowing or disallowing different logical operators in their language.

Often associated with first-order logic and description logics is the concept of ontol-
ogy. An ontology is a formal specification, a convention to define an explicit specification
of concepts, a declarative representation of what terms mean within a specific scope,
with axioms and relations among terms, like binary predicates in first-order logic. On-
tologies have strong ties with the semantic web initiatives, which illustrate quite well its
practical applications. The semantic web is a vision of the world wide web, in which all
informationmay be linked to each other. “The term “semantic web” refers toW3C’s vision
of theweb of linked data. Semanticweb technologies enable people to create data stores on
the web, build vocabularies, andwrite rules for handling data” (Semantic web,W3.org). It
is a vision of the internet being a single informationmodel, instead of a vastmeaningless
collection of text embedded in web pages: text strings are related tometa-data, enabling
the attachment of meaning to the strings; so rather than searching via a match on the
text strings “nike,” we can search on the associated meaning “shoes brand”=”nike.” This
paves the way to the building of a semantic layer on the web. Semantic web technology
is used by organizations in a wide variety of industries, essentially to harmonize and
make the best possible use of their multiple and vast data stores. Ontologies not only
bring a common framework to share and reuse data across different environments but
also enable the application of logic reasoning techniques to answer complex questions
about the domain. Indeed, when associated to description logics, for example, ontolo-
gies provide the semantics to enable systems to infer additional information based on
the data explicitly provided. A simple example of how ontologies and logic can deduct
new facts can be found onWikipedia, at OWL: “an ontology describing families might in-
clude axioms stating that a “hasMother” property is only present between two individuals
when “hasParent” is also present, and individuals of class “HasTypeO_Blood” are never

9 A logical system is decidable if there is an effective method for determining whether arbitrary formu-
las are theorems, i. e., logically valid formulas, of the logical system. Effective means here that it consists
of a finite number of instructions, finishing after a finite number of steps, producing a correct answer.
Propositional logic is decidable, because a truth-table method can be used to determine whether an ar-
bitrary propositional formula is logically valid.
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related via “hasParent” tomembers of the “HasTypeAB_Blood” class. If it is stated that the
individual Harriet is related via “hasMother” to the individual Sue, and that Harriet is a
member of the “HasTypeO_Blood” class, then it can be inferred that Sue is not a member
of “HasTypeAB_Blood.”

The use of ontologies and semantics also makes it possible to effectively separate
the “what”, i. e. the formal definition of the business problem and rules by business ex-
perts from the “how,”, i. e. a technical implementation of the solution by the IT stack
underneath the higher-level business logic. More about ontologies in Chapter 5.

2.3.2 Industry applications and examples in the book

Formally introduced in the mid-1960s, the so-called expert systems are a family of log-
ical systems with an inference engine that deduces new facts from known facts of the
knowledge base. They emerged in the 1980s as what some people saw as truly success-
ful10 application of symbolic AI and still have nowadays numerous applications. They
are supportive and reliable decision-making systems used across industries: in medi-
cal diagnosis, in troubleshooting to infer possible malfunctions from facts, in finance to
detect suspicious activities, frauds, or assist bankers before granting a loan, in multiple
industries for configuring objects under constraints such as configuring devices inman-
ufacturing, in planning tools or control systems,. . . Limited to knowledge bases that can
be expressed as a set of specific Horn clauses11 expert systems resolution methods use
either forward chaining inferencing methods (generating a proof tree by following log-
ical implications) or backward chaining inferencing methods (from the goal, chaining
through rules to find known facts that support the proof).

Querying a database is actually another simple set of applications from logic rea-
soning: finding all instances that satisfy a certain logical formula represented by the
user’s query. Many successful database logics are actually based on first-order logic.

Another typical family of logic inferences focuses on satisfiability checks: is there
an assignment of values forwhich a logical formula holds. Formal analysis, for example,
can be performed to identify and match whether the production capabilities offered by
somemanufacturing assets can be compatiblewith the production tasks required by the
production orders. Using formulas in first-order logic, satisfiability solvers not only

10 This may seem contradictory to the often-heard claim that the expert systems from the 1980s were
a failure. This sentiment is mostly due to the fact that overly high expectations about expert systems
“replacing experts” were not met: the term became associated with unrealistic expectations and was
avoided as a result. The truth is that the research on expert systems has led to important scientific ad-
vances that are ubiquitously exploited today, though not under the denominator “expert systems” (Prof.
Blockeel).
11 AHorn clause is a clause, that is, a disjunction of literals, with at most one positive, that is, unnegated,
literal. A literal is an atomic formula. See Chapter 3 for details about literals and examples.
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allow a richer modeling than propositional logic with their Boolean formula’s (as with
the example ofMaersk Containers Industry A/S in Chapter 3) but also enrich the classical
first-order logic with additional theories12 of integers and numbers.

As mentioned above, logic-based inferences can also help with diagnostics in many
complex industrial settings. Such industry example is covered in Chapter 4 with the
example from ASML, a world’s leading provider of lithography systems for the semi-
conductor industry, where logic reasoning techniques are applied for the automated
diagnostics of their lithography machines.

Automated theorem proving, another technique in the field of logic reasoning,
provides higher level of inference and deduction. It automatically generates a proof,
given a target theoremand a knowledge base of facts, all expressed in a formal language.
It finds applications in mathematics to provide with mathematical proofs, to reason on
the correctness of system properties, in integrated circuit design and verification or in
software verification methods. Formal logic verification is especially a must for safety-
critical systems to ensure they operate correctly and safely: systems whose correctness
have a direct impact on the safety, such as autopilot systems in aircrafts, control systems
in nuclear power plants, etc. Chapter 4 illustrates, for example, how theorem proving
and Imandra’s formal verification software can be leveraged to check the correctness of
a simplified version of an autonomous controller found in drones and autopilot systems,
such as the Triton unmanned aircraft systems of the US Navy. That example also high-
lights another key advantage of automated theorem proving inference that can survey
an infinite number of possible system behaviors through a finite computation.

As mentioned earlier, ontologies play a major role in the semantic web, where they
are used to annotate web resources to perform semantic searches. Ontology-driven
knowledge systems can also be found in various enterprise and corporate domains
such as in life science, medicine, telecommunications, agriculture, astronomy, defense,
resources, and energy management. In Chapter 5, ONTOFORCE, a company that helps
organizations transform their data into insights in the fields of life science and health-
care, provides with an example of how ontologies bring scattered data together to find
relevant relations through linked semantical concepts and discover new knowledge in
early-stage drug research.

2.3.3 Limitations of symbolic AI
From simple representations, like in propositional logic with knowledge encoded by
simple symbols and rules defined by logic operators, to more complex representation
and reasoning techniques, like first-order logic or other knowledge representation tech-
niques, such as descriptive logics, symbolic AI approaches fundamentally enable hu-
man engineers to bring prior knowledge into the applications: define facts or axioms,

12 a formal term.
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rules, relationships, that explicitly represent a domain expert knowledge in an explicit
declarative form. Those algorithms will then manipulate those symbols through differ-
ent forms of inference, apply logic reasoning approaches to answer queries, make logi-
cal inferences and deductions. As mentioned earlier, richer expressiveness helps to rea-
son over more abstract concepts and in more general terms. Even if sometimes tedious
when there are a lot of complex rules, symbolic AI also generally offers the advantage
of being explainable to humans. Symbolic AI models use symbols to represent and ma-
nipulate knowledge, which is similar to how humans think and reason.

Symbolic approaches work best on well-defined structured problems, wherein
some structured knowledge is given to a system, which has to systematically follow
search trees or apply logic rules to solve the problem: deductive inference (i. e., revealing
new, implicit knowledge given a set of facts), consistency checking (i. e., detecting con-
tradictions between facts), classification (i. e., generating taxonomies), reasoning-based
decision support system, etc. Symbolic AI approaches however fall short when they are
not directly programmed for a task, when the rules cannot be clearly defined, when
obtaining knowledge is either too difficult or, when the size of the knowledge base in-
creases to a level that the system faces computational difficulties. It therefore limits its
applicability tomicroworlds and leads to the commonsenseknowledgeproblem: “If Pe-
ter is home, his head is also home”: human takes it for granted, computers don’t. Coded
knowledge must be explicit whereas humans infer meaning from sentences by using
both explicit and implicit knowledge associated with concepts and relevant in a specific
context. Also, areas that rely on procedural or implicit knowledge such as sensory ormo-
tor processes (can you define rules to drive a car?), are much more difficult to handle
with the symbolic AI framework.

Some forms of logics such as first-order logic, classified asmonotonic,13 also bring
the difficulty of revising facts once they are encoded, whereas not all the facts might be
known at first: the more rules are added, the more knowledge is encoded in the system,
but additional rules can’t undo old knowledge: we can’t add newer hypotheses, like ex-
ceptions, for example, that contradict the previous conclusions. Such logic doesn’t leave
room for default reasoning and unknown possible facts that would contradict the the-
ory. Using a well-known example, if we state in monotonic logic that “all birds fly,” we
can’t add penguin as a bird to our knowledge base later on: the addition of the premise
would contradict the original conclusion, leaving the only alternative to list all possi-
ble exceptions, like penguin or ostrich are also birds. Default reasoning, a form of
nonmonotonic logic, has been developed to formalize inference rules without explic-
itly mentioning all the exceptions. For example, some logic systems approach default
reasoning by assuming that all positive information has been specified, and what isn’t
known to be true is false: they assumewhat is called a closedworld assumption (CWA),

13 The monotonicity property requires that all derived conclusions remain valid after new facts are
added to the knowledge base. A logic is nonmonotonic if some prior conclusions can be removed by
adding more knowledge, if some conclusions can be invalidated by adding more knowledge.
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like we typically see applied for databases. This considerably simplifies the representa-
tion since only positive information about the world need be explicitly represented in
the database, negative information is inferred by default, so we don’t have to list all
the exceptions in the database. But still, this only works when databases are complete,
when we have complete knowledge of the world. At the opposite, open world assump-
tion (OWA), like used with ontologies and in the semantic web, assumes that what isn’t
explicitly specified is unknown, which allows toworkwith incompletely specifiedworld
and add knowledge as needed: statements about knowledge that are not included in or
inferred from the knowledge explicitly recorded in the system may be considered un-
known, rather than wrong or false. For example, if we have the fact: “Piet is citizen of
Belgium” in our knowledge base and launch a query with the question “is Piet citizen
of Spain?”, a CWA system will answer “no” but an OWA system will answer “unknown”
since Piet can actually have dual citizenship.

Finally, although some inductive learning is possible with symbolic AI techniques
(see inductive logic programming in Chapter 7 and the industry example in Chap-
ter 10), they typically don’t provide with mechanisms to learn and derive knowledge
from nonmodeled data: symbolic logical systems don’t make any association from raw
data, they are inherently deficient to learn correlations or associations from data, and
have no notion of proximity of concepts– all aspects that statistical, data drivenAI and
machine learning techniques address as we’ll see next.

2.4 Learning with data-driven AI
2.4.1 Overview
Machine learning techniques are essentially inductive learning approaches that gen-
eralize from examples provided in the form of data. They infer statistical patterns that
humanmight not see or know, to learn and extract information typically fromvery large
data sets and raw signals. It’s a broad field, typically known as the world of data science.
The different families of techniques are typically classified based on the level of supervi-
sion14 provided to the algorithm and the type of task to solve: supervised learning, un-
supervised learning, anomaly detection, reinforcement learning to name the most
important categories. Note that there is a wide range of settings where partial or in-
direct supervision is available, in semi-supervised learning settings. Self-supervised
learning (where the labels are generated from the characteristics of the data itself re-
moving the need for manual labeling), has also emerged as an approach in 2016–2017.
Automated feature engineering,15 also called representation learning, to replace the

14 supervision means that the ground truth value is given to the algorithm during the training phase.
15 Converting data from its raw form into numerical variables, called features, that are a meaningful
representation for the problem to solve, a measurable property useful as an input for machine learning.
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manual tasks of transforming rawdata into feature vectors (i. e., somemeasurable prop-
erty, numeric value that will then be used as representative elements of the data) is
sometimes described as a specific category but essentially relies on supervised or unsu-
pervised methods. More details are in Chapter 7.

2.4.2 Supervised learning key concepts, industry applications and
examples in the book

Supervised learning techniques learn a function, a relationship, tomap a given input to
a given output based on provided examples as a guide for the algorithm. Training data,
in the form of a set of input and correctly labeled output, is given to the algorithm so
that it learns an optimal function that can then be used to predict the output associated
with new inputs.

2.4.2.1 Classification

Predicting categories (i. e., categorical variables), like “is it a cat or a dog?” “is that email
a spam or not” is called a classification task. Those classification algorithms will seek
to optimize statistical metrics to reduce the error of the classification tasks, such asmax-
imize the% images where actual cats are correctly classified as cats andminimize the%
images wrongly classified as cats whereas they are dogs.16 Classifications tasks serve a
multitude of purposes, ranging from distinguishing between good and bad credit scores
in credit rating systems, predicting market sentiment for product perception analysis
or the benign or malignant nature of lesions in healthcare, to automatically classifying
texts, documents, images, and objects in images. Robovision17 and Viu More,18 for ex-
ample, developed a solution forVerannemanTechnical Textiles, a European producer
of woven and laid scrims (part of Sioen Industries), in order to automatically classify
different classes of defects in the textile. See the industry example in Chapter 7.

2.4.2.2 Regression

Predicting a numerical variable is known as a regression task. Based on provided ex-
amples of input and output, regression algorithms will seek to minimize an error (de-
fined from the difference between the predicted and the real value as a loss or a cost
function) to fit the training data. Reducing that error will serve as a guide for the algo-

16 Known respectively as true positive rate and false positive rate.
17 Robovision is a company that started out as an AI consulting business and pivoted in 2021 to selling
their AI platform, which helps create and manage vision AI models, as their core business.
18 Viu More specializes in building custom industrial solutions with image processing sensors and AI
technology for various industries including recycling, technical textiles, food production, etc.
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rithm to refine its parameters and fit the training data. For example, a linear regression
model, one of the simplest forms of regression models, finds the line (or hyperplane for
more complex linear combination) that most closely fits the data to minimize the sum
of squared differences between the true given data and that line (or a so-called hyper-
planewhen there aremore variables). Of course, many othermodels have been created,
ranging from the basic to the complex, to fit with the specific context of the problems.
After training, the regression models will generalize and predict the output associated
with new input, with some errors.

A widespread use case for supervised learning models is in creating predictive an-
alytics systems to allow enterprises to anticipate certain results and forecast future op-
portunities and risks: optimize price points, predict power usage in an electrical distri-
bution grid, predict the call volume in call centers for staffing, predict how many pa-
tients a hospital will need to serve in a time period, etc. For example, KBC Group, a
Belgian integrated bank-insurance group19 uses regression techniques to combine mul-
tiple variables (called features), such as the type of the building, the number of floors, or
the surface in squaremeters to estimate property value and close insurance policies on-
line (Chapter 7). Regressionmodels can also typically be used to optimizemanufacturing
processes: an industrial company could create, for example, predictive models to assess
the impact of the temperature in a nondeterministic process, to predict the remaining
useful lifetime of industrial assets (predictivemaintenance), to predict the quality of a
particular output, etc.ArcelorMittal, the second largest steel producer in the world, for
example, applies regression models to predict the iron quality at the output of a Direct
Reduction20 process. See the section industry examples in Chapter 7.

2.4.3 Unsupervised learning – key concepts, industry applications,
and examples in the book

In unsupervised learning settings, data points have no labels and no ground truth
value associated with them. They provide exploratory approaches to view data, group
data, identify patterns in large volumes of data, describe its structure, or find relation-
ships in data. They are typically classified in three main categories: clustering, associ-
ation, and dimensionality reduction.

2.4.3.1 Clustering

Clustering techniques discover similarities and differences in data and are typically
used for exploratory data analysis and customer segmentation: segment customers into

19 operating in Belgium, Bulgaria, Czech Republic, Hungary, and Slovakia.
20 A chemical process to transform iron ore (in the form of lumps, pellets, or fines) into iron.
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groups by distinct characteristics, such as age and location, to better assign market-
ing campaigns, for example. A clustering technique is illustrated in Chapter 7 withMi-
crosoft Azure Form Recognizer.21 The latter uses, a. o., unsupervised learning to un-
derstand the layout and relationships between fields and entries in digital forms. The
system clusters input forms by type, discovers what keys and tables are present in the
digital forms, and associate values with keys and entries with tables. Another example
is also provided in Chapter 7, where the KBC Group leverages unsupervised learning-
based anomaly detection algorithms for detecting frauds in insurance claims.

2.4.3.2 Association rules

An association rule is a rule-based method for finding connections between variables
in a given data set. These methods are often used for recommendation systems that do
market basket analysis to understand how different products relate. Online retailers,
for example, can use data from a previous purchase behavior to understand consump-
tion habits of customers and develop efficient cross-selling strategies andmake relevant
add-on recommendations to shoppers. Or streaming services companies can make rec-
ommendations ofmovies based on users’ history of interactingwithmovies;more about
those techniques, and singular value decomposition, in particular, in Chapter 7.

2.4.3.3 Dimensionality reduction

Dimensionality reduction can be seen as an approach to summarize data: it’s a tech-
nique used when the number of features or dimensions, in a given dataset is too high.
Using data transformation techniques, it reduces the number of data inputs to a smaller
number of dimensions by removing some of the statistical correlation between input
variables, while preserving the integrity of the dataset as much as possible. It is com-
monly used as a preparatory step before applying other techniques. As part of its solu-
tion to classify defects (section 2.4.2.1), Veranneman Technical Textiles, for example,
leverages a technique called principal component analysis (PCA) to extract the most
relevant features in textile images data,22 after which clustering techniques help them
identify outliers,23 considered as a defect and converted to a quality score for their fab-
ric. See the industry example in Chapter 7.

21 The service nowmoved to a new service calledAzureAI Document Intelligence, which added other
learning solutions, so the customer can use whatever works best for their problem; see Chapter 7.
22 coming from the analysis performed by deep neural network techniques.
23 Data points or observations that significantly deviate from the majority of the data.
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Autoencoders, a specific category of neural networks trained so that the output
reproduces the input, also fall in this category: they try to learn a representation, or an
encoding, as a sort of compression mechanism.

2.4.4 Anomaly detection – key concepts, industry applications,
and examples in the book

Anomaly detection techniques are essentially methods to identify statistical outliers,
rare events, or observations that significantly deviate from themajority of the data, with
the remainder of that set of data. They indicate abnormal conditions in a specific task,
which may cause a performance degradation or indicate a specific risk. The techniques
for anomaly detection vary from problem to problem depending on the context and
problem to solve. While static rule-based systems exist, identifying the rules can be-
come a complex and subjective task. Statistical ormachine learning based approaches
to automatically learn the anomalies are then preferred to static rules. Some use super-
vised learning, trained as a classifier when access to normal and abnormal labels is
balanced,24 known and accessible. However, obtaining accurate and representative la-
bels, especially for the anomaly class, is usually challenging. Techniques to learn from
positive and unlabeled cases (a semi-supervised setting) assume that the training data
has labeled instances but only for the normal class, hence more widely applicable than
supervised learning techniques. When there is no prior knowledge of the data at all,
unsupervised learning techniques can be used. They look for instances that seem to
fit least to the majority of the dataset, by making the implicit assumption that normal
instances are farmore frequent than anomalies in the test data. If this assumption is not
true, then such techniques suffer from high false alarm rate.

Detecting anomalies in time-series data (a series of data points listed in a chrono-
logical order, e. g., data samples of temperature over time) requires special care, as it
often displays serial dependence. Serial dependence or autocorrelation,25 occurs when
the value of a datapoint at one point in time is statistically dependent on another dat-
apoint in another time. However, this attribute violates one frequent assumption that
data is statistically independent. On the other hand, autocorrelation is an ideal method
for uncovering trends and patterns in time-series data that would have otherwise gone
undiscovered. They require time-series and sequence modeling techniques such as the
hidden Markov model and recurrent neural networks. See Chapter 6 and anomaly
detection in Chapter 7.

24 When anomalous and normal classes are balanced.
25 Informally: intended to measure the relationship between a variable’s present value and any past
values.
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Anomaly detection is applied across all industries. Financial institutions, for in-
stance, utilize it as a mechanism for fraud and risk detection. In the manufacturing
sector, it’s employed to signal unexpected behaviors in production lines or machinery.
The medical field leverages anomaly detection to identify medical irregularities. IT op-
erations apply it to uncover unusual event patterns within their infrastructure. In cy-
bersecurity, intrusion detection systems use it to pinpoint unexpected security behavior
patterns. Even sales operations employ it to spot atypical sales trends... Those techniques
can also be used to remove noise and labeling errors to improve the quality of data as a
preprocessing step in machine learning.

An example in Chapter 6 shows how to move from rule-based approaches to de-
tect anomalous activities in IT environments to more adaptive approaches: using an
unsupervised learning approach and Markov chain model, Microsoft Sentinel, a se-
curity information and event management service in Microsoft Azure cloud, provide
a modeling approach to help customers detect potential malicious activities in their IT
environment. Another example is provided in Chapter 7, where the KBC Group lever-
ages unsupervised learning-based anomaly detection algorithms for detecting fraud in
insurance claims.

2.4.5 Reinforcement learning: key concepts, industry
applications, and examples in the book

Originally inspired by psychological models of parts of the brain’s reward system, rein-
forcement learning (RL) techniques fall into a different category of learning systems,
both by their fundamental objective and by their learning methods. For their objective,
those techniques belong to the family of goal-based agents that support complex se-
quential decision problems in stochastic environment: the transition from a state to an-
other (from st to st+1) by taking an action at in the environment is subject to stochastic
behavior, describedbyprobabilities. The objective of reinforcement learning techniques
is then essentially to learn to make a series of decisions, or actions at at time t, that
will maximize an expected total reward 26 over those decisions (see Figure 2.1).

As for the learning part, RL is an AI paradigm whereby machines learn by trial
and error, getting rewards (or penalties) at each step (rt) from interacting with their
environment; those techniques model unexplored territory and learns from their own
experience by taking actions in the environment. To sum up, by trial and errors and
getting rewards from the environment, reinforcement learning systems can simultane-
ously learn a model of the environment and use that model to decide on a course of

26 Rewards are defined by the model designer. Total means that the agent factors in the expected re-
wards over all the time steps.
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Figure 2.1: The agent takes a decision, or an action at , on its environment and lands in another state (st+1)
where it receives a reward (rt+1). From that new state, a new iteration starts by having the agent select
again another action. The learning agent needs to learn the series of actions that will maximize the ex-
pected total rewards over all its decisions.

actions to maximize an expected total reward. More about reinforcement learning in
Chapter 7.

Reinforcement learning finds its applications in a wide array of fields. These in-
clude robotics for task control, autonomous systems for safer and more reliable oper-
ations in real-world environments such as control systems, and gaming. It also plays a
crucial role in decision-making processes such as determining whether to hold, buy, or
sell stocks in trading systems. Furthermore, it can also aid in delivering a more person-
alized user experience on the web: for example in recommendation systems, where
the RL system tracks the website reader’s return behaviors and clicks form the basis
of the rewards mechanism. The example in Chapter 7 illustrates how Microsoft deliv-
ers a personalized, relevant users experience throughMicrosoft MSN news website.27

This personalization was implemented in 2016 with the aim of tailoring news articles
to individual users. As a result, Microsoft reported a significant increase in the ‘Click
Through Rate’ by 26%.28 An illustration of how reinforcement learning techniques are
utilized in various sectors, including themanufacturing industry, can be seen in the case
of PepsiCo. PepsiCo announced a deep reinforcement learning solution that monitors
and adjusts the extruders that make Cheetos. The goal is to optimize the production line
throughput, while maintaining the snacks quality for crunch, lightness, and shape. This
approach reduces the time it takes to correct inconsistencies and allows operators to fo-
cus on parts of the line that require human expertise (See “More perfect Cheetos: How
PepsiCo is using Microsoft’s Project Bonsai to raise the (snack) bar”).

27 In 2022, Microsoft began phasing out MSN to Microsoft Start with news pages being moved to Start,
and ads for the website appearing on the homepage.
28 https://www.microsoft.com/en-us/research/blog/real-world-interactive-learning-cusp-enabling-new-
class-applications/
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2.4.6 What about deep learning?

Deep learning (DL),which relies ondeepneural network (DNN), is a family ofmachine
learning methods that leverage neural networks. Neural networks are typically com-
prised of nodes layers: an input layer, one or more hidden layers, and an output layer.
Each node (or neuron) connects to another node in the next layer with an associated
weight and threshold: the output of an individual node is simply a weighted sum of its
inputs passed through an activation function sending the result to the next layer of the
network (see Figure 2.2). Nonlinear activation functions allow suchnetworks to compute
nontrivial functions as they introduce a nonlinearity. They are called deepwhen many
layers are stacked between the input and output layers. Learning the weights based on
some loss or objective functions, deep neural networks can then represent arbitrarily
complex functions to map raw input value to output value. More details in Chapter 7.

Figure 2.2: The node is a weighted sum of its input, passed through a nonlinear function at each node.

The concept of neural network isn’t new: the perceptron, the first simplest neural
network used as a binary linear classifier, was invented by Frank Rosenblatt in 1958.
Evolution of multilayer perceptron in 1967, and the term “deep learning” was first in-
troduced in 1986. Hardware innovations (like graphical processing unit), algorithmic
innovations, and the increasing amount of available data, made neural networks pro-
gressively evolve from simple shallow architectures to more complex and bigger archi-
tecturewith an increasing number of layers and parameters: LetNet5, one of the earliest
convolutional neural networks,29 used to recognize digit images had about 60,000 pa-

29 A type of deep neural network architecture.
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rameters (1989). The deep learning-based language prediction models30 developed by
the OpenAI Research laboratory for natural language processing (NLP)went from 100
million parameters (GPT31-1, 2018) to 175 billion parameters in its third release (GPT-3,
2020). According to speculations, the GPT-4 model released in March 2023 would have
more than 1.7 trillion parameters.

Deep learning techniques exist in various forms and architectures: standard deep
neural network, convolutional neural network (known for image and video recogni-
tion, also applied to text classification and anomaly detections), recurrent neural net-
work (typically used for temporal, time-series data, in language related tasks and NLP),
general adversarial network and, more recently, transformers. Since their launch in
2017–2018, transformers have emerged as the leading technology in NLP, a status they
maintain to this day (Chapter 8).

The success of deep learning is primarily attributed to its scalability with increasing
data volumes. This scalability enhances performance as more data becomes available.
Deep learning is also distinguished by its capacity for automatic feature or represen-
tation learning, which contrasts with traditional machine learning methods that rely
on manual feature engineering. It allows deep learning systems to both learn the rel-
evant features and use them to perform tasks; they are therefore much better to inter-
pret unstructured data (i. e., data with no predefined data model, such as text, voice,
image, video, etc.), creating opportunities for many applications that use speech recog-
nition, image recognition, and natural language processing on text. Those two aspects
are worth discussing in a bit more detail.

2.4.6.1 Bias-variance trade-off

In designing traditional models for supervised learning, data scientists have to com-
pose with the so-called statistical bias-variance trade-off: the reducible errors in ma-
chine learning can be shown to be broken down into a bias error and a variance error
of the parameters estimates (see Chapter 7). Unfortunately, it is typically impossible to
reduce the total prediction error, for both the bias and variance error, beyond a cer-
tain point. Refer to the Figure 2.3 below, which illustrates the error in the function of the
model complexity: it is impossible to both accurately capture the regularities in the train-
ing data (low bias, green dashed line), and also generalize well to new, unseen data (low
variance, yellow line). This bias-variance trade-off causes the machine learning model
to either overfit (variance error dominates) or underfit the given data (bias error dom-
inates). So, even if techniques do exist, traditional machine learning (ML) techniques

30 A languagemodel that uses deep learning to produce human-like text. See the concept of a language
model in Section 2.7 and Chapter 8.
31 Generative pre-trained transformer (GPT).
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Figure 2.3: Underfit at the left side of the optimum, overfit with more complex models (right side of the op-
timum). Source: “A high-bias, low-variance introduction to machine learning for physicists” (Pankaj Mehta
et al., 2019).

don’t offer many approaches that just reduce the bias or the variance error without im-
pacting the other one, and the model reaches some performance plateau.

The neural network size however takes better advantage of having more data to
train and exploit more data than traditional ML algorithms: larger neural networks en-
hance the complexity of the model thereby reducing bias. Simultaneously, training on
more data decreases variance, leading to improved generalization without affecting
the bias.

2.4.6.2 Feature modeling

Traditionalmachine learning pipelines require somemanual processing of the rawdata,
known as feature selection, to select good predictors, and feature engineering, to
transform the raw data into feature vectors relevant to the specific task (e. g., to cap-
ture some characteristics of a sound, a text, or an image as a numeric vector that can
be understood by the ML algorithms). Deep learning systems both learn the relevant
features and use them to perform the specific task, eliminating the need for data scien-
tists to handcraft the features: the raw input data is fed directly into the deep learning
model and the model automatically learns the features from the input data, and the
successive layers progressively extract higher level features from the raw input. So, deep
learning systems will learn the patterns in the input data rather than having a data sci-
entist to manually construct the features; they act therefore as feature detectors. For
example, in the realm of computer vision, a neural network begins its analysis with
raw input data, ie pixel values in an image; then, the network’s lower layers identify
basic visual elements like edges. Moving up to the intermediate layers, these edges are
assembled intomore complex shapes. Finally, the higher layers extrapolate these shapes
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to recognize concepts that are significant to humans, such as digits, letters, or faces. In
speech recognition, the first layer captures the basic low-level waves, the intermedi-
ate ones capture basic sound units (phonemes) and words, while the last ones capture
sentences in a complex assembly. In other natural language processing tasks, neural
networks can link symbols to vectorized representations of the data, which are transla-
tions of raw data attached with some semantic meanings (see the notion of embedding
for more details in Chapter 8).

Note that deep learning can be applied to various learning approaches, including
supervised, unsupervised, and self-supervised settings.

2.4.6.3 Industry applications and examples in the book

Deep neural networks offer a range of applications. These techniques often surpass
human benchmarks in tasks involving unstructured data, such as classifying or detect-
ing objects in images within computer vision, and performing sentiment analysis, entity
extraction, text classification, translation, and next-word prediction (known as language
modeling) in natural language processing, among others. See Chapter 8 formore details.

The solution developed for Veranneman Technical Textiles, as mentioned in the
classification-related paragraph, illustrates the use of convolutional neural networks
in computer vision to automatically classify various defect classes in textiles (Chapter 7).
Chapter 8 describes how other types of DNN architectures, such as recurrent neural
networks and transformers, are successfully applied to natural language processing
applications, likeMicrosoftQnAMaker.Microsoft QnAMaker helps to build knowledge
bases by extracting Questions and Answers from manuals, FAQs, and documents.

Another major field of applications of deep neural networks belongs to the deep
reinforcement learning family of algorithms. Deep reinforcement learning combines
reinforcement learning and deep learning. Indeed, in many tasks, the state or action-
state space that represents the environment in which the algorithm must make deci-
sions (see paragraph about reinforcement learning) is either too large to be stored in
tables and memory, or it is continuous: so, an approach that relies on look-up tables
with discrete values isn’t scaleable or doesn’t even work. In theses cases, learning tech-
niques that generalize from past examples (from seen states or state-action pairs) are
required to estimate the values of new, unseen, states. Deep neural network can then be
used as a function approximator to learn those complex functions. Autonomous driv-
ing is a typical application where deep reinforcement learning techniques are applied:
following the recognition step to identify the surrounding environment (typically using
DNN/CNN), and the prediction of environment dynamics (e. g., tracking an object), re-
inforcement learning facilitates the planning of decisions to avoid unwanted situations
and ensure safe arrival at the destination, utilizing penalties or rewards.
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2.4.7 Limitations of data-driven learning

Broadly speaking, machine learning techniques face two major challenges: the chal-
lenge of generalization and knowledge engineering.

Generalization
Machine learning essentially brings an inductive learning approach to generalize from
data, based on examples. They infer statistical patterns fromvery large datasets and raw
signals. Statistical learning is hindered by deviations from its assumptions and is limited
by its specialization: such systems often work impressively well, sometimes better than
human, when applied to the same environment on which they are trained but must be
retrained if the environment differs, sometimes even in small ways. Once trained, a ma-
chine learning algorithms typically do what they learned to do. To make them perform
a different task would generally require changing the parameters learned by the algo-
rithms. It remains a localized generalization within a specific training domain, making
it challenging to ensure its effectiveness in alternative circumstances, with new data
that may not sufficiently resemble the previous training data: apply a trained model to
a new domain may yield poor performance. Machine learning techniques are good at
finding patterns in terms of data but can’t broadly generalize. Another major source of
bias is the background knowledge and the preferences of the data scientist, which
both influence the choice and design of the learning models. Different types of models
possess varying underlying assumptions and structures that mirror the data scientist’s
methodological preferences. As it will be discussed in Chapter 7, learning without any
inductive bias isn’t possible.

Also, some important domain concepts and laws cannot be learned fromdata alone:
for example, empirical laws, such as Galileo’s principle of inertia, are idealization that
aren’t observed in nature. It is practically impossible for any object to achieve a state
of zero net force (i. e., the total force acting on an object is null) due to the presence of
friction, air resistance, and various other forces constantly acting upon it.

Knowledge engineering
Machine learning techniques don’t make any explicit and specific representations of
knowledge, like with symbolic AI approaches do. The insight learned from data is a
mapping based on a learned function, or an association, a pattern that fits the data but
doesn’t givemeaning, nor causality by themselves. Machine learning techniques can as-
sist in discovering insights within text, video or images. For example, they can extract
and classify words in predefined categories, like recognize that “Paris” is a location or a
person’s name, or recognize a dog in an image. However, the underlying meaning of the
category used to train the algorithm remains unknown to the machine. Unlike symbolic
AI approaches, usual machine learning techniques lack a framework to represent the
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knowledge of object and relations in a model and can’t easily incorporate prior knowl-
edge of the world. On the other hand, symbolic AI approaches—such as first-order logic
and structured representation—provide data representations that are sufficiently ex-
pressive to encompass relational data. These methods can integrate some prior knowl-
edge and are explainable to humans.

This brings us to techniques that combine learning with logical reasoning.

2.5 Learning in a logic framework

2.5.1 Overview and key concepts

Initially defined by StephenMuggleton as the intersection of logic programming andma-
chine learning (Stephen Muggleton, 1991), inductive logic programming (ILP) couples
the area of logic programmingwith techniques from learning and essentially introduces
the notion of generalization in a logic framework. As with other forms of learning, the
goal of ILP is to induce a hypothesis that generalizes from training examples. Whereas
machine learning represents hypotheses through specifically chosen learning models
and learns functions, ILP represents hypotheses as a set of logical rules and learns
new logical rules and relations from examples. In its simplest form, it learns new
knowledge by induction: it forms hypotheses that both are consistent with the back-
ground knowledge and explain the provided examples (ground facts or rules). The new
logical propositionmust entail all the positive examples and none of the negative exam-
ples given to the algorithm. That hypothesis is then added to the knowledge base of the
system. Generalizing that all birds can fly from seeing a duck and a sparrow that can
fly is a very simple example. Given multiple examples of friendships between people,
with some friends being female and others male, as well as examples of girlfriend rela-
tionships, an ILP algorithm could also infer the general rule by induction that having a
girlfriend implies both being friends and being female.

In summary, ILP proceeds by forming hypotheses from provided evidence (some-
how analog to label in supervised learning in the numerical data world) and that are
consistent with the given background knowledge. See Chapter 7 for more details.

Having an approach to add explicit background knowledge to learn new knowledge
makes ILP techniques quite unique. They combine generalization (learning) and special-
ization using both inductive anddeductive inference ruleswithin the same integrated
framework: the examples, the hypothesis, and the added background knowledge are all
expressed using the same symbolic representation. The induced, learned, hypothesis or
rules are naturally incorporable in rule-based systems for deductive inference. ILP is
differentiated from the other forms of machine learning both by its use of an expres-
sive representation language and its ability to make explicit use of encoded background
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knowledge. This essential to consider notions like cumulative learning, where knowl-
edge can be augmented and used to learn new things.

Finally, ILP techniques offers high interpretability of the results of the learning pro-
cess: the learned hypotheses are represented in symbolic forms and therefore provide
transparency and explainability to humans, while the learned knowledge can be re-
membered and explicitly stored in the knowledge base.

2.5.2 Industry applications and examples in the book

ILP is typically used to learn complex relational information, where the learned knowl-
edge can then allow easy integration in expert knowledge system or deductive-based
reasoning systems. ILP techniques have fueled applications in what is known as Pro-
gramming by exampleswith the goal of automatically generating small programs syn-
thesized from a few input and output examples. These include learning scripts, generat-
ing search query, or applying data transformation, extracting data from documents, all
based onuser-provided examples.Microsoft FlashFill, a feature that automatically fills
data when it senses a pattern, is a known example to automate repetitive string trans-
formations in Microsoft Excel. As illustrated in the following Figure 2.4, once the user
writes an instance of the desired transformation and proceeds to transforming another
one, Flash Fill learns a program that automates the repetitive task.

Figure 2.4: Illustration of Microsoft Excel feature called Flash Fill. Suggestion made by the algorithm to fill-
in the other cells in column 2, based on the first examples provided: extracts the first two words, converts
them to lowercase, and concatenates them separated by a space character.
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Other applications of ILP can be found in physics, for instance, where they solve
problems from first principles and assist in discovering natural laws from collections
of experimentally gathered data. Given physical models of the basic primitives, ILP sys-
tems can induce a target hypothesis that exhibits behavior derived from these primi-
tives. Chemistry and molecular biology domains are also particularly appropriate for
ILP due to the rich relational structure of the data, and the need to handle complex rela-
tional structures. Chapter 10 also illustrates how an international manufacturing com-
pany, known for its diverse construction products and innovative materials, utilizes ILP
to parse tables in engineering diagrams and enables the creation of concise programs
that deduce the labels of cells, based on the surrounding information in these tables
(Chapter 10).

2.5.3 Limitations of inductive logic programming

Construction of the hypotheses can be a real challenge since the space of all hypotheses
can be huge and complex, making it sometimes intractable if that space is not limited.
It’s therefore necessary to impose restrictions to constrain the search. This introduces
a bias to restrict the hypotheses space to make the search tractable: restriction on
hypotheses or fix how the space is being searched, for example. Next, to induce a hy-
pothesis from examples, we need to provide an ILP system with suitable background
knowledge. Finding the right balance of the appropriate background knowledge is a
challenge: insufficient background knowledge may exclude a target hypothesis, while
too much can degrade the performance. It can also be difficult and expensive to obtain
handcrafted background knowledge from domain experts. Finally, training examples
might be noisy with mislabeled examples, so it is difficult to find a hypothesis that is
both complete and consistent.32 Therefore, most approaches relax this definition and
try to find a hypothesis that covers as many positive and as few negative examples as
possible, with no perfect match.

2.6 Probabilistic reasoning when there is uncertainty

Our logical models so far, such as first-order logic and propositional logic, addressed
facts and predicates with certainty, i. e., they were either true or false, possibly un-
known. With those logical models and rules, we can express concepts such as “if A is
true then B is true,” but we didn’t express degree of belief between true or false, either
when we are not certain about the facts (nondeterministic facts like the probability of

32 Complete: works with all positive examples of the concept, consistent: works with all negative exam-
ples of the concept.



2 A holistic view of AI techniques, their limitations and complementarities � 45

raining, the probability of having the flu if the body temperature is above 38 degrees), or
whenwe face stochastic behaviors of the environment (uncertainty about the outcome
of an action like a robot which takes a next step but might end up left or right due to the
uncertain impact of the environment). Probability theory is the mathematical corner-
stone used to express the degree of uncertainty or belief, as a value between 0 and 1.
Dealing with uncertainty is not only important when we have unpredictable facts and
outcomes, but also when we might not have a complete knowledge of the world to
model (e. g., medical or fault diagnosis), or when it is practically impossible to compile
an exhaustive list of all rules. This is the field of probabilistic reasoning techniques
covered by Chapter 6.

2.6.1 Key concepts—uncertain facts and outcomes with
probabilistic reasoning

The main objective of probabilistic reasoning is typically to answer queries such as
the probability of an event, or a combination of multiple events given some evidence
or observations. In what are called causal models,33 for example, the objective is to
estimate the probability of a cause given some observed effect or evidence. We observe
some effects from the data andwould like to assess the probability of a cause given these
observed effects P(cause|effect), a question that is also called a diagnostic question. To
achieve that objective, a key fundamental trick is to exploit Bayes’ theorem properties:

P(cause|effect) = P(effect|cause)P(cause)
P(effect)

and build a model in the opposite direction by rather determining P(cause), and
P(effect|cause), easier for a subject matter expert to build since statistics are often
available in that form and one can use available data for the evidence. See the first
part of Figure 2.5a below. Once the model is generated and associated probabilities es-
timated, queries can then answer the diagnostic questions P(cause|effect) in the other
direction. If subject matter experts don’t know the P(effect|cause) and P(cause), a prob-
ability distribution is assumed, and the likelihood of the observed data is maximized
so that we find the statistics that best fit the data. Such approach provides not only with
the mechanisms to infer, or reason to answer diagnostic questions, but also the means
to learn the probability distributions of the variables, and their dependencies, from the
data. More generally than causal models, modern approaches to probabilistic reasoning
in AI combine three fields:
1. probability theory to address uncertainty,

33 Causal relationships among the involved randomvariables is assumed. The reader should remember
that assumption. More about causality in Chapter 11.
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2. statistical, ormachine learning to learn themodel parameters, or even themodel,
from data,

3. some form of graphical models, called probabilistic graphical models (PGM), to
represent the prior knowledge of experts andmodel the dependencies between the
different variables. Probabilistic graphical models are a rich framework for encod-
ing probability distributions over complex domains with multiple variables: joint
multivariate34 distributions over large numbers of random variables that interact
with each other. They leverage concepts from probability theory, graph algorithms,
machine learning, andmore. The properties of those graphical models also ease the
computation of the probabilistic queries.

Some key intuition about the general approach is developed here as an introduction to
Chapter 6.

Any modeling exercise starts with a set of random variables35 that are needed to
model the environment: each random variable is described by a probability distribu-
tion36 and the interactions between all the variables in themodel are defined bywhat is
called a joint probability distribution, which defines the probability of every possible
combination of their values in the model, hence gives a complete specification of the
model. For example, the definition of the P(X = xi, Y = yi, Z = zk) for the possible values
xi, yi, zk if we have 3 discrete random variables X , Y , Z in our model.

However, distributions over many variables, when used to model a real environ-
ment, can quickly become cumbersome to represent naïvely: defining the joint proba-
bilities of n binary variables in a table already requires storing 2n values. Techniques,
therefore, seek to represent the joint probability distribution as product of local func-
tions, each depending on a much smaller subset of variables. This approach exploits
prior knowledge of the conditional independence relationships among the vari-
ables. While modeling the environment, domain experts incorporate their prior knowl-
edge about the interactions of these variables by using a graph to build the model.
The graphical model structures how objects with their variables are related: they cap-
ture relations among the variables as well as their uncertainties. Graphs conveniently
represent probability distributions, detailing dependencies and independencies. They
introduce structural assumptions about the joint probability distributions of variables,
often reflecting independence assumptions among some variables. Representing in-
dependence between variables— by the absence of links in the graph—significantly

34 Multiple variables.
35 A variable whose value is uncertain.
36 A function which describes the dispersion of the values of the random variable, for every possible
value of that random variable. Discrete probability distributions for discrete variables, probability den-
sity functions for continuous variables.
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mitigates the combinatorial complexity of a full joint distribution table in the absence
of prior knowledge about these independencies.

Important examples of such graphical models that support probabilistic reasoning
techniques are:
– Bayes networks (also known as Bayesian networks) for modeling causal problems,
– Markov randomfields (MRF) for modeling the global statistical distribution of the

prior knowledge, in noncausal problems (when there are noncausal statistic depen-
dencies),

– Factor graphs, which generalize the approach and describe the way in which a
probability distribution p, such as g(X1,X2,X3), decomposes into a product of local
functions, also known as a factorization.

Each model is illustrated by the three following pictures below (Figure 2.5).

Figure 2.5: Three different probabilistic graphical models. (a) Bayes network for causal models as acyclic
directed graphs. Nodes with capital letters represent the random variables of the model built by a subject
matter expert. Tables are the associated probabilities and the conditional probabilities, given the parent(s)
of the nodes. (b)Markov random field (MRF) for non-causal models. Edges represent the dependencies
between the random variables, represented by the nodes, of a statistical distribution. P(X1, X2, X3, . . . , Xn)
is a product ϕ(X1, X2) × ϕ(X2, X3) × ϕ(X1, X3)× etc. where ϕ is some function assumed in our prior model.
(c) Factor graph decomposes the function P(j, c, r, l,w, d) from Chapter 6 (function 6.27) into a product of
factors: P(j, c, r, l,w, d) = P(j)⏟⏟⏟⏟⏟⏟⏟

fJ

P(c)⏟⏟⏟⏟⏟⏟⏟
fC

P(r)⏟⏟⏟⏟⏟⏟⏟
fR

P(l|j, c, r)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fL

P(w|l)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fW

P(d|l)⏟⏟⏟⏟⏟⏟⏟⏟⏟
fD

.

Once the assumptions about variables interactions are established, that is, when the
probabilisticmodel is constructed,we can compute the probabilities of specific events or
joint events, potentially conditioned upon observed evidence. These computations are
performed as operations on the graphs. Probabilistic questions are answered by per-
forming inference algorithms within the graph. Graphical representation of a proba-
bilistic model not only facilitates problem design and the expression of variable influ-
ences but also provides a structure conducive to efficient algorithmic computations that
leverage the graph’s topology.

If the probabilities or probability distributions aren’t known, they can be learned
from observed data. The first phase will be training, which aims to maximize the likeli-
hood function given the observed data. This phase include:
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– for discrete random variables, for example, a simple statistical counting of occur-
rences of events

– for continuous random variables with an assumed probability distribution pa-
rameterized by θ, inferring these parameters θ that best explain the observed data.

A more complex but possible task is to learn the structure of the network, i. e. the de-
pendencies of the variables.

To summarize, the overall approach is to
1. model: model how variables are related to each other with some prior knowledge,

exploiting some assumption of the independence between the variables,
2. learn: train the model to find the model parameters that maximize the likelihood

of observed data if the probabilities of the model are unknown,
3. reason or infer: perform the query to answer some probabilistic question, usually

conditioned on observed evidence by taking the value that maximizes its probabil-
ity.

Such approach is also called model-based machine learning as the assumptions are
made explicit in the form of amodel, which includes the number and types of variables,
which variables affect each other and how. A connection with classical logic reason-
ing is worth mentioning: the main idea of probabilistic reasoning is to find the relevant
variables in the environment and build a probabilistic model of how they interact. Rea-
soning is then performed by applying evidence that sets specific variables to known
states. Based on the observed values, we calculate the probabilities of interest. So, the
rules of probabilities form a complete reasoning system, one that includes traditional
deductive logic as a special case.

2.6.2 Industry application and examples from the book

Probabilistic reasoning techniques support decision-making in uncertain and complex
environments. They have applications across various domains, including medical di-
agnosis, genomics, fault diagnosis, risk management, IT security, image analysis, social
network models, environmental studies, and decision theory, among others.

Chapter 6 also illustrates how Bayesian inference techniques are used to learn the
parameters of a model applied to crop forecasting in agriculture. Another example in
the same chapter explains how Bayesian inference, factor graph and expectation prop-
agation techniques are applied in theMicrosoft TrueSkill ranking system, a skill-based
ranking system for the Xbox network,37 developed at Microsoft Research. The solution
ranks the skills of gamers in order to match them into fair, competitive, matches.

37 online multiplayer gaming service, formerly Xbox Live, created and operated by Microsoft.
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2.6.3 Probabilistic reasoning over time, or sequence to sequence

Whenwe look atdynamicprocesses, we dealwith temporal or time-series data, where
states and observations depend on time: there is a state at a time t and evidence at time
t. An on-going process can then, for example, be modeled by timestep sequences as
1. a chain of states, with a probabilistic state transition model to move from state

at timet−1 to another state at timet defined by P(Statet|Statet−1), and
2. a chain of evidence with an observation model to observe some evidence when

landing in a state, defined by P(Evidencet|Statet).

Here as well, we typically build, then learn, the transition and observation models.
The objective is typically to predict a state, the next state given all evidence so far
P(statet+1|evidence1:t), or to find the most likely sequence of states that could have
generated a sequence of observations P(sequence of states1:t|evidence1:t). In a similar
way to the previous paragraph, different graphical models exist and independence
assumptions are made in order to ensure tractable inferences. For example, with hid-
den Markov model (HMM), a temporal probabilistic model with unobservable states
of a single random variable Statet

38 and with observed variables Evidencet (e. g., evi-
dence from sensors) is built as in Figure 2.6. The Markov property assumes that the
current hidden state Statet depends only on the previous value of the hidden variable
state Statet−1: the values at timet−2, and before, have no influence. Similarly, the value
of the observed variable evidence Evidencet only depends on the value of the hidden
variable state Statet , both at time t. Here again, if they aren’t known, the transition and
observation models can be learned from data.

Figure 2.6: from Chapter 6. The first picture models a chain of steps over time with a hidden Statet and
the observable Evidencet at different time steps. Assuming that an observer tries to guess whether a de-
veloper is programming or chatting, only by looking at his or her facial expression, a simple model could
define Statet with possible value of programming or chatting, and Evidencet with possible value of smil-
ing or frowning. The second picture, called a state transition diagram, illustrates the situation when the
transition probabilities go from one state to another and the observation probabilities are known and
stationary. Example: a probability of 0,1 to change from programming to chatting and a probability of 0,3 to
smile when programming.

38 Or a composite of random variable as t-uples.
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Typical family of techniques in this chapter are hidden Markov model (HMM) for
discrete variables,Kalmanfilters for continuous variables anddynamic Bayesian net-
works, which are a generalization of HMM and Kalman filters. Just as in the previous
static setting, learning can be done as a by-product of inferencing: inferencing the prob-
abilities based on observed evidence provides a first estimate of probable states, and
these estimates can then be used to update the learned model. More about this in Chap-
ter 6.

2.6.4 Industry applications and examples from the book

Many of these models are well known in different branches of science, from physics to
engineering. They are also applied in computer vision and natural language processing
techniques (see Chapter 8), in bioinformatics to evaluate biological data sequences, in
finance for financial predictions, in retail to anticipate consumer purchases, in market-
ing to enhance user conversion rates, etc. In robotics, factor graphs help autonomous
systems make sense of the world and are essential to address the simultaneous local-
ization and mapping (SLAM) problem in robotics, which is to construct and update a
map of an unknown environment using the information coming from robot’s sensors,
while simultaneously keeping track of its location.

Chapter 6 features how Markov chain models are applied inMicrosoft Sentinel39

to help companies detect malicious activities and anomalous sessions in their IT envi-
ronment.

2.6.5 Enrich the abstraction—unify probabilistic models and
formal logic

Like for deterministic environment, representing knowledge in an uncertain domain
can be modeled by using simple propositional logic models, such as in Bayes networks
seen before, or by richer representations such as first-order logic models that allow to
better generalize and scale, known as thefirst-order probabilitymodel.Markov logic
network is such an example of probabilistic logic that generalizes first-order logic in un-
certain environment: it applies the ideas of Markov networks and probabilistic graph-
ical models (Chapter 6) to first-order logic, enabling uncertain inferences. This is also
known as symbolic-statistical modeling.

39 A security information and event management (SIEM) and security orchestration, automation, and
response (SOAR) solution.
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2.6.6 Uncertain states or outcomes in the context of a decision

Probabilistic reasoning techniques not only apply to help predict a cause, or a state,
given some evidence but also support the field of decision theory, where probabilities
and utility theories are combined to make decisions under uncertainty. So, probabilis-
tic reasoning also forms a core part of decision systems. In these problems, a utility
function, which expresses user’s preferences, is associated to the different possible out-
comes, and a rational agent will make the decision that maximize the expected utility
of the decision (the expected utility is the probability-weighted average of utility over
all possible decision outcomes, given a set of random variables). Similar to Bayes net-
works, decision networks model the decision making problem at hand: chance nodes
represent random variables with an associated conditional probability given their par-
ents (e. g., patient’s symptoms given a disease), decision nodes represent the decision
variables that the decision maker sets (e. g., a treatment decision based on the symp-
toms, the test performed and the test result) and utility nodes that depends on parent
variables (e. g., the utility may include costs of tests and treatments, the pain and incon-
venience to the patient in the short term, and the long-term prognosis).

When a sequence of multiple, step-by-step, decisions or actions must be made in
a stochastic environment –that is where transitions from a state to another occur with
some degree of randomness– we are dealing with what is called sequential decision
problems: at each step, a decision must be made after observing a certain state and
receiving a reward. For a robot, for example,
– a state could refer to a position on a grid map,
– an action could refer to a valid move,
– the transition from a position to another based on the decision could be subject to

some uncertainty (noise, failure, etc.), hence defined by some probabilities and a
transition model,

– a rewardmodel can be defined to reach a target destination as quickly as possible.

The objective is to assist the decision-maker in defining an optimal policy, ie a func-
tion that determines the best action to take in any given state. In this context, best is
typically defined by summing the rewards over a state sequence, sum that the agent
seeks to maximize as a utility function. If the model of the environment is known and
the Markov property can be assumed, an agent with sufficient computational resources
can perform computations using that model, plan ahead and design the optimal plan.
That is, decide on an optimal course of actions by considering possible future situations
offline before they are actually experienced live. The so-called Markov decision pro-
cess (MDP) techniques help solve such problems: they define an optimal policy as a set
of actions for optimal control in such a stochastic environment (i. e., given a transition
model and a rewardmodel). Applications that useMDPmodels exist in various domains:
in gaming, robotics, manufacturing for scheduling machine maintenance or repairs, IT
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for server management, solving shortest path problems, optimizing planning to reduce
queuing times, enhancing traffic control, among others.

Reinforcement learning (RL), which was briefly covered in the previous para-
graph about learning, goes a step further. It can be considered as an extension of such
MDP framework where the model of the environment (i. e., the transition and the re-
wards models) isn’t known. RL uses the same conceptual framework of a MDP, but is
typically amodel-free approach, meaning that it learns the model by sampling: the RL-
based agent learns on the basis of experience by interactingwith the environment, from
which it gets rewards based on successive trials. The goal is encoded by a reward sys-
tem and the learning agent devises a strategy to optimize cumulative rewards based on
the feedback received during its interactions with the environment: the algorithm em-
ploys a trial-and-error approach, testing various strategies, experiencing failures, and
then gradually learning to optimize its decisions based on the rewards provided by the
environment. It then exploits its findings for the best possible decisions. The algorithm
balances between a so-called exploration and exploitation phase. So, to sum up, rein-
forcement learning techniques essentially study the problem of making sequential de-
cisions in complex, unknown environments, with potentially long-term consequences.
Examples of applications were mentioned already in the section related to learning, re-
inforcement learning.

2.6.7 Limitations of probabilistic reasoning

There are subjective and objective limitations. As the science of probabilities is a difficult
topic for many, subjective limitations arise from errors or incorrect applications of the
probability theory. Objective limitations arise due to the need for simplifications in the
model, the trade-offs between accuracy and computing time in inference strategies, and
the reliance on available data. Therefore, probabilistic reasoning used inAI sharesmany
of the limitations of machine learning. More about these limitations in Chapter 6 and
Chapter 7.

2.7 Interaction with machines in natural language

Natural language processing (NLP) is a field of AI focused on the interaction between
the human and themachine. It studies how human language (speech, text, and by exten-
sion images) can be either analyzed (natural language understanding) or generated
(natural language generation) by a machine. NLP encompasses various abilities such
as:
– recognizing speech, converting spoken language to text that can be processed by

a computer and transforming written text into spoken audio,
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– categorization of documents,
– extraction of information, relation and entities from text (e. g., name of people,

dates, locations, etc.) or images,
– translation of texts,
– creation of text, summaries, or images,
– the ability of answering questions from given text,
– building dialog systems, conversational agents, or chatbots,
– and many more.

Natural language is hard for computers to comprehend for multiple reasons: the am-
biguity of multiple interpretations depending on the context, the synonyms, the para-
phrases, etc. For example, does the term “bank,” refer to a financial institution or the
side of a river? Only the context can resolve such ambiguity, and furthermore, the con-
text itself may vary depending on the circumstances. Capturing the context of human
interaction is a challenge for AI systems since the foundation of NLP. Also, common-
sense knowledge (such as “if Peter is home, his head is home as well,” mentioned in
the paragraph about the limitations of symbolic AI) is often assumed but not explicitly
mentioned, hence not captured by the algorithms. Note that the use of the word “under-
standing” in understandingnatural language is an abuse of language: it’sworth stressing
that there is no ground truth meaning but a translation into numerical representations
that machines can handle and act upon accordingly. This might give the perception of
understanding, to the extent that it can even fool a human.

2.7.1 Overview of some key concepts

While incorporating its own specificities, natural language processing techniques apply
an assembly of techniques outlined in the preceding paragraphs. Although all the tech-
niques still have their applications nowadays, the field has undergone 3 major stages of
development: from symbolic and rule-based systems (utilizing dictionaries and lexical
databases) to statistical and machine learning systems, and finally to advanced deep
learning techniques. Let’s delve deeper into the details of this evolution.

Early approaches to natural language processing applied existing knowledge of
formal, language-specific, linguistic theories. These were used to model and design a
pipeline of specific rules, which were supplemented by hand-crafted resources, such
as dictionaries and ontologies. Despite the usefulness of this methodology for some
applications, it is challenging to construct and maintain due to its complexity and the
difficulty in determining the appropriate granularity of the definitions.

In statistical andmachine learning-based systems, tasks typically followapipeline
as well. After preprocessing, which includes morphological analysis to have canonical
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forms40 and parsing to identify the structural relationship between words (the syntax
and grammar), the process move to semantic extraction. In this step, a data scien-
tist identifies key features that characterize the text and that are relevant for the NLP
tasks to process. For example, determine the specific features applicable to perform
sentiment analysis41 and define a model that could make use of the adjective like good
versus bad, or great versus poor for doing so. Although those methods remain in use,
new NLP applications have, however, quickly adopted deep learning techniques with
impressive results. To better understand why, a deeper look at two fundamental con-
cepts in modern NLP systems is first needed: the concept of embeddings to determine a
numerical representation of a word, a sentence, or a text, and the concept of a language
model to determine the probability of the next word in a sentence.

2.7.1.1 Vectors and embeddings

Categorical features from text are typically represented by numerical value to be pro-
cessed by machine learning or probabilistic models. Similarly, sentences or documents
must also have their numerical representation to be analyzed. In modern approaches
to NLP, such representation is done by means of vectors, by points in a n-dimensional
space, called a vector space. A model that uses vectors to represent a vocabulary en-
ables the transformation ofwords, phrases, sentences, or documents into vectors, which
enable numerical operations for downstream computing and machine learning tasks.
With 10 words in vocabulary, a very naïve and nonoptimal way, for example, could be
to use 10 dimensions to represent each word with a vector of one 1 and 9 zero’s (also
known as one-hot encoding which represents the categorical variables as binary vec-
tors).

A foundational idea in modern NLP is based on the intuition that similar words
tend to appear in similar contexts and that themeaning of a word is determined by the
words around it. “It assumes that linguistic items that occur in the same contexts have
similar meanings and that therefore some representation of the contexts in which a word
occurs is a good meaning representation for that word” (Chapter 8). Words like “apple”
and “peer” will more probably appear together in a document about fruits than with
words like “car” or “bus.” That’s where the concept of embedding kicks in.

Word embedding techniques learn to represent words as vectors of numbers in a
way that captures semantic, or meaning-related, relations. It is a learned vectorial rep-
resentation, where words that have the same meaning have a similar representation,
that is, they appear close to each other in their numeric representations, as clusters.

40 Lemmatization and stemming are techniques to reduce words to their root form.
41 Determine the emotional flavor of a sentence or a text, whether positive, negative, or neutral, or
identify even more advanced emotional states such as joy, anger, etc.
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It gives a semantic representation to the words. “Cat” and “kitten” will, for example,
appear close to each other in their representation because they are mentioned in the
same context; these will be attached to vectors that are close to each other. The semantic
similarity is then formally measured by the concepts of a distance, such as the distance
between 2 vectors. For example, “dog” and “puppy” will be closer to each other in their
representation than “cat” and “dog” will be closer to “cat” than “houses” (Figure 2.7), etc.
While learning such semantic relations, the process of embeddings also ensures that the
learned representations are low-dimensional and dense. Indeed, embedding reduces
the size of the representation compared to the initial size of a naïve encoding of the dic-
tionary, such as with the one-hot encoding example above. It represents the words in a
much more compact representation than dealing with the original full-size dictionary:
for example, an input dictionary can contain n words whereas the embeddings might
be defined to limit the representation to a smaller number of dimensions. Figure 2.7
illustrates these different concepts: “man” is to “woman” what “king” is to “queen” (pri-

Figure 2.7: Dog, puppy, cat, man, woman, etc. are all part of an initial vocabulary, which might have n
words. Seven dimensions (d1 to d7) are used in this example to attach a vector for the representation of
these words. Those 7 dimensions capture the semantic relations between the words in the dictionary like
“living being,” “feline,” or “gender.” This dimension is then further reduced for a visualization in 2 dimen-
sions. Source: Rozado David “Wide range screening of algorithmic bias in word embedding models using large
sentiment lexicons reveals underreported bias types” 2020, https://doi.org/10.1371/journal.pone.0231189.
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marily the gender), or “cat” and “dog” (living being) are closer to each other than they
are to “houses”. Note the reduction of the number of dimensions as well.

Embedding and similarity of meanings can also apply to sentences, documents,
facts, or even pictures or audio, and then power multiple machine learning tasks for
a diverse set of applications such as: text or image search based on semantics, text clas-
sification, question & answer systems, etc. In a question & answer application for ex-
ample, the question “When was John born?” can be answered with “John was born in
1970” based on a higher similarity with the question than “Peter was born in 1980”. This
method works by first mapping the database elements to their embeddings representa-
tion in the vector space, thenmapping the user’s query to its representation in the same
space and finally choosing the element representation that is nearest to the query as an
answer.

Basic word embedding techniques however are static in the sense that they don’t
capture the context: the word “left,” for example, will have exactly the same representa-
tion wherever it occurs in the text, even though it has 2 different meanings in the same
sentence: “I left my key on the left side of the table.” Given a word in the dictionary, a
static embedding will always be the same, regardless of different context. Nowadays,
capturing the context is addressed by more modern approaches with contextual em-
bedding, typically generated by transformers, the latest generation of deep neural net-
work architecture (see next section). These consider the entire sentence or the wider
context before assigning an embedding. The embeddings generated for each word will
then depend on the other words in a given sentence: “left” in our example will have two
different embeddings. More about embeddings in Chapter 8.

2.7.1.2 Impact of deep neural network on natural language processing

Legacymachine learning-based approaches inNLPapplications involvenumerousman-
ually intensive tasks. These include handcrafted engineering in the processing pipeline,
such as preprocessing raw data, defining relevant text characteristics as features for
the model, creating the learning models, and training them on specific tasks using man-
ually annotated data sets. This is a manually intensive approach, which isn’t realistic to
address vast amounts of texts and documents.Deep learning has revolutionized the ap-
proaches by removing such chores: deep learning-based embedding algorithms process
millions of documents on the internet to learn and produce condensed semantic repre-
sentations of text or documents. These are unsupervised learning tasks performed at
the scale of the internet. The data is then directly fed into these deep learning models,
which learn the features and the language models (see next paragraph) from the data.
So, it streamlines the end-end process by removing the need for handcrafted feature
engineering and letting the deep neural network figure out the best features and mod-
els to use for the task at hand, which generally gives improved performance.
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So, a deepneural network, trainedonmassive amounts of public data likeWikipedia
in an unsupervised manner without labeling data, eliminates the need for complex,
hand-crafted feature engineering and modeling. However, it comes at a cost as it is less
transparent than traditional classical NLP approaches. It’s also important to remember
that these models inherit any bias present in the content used for training (Chapter 9).

2.7.1.3 Language models and transformers

After the embedding stage in the NLP processing steps, the objective of a language
model is to predict the probability of a word (or a sentence,. . . , depending on the task)
given the previous, or a set of other words around it. Language models are an essen-
tial part of the NLP system as they help create predictions for applications that have a
language structure: predict the best answer to a question, write essays, summarize text,
perform language translations, etc.

The techniques to make such predictions have evolved over time, from the classical
statisticalmethods (such as simple counting, hiddenMarkovmodel, see Chapter 6) to the
latest innovation in deep learning architectures: from recurrent neural networks to
transformer-based language models, which rather process sentences as a whole using
the mechanism of attention and additional type of embeddings,42 concepts which will
be covered in Chapter 8. Transformer-based architectures (Google, 2017) are at the heart
of Google’s BERT model and of the generative pre-trained transformer (GPT)models
released by OpenAI research laboratory in 2018.

Thesemodels and their later versions have pretrained languagemodels (an unsu-
pervised pretraining step), which are then available for anyone to access and use. This
approach has the main benefit that data scientists don’t need to train a language model
from scratch, which is expensive, computationally intensive, and needs huge amounts
of texts. Transferring this learning (also known as transfer learning), the pretrained
model is then possibly fine-tuned on downstream tasks (such as text classification, en-
tity extraction, question answering) with a specific dataset and limited training needs.

And the progress has continued: the next generation goes even a step further by
becoming multi-tasks, without requiring fine-tuning on downstream tasks. They can
perform tasks for which they were not explicitly trained, with only a few, or even no
training examples (this is respectively referred to as few-shot learning and zero-shot
learning). Further details are available in Chapter 8.

42 Positional embeddings keep track of positions, segment embeddings keep track of structural compo-
nents.
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2.7.2 Industry applications and examples in the book

NLP applications can broadly be split by their tasks: they can classify, extract, sum-
marize, retrieve information, or based on instructions, generate information into
human-understandable text, credible images or even videos.

Textual NLP systems can determine the language of documents, translate, classify,
and summarize documents, retrieve documents that are semantically relevant to a user
query, and more. They can also analyze the content from documents: analyze the senti-
ment of texts, classify sections of text, extract information such as interesting entities
(the instances of predefined categories such as people, date, location, such as “Brussels”
as an instance of a city), and their relations43 and derive key topics. NLP techniques also
support question answering systems to pull answers from a collection of documents.
All those capabilities are not only useful to automate company business processes (pro-
cessing of orders, invoices, contracts, sales documents, etc) but also to automatically
mine vast amounts of documents, perform advanced, semantic-based searches, develop
applications to interact with documents in natural language and get much faster insight
from these.

In generation related tasks, natural language generation can create sequences of
tokens (e. g., words) based on a context, like suggesting the best next word to type in
(e. g., when you type in a SMS) or automating the creation of human understandable
content: generate responses in conversational AI agent, develop business reports, write
news or articles, generate computer code, create credible images, and even videos.

More recently, NLP techniques apply inmultimodal applications to understand and
generate information acrossmultiplemodes of communication, such as text, speech, im-
ages, and videos. This allows, for instance, the automatic generation of text descriptions
and summaries of what images or videos contain.

Legal Village, anAXA44 business unit specialist in legal protection insurance, lever-
ages a knowledge mining solution developed by Pythagoria, a company based in Lux-
embourg that offers services and solutions for knowledge management and text min-
ing. Their solution to assist the lawyers in their daily tasks is illustrated in Chapter 8.
The same chapter also describes how the procurement teams of Daimler AG,45 a lead-
ing international automotive manufacturer based in Germany, are assisted by a solu-
tion developed by Icertis, an American software company that provides contract man-
agement solutions to enterprise businesses. The solution automatically parses contracts
from different languages, sources and formats, identifies the contractual clauses, classi-
fies them, then extracts relevant metadata and semantics. The information processed is

43 Information extraction (from unstructured information in texts into structured data) and relation
extraction. So, NLP systems can help automate the creation of ontologies. See Chapter 5.
44 French multinational insurance company.
45 The official company name of Daimler AG is now Mercedes-Benz Group AG (February 2022).
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then available for structured, rich semantics-based searches and reports. Finally, in the
same chapter, we see how different NLP techniques, including transformer techniques,
are used in Microsoft QnA Maker to create knowledge base by extracting questions
and answers frommanuals, FAQs, and documents. Microsoft QnAMaker is then used in
chatbot applications to answer questions fromusers. Note that the techniques illustrated
by the example of QnA Maker are no longer used in the new commercial applications:
indeed, newer and more sophisticated methods have emerged since the book writing
process began, but the basic ideas are still very applicable.

By adding a dialog management system and a response generator (using template
or generative AImodels), conversational agents or chatbots can create interactive sys-
tems that can converse in human languages: KBC Group offers an AI-enabled chatbot
to automate several parts of the claim process in their car insurance offer. With half
of the claims now being fully automated, their chatbot reduces the labor chore and of-
fers a faster resolution time for their customers. See a description of the example in
Chapter 10. Amazon Alexa, Apple Siri, Microsoft Cortana, Google Assistant are all
well-known examples of voice activated personal assistants available on the market. As
a result of breakthrough in NLP techniques, ChatGPT, developed and released by Ope-
nAI in November 2022. Microsoft Copilot, was launched by Microsoft in the course of
2023. Both are examples of chatbots based on large language models (LLM, namely
GPT-3.5 and GPT-4), fine-tuned46 to handle conversations.

2.7.3 Limitations of natural language processing
Although they can generate high-quality text and display impressive useful results, NLP
language models nowadays are fundamentally based on probabilities: they are not de-
terministic, still not fully reliable in the sense that they are still prone to so-called hal-
lucinations, which refers to the generation of outputs that may sound plausible but
are either factually incorrect or unrelated to the given context. These false outputs of-
ten emerge from the model’s inherent biases, its lack of real-world understanding, the
limitations of the training data, the model’s propensity to guess based on statistical pat-
terns rather than factual accuracy, etc. Although the rates of hallucination might be re-
duced and have improved with certain techniques, this could be detrimental in situa-
tions where deterministic and less error-prone answers are required. They also inherit
the errors andbias introduced by their trainingmaterial, whichmust therefore be care-
fully considered. An interesting paragraph about ChatGPT limitations, for example, can
be found on the blog of OpenAI “Introducing ChatGPT (openai.com).“ These aspects are
important areas of current research. See Chapter 8 and Chapter 9.

How much of the commonsense knowledge is really picked up by those models
from the available content on the internet is also debatable: will people explicitly ex-

46 With supervised learning and reinforcement learning techniques.
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press on the internet what makes common sense to them? Is that only a question of
time?

Besides limitations, new technologies also present the dangers of misuse. Perfor-
mant NLP techniques such as GPT-3 and beyond, present potential harmful effects,
raised by their inventors themselves. For example, such NLP systems can be used to
automatically generate fakes that can hardly be distinguished from articles written by
humans and, therefore, be used as weapons for misinformation, phishing, fraudulent
writing, and influence the public masses. Artificial intelligence systems can generate
text, audio, images, videos that are so realistic that humans may have a hard time
distinguishing between outputs that are created by technology and those that are not.
This again raises ethical concerns and the need for techniques that can address and
mitigate those risks, such as fake detection techniques.

2.8 The importance of an ethical approach to AI

Trust is a prerequisite for people, companies, and societies to deploy and useAI systems.
As usage of AI applications has grown, so has the awareness of the various risks raised
by AI systems. Like any technology, they are susceptible not only to malicious usage but
also to inherent imperfections. These imperfections can manifest as errors and biases
in their predictions or classifications, leading to incorrect decisions being made. The
effectiveness of trained systems is only as good as the data they were trained on and
the models they employ, with errors. Learning systems can also sometimes operate in
unexpected, undesirable, and opaque ways.

These imperfections thus raise ethical concerns as AI applications increasingly as-
sist in taking decisions that impact people’s lives whether, for example, someone gets a
job, a loan, or something else ruled by an algorithm. Applications must be aligned with
fairness, transparency, and justice goals to avoid the possible negative outcomes of deci-
sions taken or supported by AI systems.While technology companies and public organi-
zations have raised concerns and proposed different sets of guidelines, a couple of ethi-
cal principles seem to emerge: an analysis that aims atmapping the global landscape of
existing guidelines for ethical AI systems reveal some commonalities: “Our results re-
veal a global convergence emerging around 5 ethical principles: transparency, justice and
fairness, nonmaleficence, responsibility and privacy, with substantive divergence in rela-
tion to how these principles are interpreted; why they are deemed important; what issue,
domain, or actors they pertain to; and how they should be implemented.” (Anna Jobin,
Marcello Ienca, and Effy Vayena, artificial intelligence: the global landscape of ethics
guidelines, 2019). Consensus seems to emerge that ethical AI systems should adhere to
the following principles:
– be understandable by humans,
– be fair and inclusive to treat all people and groups the same way,
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– be accountable to provide people that have been harmed with a remedy,
– be reliable and safe for humans,
– respect privacy.

As aworld’s first, it’sworth noting that the EuropeanCommission released inApril 2021 a
proposal for a regulatory framework, called the “Artificial Intelligence Act,” to ensure
that AI systems are used in ways that respect fundamental rights and European values
including human oversight, safety, privacy, transparency, nondiscrimination, and social
and environmental well-being. At this time of reviewing, a draft text of the legislation
serves as the negotiating position for talks between themember states and the European
Parliament (see EU AI Act: first regulation on artificial intelligence).

Trustworthy AI systems require a holistic approach, conscious efforts from all the
stakeholders to address the risks but it’s outside the purpose of this book to consider all
the aspects. Chapter 9 gives a glimpse at the risks and techniques to mitigate those, with
a particular focus on two specific aspects: how to protect AI systems from bias (known
as fairness) and have them more understandable (known as interpretability). Chap-
ter 9 also illustrates how EY (also known as Ernst&Young, a multinational professional
services firm that specializes in providing assurance, tax, consulting, and advisory ser-
vices) applies some of those techniques to improve the fairness of loans decisions. It also
shows how an airline company improved both the transparency and fairness of their
fraud detection models, a common issue in customer loyalty programs.
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Yves Deville
3 Solve problems by searching, including with
constraints, a fundamental pillar

3.1 Why is solving problems by search important
within the broader artificial intelligence (AI)
domain?

Search techniques are important and efficient tools for decision-making and solving
complex combinatorial problems. This chapter proposes different paradigms that can
be integrated in search agents to handle various classes of problems. Classical search
algorithms are used in goal-based agents that are looking for a series of actions lead-
ing to a specific goal. A classical application is route planning in a search algorithm,
the environment is modeled as a state. At each step, the agent has to choose between
different actions that change the current state of the environment. The set of possible
actions lead to state space graph that has to be searched by the algorithm in order to
find an adequate series of actions leading to the goal. Many AI applications are opti-
mization problems looking for the best solution according to some cost function. Search
algorithms can then be extended to ensure the finding of the best solution and integrate
heuristics to speed-up the search.

The second searching paradigm is called constraint satisfaction problem (CSP). It
generalizes classical search techniques as it proposes an expressive modeling through
decision variables and constraints that must be satisfied by a solution. It also covers
optimization problems by adding an objective function to be maximized or minimized.
Two approaches are described for solving CSP. Constraint programming offers a prop-
agation strategy that reduces the search space. Local search, although it cannot always
find an optimal solution, is a pragmatic and well-used technique for solving complex
problems. It ensures to rapidly find an approximation of the best solution. This chap-
ter presents an application related to a configuration problem often present in product
and software delivery. But CSPs can be used in many AI and operation research prob-
lems such as scheduling, timetabling, manufacturing problems, business, circuit design,
configuration, etc.

Logic is an important tool in AI. First-order and other advanced logics can be used
for reasoning and knowledge representation (see Chapters 4 and 5). This chapter shows
how propositional logic, the simplest logic, can be used not only to model complex AI
problems and CSPs but also to efficiently solve them by using SAT solvers.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111426143-003
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3.2 Search algorithms

Search strategies are important methods underlying many approaches for problem
solving. Search algorithms are also the basis for many optimization and planning meth-
ods.

3.2.1 What category of problems do search algorithms solve?

Search algorithms address problems for which the environment can be observed and
modeled by a set of states, with known and deterministic rules of transition from one
state to another. Using these rules, we look ahead for the best sequence of actions to
take in order to reach from an initial state a specific goal, either a specific end state or a
state that matches some conditions. The environmental knowledge that supports such
decision is explicitly represented by states, and the decision taken by the agent involves
the consideration of possible steps in the future, in order to reach the defined goal. So,
the proposed techniques belong therefore to the category of “goal based” agent.

The use of search techniques requires an abstract formulation of the problem and
of the available steps to construct a solution. By search, we mean the process of looking
for a sequence of actions that leads to a goal starting from an initial state. For an opti-
mization problem, one looks for the best sequence of actions, that is, the sequence with
the lowest cost.

Example. The 8-puzzle, also called sliding blocks, is a simple but illustrative example.
Starting from an initial state (see Figure 3.1), an action consists of moving a tile adjacent
to the empty cell, also called blank cell, to the empty cell. The objective is then to find
the (minimal number of) actions leading to the goal state from the initial state.

Figure 3.1: 8-Puzzle.

A state is an abstract representation of a possible stage of the problem. The initial
state is a starting state for the search. The hypothesis is that the state is discrete,meaning
that the number of states is finite, although usually very large.
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An action transforms one state into another one by the application of an operator to
the state. An operator can have preconditions on the given state to be applicable. The set
of available operators depends on the given problem. The number of possible actions is
an important factor on the complexity for solving the problem.

The goal can be an explicit state, but more generally, the goal is represented by a
condition that must be satisfied by a state. In this case, the goal is a set of states.

In an optimization problem, a nonnegative cost is associated to each action. The cost
of a sequence of actions, called a path cost, is then the sum of the cost of the actions in
the sequence.

Example. A state for the 8-puzzle could be represented by a vector of 9 elements, listing
the tiles, line by line, using the symbolB for the empty cell. The initial state is represented
by [1, 3, 2, 8,B, 4, 5, 6, 7]. Of course,many other representations can be used, such as a 3×3
matrix.

An action for the 8-puzzle could be to move a (numbered) tile Up, Down, Left, or
Right. Each action has a precondition that the move is possible (the target position is the
empty cell). We thus have potentially 8× 4 = 32 actions for a given state. A better design
for the actions is to consider themove of the empty tile Up, Down, Left, or Right. We now
only have 4 possible actions per state. As an example,moveRight([1, 3, 2, 8,B, 4, 5, 6, 7]) =[1, 3, 2, 8, 4,B, 5, 6, 7].

The goal test of the 8-puzzle is the single state [1, 2, 3, 8,B, 4, 7, 6, 5].
In the 8-puzzle, the cost of each action is 1.

3.2.2 Solving problems by search without heuristics

As illustrated by the above example, the overall approach to solve search problems re-
quires essentially the following:
– modeling the problem as a search problem, defined by states, an initial state and a

description of the possible transitions from a state to another one;
– a goal, defined by a condition which must be satisfied;
– search activities to identify the right sequence of actions, that is, choose the next

action from several possibilities, in order to reach the goal.

Once a sequence of actions to reach the goal conditions is found, the agent can then
execute that list of actions. The search activities essentially consist of growing a search
tree directly on a “state space” graph until a solution is found. Different search strategies
exist, and they can be uninformed or informed, with the notion of “heuristics.”

The search for a solution, that is a sequence of actions, can be performed on a search
tree derived from expanding the current state using the possible operators. This leads
to tree-search algorithms that generate and traverse such a tree in order to find a state
satisfying the goal.
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A node in a search tree contains a state, a link to its parent node, the action applied
on the state of the parent node yielding the state of the node, the depth of the node in
the tree, and the path cost from the root to the node. In Figure 3.2, labels on the node
correspond to different states. It clearly shows that in a search tree, the same state may
appear in different nodes. Although the number of states is finite, the search tree can
therefore be infinite.

Figure 3.2: A search tree.

It is important to notice that the solution of the problem is not only the node with a
state satisfying the goal, called a goal node, but the whole path from the root of the tree
to a goal node defining a sequence of actions.

The parameters characterizing the complexity of a search problem are the branch-
ing factor, that is the average number of children of a node. In the 8-puzzle, the branch-
ing factor is about 1.732, assuming we do not consider the action to return to the state
of the parent node. An example of a search tree for the 8-puzzle problem is shown in
Figure 3.3.

3.2.2.1 A generic tree search algorithm

Figure 3.4 proposes a generic tree search algorithm. It has two parameters, the problem
to be solved, and the frontier that should be empty when launching this algorithm. The
frontier is an abstract data structure maintaining a set of nodes which ancestors in the
search tree have all been goal-tested that have been visited.

The algorithm picks a node in the frontier and checks whether it has a state that
satisfies the goal. If it is not the case, news nodes are created for each of the possible
states reachable by an action from the state of the current node (the expand algorithm).
These nodes are then inserted in the frontier and the search continues. At the beginning,
the algorithm should start from the initial state. This is achieved by calling this tree



3 Solve problems by searching, including with constraints, a fundamental pillar � 67

Figure 3.3: A search tree for the 8-puzzle.

Figure 3.4: Generic tree search algorithm.
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search algorithm with the frontier containing only the root node with the initial state.
The search will then start from the initial state.

The frontier is organized in such a way that the search algorithm chooses the next
node to test and expand according to some preferred search strategy. Different organi-
zations of the frontier lead to different versions of the algorithms. The frontier should
be able to insert one or several nodes and should return the first element according to
the internal organization of the frontier.

Figure 3.5 illustrates the first four iterations of the tree search algorithm on a small
abstract example. The list of nodes in the frontier is successively (A), then (B, C), (C,D, E),
and (D, E, F ,G). In each step, the expanded node is highlighted by a marker.

Figure 3.5: An example of execution.

The result of the tree-search algorithm is not only a node, but it is also implicitly the
path from the root to the returned node, from which the sequence of actions to reach
the goal from the initial state can be extracted.

The generic tree-search algorithm performed an uninformed search, also called
blind search. The search is not goal oriented, nor does it exploit the path costs to guide
the search to an optimal solution.

3.2.2.2 Breadth-first and depth-first search algorithms

Breadth-first search (BFS) is an instance of the generic tree search algorithm, depicted
in Figure 3.6, where the frontier is organized as a FIFO queue (first in, first out). It means
that after the visit of the root node, the algorithmwill visit all the nodes at depth 1 before
visiting the nodes at depth 2, etc. The order of the node visit is illustrated in Figure 3.7. It
is assumed that the insertion of the nodes in the frontier realized by the frontier.insert()
operation is done from left to right.

Depth-first search (DFS) is another instance of the tree search algorithm, also de-
picted in Figure 3.6. In DFS, the frontier is organized as a stack or LIFO queue (last in,
first out). The order of the node visit is illustrated in Figure 3.8. It is assumed that the
insertion of the nodes in the frontier realized by the frontier.insert() operation is done
from right to left.
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Figure 3.6: BFS, DFS and uniform cost algorithms.

The evaluation of search algorithms can be done according to different criteria. Does the algorithm find
a solution if one exists, what is called completeness? Is it able to find the least cost solution, what is
called optimality? What is its computation time and space complexities? Computation time and space
complexities are measured in terms of the (maximum) branching factor (b) of the search tree, the depth
of the least cost solution (d) and the maximum depth (m) of the search tree. The value b is assumed to be
finite, but the value m can be infinite. The time complexity is measured in terms of the number of nodes
visited.

BFS is complete; its time and space complexities are O(bd+1), the number of generated nodes. It is
also optimal when the cost of each possible action is 1. BFS is nice as it handles very well infinite search
tree. Its space complexity is often a problem for large problem.Nonodes can be deleted during the search
as they may be part of the solution, that is a path from the root to a goal node.

BFS can also be seen as an instance of the generic algorithm where the frontier is organized as a
priority queue ordered by the depth of the node. Uniform cost search is a standard variant of BFS, depicted
in Figure 3.4, where the frontier is a priority queue ordered by the path cost of the node (denoted g(n)).
The node with the lowest cost is thus explored first. Uniform cost is complete and optimal.

DFS is not complete as it can fall in an infinite branch of the tree when m is infinite. If m is finite,
the time complexity is O(bm). Its space complexity is O(mb), that is the maximum number of nodes in the
frontier. One can observe that all the nodes in the frontier are all children of nodes in a single path in the
tree. All the visited nodes without children in the frontier can thus be removed during the search. DFS is
not optimal.

Figure 3.7: Order of node visit in BFS algorithms.
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Figure 3.8: Order of node visit in DFS algorithm.

3.2.2.3 Iterative deepening

BFS has nice properties such as completeness and optimality but has a space issue. DFS has a nice space
complexity but is not complete nor optimal. Iterative deepening combines the qualities of both algo-
rithms. The idea is to apply DFS, but with a limited depth. The search tree is not expanded beyond the
depth limit. Of course, DFS with a depth limit is not complete. Iterative deepening performs a succession
of DFS with a increasing depth limit (0, 1, 2, . . . ) until a solution is found. It is complete as a solution will
be found if there is one. The space complexity is O(mb) as we restart a DFS at each step. Many nodes are
visited multiple times, as illustrated in Figure 3.9. The root node is generated (d + 1) times, the d nodes
at depth 1 are generated d times, . . . the bd−1 nodes at depth d − 1 are generated twice, the bd nodes at
depth d are generated once. From a complexity perspective, the time complexity is thus O(bd). Iterative
deepening is thus a suitable uninformed algorithm for tree search.

Figure 3.9: Order of node visit in iterative deepening algorithm.

3.2.3 Solving problems by search with heuristics

3.2.3.1 Evaluation and heuristics

BFS has nice properties. The idea of informed search is to exploit problem specific
knowledge to find or deduce information about future states and future paths. This
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information is then used to make better decisions when traversing the search tree.
Technically, informed search associates an evaluation function to each node n, denoted
f (n). This value models the quality of the node. Node with a low f (n) value will be
preferred when selecting a node in the frontier.

One usually decomposes the evaluation function f (n) in two components:

f (n) = g(n) + h(n)
where g(n) is the exact cost to reach node n from root nodewith the initial state, and h(n)
is an estimated cost, called the heuristic function, to reach a goal from node n. When no
heuristic is used (i. e. h(n) = 0 for all n), the search reduces to an (uniformed) uniform
cost search based on g(n).

The objective of the heuristic function is to speed up the search from a node to a
goal, by favoring nodes that are expected to be closer to a goal. A heuristic function h(n)
is called admissible if it never overestimates the real cost to reach a goal. The heuristic
is thus optimistic. As a consequence, the value f (n) never overestimates the cost of a
solution through the node n. When n is a node with a goal state, h(n) = 0 if the heuristic
is admissible.

3.2.3.2 The A∗ algorithm
The integration of a heuristic function leads to two different instances of the generic
algorithmwhere the frontier is organized as a priority queue. In the greedy best first al-
gorithm, the order is based on the heuristic function h(n). In the A∗ algorithm, the order
is based on g(n) + f (n). In the greedy best first algorithm, the objective is to reach a goal
node as soon as possible from the frontier. In the A∗ algorithm, the objective is to find
the optimal solution as soon as possible. A∗ is thus particularly adapted to optimization
problems.

Greedy best first algorithm is not complete as it can fall in an infinite branch of the
tree when m is infinite. If m is finite, its time and space complexity is O(bm). It is also
not optimal. But this algorithm is often better than DFS thanks to the heuristic function
guiding the search.

A∗ is complete, with a time and space complexity if O(bd). Contrary to DFS, all the
visited nodes must be kept in memory as they may be part of the solution. When the
heuristics is admissible, then A∗ is optimal. It thus always returns an optimal solution.
If the cost of the best solution is c∗, then A∗ will expand each node n with f (n) < c∗ but
never expand a node nwith f (n) > c∗. A nonadmissible heuristic can be useful to speed
up the search, but A∗ does not longer grantees to find an optimal solution.

The idea of iterative deepening can also be applied on A∗, leading to iterative deep-
ening A∗ (IDA∗). Instead of increasing the depth of the search from one execution of A∗
to the execution of A∗, one increases the maximum value of the evaluation of nodes in
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the frontier that are expanded. Technically speaking, at each iteration, A∗ only expands
nodes with an evaluation less than or equal to the smallest value of the evaluation func-
tion among all the nonexpanded nodes in the previous iteration. IDA∗ is complete, its
time complexity is exponential (but hard to express) and its space complexity is linear.
It is also optimal.

3.2.3.3 Examples

Example 8-puzzle
Different heuristics could be defined for the 8-puzzle problem.
– h1(n) is the number of misplaced tiles (h(n) = 4 in the start state in Figure 3.1).
– h2(n) is the sum of the Manhattan distance (horizontal + vertical distance) of each

tile to its position in the goal (h(n) = 6 in the start state in Figure 3.1).

Both heuristics can be computed efficiently and are also admissible. They never overes-
timate the number of actions required to reach the goal. For any given node n, heuristics
h2(n) will always be greater than or equal to h1(n). Heuristic h2(n) is said to dominate
h1(n) as A∗ will always expand less nodes with h2(n) than with h1(n).
Example route planner
Finding the shortest path to travel from one position to another is a classical problem
in combinatorial optimization. It can be modeled as finding the shortest path between
a source node and a destination node in a weighted graph (single-pair shortest path
problem), where the cost of an arc(A,B) is the distance (or time) to reach A from B and
vice versa. An example is illustrated in Figure 3.10. The shortest path from A to D is
A-B-F-C-D and has a cost of 18.

Figure 3.10: Shortest path problem.
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The shortest path can be solved by thewell-knownDijkstra algorithm. The complex-
ity of this algorithm is O((n+ a) log(n)) using a priority queue, where n is the number of
nodes and a the number of arcs in the graph. The Dijkstra algorithm actually computes
the single-source shortest path problem, that is, finding the shortest path from a source
node to all other nodes of the graph. For solving the single-pair shortest path problem,
such a complexity can be unaffordable for very large graph as requires at worst to visit
all the nodes and arcs of the graph.

The Dijsktra algorithm for solving the single-pair shortest path problem can be seen
as the A∗ algorithm, but with a heuristic function h(n) = 0. By adding a heuristic, the
performance of the search can be drastically improved. The standard heuristic used in
travel routing problem is to use the Euclidean distance between a node of the graph and
the goal node as an approximation of the cost of the path from this node of the graph
to the goal node. This heuristic is admissible as it never overestimates the real cost: the
Euclidian distance is the shortest distance between two points.

3.2.3.4 Designing and comparing heuristics

Designing a heuristic is not a simple task. A heuristic h(n) = 0 for all nodes is admissible but does not
provide any information. On the other extreme, a heuristic function h(n) yielding the exact distance to a
goal is very informative but is computationally too costly as its evaluation requires itself a whole search.
The basic idea is to relax the problem, for instance by reducing restrictions on possible actions allowing
an efficient computation. In the 8 puzzle, heuristic h1(n) allows teleportation and h2(n) allows the super-
position of tiles. In the shortest path problem, the heuristic removes the requirement to take roads.

How to compare different heuristics for a given problem? For a given instance of the problem, the
shape of the search tree for the two heuristics could be very different and, therefore, not comparable.
Comparing the number of expanded nodes in both trees is a possibility, but these numbers are specific
to instances. In order to be independent from the instances, one introduces the effective branching factor.
The idea is to reorganize a search tree into a complete tree in order to make them comparable. The
branching factor b∗ of the complete tree is then the effective branching factor of the initial search tree.
If we have a search tree with N nodes, the effective branching factor b∗ is the solution of the following
equation where d is the depth of the goal node:

N = 1 + b∗ + (b∗)2 + ⋅ ⋅ ⋅ + (b∗)d
What is nice is that the effective branching factor is relatively independent from the depth of the solution
and comparison can be made between different instances. An effective branching factor of 1 is ideal and
means that at each step of the search, the right choice is made.

The effective branching factor of the 8-puzzle without heuristics is around 2.80 but reduces around
1.45 with heuristic h1(n) and around 1.30 with heuristic h2(n).
3.2.4 What are the limitations of search algorithms?

Solving by search proposes a series of algorithms that are more similar than different.
They are all based on the same generic algorithm; they differ from the order of the nodes
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that are visited in the frontier. For solving a specific problem, one has to complete the
chosen algorithm by designing a data structure representing a state and by developing
methods encoding the goal test and the possible actions (operators) on a state. It thus
requires some programming skill.

From an algorithm point of view, if the search is uninformed, IDA is a good choice
among the described algorithms in this chapter.When it is possible to exploit a heuristic,
A∗ is a nice algorithm but has space complexity issue. IDA∗ is a possible way, but there
exist many other approaches, based on A∗, that offer a better space complexity than A∗
(recursive best-first search, simple memory-bounded A∗).

Search algorithms are well suited when there is an initial state, a (set of) goal
state(s), and the expected result is a sequence of actions leading to a goal. However, for
many optimization problems, the objective is to find a goal and there is no need for a
sequence of actions. The cost of a solution is then a function of the state rather than a
sum of the cost of actions.

In all the proposed algorithms, the same state can be visited multiple times. This can be avoided by con-
sidering graph search instead of tree search. The idea is simple. In the generic tree search algorithm, a
list of visited states, called closed, is maintained during the search. The extracted node in the frontier is
expanded only if its state has never been visited. The generic graph search algorithm is depicted in Fig-
ure 3.11. All the variants of the tree search can also be applied for graph search. The time complexities are
similar as they describe worst cases. However, the space complexity of graph search is always exponential
as all the visited states have to be recorded.

Figure 3.11: Generic graph search algorithm.

When solving a problem by a search algorithm, we need a procedural representation of the problem
through a data structure and methods encoding the goal test and the possible actions. A procedural rep-
resentation explicitly describes how to do or compute things. At the opposite, a declarative representation
describes the characteristics and properties of the problem without explicitly proposing a computational
way to update data structures not to solve the problem. Query languages to query databases like SQL,
are typically declarative, for example. In order to exploit a declarative representation of a problem, one
needs a generic problem solver such as constraint satisfaction or SAT solvers, developed in the next two
sections. A generic problem solver is an algorithm that is able to solve any problem based on a given
representation of the problem.



3 Solve problems by searching, including with constraints, a fundamental pillar � 75

In an informed search, it is possible to exploit a heuristic, that is, properties of the prob-
lem to speed-up the searchwithout changing the search algorithm. Theheuristic is coded
in a specific and external evaluation function. This approach has two limitations. First,
it can only handle properties that can be encoded in a function evaluating the cost from
a state to a goal. Second, it can only state problem dependent heuristics and no generic
heuristics.

Search techniques only apply to deterministic and known environments that can be
modeled by states and atomic actions. Limitations are that the modeling and the heuris-
tics are problem specific, that the modeling might lead to an explosion of the number of
states, and that although search techniques are able to perform some “look ahead” pre-
diction through heuristics, but they don’t infer nor deduce information, like “reasoning
approaches” do.

The next sections will show how these limitations can be lifted and how a generic
heuristic can be handled.

3.2.5 Industry example. The fastest route with search and
heuristics, using Bing Maps Routes API
Yves Deville​, Sanjib Dutta

3.2.5.1 Route planner

A route planner is a tool that finds the shortest path from one location to another loca-
tion on an existing road network. While it sounds like a very trivial problem to solve,
it has many challenges given the size of the road networks and the level of customiza-
tion needed to support various user choices. For instance, preferences and constraints
can be expressed to leave or arrive at a certain time, go through intermediate locations,
change the cost function (time, distance, emission, financial), avoid some roads, com-
bine different transport modes, or integrate schedules of public transportation. Route
planning services are proposed by many tools and apps such as Google Maps, Route XL,
Waze, MapQuest, Bing, and GraphHopper.

Unlike most of the other graph problems, a routing graph is dynamic. The cost of
an arc can change dynamically based on the traffic condition at a particular time. A
route, which is least cost at 12 AM in the night, may not be the best choice at 7 AM.
Reversible road segments also reverse the direction of travel based on the time of the
day; some turns also become illegal based on the time. Some roads segmentsmay ormay
not be traveled based on the user’s destination. For example, if the user’s destination is
a parking lot, the parking lot may be used for routing, but should not be used (even if
using it leads to a better cost route) otherwise.

Performance is an important issue when planning a route from one point to some
destination point. Because of the size of the road network, a simple 50-mile route may
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end up touching millions of edges before finding the optimal route. One of the tech-
niques that is widely used to solve the performance issue is using shortcuts (precom-
puted small routes) that reduces the number of edges significantly, but shortcuts cannot
be used with dynamic graphs or where user preference is considered.

A∗ with a good choice of heuristics can be used to considerably reduce the num-
ber of nodes needed to be examined during the search in a dynamic graph and user
preference-based filtering.

3.2.5.2 Bing map routing using A∗
Bing routing offers a set of tools to get directions and route information to and from any-
where. It provides an application programming interface (API) called Bing Maps Routes
API to perform different tasks, including various routing problems. Bing router uses Eu-
clidean distance (great circle distance) to the target location for the heuristic function to
determine the cost of a node that is being explored next. To calculate the time required
to travel this estimated distance, various options can be used. Examples are (i) incoming
road speed, (ii) a fixed road speed based on the region (max speed in that region). Issues
with (i) is that highways get prioritized too much over local roads and there is a risk
that many legitimate local paths may not be explored. On the other hand, (ii) does not
prioritize highways over the local roads. Bing map routing exploits a refined version of
(ii) using road hierarchy. A higher hierarchy road will be given a little more preference
unless it is too near to the source or the destination. Assuming there are 5 levels of road
hierarchies, with hierarchy 1 higher than hierarchy 2, penalties can be assigned to lower
hierarchy roads gradually, such as

hierarchyModifiers = [1.0, 1.05, 1.2, 1.3, 1.4].
Given a node n, the heuristic h(n), that is, the estimated (time) cost to travel from n to
the destination node is computed as follows. The estimated cost is first computed by
dividing the Euclidian distance to the destination by a given fixed speed. If the node n
is not too near to the source or the destination, this estimated cost is then multiplied by
the hierarchy modifier corresponding to the road used to lead to node n in the search.
In the above example, the estimated cost of nodes reached by a road with hierarchy 3
will be multiplied by 1.2.

This routing approach is illustrated in Figure 3.12 with a partial graph showing con-
nected roads with two road hierarchies and length of the arcs in meter.
– Green: Hierarchy 3, Speed 36 km/h
– Purple: Hierarchy 1, Speed 54 km/h

The starting node is n3 and the destination node is n14. Table 3.1 shows the Euclidean
distance between each node and the destination node n14. For each hierarchy level, the
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Figure 3.12: Finding a route from node n3 to n14.

Table 3.1: Table of distances and heuristics of nodes to destination n14.

n1 n2 n3 n4 n5 n6 n7
Dist 780 780 350 300 250 250 280

Hrchy 1 3 1 3 1 3 1 3 1 3 1 3 1 3
h(n, .) 52 62 52 62 23 28 20 24 17 20 17 20 19 22

n8 n9 n10 n11 n12 n13
Dist 300 220 220 200 220 200

Hrchy 1 3 1 3 1 3 1 3 1 3 1 3
h(n, .) 23 28 15 18 15 18 13 16 15 18 13 16

estimated cost is also provided. The used fixed speed here is 54 km/h. So, for node n1, we
get the following values for h(n1, i), expressed in seconds, where i is the hierarchy of the
arc leading to node n1 in the search.
– h(n1, 1) = 780m/54 km/h ∗ 1.0 = 52 sec
– h(n1, 3) = 780m/54 km/h ∗ 1.2 = 62 sec
In this small example, hierarchy modification will be applied whatever the distance of
the node to the source and the destination.
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Figure 3.13: Steps in the search tree for a route from n3 to n14.

Figure 3.13 depicted the search tree in the different steps of the A∗ algorithm on
the above graph to find an (optimal) route from n3 to n14. The frontier is initially the
node n3.
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– (A) Node n3 is extracted from the frontier. It is expanded and its successors nodes
(n4, n1, n6, and n5) are added in the search tree and inserted in the frontier. Each
node in the frontier is associated with the value of the evaluation function f (n) =
g(n) + h(n, i) where g(n) is the exact cost to reach node n from root node n3, and
h(n, i) is an estimated cost described by the above heuristic function. For node n6,
the values are computed as follows:
– g(n6) = 70m/36 km/h = 7 sec.
– h(n6, 3) = 20 as the hierarchy of the arc n3-n4 is 3
– f (n6) = 27 = 7 + 20

– (B) Node n6 is extracted from the frontier as it has the smallest evaluation. It is
expanded and its successor nodes (n10, n7, n9) are added in the search tree and
inserted in the frontier. For node n6, the values are computed as follows:
– g(n10) = 120m/54 km/h = 8 sec.
– h(n10, 1) = 15 as the hierarchy of the arc n6-n10 is 1
– f (n10) = 27 = 7 + 8 + 15

– (C) Node n10 is extracted from the frontier and expanded. The successor node n9
with an evaluation of 35 = 20+ 15 is, however, not added in the frontier as this node
is already in the frontier with a smaller evaluation (32). This is a basic optimization
of the presented A∗ algorithm.

– (D) Node n11 is extracted from the frontier and expanded. The successor nodes n9
and n12 are not added in the frontier as they are already in the frontier with a
smaller evaluation. Node n14 is addedwith a cost 37 = 37+0. This is a goal node, but
the search continues as other nodes in the frontier with a smaller evaluation could
perhaps lead to n14 with cost smaller than 37.

– (E) Nodes n5, n9, and n12 are successively extracted from the frontier. None of their
successor nodes are, however, added in the frontier as they are already in the fron-
tier with a smaller evaluation.

– (F) Node n4 is extracted from the frontier and replaced by its successors, nodes n2
and n8.

– (G) Node n14 is extracted from the frontier. It is recognized as a goal node and the
search returns the path n3-n6-n10-n11-n14 with a cost of 37.

3.2.5.3 Key challenges

On large graphs, the A∗ algorithm explores significantly a smaller number of edges than
other algorithms such as Dijkstra. It, however, has a number of caveats.

A∗ is not suited for routing problems involving constraints such as combining dif-
ferent transport or integration of public transport schedules.

The above routing algorithm uses a fixed speed to determine the estimated remain-
ing cost. If this speed is an upper bound of the maximum speed, the heuristic (without
hierarchy) is admissible and A∗ always returns the best solution. When using a fixed
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speed lower than the maximum speed or introducing hierarchy modifiers, the heuristic
is not always admissible as the estimated cost could be greater than the real cost. How-
ever, these cases are very rare and generally can be mitigated by continuing the search
for some more time to check if better results exist.

3.3 Constraint satisfaction problems

When a state can be represented with a set of variables, each with a set of possible val-
ues, wemove froman “atomic” representation to a richer “factored” representation that
can take advantage of the structure of states and their constraints. This eliminates large
portions of the search space and reduces the possible set of values by identifying vari-
able/value combinations that violate the constraints. The SEARCH approach described
in the previous section can then be combined with some form of INFERENCE based on
the CONSTRAINTS. So, CSP solving systems can bemore efficient than pure “state space”
searchers as they take advantage of the structure of states.

3.3.1 What category of problems does constraint satisfaction
solve?

A constraint satisfaction problem (CSP) is a problem that can be described by a set of
(decision) variables, usually over a finite domain, and a set of constraints over the vari-
ables. More specifically, constraints specify the legal values and combination of values
assigned to the variables: they can restrict the value of a single variable (un-ary), pairs
of values (bin-ary), or more generally t-uples of values. Global constraints like “AllDif-
ferent” can also be specified.

A solution of the problem is an assignment of values to the variables satisfying all
the constraints.

A constraint optimization problem (COP) is a CSP with an additional objective func-
tion relating the variables. The goal is then to find a solutionmaximizing (orminimizing)
the objective function.

The techniques for solving CSP and COP depend on the computation domain of the
variables. Most approaches are handling finite domains, that is, each variable of the
CSP has a finite domain. A particular case of finite domain is the domain {0, 1}, leading
to Boolean CSP. Extensions of finite domains are finite sets and graphs, that is, where
the value of a variable is a finite set (from a given initial finite set), or a graph (subgraph
of an initial given graph). All these finite computation domains can be used to model
combinatorial problems. Another class of problems are continuous CSPwhere the value
of a variable is a real and has an infinite domain.
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Thedescription of a CSP or COP is a declarative representation of the problem. There
are no data structures nor any algorithm in the description. CSP and COP cover a large
class of problems such as vehicle routing, scheduling, warehouse location, planning,
knapsack, configuration problems, and graph coloring.

3.3.1.1 Examples

Graph coloring
Given a graph and a set of colors, color the vertices of the graph so that two adjacent ver-
tices are colored with different colors, as illustrated in Figure 3.14. This classical graph
coloring CSP is known to be NP-complete, that is, a problem for which it is easy to check
whether a given assignment of colors to the vertices is a solution, but finding a solution
is very hard.

Figure 3.14: A solution of a graph coloring problem.

More formally, given a graph G = (V , E), where V is the set of vertices and E is the
set of edges, and a set of colors C, the (decision) variables are the vector colour[v], with
v ∈ V . The domain of each variable color[v] is the set of colorsC. For each edge (v,w) ∈ E,
we have the constraint color[v] ̸= color[w].

The corresponding graph coloring COP is to find the minimum number of colors
necessary to color the vertices of the graph so that two adjacent vertices are colored
with different colors.

Graph coloring can be used tomodel various practical and industrial problems such
as scheduling problems, pattern matching, or course schedule.

Cryptarithmetic puzzle
A classical cryptarithmetic puzzle is the SEND + MORE = MONEY problem, where each
letter has to be replaced by a different digit so that this addition is correct, as illus-
trated in Figure 3.15. The unique solution is 9567 + 1085 = 10652. A possible model
for this puzzle is to use the set of variables {S, E,N,D,M,O,R, Y} with domain {0, . . . , 9},
and the additional four carry variables {C1, C2, C3, C4} with domain {0, 1}. A constraint
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Figure 3.15: Cryptoarithmetic problem.

allDiff(S, E,N,D,M,O,R, Y) states that all the variables must have a different value. The
constraints for the additions are then modeled as

S ̸= 0; M ̸= 0
D + E = 10C1 + Y
C1 + N + R = 10C2 + E
C2 + E + O = 10C3 + N
C3 + S +M = 10C4 + O
C4 = M

Sudoku
Sudoku is a classical puzzle played on a 9 × 9 grid, divided in 9 squares made up of 3 × 3
cells. Each cell must be filled with a digit 1–9 such that each row, column and square,
each having 9 cells, must have different digits. Some of the cells are given a specific
value. An example is given in Figure 3.16, where the small digits are the possible values
for the cells.

Figure 3.16: Sudoku.
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The model of a sudoku has one variable per cell, that is, 81 variables, each with a
domain {1, . . . , 9}. There is an allDiff constraint for the variables of each row, of each
column, and each square. The allDiff(X) constraints all the variables in X to be different.
Then there are constraints imposing the specific value for the given cells of the instance
of the sudoku.

3.3.1.2 Solving paradigms

There exist many approaches to solve CSP and COP. Classifying the different paradigms
is helpful to their understanding and comparison. Two classification criteria will be
used. The first one differentiates perturbative versus constructive approaches, while the
second one distinguishes systematic versus incomplete search.

In a perturbative approach, a candidate solution is a complete solution (a value is
assigned to each variable). New solutions are generated by modifications or perturba-
tions of an existing one. The search is performed on a succession of candidate solutions.
This is illustrated on graph coloring in Figure 3.17 where at each step, the color of one of
the vertex is modified.

Figure 3.17: Graph coloring: perturbative approach.

In a constructive approach, a candidate solution is a partial solution (a value is as-
signed to some of the variables) and partial solutions are progressively extended. This is
illustrated on graph coloring in Figure 3.18where at each step, one newvertex is colored.

Figure 3.18: Graph coloring: Constructive approach.

In a systematic approach, the whole search space is systematically explored. As a
consequence, the approach is complete; it finds an exact solution for a CSP and find a
best solution for a COP. If no solution is found, this is a proof of nonexistence of solutions.
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Of course, a systematic approach can be computationally expensive for large instances
of problems.

In an incomplete approach, the exploration of the search space is based on a neigh-
borhood function. The approach is incomplete in the sense that it may not find an exact
solution of the CSP, but only an approximation of a solution where some of the con-
straints might be violated. For a COP, it will find a good solution that is not proved to
be the optimal solution. An incomplete approach is computationally less expensive and
usually allows us to find a reasonable (approximated) solution for large instances of
problems.

Different paradigms for solving CSP andCOP canbe classified according to the above
two criteria, as shown in Table 3.2. In this chapter, twoparadigmswill be developed: local
search and constraint programming.

Table 3.2: Solving paradigms for CSP and COP.

Systematic Incomplete

Perturbative Simplex Local search
Systematic local search Evolutionary algorithms

Constructive Dynamic programming Greedy
Branch and bound Ant colony optimization
Constraint programming GRASP
DPLL SAT solver

3.3.2 Solving optimization problems by local search

Local search algorithms address problems for which only the solution state matters, not
the sequence nor the path cost to reach it. In addition to finding a goal state, they are
used to solve optimization problems, for which the objective is to find the values that
minimize a cost function.

Local search covers a family of methods sharing common properties. The approach
is incomplete and perturbative. It is based on iteratively improving the solution by find-
ing a better one in the neighborhood of the current solution. When it stops, there is no
proof the given solution is the best one.

3.3.2.1 From CSP to COP

In a CSP, one has to find a solution, that is, an assignment of the variables satisfying
all the constraints. There is no given objective function to optimize. As local search is
an optimization process, the CSP should first be transformed into a COP by introducing
a cost function. The set of constraints is split in two sets: the hard constraints and the
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soft constraints. The set of hard constraints that can be emptycontains the constraints
that must be satisfied by all the solutions considered by the local search. For each soft
constraint, a cost or violation function measures how a given solution violates the con-
straint. The cost of a solution is then computed as the sum of the violation cost of all the
soft constraints. The resulting objective function of this COP, usually called cost function
in local search, is then used in the search for the best solution. When the cost of a given
solution reaches 0, then it is a solution of the original CSP. If the search stops with a no
zero cost solution, then the resulting solution is only an approximation as it still violates
some of the soft constraints.

When the initial problem is a COP, the cost function used for the local search should
combine the objective function of the COP and the violation function of the soft con-
straints, if any. The cost function usually has then the form,

cost(x) = α.obj(x) + β.cost_soft(x),
where x are the decision variables, obj(x) is the objective function of the COP, and
cost_soft(x) is the cost of the violation of the soft constraints and α, β are real values.
Such a cost function combines optimality and feasibility. Usually, the β value is much
higher than α to favor feasible solutions.

The iterative improvement of a solution needs to start from some initial solution.
Such an initial solution is usually chosen randomly but respecting the hard constraints
of the problem.

Graph partitioning
Given a graph with an even of vertices, divide the vertices in two equal-size sets of ver-
tices such that the number of edges that go from one set to the other set is minimized as
illustrated in Figure 3.19. More formally, given a graph G = (V , E), where V is the set of
vertices and E is the set of edges, find a partition (V1,V2) of V such that #V1 = #V2 (bal-
ance constraint). The objective is to minimize obj(V1,V2) = #{(v,w) ∈ E|v ∈ V1 ∧w ∈ V2}.
This problem is known to be NP-hard.

Figure 3.19: Graph partitioning: Example of a solution. The cost of this solution is 3.
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3.3.2.2 Neighborhood

The neighborhood of a solution p is a set of solutions that are similar or close to p. The
idea of proximity is usually measured in terms of computation. A solution in the neigh-
borhood can thus easily be computed from the solution p. A neighborhood can be de-
fined by one or more operators over a solution and yielding a set of solutions. Such
operators must be computationally simple.

An important property of a neighborhood is called connectivity, stating that from
each solution, there is a path to an optimal solution. This path is a succession of solu-
tions p1, p2, etc. where each solution pi+1 is in the neighborhood of pi. Of course, large
neighborhoods lead to shorter paths to an optimal solution, but a large neighborhood
needs more time to be explored to choose the next solution.

If the initial problem has constraints on the solution, should these constraints be
respected by each solution in the neighborhood? If these constraints are seen as hard
constraints, then the operators generating the neighborhood must be designed to fulfil
the constraints. If these constraints are seen as soft constraints, then the neighborhood
are larger as it may contain solutions violating these constraints, but the cost function
would integrate the violation of these soft constraints.

Graph partitioning
In the graph-partitioning problem, if the balance constraint is hard, then the neighbor-
hood of a (balanced) solution must only contain balanced solutions. A simple neighbor-
hood could be defined by swapping two vertices in V1 and V2. If the balanced constraint
is considered as a soft constraint, then a possible neighborhood would be to move a ver-
tex from one set to the other set of vertices. The cost function should then integrate the
cost of the soft constraint. In the following cost function for graph partitioning, the soft
balance constraint measures the (square of the) distance of the solution to a balanced
solution:

cost(V1,V2) = α.#{(v,w) ∈ E|v ∈ V1 ∧ w ∈ V2} + β.(#V1 − n/2)2
These two neighborhoods are illustrated in Figure 3.20. The choice between a hard

or soft constraint for a constraint of the problem is a design decision and is highly prob-
lem dependent. Choosing a soft constraint may reduce the length of the path to an opti-
mal solution may drastically enlarge the search space.

3.3.2.3 Heuristics and metaheuristics

In local search, a heuristic defines how to choose the next solution in the neighborhood
of the current solution. A heuristic uses local information, that is, the current solution
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Figure 3.20: Graph partitioning: Solution in two definitions of neighborhoods.

and its neighborhood. A first property of a heuristic is whether it always improves the
cost of the current solution or is it possible to have a degradation. A second property
relates to the search of the neighborhood; is it an exploration or is it a random choice?
The rationale behind improvement is to focus the search toward high-quality solution,
what is called intensification. The rationale behind randomness and degradation is to
direct the search toward other regions of the search space, what is called diversification.
Different strategies to balance intensification with diversification have led to different
types of heuristics. Some classical heuristics are presented hereafter.

Hill climbing explores the neighborhood and always improves the cost of the cur-
rent solution. Best-improvement is hill climbing where the whole neighborhood is
searched for the best solution while first-improvement stops as soon as a better so-
lution is found. If no solution in the neighborhood improves the current solution, the
local search is stopped to the current (local) optimum. Best-improvement is more costly
because of the complete search of the neighborhood.

Random walk selects the next solution randomly in the neighborhood; the cost can
therefore be degraded. Random improvement randomly selects a candidate solution; it
is, however, accepted only if it improved the current solution. Otherwise, the current
solution is unchanged. The Metropolis heuristic randomly selects a candidate solution.
If it improves the current solution, the candidate solution is accepted as the new cur-
rent solution. If it degrades the current solution, it is accepted with a small probability,
usually depending on the severity of the degradation: a large degradation has a much
smaller probability to be accepted.

While a heuristic focuses on choosing the next solution, a metaheuristic guides the
search process toward a global optimum, hence trying to escape from local optimum.
This usually collects information during the local search. Many metaheuristics have
been defined for local search.

Simulated annealing is an analogy withmetallurgy where heating causes molecules
to move more freely to unusual location. During cooling, the movements are more re-
stricted. In thismetaheuristic, a temperature variable is reduced during the local search.
This temperature is used in the Metropolis heuristic applied at every step; with high
temperatures, the probability to accept the candidate solution is higher than with a low
temperature. In the beginning of the local search degradation will be more often ac-
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cepted, favoring diversification while at the end of the local search degradation will be
less accepted, favoring intensification.

The idea of the tabu search metaheuristic is to select a neighbor that has not yet
been visited. As it is difficult to keep track of all the visited solutions, tabu search main-
tains an abstraction of the last visited solutions. Such an abstraction can be based on
the chosen operators or some properties of the solution. An evolving tabu list states cri-
teria to reject candidate solutions. If the candidate solution is in the tabu list, then it is
rejected. The abstraction of tabu list does not limit the rejection to already visited solu-
tions. Tabu search often maintains the best solution found so far as the chosen heuristic
may degrade the current solution. Tabu search is then often combined with an aspira-
tionmeta-heuristics overriding the tabu rejection if the candidate solution improves the
best solution found so far.

In a variable neighborhood metaheuristic, a sequence of neighborhoods (of increas-
ing size) is used during the local search. Guided local search or dynamic local search
metaheuristics use a sequence of cost functions to escape from local optimum. Adaptive
local search provides a more general framework where heuristics and metaheuristics
are dynamically adapted during the search.

3.3.2.4 Termination

Local search is incomplete. It is impossible to know if the current solution is the best
solution nor how far its cost is from the optimum. But whenever the search is stopped,
a solution is provided. Termination is often defined through a time limit.

Some metaheuristics have their own termination criteria. In simulated annealing,
for instance, termination occurswhen the temperature reaches zero, according to a tem-
perature schedule.

In order to favor diversification, it is interesting to do multiple local searches from
different random initial solutions. That is what Random restart is doing, returning then
the best solution. Iterated local search favor intensification by iterating the local search
from a random initial solution close to the solution found in the previous iteration.

3.3.3 Solving problems by constraint programming

3.3.3.1 CSP as a search problem

A CSP can be solved using a search algorithm, such as depth-first search. The initial state
is an empty assignment. The successor function assigns a value to some unassigned vari-
able provided no constraint is violated. The goal test is to have all the variables assigned.

Constraint programming (CP) offers a general framework for solving CSP and COP.
It can be seen as a general-purpose search algorithm, independent from the problem.
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It can be applied to any CSP and COP. CP also provides generic heuristics. In practice,
a CP language allows to state a model for a CSP or COP and proposes mechanisms to
guide and enhance the search for a solution. Examples of CP languages are Choco, IBM
cp optimizer, Gecode, OR-tools, Oscar, and JaCoP. SAS/OR and Cali Xpress also integrate
CP modules.

The CP computation model is based on two steps. The propagation step reduces the
domains of the (decision) variables while the search step decomposes the problem into
simpler subproblems. These two steps are iterated until a solution is found or until the
problem is proved to have no solution.

3.3.3.2 Propagation of the constraints

When the domain of a variable is modified, the objective of propagation is to use this in-
formation to (quickly) reduce the domain of the other variables. Propagation is made by
applying a consistency algorithm that considers the constraints locally instead of consid-
ering all the constraints of the problem. The propagation aims at achieving some level
of consistency. Different levels can be considered, each level offeringmore pruning than
the previous level. Of course, a higher level of consistency requires more computation.

Any consistency algorithm must respect two properties. First, it never removes a
value of a variable that is part of a solution of the CSP. This ensures that all the solu-
tions will be found. Second, if the consistency algorithm is applied on a CSP where all
the variables are assigned, then the consistency algorithm reduces to a satisfiability test.
This ensures that when all the variables are assigned, the resulting assignment is a so-
lution of the CSP.

Forward checking
When the search procedure assigns a value to a variable, forward checking only con-
sidered constraints involving this variable, but where all but one variable (say Y ) is as-
signed to a value. Forward checking then removes all the values from the domain of
Y that violate the constraint. It is clear that the removed value cannot be part of the
constructed solution. Forward checking is illustrated on graph coloring in Figure 3.21.

Figure 3.21: Forward checking in graph coloring. The value “red” is removed from the two neighbors to
respect the constraints.
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Domain consistency
Domain consistency, also called arc consistency, is easier to explain on a binary con-
straints c(X , Y ). Even if none of the variables are assigned, it is possible to remove val-
ues from the domain of X and Y . Domain consistency removes any value from the do-
main of X for which there is no value in the domain of Y that satisfies the constraint,
and similarly for the domain of Y . It is clear that all the removed values cannot be part
of the constructed solution. When all these impossible values have been removed, the
constraint is said to be domain consistent. More precisely, a binary constraint c(X , Y ) is
domain consistent when for each value a in the domain of X , there exists a value b in
the domain of Y such that c(a, b) holds. Domain consistency is illustrated in Figure 3.22,
on the binary constraint X ≥ Y + 2.
Figure 3.22: Domaon consistency for X ≥ Y + 2.
Bound consistency
Bound consistency is a weaker form of domain consistency where the domain of a variable is approxi-
mated by an interval [min Domain(X ), max Domain(X )]. Only the bounds of the domains are verified to
be part of a solution. Values are thus never removed in the middle of the domain; only the bounds are
moved. The pruning is weaker but for some constraints, such as arithmetic constraints, this pruning can
be achieved very efficiently.

Fixpoint computation
Propagation requires iterating the process until no more value can be removed. This process is known as
a fixpoint computation. If we consider the propagation achieved by domain consistency on the constraint
X ≥ Y +2 in Figure 3.22, the domain of variable X (and also Y ) has beenmodified. All the other constraints
involving X should then be (re)considered because the removal of value {1, 2, 3} in the domain of X could
imply the removal of values in the domain of another variable. When no more value can be removed,
the fixpoint is reached and the CSP is domain consistent, that is, all its constraints are domain consistent,
assuming domain consistency is the chosen level of consistency. A consistency algorithm is an algorithm
achieving some consistency for CSP.

Global constraint
A global constraint such as allDiff(X1, . . . , Xn), is a constraint with a variable number of arguments. This
is illustrated in Figure 3.23, on one of the 9 squares of a sudoku. The left part is a given state where
2 variables (X4 and X9) are assigned, and the others have a nonsingleton domain. The constraint on this
square is that these variablesmust have a different value. This can bemodeled by a set of thirty-six Xi ̸= Xj
constraints. In that case, the left state of Figure 3.23 is domain consistent as any of these inequalities is
domain consistent. However, when these constraints are modeled by an allDiff(X1, . . . , X9) constraint, the
left state of Figure 3.23 is not domain consistent. For instance, it is not possible to find an assignment of
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Figure 3.23: The allDiff global constraint on a sudoku square.

these nine variables with X1 = 5 satisfying this allDiff constraint because the values 5 and 6must be taken
by the variables X3 and X6. Similarly, the values 4 and 9 must be pruned from the domain of X5 because
the value 8 occurs only in the domain of this variable. The right part of the figure is the corresponding
domain consistent state. The achieved pruning is very effective.

In the case of allDiff, the constraint can be expressed as a set of simpler constraints, but as a global
constraint, it achieves a much better pruning. Of course, the computational complexity is higher. Other
global constraints cannot be expressedwith simpler constraints, and thus increases the expressivity of the
constraint language. Each global constraint requires a dedicated algorithm to achieve the expected con-
sistency level. For the allDiff constraint, the algorithm achieving domain consistency is based onmatching
theory in bipartite graphs.

3.3.3.3 Search

The search implicitly develops a search tree. Each node of the search tree contains a
CSP that only differs from the initial CSP by its domain of values. The root contains the
initial CSP. Search and consistency checks are interleaved. At a given node, the search
algorithmfirst applies a consistency algorithm. If the domain of a variable is empty, then
the CSP of this node has no solution and is a failed node. If all the variables are assigned,
this assignment is a solution of the CSP and the node is a solution node. In any other
case, the search algorithm chooses a variable with a nonsingleton domain and creates
children nodes for the different values of the chosen variable. The CSP in a child node
is a copy of the CSP of the parent node, but with one new variable assigned. The search
tree is finite and is usually traversed using a depth-first strategy. An example of (part
of) a search tree for the graph coloring CSP is depicted in Figure 3.24. The root is the
initial CSP where each of the six variables has four colors in its domain. In a child node,
the chosen variable and its chosen value (its color) are highligthed. In the child node
of the root, the top left variable has been chosen and set to the red color. The domain
consistency algorithm is then applied and removed the red color from its two neigbhors
variables. At the left bottom of the tree, two nodes are failed nodes as they contain a CSP
with variables with an empty domain. The bottom right node is a solution node as all
variables are assigned.

The basic search algorithm illustrates that a CP search is made of two components:
the definition of the search tree and the use of an exploration strategy for traversing the
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Figure 3.24: Search tree for the graph coloring CSP.

search tree. The different exploration strategies defined for searching problems could
be used in this context. DFS is the standard approach, although best-first search can be
applied using some measure of quality of the nodes in the fringe.

The definition of the search tree is induced by the branching strategy, that is, how
are generated the children nodes of a given node. In the standard branching strategy,
called labeling, a variable is chosen and there is a child for each of the value in the do-
main of that variable. There exists various heuristics guiding the choice of the variable
to label. The domain heuristic chooses the variable with the smallest domain as such a
choice minimizes the size of the search tree. The degree heuristic chooses the variable
involved in the largest number of constraints. Such a choicewill quickly drive the search
to a fail node if the CSP has no solution.
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Optimization problems
For COP, that is, CSP with an objective function f (x) defined over the variables of the CSP, a branch-and-
bound approach can be used to find an optimal solution. As soon as a solution (with value f* for the
objective function) is found, this solution is stored as the current best solution and an additional con-
straint f (x) < f∗ is added to the CSP. With this new constraint, the only solution improving the value of
the objective function will be found, thus pruning the search space from nonoptimal solution. When a
better solution (with value f∗∗) is found, then it replaces the best current solution and the additional con-
straint is replaced by the constraint f (x) < f∗∗, and so, for each better solution found. When the search
is completed, that is, it is not possible to find yet another better solution, then the current best solution
is known to be the best solution of the COP.

Large neighborhood search
CP is a systematic approach. It is thus complete but requires exploring the whole search space what can
be very costly, especially for COP where proof of optimality is not always necessary. Large neighborhood
search (LNS) is a local search metaheuristic that can be applied to many frameworks, including CP. This
approach is incomplete but orients the search in promising areas of the search space. LNS iteratively
applies two steps: relaxation and reconstruction. Relaxation relaxes parts of the best solution found so
far, that is, some random variables are chosen to become uninstatiated. The relaxed CSP is simpler than
the original one and contains parts of the best solution, and thus looks promising. The reconstruction
attempts to solve the relaxed CSP obtained. If the reconstruction finds a better solution, a new iteration
is done. If the reconstructions fail to find a better solution in a fixed amount of time, then a new iteration
begins from former solution with a different relaxation.

3.3.4 What are the limitations of constraint satisfaction problems?

CSP and COP offer a declaration description of problems. They can then be solved by
different techniques. A systematic approach ensures to find a solution if one exists or to
prove there is no solution. It is, however, computationally more expensive. An incom-
plete approach is computationally less expensive but does not ensure the finding of a
solution.

Thanks to its perturbative and incomplete approach, local search always provides
an (approximated) solution, whatever the chosen computation time. For many prob-
lems, an approximate solution is often sufficient, and certainly better than having no
solution at all. Local search usually does not provide an estimation of the distance from
the cost solution to the optimal solution. Local search requires designing and program-
ing the neighborhood and the cost function for the soft constraints. Solving a CSP by local
search usually requires some significant tuning of the parameters of the chosen heuris-
tic and metaheurisfic. Local search covers a large variety of methods, each of them hav-
ing its advantages on different classes of problems. All local search methods are based
on randomness, a key feature in incomplete approaches.

Constraint programming (CP) is constructive and perturbative, hence always pro-
vides a solution if one exists. CP only requires the description of the CSP or COP and
does not require any programming. CP also proposes generic heuristics to speed up the
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search. Solving practical CSP with CP could however require some tuning in the model-
ing of constraints and in the search procedure.

Local search and constraint programming are only two of the various methods for
solving CSP and COP but illustrate various interesting features and concepts.

3.3.5 Industry example: containers configuration using CSP at
Maersk Container Industry A/S
Yves Deville​, Karen Veldeman, Dennis Conrad

3.3.5.1 Product configuration

The need to configure products to meet special and custom requirements is becoming
increasingly important for companies in different industries. A product configuration
tool is used to guide a user to configure a product or process, while considering differ-
ent constraints. Although product configuration tools are used in different industries,
most manufacturers and automotive producers rely on them to support them in cre-
ating the right products or processes. They are often employed as design tools that al-
low manufacturers to constrain product lines or even end customers to codesign their
own products. Once the product specifications and constraints are modeled by a sub-
ject matter expert into a product configurator, this configurator guides an employee or
a customer to express his demand by proposing favorable combinations of attributes
and ruling out impossible ones. It thereby removes the need for the expert to be in the
specific product configuration process, while ensuring compliance with the specifica-
tions. For many manufacturers, relying on product configurators helps them to lower
their distribution costs, accelerate their production, react faster to customer inquiries,
and reduce overproduction of general products.

Product configurators exist in many shapes and forms. Depending on the reason-
ing techniques used, they are usually classified as rule-based or constraint-based sys-
tems. Rule-based configurators are used in the earliest systems and derive solutions in
a forward-chaining manner, by evaluating all rules and eliminating rules that are not
applicable to the configuration of the product. This approach anticipates all possible
configurations by specifying the configuration using restrictive “if... then...” statements.
By using constraint-based systems, companies can build product models composed of
modular entities.

Use case
Maersk Container Industry A/S (MCI)manufactures containers. AtMCI, a product config-
urator is used to translate customer specifications into a container configuration. For ex-
ample, a customer can choose the type of condensers to control the temperature within
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Figure 3.25: Example of a MCI container with built-in cooling system.

the container, the type of battery pack or the type of panels outside the container. An ex-
ample of a MCI container is illustrated in Figure 3.25. Based on the specification of these
attributes, the configured container can serve as input to generate the quote that will
be shared with the customer, as well as a bill-of-materials (BOM) of raw materials and
components that will be shared with theMaersk production department. TheMCI prod-
uct configurator is developed in Microsoft Dynamics 365 Supply Chain Management, an
enterprise resource planning (ERP) system, featuring a constraint-based product con-
figuration tool based on Z3, a solver and theorem prover, open sourced by Microsoft
Software Research in 2015.

3.3.5.2 Modeling product configuration as a CSP

The need to configure products to meet special and custom requirements is becoming
increasingly important for companies in different industries. A product configuration
tool is used to guide a user to configure a product or process, while considering differ-
ent constraints. The definition of the underlying product configuration model has been
designed by product experts. They first defined product attributes (the variables of the
CSP) and their domain of possible values. For example, the Maersk container attributes
integrate the type of condensers to control the temperature within the container, the
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Table 3.3: Some variables and their domain in the MCI product configurator.

Variables (attributes) Domain

Atmosphere control (AC) {Manual ventilation (MV),
Automatic ventilation (AV),
Automatic ventilation (AV+),
Automatic ventilation (AV+O2)}

Fresh air module (FAM) {Manual ventilation (MV),
Automatic ventilation (AV)}

Sensor module (SM) {No sensors (No),
CO2 sensors (CO2)
CO2 and O2 sensors (O2)}

type of battery pack, the type of fresh air exchange module or sensor module, as illus-
trated in Table 3.3.

After defining the product configuration variables and their domains, the experts
need to define how these attributes can be combined into one product of service by
defining constraints. These constraints can make sure that a user can only configure
containers that can be sold and produced. For example, not all types of fresh air ex-
change modules and sensor modules can be combined into one single container. These
constraints are expressed in the form of a table expressing the valid combinations be-
tween one or more attributes. Each column of the table is assigned to a variable of the
CSP. Each row defines a valid combination of the values for the variables. Other con-
straints can also be specified in the CSP. For example, the MCI configurator uses a table
constraint illustrated in Table 3.4 to express that some combinations of fresh air ex-
change modules and sensor modules cannot be combined into one single container.

Table 3.4: A table constraint in the MCI product configurator.

Atmosphere control (AC) Fresh air module (FAM) Sensor module (SM)

Manual ventilation (MV) Manual ventilation (MV) No sensors (No)
Automatic ventilation (AV) Automatic ventilation (AV) No sensors (No)
Automatic ventilation (AV+) Automatic ventilation (AV+) CO2 sensors (CO2)
Automatic ventilation (AV+O2) Automatic ventilation (AV+O2) CO2 and O2 sensors (O2)

The constraint in this example ensures that a user of the product configurator can-
not assemble a container with automatic ventilation (AV+) but without CO2 sensor. Once
the user has chosen to configure a container with automatic ventilation (AV+), the user
will only be able to select the automatic ventilation and CO2 sensor option. The config-
urator leverages the constraint solver to determine the feasibility of each value to help
the user in selecting feasible combinations of values. If the feasible domain of an at-
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tribute is reduced to a single value, this value is automatically filled in to make sure all
configured containers can be sold and produced.

3.3.5.3 Solving product configuration

After modeling the product configuration as a CSP with its variables, domains and con-
straints, a solving paradigm has to be chosen to solve the different product configura-
tions for the end users. After processing the input provided by the end use, the solver
needs to share which product configurations match all specifications of the product
model and its constraints.

The MCI product configurator integrates a constraint programming solver. The il-
lustrated table constraint allows propagating the information on values on variables to
reduce the domain of other variables. Propagation here achieves domain consistency.
This is illustrated in Figure 3.26, where on the left, the three variables are symbolically
related by the table constraint. On the right, we assume that the value MV is chosen for
the variable AC and the propagation of the table constraint reduces the domains of the
two other variables. Since there is only one value left in the domain of the variables, a
solution is found {AC = MN, FAM = MV, SE = No}.

Figure 3.26: Example of propagation using the table constraint in the MCI product configurator.

3.4 SAT solvers

3.4.1 What category of problems does SAT solvers solve?

The Boolean satisfiability problem (SAT) is the problem of deciding whether a logical
formula of Boolean variables is satisfiable, that is, whether a specific assignment of true
and false values to those variables leads to that formula evaluating to true. It relies on
propositional logic.

SAT solvers are typically helpful in problems where there are many options and
dependencies that can be encoded as Boolean formulas: correctness of hardware de-
sign, automatically test, and detect connection defects, which may cause circuit failure
in integrated circuits, software verification, planning and resource allocation problems
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in product configurations problem to ensure that product instances and configuration
options satisfy the component dependencies and customer’s restrictions, etc.

When a constraint satisfaction problem is defined over Boolean variables and the
constraints are expressed as propositional formulas, the CSP can then be solved using
a SAT solver, that is, a solver aiming at finding a Boolean assignment of the variables,
satisfying the constraints.

Graph coloring
The graph coloring problem has been described as a CSP. The objective is to color the
vertices of the graph so that two adjacent vertices are colored with different colors. This
problem is NP-complete. This problem can also be modeled as a Boolean CSP.

Given a graph G = (V , E), where V is the set of vertices and E is the set of edges,
and a set of colors C, the Boolean variables are the array of color[v, c], with v ∈ V and
c ∈ C. An element color[v, c] is true if the color of vertex v is c; it is false otherwise.
For each edge (v,w) ∈ E, we have the constraint ¬(color[v, c] ∧ color[w, c]) preventing
adjacent vertices to have the same color. For each v ∈ V , the disjunction of color[v, c]
over all the colors c ∈ C ensures to have at least one color for each vertex. For each
v ∈ V , the conjunction of ¬(color[v, c1] ∧ color[v, c2]) for each different pair of colors
(c1,c2) ensures that each vertex has at most one color.

Finding a Boolean assignment to the Boolean variables that satisfies these formulas
yields a solution of the problem. Such an assignment can be found by using a SAT solver.

In this section, we thus solve any problem that can bemodeled as finding a Boolean
assignment to variables satisfying some propositional formula.

3.4.2 Solving problems with SAT solvers

3.4.2.1 Propositional logic

Propositional logic is a very simple logic centered around propositions, that is state-
ments that can be either true or false, such as “Task T1 must be performed before task
T2.” Logic is described by two components: the syntax defines what are the well-formed
sentences or formulas in the logic, and the semantics determines the meaning of sen-
tences.

The syntax of propositional logic
A propositional formula is formed by using the following symbols: the logical constants
True and False, propositional variables (represented by string of letters), logical connec-
tives (¬ for negation, ∧ for conjunction, ∨ for disjunction,⇒ for implication and⇔ for
equivalence), and parentheses.
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A logical constant and a propositional variable are propositional formulas. If p and
q are propositional formulas, then (¬p), (p ∧ q), (p ∨ q), (p ⇒ q) and (p ⇔ q) are propo-
sitional formulas.

The semantics of propositional logic
The semantics define the meaning of a propositional formula. More precisely, the se-
mantics of a formula assigns a truth value to each formula in the context of some world
where some facts are true and others are false. A possible world, called interpretation,
for a given formula is an assignment that assigns a truth value (true or false) to each of
the propositional variables of the formula. For a given interpretation I , it is then possible
to decide the truth value of a formula following the following rules:
– The truth value of the logical constants True and False are true and false, respec-

tively.
– The truth value of a propositional variable A is the truth value of A in the interpre-

tation.
– The truth value of a formula of the form (¬p), (p ∧ q), (p ∨ q), (p ⇒ q), or (p ⇔ q)

depends on the truth value of the formulas p and q, following the classical table.

p q ¬p p ∧ q p ∨ q p⇒ q p⇔ q

true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

Example. Given an interpretation with the assignment (A = true, B = false, C = false),
the truth value of the formula (A∨ B) ∧ (B⇒ ¬C) in this interpretation is true as (true∨
false) ∧ (false ⇒ (¬false)) reduces to (true ∧ (false ⇒ true)) and to (true ∧ true), which
yields true.

Given a formula, there are interpretations where the formula is true and interpre-
tationswhere the formula is false. An interpretationwhere the formula is true is called a
model of the formula. The meaning of the formula, that is, its semantics is then defined
by the models of the formula. A propositional formula is satisfiable if it has at least a
model; otherwise, it is unsatisfiable (no model). A formula is valid (also called a tautol-
ogy) when it is true in all interpretations. We obviously have that a formula p is valid
if and only if ¬p is unsatisfiable. Two formulas with the same propositional variables
are equivalent if they have the same models. A (sub)formula can always be substituted
by an equivalent (sub)formula without changing its semantics. Classical examples of
equivalent formulas are presented in Figure 3.27.
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Figure 3.27: Examples of equivalent propositional formulas.

The satisfaction problem
The satisfaction problem aims at deciding whether a given formula is satisfiable. The
set of satisfiable propositional formulas has been formalized as SAT. Deciding whether
a formula belongs or not to SAT is an NP-complete problem, hence requiring an expo-
nential complexity (assuming P ̸= NP). If the formula has n propositional variables, the
number of interpretations is 2n. Deciding if a formula is satisfiable can be done by enu-
merating all the possible interpretations of the formula and evaluating the truth value
of the formula in this interpretation. The formula is then satisfied as soon as the truth
value of the formula is true in one of the interpretations. This naïve approach is only
practical when the number of variables is small.

Example. The formula (A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ B) ∧ (¬A ∨ ¬B ∨ ¬C) ∧ (¬A ∨ C) is
unsatisfiable. For each of its 8 possible interpretations, this formula evaluates to false.

3.4.2.2 SAT solvers

A SAT solver takes a propositional formula as input and either returns a model of the
formula (i. e., a assignment of its variables), or output that the formula is unsatisfiable.
Most SAT solvers restrict their input to specific propositional formulas called conjunc-
tive normal forms (CNF).

Conjunctive normal form (CNF)
A literal is either a propositional variable (A) or its negation (¬A). A clause is a disjunc-
tion of literals. A formula is in CNF when it is a conjunction of clauses. All propositional
formulas can be transformed into an equivalent that is CNF.

Example. The formula (A ∨ B) ⇔ (¬C ∧ D) can be rewritten as the following CNF for-
mula (¬A ∨ ¬C) ∧ (¬A ∨ D) ∧ (¬B ∨ ¬C) ∧ (¬B ∨ D) ∧ (A ∨ B ∨ C ∨ ¬D). The size of the
resulting CNF is, however, exponentially large. For instance, a disjunction of n subfor-
mulas, each being a conjunction ofm variables leads to a CNF formulas of size O(n.mn).
Tseytin transformation avoids this exponential explosion by introducing new variables
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for subformulas. For instance, the formula (A ∧ B) ∨ (C ∧ D) is first transformed as the
conjunction of the following three formulas X1 ⇔ (A ∧ B), X2 ⇔ (C ∧ D), and X1 ∨ X2.
These formulas are then transformed into CNF.

Basic backtracking algorithm
The basic algorithm for a SAT solver explores a search tree where each node contains a
partial assignment of the variables, and the leaves are all the possible interpretations.
The traversal is performedby a backtracking algorithm. It chooses a variable, assigns it a
truth value and recursively checks if the resulting formula is satisfiable. If it is unsatisfi-
able, the other truth value is chosen. If one of the truth values leads to satisfiability, then
the algorithm returns the model, otherwise it returns unsatisfiability. The basic case of
the recursive algorithm is when one of the clauses evaluated to false under the current
assignment, or when all the clauses evaluated to true under the current assignment.
Specific data structures are used to simplify these tests. This approach is complete as it
explores the whole search space. It is also constructive; it starts from an empty partial
assignment and extends it until an assignment satisfying all the clauses is found.

DPLL: adding unit propagation and pure literal elimination
When a clause contains a single unassigned variable, the value of this variable can be fixed to satisfy this
clause. The other truth value should not be explored. This is called unit propagation. If the occurrences of a
variable in the different clauses are always positive (A), one could assign the value true to this variable; the
value false should not be considered in the search. A similar reasoning can bemadewhen the occurrences
are always negative (¬A). This is called pure literal elimination.

Both unit propagation and pure literal elimination can be applied iteratively at each step of the
recursive algorithm, reducing the exponential growth of the search tree. The integration of unit prop-
agation and pure literal elimination into a backtracking algorithm leads to the DPLL algorithm (Davis–
Putman–Logemann–Loveland), which is the basis of many efficient SAT solvers.

CDCL: introducing clause learning
The traversal of the search tree with DPLL is depth first. Backtracking is chronological as the search goes
back to the parent node in the search tree. However, when a partial assignment is found to lead to unsat-
isfiability, no information is deduced from the origin of this unsatisfiability. Conflict-driven clause learn-
ing (CDCL) improves DPLL in a significant way by introducing a nonchronological backtracking when the
search reaches a dead end. A precise description is out of the scope of this chapter. The effect of CDCL
is to build a new clause that is implied by the original clauses and blocks the current branch together
with as many branches that share the choices leading to unsatisfiability. This is achieved by building an
implication graph on the partial variable assignment and introducing a new clause with the negation of
the assignments that lead to the conflict. Backtracking can then be made directly to the variable involved
in the new clause that was first assigned in the search tree.

SAT solving through local search
Both DPLL and CDCL are complete and constructive approaches to the satisfiability
problem. Although these methods are quite efficient, SAT is NP-complete and there will
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always be a complexity barrier for large instances. There are methods of SAT solving
based on local search, that is, using an incomplete and perturbative approach. Starting
from a (random) initial assignment to the propositional variables, at each step the value
of one variable is flipped. The cost function is the number of unsatisfied clauses, and a
solution is found when the cost reaches zero. This optimization problem is called max-
SAT as it aims at optimizing the number of satisfied clauses, what is also interesting for
unsatisfiable formulas. There exist many algorithms that solve MaxSAT through a local
search. For instance, GSAT and WalkSAT methods are based on a MinConflict CSP local
search, that is, choosing a variable, which flipminimizes the cost function.WalkSAT also
introduces some perturbation to enhance diversification and avoid local minima.

3.4.2.3 Modeling problems

Problems that can bemodeled and described as a SAT problem using propositional formulas. They can be
solved with SAT solvers. The resulting solution, a specific assignment of Boolean values to the variables,
can then be expressed as a solution to the initial problem. SAT solvers can therefore be helpful in a variety
of problems where options and dependencies can be encoded as propositional formulas, as with the
following example illustrating a planning challenge aiming at having a drink. A state of the world is here
modeled by five Boolean status, represented by five propositional variables: “Is there a clean glass” (CG),
“Is there a bottle of beer” (BB), “Is there a beer in a glass” (BG), “Am I thirsty” (T ), and “Am I happy” (H).
Initially, there is a clean glass (CG), a bottle of beer (BB), and the person is thirsty (T ). There is no beer in
a glass (¬BG) and the person is not happy (¬H). There are two actions. The action MakeDrink() requires
CG and BB as precondition, and BG, ¬CG, ¬BB as the effect. The action Drink() requires T and BG as a
precondition, and H, ¬T , ¬BG as the effect. The objective is to reach a state where the person is happy.
What is a suitable combination of actions to reach the goal state?

This planning problem is nowmodeled as a SAT problem. To simplify the presentation, it is assumed
that the goal can be reached by a succession of two actions. There will then be three considered states:
the initial state, the state after the first action, and the state after the second action, which will be the final
state. Each propositional variable describing a state will be subscripted by 0, 1, or 2 to model these three
states. For each level of action, the two propositional variables MakeDrinki and Drinki state depending
on whether the corresponding action is performed at level i.

The formula PLAN for this planning problem has then the following form:

InitialState ∧ DescriptionAction1 ∧ DescriptionAction2 ∧ Goal
where InitialState is the formula CG0∧BB0∧T0∧¬BG0∧¬H0, Goal is the formula H2, and DescriptionActioni
are formulas modeling which action is performed as the first and second actions in the plan.

The DescriptionActioni should model the following elements:
– The precondition of the action must be satisfied by the preceding state:(MakeDrinki ⇒ CGi ∧ BBi) ∧ (Drinki ⇒ Ti ∧ BGi) (i = 1, 2)
– The effect of the action must be satisfied by the next state:(MakeDrinki ⇒ BGi+1 ∧ ¬CGi+1 ∧ ¬BBi+1) ∧ (Drinki ⇒ Hi+1 ∧ ¬Ti+1 ∧ ¬BGi+1) (i = 1, 2)
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– After an action, the state propositional variable not involved in the effect of the action are unchanged
after this action:(MakeDrinki ⇒ (Hi ⇔ Hi−1) ∧ (Ti ⇔ Ti−1)) ∧ (Drinki ⇒ (CGi ⇔ CGi−1) ∧ (BBi ⇔ BBi−1)) (i = 1, 2)

– At least one action must be performed at each level

MakeDrinki ∨ Drinki (i = 1, 2)
– At most one action can be performed at each level¬(MakeDrinki ∧ Drinki) (i = 1, 2)
Finding a model for the formula PLAN ensures to have a plan that starts from the initial state and reaches
the goal states after two actions. To find a model, the formula PLAN can be transformed into a CNF form
and a SAT solver algorithm can then be used. The following variable assignment is amodel of the formula
PLAN:

CG0, BB0, ¬BG0, T0, ¬H0, MakeDrink1, ¬Drink1, ¬CG1, ¬BB1, BG1, T1, ¬H1,¬MakeDrink2,Drink2, ¬CG2, ¬BB2, ¬BG2, ¬T2,H2
The conclusion is that the first action is MakeDrink and the second action is Drink.

For a real problem, the propositional formula can be automatically generated from a formal de-
scription of the planning problem, such as in planning domain definition language (PDLL), a family of
languages that allow to define a planning problem using logic. The propositional formula can also be en-
riched by additional clauses expressing possible mutual exclusions between actions and/or literals that
can be algorithmically derived.

3.4.3 What are the limitations of SAT solvers?

SAT solvers are used to solve Boolean CSPs or any problem that can be modeled as a sat-
isfaction problem in propositional logic. One of the advantages of propositional logic is
its simplicity. It is also compositional, meaning that different formulas can be composed
without affecting the meaning of each of them. Although SAT is NP-complete, modern
SAT solvers are quite efficient, even for large problems. The main limitation of propo-
sitional logic is its inability to represent objects and relations between objects. It also
lacks quantifiers allowing stating conjunctions or disjunctions over different objects. In
the planning problem, it is impossible to have a formula about all actions in a given
level. As a consequence, a propositional model of a real problem may involve tens of
thousands of variables and hundreds of thousands of clauses. Despite these limitations,
SAT solvers are competitive for solving complex problems.

SAT solvers have been extended to satisfiabilitymodulo theories (SMT) solvers, such
as z3. Such solvers do not only solve SAT, but also formulas over richer logics, such as
arithmetic or uninterpreted functions. SAT solvers have also been combined with con-
straint programming solvers, leading to CP-SAT that can be used in operational research
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applications. The CDCL technique is a basis for efficient SMT solvers as well as for CP-
SAT.

3.4.4 Industry example: containers configuration using SAT, at
Maersk Container Industry A/S
Yves Deville​, Karen Veldeman, Nikolaj Bjorner

3.4.4.1 Modeling product configuration as a SAT problem

The industrial example on product configurators in Section 3.3.5 is further developed.
The product configuration model has been described as a CSP using variables with a fi-
nite domain, and a set of constraints defining the possible configurations of containers.
The MCI product configurator also integrates a SAT solver. The SAT solver relies on en-
coding all constraints using Boolean variables only in the formof clauses. On the surface,
this may seem very low level and potentially losing structure, but this representation al-
lows for efficient propagation using clauses in an efficient SAT solver.

An encoding of the sensor module attribute (SM) and its domain into SAT can be
achieved using three Booleans SM.No, SM.CO2, and SM.O2, where the variable SM.x is
truewhen the value of SM is set to x. To ensure that in an assignment of the Boolean vari-
ables, the SM attribute has a value, and the following clause is added to the CSP: SM.No∨ SM.CO2 ∨ SM.O2. Other formulas ensure that this attribute is not assigned more than
one value: ¬(SM.No ∧ SM.CO2) ∧ ¬(SM.No ∧ SM.O2) ∧¬(SM.CO2 ∧ SM.O2). The resulting
clauses are then also added: ¬SM.No ∨ ¬SM.CO2, ¬SM.No ∨ ¬SM.O, ¬SM.CO2 ∨ ¬SM.O2.
Similar clauses should also be added for the other attributes.

The table constraint illustrated in Table 3.4 expresses that some combinations of
fresh air exchange modules and sensor modules cannot be combined into one single
container. This table constraint should be transformed into clauses. A first idea would
be to encode each line of the table as a conjunction (line 1 as AC.MV ∧ FAM.MV ∧ SM.No),
and relate these formulas with disjunction. The size of the resulting formula when
transformed in CNF is, however, exponentially large. This exponential explosion can be
avoided by using Tseytin transformation that introduces a newBoolean variable to each
row of the table (T1, T2, T3, and T4). A set of formulas relates these new variables with
the attribute variables in the table constraint. For the first row, the formula T1⇒ (AC.MV∧ FAM.MV ∧ SM.No) relates T1 and the values of the attributes in this line. The resulting
clauses are then AC.MV ∨ ¬T1, FAM.MV ∨ ¬T1, SM.No ∨ ¬T1. Similar clauses are added
for the other rows. Tseytin transformation traditionally should also add formulas such
as T1⇐ (AC.MV ∧ FAM.MV ∧ SM.No) for the first row. It is, however, better to reexpress
these formulas by other equivalent formulas. For each value of each attribute in the
table, a formula relates the value to the corresponding row in the table. For the value
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number of the attribute SM, the formula is SM.No ⇒ (T1 ∨ T2), leading to the clause¬SM.No ∨ T1 ∨ T2.
The proposed encoding is very efficient. When applying DPLL on the above SAT en-

coding of the problem, thanks to unit propagation, it actually achieves a pruning equiva-
lent to domain consistency. For instance, as soon as the variable AC.MV is set to true, the
variable T1 has to be set to true by the clause ¬AC.MV ∨ T1. Then the variables FAM.MV
and SM.No have to be set to true by the clauses FAM.MV ∨ ¬T1 and SM.No ∨ ¬T1.





Bart Bogaerts
4 Reasoning with first-order logic

4.1 Why is reasoning with first-order logic important
within the broader artificial intelligence (AI)
domain?

In this chapter, the general goal we focus on is the development of a so-called knowledge-
based agent, which can reason based on a rich body of knowledge, stored in what we
will call a knowledge base. While later chapters focus on learning, in this chapter, we
assume that the knowledge is provided to the agent, most likely by a domain expert.

What this knowledge represents can depend on the context. For instance, it can be
a symbolic representation of regulations relevant for its users, or it can be a represen-
tation of the causal mechanisms that govern the world in which the agent operates, or
of strategic plans of a company, etc.

When representing knowledge, there are a couple of concerns to keep in mind.
Afirst is the principle of elaboration tolerance; that is, when theworld changes (e. g., new
laws are introduced, company policies shift, the environment is changed), the agent’s
knowledge base should be easy to update, bring up to speed. To achieve this, it is impor-
tant that this knowledge is presented in a clear, understandable, and preferablymodular
way. A second concern is that the underlying knowledge should also only be represented
once. If the agent relies on its domain knowledge for multiple purposes, it should be
able to use a single representation of that knowledge to guarantee consistency. In other
words, the representation of the knowledge is independent of the task to be solved.

Once the agent is equippedwith said knowledge base, wewant it to perform various
types of tasks, to solve problems that arise in the problem domain. As such, this chapter
is concerned with two main tasks: (1) how to represent knowledge in a way that is un-
derstandable both for humans and computers and (2) how to exploit such represented
knowledge for different forms of (deterministic) reasoning.

For the former, we study first-order logic (FOL), a much richer logic than proposi-
tional logic from the previous chapter; for the latter, we will show that in fact a theory
in first-order logic allows for a wide variety of reasoning mechanisms.

First-order logic is chosen here as the base language because of its historic impor-
tance, as well as the fact that its connectives are simple, and have a crisp and clear in-
formal semantics (by this, wemean that the formal meaning of statements in first-order
logic is often what one would expect; as an example, first-order logic contains a quantor
∀ informally read as “for all”; as one can expect formulas of the form ∀x : ϕ(x)will hold
in caseϕ is true for all possible objects). However,many other knowledge representation
languages exist, taking different criteria into account (efficiency of reasoning methods,
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expressivity of the language, etc.); we discuss alternatives later in the chapter, as well
as in Chapter 5, where we discuss knowledge representation languages known as “de-
scription logics,” which are designed specifically with the purpose of making deductive
reasoning decidable.

In the previous chapter, we studied propositional logic and saw how modern SAT
solvers can solve the satisfiability problem of propositional logic with remarkable
ease. However, from the perspective of representation, propositional logic falls short:
the knowledge it represents is always instance-specific; it lacks the expressive power
to represent knowledge of a problem domain in a concise way, independently of the
instance.

Throughout this chapter, we will use hospital scheduling as a running example. In
this context, a very natural piece of knowledge is that everyone can only be assigned a
single task during each shift (no one can do two tasks at the same time). While it is very
easy to specify this in natural language, it is not easy (in fact, even impossible) to do this
in propositional logic independently of a concrete instance.

Of course, it is possible to encode this natural language constraint, given a concrete
set of employees, in propositional logic, but this encoding will have the following unde-
sirable properties:
– it is instance-specific: if the set of employees changes, so does the encoding; and
– it is hard to read, and hence difficult to understand or debug.

On top of that, it is inherent to propositional logic that when the instances get larger
(more personnel or more tasks), so does the representation of the knowledge that ev-
eryone can do at most one job at a single time. For instance, when considering the set
of employees A(lice), B(ob), and C(harlie)with two tasks T1 and T2 and two shifts S1 and
S2, we could use propositional variables pETS with E an employee, T a task and S a shift,
where pETS has the intended interpretation (the intended interpretation of a symbol is
the concept in the real world it represents) that pETS holds if and only if E is assigned
task T during shift S, one can craft the following encoding:

¬(pA11 ∧ pA21) ∧ ¬(pA12 ∧ pA22) ∧

¬(pB11 ∧ pB21) ∧ ¬(pB12 ∧ pB22) ∧

¬(pC11 ∧ pC21) ∧ ¬(pC12 ∧ pC22)

While this formula correctly characterizes the given natural language constraint
for the given instance, it raises challenges of understandability (it can hardly be called
transparent and convincing someone of its correctness is not an easy job, especially if
the instances get larger), as well asmaintainability (if the knowledge of what constitutes
a valid schedule changes, or even if the set of tasks changes, the entire formula needs
to be updated). Furthermore, even if one could convince someone of the correctness
of this encoding, nothing could be concluded about other instances. These limitations of
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representation in propositional logic are in stark contrastwith the simplicity of a natural
language expression

“everyone can do at most one job at a single time.”

To address the understandability problem, it would make sense to not use the ac-
tual propositional theory, but rather use a schema of how to generate the propositional
theory. Concretely, here this could be something of the form

¬(pEXS ∧ pEYS) for each employee E, each shift S,
and each two distinct tasks X and Y .

While this representation solves the issue of understandability, it has other weaknesses,
most notably that this notation is informal and not computer-readable. This is exactly
where representation languages with a higher level of expressivity (such as first-order
logic) come into play: first-order logic provides us with the means to express the knowl-
edge underlying the scheduling problem compactly, in a formal way that is indepen-
dent of the instance. Concretely, in first-order logic, we would make use of a relation
Assignment with intended interpretation that Assignment(e, t, s) holds if employee e is
assigned task t at shift s. The constraint that every employee can be assigned at most
one task during each shift then becomes

∀e, ∀s, ∀t1, t2 : (t1 ̸= t2) ⇒ ¬(Assignment(e, t1, s) ∧ Assignment(e, t2, s)),

or, equivalently,

∀e, ∀s, ∀t1, t2 : Assignment(e, t1, s) ∧ Assignment(e, t2, s) ⇒ t1 = t2,

which intuitively states that if a single employee e is given the tasks t1 and t2 during a
given shift s, then it must be that t1 and t2 are actually the same. Moreover, providing a
problem-independent, formal description of this knowledge, provides uswith themeans
to use it for various types of reasoning. Indeed, the knowledge about “what constitutes a
good scheduling” is independent of any problem to be solved; while it is often associated
to it, this knowledge is not inherently linked to the problem of finding schedules. It could
also for instance be used for proving properties that all valid schedules satisfy, that is, to
reason independently of a specific instance.

4.2 What category of problems does reasoning with
first-order logic solve?

The focus of this chapter lies on problems that arise in knowledge-intensive problem
domains. These are domains about which background knowledge is available, either
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explicitly (for instance, in the form of regulations, policies, etc.), or implicitly (e. g., in the
mind of a domain expert). In Chapter 7, we will study how to make intelligent agents in
case the knowledge is not available explicitly, but instead we want to learn it from data.
In such domains, we are concerned with problems whose solutions can unambiguously,
and deterministically be defined in terms of this background knowledge. In Chapter 6,
we will see other forms of reasoning that work probabilistically, for example, taking
uncertainty about the world into account.

Some examples of such knowledge-intensive problem domains include decision
management (where the logic underlying everyday business decisions can be made ex-
plicit), scheduling (where the knowledge about what constitutes a valid scheduling can
be made explicit), product configuration(where the information about what constitutes
a good configuration can be made explicit), legal reasoning (where laws or regulations
can be made explicit), etc.

In such a knowledge intensive domain, many different problems can arise; and part
of the research in logic-based reasoning is about classifying such problems as more
generic problempatterns. These generic patterns are defined independently of the prob-
lem domain at hand, directly in terms of the logical representation. Some examples of
such generic inference methods include:
– Model checking: Given a complete specification of a state-of-affairs, check whether

this state of affairs indeed satisfies the knowledge that was made explicit. For in-
stance, in case the knowledge describes “what are valid schedules” and the state-of-
affairs is one concrete proposed schedule (that might have been crafted manually),
this task boils down to checking whether the manually crafted schedule indeed sat-
isfies the scheduling constraints.

– Model expansion: Given a partial description of the state-of-affairs, complete this
to a complete description in such a way that the given knowledge is respected. In
the scheduling example, the partial description of the state-of-affairs could be in-
formation about the available rooms and personnel and shifts, but not contain in-
formation about the actual schedule. The complete information would then also
contain the actual schedule. That is, in that case the problem-specific task would
be searching for a schedule. This inference is sometimes extended to optimal model
expansion, where one is not just interested in searching any extension of the given
input but one that is optimal with respect to a certain criterion. For instance in the
scheduling domain, one might want to optimize conformance to explicated prefer-
ences of employees.

– Querying: Given a representation of the world, finding all instances that satisfy a
certain logical formula. This type of querying corresponds exactly to querying a
database (and in fact, many successful database languages are based on first-order
logic).

– (Finite domain) Propagation: Given partial information about the world, derive
more information based on the explicit knowledge. For instance in case a partial
schedule is constructed, an automated reasoner could already infer that a given
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employee could not do a certain task at a certain moment (because they already
have another task at that moment, or because regulation forbids to fill more than
two consecutive shifts, or ...)

– Deduction: Checkingwhether a certain logical sentence follows from the formalized
knowledge independently of the instance. For instance, in the scheduling use case,
one could use this to verify whether the constraints used for scheduling guarantee
that the local fire safety regulations are respected (given a representation of the fire
safety regulations infirst-order logic). By proving this independently of the instance,
we obtain the guarantee that all previous and future schedules created based on this
knowledge indeed satisfy those requirements.

All the methods presented in this chapter will be based on an explicit representation of
domain knowledge. This, however, does not mean that all knowledge needs to be rep-
resented formally. Indeed, again consider the hospital scheduling application. In such
an application, a lot of knowledge will be easy to formalize (e. g., constraints imposed
by the hospital, as well as constraints imposed by the government), but other parts of
the knowledge might be tacit, that is, expert schedulers might know about certain sen-
sitivities: who can work well with whom, and which kind of schedules are deemed fair
by employees. This kind of knowledge is often hard to formalize. In such cases, we can
still use the formalization of the “hard” knowledge, not to solve the complete scheduling
problem, but to assist the expert scheduler, that is, the knowledge on scheduling poli-
cies can be used to develop a decision support system. Such a system can for instance
use propagation to derive consequences of choices made the expert scheduler and even
explain him/her why certain (undesired) consequences follow from other assignments.
In situations like this, multiple inference can be used on the same knowledge; the idea of
doing this is known as the knowledge base system paradigm (Denecker and Vennekens,
2008).

4.3 How are those problems solved?

In order to solve problems in knowledge-intensive domains, as described above, we
need:
– A language in which domain knowledge can be expressed. This language should

be understandable both by a computer (for reasoning) and by humans (for trans-
parency, as well as to enable maintenance/updates).

– Reasoning engines that can exploit this knowledge.

As for the language, this chapter focuses on first-order logic, because of its historic im-
portance in different domains, its expressive connectives, and its intuitive informal se-
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mantics. However, many other knowledge representation languages exist, each of them
designed with specific goals in mind. A nonexhaustive list of some examples follows.

For instance, Chapter 5 is concerned with the study of description logics (Baader
et al., 2003), which are essentially limitations of first-order logic that enable efficient
deductive reasoning. On the other hand, in other languages the expressivity of first order
is extended instead of reduced, for example, by adding second-order features (such as
one for instance in ProB (Leuschel and Butler, 2003) and Alloy (Jackson, 2002)).

Statements in first-order logic are in essence objective, they are either true in the
world or not. However, in some cases one might want to express knowledge not about
the actual world, but about the state of mind of an agent. For instance, rather than rea-
soning about what is true, in some cases it might be useful to reason aboutwhat another
agent knows. For this purpose, a variety of so-called epistemic logics has been developed
(Hintikka, 1962; Fagin et al., 1995; Halpern and Moses, 1990).

First-order logic is a monotonic logic. By this, we mean that if one can make a con-
clusion from a limited set of statements, adding more statements can never undo the
conclusion, can only result in us making more conclusions. Certain natural language
statements do not have this property. For instance, if I tell you that “Birds can usually
fly,” and “Tweety is a bird,” it is natural to assume that Tweety can fly. However, when
given more information, such as, for example, that Tweety is in fact a penguin, the con-
clusion might become invalid. This kind of logics is studied in the field of nonmonotonic
reasoning (Reiter, 1980; Moore, 1985; McCarthy, 1986; Gelfond and Lifschitz, 1988).

Other types of languages, often with a basis in first-order logic, include
– languages to express dynamic domains, inwhich theworld ismodeled in a temporal

setting and actions can change the state of the world (Reiter, 2001; Mueller, 2007;
Reiter, 1991);

– languages to express causal information (Pearl, 2000; Pearl and Mackenzie);
– languages to express spatial relations (Cohn and Renz);
– domain-specific languages, to represent knowledge about a particular application

domain. For instance when taking the example of modeling business logic and deci-
sion management, several domain-specific languages have been proposed (Group,
2008; Governatori, 2005; Abdelsalam and Shoaeb, 2016).

4.3.1 Representing knowledge in first-order logic

To represent knowledge in first-order logic, we will discuss three important concepts.
The first is a vocabulary; it specifies the set of symbols we will use. By choosing the vo-
cabulary, and agreeing on the informal semantics (the meaning in the real world) of
each of the symbols, we determine which concepts in the world we can express knowl-
edge about. Second, a structure consists of a domain (all the objects in theworld), as well
as an interpretation of the symbols in the vocabulary; it is an abstract representation of
the world of interest; it has a domain (the set of all objects in the world) and assigns a
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value (of the right type, see below) to each of the symbols. Third, a formula then rep-
resents the actual knowledge to be formalized; it specifies how different symbols from
the vocabulary are related. Formulas should follow the syntax of first-order logic. The
semantics of first-order logic is used to determine whether or not a formula is satisfied
in a given world (structure).

Vocabularies
While propositional logic starts from a set of propositions, statements that can be true
or false in the world, first-order logic takes the view that the world consists of (differ-
ent sets of) objects (often called domain elements), with relations and functions between
them. Uncoincidentally, this assumption is very similar to the one made in the context
of relational databases (with a strong focus on relations there). Of course, it is debatable
whether the real world is indeed made up of such objects and relations, but knowledge
representation also starts from the idea that a certain abstraction of the actual world
needs to be made. Thus, we will abstract away certain details of the world to be mod-
eled and end up with a set of objects with relations and functions between them. This
immediately brings us to the first challenge to be tackled when using knowledge repre-
sentation techniques: finding the right level of abstraction for representing a problem do-
main. Often, an informal specification of the problemdomain can give us an idea ofwhat
this level of abstraction should be. Take, for instance, the problem of hospital schedul-
ing. A specification of what constitutes a valid scheduling will most probably mention
nurses (a set of “objects” we cannot take abstraction of) and shifts (suggesting that us-
ing entire days as building blocks is probably too coarse, but scheduling per minute on
the other hand is probably a too detailed representation). Such a specification will also
mention that there is a relation between nurses, time points (abstracted in shifts) and
assignments, etc.

The exercise described above does not just establish a level of abstraction, it also
gives us an idea what the objects and relations between them will be. In other words,
this exercise determines the ontology to be used in the representation of our domain
knowledge. In first-order logic, the concept of a vocabulary is used to represent this in-
formation: a vocabulary is a collection of relation symbols (often called predicate sym-
bols1), and function symbols, each with an associated arity—the number of arguments
they take. Nillary function symbols (function symbols that take no arguments) are often
called constants. For instance, in our running example on hospital scheduling, it is very
likely that one needs:
– Constant symbols, such as CEO, to refer to specific persons (or other objects of in-

terest in the domain).

1 First-order logic is also often called predicate logic.
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– A set of nurses; this will become a unary (one input argument) symbolNurse, mean-
ing that every object in the abstracted world, either is a nurse or is not. For instance
Nurse(CEO)will (as we see below) express that the chief executive officer (CEO) is a
nurse, which can either be true or false.

– A set of employees containing all employees of the hospital; again, in the vocabulary
this will correspond to a unary predicate symbol, for example, called Employee. It
is very likely that all the nurses in the domain of interest are employees; we will see
below how to express this.

– A unary predicate Surgeon representing a set of surgeons.
– A set of shifts (e. g., “Monday 6am–4pm” could be a shift); again, this will be repre-

sented by a unary predicate Shift: every object in the domain of discourse either is
a shift or it is not.

– A set of possible qualifications, again represented by a unary predicate symbol, for
example, Qualification.

– A relation between employees and qualifications stating who has which qualifica-
tion; since this is a relation between two objects (for every employee e and every
qualification q, either e has the qualification q or e does not have it), it is repre-
sented by a binary predicate symbol (e. g., HasQualification) in the vocabulary. The
intended interpretation of this symbol is that HasQualification(e, q) holds when e
has the qualification q (e. g., a C1 qualification for the English language).

– A set of tasks to be performed, represented by a unary predicate Task.
– A relation stating who does what at which moment. Since this is a relation between

three objects (a person, a task, and a shift), this is modeled by a ternary relation in
first-order logic, for example, a relation Assignment with intended interpretation
that Assignment(e, t, s) holds if employee e is assigned task t at shift s.

– A relation stating who is on call during each shift: OnCall(e, s) means that e is on
call during shift s.

– A functionManagerwith intended interpretation that it maps every employee to its
manager. This would be a unary function, taking one input argument; every func-
tion in first-order logic produces one output.

In the description of this vocabulary, already a couple of important points showup. First,
these symbols are independent of which task one wants to solve in the context of hos-
pital schedules: it might be used for checking whether a schedule satisfies the hospital’s
rules, for generating a work schedule, or for proving that the hospital’s rules conform
to the state regulation. Second, the choice of symbols, and thereby level of abstraction,
determines which kind of information we will be able to express, and how easy it is to
express that information. Third, with each symbol here we specified its intended inter-
pretation; this is an often overlooked, but extremely important thing to do. Similar to
documentation of procedural code, the intended interpretation of symbols is a means
to communicate, which objects and relations in the world one will make claims about
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and hence is crucial for making sure these claims are indeed well understood. Also sim-
ilar to programming, it is important that the relations have a meaningful name, again
to ensure readability of the formalized knowledge.

We already associated to the symbols an intended interpretation. However, symbols
can also have an actual interpretation: symbols can have a value; for constant symbols,
this is an element of the domain; for predicate symbols this value will be a relation,
for function symbols, this will be a function. For instance, in the real world, everyone
either has a certain qualification or not; this determines the actual value of the symbol
HasQualification. Also, in a solution to the scheduling problem, each person is either
assigned a task during a certain shift or not, thereby determining a value for the symbol
Assignment. Such an interpretation of the symbols is called a structure and is discussed
next.

Structures
The basic semantic object of first-order logic is a structure, often denoted S. It is a possi-
ble state of the (abstracted) world. A structure consists of two parts. On the one hand, it
specifies a domain D: the set of all objects in the world. On the other hand, it also speci-
fies for each symbol in the vocabulary an interpretation. The interpretation of a function
symbol of arity n is a function fromDn toD; the interpretation of an n-ary predicate sym-
bol is a set of n-tuples with elements inD, that is, an n-ary relation overD. Thus, in short,
a structure determines
– a set of objects (its domain) D,
– for each constant symbol c, a domain element cS (i. e., each constant symbol denotes

an object).
– for each n-ary predicate symbol p a relation pS ⊆ Dn;
– for each n-ary function symbol, a function f S : Dn → D.

For instance, in our scheduling example,
– The domain (the set of all objects) could be {Ann,Bob, Charlie,Q1,Q2, . . . }
– The interpretation of Nurse should be a set of 1-tuples, that is, elements of the do-

main. It could for instance be NurseS = {Ann,Bob}.
– The interpretation of HasQualification should be a set of 2-tuples indicating who

has which qualifications. It could be HasQualificationS = {(Ann,Q1), (Ann,Q2),
(Charlie,Q1)}.

– The interpretation of Manager should be a function, mapping each employee to
their direct manager. It could map Ann to Bob (i. e., ManagerS(Ann) = Bob), Bob
to Charlie and Charlie to himself (assuming Charlie is the CEO).

It is important to remark that in our informal discussion, we only specified how the
function Manager should behave on employees. In standard first-order logic, however,
functions are assumed to be total. That is, they are supposed tomap every tuple of values
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to some value. In practice for us, this will mean that the function thatManager denotes
will also assign values to qualifications, assignments, etc. Most likely, we will not be in-
terested in such values. To deal with this in a more natural way, first-order logic is often
extended either with partial functions (functions that do not need to map every object
to a value) or with types. In a typed logic, we partition the domain of interest in differ-
ent sets (the types), and in this setting, each symbol is not just given an arity but also a
typing, for example, one could there state thatManager is a function from employees to
employees, and thus get rid of the redundant information.

Terms and formulas
First-order logic nowallows us, using the symbols from the vocabulary, towrite complex
expressions, as detailed below. In first-order logic, terms are expressions that denote an
object. There are three types of terms that can denote an object of the world, constant
symbols, function symbol applications, and variable symbols. For instance, ifHeadNurse
is a constant symbol, then it denotes an element of the domain in every structure; the
interpretation of this symbol specifies which element it denotes; let us assume it de-
notes Bob in an extension of the structure described above. Another type of terms is
the application of a function symbol (of arity n) to n terms. For instance (with n = 1),
Manager(HeadNurse) is a term as well. In our structure, it denotes Charlie since the
expression HeadNurse denotes the object Bob and the interpretation ofManager maps
Charlie to Bob. A last type of terms are variables, for example, x, y, z. These symbols are
local to some quantification and their value is not part of a structure.

As can be seen, the semantics of terms is compositional in the sense that it works
by giving meaning to an expression in terms of the meaning of its subexpressions, and
unsurprising in the sense that it seems like the only reasonable semantics to be given to
it. This is the case for the entirety of first-order logic. We now discuss all the language
constructs that are used to form formulas in first-order logic. A formula in first-order
logic denotes a truth value (true (t) or false (f)) in the context of a structure and assign-
ment of values to its (free) variables. The basic building block are atomary formulas;
they either equality atoms (equality between two terms) or a predicate symbol applied
to the right number of terms. For instance,

Manager(HeadNurse) = HeadNurse

is true if and only if the head nurse is his/her own manager and

Employee(Manager(HeadNurse))

is true if and only if the manager of the head nurse is an employee.
First-order logic then makes use of the same Boolean connectives we know from

propositional logic (Chapter 3): if φ1 and φ2 are formulas, then so are ¬φ1, φ1∧φ2, φ1∨φ2
(and φ1 ⇒ φ2 and φ1 ⇔ φ2). Their semantics are as expected, for instance,
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¬Manager(HeadNurse) = HeadNurse

is true if and only if

Manager(HeadNurse) = HeadNurse

is false, that is, if the head nurse is not his/her own manager. Similarly,

Manager(HeadNurse) = HeadNurse ∧ Employee(Manager(HeadNurse))

is true if two claims hold: (1) the head nurse is their own manager, and (2) the head
nurse’s manager is an employee. The semantics of⇒ is a bit more subtle. This operator
is to be understood as follows: φ1 ⇒ φ2 states that if φ1 is true, then φ2 must be true as
well. Otherwise, no claim about the value of φ2 is made and the proposition is always
satisfied. For instance, consider the formula

Nurse(x) ⇒ Employee(x).

Taking abstraction for a moment of where the value of the x comes from, this formula
states that if x is a nurse, then x is an employee as well. This proposition should surely
hold for all xs that are nurses, but it actually holds for all nonnurses as well. To see this,
assume x denotes an office chair. In that case, this statement holds as well: if my office
chair is a nurse, then it is an employee as well. While this might seem a bit counter-
intuitive at first, this kind of construct is actually used constantly in natural language.
Consider someone saying to their friend “If we meet each other at the conference, we
go for a drink together, I promise.” Now assume the two people do not see each other at
the conference (and hence of course, do not go for a drink), would that make the first
person a liar? Most people would agree not. Hence, the logical implication (conditional)
formalizes this sort of “if …then …” from natural language; however, it deserves to be
mentioned that in natural language we often use “if …then …” to mean other things as
well (causation, definition, etc.).

We now turn our attention to a language that really sets first-order logic apart from
propositional logic. That is quantification. That is, we can say that a certain property
holds for all or for some objects. Concretely, if, as discussed above, we wish to express
that every nurse is an employee, we can express this as

∀x : Nurse(x) ⇒ Employee(x).

The semantics of such a formula is defined as follows: ∀x : φ is true if φ is true for
all assignments of domain elements to x. Similarly, ∃x : φ is true if φ is true for some
(one or more) assignments of domain elements to x, allowing us for instance to express
properties such as

∃x : Employee(x) ∧Manager(x) = x

stating that there exists an employee who is their own manager (e. g., the CEO).
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While each of these language constructs are quite simple, combining and nesting
them allows us to express complex constraints such as

∀x : (Nurse(x) ∧ x ̸= HeadNurse) ⇒ Manager(x) ̸= x,

which states that all nurses different from the head nurse must have a manager that
is different from themselves (i. e., no nurse except for the head nurse can be their own
manager).

Remark 4.1. There is one subtlety that deserves some attention. When communicating
(in natural language), humans rarely quantify over “everything” (i. e., all objects in the
world). Instead, we usually quantify over restricted subsets. For instance, “all men are
human” or “all lectures should be scheduled between 8am and 6pm.” That is, universal
quantification (and the same holds for existential quantification) in natural language is
usually of the form

“All P’s are Q’s”

This kind of construct is sometimes called binary quantification but is not present in
first-order logic. The way this will typically be written in FO is ∀x : P(x) ⇒ Q(x). This
statement states that for all objects in the world, if they are a P then they should also
be a Q (and otherwise no restriction is imposed on them). Existential quantification in
natural language takes the form

“There is a P that satisfies Q” or “Some P is a Q”

for instance “(at all times) there is a surgeon on call,” where P is “surgeon” andQ is “is on
call.” In first-order logic, this would be expressed as ∃x : P(x)∧Q(x), which immediately
highlights an asymmetry between universal and existential quantification. Indeed, for
conditional/binary quantification, a universal quantifier is paired with an implication
while an existential typically occurs with a conjunction. Both connectives are visible
when formalizing the previously mentioned statement “at all times, there is a surgeon
on call” as

∀sh : Shift(sh) ⇒ ∃s : Surgeon(s) ∧ OnCall(s, sh).

This rule-of-thumb can be of great value when debugging knowledge expressed in first-
order logic: expression of the form ∃x : φ⇒ ψ or ∀x : φ ∧ ψ are rarely correct.

The formal semantics of the different type of formulas is summarized in Table 4.1;
the informal reading of different formulas is summarized in Table 4.2. Often, one will
not be interested in a single arbitrary formula, but rather in a set of so-called sentences:
formulas in which all variables are quantified (for instance, Nurse(x) ⇒ Employee(x) is
not a sentence; it is not clear what this expresses (the existence of such an x or that this
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Table 4.1: Semantics of formulas in first-order logic.

formula interpretation in structure S

t1 = t2 t if t1 and t2 have the same interpretation in S; f otherwise.
P(t) t if tS ∈ PS ; f otherwise.
ϕ ∧ ψ t if both ϕ and ψ are true in S; f otherwise.
ϕ ∨ ψ t if at least one of ϕ and ψ is true in S; f otherwise.
ϕ⇒ ψ t if ϕ implies ψ in S (i. e., if ϕ is true, so is ψ); f otherwise.
∀x : ϕ(x) t if ϕ(d) is true for all the elements d in the domain of S; f otherwise.
∃x : ϕ(x) t if ϕ(d) is true for at least one element d in the domain of S; f otherwise.

Table 4.2: Informal interpretation of first-order logic.

formula informal interpretation

t1 = t2 t1 and t2 have the same value
P(t) t is in the interpretation of P
ϕ ∧ ψ ϕ and ψ are both true
ϕ ∨ ψ ϕ is true, or ψ is true, or both
ϕ⇒ ψ if ϕ is true, so is ψ
∀x : ϕ(x) ϕ holds for all possible values of x
∃x : ϕ(x) ϕ holds for some possible value of x

holds for all such x?), while ∀x : Nurse(x) ⇒ Employee(x) is a sentence). Such a set is
often called a theory, or knowledge base.

This concludes our introduction to the type of knowledge representable in first-
order logic. An overview of the most important syntactic objects in first-order logic can
be found in Table 4.3. To increase natural expressivity, the operators discussed here are
often extended, for example, to include aggregates (to naturally express “at least 5”),
types (to make quantification more natural and make functions only range over the rel-
evant domain elements), and many more constructs.

Table 4.3: Overview of the most important elements of the syntax of FO.

type of expression (type of) value in a structure examples

constant symbol domain element CEO, HeadNurse
function symbol function Manager
predicates symbol set of tuples Employee, OnCall
variable symbol − x, y

term domain element CEO
Manager(HeadNurse)

formula true or false ∀x : Nurse(x) ⇒ Employee(x).
Manager(HeadNurse) = CEO
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We now turn our attention to how this knowledge can be used for various forms of
reasoning and how this relates to many other fields.

4.3.2 Reasoning with first-order logic

Now that we have presented the syntax and semantics of first-order logic, we are ready
to present a variety of different forms of reasoning that use the knowledge expressed
in first-order logic. In fact, the reasoning methods we present (often called inference
methods) are not just applicable to first-order logic, but are applicable as well to other
logics with amodel semantics, that is, where the semantics is defined by formally stating
which states of affairs satisfy expressions in the logic and which do not, that is, which
structures aremodels of a theory. In FO, a structure S is called amodel of a theory T if it
satisfies all sentences in T (if all the knowledge in T is indeed true in S). Formally, S is a
model of T if for all sentences ϕ in T , ϕS = t.

Some of the inference methods discussed below make use of a partial structure. A
partial structure, like a normal structure has a domain and interprets symbols. The dif-
ferencewith a regular structure is that in a partial structure part of the informationmay
be “unknown.” For instance, it can be unknown who the CEO is, or it can be unknown
whether or not “Alice is a nurse.” Partial structures can be compared in precision: S1 is
more precise than S2 if there are fewer things unknown in S1 than in S2, but everything
that has a value in S2 has the same value in S1. In case S1 is a normal structure more
precise than S2 we call S1 an expansion of S2. There are different ways to define such
partial structures formally, the simplest one to think of, for now, is at the granularity
level of symbols: a partial symbol interprets only some symbols in the vocabulary, and
leaves the value of the other symbols open/unknown.

Inference method:Model checking
Given: a (finite) structure (an abstraction of the world) and a theory (the formalized knowledge)
Decide: whether or not all sentences of the theory are satisfied in the given structure

The first inference method discussed is quite a simple one: for model checking , one is
given a structure and a theory (the formalized knowledge) and the problem at hand
is deciding whether or not all formulas in the theory are satisfied in the structure, the
abstraction of the world. That is, in the context of the running example, this inference
method would boil down to checking whether a (for instance, manually created) sched-
ule satisfies all the scheduling constraints. This inference method can be implemented
very efficiently (in so-called polynomial time in terms of the size of theworld). Oneway to
implement this would be to directly apply the definition of the semantics, for instance,
for the sentence ∀x : Nurse(x) ⇒ Employee(x), given a structure S, we can check for
each d in the domain whetherNurse(d) 󳨐⇒ Employee(d) holds. As soon as we find one
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instance for which it does not, we know the original sentence is not satisfied. If we finish
this loop over the domain without finding one such instance, we know that it holds.

Inference method: (Optimal) Model expansion
Given: a (finite) partial structure (a structure that interprets some symbols, but not all of them) and a theory
(the formalized knowledge) and an optimization criterion that specifies which worlds are preferred
Find: an expansion of the partial structure that satisfies the theory (and that is optimal with respect to the
given criterion)

The second task, model expansion, is in fact a generalization of model checking. Here,
theworld is not completely given, but parts of it are to be searched. For instance in nurse
scheduling, it would be a realistic assumption the parts of the structure given include
which rooms/shifts/etc. there are, while the nongiven part includes the actual sched-
ule. As such in this case, the problem of model expansion is the problem of searching a
schedule that satisfies all the constraints (and that is optimal with respect to a certain
criterion, e. g., howwell it respects preferences of the employees or fairness). This prob-
lem is typically solved by the techniques from the previous chapter, such as SAT solving.
To do this, the combination of the structure and theory is first reduced to a SAT prob-
lem by a technique called grounding, which eliminates all quantifications, intuitively by
replacing a quantifier

∀x : φ(x)

by

φ(d1) ∧ φ(d2) ∧ ⋅ ⋅ ⋅ ∧ φ(dn)

where the di are all the elements of the domain. Similarly, an existential quantifier

∃x : φ(x)

would be replaced by

φ(d1) ∨ φ(d2) ∨ ⋅ ⋅ ⋅ ∨ φ(dn).

When this procedure is applied recursively, for example, translating ∃x : ∀y : φ(x, y), to

(φ(d1, d1) ∧ φ(d1, d2) ∧ . . . ) ∨ (φ(d2, d1) ∧ φ(d2, d2) ∧ . . . ) ∨ . . . ,

the resulting formula will have no more quantifiers or variables. In case there are no
function symbols, the result will be a theory in propositional logic, and hence the SAT
solving techniques from the previous chapter are directly applicable to find satisfying
assignments, which can then subsequently be translated back into a first-order struc-
ture. In case the original theory had function symbols, there are two options. The first
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option is to replace the function symbols by predicate symbols by a technique that is
known as graphing (a function f is replaced by a predicate Gf such that Gf (x, y) holds if
and only if f (x) = y), to again, arrive in propositional logic. The second option is to keep
the function symbols, but in this case, after replacing all variables by all their instanti-
ations, not only propositional symbols will remain, but also finite domain variables. In
that case, a constraint solver can be used to solve the remaining problem, using all the
techniques from the previous chapter.

Inference method: Querying
Given: a (finite) structure (an abstraction of the world) and a formula
Find: assignments to the free variables of the formula for which it is satisfied

The query inference is used mainly in the context of databases, where the structure
is represented by a database, and the query typically by an structured query language
(SQL) statement. However, it deserves to be mentioned that first-order logic (there of-
ten referred to as the relational calculus) lies at the basis of SQL. The goal of the query
inference is to evaluate a certain formula (with free variables) in a given structure. For
instance, in case a complete structure of the scheduling vocabulary (i. e., a complete
schedule) is found, one might want to ask questions about it such as “which surgeons
are on call during the July 11 Saturday AM shift?”, for instance, to inspect the schedule
or to develop applications that visualize it. In first-order logic, this would be expressed
as

Surgeon(s) ∧ OnCall(s, “Jul11 − SatAM”)

or as

{s | Surgeon(s) ∧ OnCall(s, “Jul11 − SatAM”)}

in case the variables whose instantiations is to be found is made explicit. For reference,
the same query in SQL would be written as

SELECT person FROM OnCall NATURAL JOIN Surgeon
WHERE shift = “Jul11-SatAM” ;

Another example would be a query that searches for the set of all people who
worked together with a certain individual who tested positive for COVID-19, which
would be expressed as

{p | ∃t, s : Assignment(p, t, s) ∧ Assignment(“PersonX”, t, s) ∧ s < Today}

where Today is a constant interpreted as the current day (to only select shifts that have
already passed, not shifts that are planned in the future). Computing the solutions to
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such a query efficiently is extensively studied in the field of databases. One very impor-
tant technique is join reordering, whichwhen translated into first-order logic, essentially
boils down to using the fact that for all formulas α, β, and γ, for instance,

(α ∧ β) ∧ γ

is equivalent to

(α ∧ γ) ∧ β,

andhence that in order to compute all instances that satisfy each of these three formulas,
we can first compute all instance that satisfy any of the two and afterwards intersect
with those instances satisfying the last formula. Join reordering techniques often make
use of the size of the interpretation of certain symbols in order to reorder the query so
that the internal processors will compute the result much faster.

Like model expansion, querying is a generalization of model checking; in case all
occurrences of variables are quantified, the query becomes a so-called Boolean query
and the task reduces to checking whether a formula is satisfied in the structure or not.

Inference method: Finite domain propagation
Given: a partial structure (an abstraction of parts of the world) and a theory (the formalized knowledge)
Find: a more precise structure (one that interprets more symbols) that is a consequence of the input

The task of propagation takes as input some partial information about the world and
produces more refined (possibly still partial) information based on the logical theory.
That is, it will only derive consequences of the theory given the current information. To
define this formally, if the partial structure in the input is S and the theory isT , the output
S′ should be such that for everymodelM ofT more precise than S,M is alsomore precise
than S′ (i. e., “no models are lost”). For instance, in the hospital scheduling application,
this type of inference could be used in a support system for expert schedulers whomake
the schedule by hand, but in doing so interact with the assistant. For instance, if the
scheduler has assigned a surgeon to be on call during a certain shift and the theory
contains a constraint stating that exactly one surgeon should be on call during every
shift, the system can automatically derive that none of the other surgeons should be on
call. Or in case a nurse is scheduled to work a certain number of shifts in a period of
time, the system could (depending on the actual regulations holding for that particular
hospital) decide that by law the nurse cannotwork anymore shifts in that period of time.
Such propagations can help the expert planner keep an overview of the consequences
of their previous actions, or detect inconsistencies early on. In this kind of setting, a
formalization of the knowledge underlying the scheduling problem is useful even when
the scheduling problem is not solved fully automatically.
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There are differentways inwhich propagation can be implemented. Onewaywould
make use of grounding, as described in the section on model expansion, to reduce the
first-order problem to a propositional problem or a finite-domain constraint problem.
Afterwards, the propagation can be done by the techniques seen in the previous chap-
ter, for example, unit propagation or constraint propagation. Another solution would
be to use model expansion to compute all models of the theory that are more precise
than the given partial interpretation. Everything that is true in all those models is then
a consequence of the given input. This second method is computationally much more
demanding than the first, but also producesmore precise information.Which of the two
is preferred depends on the size of the problem (for small problems, computational cost
is not an issue), and the required precision.

Inference method: Deduction
Given: two theories
Decide: if the first theory entails the second

Inference method: Satisfaction checking
Given: a theory (the formalized knowledge)
Decide: if the theory has a model

The last two types of inference methods are discussed together since they are two sides
of the same coin. What is important to notice about these two inference methods is that
they do not take a structure as input. As such, these inference methods operate purely
on the formalized knowledge in an instance-independent way. Such types of reasoning
are what really sets first-order logic apart from satisfiability solving, where conclusions
are always for a specific instance. Let us discuss these methods in a bit more detail. The
deduction inference methods takes two theories as input and checks whether the first
entails the second, that is, whether all models of the first are also models of the second.
In the nurse scheduling application, this could be used as follows: Suppose theory 𝒯1
contains the scheduling constraints given to an automatic scheduler, or to a system that
supports an expert in creating a schedule. Now assume that 𝒯2 contains a formalization
of a novel labor law hospitals are supposed to adhere to. In this case, we could wonder
whether the “old” scheduling constraints already enforced conformance to the laws or
not. If that is the case, we are sure that
– every schedule ever generated by the software remains valid, taking the new law

into account, and
– no updates to the knowledge base used by the software are needed.

This can be checked using the deduction inference. Alternatively, we could also solve
this problem using satisfaction: we can create a novel theory 𝒯3, which states that the
all the “old” scheduling constraints are satisfiedwhile the new law is violated, and check
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whether this theory has a model. If it does, it means that the 𝒯1 does not entail 𝒯2. On
the other hand, if it does not have a model, 𝒯1 does entail 𝒯2. The satisfaction can in a
similar way be reduced to the deduction problem.

This stronger form of reasoning is the main focus of the research domain on auto-
mated theorem proving. As the name suggests, when deciding satisfiability of a logical
theory, automated theorem provers will not just provide a yes/no answer, but in case the
theory is unsatisfiable, they will also produce a proof of unsatisfiability. An often-used
technique to create such proofs is the method of analytic tableaux. Here, a specified
set of inference rules is used to construct a tree-shaped proof (called the tableau). This
tree has the property that if each of its branches contains an inconsistency, the original
formula is unsatisfiable. An example of a semantic tableau for the formula

(∀x : P(x)) ∧ (∃y : ¬P(y) ∨ ¬P(f (y)))

is depicted. Several types of inference rules are applied here: the ∧-rule allows reducing
a formula α ∧ β to two formulas α and β. The ∃-rule transforms an existential statement
∃x : ϕ(x) into ϕ(C) where C is a new constant name, often called a Skolem. Intuitively,
what it does is given the knowledge that some existential statement is true, it gives a
name to an instance satisfying it. The ∀-rule simply instantiates universally quantified
formulas: if a certain formula holds for all domain elements, thenwe can fill in any term
and it should also holds for that term. The ∨-rule splits a branch in two branches: if it
is known that α ∨ β holds, and we can assume that both options lead to a contradiction,
then the whole is unsatisfiable:

(1) (∀x : P(x)) ∧ (∃y : ¬P(y) ∨ ¬P(f (y)))

??

∧-rule (1)
??

(2) ∀x : P(x)

∧-rule (1)
??

(3) ∃y : ¬P(y) ∨ ¬P(f (y))

∃-rule (3)
??

(4) ¬P(c) ∨ ¬P(f (c))

∨-rule (4)
??

∨-rule (4)

??

(5) ¬P(c)

∀-rule (2)
??

¬P(f (c))

∀-rule (2)
??

(6) P(c)

contradiction!

??

P(f (c))

contradiction!

??



126 � B. Bogaerts

Another domain concerned with the satisfication problem is SAT modulo theories.
Solvers in this field combine the efficient search methods of SAT solvers with rich mod-
ules supporting theories in first-order logic; specifically, for various theories, such as one
axiomatizing certain forms of arithmetic, special-purpose propagators are developed
that can check satisfication efficiently and translate their findings (lazily) into clauses
for the SAT solver to avoid duplicate work.

4.4 What are the limitations of reasoning with
first-order logic

The approach described in this section starts from the assumption that a large body
of domain knowledge is available and can be represented explicitly. In case the as-
sumption is satisfied, this is often considered a strength, since it gives you a lot of control,
and typically results in high confidence in correctness of the conclusions of the system.
However, there are many cases in which this assumption is not satisfied. To explicate
knowledge about a problem domain, humans need not just be able tomake correct deci-
sions, but also need to be able to provide rational arguments aboutwhy certain decisions
are made, and need to be able to align exactly when the same decision is to be made.
Instead, humans often rely on tacit knowledge—knowledge that is difficult to transfer to
another person by means of writing it down or verbalizing it—to make decisions, mak-
ing it hard to replace the human completely by a knowledge-based system. For instance,
in the context of scheduling, an expert scheduler might take personal relationships and
preferences that are hard to formalize into account, and might, from experience have
already learned that certain combinations work better than others. Furthermore, even
when the knowledge is not tacit, the process of extracting it from experts possessing the
knowledge is often not a one-shot procedure: it is not easy to provide a complete formal-
ization of the knowledge used in decision-making. Instead, when doing so, the experts
will often only realize that they use certain laws or rules in case they are presented with
a situation that requires applying it. In Chapter 7, we will study different approaches
that instead of starting from an explicit representation of knowledge start from data,
for instance, historic decisions and learn from that data what the desired behavior is.

Anotherweakness is that the types of knowledge and reasoning studied in this chap-
ter are all deterministic. That is, a black-and-white view on the world is taken: a struc-
ture is either possible (if it is a model, i. e., if it satisfies all the sentences in the theory) or
impossible (if it is not amodel) according to a given logical theory. In certain cases, how-
ever, this type of black-and-white representations does not suffice, for instance in case
probabilistic knowledge (e. g., when rolling a die, there is a one in six chance of rolling
a one) is relevant for the application. Such probabilistic approaches will be studied in
Chapter 6.
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Finally, first-order logic was presented here as a knowledge representation lan-
guage, because of its natural informal semantics and historic importance. However, it
is far from perfect (in fact, we believe that there is no such thing as the perfect knowl-
edge representation language for all applications). There are two important points to
be discussed here. The first is its inability to express certain concepts (naturally).
Certain concepts cannot be expressed in first-order logic. One example is the claim that
one graph is the transitive closure of another graph. Formally, this means that in the one
graph, there is an edge from node a to node b if and only if in the other graph, there is
a path from node a to node b. Another example is in general nonobjective information,
such as, for example, claims about the knowledge of another agent, for example, the
other agent knows that I have either the King or the Queen of Spades. Certain concepts
can be expressed, but cannot be expressed naturally. In this case, extensions are needed
to improve the language. We already encountered this issue when discussing the lack of
types: for instance, the fact that variables always range over “everything in the world,”
is an unnatural assumptions that does not match with how quantifications occur in the
wild (in natural language). This is often solved by using a multisorted extension of first-
order logic. Another limitation would be for instance constraints of the form “at most 7
people satisfy a certain restriction” (e. g., at most 7 people can be in a room together at
the same time). While this is expressible in FO, it would take several lines to do so and
would be very error-prone. For this reason, FO is sometimes extendedwith aggregates. A
second important point to mention that has historically been a source of great criticism,
undecidability of deductive inference. It is well known that deduction for first-order
logic is not decidable in general. Hence, if one wants to use their knowledge only for
deductive reasoning, it makes sense to only consider fragments of the language. This
observation gave rise to the field of description logics, as discussed in the next chapter.

4.5 Industry examples

4.5.1 Automated design-driven diagnostics for lithography
machines at ASML
Pieter Van Hertum, Thomas Nagele

4.5.1.1 Introduction

ASML is the world’s leading provider of lithography systems for the semiconductor in-
dustry, manufacturing complex machines that are critical to the production of inte-
grated circuits or chips. A typical semiconductor manufacturing process consists of a
number of steps, as can be seen in Figure 4.1. These are the 5 major steps:
1. Deposition: Semiconductors are made with silicon wafers (extremely smooth discs

of 99.99%pure silicon). In the deposition step, thin layers of conducting, isolating, or
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Figure 4.1: The semiconductor manufacturing process.

semiconducting material are deposited on the wafer to enable layers to be printed
on.

2. Photoresist Coating: On top of this material layer, a layer of light sensitive coating,
the photoresist, is deposited. This layer enables the subsequent step of printing pat-
terns onto the wafer. A photoresist layer changes chemical structure when exposed
to light, for example, becoming more soluble.

3. Lithography: The lithography step is the step in the manufacturing process where
the actual patterns are transferred from a blueprint (a reticle) toward the wafer,
using light that shines through the reticle. With the pattern encoded in the light, the
pattern is shrunk by the system’s optics and focused on the photosensitive wafer,
chip by chip.

4. Developing and etching: When the pattern has been transferred, the next step is
to remove the degraded photoresist. By etching, the redundant material is removed
to reveal the intended 3D pattern. Baking and developing is done to fix the structure
permanently.
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5. Ionization: By bombarding the wafer with ions (positive or negative), the electrical
conducting elements of the silicon are modified, in order to create the transistors.
After the ionization step, the remaining layers of photoresist are removed to pre-
pare the wafer for the next layer.

This process is repeated hundreds of times to create a wafer full of microchips, every
step crucial and sensitive. Think of the resolution, focused and perfect positioning of the
lithography step, the perfect depth that has to be etched or the sensitivity to the type of
material in the deposition and coating steps. After this process, the wafer is cut into its
individual chips (ranging anywhere from 10’s to 1000’s per wafer) and it is packaged and
placed onto its baseboard.

To support this lithography step, ASML also develops tools to optimize and finetune
the lithography machine and different types of measurements on the produced layers
on the wafers.

4.5.1.2 Diagnostics of a lithography machine

A lithography machine is a complex piece of equipment, consisting of 10,000’s different
parts interacting to print patterns at nanometer scale. Sometimes, interactions between
these parts or the aging of certain components can cause a machine to work subopti-
mally. ASML’s service organization focuses on optimizing performance, and, in case of
performance issues, on getting amachine back up to specification as quickly as possible.

The high physical complexity and nanometer resolutions lead to many interactions
between different parts and modules, making system diagnostics a big challenge. Next
to training customer support engineers to diagnose, maintain, and repair the machines
in the field at our customer sites, ASML builds diagnostic software that supports them in
this process. The tools automatically analyze data and suggest potential causes or tests
the engineer can execute.

As a consequence of this high complexity, these tools need to combine domain ex-
pertise with the data to make sense of the machine structure. When diagnosing a root
cause of a failure or performance problem of a lithography machine, it is this combina-
tion of data and knowledge that allows for causal reasoning in this complex domain.

4.5.1.3 Strategies for automated or supported diagnostics

To diagnose a complex machine, many data sources on that machine provide relevant
information, coming in the form of software loggings and traces of physical sensors.
Since software logs are introduced into the system by the domain experts in design, they
are often the first source to use for diagnostics. For more complex issues, often caused
by complex interactions between many modules that were not foreseen during design,
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these logs are not sufficient and data traces have to be used. The data traces coming from
the system sensors contain all types of measurements and need additional interpreta-
tion before becoming useable for diagnostics. Models are used to help the engineers
to understand data that comes from the system. Such models can be based on the ma-
chine design or machine learning techniques being applied on historical and other data
sources.

While data from events and interpreted sensor traces give a good overview on the
current state of the machine, it does not—on its own—offer an understanding of what
causes a certain issue, and what action can resolve it. To do this, the expert working
on diagnosing and repairing the machine needs domain knowledge, which can be their
own built-up expertise or through documentation. Here, we are looking to automate
or support this process by incorporating this knowledge into the diagnostic tools them-
selves. The knowledge can originate from data, from engineer experience (feedback) or
directly from the machine design.

Whenworkingwith knowledge from expert experience, support engineer feedback
or data, the goal is to leverage known and historical cases and experiences to learn re-
lations between patterns of symptoms and root causes. This works well for issues that
were identified in advance or appear multiple times. By specifying or learning the rela-
tion of a certain failure of a machine to a number of symptoms, a machine shows (sen-
sors exceeding thresholds, specific loggings appearing, performance metrics dropping,
etc.), it becomes possible to automate part of the diagnostic process.

Due to the large number of components, and consequently, the large number of
sensors, symptoms, and potential causes, specifying every possible problem with their
symptoms becomes impossible to scale. Learning these relations directly from the data
and comparing machines to others is therefore applied more and more in industry con-
text, and ASML is also incorporating this in its diagnostic landscape. Data-driven diag-
nostics is a booming field, and there is much to learn from the other machines in the
field. This approach is strongest when you have many other samples to learn from (i. e.,
when diagnosing lightbulbs, coffeemachines, or cars). Typically, a certain type of lithog-
raphymachine has at most a few 100machines (which even function in different config-
urations, making it more challenging). This problem of low sample size, together with
the high complexity inspired to investigate a third solution: design-based diagnostics.

Instead of directly linking symptoms to causes, another option is to specify the in-
tended behavior of a system and use this knowledge to reason backwards to the most
likely root causes of a certain issue, by deducing and excluding. In this approach, the
intended behavior of the system is first captured in logical formulae. When a failure oc-
curs in one of the systems, its observations—such as sensor data or error logging—can
be inserted in the logic structure, after which a diagnostic engine will compute possible
explanations for what was observed.
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4.5.1.4 An example

To control the system, it is filled with electrical and hydraulic circuits. Electricals are
used to control the different subsystems, gather the sensor information and hydraulics
for the supply of liquids, and for the distribution of cooling water over several other
subsystems. To illustrate both our modeling approach and diagnostic method, we will
apply the approach on an example of such a hydraulic system, which is a simple exam-
ple based on a hydraulics subsystem of an ASML lithography machine. The hydraulic
system consists mostly of interconnected pipes that transfer the water. Figure 4.2 shows
a schematic representation of the hydraulic system. The components from the hydraulic
domain are shown in blue and the electronic domain is shown in green. A pump pushes
the water via a pipe through amanifold, which splits the water over two branches. Each
of the branches can be manually closed by a valve at the end of the branch. A manifold
combines the water coming from the branches again toward the final pipe. The water
pressure is measured with pressure sensors at the end of each branch. The pump and
the pressure sensors are powered by two separate power supplies.

Figure 4.2: A schematic representation of the hydraulic system. The hydraulic domain is shown in blue, and
the electronic domain is green.

Modeling behavior
The schematic shows the components of the systemandhow these are connected to each
other, but it does not provide the behavior yet. The intended behavior is specified per
component, after which the system behavior is the composition of those individual be-
haviors by connecting the components to each other. The behavior of each component
is specified as the relation between inputs and outputs. These inputs and outputs repre-
sent the (physical) variables at either side of the component in a discrete way to abstract
away from the highly detailed physics domain. For example, relevant properties of the



132 � B. Bogaerts

water flowing through a system can be pressure and flow. The intended behavior is that
the water entering the pipe will also exit. If there is water going in, but nothing exiting
the pipe must leak and if pressure is applied to the water, and it is not flowing, it must
be blocked. This expression of both normal and failure behavior can be translated to a
logic expression.

A logic specification
To specify the behavior of pipes, we would need following symbols:2

– A type Pipe, used to specify the collection of pipes we have in a system.
– A type HealthStatePipe stating the possible health states of a pipe, containing

HealthyPipe, BlockedPipe, LeakingPipe.
– A predicate Connected(Pipe,Pipe) to specify the connection between two pipes.
– A predicate FlowIn(Pipe) specifying the flow coming into a certain pipe.
– A predicate FlowOut(Pipe) specifying the flow coming out of a certain pipe.
– A predicate PressureIn(Pipe) specifying the pressure at the beginning of a certain

pipe.
– A predicate PressureOut(Pipe) specifying the pressure at the end of a certain pipe.
– A function StatePipe(Pipe) : Pipe → HealthStatePipe specifying the health state

of a certain pipe.

These symbols are stored in a Vocabulary Vpipe .
A theory Tpipe is used to specify the relations between these symbols, detailing out

pipe behavior.
– For a healthy pipe, the input state of the fluid always equals the output state.

∀p[Pipe] : StatePipe(p) = HealthyPipe ⇔ PressureIn(p)

= PressureOut(p) ∧ FlowIn(p) = FlowOut(p)

– If no fluid can pass through (pressure but no flow), the pipe is blocked.

∀p[Pipe] : StatePipe(p) = BlockedPipe

⇔ PressureIn(p) ∧ ¬FlowIn(p) ∧ ¬PressureOut(p)

– If there is fluid going in, but not coming out, the pipe is leaking.

∀p[Pipe] : StatePipe(p) = LeakingPipe ⇒ FlowIn(p) ∧ ¬FlowOut(p)

2 Note that we are using a typed extension of first-order logic, where the domain is split into a number
of subsets, called types. Predicates, functions are defined over those types instead of over the entire
domain. When writing a theory, we allow quantification over these types.
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This specification now depicts all possible behaviors of the pipe, together with a health
state. This health state can identify the state of the pipe and later be used to diagnose
specific issues. Together with the following theory containing a few commonsense con-
straints, inferences can be executed on this specification to build diagnostic solutions.

Theory T common:
– Flow cannot be created:

∀p[Pipe] : ¬FlowIn(p) ⇒ ¬FlowOut(p)

– Pressure cannot be created:

∀p[Pipe] : ¬PressureIn(p) ⇒ ¬PressureOut(p)

– No flow without pressure:

∀p[Pipe] : FlowIn(p) ⇒ PressureIn(c)
∀p[Pipe] : FlowOut(p) ⇒ PressureOut(c)

– The meaning of “Connected”:

∀p1[Pipe]p2[Pipe] : Connected(p1, p2) ⇔ FlowIn(p2)
= FlowOut(p1) ∧ PressureIn(p2) = PressureOut(p1)

In similar ways, specifications for the functioning of valves, manifolds, pumps, power
supply units (PSUs) can be created by domain experts. By combining these specifications
and supplying information of the known state of the world (the specific pipes, valves,
pumps, etc., their connections and sensor measurements) diagnostic reasoning can be
done.

Inferences
Using the model for diagnosis
Once the behavior of the complete system has been captured in a logical specification,
it can be used to help the service engineer in finding the defective part. The diagnosis
is based on what is observed from the system, a combination of the data coming from
sensors and software logging. An input structure for themodel can be compiled from the
observed data, after which model expansion inference can be used to find explanations
for the observations.

For example, given the pipe specification above, the following structure could be
compiled from design information and observations:
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S1 = {

Pipe = {p1, p2}

Connected = {(p1, p2)}

FlowOut = {p2}

}

By performing model expansion on this theory, with this partial structure, the fol-
lowing complete structure is calculated:

S = {

Pipe = {p1, p2}

Connected = {(p1, p2)}

FlowIn = {p1, p2}

PressureIn = {p1, p2}

PressureOut = {p1, p2}

FlowOut = {p1, p2}

StatePipe = {p1→ HealthyPipe, p2→ HealthyPipe}

}

This structure (the only full structure extending the partial structure and satisfying
the theory) states that both pipes are performing healthy and as such, the fluid is flowing
through the system, and the pressure is propagated as expected.

However, when starting with the following structure:

S2 = {

Pipe = {p1, p2}

Connected = {(p1, p2)}

FlowIn = {p1→ Flow}

FlowOut = {p2→ NoFlow}

}

the model expansion inference creates many different possible structures that extend
this partial structure and satisfy the theory, for example, the first pipe can leak, or the
second pipe can leak. This approach shows its value when reasoning over larger speci-
fications, such as shown in Figure 4.2. While only expecting a domain expert to specify
simple behavior of components and how they are interconnected (which can be fur-
ther simplified through a graphical interface), quite complex possible scenarios can be
calculated with incomplete input information.
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When handling more complex scenarios with limited input information, there are
often many possible structures that satisfy a theory extending the input. For example,
in the Figure 4.2 specification, where there is flow coming into the first pipe and not
coming out of the last pipe, it could be that the first pipe is leaking, or it could also be a
failure of both parallel valves. When reasoning, it is often good practice to assume that
failures happen rarely, so a model with less failures is more likely than a model with
more failures. To this end, an optimization inference can help. By adding a term t =
#{p | StatePipe(p) ̸= HealthyPipe} and minimizing that term, we encode the assumption
that in most situations components are behaving as we expect.

Assessing diagnosability during design
Themodel can also be used during the system design to assess its diagnosability. Instead
of using observations coming from the real system as input to the model, one can also
run the inference for an assumed failure. For this, the observability configuration should
be known, which comprises a list of variables in the system for which you know you can
observe its value, either via a sensor or software logging.

Through inference, one can assess the values on the observable variables when all
components are healthy to understand what the observables of the running systemwill
tell when everything is working as expected. This set of readings on the observables is
referred to as a signature. This assessment can also be done for every single failuremode
in the system. For this, all other components are assumed to behave normally, while only
one component has a problem. Each of these failure simulations provides one or more
signatures, which are the computed failure signatures.

Repeating this assessment for all failures or possibly even failure combinations re-
sults in a set of failure signatures. Depending on the numbers and locations of observ-
ables in the system, multiple failures may have identical signatures. Based on this in-
sight, the designer may add more observability to the design to reduce the number of
failures with identical failure signatures, or procedures could be formulated to help the
service engineer in the field to find out what failure really caused the issue.

4.5.1.5 Conclusion

When doing diagnostics, machine learning can help us to interpretate data sources and
sensor data. However, to separate cause from effect, and optimallymake use of the avail-
able knowledge, reasoning systems can help. By specifying system design and interpret-
ing software loggings and sensors, inferences can be used to support diagnostic tooling,
or to support system design by analyzing observability.

In order to enable this for entire systems, the scalability of building these specifica-
tions is crucial. Good (graphical) interfaces and tooling can help immensely for domain
experts to build these specifications. On top of this, it is important to build tools and
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study techniques that can (semi)automatically build these specifications directly from
design documents.

4.5.2 Modeling and verifying simple vehicle controller, such as the
Triton unmanned aircraft systems of the US Navy: using
Imandra system and first-order logic
Djordje Markovic, Bart Bogaerts, Grant Passmore

4.5.2.1 Introduction

Designing complex systems is quite an extensive and expensive process, and sometimes
mistakes are just not affordable. In these cases, before developing the desired product,
it is essential to model it and prove its specific properties. Formal verification meth-
ods often use mathematical logic and symbolic AI (artificial intelligence) for designing
and analyzing engineering artifacts such as software and hardware. The difficulties are
that complex systems strive to have infinitely many different possible behaviors. This
seemingly miraculous feat— surveying an infinite number of possible system behav-
iors through a finite computation—is made possible using symbolic mathematics and
mechanized techniques for logical inference.

Formal verification has a tremendous use-value for safety-critical systems, that is,
computer systems whose correctness have a direct bearing on the safety of others. For
example, autopilot systems in aircraft, control systems in nuclear power plants, and
collision avoidance controllers in drones are directly related to public safety.

In practice, designing and tuning functions like the controller is a considerable chal-
lenge, and formal verification is necessary to ensure they operate correctly and safely.
Consider that you are creating an algorithm for controlling some aspect of an aircraft;
would you be able to trust it and be a passenger on a test flight? So, before giving it a test
ride, how is the safeness of the controller verified? The first step is often simulation. That
is, we may first gain some primary assurance of its safety and correctness through sim-
ulating its behavior in many different situations. However, no matter howmany unique
runs are done through a simulator, only a finite number of scenarios can be observed.
But this controller can, in general, be in an infinite number of possible situations. How
can this gap be bridged? How can we ensure that the algorithm is correct? Formal ver-
ification provides an answer. The key is to use logic and reason symbolically about its
possible behaviors to prove that the controller follows desired safety and correctness
properties.

In this section, we shall model a simple autonomous vehicle controller dynamic sys-
tem and verify its correctness. This controller may be seen as a simplified version of a
controller found in modern day drones and autopilot systems, such as the Triton UAS of
the US Navy.
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The system is modeled in first-order logic and proofs are explained accordingly.
Nevertheless, we give a few examples using an Imandra3 syntax side-by-side with first-
order logic statements, illustrating the connection between reasoning about programs
and first-order logic. These parts are more suitable for advanced readers, and they are
not relevant for the understanding of this section; therefore, less experienced readers
can safely skip them.

The upcoming text is split into two parts: first, the discussion ofmodeling of a simple
autonomous vehicle controller and, second, detailed analysis and proof of the two safety
properties of the system.

4.5.2.2 The domain knowledge

This section introduces the problemof a simple autonomous vehicle controller and essen-
tial elements needed for modeling such a system. The analyzed controller is originally
described in the article (Boyer et al., 1990) by Boyer, Green, and Moore.

The goal of a vehicle controller is to take care of wind changes and keep the vehi-
cle on the course. The brief specification of the system follows: The system is restricted
to only one space dimension (y-component). The time is abstractly represented as a se-
quence of discreet time points. The vehicle can move with a certain velocity in the pos-
itive or negative direction of the y-axis, and wind can blow with a particular speed (in
the positive or negative direction of the y-axis). Wind cannot changemore than one unit
between two time points. The drone controller can increase vehicle velocity at any time
point for an arbitrary value. The controller has an insight into all values at a certain
time point.

3 Imandra is a formal verification environment that facilitates the design and verification of safety-
critical algorithms. More on the official website: https://www.imandra.ai/



138 � B. Bogaerts

Representing the world (state of affairs)
Formal modeling of any system usually starts with the choice of an adequate ontology.
Ontology serves to represent the states of affairs in the world we are formalizing. Natu-
rally, this choice is of immense importance because it has a strong impact on formaliza-
tion.

First, it is important to notice that first-order logic does not have the concept of time,
and yet wewould like tomodel a dynamic system. The common approach is to interpret
time as natural numbers,4 zero being the start point in time and next being a function
mapping time point n to time point n + 1.

Once we have the abstract representation of the time, we can start representing the
simple vehicle controller system. The system is described by wind speed, vehicle speed,
vehicle position, and wind change at any time point. As we abstract away units, all these
values are represented by integers. Knowing that values are unique per time point, it is
natural to represent them as temporal functions mapping time points to their values.

Finally, vehicle controller should update vehicle speed based on two consecutive
time points. However, we shall see later the abstract version of the controller that takes
as input two integers and returns relative speed change. Table 4.4 supplies first-order
logic vocabulary suitable for a simple vehicle controller system.

Table 4.4: Vehicle controller— first-order logic ontology.5

First-order logic:

Temporal functions describing state:
– w : Time→ ℤ
– y : Time→ ℤ
– v : Time→ ℤ

– Wind velocity
– Position of the vehicle
– Velocity of the vehicle

Temporal function describing wind change:
– dw : Time→ ℤ – Wind change

Controller function:
– controller: ℤ × ℤ→ ℤ

– Binary controller function

Time vocabulary:
– start : () → Time
– next : Time→ Time

– Starting point
– Next function

4 For the simplicity of the example, we assume that every structure in first-order logic contains two
types, integers ℤ and Time. Time is interpreted by natural numbers, where “start” is a constant des-
ignating 0 in every structure and “next” is a function mapping each time point to the following (i. e.,
mapping n to n+1).
5 We use (w, y, v) to represent a state in the later text, dw is not part of the state, and it can be treated as
a parameter of the system.
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State transition
The system that we want to model is dynamic; the vehicle can move, and the wind can
blow in one direction of the y-axis with a certain velocity. The vehicle controller is sup-
posed to control vehicle speed and balance the wind impact. An essential property of
this dynamic system is that it is deterministic, that is, for any state of a system (includ-
ing the wind change), there is exactly one next state. Here, we are going to model this
transition between two states.

For a given current state and wind change, we can compute the next state of the
system.Wind velocity changeswith respect to thewind change. Vehicle position changes
concerning the previous position, vehicle velocity, and new wind velocity. The exciting
part is how the controller updates the vehicle velocity, but let’s keep it abstract for a
moment.

The next state function is defined as: For a given state (w, y, v) and for awind change
dw, the new state (nw, ny, nv) is
– Wind change: nw = w + dw
– Vehicle position is changed: ny = y + v + w + dw
– New vehicle velocity depends on the controller: nv = v + controller(w, y, v, dw)

The controller from (Boyer, 1990) is more abstract and considers a sign of the new and
old position of the vehicle. So, we can model it as a controller((sgn(ny)), (sgn(y))).

Table 4.5 shows the first-order logic statements expressing this state transition. It is
important to notice that each statement starts with universal quantification “For each
time point t. . . ” So, we are saying something about time. Let us translate the first state-
ment to the natural language statement given standard informal semantics for first-
order logic and expected interpretation for w – wind and dw – wind change. The first
statement expresses: “For each time point t, wind at the next time point is equal to the
wind at time point t augmentedwithwind change at time point t.” This translation clearly
states the informal interpretation of the first statement, and it precisely describes our
thoughts of this dynamic system.

Table 4.5: Vehicle controller—first-order logic specification.

First-order logic theory – Tvc (Theory – vehicle controller):

∀t : w(next(t)) = w(t) + dw(t).
∀t : y(next(t)) = y(t) + v(t) + w(t) + dw(t).
∀t : v(next(t)) = v(t) + controller(sgn(y(t) + v(t) + w(t) + dw(t)), sgn(y(t))).

Table 4.6 represents the same function in the Imandra syntax. The syntax is clear,
and the representation is very readable and compact. This function returns a new state
vector that represents the state after applying wind change dw to the state vector s. One
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Table 4.6: Vehicle controller—Imandra specification.

Imandra:

next_state dw s = {
w = s.w + dw;
y = s.y + s.v + s.w + dw;
v = s.v + controller (sgn (s.y + s.v + s.w + dw)) (sgn s.y)

}

can see that statement talks about two consecutive time points, but time is not men-
tioned explicitly.

Controller
Let’s assume that the controller function is defined as

∀x, y : controller(x, y) = (−3 ∗ x) + (2 ∗ y).

Given such a controller, wemay first gain some elementary assurance of its correct-
ness through simulation and testing. Let us look at one particular use case when the
wind increases in the positive direction of the y-axis for three consecutive time points
and then stays constant for four time points.

The scenario from the Table 4.7 is also graphically represented in Figure 4.3. One can
observe that after four time points of constant wind, the vehicle is back at the course.
We can try this many times with different setups, and the vehicle always gets back at
the center. Furthermore, we are not able to find counterexamples. In an analogous way,
one can notice that the drone never strays further than 3 units from the center. All these
suggest that these properties always hold. But how can we prove them?

Table 4.7: Vehicle controller simulation example.

Time 0 1 2 3 4

w 0 0 + 1 = 1 1 + 1 = 2 2 + 1 = 3 3 + 0 = 3
y 0 0 + 0 + 0 + 1 = 1 1 − 3 + 1 + 1 = 0 0 − 1 + 2 + 1 = 2 2 − 4 + 3 + 0 = 1
v 0 0 − 3 = −3 −3 + 2 = −1 −1 − 3 = −4 −4 − 1 = −5
dw 1 1 1 1 0

Time 5 6 7 8

w 3 + 0 = 3 3 + 0 = 3 3 + 0 = 3 3 + 0 = 3
y 1 − 5 + 3 + 0 = −1 −1 + 0 + 3 + 0 = 2 2 − 5 + 3 + 0 = 0 0 − 3 + 3 + 0 = 0
v −5 + 5 = 0 0 − 5 = −5 −5 + 2 = −3 −3 + 0 = −3
dw 0 0 0 0
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Figure 4.3: Controller behavior when wind remains steady for four time points.

4.5.2.3 Reasoning and theorem proving

This section opens with a concise introduction to theorem proving. Suppose that there
is a theory T and a formula φ both expressible in first-order logic. Proving that T entails
φ would be as simple as formalizing both and using an adequate automated theorem
prover. However, these provers could struggle to prove the complex properties of dy-
namic systems. The main reason for these problems is the time, which is interpreted by
natural numbers. One typical way to solve these problems is induction, which naturally
can be conducted on time: First, we prove that the property holds at the first time point,
and then we prove that the property is preserved by the transition function.

Since induction is a crucial concept in the following text, it deserves a brief expla-
nation. Induction proofs in the context of dynamic systems are usually applicable for
proving single state properties. A single state property (∀t : φ[t]) is a formula quantify-
ing over time and the only time point mentioned in the body of the formula is the quan-
tified one (t). Consider a case of proving that theory T entails some property ∀t : φ[t],
the induction proof would consist of
– Base case – Proof that property φ holds initially: T 󳀀󳨐 φ[Start].
– Induction case – When φ holds at some time point, it will also hold at the next time

point: T ∪ {φ[t]} 󳀀󳨐 φ[Next(t)].

Proving these two entailments ensures that property φ always holds. It is important
that φ is a single state formula since otherwise, we cannot split it easily into base and
induction cases. Amore detailed explanation of this approach can be found in the paper
(Bogaerts et al., 2014).

Let’s look at the theorems (properties) we would like to prove.

Theorem 4.1. If the vehicle starts at the initial state w = 0; y = 0; v = 0, then the con-
troller guarantees the vehicle never strays farther than three units from the y-axis.
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Theorem 4.2. If the wind ever becomes constant for at least four sampling intervals, then
the vehicle returns to the 0 of y-axis and stays there as long as the wind is still.

Proving these theorems formally ensures that the vehicle appropriately stays on the
course under each of the infinite number of possible wind change sequences. Let us
prove our theorems.

4.5.2.4 Discussion and proof of Theorem 4.1

Nomatter how thewind behaves, wewant to prove that if at the beginning the system is
in the state (y = 0,w = 0, v = 0), then the controller guarantees the vehicle never strays
farther than three units from the y-axis, or more formally,

w(Start) = y(Start) = v(Start) = 0⇒ ∀t : −3 ≤ y(t) ≤ 3.

This theorem states that vehicle position is always in some range if some precondi-
tions aremet. The part that states conditions on each state looks like a suitable candidate
for induction, but the problem is that the entire formula is not a single state.

For clarity, let’s name if part of the theorem φcond (condition) and then part φInv1
(invariant6). Now the theorem can be abbreviated as φcond ⇒ φInv1 . Our goal is to show
that Tvc 󳀀󳨐 {φcond ⇒ φInv1 }. Using sequence calculus, we can transform this question to
equivalent one (Tvc ∪ {φcond}) 󳀀󳨐 {φInv1 }. This transformation allows us to merge vehicle
controller theory and condition of the theorem leaving single state formula on the right-
hand side. Now the problem is entailment of a single state proposition, which allow us
to use induction to prove it.

Induction proof starts with the base case, the goal is to show that initially vehicle
position is in an adequate range, or formally −3 ≤ y(Start) ≤ 3. This is trivial since the
start condition (φcond) is added to the main theory, and hence the vehicle position at the
start time point is always 0.

The more difficult part is the induction case. Here, the goal is to show that at any
time point t if the vehicle position is between 3 and −3, it will still be at time point t + 1
(this is known as induction hypothesis). As the whole idea is to eliminate time from
the theory so we can use theorem provers, we must transform our theory to consider
only two consecutive time points. This can be done by introducing constants instead
of functions for vehicle position, wind speed, and vehicle speed (technical details are
available in the provided formalizations). As these two timepoints stand for an arbitrary
segment of time, the start constraints (φcond) are not applicable for the first time point
(t). Since the first time point can be any possible state, the induction hypotheses start to
sound a bit too optimistic. Consider a state (y = 0,w = 100, v = 0), no matter how the

6 In the context of dynamic systems, “Invariant” denotes a single state property that always holds.
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wind and vehicle speed change in the next time point, vehicle position will certainly be
somewhere around 100. The problem is that connection with the starting point is lost, it
is probably not possible to reach such a state from the state (0, 0, 0).

To handle this issue, we can strengthen the induction hypotheses by adding the in-
formation to it. In the paper (Boyer, 1990), the notion of a good state is introduced for
this purpose. A good state is a class of states represented as a pair (y,w + v) reachable
from the state (0, 0, 0). The good states are represented in the Table 4.8.

Table 4.8: Good state— class of states reachable from the state (0, 0, 0).

y −3 −2 −2 −1 −1 0 0 0 1 1 2 2 3
w + v 1 2 1 3 2 −1 0 1 −2 −3 −1 −2 −1

The new invariant would look like φInv2 = ∀t : GS(y(t),w(t) + v(t)). Note that this
invariant entails the old one, since in any good state vehicle position is always between
3 and −3. The new invariant is stronger because the first time point in the induction case
must be a good state, and hence reachable from the initial state. The final shape of the
entailment to be proven is represented in Table 4.9.

Table 4.9: Theorem 4.1— induction schema in first-order logic.7

First-order logic:

Tvc[t] ∪ Tas[t] ∪ {φInv2[t]} 󳀀󳨐 {φInv2[Next(t)]}
Where:
– Tvc – Is a simple vehicle controller theory.
– Tas = {∀ t : −1 ≤ dw(t) ≤ 1.} – Assumption that wind change is between −1 and 1.
– T[t] – is a temporal theory applied to the time point t

We use the IDP system (De Cat et al., 2018) to provide specification of simple vehicle
controller example using first-order logic. IDP is a knowledge base system for the FO(⋅)
language8 and it supports a multiple forms of inference methods, among others also
proving invariants in dynamic system specifications.

7 Note that we didn’t express the base case of induction since it is trivially true. Also, note that wind
change constraint appears as an assumption in the theorems.
8 FO(⋅) is an extension of first-order logic with types, aggregates, inductive definitions, bounded arith-
metic, etc.
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Detailed proof procedure for Imandra is available here,9 while the solution using
the IDP system based on first-order logic can be found at this link.10

Good state discussion
There is something puzzling about the notion of a good state, namely how to compute it,
and if we can compute it, does it not prove Theorem 4.1? The difference is in one subtle
puzzle piece. To compute the set of good states, we can bound the system and use finite
domains. Because of this restriction, the computed set is not enough to be considered as
proof of Theorem 4.1. Therefore, induction comes in to prove that this set of good states
is the maximal one.

One can try as an exercise to remove extremes from the good state relation and
retry the induction proof.

4.5.2.5 Discussion and proof of Theorem 4.2

The second property to prove an autonomous vehicle controller is “Whenever the wind
is constant for four consecutive time points, vehicle will be back to the course and will
remain there as long the wind is constant.” This statement talks about at least five dif-
ferent states, which makes it harder to prove. Here, we explain some ideas on how to
simplify this statement and how to prove it. We are not going into details about this
theorem, rather we sketch how the proof can be constructed.

It is important to notice that the theorem is composed of two parts, first expressing
that the vehicle will come back to the course after four consequent time points of steady
wind, and second expressing that the vehicle remains there if wind remains steady. This
suggests that the theorem can be split. The next two formulas stand for these new the-
orems expressed in first-order logic. Note that we abuse the notation and write GS(t)
where it should be GS(y(t),w(t) + v(t)). Also, GSw(s) stands for the state after four con-
secutive time points of steady wind:

∀s : GS(s) ∧ (∀t : 0 ≤ t ≤ 4⇒ dw(s + t) = 0) ⇒ y(s + 4) = 0
∀s : GSw(s) ∧ dw(s) = 0⇒ y(s) = 0

Intuitively, after the vehicle comes back to the center, to stay there (if the wind does
not change) the wind and vehicle speed should cancel each other. Speaking in terms of
good states, this is the state (0,0), and we will refer to this state with GS0(t) for a time

9 https://docs.imandra.ai/imandra-docs/notebooks/simple-vehicle-controller/
10 The full solution is explained at https://djordje.rs/posts/svc.html. The raw IDP files can be re-
trieved from https://gist.github.com/dmkoder/6c39aa5768a9fb3305745f7f999285f4 and https://gist.github.
com/dmkoder/2a1c564c7a3eba07b5b54f2ed3799e9a.
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point t. So, the GSw(s) in the second part of the theorem is actually GS0(t). To restore
the connection between the two theorems, the consequent of the first part should be
strengthened to GS0(t). The new theorems would look like the following:

∀s : GS(s) ∧ ∀t : (0 ≤ t ≤ 4⇒ dw(s + t) = 0) ⇒ GS0(s + 4)
∀s : GS0(s) ∧ dw(s) = 0⇒ y(s) = 0

The second part satisfies all preconditions for induction to be applied, and hence
we will not discuss it further here as it is the same as in Theorem 4.1. However, the first
part still talks about four different time points relative to s. Keeping in mind that a good
state stands for a class of states, quantification over states is a bit redundant here, and
hence can be eliminated:

GS(Start) ∧ ∀t : (Start ≤ t ≤ 4⇒ dw(t) = 0) ⇒ GS0(4)

Finally, we have a statement that talks about exactly four consecutive time points.
Now we can drop the time (natural numbers) from the theory by simply introducing
fresh new constants for each time point and defining the transition between each of
them. This method is sometimes called forward-chaining.

This idea can be automated, and that is what the Imandra system is doing. We don’t
show details of this idea here, since they are too technical, but they are available in
supplied full specifications of both Imandra and IDP solutions.

4.5.2.6 Conclusion

The focus of this section was on understanding the pragmatic importance of formal sys-
tems as first-order logic in industrial use cases. We have shown these on the example
of the simple vehicle controller, but the same ideas could be applied to other dynamic
systems, perhaps much more complex.

The first-order logic allowed us to go deep into the essence of problems of proving
invariants of dynamic systems and to analyze them. It is important that in higher-level
tools that we could provide more automated procedures for the problems that we have
discussed; the underlying principles are the same as in this section. Hence, to be a pro-
found user of such systems, one should keep these ideas in mind.
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Isabelle Linden
5 Knowledge representation and engineering
with ontologies

5.1 Why are knowledge representation and
engineering with ontologies important within
the broader AI domain?

Knowledge representationwith ontologies is the branchof artificial intelligence (AI) that
studies languages that model domain knowledge and support reasoning and queries
answering on complex and often partial models. First generations of knowledge rep-
resentation languages, as semantic networks and frames, were not free of ambiguities.
Ontologies, for their part, integrate a formal semantics based on first-order logic (FOL).
Thanks to this formalization, several checks and queries on the models can be automat-
ically performed.

This ambition of providing knowledge representation associated with automated
reasoning engines is already addressed in the previous chapters. Propositional logic
(Chapter 3, SAT) states facts, using atomic representations to describe the world, and
simple logic rules, such as Boolean algebra, to do the inference. FOL (Chapter 4) en-
riches the modeling with structured representations (e. g., facts, objects, relationships)
and quantifiers by representing it in general rules. As such, it gains in expressive power
by applying logic reasoning techniques in the modeled environment. Many extensions
of FOL have also been proposed to further extend its expressiveness. However, as men-
tioned in the conclusion of the previous chapter, a limitation of FOL lies in its undecid-
ability, that is, the fact that some queries cannot be answered in a finite amount of time.
This is a well-known problem in the field of knowledge representation (KR): the balance
between expressiveness and complexity. Studies on “fragments” of FOL (fragments are a
subset of a logical language, resulting from syntactical restrictionswithin that language)
aim to explore this trade-off.

When representing knowledge with ontologies, a knowledge base is not assumed to
provide a complete and very detailed representation of the studied domain, but rather
to offer a synthetic and structured presentation of the relevant elements and features
as far as they are known to the domain experts. As such, ontologies support the formal
description of specific domains while integrating their semantics as well. The definition
of a knowledgemodel is done by both the objects of the domain themselves and by their
intrinsic relations. Further logic reasoning is supported at two levels: specific entities
(i. e., instances) of the domain and the categories that further structure it.

Ontologies with their associated reasoning engines are particularly used in the de-
velopment of semantic web applications that support knowledge management, seman-

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111426143-005
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tic data integration, and information retrieval. The ontology web language (OWL1) is
certainly one of the most well-known and biggest successes of description logics (DLs).
This standard defined by the World Wide Web Consortium (W3C) is one of the key ele-
ments of the semantic web. Muchmore widely, ontologies are also already integrated in
ontology-driven systems in various domains as medicine, telecommunications, agricul-
ture, astronomy, biology, defense, and natural resources and energy management.

Indeed, whatever application domains or languages and AI techniques used to de-
velop an intelligent system, it is valuable to have a model of the domain shared by all
engineering stakeholders. In particular, such amodel, expressed in a language indepen-
dent of technological choices, offers an important support for
– ensuring alignment between the developers’ understanding and themeaning given

by the domain experts and/or users,
– guaranteeing interoperability and achieving integration of diverse components,
– integrating data from heterogeneous sources,
– maintenance and evolution of the developed system.

There are two different approaches that support ontology-driven knowledge base inte-
gration: conceptual graphs and description logics. Both involve awide variety of specific
languages. Conceptual graphs2 represent knowledge as labeled bigraphs (i. e., graphs
with two types of nodes). Their nodes are either individuals and concepts, or relations
between them. Reasoningmainly relies on graph homomorphism (i. e., retrieving a sub-
graph in the graphwhose structure corresponds to that of the query). Conceptual graphs
offer efficient algorithms for reasoning on assertions, which are statements on specific
entities. Description logics, on the other hand, are a family of logical languages limited
to binary relations, which offer large sets of constructors allowing to express rich prop-
erties of the different categories of objects. As such, description logics emphasize classi-
fication reasoning (i. e., belonging of one entity to specific categories) and reasoning on
the domain structure (i. e., inclusion hierarchies between the categories of the domain).

The current chapter focuses on description logics (DLs) and how it addresses the
challenges of knowledge representation from a dual perspective:
– on the one hand, preserving (a certain degree of) human readability. Therefore, the

important notions of the domain tomodel are expressed using concept descriptions
(i. e., definitions of sets of elements) and role definitions (i. e., relations between
these elements),

1 www.w3.org/OWL/
2 Knowledge graphs is sometimes used as a synonym for conceptual graphs, but it also commonly refers
to multiple different families of graph-based knowledge representations supported or not by formal
semantics. Since 2012, the Google Knowledge Graph introduction makes the use of the term even more
ambiguous. Therefore, we limit our considerations to conceptual graphs,which are well formalized and
equipped with formal semantics.
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– on the other hand, offering a language equippedwith formal semantics and support-
ing decidable reasoning, (i. e., expressible queries that can be answered by a finite
process). First-order logic offers these requested semantics formalization. Unfortu-
nately, as noted in Chapter 4, it is undecidable. In order to preserve decidability,
it requires then limiting the expressiveness of the language with respect to first-
order logic. The variety of languages in DLs’ family explores this trade-off between
expressiveness and complexity of the performed reasoning.

The rest of this chapter is organized as follows:
– the next section specifies the notion of ontology and formalizes the problems solved

using these ontologies,
– then Section 5.3 explains how these problems are solved by using description logics

to implement ontologies and further reason upon them. Therefore, the attributive
language with complement (𝒜ℒ𝒞) is used as a representative example of the de-
scription logics family to introduce the formalism and reasoning processes,

– after that, Section 5.4 discusses the limitations of ontologies and description logics,
– and finally, Section 5.5 draws some conclusions and further outlooks.

5.2 What category of problems do knowledge
representation and engineering with ontologies
solve?

Unlike the techniques presented in most other chapters, ontologies do not have as their
main challenge to solve business problems. Their key objective is to offer a strong do-
main. They thus offer an essential support to knowledge engineering and to the devel-
opment of knowledge-based systems in any technology. The knowledge that they pro-
pose tomodelmainly concerns the organization of the domain into categories of objects,
called concepts, and the relations that exist between these. In addition, ontologies also
enable the characterization of specific domain objects as members of these concepts.

Such domainmodels provide representations at a conceptual level, that is, at a level
that is independent of the technological choices: a model could, for example, describe
a domain involving entities classified as administration, company, employee,…by ab-
stracting the specific implementation choices. Similarly, models can express relations
and constraints between the classes and properties of these entities without any indica-
tion of how these can or should be implemented. As such, this level of abstraction is very
useful to support validation of the model by any business or process domain expert. On
the IT-side, formalizing the ontology of the domain is a powerful preliminary step for the
use of many of the techniques presented in this book, as well as for the conception and
development of systems, intelligent or not, that integrate heterogeneous technologies.
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Models with formal semantics like ontologies furthermore enable the execution of
analyses and queries to be carried out with a guarantee of validity supported by any
underlying logical theory.

A first set of analyses consists of ensuring the quality of themodel. On the one hand,
a concept satisfiability check ensures that all the defined classes, that is, the concepts,
really make sense, and on the other hand, a consistency check verifies that there is no
contradiction between the model’s assertions. Most of the time inconsistency diagnosis
reveals modeling errors. Indeed, as a knowledge basemodels a real state of the world, it
should not be contradictory. This consistency diagnosis is critical to ensure the usability
of the model and the validity of the deduced statements. Indeed, in the worst case, any
statement could be derived from an inconsistent knowledge base.

More typically, ontologies allow for the analysis of the hierarchy of concepts that
structures the domain, that is, the multiple relations of inclusion, called subsumption,
between the concepts of the domain. Figure 5.1 illustrates such a hierarchy for a world
that contains two classes of instances represented by, for example, the concepts of Orga-
nization and Person. Among the instances that belong to the Organization concept, two
particular subgroups are identified, for example, the Company and the Administration
concepts. Among the instances that belong to the Person concept, a particular subgroup
stands out, covered by, for example, the Employee concept.

Figure 5.1: Graphical representation of a subsumption hierarchy.

Finally, ontologies support queries at instances level, too. These can either check the
property of a given entity (e. g., “Does John work for an administration?”) or retrieve all
entities that satisfy a given property (e. g., “Who is working for MySBCompany?”).

Computer sciences literature commonly refers to Gruber’s definition of an ontol-
ogy as “an explicit specification of a conceptualization,” which specifies “the objects,
concepts, and other entities that are presumed to exist in some area of interest and the
relationships that hold among them” (Gruber, 1993). The knowledgemodel expressed by
an ontology can be seen as a logical theory organized into two main pieces: a set of logi-
cal axioms (𝒪), which describe general knowledge on the domain, and a set of assertions
(𝒜) that concern specific entities of that domain.
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The logical axioms represent an abstract representation of the domain knowledge
and its structure. They specify the concepts and relations of the domain under consider-
ation with their corresponding semantics. In other words, they define the vocabulary of
the domain and formalize its meaning. This is achieved by providing a vocabulary and
a set of logical formulas that constraint the acceptable models for that domain. For ex-
ample, completing the vocabulary introduced above, a logical axiom could express that
“being a civil-servantmeans being an employeewhoworks for an administration.”

Using the vocabulary defined by the logical axioms, the assertions make statements
on individual entities of the domain as “Mary works for MySBCompany” or “MySBCom-
pany is a company.” Some authors call 𝒪 an abstract ontology, and the pair (𝒪,𝒜) a
concrete ontology. Others consider 𝒪 as the actual ontology, and call 𝒜 domain asser-
tions. In the current chapter, we call the pair (𝒪,𝒜) an ontology or knowledge base, as
is commonly done in description logics and semantic web literature.

Expressed in specific languages, logical axioms and assertions can respectively be
seen as rules and facts in standard logics. If we compare ontologies with databases, we
can see the logical axioms as the definition of the database schema, and the assertions
as instances within the database. But the reasoning context differs on an important
point. Databases rely on a closed world assumption, that is, the information stored in
the databases is supposed to be complete. Any statement, which is not in the database,
is supposed to be false. Whereas knowledge bases expressed through ontologies deal
with an incomplete description of the world. As such, the associated reasoning process
involves a so-called open world assumption.

This difference, that is, the support of reasoning on partial knowledge, makes the
manipulation of negations muchmore delicate, and consequently, commonly more lim-
ited. For example, if the model doesn’t provide any information about Nathan, it can
neither be inferred that he works for MySBCompany, nor that he does not. However, if
themodel states that noMySBCompany employeeswork for BBCorp, knowing thatMary
works for MySBCompany, we can deduce that she does not work for BBCorp.

5.3 How are those problems solved?
In order to develop an ontology that models a specific domain, it is necessary to have a
language that allows to describe
– the concepts, that is, the categories that organize the domain, for example, Person,

Employee, Client, Company, etc.
– the relationships that exist between (some) elements of the concepts, for example,

works_for, buys, etc.
– the axioms, that is, subsumption relations between concepts, for example, employ-

ees are persons, clients are persons that buy some products, etc.
– the assertions, that is, statements on specific object of the domain, for example, John

is an employee, etc.
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To further support reasoning, this languagemust also have, beside awell-defined syntax,
a formal semantics.

The multiple formal languages developed to model ontologies are distinct from one
another by the statements they allow to express. Technically, this difference consists in
the different objects and relations considered as well as different sets of constructors3

offered by these languages. At the semantical level, the differences impact the respective
expressiveness of these ontology languages.

The family of description logics (DLs) involves multiple formal languages, support-
ing the description of concepts and roles from concepts names (unary predicates) and
role names (binary predicates). Most of these logics are decidable fragments of the first-
order logic, but they differ by their respective subset of constructors.

This section first introduces the formal definition of description logics by consid-
ering one of the most famous basic ones called attributive language with complement
(𝒜ℒ𝒞), and then shows how ontologies reasoning problems are addressed in this lan-
guage.

5.3.1 𝒜ℒ𝒞 description logic formal definition

The basic elements of 𝒜ℒ𝒞 are concepts and roles, which provide the vocabulary of
the domain. They are introduced first. Then the domain knowledge is formalized by
a knowledge base made of a terminological part, called the TBox, and an assertional
part, called the ABox. They correspond respectively to the abstract ontology 𝒪 and the
concrete ontology, or domain assertions,𝒜 introduced above. Finally, considerations are
drawn on the semantics of𝒜ℒ𝒞.

Concepts and roles

The definition of a knowledge basewithin a DL uses a vocabulary defined from two sets:
the concept names and the role names. The set of concept names is commonly named C
and its elements, denoted by A,B, etc. represent sets of elements of the domain. In our
example, they are Company, Administration, Person, etc. In𝒜ℒ𝒞, the basic concepts are
these provided in C plus the universal concept, ⊤, involving all elements of the domain
and the bottom concept, ⊥, that does not contain any element.

The set of role names, denoted by R, involves binary relations r, s, etc. Typical rela-
tion names in our business example are works_for, sales, is_client_of, etc. They can
be seen as binary predicates.

3 Constructors are symbols or syntactic structures used to build (construct) acceptable complex objects
and formulas from basic ones (technically called well-formed formulas).
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Concepts represent sets, called their extension. They can be further combined to
define new sets, called compound (or complex) concepts thanks to syntactic structures
called constructors. The first ones, Boolean constructors follow quite naturally set the-
ory. In our example,
– if we want to talk about female employees, we use the concept defined by the con-

junction of concepts Female and Employee and denoted Female ⊓ Employee,
– all workers, whether employed or self-employed, are represented by the new con-

cept Worker defined as a union (also called disjunction) Worker ≡ Employee ⊔ Self-
employed,

– unemployed people are people that are not workers: ¬Workers ⊓ Person.
An important precision lies in a syntactic detail that it is important to observe here.
The concept ¬Workerwould denote all the elements of the domain, which are not work-
ers, involving elements which are not persons as companies, administration, etc. The
restriction to persons is obtained by putting the conjunction with the Person concept.

A powerful way to define other concepts in DL is offered by bringing the roles into
play with either existential or universal restrictions. So, for example, using existential
restriction,
– ∃works_for.⊤ denotes the set of individuals that work for at least one individual

(instance of ⊤),
– civil servants, as employees who work for administrations, can be described by the

concept Employee ⊓ ∃works_for.Administration.
Universal restrictions are a bit more delicate to manipulate. For example, to represent
the set of individuals that work exclusively for administration(s), a concept could be
defined, using the universal restriction, as∀works_for.Administration
The members of this concept respect one condition: all the individuals with which the
member is in a works_for relationship (i. e., all his employers) are administrations. This
may appear as counter intuitive, but this condition is satisfied by the individuals (in-
stance of ⊤: organizations and persons) that do not work for anyone. Indeed, if Gabriel
is unemployed, the set of his employers is empty and, technically, each of his employers
satisfies the constraint of being an administration.4 So, the precise concept to denote em-
ployees that actually work for at least one administration and only for administrations
is

Employee ⊓ (∃works_for.administration) ⊓ (∀works_for.administration)
4 For the reader familiar with FOL, remind that whatever is the predicate p, ∀x : x ∈ 0 ⇒ p(x).
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Formally, compound concepts are inductively build from the vocabulary using the
constructors, which are specific to each DL. In 𝒜ℒ𝒞, the syntax of compound concepts
is described by the following grammar:

C,D → A| ⊥ |⊤ |¬C |
C ⊔ D |
C ⊓ D |∃r.C |∀r.C

where A is a concept name, C and D are (either atomic or complex) concepts, and r is a
role.

By common abuse of language, we call “concept of 𝒜ℒ𝒞,” or even “concept” if the
reference to𝒜ℒ𝒞 is obvious, the concept descriptions of𝒜ℒ𝒞. As defined by this gram-
mar, a concept is just a well-written formula, still meaningless, or at least without any
formal semantics for now. As for other logics, the formal semantic of a language is de-
finedby referring to the notions of both interpretation andmodel. Given the FOLpresen-
tation in Chapter 4, we limit here the formalization of the semantics to the presentation
of the first-order logic formulae corresponding to the𝒜ℒ𝒞 concepts.

A concept C represents a set of elements called its extension, which can be seen as
an unary predicate C(x), which is true for every value of x corresponding to elements
in the extension of C. Similarly, a relation r corresponds to a binary predicate r(x, y).
Given this convention, the semantics of complex concepts is given by the corresponding
formulae as defined by the following mapping functions τC and τR:

τC(C, x) = C(x)
τC(⊤, x) = true
τC(⊥, x) = false

τC(C ⊓ D, x) = τC(C, x) ∧ τC(D, x)
τC(C ⊔ D, x) = τC(C, x) ∨ τC(D, x)
τC(¬C, x) = ¬τC(C, x)
τR(r, x, y) = r(x, y)
τC(∃r.C, x) = ∃y[τR(r, x, y) ∧ τC(C, y)]
τC(∀r.C, x) = ∀y[τR(r, x, y) ⇒ τC(C, y)]

Given a so-defined specific description language (𝒜ℒ𝒞 in this case), the knowledge
on the domain is organized in two sets of assertions, that is, the TBox that involves ax-
ioms on the concepts and the ABox that involves assertion on individual names.
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Terminological knowledge: the TBox

A TBox 𝒯 is a set of ontologic axioms that express inclusion (⊑) or equivalence (≡) be-
tween concepts (possibly compound). The terminological knowledge represented in Fig-
ure 5.1 can be modeled by the following TBox 𝒯 :

𝒯 = { Company ⊑ Organization
Administration ⊑ Organization
Employee ⊑ Person}

This TBox could also involve for example, the definition of a civil servant and unem-
ployed persons as introduced above:

Civil-servant ≡ Employee ⊓ (∃works_for.Administration)
Worker ≡ Person ⊓ (∃works_for.⊤)

Unemployed ≡ Person ⊓ ¬Worker
The mapping of axioms to first-order logic formulae is obtained by completing the

mapping defined above with the τ mapping defined as follows:

τ(C ⊑ D) = ∀X(τC(C, x) ⇒ τC(D, x))
τ(C ≡ D) = τ(C ⊑ D) ∧ τ(D ⊑ C)

Domain axioms: the ABox

An ABox 𝒜 involves a set of assertions that express the knowledge about specific indi-
viduals of the domain. These individuals are represented by the elements (john, mary,
MySBCompany, etc.) of a set I. Given a, b belonging to I, C a concept and r a role name, the
elements of an ABox are either
– concept assertion: a : C,

for example, mary:Employee and mySBCompany:Company state, respectively, that
Mary is an employee and that MySBCompany is a company,

– role assertion: (a, b) : r,
for example, (mary,mySBCompany):works-for states that Mary works for MySB-
Company.

The mapping of axioms to first-order logic formulae is obtained by completing the map-
ping defined above with the τ mapping defined as follows:

τ(a : C) = τC(C, x)[x|a]
τ((a, b) : r) = τR(r, x, y)[x|a, y|b]
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About the semantics

Now let us outline the main aspects taken into account by tools that compute reasoning
on ontologies.

First, it is to note that the links between individual symbols in I and the objects of
the real world is not specified by the ontology. mary and ann are just syntactic identifiers
without any intrinsic meaning. So, mary and ann could be names for persons as well as
for organizations. They could also be two different designations for the same person.
Indeed, DL does not make a unique name assumption.

Second, ontologies do not pretend to fully describe the state of the world, which is
commonly referred to as the open world assumption. As the knowledge is partial, there
are potentially many different states of the world compatible with the ontology. The
more axioms there are in the ontology, the fewer compatible states of the world there
are. An ontology is said to be consistent as long as there is at least one state of the world,
which matches all the assertions in the knowledge base.

Given this, powerful reasoning on ontologies are still possible. In particular, an as-
sertion α is a consequence of an ontology𝒪 if α holds in all the states of the world com-
patiblewith𝒪. One then says that𝒪 entails α (𝒪 󳀀󳨐 α). The following subsection presents
the main reasoning problems supported by DLs.

5.3.2 Queries and reasoning problems
Besides offering a machine readable format for human knowledge representation, de-
scription logics also offer large reasoning capabilities. Built on top of basic checks, more
advanced queries offer real support and services to further knowledge engineering.

Among the questions addressed by DLs, one distinguishes these only concerning the
structure of the domain, the TBox, and also these addressing the global knowledge base,
the TBox, and the ABox.

Concept satisfiability check

Given a, possibly empty, Tbox 𝒯 , a concept C is said to be satisfiable with respect to 𝒯 ,
if one can imagine a world that satisfies all the constraints expressed in 𝒯 in which the
extension of C contains at least one element.5 A satisfiability check of a concept ensures
that the concept C, as it is defined, makes sense in the world described by 𝒯 . A nega-
tive answer to the satisfiability check most frequently reveals modeling trouble either
in the definition of C or in the knowledge base 𝒯 . In the knowledge engineering pro-
cess, a global check of the satisfiability of all the concept names A defined in 𝒯 offer

5 Formally, if there exist a model of 𝒯 in the domain of which at least one element belongs to the inter-
pretation of C.
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powerful debugging support. Indeed, common sense rarely leads to the provision of a
sophisticated description of a concept, which doesn’t have any instances in any config-
uration of the world.

In our example, we could consider extending the model by introducing the defini-
tion of a job seeker as an unemployed worker by adding the concept:

Job-seeker ≡ Worker ⊓ Unemployed
Since we have defined the concept of unemployed as disjoint from that of worker
(Unemployed ≡ Person ⊓ ¬Worker), the concept satisfiability check will then reveal that
the new concept Job-seeker is empty and will thus manifest a necessary adjustment of
the model.

Subsumption hierarchy

Combining the statements set in the axiomatic knowledge on the structure of the domain
as expressed in 𝒯 induces implicit relations between the concepts, too. Given a, possi-
bly empty, Tbox 𝒯 , and two (atomic or complex) concepts C and D, DLs offer reasoning
support to check the subsumption of concept C by D with respect to 𝒯 (𝒯 󳀀󳨐 C ⊑ D) and
equivalence of concepts C and D with respect to 𝒯 (𝒯 󳀀󳨐 C ≡ D).

The subsumption relation between concepts as defined by the axioms of a TBox
induces a preorder between them, that is, the subsumption is a reflexive and transitive
relation on the set of concept names. Building the subsumption hierarchy, and offering a
visualization of the subclass-superclass global relationship between concepts, supports
the capability to easily overview the knowledge domain model. The classification of a
TBox, that is, the calculation of the subsumption hierarchy, is one of the reasoning tasks
most used in knowledge engineering.

The computation of the subsumption hierarchy on the TBox described above pro-
vides the result as illustrated in Figure 5.2. It reveals that the intuitive inclusion of em-
ployees among workers is not present in the current model. This suggests an adaptation
of themodel, for example, by defining Employee as Person⊓∃works_for.organization,
which will then be recognized as being subsumed by Worker.

Consistency checking

Let’s consider now a complete knowledge base 𝒦 made of a TBox 𝒯 and a ABox 𝒜. The
first question that arises is the insurance that all the assertions involved in the knowl-
edge base are compatible. This task is called consistency check or knowledge base sat-
isfiability check. It finds any contradictory statements in a knowledge base, and thus
preciously supports debugging and validation of knowledge bases.
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Figure 5.2: Graphical representation of the computed subsumption hierarchy.

Instances queries

Given a knowledge base (𝒯 ,𝒜), the focus can be put on a specific element a. Checking
if a has some specific property can be rephrased as checking it is belonging to the set of
elements having this property, or in other words, to a concept, let’s say C, that has this
set as extension. DLs offer this reasoning of checking whether a is an instance of C with
respect to (𝒯 ,𝒜) ((𝒯 ,𝒜) 󳀀󳨐 a : C).

Here, it is important to understand that the instance checking answers the ques-
tion does the model guarantee that a : C? In our example, the checks mary:Worker and
mary:¬Worker return respectively yes and no, while as the model does not involve any
information about nathan, both queries nathan:Worker and nathan:¬Worker will re-
turn no, indicating that neither statement can be derived from themodel. This behavior
manifests the open world hypothesis, that is, the model being partial, there are state-
ments that can neither be confirmed nor denied.

The analysis of a given element can be generalized to the complete set of concepts
defined in 𝒯 . This task is called the realization of an individual with respect to a knowl-
edge base 𝒦 = (𝒯 ,𝒜). For each concept name A occurring in 𝒯 , it tests whether a is an
instance of A with respect to 𝒦 and returns the set of those concept names for which
the test is positive. In our adapted model, if michaël is declared to be a Civil-servant,
its realization will indicate that he is also member of the Employee, Worker, and Person

concepts.
Finally, probably the most expected query is instance retrieval. It aims to retrieve

elements that satisfy a certain description, that is, that belongs to a specific concept.
Given a concept C and a knowledge base 𝒦, this task checks for each individual name
a occurring in 𝒦 whether it is an instance of C with respect to 𝒦 and returns the set of
those individual names for which the test is positive.
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Reasoning problems reduction

Before turning to the implementation of the reasoning problems, let’s observe the re-
lationships between them. Without going into the details of theorems and proofs, an
intuitive presentation of the main results helps to understand how problems can be re-
duced to other ones, that is, rephrased as a problem of another type. The study of reduc-
tion leads to the identification of a minimal set of problems that can be used to solve all
other reasoning problems, and consequently, of the minimal set of reasoning for which
an implementation has to be realized.

Let’s consider first equivalence and subsumption between concepts C and D. By its
definition, the equivalence check 𝒯 󳀀󳨐 C ≡ D can easily be reduced to the two subsump-
tion problems 𝒯 󳀀󳨐 C ⊑ D and 𝒯 󳀀󳨐 D ⊑ C. The reader familiar with set theory,6 won’t
be surprised that the subsumption problem 𝒯 󳀀󳨐 C ⊑ D is equivalent to the satifiability
check of C ⊓ ¬D with respect to 𝒯 .

Now, as the satisfiablity check of a concept C with respect of 𝒯 , intuitively corre-
sponds to the identification of one element belonging to the extension of the concept,
one can easily guess that this problem can be reduced to the consistency check of the
knowledge base formed by adding to 𝒯 an ABox including the assertion b : C, that is,
the consistency check of (𝒯 , {b : C}).

Combining these results suggest that all the reasoning problems introduced in the
previous subsection can be reduced to mere consistency checking. Complementary re-
sults enhance that, provided the TBox does not involve cyclic concept definitions, check-
ing a knowledge base definition can be reduced to checking the consistence of knowl-
edge bases with an empty TBox. This follows, on the one hand, from the fact that check-
ing whether a is an instance of C with respect to (𝒯 ,𝒜) ((𝒯 ,𝒜) 󳀀󳨐 a : C) is equivalent to
checking the consistency of (𝒯 ,𝒜 ∪ {a : ¬C}) and, on the other hand, of the definition of
an unfolding operation, which turns an acyclic TBox into an ABox.

Reasoning implementation

𝒜ℒ𝒞, like most DL, is a decidable fragment of first-order logic. The consistency check
of an ontology (and consequently all the above mentioned problems) can be realized
through an algorithm, which is
– sound: any time the algorithm declares a model consistent, the model is actually

consistent (no false positive),
– complete: if themodel is consistent, the algorithmdeclares it consistent (all positives

are identified),
– terminating: the algorithm stops after a finite amount of steps on any input.

6 Reminding that for all sets A and B, A ⊆ B if and only if A ∩ ¬B = 0.
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In 𝒜ℒ𝒞, the concept satisfiability and the ABox consistency check are PSpace-complete
for an acyclic TBox, and ExpTime-complete for the general TBox.

A complete discussion of the numerous results and implementations is far beyond
the scope of this current chapter. However, tableau algorithms are considered an impor-
tant milestone in the DLs reasoning systems implementation, and are still being used
in numerous tools. This subsection introduces the main elements of these algorithms
focusing on the consistency check, whose importance has been outlined in the previous
subsection.

Basically, the algorithm proceeds in a knowledge expansion from the original
knowledge base until it meets a contradiction, called a clash, or no more expansion
is possible. To get the essence of the algorithm, we illustrate a naive implementation on
the following ontology:

𝒯 = {ClassBcomp ⊑ Comp ⊓ ¬∃sell.(Far ⊓ Phytosan)}
𝒜 = {bbCorp : ClassBcomp ⊓ Comp ⊓ ∃sell.Far,

apple : Product ⊓ Phytosan,(bbCorp, apple) : sell}
The TBox, 𝒯 defines Class B companies as companies that do not sell any products that
are both distantly sourced and produced using phytosanitary products. Assertions in the
ABox (A) state that (i) bbCorp is a Class B company that sells products distantly sourced,
(ii) apples are products produced using phytosanitary products, and (iii) bbCorp sells
apples.

The algorithm is processed in two steps:

Step 1
All concepts are reduced to their negation normal form, that is, equivalent concepts
where negation is applied only to concept names. This is achieved by applying an nnf
transformation summarized in Figure 5.3. In our example, the concept on the right of
the rule in the TBox is rewritten as follows:

nnf (Comp ⊓ ¬∃sell.(Far ⊓ Phytosan)) = Comp ⊓ nnf (¬∃sell.(Far ⊓ Phytosan))= Comp ⊓ ∀sell.nnf (Far ⊓ Phytosan)= Comp ⊓ ∀sell.(¬Far ⊔ ¬Phytosan).
Other concepts do not involve negation, so they do not have to be transformed.
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nnf (C) = C, if C is atomic
nnf (¬C) = ¬C, if C is atomic

nnf (¬¬C) = C
nnf (C ⊔ D) = nnf (C) ⊓ nnf (D)
nnf (C ⊓ D) = nnf (C) ⊔ nnf (C)

nnf (¬(C ⊔ D)) = nnf (¬C) ⊓ nnf (¬D)
nnf (¬(C ⊓ D)) = nnf (¬C) ⊔ nnf (¬D)

nnf (∀r.C) = ∀r.nnf (C)
nnf (∃r.C) = ∃r.nnf (C)

nnf (¬∀r.C) = ∃r.nnf (¬C)
nnf (¬∃r.C) = ∀r.nnf (¬C)

Figure 5.3: Negation normal form transformations.

Step2
The knowledge expansion is realized by building a tree similar to the tableau algorithm
presented in Chapter 4. The 𝒜ℒ𝒞-specific expansion rules are presented in Figure 5.4.
The expansion of our example knowledge base (𝒯 ,𝒜) is further given by the tree illus-
trated on Figure 5.5. If all the branches of the tree conclude with a clash, the knowledge
base is inconsistent. In our case, (at least) one branch of the tree (a tableau) is clash-free
and no more rule can be applied, as such the knowledge base is consistent.⊓-rule if a : (C ⊓ D) ∈ 𝒜 and {a : C, a : D} ̸⊆ 𝒜,

then𝒜′ = 𝒜 ∪ {a : C, a : D}⊔-rule if a : (C ⊔ D) ∈ 𝒜 and {a : C, a : D} ∩𝒜 = 0,
then𝒜′ = 𝒜 ∪ {a : C} and𝒜′′ = 𝒜 ∪ {a : D}∃-rule if a : ∃r.C ∈ 𝒜 and there is no b such that {(a, b) : r, b : C} ⊆ 𝒜,
then𝒜′ = 𝒜 ∪ {x : C, (a, x) : r}, for a new individual x ̸∈ 𝒜⊓-rule if a : ∀r.C ∈ 𝒜 and (a, b) : r ∈ 𝒜, but b : C ̸∈ 𝒜,
then𝒜′ = 𝒜 ∪ {b : C}⊑-rule if a : A ∈ 𝒜, A ⊆ C ∈ 𝒯 and a : C ̸∈ 𝒜,
then𝒜′ = 𝒜 ∪ {a : C}≡1-rule if a : A ∈ 𝒜, A ≡ C ∈ 𝒯 and a : C ̸∈ 𝒜
then𝒜′ = 𝒜 ∪ {a : C}≡2-rule if a : ¬A ∈ 𝒜, A ≡ C ∈ 𝒯 and a : nnf (¬C) ̸∈ 𝒜
then𝒜′ = 𝒜 ∪ {a : nnf (¬C)}

Figure 5.4: Tableau expansion rules for𝒜ℒ𝒞.



164 � I. Linden

Figure 5.5: Knowledge base consistency proof.

Note that the naive version of the algorithm presented here is nondeterministic, as
the order of the rules (the two branches of ⊔-rule) can be applied in any order. Mind
you that this does not impact the conclusion of the algorithm, but an optimization of the
implementation can further take advantage of defining an exploration strategy.
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5.4 What are the limitation of knowledge
representation and engineering with ontologies?

The previous section presented the DL 𝒜ℒ𝒞 as a representative of this family of lan-
guages. However, there are multiple DLs. This section first introduces their diversity
in Subsection 5.4.1. Then Subsection 5.4.2 addresses the common limitations of DLs
and 5.4.3 the challenges faced when DLs are being used for knowledge engineering.
Finally, extending somewhat the view on ontologies covered in this chapter, the seman-
tic web ontology language, OWL, is shortly described in Subsection 5.4.4 and Subsec-
tion 5.4.5 introduces knowledge graphs.

5.4.1 Expressiveness and complexity of DLs

The previous section stated that if, on the one hand𝒜ℒ𝒞 loses expressiveness compared
to FOL; on the other hand, it gains decidability on the consistency check. Moreover,
the complexity of the concept satisfiability and the ABox consistency check is PSpace-
complete for an acyclic TBox, and ExpTime-complete for a general TBox.7

The history of the DL family is a kind of dance back and forth between language ex-
pressiveness and algorithm complexity. In parallel, particularly with the semantic web
and semantic datamanagement applications, anothermovement back and forth is from
queries on a TBox to queries on an ABox. The following subsection therefore introduces
the variety of DLs issued from these explorations.

Descriptive logics with low expressiveness

Targeting the reduction of the complexity of reasoning, one may focus on two minimal
description logics: ℰℒ and ℱℒ0. The set of constructors allowed in ℰℒ is limited to the
conjunction (C ⊓ D), existential restriction (∃r.C), and the top concept (⊤). In this very
limited language, the subsumption problem, evenwith general TBoxes, can be solved by
a consequence-based reasoning, which remains polynomial. In contrast, inℱℒ0, despite
a set of constructors only limited to the conjunction (C ⊓D), value restriction (∀r.C), and
the top concept (⊤), the subsumption check remains ExpTime-complete. It is to note that
the satisfiability check loses its interest in both languages as their constructors cannot
cause unsatisfiability.

7 For the reader nonfamiliar with complexity theory, mind that the complexity of a problem estimates
how the resources quantity (time and space) required to reach the answer (by the best possible algo-
rithm) in the worst case grows with the size of the problem. Problems are classified according to the
following hierarchy: PTIME ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME.
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DL-Lite is another remarkable DL with limited expressiveness. It is one of the DLs
proposed to support query answering in the presence of ontologies. This type of queries
concerns search in huge data sets issued from heterogeneous data sets (as web sources),
where ontologies are used to compensate the incompleteness of information by provid-
ing the domain knowledge. Given the constructors’ restrictions, for any TBox, queries
on the knowledge base (typically conjunctive queries) can be rewritten into first-order
queries8 on an ABox that is equivalent. The translation and the execution (being both
polynomial) of the resulting query ensures polynomial execution of the query in a poly-
nomial time.

Beside concept names, DL-Lite further has as basic concepts the top concept (⊤),
unquantified existential restriction (∃r, to be understood has ∃r.⊤), and unquantified
existential restriction on the inverse role (∃r−). The TBox axioms are either positive
basic concept inclusions (B1 ⊑ B2), negative basic concept inclusions (B1 ⊑ ¬B2), or role
inclusions (r ⊑ s, where r and s are concepts names).

Concept constructors and the ALC family

A variety of DLs results from the introduction of new concept constructors, that is, their
names, notation, and symbols are provided in Table 5.1 together with their correspond-
ing logic formulae.

Table 5.1: Advanced concepts constructors corresponding formulae.

Sym name notation Corresponding logic formula

ℱ functionality (≤ 1r) #{y|r(x, y)} ≤ 1
𝒩 unqualified number restriction (≥ nr) #{y|r(x, y)} ≥ n

(≤ nr) #{y|r(x, y)} ≤ n
𝒬 qualified number restriction (≥ nr.C) #{y|r(x, y) ∧ C(y)} ≥ n

(≤ nr) #{y|r(x, y) ∧ C(y)} ≤ n
𝒪 nominals a x ∈ {a}

These 𝒜ℒ𝒞 extensions are called 𝒜ℒ𝒞X where X denotes the selection of construc-
tors amongℱ𝒩𝒬𝒪whereℱ is droppedwhen𝒩 is included, andℱ𝒩 are droppedwhen
𝒬 is included.

Introducing (any subset of) these concept constructors in the concept definitions
preserve the PSpace-completeness of the concept satisfiability and the ABox consistency
check on acyclic TBoxes. With general TBoxes, the problems remain ExpTime-complete
for any subset of concept constructors.

8 First-order formulae that use only unary and binary predicates and no function symbols or constants.
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Role constructors

The basic DLs considered so far have the concepts as their main focus. Among the broad
diversity of DLs, many of them provide constructors supporting the advanced definition
of roles and include constraints on roles in the knowledge base. The complete study of all
DLs go far beyond the scope of this introductory chapter though. However, we introduce
here the most well known of these tools.

Among the role constructors, we find inverse role (ℐ), role intersection, union,
(atomic or full) negation, role composition, and reflexive-transitive closure correspond-
ing to the operations on relations. Among the possible constraints on roles the following
ones are the most referenced ones:
– Role hierarchy (ℋ), denoted r ∈ s, expresses inclusion,
– Role transitivity (𝒮), denoted Trans(r), expresses transitivity,
– and complex role inclusion (ℛ) allows the expression of role inclusion of a relation

obtained by combining other ones.

As previously, languages are named by adding the letters of the features to 𝒜ℒ𝒞. For
advanced languages (including 𝒮 or ℛ), the 𝒜ℒ𝒞 prefix is commonly dropped. Except
for inverse, denoted by ℐ , the selection of role constructors is specified in parentheses
after the name of the language.

Although there is no fundamental reason to distinguish the relational axioms, that
is, the axioms formulated using these constraints on relations from the TBox, they are
commonly grouped in a third set of axioms called the RBox.

Without going into the details of all languages’ inclusion and the respective com-
plexity of problems in each of the DLs, which gave rise to multiple publications, it is
important to note that some gains in expressiveness have important costs toward the
complexity of the problems. For example, in𝒜ℒ𝒞𝒪ℐ , satisfiability and subsumption are
ExpTime-complete, even on empty TBoxes. As it happens, these same problems become
NexpTime-complete in𝒜ℒ𝒞𝒪ℐ𝒬. For some extensions, the reasoning even becomes un-
decidable.

Despite these theoretical limitations, one has to remind that these complexity stud-
ies consider theworst possible cases. In real case scenarios, the combination of construc-
tors used rarely reach these levels. Most implemented DLs reasoners have acceptable
performance on ontologies of a reasonable size.

5.4.2 DLs expressiveness limitations and challenges

Most DLs are equivalent to fragments of FOL. This formal limitation makes it impos-
sible to express certain properties that are easily expressed in FOL. This is obviously
the case for properties, which require constructors not involved in the specific stud-
ied DL. For all DLs, this is the case with properties, which require an n-ary predicate
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with n ≥ 3. For example, it is not possible to express a generic property modeling a
generic provides(x, y, z) relation between company x, product y, and country of origin
z. Similarly, reasoning with natural numbers, addition, or multiplication is known to be
undecidable, and consequently, can not be modeled with DLs.

Finally, DLs presented above also face limitations similar to these of FOL, that is,
they are not well suited tomodel knowledge involving time, modalities, or fuzzyness. To
date, researchers attempt to include these concerns into DLs similar to the various logics
extending FOL. The key challenge for future DL research is to extend the expressiveness
while preserving decidability.

5.4.3 Knowledge engineering
Consistency of a model can be ensured by automated reasoning and this is precious for
knowledge engineering. However, that does not guarantee that the model is adequate
with respect to the reality, or does actually fit the needs of the developers, whatever they
are. Many challenges remain in the hands of the knowledge engineers as, for example,
– arbitrate between an elegant, very abstract model, which is more easily maintain-

able and a more tricky one, which reflects all the details of the real world,
– reconcile in one ontology the possibly multiple users’ conceptions of the domain,
– deal with the ambiguity and the polysemy of natural language,
– make explicit as much as possible of implicit knowledge,
– and deal with the fuzzyness in knowledge.

5.4.4 OWL and the semantic web
Ontologies expressed in DLs are used to support development and maintenance of sys-
tems in numerous heterogeneous languages and application domains. One of the most
famous application domain is certainly the semantic web. The ontology web language
(OWL9) allows the definition of ontologies by means of classes (ontology concepts) and
properties (ontology roles). OWL adopts a web-friendly syntax relying on preexisting
extensible markup language (XML10) and resource description framework (RDF11) stan-
dards.

Without going into the details of the RDF language,12 let us remind that it relies on a
triples’ structure < subject, predicate, object >. So, for example, the assertion that “John

9 www.w3.org/OWL/
10 is a markup language that defines a set of rules for encoding documents in a format that is both
human-readable and machine-readable.
11 RDF is a standard that uses a graph data model to describe web resources and facilitate data inter-
change on the internet.
12 www.w3.org/RDF/
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works for mySBC” can be expressed by a triple < John,worksFor,mySBC >.” Similarly,
this triple structure allows to naturally express ABox assertions, too, that is,
– a role assertion (a, b) : r can be expressed by a triple < a, r, b >, called in OWL

property assertion,
– a concept assertion a : C can be expressed by a triple < a, rdf : type, C >, called in

OWL class assertion, where rdf : type is a predified predicate denoting the “instance
of” relationship.

The RDF schema extension of the basic RDF vocabulary (RDFS13) provides a predicate
rdfs : subClassOf denoting the class inclusion relationship. Thanks to this predicate, a
TBox axiom C ⊑ D can be written as < C, rdfs : subClassOf ,D >.

This adoption byOWLof the RDFvocabulary and syntax facilitates interactionswith
information available in the RDF format, in particular, with the semantic web and the
linked data (data formatted according to the web semantic best practices14).

The description of the formal semantics of OWL 215 further enhances its compat-
ibility with 𝒮ℛ𝒪ℐ𝒬. The standardization of the language has led to the development
of multiple tools that allow the development and manipulation of ontologies via user-
friendly interfaces,16 that is, Protégé17 was one of the first and best known open source
tools to manipulate RDF data sources.

5.4.5 Knowledge graphs

This chapter has highlighted how DLs support the implementations of ontologies in a
way that is both human-readable and allows queries to be executed with respect to a
formal semantic.

An alternative family ofmodels can achieve the same goals: graph-based knowledge
models. Like DLs, they are the subject of a large literature that studies their operations
and expressiveness (see Chein andMugnier (2009) for a study of the foundations of these
works).

With the notoriety of Google Knowledge Graph, the world of the semantic web
has turned to specific models of this family: the knowledge graphs (KGs). KGs provide
human-readable visualizations in the form of node-relationship diagrams whose nodes
represent entities (objects, events, or concepts) and the labeled links denote the rela-
tionships between them.

13 www.w3.org/TR/rdf-schema/
14 https://www.w3.org/standards/semanticweb/data
15 www.w3.org/TR/owl2-direct-semantics/
16 www.w3.org/wiki/Ontology_editors
17 protege.stanford.edu/
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The business case below details how large data sets can be stored in such a knowl-
edge graph. Then it illustrates how ontology-driven queries can be computed on this
graph and offer support to decision in a drug development process.

5.4.6 Conclusion

Ontologies introduced in this chapter aim to offer formal specification of domain knowl-
edge that support reasoning on partial model. Their technology independent formula-
tion offers support to various knowledge engineering related tasks from the specifica-
tion to code maintenance going through the data and code integration.

Among the diversity of languages that implement ontologies, this chapter intro-
duces description logics. In these languages, the variable free syntax preserves a rea-
sonable human readability. Thanks to their formal semantics, they offer both support
for model checking and query answering. DLs are equivalent to decidable fragments
of first-order logic and, therefore, the associated decision engines proceed requests in
a finite time. Even if the complexity is high in worst cases scenarios, most pragmatic
queries are answered within a limited amount of time.

The emergence of the semantic web has largely contributed to the notoriety of on-
tologies. However, they are used in a wide variety of application domains. Decision sup-
port tools in health domains are among the systems that most extensively integrate
ontology-based knowledge representation. The drug development business case pre-
sented below illustrates how a tool supporting research in the conceptually complex
domain of pharmaceutical industry can integrate rich knowledge bases by using on-
tologies. It enhances how efficient semantical queries can be performed.

The reader who wishes to delve deeper into the subject will be interested in the
following references.
– Probably the most quoted definition of ontologies in computer sciences literature

comes from the paper by Gruber (1993).
– For more detail on description logics and the associated theoretical results and

proofs, the reader could refer to Krötzsch et al., Baader et al. (2017), Baader et al.
(2007).

– A browser presenting the multiple DLs and their respective expressiveness and
complexity is available on http://www.cs.man.ac.uk/ezolin/dl/.

– For a study of knowledge representation and reasoning with graph-based models,
refer to Chein and Mugnier (2009).

– A simple comparison of DLs and conceptual graphs can be found in Leclère et al.
(2014).

– The W3C OWL standard is on www.w3.org/OWL.
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5.5 Industry example: drug development using
ontologies and semantic search, the ONTOFORCE
example
Erik Mannens, Filip Pattyn

5.5.1 Context

Life sciences is one of the fastest evolving domains and is fueled by the technological evo-
lutions that marked the twentieth century such as electronics and computer sciences.
There is a tremendous amount of information available ranging from observations and
insights in fundamental biology up to the clinical data of millions of individuals. The
newest technological developments inwearables and sensors have created openings for
data generation in another order of magnitude. As a result, one is capable of diagnos-
ing, treating, curing, and eradicating an extensive number of illnesses and improving
the quality of life for billions of people. Nevertheless, our profound understanding of
biology has thought us that there are still lots of pieces in the puzzle missing. The quest
to continue to strive and deeply understand biology, to discover, and to innovate has
turned the domain into a massively data-driven business. The pharmaceutical industry,
and more specifically novel drug development, is therefore characterized by a fierce
competition to find the next big hit that boosts the business and brings value to patients.

5.5.2 Data is ubiquitous but siloed

Developing a new therapy is a labor intensive and long process with a high risk of fail-
ure. The drug development process can take up to 13 years until a new therapy gets mar-
ket approval and is characterized by a succession of specific phases (see Figure 5.6). All
phases are very data-driven and require bringing together public, licensed, and internal
data to find new insights or to stay ahead of the competition.

Although the digital transformation is running behind in biopharma compared to
other industries, the related scientific domains of biology and biomedicine were one of
the drivers and early adopters of the semantic web and linked data technologies and
principles. Since the last two decades, a lot of public initiatives to capture and struc-
ture subsets of biological data have mushroomed. In contrast, the industry remained
very protective of their growing amounts of internal data. Data is very fragmented per
operational or business unit or drug development phase. One of the counterreactions
to stimulate data exchange and interoperability is the creation of many standards and
ontologies.
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Figure 5.6: The drug development process.

5.5.3 ONTOFORCE

It is in that atmosphere that ONTOFORCE was founded; a Belgian SME with offices in
Ghent, Belgium, and Cambridge, MA. Their primary ambition is to develop a technology
that eases the pain of bringing siloed data together and creating links between concepts
in order to allow finding information faster, revealing new insights and stimulating col-
laboration. The technology is coinedDISQOVER and is built on the principles of semantic
web technologies and linked data and is embracing the FAIR Data Principles (Wilkinson
et al., 2016).

It contains a data ingestion engine with a graphical user interface that allows to
build data processing pipelines that are able to transform and integrate a wide variety
of data into a knowledge graph stored in a proprietary storage engine. On top of that,
the platform is equipped with an intuitive user interface that is able to search, navigate,
traverse a knowledge graph, and allows to visualize subsets of the graph as customizable
dashboards used for visual analytics. The DISQOVER platform is built specifically for life
sciences and delivers value in use cases accross the drug development cycle.

A lot of the public domain knowledge in life sciences is stored in databases or is
available as a thesaurus, taxonomy, hierarchy, or ontology. Transforming a number of
these data sources and storing this data as a semantic knowledge graph is the starting
point for solvingmultiple use cases based on data interoperability and reuse. Therefore,
a DISQOVER version consisting of public data is created andmanaged byONTOFORCE. It
currently holdsmore than 100 data sources and is available via a publicly accessible user
interface (http://www.disqover.com) and serves as a hub for enterprise data federation
and synchronization services (see Figure 5.7).
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Figure 5.7: The DISQOVER technology.

Figure 5.8: The DISQOVER data type ontology graph showing the semantic links between the major data
types. The largest data types are Person (36.6M), Publication (32.6M), and Gene (30.1M).

The core of a DISQOVER knowledge graph is the overarching data type ontology
graph (see Figure 5.8). Specific data types can be configured (via constructors), which
allows to group, define, or distinguish object classes available in existing data sources.
The configuration of a data type entails the definition of data properties, filter prop-
erties, and typed relations. At any moment, the provenance of the data is maintained
in OWL rules and can be highlighted in the user interface. The public data knowledge
graph spans different subdomains of the life sciences and can be applied for amultitude
of use cases. The most elementary ones are in basic research.
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5.5.4 Use case introduction: semantics and ontologies in basic
research

One of the strategies in drug development is to start with finding a potential biological
target for intervention. Typical targets are biological entities that are involved in bio-
chemical processes such as specific types of proteins. Biological entities come in differ-
ent kinds and create extremely complex networks of relations. Two fundamental inter-
actions or relationships are: a gene, specific segment of Deoxyribonucleic acid (DNA18),
is transcribed by a biochemical process into messenger ribonucleic acid (RNA) (mRNA),
which is in turn translated into a protein. The transcription and translation processes
are regulated via complex networks of proteins andRNAs such as signal transducers and
members of binding complexes. There are approximately 3.0 ∗ 1013 individual cells in a
human body (Sender et al., 2016) and each of these cells contains the genetic code con-
sisting of 3 ∗ 109 letters and encoding for 30,000 genes. Cells have specialized functions
and execute them via activating specific combinations of genes. They are also interact-
ing with each other. Moreover, humans are not exact copies and have a genetic makeup,
which is highly similar between two individuals—thismakes us human andmembers of
one species—but shows an extremely wide variability. Currently, more than 900million
different human gene variations are identified in the human population.19 This is just
the beginning of a description of the complexity of biological systems. Most of this infor-
mation is stored in public databases of which some of them contain cross-references to
each other. In addition, organizations are continuously generating internal data about
biological interactions and variations in order to find direct correlations between bio-
logical processes, diseases, and phenotypes. The next step is finding the agents that in-
teract efficiently with the right diseasemodifying target (efficacious drug), which causes
a minimal of unwanted adverse effects (safe drug). In an early phase of the inception
of the semantic web and linked data, researchers started to store and distribute biolog-
ical data in a semantic representation such as RDF. This process is still ongoing and at
different speeds is accompanied with a sprawl of new taxonomies, hierarchies, and on-
tologies making it often even more complex to bring it to practical applications. Most
importantly, this evolution hasn’t fully proved its value to business users.

5.5.5 Use case scenario: semantics and linked data at work for
knowledge discovery in early-stage drug research

One of themain objectives of ONTOFORCE is to create value for business users by bring-
ing this scattered data together and to enable finding relevant relations or associations

18 It’s a molecule that carries the genetic instructions used in the growth, development, functioning,
and reproduction of all known living organisms and many viruses.
19 NCBI Allele Frequency Aggregator (ALFA): https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/ALFA_
20201027095038/
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in a user-friendly way. In DISQOVER, semantic relations between instances such as a
disease, a publication and a gene are included when available. In addition, the labels,
abbreviations, alternative labels, or symbols of all instances in the graph can be used for
semantic search expansion (see Figure 5.9). This allows to perform a basic string search,
which is easily extendable by including other labels or synonyms retrieved from differ-
ent data sources.

Figure 5.9: Semantic search expansion in DISQOVER. The human protein STK11 is selected together with all
known synonyms and labels.

When selecting the ‘‘protein’’ data type—not the ‘‘exact hits’’ box—a new dashboard
displays an overview of all matching hits (both semantic as search string hits) (see Fig-
ure 5.10). This dashboard allows to use filtering facets (based on a combination of mate-
rialized OWL rules on top of elastic search indexes) that can be used for visualization in
combination with more specific visualization or analysis facets.

The dashboard panes and facet contain different subsets of data—here and, for ex-
ample, in the SPARQL pseudocode to retrieve a few subsets (see Figure 5.10).

When clicking on a specific hit, you’ll retrieve the detailed properties of a single
concept combined with the semantic links to other concepts grouped per data type (see
Figure 5.11). The data provenance can be visualized to ascertain the origin of every prop-
erty. In addition, the different public or internal URIs of that concept can be visualized.
This is useful to explore the datawhenpreparing for advanced and automated searching
via scripting or preparing new data sources to integrate. By clicking on the circle ‘‘Dis-
ease,” one gets guided via the semantic links (by using the RDF descriptions together
with RDFS and/or OWL rulings) to the 11 diseases associated to this protein. By adding
a critical mass of relevant public data sources and combining this with internal data,
DISQOVER can become an environment for knowledge discovery leading to improved,
evidence-driven hypothesis generation and decision making.
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1 Variables:
2 $searchStringPreviousStep1 = "lkb1" OR "STK11_HUMAN" OR ... (See Fig below)
3 $selectedDatatypePreviousStep2 = :Protein (Step not shown)
4 $selectedConceptInFacetOrganism = :HomoSapiens (Step executed on the active dashboard)
5
6 Result list (See Fig 5, right pane):
7 GET Properties from Concepts
8 ?URIConcept , ?prefLabelConcept , ?descriptionConcept ,
9 [? URIDatatype ?prefLabelDatatype], [? URIConceptClassConcept , ?prefLabelConceptClassConcept]
10 GET Provenance from Properties
11 ?URIDatasource , ?prefLabelDatasource
12 FILTER
13 ?prefLabelConcept OR ?alternativeLabelConcept MATCHES $searchStringPreviousStep1
14 AND ?URIDatatype EQUALS $selectedDatatypePreviousStep2
15 AND ?URIConceptClassConcept EQUALS $selectedConceptInFacetOrganism
16
17 Facet Counter (See Fig 5, middle pane):
18 COUNT ?URIConcept from Concepts
19 FILTER
20 ?prefLabelConcept OR ?alternativeLabelConcept MATCHES $searchStringPreviousStep1
21 AND ?URIDatatype EQUALS $selectedDatatypePreviousStep2
22 AND ?URIConceptClassConcept EQUALS $selectedConceptInFacetOrganism
23
24 Facet Organism (See Fig 5, middel pane)
25 GET Properties from ConceptClassConcepts
26 ?URIConceptClassConcept , ?prefLabelConceptClassConcept
27 FILTER
28 ?prefLabelConcept OR ?alternativeLabelConcept MATCHES $searchStringPreviousStep1
29 AND ?URIDatatype EQUALS $selectedDatatypePreviousStep2
30 AND ?URIConceptClass EQUALS :Organism

Figure 5.10: Dashboard displaying a protein-centric search. The left pane shows a history of previous
searches, the middle pane is reserved for filtering and visualization facets, and the right pane shows a
list of semantic hits on top.

5.5.6 Application of early-drug research knowledge for
translational research use case

Under the hood, a lot is done via DL reasoning to calculate state changes in the knowl-
edge graph. The above example of the STK11 protein is elaborated on as a possible treat-
ment for kidney cancer by introducing the semantic description of state changes. The
introduction of background knowledge and target description also uses examples from
known kidney cancer treatments. Figure 5.12 shows the semantic description of a STK11
protein therapy in the domain of kidney cancer.
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Figure 5.11: Detailed view of a single protein concept.

Figure 5.12: Sample state change representation of “hoax” kidney cancer therapy.

In general, this sample description indicates that by taking the action of adminis-
tering a certain STK11 protein dose, the size of the tumor is expected to shrink to 70% of
its original size. Line 9 indicates the specialized domain of the action, in this case, it is
care:Kidney_cancer. We use “Map” to indicate domain information of each specificmed-
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ical domain, mimicking a map that provides different paths. We use the concept “Map”
to separate different domain knowledge, so that domain experts can focus on creating
rules in their own expertise.

The graph stated in the from section (lines 11–12) indicates the state before the action
is applied. It will be retracted once the action is started. In this case, the current tumor
size and metastasis risk of the patient will then be retracted. Line 13 contains the tran-
sition state. It indicates that during the state transition, the patient is receiving some
dose of the STK11 protein. The graph stated in the transition section will be asserted
when the action is started. It will be retracted when the action of the administration
of some dose of STK11 protein is finished. Lines 14–15 indicate the target state. When
the state transition is finished, new values of tumor size (?newsize), and metastasis risk
(?newrisk) will be asserted. The new size and new risk are reflecting the expectation of
the treatment. In reality, the new size and new risk might differ as the emphconfidence
of reaching the target is indicated by the parameter belief. Line 16 indicates the action to
be taken in the state transition is receiving some dose of the STK11 protein. Lines 17–20
indicate the weights of the state transition. Dose indicates the action will be adminis-
tering 60ml/hour at a rate of 20 drops/min. Cost indicates the cost of the action is 14147
Euros. It is believed 90% chance the target can be reached, and the comfort level of this
action is 40%.

Both Belief and Comfort are initially subjective values based on known knowledge
base inputs of physicians. Nevertheless, they can also be based on existing studies har-
vested from other linked open data sets, as well as being updated following the outcome
of evaluating the actual outcome of the state transition. Lines 22–28 form the section of
Condition. Lines 22–24 indicate the premise of carrying this action, that is, a patient is
diagnosed with kidney cancer (line 22), and the tumor is reaching more than two layers
of the kidney (lines 23–24). The new size of tumor is calculated in lines 25–26; it will be
70% of the original size. The new risk of metastasis is calculated in lines 27–28; it will be
50% of the original risk. The current calculations of the target values are simplified for
demonstration purposes.

In clinical practice, the new metastasis risk can be calculated based on the detailed
status of a patient, even including factors such as genetic variants or extrapolating the
results via external machine learning services. In this way, the newly acquired knowl-
edge is updated in the DISQOVER knowledge graph, taking into account all previous
provenance information, that is, “one learns from the past.” As such, earlier less effec-
tive treatments can be taken into account, and thus “old” patients could proactively get
better treatment.
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Aleksandra Pižurica
6 Probabilistic reasoning: When the
environment is uncertain

6.1 Why is probabilistic reasoning important within
the broader AI domain?

In the realworld, agents aswell as peoplemust often dealwith uncertainty due to partial
observability, lack of complete domain knowledge, nondeterministic aspects of the envi-
ronment, or various adversaries. Logical reasoning provides uswith soundmethods and
tools to organize knowledge, perform inference, and construct plans but we need other
mechanisms, too, to enable efficient decision making and acting under uncertainty. For
example, an agent navigating through a partially observable environment and relying
on its noisy sensor readings may never know for sure at which exact location it is and
even less so in which state it will lend after a sequence of actions.

Problem solving and purely logical reasoning approaches can deal with some levels
of uncertainty by maintaining the set of all possible states that the agent might be in—
so-called belief state—and generating a contingency plan for every such possibility. This
approach can work in scenarios with relatively few possible random outcomes of the
actions and/or relatively few possible explanations for sensor readings at each stage.
In reality, however, such a belief state tends to grow rapidly while incorporating many
unlikely instances. Similarly, the corresponding contingent plan becomes prohibitively
complex to support reasonably the deliberation process.

We thus need a reasoning mechanism that supports decision making in uncertain
and complex scenarios. This also means being able to rank in some consistent manner
the worthiness of actions or plans even when none of them is guaranteed to succeed.
Suppose the goal is to be on time for an important meeting in a different part of the city
while leaving the office as late as possible. Plan A is to drive along a ring around the city,
Plan B take a shorter road through the small streets in the city center, and Plan C to go by
bicycle. Plan A is likely to fail if there is a road accident or a lane is closed for roadworks.
For PlanB, a blocked street anddetour through one-way streets can be detrimentalwhile
increased intensity of rain or pants caught in bike chain can be devastating for Plan C.
A sudden disturbance in the ionosphere caused by a geomagnetic storm can invalidate
your GPS navigation system and get you off the optimal route. None of these obstacles
can be excluded—nomatter how unlikely they are—andmany othersmay arise that we
could not think of or did not want to bother listing explicitly. Still, we need a consistent
way to rank the merits of the various plans in uncertain situations. This leads us to the
concept of probabilistic reasoning, a. k. a. reasoning under uncertainty.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111426143-006
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The importance of probabilistic reasoning is often illustrated with diagnostic tasks.
Making medical diagnosis, determining the cause of a mechanical failure, or a given ef-
fect in any other context involves almost always uncertainty. Think, for example, of diag-
nosing the cause of chronic fatigue. The list of possible causes is almost infinite, ranging
from lack of good sleep, not enough activity or unbalanced diet to anemia or even heart
problems, cancer, or covid infection, just to name a few. Furthermore, in some cases one
has to make a diagnosis while lacking complete knowledge of the domain (theoretical
ignorance) and/or being unable to perform all the relevant tests due to various practical
reasons and limitations (practical ignorance).

It is therefore often said, after Russel and Norvig (2021), that probabilistic reasoning
succeeds where purely logical reasoning fails due to our “laziness” (avoiding exhaustive
lists of all possible causes or consequences) and ignorance (both theoretical and practi-
cal). Figure 6.1 highlights this concept.

Figure 6.1: Sources of uncertainty that trouble purely logical and motivate probabilistic reasoning.

In essence, probabilistic reasoning provides us with means to evaluate degrees of
belief for the success of different outcomes (e. g., from a sequence of actions). This way,
it also constitutes a crucial component in designing rational agents. Modern artificial in-
telligence (AI) often qualifies intelligence as acting rationally, that is, choosing the action
that maximizes the expected utility given the available evidence. A decision-theoretic
agent does so by combining the probability theory (to evaluate the likelihood of each
outcome) and the utility theory (to express preferences regarding different outcomes),
as it is highlighted in Figure 6.2. Hence, probabilistic reasoning forms also a core part of
decision systems, like Markov decision processes (MDP) and their natural extension to
reinforcement learning (RL).

Figure 6.2: Decision-theoretic agents combine probability theory and utility theory.
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6.2 What category of problems does probabilistic
reasoning solve?

The fundamental problems addressed by probabilistic reasoning often boil down to
answering questions of the type what is the probability of an event (or a combination
of events, or a sequence of states) given some evidence. Technically, we say that prob-
abilistic reasoning finds the probability of a query proposition (like “I’m having flu”)
given some evidence (e. g., symptoms like cough and fever). Similarly, we might be in-
terested in the probability that “it will rain tomorrow and the picnic won’t be canceled”
given somemeteorological data over the past days and some evidence aboutmy friends’
habits. Another type of problem that we encounter in probabilistic reasoning is that of
finding an explanation or a sequence of most likely states of a given system, given a
sequence of some observed features. In this context, the terms evidence, observations,
observable variables, measurements, data, and (observed) features have the same role
in the reasoning process and are thus often used interchangeably and typically denoted
generically as evidence in technical descriptions. The problems that are being addressed
by probabilistic reasoning can be categorized in different ways:
– Static vs. dynamic environment. A task environment is said to be static when it

doesn’t change while the agent is deliberating. It means that the states of all the
entities of interest for a given problem remain fixed (each random variable has a
fixed value) in the time span in which the agent performs inference and decides on
the action. For example, the fact that the alarm went off (or not) does not change
while inferring the probability of burglary, and the state “there was burglary” or
“not” also remains fixed all this time. In a dynamic environment, the states and the
observations keep constantly changing while the agent is deciding about what to do
next. Think of self-driving cars: the car itself and other cars keep moving, and over-
all, the traffic situation is changing while the driving algorithm decides on what to
do next. To deal with dynamic problems, we need reasoning over time, where we
account for probabilities of various transitions between the states of the environ-
ment in subsequent time intervals. This type of problems will be addressed later in
this chapter.

– Causal vs. noncausal problems. Some models assume “causal” dependencies be-
tween variables, the influence of a variable over another one, represented in a
graphical model by directed links. With directed graphical models, we are describ-
ing the dependencies of the type “parent-child” where one influences the other
in a particular direction, for example, having flu causes with some probability
headache, so Flu has a causal influence on Headache and this is expressed by a
directed link between the two nodes in the model. Bayesian networks are often
used to model this type of problem. In noncausal models, the interdependencies
among the involved random variables are not directional, but are characterized
symmetrically as neighboring relations. For example, in a digital photo, neighboring
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pixel intensities are statistically dependent. If pixel values are modeled as random
variables, we can express their statistical dependencies with an undirected prob-
abilistic graphical model, like Markov random field (MRF) or conditional random
field (CRF), which are covered in the subsequent sections.

– Discrete vs. continuous (or hybrid). The involved random variables can either be
discrete or continuous. A discrete random variable can take only a finite number
of distinct values like being true or false or the number of free seats in a bus, while
a continuous random variable follows some continuous distribution (e. g., current
speed, body temperature, average price of a house, etc.) In some cases, we have a
mix of continuous and discrete random variables, which are then modeled by a hy-
brid probabilistic graphical model (e. g., a hybrid Bayesian network). Furthermore,
if we are dealing with dynamic environments, the discrete/continuous characteri-
zation can also refer to how the time is handled: is it divided in some discrete steps
or considered as a continuous variable?

In dynamic scenarios (probabilistic reasoning over time), the problems we address can
be grouped in the following categories:
(i) Estimating the probability of a given state in a particular time instant, given the

evidence available before (prediction) or up to (filtering) or beyond that time instant
(smoothing). Say we don’t know if the concentration of a given air pollutant, like
PM2.5, in our city is above the standard but we can try to infer it based on some
observations (like dense fog).
– Prediction makes the inference a step ahead. (e. g., “Will the concentration of

PM2.5 exceed the threshold tomorrow based on the observations until today?”)
– Filtering makes the estimate for the present with all the evidence so far (“Is

PM2.5 today above the threshold based on the evidence so far?”).
– Smoothing improves the estimate in the past based on the new evidence that

arrives in the meantime (“Was PM2.5 above the threshold yesterday based on
the evidence we received until now?”).

(ii) Finding the most likely sequence of states given a sequence of observations—also
called themost likely explanation (e. g., inferring for 10 days in a rowwhether PM2.5
was above the threshold or not based on the fog observations in those 10 days).

These concepts relating to reasoning in dynamic scenarios will be explained in more
detail in the section “Probabilistic reasoning over time.”

After introducing some basic background concepts that we need for solving any of
these categories of the problems, we will first address probabilistic reasoning in a static
setting. There, wewill start from causal problems, which arewell described by Bayesian
networks and then we will turn to noncausal problems modeled by Markov random
fields. In both of these, we will exemplify discrete and continuous or hybrid models. We
will subsequently unify causal and noncausal models within a factor graph represen-
tation and we will introduce inference methods by belief propagation, Markov chain
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Monte Carlo (MCMC) samplers and briefly comment on some other inference mech-
anisms. Then we will turn to probabilistic reasoning over time, where we will start
from basic inference problems in a dynamic setting, and explain how they are solved by
the belief propagation-type of methods. Then we will introduce the concepts of hidden
Markovmodels, dynamic Bayesian networks, and approximate inference by particle fil-
tering.

6.3 How probabilistic reasoning problems are
solved?

A minimum knowledge of the probability theory is needed to understand the key con-
cepts of this chapter. Therefore, the reader will find some useful reminders in the ap-
pendix of this chapter. These reminders cover:
1. randomvariables, conditional probabilities, independence, and the Bayes’ theorem,
2. estimators used in probabilistic reasoning. Estimators are based on statistics, so a

function of observed data used to estimate the value of unknown parameters. They
are key in machine learning since those express one of the approaches to “learn”
from data.

See 6.6.1 Appendix: Basic Concepts and 6.6.2 Appendix: maximum likelihood estimation
(MLE) and Bayesian estimation.

In many cases, the information of interest is not changing while the agent is delib-
erating on the action to take or while it infers the cause of a given manifestation, true
configuration of some phenomenon, or the likelihood of a particular event given the
available evidence. In this case, we are in a static environment: we’ll first show how we
canmodel causal problems using Bayesian networks (Section 6.3.1), thenwe turn toMRF
(Section 6.3.2) and CRF (Section 6.3.3) for noncausal problems. A unifying representation
model using factor graphs will then be introduced in Section 6.3.4. After the modeling,
Section 6.3.5 will cover a couple of techniques that are used to answer the inferencing
questions. Finally, Section 6.3.6 briefly addresses the probabilistic reasoning over time,
when we are in a dynamic environment with random variables that change over time.

6.3.1 Modeling causal problems with Bayesian networks
Often, we need to infer probability that some events arise given causal relationships
among the involved random variables. Consider a somewhat simplified scenario from
the Introduction to this chapter that we describe in the example below.

Example. Late to meeting.
Sharon has to leave for ameeting where she gives a demo. She can go either by car or by
bicycle. By car, she will likely be on time unless there is huge traffic jam. It is even safer
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to arrive timely by bicycle, unless there is sudden heavy rain inwhich case shewill have
to look for a shelter on the way or at least do something about her hair before entering
the meeting. The chairman typically decides herself to wait a while until everyone is
present, but not always. Sharon’s bossmight decide to give the demo instead of her even
if she is on time, and almost for sure if Sharon is late.

A possible way to model this problem is to use the Bayesian network given in Fig-
ure 6.3 together with some reasonable prior and conditional probability tables (CPTs).
All the involved randomvariables here are discrete and,moreover, Boolean. P(C = true)
models the probability to take the car, P(J = true)models the probability of a traffic jam,
P(R = true) the probability of raining, while P(L = true) models the probability that
Sharon arrives late. Observe that random variables C, J , and R influence the value of L,
while the opposite is not true. Hence, C, J , and R are parents of L, that is, they provide
causal support for L. Similarly, L is the parent ofW and D.

Figure 6.3: Bayesian network for the late to meeting problem. Random variable C denotes choice to go by
car (if the value is true (t) or by bicycle if the value is false (f )). J denotes traffic jam, R heavy rain, L being
late for the meeting,W that chairman suggests to wait, and D that the boss decides to give the demo.

In constructing a Bayesian network for a particular problem, we need to make some
reasonable assumptions about the independence and conditional independence rela-
tionships between the different variables in the model, in order to simplify the proba-
bilistic representations of the environment. For example, in our model we assume that
traffic jam and rain are statistically independent, but we could devise a more complex
model stating that rain might impact the probability of traffic jam.

In general, a Bayesian network is a directed and acyclic probabilistic graphical
model, expressing causal, that is, parent–child relationships among the involved ran-
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dom variables. The joint probability of a Bayesian network P(X1 = x1, . . . ,Xn = xn)
denoted for brevity by P(x1 . . . xn) is

P(x1, . . . , xn) =
n
∏
i=1

P(xi| parents(Xi)) (6.1)

where parents(Xi) denotes the values of the parents of the node Xi that appear in
x1, . . . , xn. Observe that a node is conditionally independent of its nondescendants given
its parents. For example, in our network from Figure 6.3, D is conditionally independent
ofW given L, and D is also conditionally independent of J , C, and R given L.

If we wouldn’t know anything about the conditional independences among the
nodes, we could only express the full joint probability, which we can always rewrite us-
ing the chain rule: P(x1, . . . , xn) = P(xn|xn−1, . . . , x1)P(xn−1|xn−2, . . . , x1) . . . P(x2|x1)P(x1) =
∏ni=1 P(xi|xi−1, . . . , x1). We thus make use of the conditional independence assertions to
reduce the full joint probability to the expression (6.1), where we in fact reduced the set
{xi−1, . . . , x1} to parents(Xi) only.

For the Bayesian network from Figure 6.3, we have that

P(j, c, r, l,w, d) = P(j)P(c)P(r)P(l|c, j, r)P(w|l)P(d|l) (6.2)

Observe that when dealing with Boolean random variables, by convention we denote
P(J = true) = P(J = j) = P(j) and P(J = false) = P(J = ¬j) = P(¬j). Now if we are, for
example, interested in the probability that Sharon went by bicycle, and that she wasn’t
late while there was heavy traffic jam and no rain, and that chairman didn’t wait for
anyone and the boss gave the demo, we can calculate it easily as follows:

P(j, ¬c, ¬r, ¬l, ¬w, d) = P(j)P(¬c)P(¬r)P(¬l|¬c, j, ¬r)P(¬w|¬l)P(d|¬l)

= 0.05 × 0.25 × 0.75 × 0.95 × 0.85 × 0.5 = 0.0038 (6.3)

We can also make diagnostic inference, for example, the probability that Sharon went
by car if the boss gave the demo and chairman didn’t wait with opening the meeting,
while it didn’t rain and there was huge traffic jam: P(c|j, ¬r, ¬w, d). Such probabilities
can be calculated using the basic rules of probability and the given CPTs. However, for
large Bayesian networks, we will need to use some efficient inference mechanism, like
belief propagation that we address later, in Section 6.3.5.1.

We were dealing so far with the case where all the random variables were discrete
and, in particular, Boolean. Often, we have a mix of discrete and continuous random
variables, and we are then modeling the problem with a hybrid Bayesian network. Let
us modify our example as follows: Sharon goes on foot and she can take or not take
an umbrella, which is described by a Boolean random variable U . Instead of simply
considering rain or not, we now model the intensity of rain by a continuous random
variable R. Similarly, we replace the event of being late or not by a continuous random



188 � A. Pižurica

Figure 6.4: Left: A hybrid Bayesian network. Double circles denote continuous random variables. Middle: A
linear Gaussian model for the probability distribution of L given its parents; Right: A probit model (μ = 20;
σ = 3) for the probability ofW being true given the value of L.

variable, which describes how much Sharon is late. The decision to wait or not at the
beginning of the meeting naturally remains Boolean. This new situation is depicted in
Figure 6.4, where we use double circle to denote a continuous random variable. Nowwe
have to specify two new types of the probability distributions, for a
– continuous randomvariablewith amix of continuous anddiscrete parents (nodeL),

and a
– discrete random variable with continuous parents (nodeW ).

The former one is typically described by a linear Gaussian model: P(l|r, u) = 𝒩 (l; atr +
bt , σ

2
t ); P(l|r, ¬u) = 𝒩 (l; af r + bf , σ

2
f ), as in Figure 6.4. Observe that the mean value

changes linearly with the continuous parent value r and the parameters of this linear
function as well as the spread of the distribution depend on the value of the discrete
parent. The probability distribution of a discrete child given a continuous parent is in
fact a soft-threshold function: in our example, let’s say the chairman waits with high
probability if the participants are late a couple of minutes and almost never if they are
late more than 15min, with some transition in between.

This is well modeled by a probit distribution: P(w|Late = l) = Φ((μ − l)/σ) = 1 − Φ((l − μ)/σ), where
Φ(x) = ∫x−∞𝒩 (x; 0, 1)dx (see Figure 6.4, right) or alternatively by inverse logit models (using the inverse
of a sigmoid function).

6.3.2 Modeling noncausal problems with Markov random fields

The need for modeling noncausal statistical dependencies among random variables as
well as allowing for cyclic dependencies arises in many domains, perhaps most notably
in computer vision but also in sensor networks, gene expression analysis, and in gen-
eral matrix completion problems. In all these types of problems, a probabilistic graph-
ical model known as Markov random field (MRF) provides a convenient way to model
the global statistical distribution by encoding prior knowledge about local interactions
among the network nodes, which represent the random variables (see Fig. 6.5).
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Figure 6.5: A general structure of a noncausal probabilistic reasoning problem modeled by MRFs. The
involved random variables can also be continuous (we call it then a continuous MRF model).

Figure 6.6: An image labeling problem, where a class label (colored circle—hidden nodes xs) is assigned to
each pixel (black circle—observable nodes ys).

Take as an example the image labeling problem illustrated in Figure 6.6, where the
goal is to segment the input image by assigning a class label Xs = xs (such as road, cars,
buildings, trees, etc.) to each image pixel s ∈ {1, . . . , n}. A classification approach that as-
signs a class label to each pixel independently based on the local observation ys alone
is likely to fail due to noise and because pixel color and textural appearances in a small
window can be very similar for different classes. We can obtain better results by mak-
ing use of our prior knowledge about typical image scenes, for example, that we do not
expect a piece of a sky in the middle of a road.

But how are we going to use this prior knowledge to better solve our problem? One
common approach is maximum a posteriori (MAP) estimation. The MAP estimate of the
unknown labels x = [x1, . . . , xn] given the available observations y = [y1, . . . , yn] for the
corresponding nodes is

x̂MAP = argmax
x∈𝒳

PX|Y(x|y) (6.4)

where 𝒳 denotes the set of all possible realizations x. Using the Bayes’ rule, we can
rewrite the problem above in terms of the product of two factors: the likelihood and the
prior distribution. Hence, our MAP estimate becomes

x̂MAP = argmax
x∈𝒳

PX|Y(x|y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
posterior

= argmax
x∈𝒳

pY|X(y|x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
likelihood

PX(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟
prior

(6.5)
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Specifying the likelihood distribution pY|X(y|x), is where we “learn” from the ob-
served data starting typically from some parametrized model. The parameters are esti-
mated using the “Maximum likelihood estimation”method (cf. the Appendix for details)
and in practice often iteratively using the expectation-maximization algorithm (see, for
more details,“Solving the image labeling problem” part for the interested reader).

In the rest of this section, our focus is on specifying the prior PX(x). So, a priormodel
function will be shaped to encode our prior knowledge. For example, if we want to ex-
press that neighboring pixels are likely to belong to the same class we should assign
a higher probability to the cases where neighboring pixel labels are of the same type
than to the cases where isolated labels of one type appear in the middle of a differently
labeled area.

This type of a priori knowledge is being very efficiently encoded in a Markov ran-
dom field (MRF), or Markov network. It is an undirected graph model, which expresses
a (generally complicated) joint probability distribution of all the network nodes as a
composition of simple local terms, which describe the “interactions” within some local
groups of the nodes. The joint probability of the model PX(x) becomes a “computable”
function, being decomposed over the local functions with some (hyper)parameters.

In our example above, the nodes of a MRF were image pixels, thus arranged on
a grid, but this is not necessarily the case (e. g., the network nodes can correspond to
vertices of a deformable mesh or to moving body parts in tracking human motion). Re-
gardless of this underlying physical arrangement of the entities that we model with our
Markov networks, we simply denote each node by a one-dimensional index s, which
belongs to a set of all indices 𝒮 = {1, . . . , n}. Depending on the problem description,
we define some reasonable notion of a neighborhood system δ, which defines for each
node s the set of its neighbors δ(s) (i. e., those that are mutually dependant or, as we say,
nodes that “interact locally”). In imaging problems, δ(s) typically comprises four near-
est neighbors of s (the so-called first-order neighborhood) or eight nearest neighbors of
(the second-order neighborhood).

Nowwe can define a Markov random field more formally as a random field1 where
the probability of a label at node s given all other nodes reduces to the probability con-
ditioned on the neighbors of s only:

P(Xs = xs|XS\s = xS\s) = P(Xs = xs|Xδ(s) = xδ(s)) (6.6)

S \ s is the set of all nodes except s. The main strength of Markov random fields and
the reason for their popularity is the ability to elegantly express the global probability
of a given configuration of nodes in terms of their local interactions. The probability P(x)
is decomposed into contributions of simple terms that depend on relatively few nodes,

1 A random field means that any of its realizations is possible.
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which form the so-called cliques (subgroups of nodes within a local neighborhood). Con-
cretely, the probability of a MRF takes the form of a Gibbs distribution

PX(x) =
1
Z
exp (−H(x)/T) (6.7)

where the energy H(x) is the sum of the clique potentials. Z is the normalizing constant
and T a constant called temperature (by default equal to 1), which controls the peaking
of the distribution.

MRF cliques and clique potentials. Breaking down the global probability into contributions of clique
potentials is central to MRFs. Formally, a clique c is a set of nodes that are all neighbors of each other.
Figure 6.7 illustrates the cliques for the first- and the second-order neighborhood in 2D. Observe that in
the first-order neighborhood, the possible clique types are only a single node and two horizontally or
vertically adjacent nodes; in a higher-order neighborhood we have more versatile cliques. To encode a
priori knowledge about the entity, we are modeling (e. g., local spatial continuity in natural images or
certain interactions among moving body parts), we assign an appropriate potential Vc to each clique c,
which depends on the clique type and on the values of the nodes within that clique. The location of the
clique is irrelevant for the potential unless the model is inhomogeneous.

The Hammersley–Clifford theorem establishes the equivalence between (6.6) and (6.7) with H(x) =
∑c Vc(x), that is, the fact that the probability of a Markov random field is a Gibbs distribution where the
energy is a sum of the clique potentials. For details see, e. g., Li (2009).

Figure 6.7: Two common neighborhood systems and the corresponding types of cliques.

To encode a priori knowledge that neighboring pixels are likely to belong to the same
class, we shall assign a positive potential to the cliques, which contain different labels
and a negative potential to the cliques that consist of equal labels. Most often, MRFs are
formulated with only single- and pairwise cliques, having thus the energy of the form

H(x) = ∑
s
V1(xs) + ∑

⟨s,t⟩
V2(xs, xt) (6.8)

where V1 and V2 are the single-site and pair-site potentials, respectively, and ⟨s, t⟩ is a
clique composed of two nodes s and t. Evenwith larger neighborhoods, the potentials of
higher-order cliques are typically set to zero to limit the amount of parameters and the
overall complexity. In some domains, like texture analysis, better model expressiveness
with higher-order cliques justifies the increased complexity.

The celebrated Ising model has the energy as in (6.8), assumes the first-order neigh-
borhood, binary labels xs ∈ {−1, +1}, and the potentials V1(xs) = αxs and V2(xs, xt) =
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Figure 6.8: Random samples from the Ising MRF model for α = 0 and β = −2 (left); β = −0.5 (middle) and
β = 2 (right).

βxsxt . The coefficient α governs the preference to one type of the labels and β the
strength of the interactions. Figure 6.8 illustrates samples from this random field for
different values of β. Observe strong clustering of the labels of the same type when β is
large negative and their strong repulsion when β takes large positive value.

Generalization to multiple labels. With more than two possible labels xs ∈ {1 . . . L}, L ≥ 2, this model
generalizes to V1(xs) = ϕ(xs) = αxs (to enable different level of preference for each label) and the interac-
tion potential

V2(xs , xt) = ψ(xs , xt) = {
−γ if xs = xt
γ if xs ̸= xt

(6.9)

An extension where different γ ’s are defined for different orientations of the cliques results in an
anisotropic model.

Solving the image labeling problem.Wenow show how to solve concretely the image labeling problem
in Figure 6.6 with the MAP-MRF approach. Let x̂MAP be the MAP estimate of the class labels, and y the
observed image. Recall that

x̂MAP = argmax
x∈𝒳

PX|Y(x|y) = argmax
x∈𝒳

pY|X(y|x)PX(x)

The priormodel is given in (6.7) andwe illustrate now the specification of the likelihoodmodel (also called
the conditional model or the data distribution). To make the model tractable, conditional independence is
often assumed pY|X(y|x) = ∏s p(ys|xs). If the input image is affected by additive Gaussian noise, it is
reasonable to assume that the observations ys are conditionally Gaussian given xs , that is, that p(ys|xs)
is a Gaussian distribution with the mean and standard deviation that depend on the class label xs . It
means that in our model noise-free values of all image pixels from a particular class have the same ideal
value, and their noisy observations follow a Gaussian distribution with mean being that ideal noise-free
component and the standard deviation depends on the particular class. The corresponding likelihood
model is

pY|X(y|x) =
n
∏
s=1

1

√2πσ2xs
exp(−
(ys − μxs )

2

2σ2xs
)
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Howdowedetermine themeans and variances of each class? In a naive setting, if we assume thatwe have
sufficient amount of labeled data for each class, we can determine the mean and the standard deviation
for each class empirically. In a more realistic setting, we need to update the parameters in parallel to
estimating the class labels and we would use an iterative algorithm like expectation-maximization (EM).
With the likelihoodmodel given above, we can compactly express theMAP estimation problem from (6.5)
as

x̂MAP = argmin
x∈𝒳
∑
s
(
(ys − μxs )

2

2σ2xs
+ ϕ(xs)) + ∑

⟨s,t⟩
ψ(xs , xt)

This problem is typically solved using graph cuts Boykov et al. (2001) or approximate inference algorithms
that are covered in the subsequent sections.

6.3.3 Modeling noncausal problems with conditional random
fields

The image labeling problems described above, as well asmany other probabilistic infer-
ence problems can be modeled with a conditional random field (CRF) as well. Although
the CRF model was first proposed in the context of segmenting and labeling data se-
quences (see Lafferty et al. (2001)) with applications in natural language processing, it
has been widely adopted in computer vision, too, and in other domains including rec-
ommender systems.

While in the MRF-approach, we were modeling the prior distribution PX(x) explic-
itly, along with the likelihoodmodel pY|X(y|x), a CRFmodels directly the posterior distri-
bution PX|Y(x|y). Thus, we are only interested in the output structure conditioned on the
input, hence the name conditional randomfield.We assume that a randomfieldX obeys
Markov property, when conditioned on the evidence variables Y. By analogy with MRF,
the joint probability distribution of a CRF is PX|Y(x|y) = (1/Z) exp[−H(x|y)]. If we again
restrict the clique size to single and pairwise only, the corresponding energy function is

H(x|y) = ∑
s
V1(xs|y) + ∑

⟨s,t⟩
V2(xs, xt|y) (6.10)

Typically, the assumption is made that xs depends only on the value of y at the corre-
sponding location, and similarly that the pairwise potential between two labels is influ-
enced only by the two observations at the corresponding locations. With this, the unary
potential is typically denoted as V1(xs|y) = ϕ(xs, ys) and referred to as the association
potential (which measures the cost of assigning label xs to the observation ys), and the
pairwise potential as V2(xs, xt|y) = ψ(xs, xt , ys, yt), which is often called the interaction
potential (as it encodes the interactions among the labels). Thus a standard form of a
CRF is

PX|Y(x|y) =
1
Z

exp[−(∑
s
ϕ(xs, ys)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
association

+ ∑
⟨s,t⟩

ψ(xs, xt , ys, yt)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
interaction

)] (6.11)
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A common form for the interaction potential is

ψ(xs, xt , ys, yt) = γμ(xs, xt)σ(ys, yt) (6.12)

where γ is a hyperparameter determining the weight of the pairwise term with respect
to the unary term. μ(xs, xt) is a function that computes the agreement between the la-
bels xs and xt , and is often referred to as the compatibility function. σ(ys, yt) denotes
similarity between the observations ys and yt . In computer vision problems, σ(ys, yt) is
often suppressed and the interaction potential reduced to a function of two labels only
ψ(xs, xt).

We now illustrate the application of CRF modeling in two problems: recommender
systems and image inpainting. These examples enable the reader to understand better
the meaning of the association and interaction terms and how are they actually com-
puted in different practical scenarios. The case of the recommender system is illustrated
in Figure 6.9. What is especially interesting here is that the observation ys is a “user-
item” pair, and the label xs is the score assigned to that entry. Initially, only a relatively
few scores are available (the matrix is sparse) and the goal is to complete the missing
values for all user-item pairs. The case of image inpainting is illustrated in Figure 6.10.
Now the observation ys is a damaged (or completely missing) image patch and the label
xs is its estimated ideal counterpart. Interesting here is that the association and interac-
tion potentials are now computed from the differences among the pixel values in image
patches. Both examples are worked out in detail in the parts for the interested reader.

Example: Recommender systems based on CRF
Consider building a recommender system, which predicts scores that different users would give to some
items (e. g., recent movies) based on relatively few available scores. Figure 6.9 (left) illustrates this prob-
lem: the available scores are sparse entries in a given relatively largematrixM and the goal is to complete
the matrix by filling in the missing entries. This problem is known as geometric matrix completion. The
observation ys is now a particular (i, j)th pair (user, item) in the matrix and the label xs ∈ {1, . . . L} is the
scoremi,j assigned to that matrix entry Mi,j .

The initial estimates of the probabilities P(Mi,j = xs) can be obtained by assigning zeros to missing
entries and applying a bilinear decoder with learnable weights, as explained by Nguyen et al. (2001), fol-
lowed by the softmax function.a The unary potential (the cost of assigning xs to ys) can then be calculated
as ϕ(xs , ys) = − log(P(Mi,j = xs)). The agreement between labels μ(xt , xs) is typically defined such to favor
smoothness unless the labels differ significantly: μ(xs , xt) = min[(xs − xt)

2, τ],

μ(xs , xt) = min[(xs − xt)
2, τ]

where the predefined threshold τ determines the significant differences that should not be smoothed
out. Observe that in the interaction function ψ(xs , ys , ys , yt) defined in (6.12), the agreement between the
labels xs and xt is modulated by the compatibility function σ(ys , yt). This way, the differences between
the labels can be penalized less strongly if the two (user, item) pairs ys and yt are more dissimilar, and
vice versa. Practically, the compatibility function can be approximated by a separable function of users
and items: it is easier to estimate separately the similarities between pairs of users and between pairs of
items and use their product as σ(ys , yt).
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Figure 6.9: Example applications of CRFs: Matrix completion for recommender systems.

Now that the model is fully specified, the recommender system runs by maximizing the posterior
probability in (6.11) applying someof the approximate inference algorithms thatwediscuss later.We come
back to this example in Section 6.3.5.3 and show how this recommender system runs concretely with the
mean field approximation approach.

a The softmax function softmax(u) = exp(u)/∑Ll=1 exp(l) normalizes the outputs to the range [0, 1].

Example: Image inpainting based on CRF.
Figure 6.10 illustrates another problem where CRFs have been successfully employed: patch-based im-
age inpainting, where the goal is to fill in some missing (damaged) area in a digital image. Here, ys is a
damaged small image patch centered at spatial location s and xs is a replacement patch taken from some
undamaged image area, which should fit well with the image structure that can be seen in ys (if any left
undamaged) and in its surrounding. The replacement patches are placed such to partially overlap each
other (see Figure 6.10) in order to ensure spatial continuity.

Now the unary potential ϕ(xs , ys) is some distance metric (e. g., the sum of the squared differences)
between the pixel values of xs and ys in the undamaged part of ys . This way, if ys is completely damaged,
ϕ(xs , ys) is zero and does not influence the selection of xs . On the contrary, if only a small part of ys is

Figure 6.10: Example applications of CRFs: Image inpainting. The target region (shown in yellow) is the
missing part in the image to be inpainted with image patches from the source region.
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missing, ϕ(xs , ys) will enforce good agreement between the target and source patches. The interaction
function is here reduced to the agreement between the labels ψ(xs , xt), and expressed as a distance met-
ric between the pixel values of the two adjacent patches in their overlap region. This ensures that the
neighboring patches in the inpainted image mutually agree.

With this, all the components of the posterior probability in (6.11) are specified and the inpainted im-
age is obtained as the MAP estimate x = argmaxx PX|Y(x|y)with some approximate inference algorithm,
like loopy belief propagation in Section 6.3.5.1.

6.3.4 A unifying representation: factor graphs

We reviewed Bayesian networks and MRFs. The question we address now is how to
present them in a unified manner so that we can run the same inference algorithms
in both cases. Recall that the joint probability of a Bayesian network is the product of
conditional probabilities of a node given its parents: P(x) = ∏i P(xi|Parents(xi)). The
joint probability of a MRF given in (6.7) can also be expressed in a product form P(x) =
1
Z ∏c∈𝒞 ψc(x) where ψc(x) = exp (−Vc(x)/T). Thus in both cases, the joint probability
distribution is a product of factors each ofwhich is composed of a subset of the variables
in a given model:

P(x) = 1
Z
∏
s
fs(x) (6.13)

Take as an example our Bayesian network from Figure 6.3. Its joint probability was
given in (6.2) and a natural way to convert it to a factor graph is to assign a factor to each
multiplier:

P(j, c, r, l,w, d) = P(j)⏟⏟⏟⏟⏟⏟⏟
fJ

P(c)⏟⏟⏟⏟⏟⏟⏟
fC

P(r)⏟⏟⏟⏟⏟⏟⏟
fR

P(l|j, c, r)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fL

P(w|l)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fW

P(d|l)⏟⏟⏟⏟⏟⏟⏟⏟⏟
fD

(6.14)

Such a factorization can be visualized using a factor graph representation as in Fig-
ure 6.11, where variable nodes are denoted by circles and factor nodes by squares. In
general, a factor graph is a bipartite graph that expresseswhich variables are arguments
of which local functions. For more details see, e. g., Kschischang et al. (2001). Note that in
a bipartite graph the links exist only between two different types of nodes (and thus not
between variable nodes and not between the factor nodes). Conventionally, a bipartite
graph is drawn with two layers of nodes of different types as in the left of Figure 6.11,
but another layout of the same factor graph, like the example in the right of Figure 6.11,
can be more suitable for visualizing the connectivity and inference by message passing
that we address in the next section.

Furthermore, observe that a factor graph representation is not unique. By this, we
don’t mean only visual arrangement of the same factorization as we did with two lay-
outs in Figure 6.11, but specifying the factors themselves. There are many alternatives
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Figure 6.11: A factor graph representation, with the same factors and two equivalent layouts, for the
Bayesian network Late to Meeting from Figure 6.3.

Figure 6.12: Converting a pairwise MRF with observable nodes to a factor graph.

to the choice wemade in constructing the factor graph from our example above. For ex-
ample, we could present the joint probability in (6.14) as a product of two factors only,
f1 and f2, where f1(j, c, r, l) = P(j)P(c)P(r)P(l|j, c, r) and f2(d, l,w) = P(d|l)P(w|l). In that
case, our factor graph representation would consist of the same six variable nodes as
in Figure 6.11, but only two factor nodes: f1 connected to the nodes J , C, R, and L, and f2
connected to L, D, andW .

Figure 6.12 illustrates anMRFmodel with pairwise cliques and its factor graph. Note
that the observable nodes (denoted by black circles) are replaced by equivalent factor
graph functions of a single variable. The factor graph functions are here either pair-
wise functions ψ(xs, xt) if they link two hidden nodes, or unary (single-node) functions
ϕ(xs, ys) if they are attached to a single hidden node. Thus we represent the joint prob-
ability of the scene x and the observations y as

PX,Y(x, y) =
1
Z
∏
s
ϕ(xs, ys) ∏

⟨s,t⟩
ψ(xs, xt) (6.15)

If we are interested only in the conditional distribution of the labels given the observa-
tions (CRF formulation), we express in the same form as above the posterior distribution
PX|Y(x|y), where ϕ and ψ are now − log(.) of those from (6.11). Observe how we model
this way the image labeling problem illustrated in Figure 6.6, where xs were the class
labels and ys the pixel intensities.
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6.3.5 Approximate inference algorithms

The exact inference in probabilistic graphical models is often not feasible or even not
possible (e. g., the partition function of aMRFmodel is inmost cases an intractable func-
tion of the parameters). Hence, we need to resort to approximate inference. This is espe-
cially the case in models with cyclic dependencies (loops), hence always with MRFs and
CRFs, but also with Bayesian networks in dynamic scenarios. We describe here three
representative types of approximate inference algorithms. We start from belief propa-
gation, which provides the exact inference in networks without loops and approximate
inference in general graphical models. Then we turn to random sampling methods and
variational inference,which impose numerical (samplingmethods) and analytical (vari-
ational methods) approximations of the posterior probability distributions.

6.3.5.1 Belief propagation

Belief propagation is a powerful approach to solve complex inference problems by pass-
ing relatively simple “messages” between neighboring nodes of a probabilistic graphical
model. This can be seen as a kind of distributed processing, where relatively simple local
communications among the neighboring nodes work together to solve a desired query,
which can relate to any node in the whole network or even to the joint probability of
any particular values of the nodes.

Although the original belief propagation algorithm of Pearl (1988) has been derived
as the exact inference algorithm for networks without loops, it is often applied as an ap-
proximate inference method in general graphical models which can contain loops (like
MRFs). Running belief propagation algorithm on loopy graphs is known as loopy belief
propagation (LBP). The algorithm became especially popular after it has been shown
that turbo codes are an instance of LBP.

The message passing procedure is simple and is illustrated in Figure 6.13: a node
sends a message to a neighboring node after it has received the messages from all its
other neighbors. The message ms,t(x) from s to t has the meaning: “I, node s think that

Figure 6.13: An illustration of loopy belief propagation. Left: a message from one node to another depends
on the messages that the sending node received from its other neighbors. Right: each node multiplies the
incoming messages from all the neighbors to calculate its belief.
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you, node t, are thatmuch likely to be in the state x.” Thismessage is based on the accumu-
lated messages that the sending node has already received from all its other neighbors
and also on its unary potential (how confident it is about its own state) and its compati-
bility with the receiving node.

Sum-product algorithm. Suppose the query is: How probable is it that node n has
value xn? Referring to our earlier examples, this can mean: “How probable is it that
Sharon is late for the meeting given all we know?” or “What is the probability that the
pixel (i, j) belongs to the class ‘road’?” The task here is to infer themarginal probability
of a node. The messages are then of the form:

ms→t(xt) = ∑
xs
(ϕ(xs)ψ(xs, xt) ∏

r∈δ(s)\t
mr→s(xs)) (6.16)

where ϕ(xs) is the unary potential of the sending node (the fixed evidence variable ys
is omitted from ϕ(xs, ys) for compactness), and ψ(xs, xt) is the compatibility between xs
and xt . The node’s belief that it is in a given state is then calculated as the product of its
unary potential and all the messages that are incoming into it:

P(xs) = ϕ(xs) ∏
r∈δ(s)

mr→s(xs) (6.17)

The messages are initialized to 1 (or in loopy BP sometimes to a random numbers uni-
formly distributed on [0, 1]). Because the computation of messages in (6.16) involves
summation over the products of other messages, this algorithm is known as the sum-
product algorithm. Another variant of belief propagation (max-product) is briefly ex-
plained at the end of this subsection.

We can also express belief propagation in a factor graph representation, where we
have two types of messages: those sent from the factor nodes to the variable nodes and
themessages from the variable nodes to the factors. One variable node is selected as the
root and the inference proceeds in two stages: messages flowing from the leaves toward
the root and then in the opposite direction. This process is illustrated with an example
in Figure 6.14. The exact expressions and the detailed analysis of the selected example
is in the part for the interested reader.

Sum-product in a factor graph representation. In a factor graph representation, we have two types of
messages: mXs→fi (xs) from a variable node Xs to a factor node fi and mfi→Xs (xs) from a factor node fi to
variable node Xs . Let 𝒳i be the set of variable nodes that are connected to fi . The messages are then of
the form:

mfi→Xs (xs) = ∑
𝒳i\xs

fi(𝒳i) ∏
r∈δ(i)\s

mXr→fi (xr)

mXs→fi (xs) = ∏
k∈δ(s)\i

mfk→Xs (xs)
(6.18)
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Figure 6.14: Belief propagation algorithm in action shown for the factor graph from Figure 6.11, which
corresponds to the Bayesian network from Figure 6.3. The messages are shown in each step, first starting
from the leaf nodes towards the root (on the left) and then from the root toward the leafs (on the right).

and the marginal probability of a node is

P(xs) = ∏
i∈δ(s)

mfi→Xs (xs) (6.19)

Observe that different potentials that appeared above in the equations for standard belief propaga-
tion in (6.16) and (6.17) are now simply “absorbed” into the factors fi and the probability of a node is the
product of the messages incoming into it from all the neighboring factor nodes.

Example of BP in a factor graph representation. Figure 6.14 illustrates themessage passing process on
the factor graph that was constructed previously for our Bayesian network late to meeting. The algorithm
is initiated by choosing the root node (this can be any variable node; here we chose J). The messages flow
first from the leaves toward the root. If the leaf is a variable node, its message is initialized to 1 and if it is
a factor node, this initial message is the corresponding factor itself.

In our example, in step 1 , five messages are simultaneously sent from the five leafs: two from
the variable nodes W and D, both being 1, and three from the three-leaf factor nodes: fJ , fC , and fR , each
being equal to the corresponding factor, for example, mfJ→J(j) = fJ(j) = P(j). Each node waits until it
receives messages from all its neighbors except one. At that time, it can compute the message toward
the remaining neighbor (which can be regarded as its “parent” for this pass). For example, in Step 2 ,
node L receives messages from fW and fD, and at the same time fL receives messages from C and R. In
Step 3 , L sends its message to fL, which is mL→fL (l) = mfW→L(l)mfD→L(l). At that time, fL can compute

its message to J and send it in Step 4 : μfL→J(j) = ∑c ∑r ∑l fL(c, r, l, j)mC→fL (c)mR→fL (r)mL→fL (l).
The computed messages are saved at each node. After all the messages reach the root, message

passing continues toward the leaves, until all the nodes have received the messages on all their edges.
The belief (marginal posterior probability) at each node is then simply computed using (6.19).

Max-product algorithm. A variant of belief propagation that computes the maximal
joint probability in a given probabilistic graphical model is known as the max-product
algorithm because the summation operator in the expressions for messages, both for
standard BP (6.16) and the version on factor graphs (6.18) is replaced by the maximiza-
tion. To understand this, recall that the marginal probability is P(x) = ∑𝒳 \x P(x), and
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clearly we need to replace the summation with a maximization operator if we want
to determine the maximum joint probability maxx∈𝒳 P(x). Since the product of many
small numbers can becomeunstable, the logarithm is often applied in this case, resulting
in an equivalent algorithm calledmax-sum.2 The max-product (or max-sum) algorithm
with backtracking allows us to find the most likely configuration of the node values and
is known as the Viterbi algorithm. For more details see, e. g., Bishop (2006).

6.3.5.2 Markov chain Monte Carlo samplers: Metropolis algorithm

Random-search inference algorithms are attractive because they are robust and uni-
versally applicable to any type of probabilistic graphical models. Markov chain Monte
Carlo (MCMC) samplers construct a chain of sample configurations x(1), x(2) . . . leading
to a desired equilibrium (e. g., converging to the MAP estimate x̂MAP). The term Monte
Carlo refers to repeated random sampling and the name Markov chain tells us that the
probability of a next configuration x(i+1) depends only on the current one x(i) and not
on earlier configurations, when the current one is known.

In a nutshell, MCMC samplers start from some initial configuration of the network
nodes and apply random perturbations of one or a couple of labels at a time. The ob-
tained “candidate” configuration is accepted or rejected based on the change in the pos-
terior probability. Essentially, as Figure 6.15 illustrates it, we occasionally need to accept
“bad moves” (i. e., decrease in posterior probability) in order to reach the global opti-
mum. This is the main underlying idea of the Metropolis–Hastings algorithm. The ini-
tial configuration can be completely random but the algorithm will typically converge
faster if the initial estimate is already good (e. g., obtained by a maximum likelihood
approach).

Figure 6.15: Inference by random search. Left: a random perturbation creates a candidate for the next
configuration. Right: the candidate is accepted or not based on the change in the posterior probability. To
reach the top, we need to accept occasionally a decrease in the posterior probability.

2 The product is replaced by a sum because the logarithm of a product is the sum of the logarithms of
the factors.
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The key question is how to decide whether or not to accept a new “candidate” con-
figuration xC , obtained by randomly changing one or few labels of the current x. We
need to evaluate the change in the posterior probability, or equivalently the change
in the posterior energy, which is, remember, inversely proportional to the probability:
P(x|y) ∝ exp[−H(x|y)/T], with T > 0. For compactness, let ΔH = H(xC |y) − H(x|y)
denote this change in the energy. Clearly, if ΔH ≤ 0, the change is favorable (the candi-
date has lower energy, i. e., larger probability), and thus we always accept it. If ΔH > 0,
the change is unfavorable, but we still need to accept it with some probability p in or-
der to escape from the local optima. Practically, a random number is generated with a
uniform distribution on [0, 1) and xC is accepted if exp(−ΔH/T) exceeds this random
number.3 When all the network nodes have been visited and their labels updated, one
iteration is completed.

Let us apply this algorithm to solve the image classification problem using MRF
prior, that was illustrated Figure 6.6. We assume that all the classes are a priori equally
probable (the unary potential is zero for all the labels), the interaction potential is given
by (6.9), and T = 1; hence, the prior probability is P(x) = (1/Z) exp [−∑⟨s,t⟩ ψ(xs, xt)]. We
need to evaluate exp(−ΔH), which is the ratio of the posterior probabilities of xC and
x. Suppose that we always perturb only one label at a time, which is indeed the most
common way of running these algorithms. In this case, xC and x differ only in one label
xs. Assuming conditional independence as before p(y|x) = ∏s p(ys|xs), we have that

P(xC |y)
P(x|y)

=
p(y|xC)
p(y|x)

P(xC)
P(x)
=
p(ys|x

C
s )

p(ys|xs)
exp(− ∑

t∈δ(s)
(ψ(xCs , xt) − ψ(xs, xt))) (6.20)

Observe that the ratio of the prior probabilities reduces to evaluating the differences in
the affected cliques only (which is the beauty and the power of MRF models) and this
boils down to the differences in the local neighborhood δ(s) of the node s whose label
has been changed. We work out this example further in detail for the case of binary
classification (see parts for the interested reader).

Binary classification using the Ising model and MCMC sampler. For binary classification of image
pixels, it is convenient to use the Ising MRF model, with labels xs ∈ {−1, +1}, where xCs = −xs , and
ψ(xs , xt) = βxsxt , with β < 0 (to express a priori preference for spatial continuity of the two classes in
the image, see Figure 6.8). Assuming again no prior preference for any label type (α = 0), the expression
above becomes concretely

P(xC |y)
P(x|y)
=
p(ys|x

C
s )

p(ys|xs)
exp(2βxCs ∑

t∈δ(s)
xt)

3 We can put this algorithm into an outer framework of simulated annealing by gradually reducing
the temperature T , and allowing this way in the beginning larger bad moves and later on smaller and
smaller ones.
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To make it even more practical, note that it is sufficient to recompute for each visited spatial position s
only∑t∈δ(s) xt and plug it into

r =
p(ys|+1)
p(ys|−1)

exp(2β ∑
t∈δ(s)

xt)

We then compare r (when switching from −1 to +1) or 1/r (when switching from +1 to −1) to a random
number from (0, 1] to decide whether or not to accept that change. This method does not guarantee the
global minimum solution, but a low energy configuration is found with a large probability. After a suffi-
cient number of iterations, the sequence of configurations will converge to theMAP solution x̂MAP defined
in (6.5). In general, a sufficient number of generated sample configurations to reach the equilibrium is
50 times the size of the image. In our experience, in binary image labeling problems as few as 10 itera-
tions usually suffice if the initial estimate is good.Gibbs sampler is a special type of Metropolis–Hastings
algorithm, where samples are drawn from the conditional probability distribution and the acceptance
probability is one.

6.3.5.3 Mean field approximation

A class of inference algorithms known as variational Bayes is an alternative to MCMC
samplers for solving complex inference problems. While MCMC techniques provide a
numerical approximation of the exact posterior probability distribution using a set of
samples, variational Bayes’ methods impose an analytical approximation of the poste-
rior probability distribution and deliver the exact solution under this analytical model.
The posterior distribution P(x|y) is approximated by a variational distribution Q(x),
which is simpler than the true distribution and fully factorized:

Q(x) = Q(x1, . . . , xn) =
n
∏
s=1

Q(xs) (6.21)

Here, Q(xs) stands for the approximating probability Q(Xs = xs) that Xs takes the value
xs, which is one of the possible labels l ∈ {1 . . . L}. For brevity, let us denoteQ(Xs = l) = q

l
s.

The approximating distribution Q is found by minimizing some dissimilarity met-
ric with respect to the true distribution P, typically the Kullback–Leibler divergence4

DKL(Q‖P). This yields the approximating probabilities qls for all nodes s ∈ {1 . . . n} and
all their possible labels l ∈ {1 . . . L} through an iterative procedure called the mean-field
update equation. For details, see Koller and Friedman (2009). For the CRF model, with
the posterior probability in (6.11), this mean-field update equation is

qls =
1
Zs

exp{−(ϕ(l, ys) + ∑
t∈𝒩s

L
∑
k=1

qkt ψ(l, k, ys, yt))} (6.22)

4 TheKullback–Leibler divergence betweenQ(x) and P(x|y) is defined asDKL(Q‖P) = ∑x Q(x) log
Q(x)
P(x|y) .
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𝒩s is the neighborhood of the node s and Zs is a normalization factor such that the
resulting Q is a valid probability distribution, that is, that the probabilities of all labels
sum up to 1 for each node s. The mean field algorithm repeats this update for all the
nodes s ∈ {1 . . . n}, and all labels l ∈ {1 . . . L} until a certain stopping criterion is reached,
typically until the changes in all qls become smaller than a given tolerance value. The
MAP solution x̂MAP defined in (6.5) is then simply found by assigning to each node s the
label l ∈ {1 . . . L} that gives the maximum qls.

How do we apply this approach concretely to some of our earlier examples? Eas-
ily! We just need to specify the corresponding ϕ and ψ for a particular application and
plug them into the update equation above. In the example with recommender systems,
we would write ψ(l, k, ys, yt) = γσ(ys, yt)μ(l, k), where σ(ys, yt)models the similarity be-
tween different (user, item) pairs (e. g., with some convenient separable function over
users and items) and μ(l, k) = min[(l − k)2, τ] models the compatibility between labels
l and k. In the inpainting example, ψ(l, k, ys, yt) was reduced to ψ(l, k) only, and both
ϕ and ψ functions were sums of squared differences between the pixel values that are
shared by the two image patches (the damaged and the replacement one for ϕ and the
two overlapping replacement patches in the case of ψ).

6.3.6 Probabilistic reasoning over time

So far, we addressed static scenarioswhere the values of randomvariables remain fixed,
at least while the agent is deliberating. In real life, most of the timewe dealwith dynamic
scenarios: the world is changing, we need to track these changes and to predict the next
states (values, positions, etc.) of various entities of interest. Think of trafficmonitoring or
robot motion, but also management of physiological processes or online social network
analysis, etc., the examples are endless.

Inmany of these scenarios, we are dealingwith temporal sequences, where the time
is discrete with some step size, which depending on the dynamics of the problem can be
a fraction of a second but also of the order of hours, days, or even years. We denote by
X1:t = X1,X2, . . .Xt a sequence of random state variables in t consecutive time instants,
and by E1:t = E1, E2, . . . Et the sequence of evidence variables in the corresponding time
instants. By our convention, x1:t and e1:t are the sequences of their respective values.
P(Et|Xt) is the sensor model (also called the observation model), and P(Xt|Xt−1) is the
transition model.

Tomake the inference tractable,we need to assume that each state variable depends
only on a limited number of the previous ones, which is also well justified in practice.
This is the Markov assumption. For the first-order Markov process, P(xt | x1:t−1) =
P(xt | xt−1). Moreover, we assume that this process is homogeneous, that is, P(xt | xt−1)
is the same for all t. Also, in practice we typically assume that the evidence variable at
each time instant depends only on the state variable in that particular time instant (and
not on the previous state variables and previous observations), that is, P(et | x1:t , e1:t−1) =
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P(et | xt). This is called the sensor Markov assumption. Under these settings, we can
solve efficiently various queries regarding state variables in time.

Example. Office mates.
Your office mate, Sam, is a software engineer and is today mainly coding but from time
to time he is also chatting with his friends online. Your desks are arranged so that you
are facing each other, with computer screens back-to-back. You are not particularly in-
spired to work right after the lunch break today and you amuse yourself by trying to
guess whether your colleague is programming or chatting by taking a glance at his facial
expression from time to time, say every 5min. You know thatwhen Sam is programming
he is mostly frowning (70% of the time), but sometimes also smiling (30% of the time),
typically because he fixes a bug.While chatting, he is almost always smiling (with proba-
bility 0.8) and rarely frowning (with probability 0.2). If he is currently programming, the
chance that he will keep coding in the next 5min is about 0.9, and in other 10% cases he
will turn to chatting. Once chatting, he tends to continue with it in the next 5min with a
probability of 0.6 and return to programming with probability 0.4. You assume that the
probability that Sam starts coding immediately after the noon break is 0.7.

In the example above, the time is divided in intervals of 5min. The state variable Xt
is Sam’s activity in the interval t, and it can take two values: programming (Xt = p) or
chatting (Xt = c), so xt ∈ {p, c}. The evidence variable is facial expression, also with two
possible values: smiling (Et = s) or frowning (Et = f ), so et ∈ {s, f }. We also know that
the transition model is P(Xt = p|Xt−1 = p) = 0.9 (and thus P(Xt = c|Xt−1 = p) = 0.1), and
P(Xt = p|Xt−1 = c) = 0.4 (and thus P(Xt = c|Xt−1 = c) = 0.6). This situation is depicted
in Figure 6.16, and we will use it to illustrate the mechanisms of probabilistic reasoning
over time, making use of a sequence of observations e1:t . For example, if we observed
that Sam was frowning in the first two time instants and then smiling and frowning
again, we have e1:4 = (f , f , s, f ).

Figure 6.16: An illustration of the Office mates example, with the temporal probability model, and the corre-
sponding transition model and the sensor model in the respective tables.
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Temporal reasoning problems. Inference problems in reasoning over time are by Rus-
sel and Norvig (2021) categorized into four main types: filtering, smoothing, prediction,
and most likely explanation. We can summarize them and illustrate with the example
above as follows:
– Filtering – Determine the posterior probability distribution of the current state

variables given all evidence received so far: P(xt|e1:t). In our example: Is Sam chat-
ting now given all his facial expressions until now? This is the belief state (agent’s
belief about the current state), which serves as input to the decision process (which
action should be taken now).

– Prediction – The posterior probability of a future state given all evidence received
so far: P(xt+k |e1:t). For example:Will Sam be chatting in the time instant 10 minutes
from now given all his facial expressions so far? We need prediction for evaluating
the course of possible actions.

– Smoothing – The posterior probability of a past state given all evidence received
so far: P(xk |e1:t) for 0 ≤ k < t. For example:Was Sam chatting 5 minutes ago given
all his facial expressions so far? This allows better estimation of past states, thus
essential for learning.

– Most likely explanation – Find themost likely sequence of state variables given the
sequence of observations: argmaxx1:t P(x1:t|e1:t). For example: Determine the most
likely sequence of Sam’s activities during four consecutive time intervals given the
sequence of his facial expressions e1:4 = (f , f , s, f ).

The filtering, prediction, and smoothing problems are solved with recursive computa-
tions, with message passing similar to the belief propagation that we covered earlier on
in this section. The most likely explanation is being solved with the Viterbi algorithm (a
variant of max-sum belief propagation with backtracking). All these inference mecha-
nisms are compactly described in Russel and Norvig (2021) with nice illustrative exam-
ples.

Hidden Markov models. A widely used temporal probability model is hidden Markov
model (HMM), in which the state is described by a single discrete random variable. The
example illustrated in Figure 6.16 is an HMM because it has only one state variable be-
ing Sam’s activity Xt , which can be either programming (xt = p) or chatting (xt = c).
HMM can also be employed in cases where we have multiple state variables if they are
combined into a single composite variable (‘megavariable) whose values are tuples of
values of the individual variables. Suppose, for example, that we have another state
variable, which is the volume ofmessages that Sam receives fromhis friends in the chat,
with three possible values {none,moderate, high}. Then the state variable of anHMM for
this problem takes values that are tuples like (p, none), (p,moderate), . . ., (c, high). HMM
models are often visualized with a state transition diagram, like the one in Figure 6.17.

HMMs are also characterized by a compact description of the transition model, in
matrix form. If the state variableXt hasN values, the transitionmodel is aN×NmatrixT,
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Figure 6.17: A state transition diagram for the HMMmodel of the Office mates example.

with entries Ti,j = P(Xt = j|Xt−1 = i). In the officemates example from 6.16, this transition
model is

T = P(Xt|Xt−1) = (
0.9 0.1
0.4 0.6

)

The sensor model is represented by a diagonal matrix Ot , with diagonal elements
P(et|Xt = i). In the example from Figure 6.16, with the sequence of observations
e1:4 = (f , f , s, f ), we have

O1 = O2 = (
0.7 0
0 0.2
) , O3 = (

0.3 0
0 0.8
) , O4 = (

0.7 0
0 0.2
)

because et = f for t = 1, 2, 4, and et = s for t = 3. This matrix form allows a compact
representation of the inference procedure. For example, for the filtering problem, if we
denote by f1:t = P(Xt|e1:t) the vector whose elements are the probabilities P(xt|e1:t) for all
possible values xt , then the filtering problem is easily solved by recursive computation:
f1:t+1 = αOt+1T

⊤f1:t , where α > 0 is a normalizing constant. Other inference tasks of
temporal reasoning described above are with HMMs represented with similar compact
formulations.

Kalman filtering. So far, we considered reasoning over time in the case of discrete-time
processes. In some cases, like object tracking, control, guidance, and navigation of mov-
ing objects, we are rather dealing with continuous space variables and continuous time
variables. Kalman filtering is widely used in these applications due to its mathemati-
cal elegance, which leads to relatively simple recursive computations and clear perfor-
mance guarantees in cases where the assumptions of the model are met or hold up to
some reasonable approximation. The assumptions that underline Kalman filtering are



208 � A. Pižurica

the linearity of state dynamics and observation process, as well as the normal distribu-
tion of noise in state dynamics and inmeasurements. Thus the priormodel is a Gaussian
distribution, and the transitionmodel and the sensormodel are linear Gaussianmodels.
Under these models, the state prediction also follows a multivariate Gaussian distribu-
tion, and in a nutshell, its recursive estimation boils down to updating the covariance
matrix and the mean.

The classical applications of Kalman filtering are in point target tracking (like radar
tracking of aircrafts andmissiles) but it is also used in tracking vehicles and—depending
on the scale—people tracking, and in various other domains, which involve continu-
ous state variables and noisy measurements (e. g., in signal processing and economet-
rics). The assumptions made (linear Gaussian transition and sensor model) are often
too strong in practice and variants such as the extended Kalman filter and the switching
Kalman filter exist to alleviate these limitations and to extend the application to some
nonlinear systems.

Dynamic Bayesian networks. Themodels known as dynamic Bayesian networks (DBN)
are an extension of classical Bayesian networks thatwe covered in the previous sections,
to include random variables that are changing over the time. These modes can also be
seen as generalization of both HMM and Kalman filtering. Each HMM is also a DBN,
but the opposite does not hold: DBNs make use of conditional independence assertions
(inherited from the classical Bayesian networks) and allow problem description with
fewer parameters than HMM. Also, each Kalman filter can be represented as DBN but
the opposite does not hold since DBNs allow more general transition and sensor mod-
els, beyond the linear Gaussian. Naively, the inference in a DBN could be realized by
unrolling this model to its time slices and applying some of the inference methods for
classical Bayesian networks. However, the complexity of such an inference approach
would be prohibitive in most cases of practical interest. Thus, while DBN is a very flex-
ible model, which allows us to represent efficiently very complex temporal processes
with many sparsely connected random variables, the exact inference in such a setting
is very difficult and often not feasible. Typically, approximate inference methods are
being applied, among which particle filtering is a widely used approach relying on well-
established methodology.

Particle filtering. A family of algorithms called particle filtering are sequential Monte
Carlomethods with importance sampling. The key idea is that each probability distribu-
tion can be represented by a set of samples (particles) and that representative particles
for the posterior distribution can be recursively formed from the initial samples taken
from the prior distribution, by appropriate weighting of the samples and by resampling
the sample population. In each iteration, the particles are propagated from the previous
iteration based on the transition model P(xt+1|xt) and weighted by the likelihood they
would assign to the new evidence P(et+1|xt+1). The particle population is resampled such
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that each sample is selected with a probability proportional to its weight. The new sam-
ple population is a refined approximation of the posterior probability and the process
continues recursively. Numerous implementations and toolboxes for particle filtering
are freely available online (in Matlab, OpenCV, Python,etc.) and typically easy to plug-in
and use.

6.4 What are the limitations of probabilistic
reasoning?

Let us reflect first on when dowe need probabilistic reasoning in AI. Many complex rea-
soning andplanningproblems are being solvedwith (purely) logical approaches, search-
ing and game playing strategies, and logic-based hierarchical planning. We need prob-
abilistic reasoning when we are faced with uncertainties, arising from various sources
such as nondeterministic aspects of the environment, uncertain outcomes of the actions,
partial observability, incomplete domain knowledge, inability to run all the relevant
tests, etc. Probabilistic reasoning is often the only viable or at least the most solid ap-
proach to tackle such problems. But it also faces limitations, at different levels.

We candistinguishbetween subjective andobjective limitations of probabilistic rea-
soning. By subjective limitations, we mean common errors that people make in proba-
bilistic reasoning, which are then translated to wrong selection and use of the models,
wrong specification of the involved data distributions, and wrong interpretation of the
involved probabilities and inference results. The examples of these errors are plenti-
ful, and below we highlight some common causes. By objective limitations, we mean
those that arise from the necessity to make various simplifications in our models and
inference strategies to enable feasible solutions and the necessity to rely on the avail-
able statistical data and/or to estimate the parameters of the assumed models from the
available data. This also means that probabilistic reasoning in AI inherits many of the
general limitations of machine learning as well.

Subjective limitations of probabilistic reasoning are connected to difficulties in
building and applying the right probabilistic approach in practice due to misconcep-
tions and incompatibilities between how we refer to uncertainties in common life
and how they need to be translated to formal models. To start with, the designers of
a probabilistic reasoning model often need to translate highly ambiguous everyday
expressions of probability such as “small chance,” “doubtful,” “highly likely,” etc., into
numeric values. Various common difficulties with probabilistic reasoning are known
to have psychological origins, such as the gambler’s fallacy (the incorrect belief that
successive independent events causally influence the outcome of later events, e. g., be-
lieving that an event that occurred more frequently in the past is less likely to happen
in the future and vice versa) or our tendency to characterize events that are special in
some way (e. g., “royal flesh” in poker or a particular alignment of stellar object) as “low
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probability” events. Similarly, our judgement of the probability of occurrence of some
events is often highly affected by their saliency. Common errors include also mixing up
the retrospective and predictive probabilities in the problem description that is given to
a system. Take the following example fromEddy (2013), which shows how statistical data
from one study propagate wrongly to the next one: The original study reports: “87.5%
of the ‘X-ray carcinoma’ (or “positive”) group had biopsy-proven malignant lesions,
thus P(ca|pos) = 87.5%, and P(benign|neg) = 84%.” A subsequent medical study builds
on this but translates it wrongly to “A correct mammographic diagnosis was made in
84% of those with benign lesions and in 87.5% of those with carcinoma,” while in fact,
the true-positive rate P(pos|ca) in this study was only 66% and the true-negative rate
P(neg|benign) = 54%. These and similar types of misconceptions may affect in prac-
tice the specification of the data distribution models, and in extreme cases invalidate a
probabilistic approach that needs to rely on them.

Objective limitations of probabilistic reasoning are those that we cannot avoid by
just careful and correct implementation of the underlying theory and algorithms. Of-
ten, we need to abstract awaymany aspects of the real world and to construct simplified
models and simplified inference engines to arrive at a solution in feasible time or to sup-
port decision making in real time. In some instances, these simplifications will be more
severe than in others and potentially affecting more the accuracy and the range of the
validity of the obtained results. It is therefore always important to know under which
assumptions a given model has been derived and what performance guarantees does it
offer. Sometimes we need to make a trade-off between the accuracy of the model that
we impose and the achievable accuracy of the inference procedure under such amodel.
For example, MCMC samplers that we treated that we treated in Section 6.3.5.2 yield an
approximate solution (although approaching the exact one with high probability) un-
der the exact probability distribution. In contrast to this, the variational inference ap-
proaches Section 6.3.5.3 yield the exact solution under an approximate simplified model
for the probability distribution. The belief propagation methods, strictly speaking, yield
the exact solution only for tree-structured probabilistic graphical models, and hence
not for many others that have loops. But, practice teaches us that loopy belief propaga-
tion works typically very well in general networks with loops, which was also proven
by the huge success of Turbo codes. When dealing with reasoning over time, dynamic
Bayesian networks with particle filtering proved as a robust approach inmany practical
situations. One of the important challenges in practice is how to learn the structure and
the parameters of a probabilistic graphical model from the available data. This is where
various data-driven strategies work hand in hand, merging often probabilistic reason-
ing and deep learning as it is now the case with emerging Bayesian neural networks and
Bayesian graph neural networks.
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6.5 Industry examples

6.5.1 Hunting for anomalous sessions using Markov chain model
in Microsoft Sentinel
Karishma Dixit, Aleksandra Pižurica, Emmanuel Gillain

6.5.1.1 Business context

Large organizations store vast amounts of logs generated from the various IT products
and services they use. Those logs are typically used for audit and security purposes and
can be leveraged to spot anomalous activities, assuming here that malicious activity
will be defined as anomalous when compared to legit activity. Many audit logs contain
multiple entries that can be thought of as a sequence of related activities, or a session:
a timebound sequence of activities linked to the same user or entity. A session will then
be considered “anomalous” when sequences, of events or activities, aren’t seen in other
typical user sessions.

A lot of existing security detections tend to be rule-based with the aim of detect-
ing specific known attacks such as password spray (password spraying is an attack that
will usually feed a large number of usernames into a program that loops through those
usernames and tries a number of passwords; it’s a brute force attack). However, cyberse-
curity attacks on businesses are constantly evolving, making it hard to detect new types
of attacks. As a consequence, more adaptive approaches should be adopted. AMarkov
chain model can bring such flexibility to adapt and surface possible activity from an
adversary, whose behavior differs from that of a normal user. Microsoft Sentinel, a
security information and event management service in the cloud, provides such a mod-
eling approach to help customers explore and detect potential malicious activities. This
modeling approach is provided via a Jupyter Notebook,5 which can be configured to run
on a schedule. Once the probability of an anomalous activity passes some threshold, it
can be configured so a security incident is automatically generated and sent to security
analysts or other systems to take further action. See Figure 6.18 to understand what the
Microsoft Sentinel Jupyter Notebooks UI looks like. See Figure 6.19 to see an example in-
cident that has been raised by a scheduled Jupyter notebook run in Microsoft Sentinel.

To illustrate howMarkov chainmodels are applied to help customers detect anoma-
lous sessions, let’s assume a fictional company “Contoso” stores audit logs for their Mi-
crosoft Office3656 exchange usage and their Azure Active Directory7 sign-ins.

5 A Jupyter Notebook is a human-readable document, which can contain both executable python code
as well as descriptions, figures, tables, etc.
6 Cloud based subscription services offered by Microsoft, including the Office desktop applications and
hosted mail (exchange) and collaboration services.
7 Cloud based identity and access management service offered by Microsoft.
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Figure 6.18: Screenshot of Microsoft Sentinel Jupyter Notebooks UI.

Figure 6.19: Screenshot of Microsoft Sentinel Incidents UI displaying an incident raised by a scheduled
Jupyter Notebook run.

6.5.1.2 Overall approach

In a context where labeled data for security breaches is difficult to obtain and rapidly
outdated, we have to deal with a shortage of labeled attack data. In such situations, it
tends to be better to use unsupervised learning techniques, since they have the flexibil-
ity to discover new types of attacks. The proposedMarkov chain model is sufficiently
general, so that it can be used to model any type of sequence or session data.

Raw audit or security logs data are first organized into “sessions,” a time-ordered
sequence of events typically associated to a user account, possibly with other at-
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tributes. The likelihoods of such sessions are then calculated by applying the Markov
assumption, as illustrated below for a sequence of events such as A,B, C.

P(session) = P(A,B, C)
= P(C|A,B)P(A,B)
= P(C|A,B)P(B|A)P(A)
= P(C|B)P(B|A)P(A) (by applying the Markov assumption)

(6.23)

We can then calculate themaximum likelihood estimates for the transition probabili-
ties (e. g., probability of transitioning from event A to event B). Once we have calculated
estimates for all the transition probabilities in a given session, we can multiply them to-
gether to end up with a likelihood score for the given session. The lower the likelihood
score, the more unusual the activity in the session, therefore, the more likely we would
consider the session to be anomalous.

From logs to events, from events to transition of events and sessions
Let’s go deeper by illustrating the concepts with some example sessions, using the fic-
tional company Contoso’s Office365 audit logs. In this case, the events are commands is-
sued to the Office365 service through an application programming interface (API) (com-
puting interface that defines interactions between multiple software intermediaries).
For example, an event could be the usage of the “Set-User” command. We group the
events into chronological sessions on a per user and IP address basis. See some example
sessions in Figure 6.20.

Figure 6.20: Identification of a session with a user ID (column1) and IP address (column2), with a times-
tamp (columns3 & 4). Three different formats for each of the sessions: sequence of simple events like
[“Set-User”, “Set-Mailbox”] (column 5), sequence of events with parameters (Ex: Cmd(name=”Set-
User”, params={”Identity”, “Force”}), or sequence of parameters and values (Ex: Cmd(name=”Set-User”,
params={”Identity”: “test@example.com”, “Force”: “true”})).
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Creation of the Markov chain model and training on data to estimate the
probabilities
Let’s now look at themodeling of such a session, with their events and parameters, using
a Markov chain model. The likelihood of a session of simple events [A -> B -> C] was
given in (6.23) as P(C|B)P(B|A)P(A).

Case 1. Consider first sessions that are made of simple sequences of events and define
a transition probability as the probability of going from the previous event-state to the
current event-state:

P(eventi|eventi−1)

Once the model is in place, we estimate the transition probabilities using the maximum
likelihood estimation. In this case, the maximum likelihood estimate simply comes
down to a ratio of counts:

P(eventi|eventi−1) =
#(eventi−1 → eventi)

#eventi−1

A subtlety to note is that we prepend and append start-tokens and end-tokens, respec-
tively, to each session by default. The start event A would then be conditioned on the
start-token, and we would have an additional transition probability in the likelihood
calculation of the session terminating given the last event C in the session. Once we
have computed the above estimates for all possible transitions of states, the likelihood
of a session can be calculated by multiplying a sequence of transition probability es-
timates together. We can hence compute a likelihood score for each session in our data.
The lower the score, the more anomalous the session activity is.

Sliding window. A point worth noting is that the likelihood calculations for longer ses-
sions (more events) will involve multiplying more transition probabilities together. For
example, a session which contains ∼1000 events will involve multiplying ∼1000 transi-
tion probability estimates together. Because transition probabilities are between 0 and
1, this likelihood calculation will converge to zero as the session length gets longer. This
could result in sessions being flagged as anomalous simply because they are longer. To
circumvent this, we can use a sliding window to compute a likelihood score per ses-
sion. For example, let us consider the following session = [A,B, C,D]. Let us also fix the
sliding window length to be 3. Then we would compute the likelihoods of the following
windows:
– [A,B, C]
– [B, C,D]
– [C,D, ##END##]

Wewould then take the likelihood of the lowest scoring window as the score for the full
session. Notice that we are still using a start-token in addition to the end-token shown.
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The end-token means we include an additional probability for the session terminating
after the final event D, whereas the start-token appears implicitly when we condition
the first event A on the start-token.

Case 2. To go a step further in themodeling of our session, we can differentiate sessions
by adding the parameters of the commands. This can help us to differentiate between
automated and benign usage of a command and a more unusual usage. An event can
then be defined as a vector xi:

xi = {ci, [p1, . . . , pk]}

where ci is the command used in the ith event of the session and each pj is either 1 if
that parameter has been set for ci, or 0 if not. For example, ci could be the “Set-Mailbox”
command with 3 distinct parameters: [“Identity,” “DisplayName,” “ForwardingSmtpAd-
dress”]. A parameter vector for this event with value [1, 0, 1]would mean “Identity” set,
“DisplayName” not specified, and “ForwardingSmtpAddress” set.

If we denote the parameter vector by {pk}i as a shorthand, the probability model of
the current event conditional on the previous event becomes:8

P(xi|xi−1) = P({ci, {pk}i}|{ci−1, {pm}i−1})
= P({pk}i|ci, ci−1, {pm}i−1)P(ci|ci−1, {pm}i−1)
= P({pk}i|ci)P(ci|ci−1) (by modelling assumption)

= P(ci|ci−1)
k
∏
j=1

P(pji|ci) (by modelling assumption)

where
– the parameters {pk}i used for the current event depend only on the current com-

mand ci and not on the previous event xi−1
– The current command ci depends only on the previous one ci−1 and not on the pre-

vious parameters {pm}i−1
– the presence of each parameter pji is modeled as independent Bernoulli9 random

variables, conditional on the current command ci

The learning becomes then the estimation of the probability of a parameter being used
for a given command from our sessionized data as follows:

8 In the real implementation, we take the geometric mean of this product:∏kj=1 P(pji|ci), by raising the
product of probabilities to the power of 1/k. The reason for this is because the commands can have a
vastly different number of parameters set on average. By taking the geometric mean, we can have a
fairer comparison of how rare sets of parameters are across the different commands.
9 A Bernoulli random variable can take on two values, 1 and 0. It takes on a 1 if an experiment with
probability p resulted in a success and 0 otherwise.
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P(pji = 1|ci) =
#(paramj is present for cmdlet ci)

#(cmdleti appears)

The probabilities of the parameters conditional on the command can now be calculated,
as well as the transition probabilities like before. The likelihood calculation for a ses-
sion now involvesmultiplying a sequence of probabilities P(xi|xi−1) togetherwhere each
P(xi|xi−1) can be decomposed as shown above. The same slidingwindow approach as be-
fore is used, sowe canmore fairly compare the likelihoods between sessions of different
lengths.

Case 3. Finally, the case where the values of the parameters are alsomodeled alongside
the parameter names is discussed. Some of the commands can accept parameters that
have higher security stakes. For example, the “Add-MailboxPermission” command has
an “AccessRights” parameter, which can accept values such as “ReadPermission” and
“FullAccess.” Because the “FullAccess” value could be used by an attacker for privilege
escalation, it could also beworth including the values of the parameters in themodeling
of the sessions. However, not all the values are going to be useful in the modeling, since
parameters such as “Identity” can take arbitrary strings such as email addresses as their
values. In particular, parameters which accept values from only a small, predefined list
such as [“high,” “medium,” “low”] would be useful to include in the modeling, whereas
parameters which accept any string valuewould be too unique to be useful. Some rough
heuristics are therefore used to determine which parameters take values that are cat-
egorical (e. g., high, medium, low), as opposed to arbitrary strings. In the modeling for
parameters, only the values which have been deemed suitable by the heuristics are in-
cluded. However, there is the option to override the heuristics in the model. This time,
we denote an event as follows:

xi = {ci, {pk}i, {vk}i}

where ci is the command used in the ith event of the session, each pk is either 1 or 0
as above, and vk is the value set for the parameter pk (if the parameter was set). The
same decomposition of probabilities as in the cases above can then be applied, using
similar conditional independence assumptions. The learning of the probabilities follows
the same approach as above:

P(vji = some_value|pji) =
#(param pj is set to some_value)

#(param pj appears across the data)

Once the likelihood scores for the sessions are computed, we can then rank them in
ascending order and visualize them in an interactive plot such as in Figure 6.21.

Digging deeper, a typical suspicious session coming top of the list would look like
the one displayed in Figure 6.22.
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Figure 6.21: Each point on the plot represents a session. The likelihood score is on the y-axis and the time
of the session is on the x-axis. The sessions with the lower likelihood scores correspond with the more
anomalous sessions.

Figure 6.22: This session shows activity where the user is creating a very weak mobile device mailbox pol-
icy with no password enabled, no device encryption required and also allows nonprovisionable devices.

6.5.1.3 Summary

By using aMarkov chain model, we were able to model Microsoft Office365 audit logs
to hunt for and visualize anomalous user sessions. We saw howMicrosoft Sentinel can
be used to run such analysis on an automated schedule to raise security incidents to be
investigated further by security analysts.While themethods outlined herewere applied
to Office365 audit logs, they can of course be applied to other types of audit or security
logs in a similar way.
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6.5.2 Crop forecasting with Bayesian inference for agriculture
producers
Matthew J. Smith, Pierre Stratonovitch, Richard Tiffin

6.5.2.1 Overview

Context
Fresh produce is a term in agriculture for crops that are consumed in their harvested
form. For example, radishes, sweetcorn, and strawberries are all “fresh produce.” Grow-
ers of fresh produce want forecasts of when their crops will be ready for harvesting so
that they can make the best economic decisions. This case study is about the process of
producing such forecasts. It represents a simplified version of crop forecast models that
have been used by producers to reduce waste and gain production efficiencies. It is es-
pecially concernedwith probabilistic forecasts because the probabilities of the different
outcomes they provide are particularly important in grower’s decision-making.

Matching the supply and demand of fresh produce can be particularly challenging
because both supply and demand vary dynamically over time. On the supply side, the
weather is a significant determinant of the timing of when a crop reaches maturity, and
thus becomes sellable. This supply side risk is amplified by risks on the demand side
where seasonality, public holidays, retailer and brand promotions, social events, and
weather conditions are major determinants. A potential mismatch between supply and
demand is important because there is usually a narrow timewindow post-harvest when
they are sellable. In ambient conditions, fresh produce crops have high perishability,
meaning they begin to lose their “freshness” and value rapidly. Evidently, an ability to
forecast supply (and demand) can enable management actions to be taken to minimise
or mitigate suchmismatches. Producers want to maximize the probability that they can
meet consumer demand, while minimizing the probability that they overproduce and
cause waste.

The specific challenge dealt with here is that of building a model of fresh produce
growth that produces probabilistic forecasts of yield and harvest timing to help growers
balance the risk of overproduction with not being able to meet demand.

Key techniques
We use Bayesian inference to learn the parameters of a model that incorporates in-
sights from thebiology of plants in the formulation; so called “process based”models.We
employ a Markov chain Monte Carlo (MCMC) sampler with the Metropolis–Hastings
algorithm to estimate the probability distributions of themodel parameters as described
elsewhere in this Chapter. The probabilistic nature of the parameter estimates is carried
through to the model’s forecasts, which become probabilistic as a result.
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6.5.2.2 Description

Process-based crop models
Aprocess-based cropmodel for industrial applications is a computational algorithm that
predicts properties of crop growth using expressions that contain some representation
of the underlying biological processes that determine crop growth. Typical target crop
properties are maturation date, yield, and quality.

One benefit of process-based models is that they can capture well the nonlinear
response of crop growth to growing conditions without requiring extensive data. A dis-
advantage is that such a formulation will only ever be an approximate representation
and so care must be taken to identify when the model predictions are misleading. Con-
sequently, process-based models still need to be calibrated to be accurate.

A high-level representation of a process-based crop model is

Figure 6.23: High level representation of a process-based crop model formulation.

The crop genotype (crop variety) is typically represented implicitly in the model via
the model formulation and parameters. Mathematically, the crop model above can be
expressed as

C(t + τ) = F(C(t), E(t),M(t), θ), (6.24)

whereC(t) is a vector of crop properties at time t, τ is a small increment in time (typically
one day), F is a vector of functions, E(t) is a vector of environmental conditions (e. g.,
mean daily temperature),M(t) is a vector of management conditions, and θ is a vector
of parameters. Process-based crop models typically need to be solved iteratively (a crop
growth simulation) to generate predictions.

Example: the radish maturation model
A simple hypothetical example of a crop model that can be trained to data is one for
radishes (Raphanus raphanistrum subsp. sativus10). Radish is an edible root vegetable
commonly used in salads that grows rapidly. Radish producers will want to forecast
likely harvesting dates of planted crops so that they can ensure production levels that
meet customer demand. Imagine a producer who has recorded historical sowing and
harvesting dates for 3 farms between 2017 and 2018 for a single field in each farm and
for crops sown approximatively every 3 weeks from the 1st of March (Figure 6.24).

10 https://en.wikipedia.org/wiki/Radish
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Figure 6.24: Hypothetical observations of days to harvest for radishes for three farms and over 2 years.
These data are used as training data to enable us to learn the parameter distributions for our predictive
crop model.

The data in Figure 6.24 show a widely observed trend. As the weather gets warmer,
the duration between sowing and harvest shortens. Temperature limits the rate of bio-
logical processes and the warmer the temperature gets the faster the crops grow (pro-
vided it doesn’t get too hot andother factors don’t become limiting). A commonapproach
to relate this temperature effect on crop development is to calculate the accumulated
heat units from day of sowing

{
A(T) = 0 T < TS
A(T + 1) = A(T) +max(0,ϒ(T + 1)) T ≥ TS ,

(6.25)

where A(T) is accumulated temperature, T is time in discrete days, TS is the day of crop
sowing, and ϒ is mean daily temperature. Here, we use T to denote time in discrete
daily increments in contrast with continuous time t in (6.24) above. Figure 6.25 shows
the dynamics of A(T) for three radish fields in 2018 sown at different times.

For our model, we assume crops are ready to be harvested once accumulated tem-
peratures exceed a threshold Γ

{
H(T) = 0 A(T) < Γ
H(T) = 1 A(T) ≥ Γ,

(6.26)

whereH(T) is a Boolean indicator of whether the crop is mature for harvesting (H(T) =
1) or not (H(T) = 0). The harvest date TH is defined as the first occurrence when accu-
mulated temperatures have reached the specific threshold:

TH = min
T

H(T) = 1 (6.27)
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Figure 6.25: Accumulated temperature, A(T), by radish crop plants planted at three different times of the
year. Note how A(T) increases faster later in the year.

Note that the crop model in this example is relatively simple and the vector of crop
properties, C(T) in this case, as defined in our general crop model (6.24), is a vector
indicating the accumulated temperature by the crop and whether the crop is ready to
be harvested:

C(T) = [A(T)
H(T)
]. (6.28)

Driver and calibration data
Process based models can use a variety of data types as inputs. Driver data is input data
that is used to represent conditions the crop is experiencing. This is the “Environment”
and some of the “Management” data in Figure 6.23 and represented by E(t) andM(t) in
(6.24) and is the temperature data experienced by the radish crops in our example.

Process-based crop models also require the specification of initial conditions, both
for the crop and the environment. In our radish example, the initial conditions are the
dates at which the crops are planted.

Calibration data (or training data) is used to enable the learning of uncertain
model parameters, representedby θ in (6.24). Such calibrationdata typically represents
properties of the crop at times in the past that can be compared against model predic-
tions. Such data has traditionally come from on-farm measurements, manual surveys,
and research projects. More recently, the increased availability of remotely sensed ob-
servations is used, typically from satellites. In our radish example, the calibration data
are the farm records shown in Figure 6.24 indicating the timing of sowing and harvest-
ing the crops.
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Model calibration/parameter inference
To calibrate the process-basedmodel, we applyBayesian parameter inference to learn
the most likely probability distribution of the model parameters θ, given what was ob-
served in the past. We do this by first expressing the relationship between the model
predictions and the calibration data as a probability that the data was created by the
process simulated by themodel (equations (6.25–6.28)). This relationship is illustrated in
a factor graph in Figure 6.26: we assume that the accumulated temperatures observed
by the harvested plants is drawn from a normal distribution centred on an inferred
“critical accumulation temperature” Γ, and with an unknown observational error σ.
These are the model parameters θ.

Figure 6.26: Factor graph showing the relationship between the probability of the observations and the
learned parameters of the radish model (2–5).

In this simple case, which also represents a typical starting point for model calibra-
tion,weuse just onemodel anddonotmake anyprior assumptions about the probability
distributions of θ. This has the simplifying effect of transforming our probability rela-
tionship down to one inwhichwe approximate the probability distribution of themodel
parameters, given the observations as

log(P(θ|Γobs)) ≈
n
∑
i=0

log(ℵ(Γobsi,mean = Γest , variance = σest)), (6.29)

where P(θ|Γobs) is the probability of the model parameters given the observed accumu-
lated temperatures (worked out from the harvest timings) and ℵ is a normal distribu-
tion with a mean of Γest and a variance of σest . In other words, we approximate the log
probability of the parameters as the sum of probabilities of the observed accumulated
temperatures tomaturity. We infer these parameters usingMCMC rather than sweeping
through possible values of the parameters because it makes it simpler in future to ex-
tend the model to having more complexity and parameters than is practical to evaluate
through basic parameter sweeps.
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Implementing theMCMC algorithm for the radish model generates Markov chains
for the threshold accumulated temperature before the crop is mature, Γ, and the obser-
vational error σ as shown in Figure 6.27.

Figure 6.27: Example Markov chains of parameter estimates for the Radish model defined above (2–5).
Inferred probability distributions (a) and (c) are approximated via the sampled Markov chains (b) and (d),
respectively.

Forecasting and uncertainty propagation
Freshproduce forecasting typically involves using cropproduction forecasts throughout
the season. Forecasts for thewhole year enable experimentingwith alternative planting
regimes to identify the best match to expected demand throughout the year. Forecasts
during the year allow growers to adjust their crop management to adapt to changes in
growing conditions and demand.

For our radish example, we make forecasts of crop maturation using the learned
values of Γ and σ. Rather than forecast the maturation of a single crop over time, we
assume that the producer is plantingmultiple crops to grow sufficient quantities tomeet
retailer demand. The producer can use the trained model to forecast maturation dates
for multiple crops and combine these to generate an expected supply distribution. For
our example, herewe assume that the producerwould sow blocks of 10,000 plants every
3 days from March to July. The resulting supply distribution is shown in Figure 6.28.

Figure 6.28 shows the emergent dynamics of radish supply from the producer fol-
lowing a regular planting schedule. Those supply dynamics are notably irregular as a
consequence of the interaction between crop growth and the weather. The challenge
for the producer is to manage their planting, management, and harvesting so as to best
match their supply to market demand. The additional probability information on the
supply distribution gives the producer an indication of the relative likelihood of differ-
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Figure 6.28: Forecasted supply over time for radishes using our calibrated radish crop growth model for a
producer who sows blocks of 10,000 plants every 3 days from March to July.

ent levels of supply and, therefore, the relative risk of over or under supply given a level
of demand.

Problems and alternatives
TheBayesianparameter estimationmethod described above is just one ofmanymeth-
ods that can be used to calibrate crop models. A challenge with the approach is that pa-
rameter inference is slow, computationally expensive and requires an inference special-
ist. Consequently, the method is best suited for model development prior to operational
model deployment. Alternativemethods are better suited to real-time inferenceduring
the growing season such as ensemble Kalman filter and particle filtering approaches,
as described elsewhere in this Chapter.

6.5.3 Estimating players’ skills with XBOX TrueSkill™
Nicolas Vercheval, Aleksandra Pižurica

6.5.3.1 Business context

With millions of active gamers at any time, the success of extensive online gaming ser-
vices such as Xbox Live® relies on their ability to estimate players’ skills correctly and
quicklymatch them accordingly. Playing against an opponent of comparable skill grants
the user a challenging experience with fair chances of victory.

Rating points reflect a player’s skill level and are updated to an increased value after
a win or a decreased value after a loss, adjusting the winning (or losing) points by the
level of opposition. Early rating systems rank players consistently and extract reliable
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winning probabilities but do not estimate the confidence that the rating is correct and
require additional parameters to compensate when, for example, a new player joins the
platform.

In 2005, Xbox Live introduced TrueSkill™, a light Bayesian rating system that mod-
els the game’s uncertainty and human factors with probability distributions. It adapts
the update according to the reliability of the ratings, shows rapid convergence, and nat-
urally extends to scenarios that had previously required arbitrary and ad hoc modifica-
tions, such as players gathering in teams ormultiple teams competing in the same game.
This example demonstrates how factor graph representation and belief propagation al-
lowed Trueskill to be up to the challenges posed by Xbox Live.

6.5.3.2 Overall approach

The outcome of a game hasmany elements of chance: game luck, players’ concentration,
untimely pizza delivery, and so on.Matching two players according to their gamehistory
involves factoring in countless possibilities that may be very specific to the game or
entirely unknown. Probabilistic reasoning helps navigate this uncertain environment
by describing latent causes in terms of their likely effect on the evidence.

Trueskill captures the randomicity of a game outcome in a randomvariable for each
player’s performance. The winner of a game is then the player with the highest perfor-
mance, and the question: “Who is going to win?” becomes “Whose performance is more
likely to be superior?”. The assumption is that performances are mutually independent
and only determined by the player’s skill and luck. The skill, seen as a performance aver-
age, allows strong players to win against weaker opponents consistently. Luck explains
why the weaker player sometimes wins, or a head-to-head match does not always give
the same outcome.

A possible simplification assumes a player’s skill is an unknown constant that does
not vary over time. Nonetheless, the belief of its likely value evolves with every game
they play. Inferring the distribution for the current belief is thus an example of prob-
abilistic reasoning over time, precisely, a filtering problem. This illustrative example
keeps this assumption for simplicity. In practice, allowing a player’s skill to vary over
time helps describe periods of higher or lower performances (such as an off-day where
a player loses significantly more games than expected) and catch up with new players
as they improve.

In Trueskill, a player’s rating is not just a number but a compact representation of
the belief about their skill. This solution allows better decisionmaking andmore precise
inference; conversely, it requires an approximation to be consistent for all the players.
Trueskill approximates its belief for a player’s skill with a Gaussian distribution, whose
mean and variance reflect the perceived skill and the confidence in estimating their skill
as data are collected. Since the Gaussian distribution is well known to describe additive
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noise, a player’s luck is also normally distributed, and their performance is the sum of
the their luck and skill.

User experience requires quick inference during the pairing. The dynamic environ-
ment continuously registers the outcomes of games from other players, but factoring
those in would endlessly delay the inference. Similarly, explicitly modeling all the past
gamehistorywould have an infeasible cost in complexity. The assumption of theMarkov
property greatly simplifies the model by limiting the inference to a simple update: each
game updates the beliefs of the player’s skills only based on their previous beliefs and
the game outcome. It also allows a factor graph representation, elegantly explaining in-
ference with belief propagation.

Trueskill extends to more general setups by adding other model assumptions. A
latent Gaussian variable represents a player’s skill fluctuation from game to game, al-
lowing it to vary. A team’s performance is the sum of the individual ones. Draws oc-
cur when performance differences are too small to be decisive. These extensions make
the factor graph more complex but maintain the same inference algorithm. We do not
present these details here; instead, we refer interested readers to Winn (2023), which
explains the complete matchmaking strategy and ranking criteria. A Python implemen-
tation, closely following this example, is available at Vercheval (2024).

In this example, two players, Jill and Fred, play against each other in a game where
no draws are allowed. In the last section, a third player, Steve, joins in.

6.5.3.3 Predicting the outcome

When the game is between two players, their winning probabilities have a complicated
analytical solution. Belief propagation helps break down their calculations into steps.
We visualize these steps with a factor graph (see Figure 6.29) describing the joint distri-
butions of Jill’s and Fred’s skills, luck, and performances.

We run belief propagation on the graph top-to-bottom to update the probability that
Jill wins, or in other words, to infer the marginal distribution of the event that Jill wins.
Since no draw is allowed, Fred’s winning probability immediately results from it. The
correct algorithm for this purpose is the sum-product algorithmwe have seen in (6.3.5.1)
for discrete variables. Even though most variables here are continuous, the algorithm
is entirely equivalent.

The first step assigns the current belief to the initial variables. In particular, we
use the players’ current ratings to estimate their skill distributions. According to our
assumptions, the skill of player P follows a normal distribution with mean μ and vari-
ance σ2 given by their rating:

SkillP ∼ 𝒩 (μ, σ2).
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Figure 6.29: The messages in green infer the winning probabilities. The likelihood messages in red update
Jill’s rating.

In our example, Jill has a rating of (μ = 120, σ2 = 1600) and Fred has a rating of
(μ = 100, σ2 = 25); Jill is likely the stronger player, but her actual ability is unclear.

The factors f J
Skill and f

F
Skill describe Jill’s and Fred’s skill distributions. Given that these

are continuous variables, the factors, and thus their messages, are probability density
functions. For simplicity, we use the same notation for densities and relative distribu-
tions. With this notation, the messages for the nodes Skill J and Skill F are:

mf J
Skill→Skill

J = 𝒩 (120, 1600), mf F
Skill→Skill

F = 𝒩 (100, 25).

The two players’ luck variables, noted as Luck J and Luck F, receive a similar mes-
sage, but the message, in this case, is the same for every player P:

fLuck = mfLuck→Luck
P = 𝒩 (0, 25).

This distribution is a fixed setting. Thus, the players’ luck variables are independent.
Factor f P+ represents player P’s performance, a sum of their skill and luck. A known

property of the Gaussian distribution is that the sum of two independent, normally dis-
tributed variables follows a Gaussian distribution with the sum of their means as mean
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and the sum of their variances as variance. We apply this formula to the performance
Perf P:

Perf P = Skill P + Luck P ∼ 𝒩 (μ + 0, σ2 + 25). (6.30)

The message from factor f P+ is the above distribution’s density and has a functional
form. The sum-product algorithm for continuous variables typically involves a com-
plex integral that can only be approximated numerically. However, the properties of
the Gaussian distribution enable us to avoid intensive computation and calculate the
messages through exact formulas.

In the second step,we leverage the above property and send the followingmessages:

mf J+→Perf J = 𝒩 (120, 1600 + 25), mf F+ →Perf F = 𝒩 (100, 25 + 25).
The performance nodes then relay the message to the factor f (J, F)− , representing the dif-
ference between the two performances.

In the third step,we use an analogous formula for the difference of two independent
Gaussian variables and get the following message:

mf (J, F)− →Δ(J, F) = 𝒩 (120 − 100, 1625 + 50) = 𝒩 (20, 1675).
We forward the message to the final factor f (J, F)Δ>0 , which converts the estimation of their
performances into a winning probability.

This is possible by setting factor f (J, F)Δ>0 equal to the following step function:

f (J, F)Δ>0 (d) = 1>(d) = 0 if d < 0 or 1 if d ≥ 0.

With this factor, the sum-product message corresponds to the probability that the
performance difference is more than zero, implying that Jill’s performance is higher
than Fred’s, given what we know about their skills.

To get this probability, we need the value of the cumulative function FΔ(J, F) of the
performance difference distribution calculated in zero. We obtain it by calculating the
cumulative distribution of a standard Gaussian Φ(x) on the normalized performance
differential:

mf (J, F)Δ>0 →J wins = P(Δ
(J, F) > 0) = 1 − F(J, F)Δ (0) = 1 − Φ(

−20
√1675
) ≈ 68.7% (6.31)

Since “J wins” is the last node in the propagation, the only incoming message is its
inferred probability (step 4). As expected, Jill is the predicted winner.
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Updating the rating

We update the rating with the posterior distribution of a player’s skills after observing
the game outcome, in this case, “J Wins”. According to the Bayes’ rule:

p(Skill P|J Wins) = p(J Wins|Skill P)p(Skill P)
Z

, (6.32)

where 1
Z is a normalization constant.

The posterior distribution of Skill P given the outcome must again be Gaussian to
respect the model assumptions, and its mean and variance become the new rating of
Player P. The posterior distribution is Gaussian when both the prior distribution and
the likelihood function p(J Wins|Skill) are.

More precisely, let 𝒩 (s; μ, σ2) be a prior density on the variable s and s be in turn
the mean of a likelihood function𝒩 (x; s, σ̄2), then:

𝒩 (x; s, σ̄2)𝒩 (s; μ, σ2)
Z

= 𝒩(s; ( x
σ̄2 +

μ
σ2)σ
′, σ′), (6.33)

where the new variance is equal to σ′ = ( 1σ̄2 +
1
σ2 )
−1. Unfortunately, it turns out that

p(J Wins|Skill) is not Gaussian. To show where the problem originates, we run belief
propagation to node Skill J (see again Figure 6.29), starting from the observed outcome.

Let us say that Jill wins. In the first step, the variable “J wins” signals factor f (J, F)Δ>0
that the difference in Jill’s and Fred’s performance is more than zero because Jill has the
higher performance. In the second step, factor f (J, F)Δ>0 translates this information into the
following message:

mf (J, F)Δ>0 →Δ(J, F) = 1>(d). (6.34)

This message is problematic because it is not a Gaussian density, and because of that,
none of the following messages are Gaussian. Even worse, it is not the density of any
distribution, and no density can approximate it numerically.

Trueskill does not approximate the message directly. Instead, it replaces the orig-
inal message with a Gaussian density that impacts the probabilistic graph in a similar
way. Specifically, it chooses the new message so that the resulting inference on the per-
formance difference given the outcome is as close as possible to its exact posterior dis-
tribution. This technique, called expectation propagation, is more advantageous than
approximating the posterior distribution of the skill directly because it ties the error to
the performance node and allows exact inference in the rest of the graph, which can be
much more complex than in this example.

We calculate the exact posterior distribution of the performance difference bymul-
tiplying the message containing the information that Jill has won, which is the likeli-
hood function, with the message about the expected performance difference, which is
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Figure 6.30: Jill has won and, therefore, the true posterior distribution of the performance difference can-
not be negative. The normal approximation has a smoothing effect and leaves a small chance that Fred’s
performance was higher.

the density of the prior distribution we calculated in the previous section. By the Bayes’
rule, we get a function proportional to the posterior density:

pΔ(J, F)|J wins(d) =
(mf (J, F)Δ>0 →Δ(J, F) )(mf (J, F)− →Δ(J, F) )

Z
=

1>(d)𝒩 (d; 20, 1675)
Z

. (6.35)

TheZ in the normalizing constant 1
Z is the probabilityP(J wins) = 0.687 thatwehave

calculated in the previous section.
We show the density in (6.35) in Figure 6.30. A complicated formula we omit for

readability gives us its mean (≈ 41.1) and variance (≈ 809.2). We use these statistics to
perform approximate inference.

We replace the likelihood message 1>(d) with 𝒩 (60.8; d, 1565.6). Using the formula
in (6.33), we get:

𝒩 (60.8; d, 1565.6)𝒩 (d; 20, 1675)
0.687

= 𝒩 (d; 41.1, 809.2),

which approximates the exact posterior distribution of the performance differencewith
a Gaussian of identical mean and variance (see Figure 6.30).

Now that we know a good approximation for:

mf (J, F)Δ>0 → Δ(J, F) ≈ 𝒩 (60.8, 1565.6),

we conclude the second step by forwarding the message to f (J, F)− .
In the third step, we proceed to update Jill’s rating. We reuse the message about

Fred’s expected performance calculated in the previous section and the formula for the
sum of two independent Gaussian variables to infer Jill’s performance from the perfor-
mance difference:
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mf (J, F)− →Perf J = 𝒩 (60.8 + 100, 1565.6 + 50) = 𝒩 (160.8, 1615.6).
In the fourth and last step, we calculate the likelihood function for Jill’s skill. Factor

f J
+ receives the forwardedmessage of the previous step and themessage fromLuck J that
we have already calculated. The factor takes into account the noise from that variable
and sends a message that is less confident about Jill’s demonstrated ability. The formula
of the previous section still applies, and we get:

mf J+→Skill J = 𝒩 (160.8, 1615.6 + 25) = 𝒩 (160.8, 1640.6).
The message-passing algorithm terminates with the product of the messages to the

final variable, Skill J, which is proportional to the posterior in (6.32). The first message is
the density of the prior distribution from f J

Skill that we have calculated at the start of this
example; the second is the likelihood function approximate after seeing the outcome.
Using the formula in (6.33):

p(Skill J|J wins) = 𝒩 (120, 1600)𝒩 (160.8, 1640.6)
Z

= 𝒩 (140.1, 810.0).

The resulting density gives us a rating of (μ = 140.1, σ2 = 810.0). After the game, the
model is more confident about Jill’s skill level. Jill’s rating now has a higher mean and
a lower variance. The algorithm for updating Fred’s rating is analogous and returns a
new rating of (μ = 99.7, σ2 = 24.8).

6.5.3.4 Multiplayer setting

In the previous sections, belief propagation only helped explain approximated infer-
ence. In a multiplayer setting, the computation graph becomes fundamental for infer-
ence.

When Steve joins the game, its outcome becomes a ranking. Steve’s rating is
(μ = 140, σ2 = 1600). Steve is supposed to be the better player but places third, Fred
second, and Jill first. We lay the players’ performances in line according to their ranking
(Figure 6.31) and compare the adjacent ones.

Jill places first and, therefore, must have a higher performance than Fred’s. The
algorithmworks the same as before (steps 1, 2, and 3) and returns the likelihoodmessage
on Fred’s performance:

mf (J, F)− →Perf F = 𝒩 (120 − 60.8, 1565.6 + 1625) = 𝒩 (59.2, 3190.6).
The update tells us that Fred may not be in his best form. Instead of immediately

updating Fred’s rating, the algorithm uses this information to contextualize its compar-
ison to Steve’s performance. Therefore, in step 4, it multiplies the likelihood message
with the prior information on Fred’s performance and sends the resulting message:
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Figure 6.31: The messages containing prior information about the variables are in green. The likelihood
and posterior messages in the first iteration of expectation propagation are in red.

mPerf F→f (F, S)− = (mf F+ →Perf F )(mf (J, F)− →Perf F ) = 𝒩 (99.4, 49.2).
The message above approximates pPerfF |J wins and contains posterior information

about Fred’s performance after losing to Jill, but no evidence that it is higher than Steve’s.
The algorithm treats it as prior information for what concerns the estimation of their
performance difference and proceeds as in the previous section (step 5).

After seeing that Fred’s performance is superior to Steve’s (step 6), themodel ismore
optimistic about it and sends a new likelihood function to Perf F:

mf (F, S)− →Perf F = 𝒩 (177.1, 2043.4).
The resulting posterior density on Fred’s performance distribution given the previous
outcome:

pPerf F|F wins ≈ (mf F+ →Perf F )(mf (F, S)− →Perf F ) = 𝒩 (101.8, 48.8)
is a bit higher than the original prior density and could be sent back to f (J, F)− to reassess
the performance difference between Jill and Fred. This reassessment is necessary be-
cause expectation propagation performs an approximation whose error propagates
from one performance difference to the other. We calculate the likelihood approxima-
tion one last time. In general, expectation propagation is an iterative method that stops
when the messages change by a tolerated value. In our case, the current estimation of
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pPerf F|F wins is good enough, andwe can use it to update Jill’s rating as we did in the previ-
ous section. Similarly, we use the new estimation of pPerf F|J wins to update Steve’s rating.

Jill’s new rating (μ = 141.1, σ2 = 791.1) is slightly higher and more definite than
in the previous section because she also beat Steve. Conversely, Steve’s new rating
(μ = 80.6, σ2 = 376.6) is much lower because the model realized its initial misplaced
estimation.

To update Fred’s rating, we multiply the two incoming likelihood messages to his
performance node to obtain aggregate information about his success, and then continue
the propagation from the following message as before:

mPerf F→f F+ = (mf (J, F)− →Perf F )(mf (F, S)− →Perf F ) = 𝒩 (130.8, 1234.1).
Fred’s new rating (μ = 100.6, σ2 = 24.5) is similar to its initial estimation. Indeed, the
model used his rating, in which it was already confident, as a reference for the other
two.

6.5.3.5 Conclusions

In previous sections, we illustrated Trueskill’s basic functionality. Its adaptable mod-
elling approach allows for extending the graph by introducing more assumptions and
adding application-specific constraints. This flexibility is valuable for adapting to chang-
ing model requirements and ensures easy maintenance. It also enables portability
across different games, providing a consistent user experience and reducing develop-
ment hours. Trueskill also serves as an excellent tool for integrating into policies and
decision-making processes, thanks to its ability to quantify confidence in its estimation.
With theoretical properties translating into concrete advantages, Trueskill showcases
how rigorous probabilistic inference can offer the flexibility and reliability that busi-
nesses seek.

6.6 Useful reminders of probability theory
6.6.1 Basic concepts in probability
In probabilistic reasoning, we are dealingwith randomness, arising because the process
(or a “trial”) in whose outcomes we are interested didn’t happen yet (e. g., tomorrow’s
match) or the already existing outcome is uncertain (e. g., due to various measurement
imprecisions). Here, we reviewbriefly the basic principles of probability andwe explain
the notation that we will use.

Random events and axioms of probability. The space of all possible outcomes of a
given trial is called the sample space. Let Ω be this sample space and ω ∈ Ω its elements.
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A random event is any subset of the sample space θ ⊂ Ω and its elements ω are atomic
events. Take as an example rolling a die. In this case, Ω = {1, 2, 3, 4, 5, 6}. An event “die
roll > 4” is a subset {5, 6} ⊂ Ω, which contains atomic events 5 and 6. The basic principles
underpinning the probability theory are: the probability of each outcome lies between
0 and 1: 0 ≤ P(ω) ≤ 1, and the probabilities of all the possible outcomes sum up to 1:
∑ω∈Ω P(ω) = 1. Furthermore, the probability of any event is the sum of the atomic events
where this event is true:P(θ) = ∑ω∈θ P(ω). For example, assuming a fair die, the probabil-
ity of each outcome is 1/6, their sum is 1, andP(die roll > 4) = P(5)+P(6) = 1/6+1/6 = 1/3.
These three principles are theaxiomsof probability. From these three axioms, all other
rules that hold in the probability theory can be derived, including the one which says
that the probability of a union of two events is the sum of their probabilities minus the
probability of their intersection: P(a ∨ b) = P(a) + P(b) − P(a ∧ b).

Random variables versus events. What is the difference between events and random
variables? An event, aswas defined above, corresponds to the term proposition in logical
reasoning, and informally it can be described as any meaningful statement about the
experiment we are interested in (e. g., “die roll > 4” or “die roll is an even number”, etc.)
Thus, an event happens or not with some probability, while a random variable is a
variable whose value is affected by some random phenomenon. Typically, the values of
random variables are real numbers but in some cases also Boolean values {true, false}.
In the die roll experiment, we can define the event “die roll > 4” as a random variable
X whose possible values are true or false, or if we define X as the outcome of rolling, its
possible values are {1, 2, 3, 4, 5, 6}. In general, we will denote by a capital letter a random
variable, for example, X and by the corresponding small letter its particular value that
we call realization, for example, x. We use boldface letters to denote vectors of random
variables X = (X1, . . .Xn) and their realizations x = (x1, . . . xn). We also say that X = x is
an event where the random variable X takes the value x.

Discrete randomvariables. In the examples above,we illustrated discrete randomvari-
ables, which may take on only a countable (finite or infinite) number of distinct values.
Another example of a discrete random variable is a class label, where x is one of the pos-
sible classes. The probability that X takes the value x is commonly denoted by P(X = x)
or by PX (x). Also, for compactness, we will use sometimes only P(x) when there can be
no confusion to what this refers. We apply the same convention to the vectors of ran-
dom variables P(X = x) = PX(x), and for short by P(x) when no confusion is possible.
Boldface P in P(X) (or in P(X)) denotes a vector where each entry is the probability of a
particular realization of X (or X).

Continuous random variables. A continuous random variable can take infinitely many
values. Examples are height or weight of a person, air temperature, distance covered, or
blood sugar level. Continuous random variables are characterized by the probability
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density function (pdf), also called density, pX (x). The pdf integrates to 1: ∫∞−∞ pX (x) = 1,
and the cumulative function is

FX (x) = P(X ≤ x) =
x

∫
−∞

pX (x)dx (6.36)

In the problems thatwe addressed in this chapter, the data distribution is typically a con-
tinuous random variable and the labels associated with each data sample are discrete
random variables.

Prior and conditional probabilities. Prior probabilities express a priori belief (about
the value of some random variable), without any (new) evidence (i. e., without anymea-
surements or observations). For example, let R be the random variable expressing “it
will rain tomorrow,” with two possible values r ∈ {true, false}. Then the prior proba-
bility P(R = true) = 0.3 is reasonable in July in Antwerp (30% of days are rainy), and
P(R = true) = 0.04 in Lisbon. Conditional probabilities express belief given some evi-
dence. For example, we know the current value of barometric air pressure B (in mbar)
in Antwerp, and we refine the probability of rain as P(R = true|B = 992.21) = 0.43. Both
for prior and conditional probabilities, we often use the more compact representation,
same as we explained above, for example, P(R = r|B = b) = PR|B(r|b), and for a condi-
tional probability density function pB|R(b|r) (since B is a continuous random variable),
and when no confusion possible we also use a shorter notation, like P(r|b) or p(b|r).
Formally, we define the conditional probability of x given y as

P(x|y) = P(x ∧ y)
P(b)

if P(y) ̸= 0 (6.37)

The product rule gives an alternative formulation: P(x ∧ y) = P(x|y)P(y) = P(y|x)P(x),
and successive application of the product rule gives the well-known chain rule:

P(x1, . . . xn) = P(xn|x1, . . . , xn−1)P(xn−1|x1, . . . , xn−2) . . . P(x1) =
n
∏
i=1

P(xi|x1, . . . , xi−1) (6.38)

For example, P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x2, x1). This chain rule has many practical
uses and we will see later on how its special case applies to Bayesian networks.

Statistical independence and conditional independence. Random variables X and Y
are statistically independent if P(x|y) = P(x) or equivalently P(y|x) = P(y) or equiva-
lently P(x∧y) = P(x)P(y). The statistical independence, when it holds, simplifies a lot the
probabilistic modeling and inference: if we have n binary random variables, 2n param-
eters are needed in general to describe their joint probability distribution, and if they
are all statistically independent, this amount is only n. Hence, statistical independence
reduces the amount of the parameters exponentially. Unfortunately, strict statistical in-
dependence among the random variables of interest may not hold in practice. However,
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conditional independence often applies to some subsets of the involved random vari-
ables. For example, low barometric pressure increases the chance of rain and headache,
but the probability that it will rain is conditionally independent of whether one has
headache or not, given that the air pressure is known: P(rain|lowpressure, headache) =
P(rain|lowpressure).

Bayes’ rule. In probabilistic reasoning, the Bayes’ rule (also known as the Bayes’ theo-
rem), named after Thomas Bayes (1701–1761), has a central place as it connects the di-
agnostic inference (inferring the cause given the effects) to the causal inference (the
probability of effects given the cause). Formally, the Bayes’ rule is

P(x|y) = P(y|x)P(x)
P(y)

(6.39)

Observe that this expression follows directly from the expression for the conditional
probability (6.37) and the product rule that was written below it. The true value of the
Bayes’ rule is that it facilitates the inference. Think of medical diagnosis, where P(x|y)
is the probability of disease x given symptoms y. Inferring P(x|y) directly is very diffi-
cult because the same symptoms can arise due to various diseases (e. g., symptoms like
headache or fever can point to numerous diseases, from benign to very serious ones).
The Bayes’ rule allows us to solve this problem by inferring instead the probability of
symptoms given the disease P(y|x), and the prior probabilities of the disease P(x) and
symptoms P(y) (e. g., in a population of interest). Typically, these can be readily esti-
mated based on experience, collected data, and earlier statistical analyses.

6.6.2 Maximum likelihood estimation and Bayesian estimation

We describe three common estimators in statistical inference and probabilistic reason-
ing, and we comment on their use and mutual relationships.

Maximum likelihood estimation. In statistics, probabilistic reasoning, and machine
learning, maximum likelihood estimation (MLE) is commonly employed for estimating
the parameters of an assumed probability distribution, given observed data. The pa-
rameter values are found by maximizing the likelihood that the process described by
the assumed model produced the observed data. The likelihood function L(θ|y) = p(y|θ)
measures the support provided by the data y for each possible value of the parameter θ.
If L(θ1|y) > L(θ2|y), we know that our observed data point y is more likely to have been
generated under the model with θ = θ1 than under the value θ = θ2, so the observed
data point tells us that θ1 is more plausible than θ2.

Hence, if our observations are y, and if we model their actual (unknown) distri-
bution with a statistical model p(y|θ), with parameters θ, we find θ by maximizing the
likelihood function L(θ|y):
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θ̂ = argmax
θ

L(θ|y) = argmax
θ

p(y|θ) (6.40)

Suppose that we have observed measurements y1, . . . yN , and we believe the underlying
process y follows a normal distribution𝒩 (μ, σ2).Wewant to find the parameters μ and σ
under which the assumed model represents the observed data in the best way possible.
The likelihood function is the joint probability p(y1, . . . , yN |θ), where θ = (μ; σ). If our
observations are statistically independent,

L(μ; σ|y1, . . . , yN ) = p(y1, . . . , yN |θ) =
N
∏
i=1

p(yi|θ) = (
1

σ√2π
)
N

e−
1

2σ2
∑Ni=1(yi−μ)2 (6.41)

Maximizing this likelihood function is equivalent to maximizing its logarithm ℓ = ln L,
that is,

ℓ(μ; σ|y1, . . . , yN ) = ln L(μ; σ|y1, . . . , yN ) = −
N
2
ln(2π) − N

2
ln(σ2) −

1
2σ2

N
∑
i=1
(yi − μ)

2 (6.42)

since the logarithm is a monotonic function. The MLE estimates of the parameters μ
and σ2 are then obtained by setting the derivatives of ℓwith respect to μ and σ2 to zero,
resulting in the estimates:

μ̂ = 1
N

N
∑
i=1

yi, and σ̂2 =
1
N

N
∑
i=1
(yi − μ̂)

2 (6.43)

which are exactly the empirical mean and variance. This estimation is illustrated in
Figure 6.32. We can generalize this procedure to the case where our observations are
vectors yi (i. e., each measurement is not a single number but consists of d components
yi = [yi,1, . . . yi,d]) modeled by amultivariate normal distribution y ∼ 𝒩 (μ,Σ), withmean
μ and the covariance matrix Σ. Applying the same procedure as above, we obtain the
MLE estimates of the parameters as

μ̂ = 1
N

N
∑
i=1

yi, and Σ̂ = 1
N

N
∑
i=1
(yi − μ̂)(yi − μ̂)

⊤. (6.44)

Examples with the normal distribution are intuitive, but we can apply the same proce-
dure to estimate the parameters of other, arbitrary statistical models.

In some cases, the conditional probability distribution of the observations y given
some underlying unobservable data x is known. For example, x are ideal pixel intensi-
ties of a digital image and y are their measured values affected by additive white Gaus-
sian noise of zero mean and known standard deviation. Now we don’t need to estimate
the parameters of a distribution, but we rather want to employ MLE estimation to find
themost probable values of x givenwhatwe know. This is a different use of theMLE esti-
mation from what we described above, although it boils down to the equivalent mathe-
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Figure 6.32: An illustration of the MLE parameter estimation. Circles on the horizontal axis are the mea-
surements and four Gaussian distributions, with different parameters θ = (μ, σ2), are shown as candidates
to fit the true distribution. (The data were actually generated from the distribution with μ = 14 and σ = 2,
which corresponds to the curve shown in red, so the MLE estimation should identify this distribution as the
best fit.)

matical formulation. In this setting, the conditional probability p(y|x) describes the like-
lihood of y given x under some fully specified model. The maximum likelihood estimate
of the unknown values x of unobservable random variables X , given observations y is

x̂ML = argmax
x

p(y|x) (6.45)

This estimate is useful when we have no reliable prior knowledge about x, and is also
used to initialize an iterative estimation procedure, which does employ some prior
knowledge about x but benefits from a good initialization (like the Metropolis sampler
that we describe in Section 6.3.5.2).

Maximum a posteriori (MAP) estimation. One of the most widely used Bayesian esti-
mators is the one that maximizes the posterior probability of the unknown x given the
observed y, hence the namemaximum a posteriori estimate:

x̂MAP = argmax
x

P(x|y) = argmax
x

p(y|x)P(x) (6.46)

p(y|x) is called the conditional model, data distribution, or the likelihood model. P(x) is
the prior model that it describes a priori knowledge about x.

Example: Suppose that x is Laplacian distributed: P(x) = (1/2λ) exp(−|x|/λ), and that y are noisy ob-
servations of x, corrupted by zero-mean additive white Gaussian noise of standard deviation σ, which
means that p(y|x) = (1/(σ√2π)) exp(−(y − x)2/(2σ2)). It can be shown that in this case the MAP estimate
becomes simple soft-thresholding:

̂xMAP = sgn(y)(|y| − σ
2/λ)+
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where sgn(y) is the sign of y , and (g)+ equals to g if g ≥ and 0 otherwise.
This is a realistic scenario in practice, where x are wavelet coefficients of an ideal noise-free image

and y the corresponding coefficients of the observed noisy image version acquired by a digital camera.

In Section 6.3.2, we address the case where the prior model is a Markov random field.
The MAP estimate then does not have a closed-form solution but we solve it by some
approximate inference methods as those that we describe in Section 6.3.5.

Note that when the prior on x is uniform (i. e., when we have no prior knowledge
about the actual distribution of x), the MAP estimator reduces to the maximum likeli-
hood estimate in (6.45).

Minimummean square error (MMSE) estimation. Another common Bayesian estima-
tor is the minimum mean square error estimator, which minimizes the mathematical
expectation of the square error given the observation: E((X − x̂)2|Y = y). One can show
that this estimator is the conditional mean:

x̂MMSE = E(x|y) =
∞

∫
−∞

xp(x|y)dx (6.47)

When the prior and the conditional model are both Gaussian, the MMSE estimator be-
comes a linear estimate (Wiener estimate).
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Hendrik Blockeel
7 Learning from data

7.1 Why is learning important within the broader AI
domain?

The general idea behind artificial intelligence (AI) is that the computer solves new prob-
lems independently, without any humans telling it how to solve those problems. To do
that, the AI systemmust reason about the problem and about possible solutions, using a
certain body of knowledge that it has: constraints, rules, models of its environment, etc.
The domain of knowledge representation and inference studies how knowledge can be
encoded in a formal language that the AI system can reason with.

Until now, we have not discussed the question: How does the AI system obtain that
knowledge?

It hasmostly been assumed that this knowledge is encoded by human programmers
into rules, equations, etc. However, certain types of knowledge are very hard to encode.
For instance, we all recognize Mickey Mouse when we see him on TV, because we know
what he looks like. But how can we put that knowledge in a computer? We could store
a picture of Mickey, and hope that the computer can recognize him on other pictures by
comparing them with this picture. However, we then need to program a procedure for
comparing pictures, and decades of research have shown this to be remarkably difficult.

As another example, we all know how to drive, but we cannot really explain how
we do it—at least not in a sufficiently precise manner that a student could do it herself
after simply hearing our explanation. We can share some knowledge, but the student
needs practice, too, in order to create her own “knowledge” of exactly how much the
car decelerates when you hit the brake pedal, for example.

In cases such as these, it is necessary that the AI system can build knowledge itself,
through observation of, or interaction with the world. That is what we call learning—
or, when done by an artificial system,machine learning. An often-quoted definition of
machine learning is that of Mitchell, in his textbookMachine Learning (1997):

“Machine learning is the study of computer algorithms that allow computer programs to automat-
ically improve through experience.”

Specifically in an AI context, where computers use some body of knowledge to reason
with, machine learning implies that this knowledge is extended through experience (ob-
servation, interaction), or the way inwhich it is used (inference algorithms) is improved
(for instance, by learning shortcuts in the search space).

With machine learning in place, the general structure of an AI system can be de-
scribed as follows (see Figure 7.1). The AI system performs tasks or solves problems in-
dependently, using powerful reasoning mechanisms. These are based on a model. That

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111426143-007
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Figure 7.1: Software systems with increasing independence. (a) No AI: the solution is programmed.
(b) AI: The solution is found by reasoning with preprogrammed knowledge. (c) Learning AI: The solution
is found by reasoning with automatically obtained knowledge.

model is learned fromdata. The data is obtained throughobservation or interactionwith
the environment. From this point of view, learning systems could be called “AI 2.0”: in
a classical AI system, we do not program the solution but encode knowledge about the
problem; in a learning system, this knowledge is obtained automatically, rather than
hard-coded into the system.

Consider chess, for instance. A programmer could write a program that plays the
game in the same way that the programmer would (option a in the figure). Such a pro-
gram could never be a better chess player than its maker. Alternatively, the program-
mer could just encode the rules of the game into the program (option b). But knowing
the rules of the game does not automatically imply you can play it well. Playing chess
requires assessing the possible consequences of a move, and for that you need to know
the rules and reason about how they might be used by you and your opponent in this
particular situation and the situations it will lead to. Making computers able to perform
this type of reasoning in an efficient manner has been a challenge for AI research until
well into the nineties, and even in the new millennium important advances have still
been made (for instance, Monte Carlo tree search).

Apart from knowing the rules themselves, human chess players quickly learn that
the rook is more powerful than the bishop. We can program that into a computer but
how canwe quantify it?What numerical value shouldwe assign to the rook and bishop?
Furthermore, the value of a piece is really an average: depending on the position of the
piece and on the current game state, a piecemay bemore or less valuable. It is difficult to
define these numbers. However, values that work well can be learned from experience.
A chess-playing program could play many games with slightly different configurations
for these numbers, and eventually find out which configurations work well. This is an
example of how knowledge that is difficult to provide manually can be learned from
data (option c).

Advanced AI systems typically combine all three forms: preprogrammed solutions,
domain knowledge, and a learning component. Imagine a smart travel planner for rail-
way travel: the procedural knowledge may contain a planning algorithm, the domain
knowledge expresses the railroadnetwork, and learnedknowledgemight express things
such as the probability that a particular train is delayed (a planner that takes this learned
knowledge into accountmay suggest better solutions than one that does not). As another
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example, consider AlphaGo, the first computer program to beat the world champion at
the game of Go. Go is much harder than chess for computers, for two reasons: (a) the
number of moves at each possible state in the game (its “branching factor”) is much
larger; (b) to play Go well, one must reason not only about individual stones but about
patterns formed by groups of stones. Programming these patterns is challenging. The
breakthrough that AlphaGo achieved was that it learned complex relevant patterns us-
ing deep learning.

7.2 What category of problems does machine
learning solve?

Generally speaking,machine learning tasks consist of constructing, fromagivendataset,
a data structure that models certain aspects of the dataset and/or the population it was
drawn from. We will refer to this data structure as the model learned from the data.
Machine learning methods vary greatly in terms of the algorithm they use, the assump-
tions they make, the format of the model they return, and the ways in which the re-
sulting model can be used. Some examples of model formats are decision trees, neural
networks, support vector machines, hierarchical clustering, Bayesian networks. These
formats are discussed in more detail later on.

At the highest level, two types of models are often distinguished: predictive and
descriptive ones. A predictive model represents a function that, given a partial de-
scription of an instance, can be used directly to predict the missing parts. A descrip-
tive model identifies a certain structure that underlies the dataset and the population
it is drawn from. In the following subsections, we discuss these categories and subdivide
them into more specific tasks.

7.2.1 Learning predictive functions

Types of predictive learning
Imagine an email system that tries to sort the incoming mails into spam and nonspam
for the convenience of the user. The sorting procedure can be seen as a function that
maps anymail onto two possible values: spam/nonspam; or, equivalently, a function that
classifies mail into one of these two categories. Such a function is called a classifier.
In a machine learning context, the term classification is used both for the process of
classifying objects (i. e., using the classifier), and for the task of learning such a classifier
from data. The number of classes need not be two, it can be any number.

Classification can be seen as learning a function that predicts a nominal (a. k. a. cat-
egorical) variable. The term regression is commonly used for the process of learning
a predictive function that predicts a numerical variable. An example of a regression
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problem is to learn (from data) a function that takes as input a picture of a person and
produces as output an estimate of the person’s age.

While classification and regression are the archetypical examples of predictive
learning, there exist many other variants. In some cases, the output to be produced
is not a single class label, but a set of labels. This is called multilabel classification.
Typical examples are label a text with a set of keywords or annotate a picture with a set
of objects found in the picture.

A set is a very simple structure; one may also wish to predict sequences, trees, or
graphs. A generic term for this type of problem is structured output prediction.Within
structured output prediction, we can distinguish methods that predict the structure it-
self frommethods that use a given structure as input and simply annotate that structure.
For instance, we may try to predict for a set of people which ones of them are smokers,
using their social network connections as input, or to predict the social network struc-
ture itself based on properties of the individuals.

The termmultitarget prediction is sometimes used to refer to the general case of
predicting multiple variables at the same time. One could say this is a type of structured
output prediction where the structure is fixed across instances.

The tasks mentioned above are all of the following nature: given a set of (x, y) pairs,
called the training set, learn a function f that maps x values to y values in a way consis-
tent with the data. The (x, y) pairs are called examples or labeled instances; x is called
an instance and y its label.

The extent to which f is consistent with the data is typically measured by a loss
function l. The loss of f for a labeled instance (x, y) is l(f (x), y). Given a set of labeled
instances S, the empirical loss of f on S is the summed loss of all its instances. The
empirical loss on the training setD is called the training set loss. The lower the training
set loss is, the better f fits the given data. Viewing D as a random sample from some
population, the expected loss of f , also called its risk, is the expected value of l(f (x), y)
when (x, y) is drawn randomly from the population. The goal of predictive learning is
usually to find a function f with small expected loss. Indeed, in the spam example for
instance, we are not so much interested in a model that correctly classifies the mails we
received earlier (such a model could simply remember all the labels by heart), but in
using this model to classify future mails.

Levels of supervision in predictive learning
When learning predictive functions, the standard assumption is that for all the training
instances, the desired value of the target variable y is provided. This setting is called
supervised learning. The term supervision refers to the fact that some supervisor in-
forms the learner what the desired outcome of f for each x is, so that the learner can
compare the predictions of the function it has learned with the desired values.

A very different setting is that of unsupervised learning. Here, no y values are
given. It may seem hopeless to try to learn a predictive function f that correctly approx-
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imates some target function t, if t(x) is not provided for any instances. But under the
assumption that similar cases tend to belong to the same class, it may be possible to
learn a classifier f that is equivalent to t, up to a renaming of the classes. For example,
if we provide pictures of fruit and ask the system to distinguish apples, pears, and ba-
nanas, without providing any labels, it may well come up with a classifier that classifies
fruit correctly, except that it uses labels A, B, and C instead of apple, pear, banana.

In between supervised and unsupervised learning, there is a wide range of settings
where partial or indirect supervision is available. These settings have a variety of names.
In semisupervised learning, we typically have many instances, but only some of them
are labeled. At first sight, it may seem that the unlabeled instances can just be ignored,
since they offer no information about the instance-class relationship. But this is not cor-
rect, as Figure 7.2 illustrates. Adding many unlabeled instances to a small set of labeled
instances may improve predictive accuracy substantially. PU-learning is a special case
of semisupervised learning where only instances of one particular class can possibly be
labeled.

Figure 7.2: Semisupervised learning. The labeled examples alone provide insufficient information about
the class of instance “?” (a). Seeing some unlabeled instances can make it more obvious what class the
instance likely belongs to (b, c).

In superset learning, each instance is labeled with a set of labels, one of which is
the correct one, but the learner does not knowwhich one. Conversely, inmultiinstance
classification, instances are grouped into bags, and a bag is labeled with some class if
and only if it contains at least one instance of that class (e. g., learn to recognize apples
in pictures, when the supervisor tells you for each picture whether it contains an ap-
ple, but not which part of the picture is the apple). Both are special cases of learning
from label constraints, where information about labels is provided in the form of con-
straints.Weakly supervised learning is themost general term for levels of supervision
between supervised and unsupervised. It subsumes learning from label constraints, but
also learning from probabilistic information about the labels.

In an active learning setting, the learner is to some extent in control of the su-
pervision: the learner can choose which instances should be labeled. The learner will
typically help minimize the labeling effort by focusing on those instances whose label is
most informative to the learner (roughly, the instances it is most uncertain about).
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Anomaly detection
Anomaly detection is the task of identifying situations, cases, or patterns that are some-
how abnormal. A classic example is fraud detection: banks analyze credit cards pay-
ments and other transactions in the hope of quickly identifying suspicious activities,
before large losses occur. As with classification, the term anomaly detection refers to
both the use of a model to detect anomalies, and the learning of the model itself.

One could say that anomaly detection is an umbrella term for a variety of applica-
tions, rather than a separate task. This is only partially true. In some contexts, anomaly
detectors are learned from data in a supervised manner: we provide examples of nor-
mal and anomalous cases, and the algorithm needs to learn from this a classifier that
classifiers new cases into normal or anomalous. To some extent, this is a standard su-
pervised learning task. Yet, there are typically a number of issues that make this task
harder. First, there is an extreme class skew: anomalies are often very rare compared
to normal cases. Very few classificationmethods can handle this well. Second, theremay
be a substantial amount of class noise:while instances labeled as anomalies are typically
anomalies indeed, many anomalies may not have been recognized as such, and in fact
these unrecognized anomalies may be the majority. A PU-learning setting may be more
realistic in these cases.

In some cases, no examples of anomalies are given at all. Theremay also be concept
drift in the anomalies: for instance, an entirely new type of fraud may start occurring
at some point. Ideally, an anomaly detector would pick this up, even though it has never
before seen this type of anomaly. Unsupervised methods are typically based on learn-
ing a model of normal behavior. When an instance deviates strongly from that normal
behavior, it is flagged as an anomaly. This approach relies on having very few anoma-
lies in the training data; indeed, if there are too many of them, the anomalies would be
considered normal.

The concept of an anomaly is subjective. For instance, maintenance to a server may
cause a brief disruption of service or a temporary change of behavior. If this effect is ex-
pected, it is not considered an anomaly. Hence, not every deviation from normal behav-
ior is an anomaly. In this sense, anomaly detection is an underspecified ask. Entirely un-
supervised learning is therefore often not realistic: some form of semisupervised learn-
ing is required.

Preference learning, ranking, and recommender systems
Preference learning refers to a setting where we need to learn a user’s preferences
from data. More specifically, given two instances x1 and x2, we need to learn to predict
which of these two is preferred over the other. We can generalize this to learning to
rank, where the task is to learn a model that, given k instances, ranks them from high
to low value. Ranking lies at the basis of recommender systems, which given a set of
objects (books, web pages, etc.) have to predict which ones are of most interest to the
user (i. e., return the top-ranking objects).
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In some sense, ranking can be reduced to regression: if we can predict the “level
of interestingness” of each object, then the ranking follows by sorting them according
to this prediction. This view is useful when the data consists of examples of the form
(u, i, y), with y the level of interest of user u in item i. However, very oftenwe do not have
much (or even any) data of this kind. In some cases, we know whether user u preferred
item i1 over item i2 on some occasion, and that suggests that y1 > y2, but we do not know
the actual values y1 and y2. The typical learning setting that recommender systems face,
combines aspects of semisupervised learning and weakly supervised learning.

Explanation as a secondary goal
Although the primary goal in predictive learning is making predictions, in some appli-
cation domains of AI, it is crucial that the system can also explain its predictions. For
instance, a bank that uses an algorithm to decide whether or not a certain client can get
a mortgage is legally obliged to explain to the client why the loan was refused. Similarly,
algorithms used for hiring personnel, deciding howmuch credit a customer can be given
on their credit card, convicting people in court, etc., must explain their decisions. This is
often a hard requirement, for example, under European legislation, EU subjects have a
right to explanation regarding all decisions that involve them. As a result, explainable
AI has quickly become a very active research subject within AI.

It is useful to distinguish two levels at which explanations can be provided: explain-
ing the model as a whole, versus explaining individual predictions. A client who is re-
fused a loan is entitled to an explanation of why the loanwas refused in his specific case
but need not understand or be granted access to the whole model used by the bank. In
fact, some model formats are inherently too complex for complete models to be under-
stood, while concrete predictions may still be explainable.

More on the need for explainability is written in Chapter 9.

7.2.2 Learning descriptive models

When, in predictive learning, we learn from (x, y) examples a function f that for any x
can predict the corresponding y, we are in fact identifying a certain pattern in the data,
a relationship between x and y in the given examples (x, y). But the concept of patterns,
or structure in the data, is much broader than that. For instance, a system could detect,
by analyzing a set of employee rosters, that there is always at least a 16-hour period of
rest between 8-hour work shifts. This pattern has very low predictive value: with only
this information, we cannot predict very accurately who will work when. But it can
still be useful, for instance, for checking the validity of rosters. We call such patterns
descriptive patterns. They identify certain structural aspects of the data. More generally,
descriptive models are models that expose a certain global structure of the data. The
ultimate goal of learning descriptive models can be the model itself (as it describes the
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population and as such provides insight into it), or the use of this model for a variety of
tasks, including, but not limited to, prediction.

Many types of structure can be identified. Generally, structure can be defined as any
kind of deviation from a uniform distribution. A simple type of structure is when data
occurs in clusters: groups of similar data, separatedby empty areas in the instance space.
Clustering refers to the task of identifying the clusters in a dataset. The task can easily
be illustrated in two- or three-dimensional spaces (see, e. g., Figure 7.3a), but such illus-
trations make it look deceptively simple: identifying clusters in high-dimensional data
is not an easy task.Hierarchical clustering refers to building a hierarchy of clusters, or
a taxonomy, where clusters get merged into larger clusters such that many clusterings,
at different levels of granularity, are obtained.

Apart fromoccurring in clusters, it is also possible that the populationunder study is
relatively uniformly spread, but in a relatively small volume within the entire instance
space. It may lie entirely in a lower-dimensional subspace (such as a hyperplane), or in
a narrow range around such a subspace. More generally, the data may live in or near a
lower-dimensionalmanifold. For the purpose of this text, amanifold can be interpreted
as a kind of nonlinear version of a subspace (imagine a two-dimensional sheet in a three-
dimensionalworld: contrary to a plane, the sheet canbe bent). Figure 7.3 illustrates these
concepts. The statistical technique known as principal components analysis (explained
later in this text) is an example of amethod that identifies a lower-dimensional subspace.

Figure 7.3: Identifying structure in the data: the instances may occur in clusters (a), near a subspace (b) or
near a manifold (c).

Viewed from a probabilistic perspective, identifying dense clusters of subspaces can
be seen as special cases of density estimation: identifying dense and sparse regions
in the instance space. This is typically done by fitting a probability distribution to the
training set.

Association rules express dependencies between different variables. Rules such as
“basketball players tend to be tall” or “people who buy wine and bread are more likely
(than average) to also buy cheese” provide insight in certain domains (sports, customer
behavior) that may be interesting in itself but also actionable. For instance, supermar-
kets can exploit such knowledge in their promotional campaigns.

Some learners construct probabilistic models, which indicate stochastic dependen-
cies between variables. A stochastic dependency links a probability distribution over
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the values of one variable, rather than a single value, to the values of another variable.
In the context of probabilistic modeling, models that aim specifically at predicting one
variable (in our terminology, predictive models) are sometimes called conditional or
discriminative models. Given the value of one or more variables, they can be used to
predict the value of another variable. In the same context, descriptive models are called
generative. A descriptive model describes the joint distribution over all variables, and
can be used, among other things, for sampling from this distribution, in other words, for
generating data. More on this can be found later in this chapter (learning probabilistic
models) and in Chapter 6.

Reinforcement learning
Reinforcement learning is a machine learning setting that differs from other settings in
multiple respects. It is perhaps best illustrated by referring to a very old learning sys-
tem: Donald Michie’s MENACE (1960). MENACE is a system that learns to play tic-tac-toe.
It is implemented not on a classical computer but using approximately 300 matchboxes
that contain colored beads (see Figure 7.4 for a picture). There are 9 colors, one for each
position on the board. Thematchboxes are labeled: for each game state, there is amatch-
box for that state. The system plays as follows: when a move is to be made, the operator
takes a random bead from the matchbox associated with that state and draws a cross at
the position indicated by the bead. Thus, the number of beads of each color in a match-
box determines how likely it is that the system plays the corresponding move. After a
game has been played, the content of the opened matchboxes is updated as follows: if
the game was lost, the drawn beads are not put back; if it is a draw, each bead is put
back where it comes from; if the game was won, the beads are put back and an addi-
tional bead of the same color is added. Thus, after a won game, themoves played during
that game will become a bit more likely to be chosen again at a future occasion. Michie
showed experimentally that this simple system indeed exhibits learning behavior: its
performance improves with the number of games it has played.

Figure 7.4:MENACE, a reinforcement learning system implemented with matchboxes. (Source: D. Michie,
The Computer Journal, 6(3):232–236, 1963. https://doi.org/10.1093/comjnl/6.3.232).
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The above type of learning is now known as reinforcement learning. The setting
has in commonwith predictive learning that a function f mapping state x to action y (in
this context called a policy) is learned. There is no direct supervision, however: no-one
tells the learner what the right y for a given x should be. The consequences of taking a
particular action are complex: it may lead to an immediate reward (e. g., winning the
game), but more generally it changes the state of the learner, and the new state may
have higher or lower potential for future rewards. The task, in reinforcement learning,
is to learn a policy that maximizes the expected overall future reward. While perform-
ing this task, many reinforcement learning systems build a descriptive model of their
environment at some level of abstraction (e. g., which action in what kind of state leads
to what expectation in terms of future rewards), and in this sense they can also be seen
as descriptive learners.

Reinforcement learning is relevant in any case where an agent controls a process
of which the yield should be optimized in the long run, and where actions may have
long-term effects. Applications range from game-playing (e. g., learning to play PacMan
or Breakout) to controlling industrial processes where an operator’s actions may have
long-term consequences.

7.3 How are learning problems solved?

7.3.1 From data to model: an overview

It can be instructive to look at thewhole process that eventually leads to learnedmodels.
In the context of data mining, the CRISP-DMmethodology (Cross-Industry Standard

Process for Data Mining) has been proposed as a model of how data analysis methods
(including machine learning) can be applied in a business context. Six stages are dis-
tinguished: business understanding, data understanding, data preparation, modeling,
evaluation, deployment. There are multiple feedback loops between these stages (see
Figure 7.5). This view mostly stresses the importance of understanding the data, which
in a business context is indeed crucial. In amachine learning context, obtaining the data
is often a challenge in itself.

7.3.2 Data collection and preparation

Data collection is by itself a nontrivial task. There are ethical concerns, related to own-
ership, security, privacy, and possibly undesirable biases in the data; see Chapter 9 for
more on this. Data sources may contain noisy or incomplete data, so a data cleaning
phase is often included.Whenmerging data frommultiple sources, themerging process
itself (data fusion) can be challenging. Even when data is easy to obtain (from the web,
from sensors, etc.), adding labels to the data (for supervised learning) may be costly. The
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Figure 7.5: Schematic overview of the CRISP-DM methodology: the different phases and their feedback
loops among them. (Source: http://crisp-dm.eu/reference-model/).

data may not be in a format that is immediately useable by machine learning systems:
transforming it into the right format is called data wrangling. All these different steps
are part of the data preparation phase.

7.3.3 Format of the data

In introductory courses on statistics, it is typically assumed that the data consists of a set
of instances, and each instance is described by the same set of variables. These variables
may be nominal (they take a symbolic value) or numerical (their value is a number).1

As such, the whole dataset is easily represented as a table, where columns are variables
and rows are instances. This format is also called the standard format. A row is also
called a tuple in this context.

In machine learning, we often encounter very different types of data, which are
not so easily represented in a tabular format. In the following, we provide a categoriza-
tion.

1 More fine-grained categorizations exist, but those are not relevant here.
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Tensorial data
An image is typically represented as an array of numbers or vectors, where each num-
ber represents the brightness, or each vector the color, of a single pixel. Thus, an image
with a resolution of 1000×1000 pixels, where the color of each pixel is represented us-
ing a three-dimensional RGB vector (which contains the values of the red, green, and
blue components of the color) is represented by 3 million numbers. While syntacti-
cally this format may look very similar to the standard format (1 picture = 1 row con-
taining 3 million numbers), semantically it is very different. In the standard format,
each variable has a well-defined meaning and is considered relevant by itself. A single
pixel in a picture, however, carries very little meaning, and insofar it does, its mean-
ing is practically identical to that of its neighboring pixels. Groups of nearby pixels
are more likely to jointly carry some meaning. But in the standard format, the rela-
tionship between different variables (namely, their relative position in the image) is
lost.

A piece of video is essentially very similar to an image; one simply adds a time di-
mension to the image. In a similar way, one can handle 3-dimensional images, and pos-
sibly add time as a fourth dimension.

In all these examples, the data is numeric, but rather than being ordered in a single
row, the numbers are put in a table with two or more dimensions. Such a table is called
a tensor. The tensor structure follows from a notion of “nearness”: cells can be near
in the X, Y, or Z dimension, in the time dimension, or in other ways. For instance, for
a time series that contains one number per day, the numbers could be arranged into
a tensor where one dimension indicates the weekdays, and numbers are “near” in this
dimension if they are exactly nweeks apart. A tensor representing video, with two space
dimensions and one timedimension, is somewhat similar to aflip book,where eachpage
is one picture and consecutive pages contain slightly different pictures.

Tensors are quite similar to the notion of vectors (for one-dimensional tensors) and
matrices (2-dimensional tensors) and are in some sense a generalization of these con-
cepts. Figure 7.6 illustrates this.

Figure 7.6: Vectors, matrices, and tensors.

Graphs, trees, and sequences
A graph is a mathematical structure that consists of nodes and connections between
them. Graphs are typically used to represent network-like structures. For instance,



7 Learning from data � 253

a road network can be represented as a graph: edges represent roads and nodes rep-
resent junctions. In addition, molecules, which consist of atoms connected by bonds,
essentially have a graph structure.

The nodes and edges in a graph can be labeled with symbols, numbers, or any other
type of data. For instance, the atoms comprising a molecule would typically be labeled
by their element type, the roads in a network could be labeled with their length, etc.

While graphs are relatively simple structures, they are relatively difficult to han-
dle. A graph can be represented by a matrix, the so-called adjacency matrix: it contains
one row and column per node, and the element on row i and column j is 1 if nodes i
and j are connected, and 0 otherwise. Note that such a representation imposes an order
on the nodes, which is not defined by the graph itself. The question of whether two ad-
jacency matrices really represent the same graph boils down to whether a reordering
of the rows and columns of one matrix exists so that one becomes equal to the other.
No truly efficient method is known for answering this question, which is also known as
determining graph isomorphism.

A path is a sequence of edges that lead from one node to another (or the same; in
the latter case, the path is called a cycle). A tree is a graph that is connected (there is a
path between any two nodes) and has no cycles. Sometimes one node in a tree is singled
out and called the root of the tree. Rooted trees are very common as a data structure.
For instance, web pages (and generally all HTML documents) internally have a rooted
tree structure.

A sequence is a (somewhat degenerate) rooted tree that never splits into multiple
branches; that is, for any two paths starting from the root, one path is completely con-
tained in the other. Edges become irrelevant at this stage: abc can only mean the graph
a-b-c, no other structure is possible. A finite sequence inwhich each node is labeledwith
a symbol from some finite alphabet is also called a string. A time series is a sequence
in which each consecutive element is annotated with a point in time. Figure 7.7 shows a
few examples of graphs, trees, and sequence data.

Figure 7.7: Graphs, trees, and sequences.
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Like tensors, graphs have an internal structure. Typically, however, the internal
structure of tensors does not vary among different instances, while that of graphs does.
For instance, tensors representing 2-dimensional pictures with constant resolution all
have the same structure; apart from the border pixels, each pixel has one left, right, up-
per and lower neighbor. In a social network, not every person has the same number of
friends, and there is no concept such as “your left friend.”

Relational data
In practice, data is often stored not in a single table or graph format, but in a relational
or object-oriented database. We will here use terminology from relational databases,
but statements apply equally to object-oriented or other advanced formalisms.

In a relational database, information is stored not in a single table, but in multiple
tables (see Figure 7.8 for an example). The tuples in these tables are connectedwith each
other using foreign key references. These connections essentially form a kind of graph.
The main difference between relational database representations and graph represen-
tations is that in graphs, the graph structure is often the primary information that is
being conveyed, whereas in relational databases, the primary information is in the tu-
ples.

Figure 7.8: A relational database. Information related to, for example, Professor Dumbledore, is spread
over multiple tables. (Illustration by Jonas Schouterden).

Consider, for example, a recommender system for recommending movies. There is
data about users (one table, containing, e. g., each user’s age, gender, native language,
etc.), data about movies (another table, containing the title, genre, director, year of re-
lease, etc.), and data about how users rate movies (a third table containing in each tuple
a reference to a user and amovie, and information pertaining to this combination, such
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as how this user rated that movie). The movie table might also be connected to an actor
table through a relation “. . . plays in . . . ,” which might contain information about what
role the actor played in that movie, etc.

We say that data is relational when there are relationships between instances, or
each instance has itself an internal structure that is relational. For example, a molecule
contains atoms and bonds between them: this is an internal relational structure. In a
social network, if we are analyzing persons (one person is one instance), the network
describes relations between instances.

Knowledge
The broadest type of information is knowledge. Knowledge can include factual data,
such as the age of a particular person, but also general knowledge about the domain.
That knowledge can consist of logical constraints, mathematical formulas, etc. A knowl-
edge base allows us to represent all these kinds of knowledge. Representation languages
for knowledge bases are often based on subsets of first-order predicate logic. Working
with those subsets allows for efficient computations. Description logics are themost typ-
ical example of this. Languages based on description logics allow us to define ontologies
and reason with them. One could, for instance, indicate in a medical database that the
flu is caused by a viral infection. Data analysis methods can take this into account when
detecting patterns.

Description logics are useful for conceptually rich contexts, but less so for the de-
scription of physical systems, where equations over real numbers rather than categori-
cal data are used. Such knowledge bases could, for instance, represent knowledge in the
form of differential equations. We refer to Chapter 5 for a more in-depth discussion.

Converting data to the standard format: feature selection and construction
Most machine learning methods assume a specific type of data: standard format, ten-
sorial data, graph data, logic-based knowledge bases, etc. Many advanced methods,
however, have been developed specifically for the standard format. Therefore, in many
cases, the success of machine learning lies in converting the data into the standard
format in such a way that the most relevant aspects of the data are preserved, while
irrelevant aspects are removed.

When converting data from its raw form into a meaningful representation in the
standard format, the variables in this standard format are usually called features. The
process of finding the right features is called feature engineering; it involves both fea-
ture selection (selecting the most relevant features from a large set of candidate fea-
tures) and feature construction (creation of new features by combining existing ones).

Inmany cases, feature construction is by far themost time-consuming part of thema-
chine learning process. Given the right features, many learningmethods achieve similar
performance in terms of predictive accuracy, and the choice ofmethodmatters less than
the choice of features. Unfortunately, this task is very hard to automate. If deep learning
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has forced a breakthrough in computer vision, this is largely due to its capacity to auto-
matically define useful features (see the section on deep learning for more information
on this).

When data is available frommultiple sources, the integration of information avail-
able from these different sources is called fusion. This integration can happen on the
level of the raw data (early fusion), the features, the models, or the actual predictions
(late fusion).

A specific type of data conversion is needed formethods that assume all inputs to be
numerical. Nominal data are then encoded using so-called dummy variables or a one-
hot encoding. One-hot encodes a nominal variable with k possible values as a vector
of k binary variables, one of which is 1 and all others 0. Dummy variables as used in
linear regressions, for example, work in a similar way, except that only k − 1 variables
are used, and the kth value is indicated by setting all variables to 0.

7.3.4 Paradigms for learning

Having discussed the preparatory steps of data collection and data preparation, we now
come to the main topic: methods for learning from data.

The field of machine learning is very broad, and different views on the area as
a whole exist. To name but a few examples: Pedro Domingos, in his best-selling book
The Master Algorithm, distinguishes five different “tribes” of machine learners (called
symbolists, connectionists, evolutionaries, Bayesians, analogizers). Peter Flach, in his
textbookMachine Learning: the Art and Science of Algorithms that Make Sense of Data,
considers three paradigms: geometric, logical, and probabilistic. Chris Bishop’sMachine
Learning and Pattern Recognition tries to provide a uniform view on this broad area
and to this aim takes a Bayesian perspective. Leo Breiman, in his 2001 article Statisti-
cal Modeling: The Two Cultures, distinguishmethods that assume a particular stochastic
model of data generation from those that do not,2 and views this as themajor difference
between classical statistics (which assumes such amodel) andmachine learning (which
often does not).

Machine learning approaches can be categorized in many dimensions. We can dis-
tinguish them according to the type of problem they try to solve, the type of data they
can handle, the format of the output they produce, certain issues they can deal with, etc.
To illustrate some of these things, consider the following example task.

An email program wants to classify mails as spam or nonspam, in order to make
it easier for the user to sift through them. To do that, it needs to build a model of what

2 For instance, classical least-squares linear regression assumes noise-free measurements of the inde-
pendent variables, Gaussian noise on the dependent variables, and a linear relationship between the
independent variables and the dependent variable’s conditional expected value. To a statistician, under-
standing an approach implies understanding this model.
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spam mails (or regular mails) look like. That model can be in the form of a predictive
function: a function that takes as input a description of the mail and produces as output
an answer to the question whether the mail is spam. Its output could be one of two
categorical values (spam/nonspam), but it could also be a number that indicates how
likely it is that the mail is indeed spam. This number could be a probability: a number
between 0 and 1, with the property that, for instance, among all mails that score 0.9, one
expects 90% of them to be spam.3 But it does not have to be: it might also be any positive
real number, with the property that the higher the number is, themore indications there
are that the mail is indeed spam.

The input to the predictive function is a description of the mail. This might be a
relatively simple description, such as the number of times particular words occur, the
number of typos in the mail, etc. It may also be a more complex type of description,
one that does not simply count words or typos, but tries to “understand” the text, which
among other things requires taking into account the sentence structure. Finally, the de-
scription used may simply be the actual text: just a string. In the latter case, we say the
learner takes as input the “raw data,”un-preprocessed, as opposed to the earlier cases,
where certain descriptive features are defined, and themail is preprocessed by comput-
ing values for these features before a prediction is made about it.

The predictive function can differ both in terms of the output it gives, and the input
it takes. However, even among functions that use exactly the same format for inputs
and outputs, there is great variety in the representation of the function itself. Functions
with numerical inputs and outputs may describe the link between outputs and inputs
using a mathematical formula, as for a linear regression. But many other formats are
possible. For instance, certain types of functions can be described as a set of if-then
rules. One such rule might be: if the mail sender occurs in the user’s address book, the
mail is not spam. Rules of this kind are usually very easy to understand, compared to
mathematical formulas.Wewill discuss these andmany other formats in the remainder
of this chapter.

The mentioned learning paradigms constitute only the top level of the taxonomy
of machine learning methods. Within a particular type of method, different algorithms
exist, each with a different behavior. Individual algorithms typically have a number of
so-called hyperparameters4 that affect the behavior of the algorithm.

There are many more ways in which machine learning approaches can be de-
scribed. OntoDM5 is an ontology for data mining that attempts to bring order to the
landscape of machine learning algorithms, among other things.

3 If this link between the predicted number and some well-defined proportion is not present, it is not
very meaningful to call the produced number a probability.
4 Hyperparameters are just settings for the learning algorithm. The term is used to avoid confusionwith
numerical variables that are part of the learned model, which are then simply called parameters.
5 http://www.ontodm.com/
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In the following sections, we discuss different approaches to machine learning, cat-
egorized according to the format of the model they produce. We discuss their hyperpa-
rameters as we go along.

7.3.5 Instance-based methods

Instance-based methods are machine learning methods that simply remember the in-
stances they have seen (i. e., their “model” is the training set itself). At the time a predic-
tion needs to be made, they compare the case for which a prediction needs to be made
to the stored cases and make a prediction by analogy. The assumption that these meth-
ods rely on is: if two cases are similar with respect to many observed variables, they are
probably also similar with respect to the variable to be predicted. If it looks like a duck,
walks like a duck, and quacks like a duck, it’s probably a duck.

Methods in this class are also called nearest neighbor methods. The most basic of
these is called “k-nearest neighbors,” or k-NN. Theprediction algorithm is simple: to clas-
sify a new case, find the k most similar cases in the training set, see which class is most
common among those, and use that class for the prediction. In a regression context, one
would typically predict the mean of the target values of the k nearest neighbors. k-NN
like methods can also be used in the broader predictive context, such as for multilabel
prediction, and even for descriptive learning, such as density estimation. For instance,
in a Euclidean space, if the k’th nearest neighbor is at distance r, this means there are
k + 1 instances in a hyperball with radius r, so k+1

V (with V the volume of the hyperball)
is a rough estimate of the local data density.

Methods like these strongly rely on having a suitable notion of similarity. In many
cases, when inputs are numerical, a distance measure such as Euclidean distance is
used: two cases are considered similar if they are closer together in the input space.
This also allows for intuitive visualizations, as in Figure 7.9, but such a simple definition
of similarity leads to problems. For instance, assume person A is 1.80m tall and weighs
80 kg, and is represented using the vector A = (1.80, 80). Assume, similarly, B = (1.60, 79)
and C = (1.83, 82). One could argue A is more similar to C than to B, given that A and C are
approximately equally tall and heavy. However, the Euclidean distance betweenA to B is
smaller thanbetweenAandC. This is because a large difference in lengthmaps to a small
number. If we chose to express length in centimeters rather than meters, the Euclidean
distances would be very different, and A would be more similar to C. Clearly, any classi-
fication method that gives a different outcome depending on the unit of measurement
used in the training data (which is an entirely random choice) is not a good method.

As illustrated above, nearest neighbor methods suffer from high sensitivity to
rescaling of individual dimensions. They also tend to underperform in high-dimensional
input spaces, especially when many of the input attributes are not relevant. The Eu-
clidean distance between two instances is then easily dominated by irrelevant dimen-
sions, which makes the classification highly random.
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Figure 7.9: k-NN for i = 5 classifies the instance marked “?” with the majority of its 5 nearest neighbors
(within the circle). As 4 of these are A and 1 is B, the predicted class is A.

Instance based methods can work very well, if an appropriate similarity measure
is used. Unfortunately, as illustrated above, it can be very hard to find such a measure.
Another weakness of nearest neighbor methods is that they can be slow at prediction
time. When a large training set is used, finding the k nearest neighbors among possibly
millions of cases can take a lot of time. The solution to this is to construct an appropriate
index structure on the dataset, one that makes it possible to find the nearest neighbors
of an instance without searching the whole dataset.

7.3.6 Decision trees

What are decision trees?
Decision trees underly many of today’s most successful learning approaches. A decision
tree represents a very simple type of decision procedure. It starts with one test, and
depending on the outcome of that test, it is decided what the next test will be. This con-
tinues until a decision is reached. Figure 7.10 shows an example of a decision tree.

Figure 7.10: A decision tree that a person might use to decide whether to play tennis today. The person
first checks the outlook; if that is sunny, then the humidity is relevant: if the humidity is normal, it’s a good
day for playing tennis. (Example after T. Mitchell, Machine Learning).

The decision can be a prediction, and in that case the decision tree represents a
predictive model. The tree is called a classification tree when a nominal variable is
predicted, a regression tree when a numerical variable is predicted. In principle, the
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tree can also predict multiple variables at once (or, equivalently, a tuple-valued vari-
able); such trees are sometimes called multitarget trees. Classification trees that do
not merely predict a class but define a conditional probability for each class given the
input, are called probability estimation trees.

As it repeatedly defines a dataset into subsets, a tree implicitly defines a hierarchical
clustering. Trees learned for this purpose are called clustering trees. The difference
between a hierarchical clustering defined by a clustering tree, and one defined by other
clustering algorithms, is that each cluster in a clustering tree is defined precisely by a
set of test outcomes.

Density estimation trees partition the dataset into regions of high and low density
and, as such, can be used to describe the joint probability distribution of the data.

How can we learn them?
Given a dataset, how can we learn a decision tree that accurately models it? The proce-
dure for learning such a tree is remarkably simple. It works as follows: given the whole
dataset and a target variable, find the test whose outcome is most informative about the
target variable (in other words, the test that correlates best with the target). Once that
test is found, split the dataset into subsets based on the outcome of the test. Repeat this
procedure for each subset thus created, and for their subsets, and so on, until further
splitting is no longer useful.

This procedure requires a few details to be filled in. First, what is a “test”? In the
standard framework, a test is typically based on a single attribute. Nominal variables
can simply be tested by asking for their value; this test has as many outcomes as there
are values in the variable’s domain. For nominal variables with many values, it may be
better to use a binary test: the domain of the variable is partitioned into two subsets,
and the outcome of the test equals the subset to which the variable’s value belongs. For
numerical attributes, the value of the attribute is typically compared with some thresh-
old, and there are two possible outcomes: the value is less than or equal to, or greater
than the threshold.

A second question is: how do wemeasure how “informative” a test is for the target?
For classification trees, the concept of “information gain” can be used: this is the average
reduction of class entropy caused by the test. Entropy is a measure from information
theory that can be interpreted as diversity. A set of 50 dogs and 50 cats is more diverse
than a set of 90 dogs and 10 cats, and a set of 30 cats, 30 dogs, and 40 sheep is even more
diverse. The less diverse a set is, the easier it is to predict the class of a randomly chosen
element.

For numerical targets, diversity is typically measured as variance, and the best test
is then the one that reduces variance the most (i. e., the average variance of the target
within each subset must be as small as possible). Variance can also be used for higher-
dimensional target variables, and for nominal variables if they are encoded using a one-
hot encoding (in this case, the variance of this encoding is called Gini impurity).
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A third question is: when is it no longer useful to split a subset into smaller subsets?
For classification trees, it is clear that when a subset has zero class-entropy (i. e., all cases
in the subset have the same class), further splitting is no longer useful. For regression
trees, the equivalent would be zero variance, but that is almost never achievable. Some
learners stop splitting when the best test does not lead to a significant reduction of en-
tropy or variance.When the subset to be split is very small, further reductions are almost
certainly not significant; for that reason, many learners only split subsets whose size is
above some threshold value.

It is known that too large trees tend to overfit the data: they fit the training data
well but tend to perform worse on other data. Figure 7.11 illustrates this problem. Ide-
ally, a tree learner stops splitting just before such overfitting occurs. However, it turns
out it is very hard to determine the right moment. Statistical significance tests do not
work well in this context, and it is perfectly possible that even if no single test leads to
a substantial improvement, a combination of tests will. For this reason, many learners
grow the tree beyond its optimal size, and prune away useless branches afterwards. This
pruning process typically makes use of a so-called validation set: a set of data not used
for learning the tree but used to estimate the quality of the full tree and its pruned vari-
ants during the pruning process. Since the validation set was not used while growing
the tree, it provides an unbiased view of the actual predictive accuracy of the tree. The
pruning process then consists of pruning away branches that did not lead to a higher
accuracy on the validation set (i. e., the improvement they gave on the training set was
most likely due to overfitting).

Figure 7.11: Left: a small tree fits the training data almost perfectly. It can be grown to fit perfectly (right),
but a relatively large area to the right will then be predicted positive, while the data contains very little
evidence for this.

Finally, there is the question of what prediction to make in a tree leaf. The most
straightforward choice is to predict the class that occurs most frequently in the leaf
(the “mode”), or the mean of the numerical target values in it. For probability estima-
tion trees, the probability distribution of the classes in the leaf is typically returned.
For density estimation trees, a local density model is learned and stored in the leaf. For
regression trees, one can consider including in the leaf, instead of a constant value, a
linear model that predicts the target from the other variables. This linear model is then
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learned using linear regression on only the data in this leaf. Such trees are calledmodel
trees.

From a machine learning point of view, decision trees have a number of impor-
tant advantages. The learning algorithm is very fast: trees are often learned in under
a second, even from large datasets. The prediction procedure is even faster: making a
prediction using a single tree typically involves less than a dozen comparison opera-
tions, which means one can easily make millions of predictions per second. It is easy
to understand how trees are built and how they make their predictions. It is easy to ex-
plain a prediction: “the provided instance has properties X, Y, Z, and among all instances
with those properties, 90% belong to class A, therefore it is likely that this instance also
belongs to class A.” The main disadvantage of decision trees is that their predictive ac-
curacy, while good, typically lags slightly behind the accuracy of other models. In cases
where accuracy has priority over the rest, this is often a reason for preferring more
complex models. However, some of those more complex models internally still rely on
trees, as the next section illustrates.

7.3.7 Ensembles of decision trees

Bagging
In machine learning, an ensemble is a predictive model that simply consists of mul-
tiple simpler models, combined in some way. Just like a committee of experts can be
wiser than a single expert, especially when those experts have complementary exper-
tise, a committee of models (an ensemble) can be more accurate than any of its compo-
nents.

To learn an ensemble, the first question we face is: how do we get multiple compo-
nent models? Let us say we have one decision tree learner, and a single dataset. We can
use the learner to learn a tree from this dataset. If we use the same learner a second time,
on the same dataset, we will get the same tree. But there is no point in learning multiple
trees, if they are all identical. A simple way to get different trees then is to learn them
from different datasets. If we have only one dataset, we can create multiple variants
of it through random sampling. One specific procedure for this, called bagging, works
as follows: given a dataset containing N instances, choose N times a random instance
from it. The same instance can be chosenmultiple times. The result is a “bag” containing
N instances, in which each instance from the original set occurs zero, one, or multiple
times. This bag is a first variant of the original dataset. Because the procedure is ran-
domized, it can be used repeatedly, creating a new variant with each run. Thus, from
a single dataset, k datasets are created with the same size, and whose elements follow
roughly the same distribution. Running our learner once on each of them yields k mod-
els. These likely differ from each other, as they were learned from different datasets.
Still, they are all expected to generalize equally well toward the population, as each was
learned from an equally large sample from the same distribution. Any differences be-
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tween these models are necessarily due to coincidence in how the particular datasets
were formed and, therefore, are related to overfitting.

The next question is: how do we combine themodels at prediction time? The choice
made in the technique called bagging is simple: we consider the predictions of individ-
ual models as votes. For classification, we use the majority of these votes for the final
prediction; for regression, the mean.

Thus, the procedure called bagging can be summarized as follows: create k variants
of the given dataset by sampling with replacement, learn one model from each variant
(always using the same learner), and have those models vote.

Because the baggedmodel is less dependent on coincidental patterns in the dataset,
it tends to have better accuracy than the individual models. It has been confirmed ex-
perimentally that the difference is often substantial.

Random forests
Anobvious disadvantage of bagging is that learning takes longer: instead of learning one
model, we need to learn k models. Furthermore, for bagging to work well, it is essential
that the different models are sufficiently different. Both of these issues are quite minor,
in the context of decision trees: tree learning is very fast, and it is relatively unstable,
meaning that small differences in the training set suffice to get significantly different
models. Yet, the bagging procedure can be improved to a procedure that is known as
random forests.

Random forests add just one small thing to the bagging procedure. When learning
an individual tree, instead of considering at each node all possible tests, and selecting
the best one, random forests pick the best from a randomly chosen subset of possible
tests. Given a total ofm attributes, the number of attributes actually considered for test-
ing is typically√m, or even less. Especially in high-dimensional datasets, which contain
many attributes, this speeds up the learning process considerably. Obviously, the actual
best test may not be considered in this way, but this is not a big deal, because optimality
is to some extent coincidental (had we learned from a different sample, a different test
would have seemed optimal), and even with suboptimal tests, trees tend to work well in
practice. Moreover, the randomness thus introduced increases the variation among the
trees in the ensemble. This positively affects the predictive performance of the ensem-
ble, and often overcompensates a possible loss of accuracy of the individual trees.

For well over a decade since its publication by Breiman in 2001, random forests
were widely considered the best way of building tree ensembles, in terms of predictive
accuracy. Only rather recently, a technique that is about equally old has led to a decision-
tree based method that pushes accuracy still a bit higher: gradient boosting.

Gradient boosting, gradient boosted trees
Boosting is, like bagging, an ensemble method. It differs from bagging in how it obtains
different models, and how these models are combined. There have been multiple in-
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terpretations of how and why boosting works. In his text, we take a relatively recent
interpretation: that of gradient boosting.

The basic idea behind boosting is the following. Assume we have learned a predic-
tive model from a given dataset. Even on the training set, the predictions by the model
may differ from the observed values (models do not necessarily have 100% accuracy on
the training set).

Observing this, we can try to learn a second model that tries to fix the errors that
the first model makes. In the context of regression, a natural approach would be: once
a model f1 is learned, replace each target value yi in the dataset by yi − f1(xi) and learn
a model f2 from this new dataset. f2 basically learns how much we have to add to f1’s
prediction to make it equal to yi. Once we have learned f2, we should combine f1 and f2
by predicting for any x, f1(x) + f2(x). If there is still a difference between the observed yi
and the predictions f1(xi) + f2(xi), this procedure can of course be repeated.

Though intuitive, the above procedure is a bit too naïve to work well. However, a
principle has been developed that has sound theoretical support, and ofwhich the above
is a special case: gradient boosting. The principle is motivated by statistical approaches
to learning, which are discussed later in this text. It essentially formulates the simple
idea above as a gradient descent approach, where an approximation to the target func-
tion is iteratively improved by “moving downhill” in a search space, in such a way that
the loss is maximally reduced for a given step size. Basically, the procedure learns f1 and
f2 as above, but determines a factor α such that f1(xi)+αf2(xi)minimizes the loss, and on
top of that, typically using a learning rate such that a smaller step is set in this direction
than the one that theoretically minimizes the loss. These adaptations to the simple intu-
ition above aremotivated by the gradient descent viewpoint. This viewpoint also makes
it possible to apply the principle to other loss functions and in, for example, a classifica-
tion context. An older boosting method called AdaBoost turns out to be derivable in this
manner.

The principle of gradient boosting can be applied to any type of learner that makes
numerical predictions and uses a differentiable loss function. In the context of decision
trees, themethod is generally knownas gradient boosted trees. Awell-known implemen-
tation of this method is XGBoost. XGBoost has been shown to yield very accurate predic-
tions under broad circumstances, and is at the time of writing, considered by many the
most effective learner for a wide range of learning problems.

Isolation forests
While all the abovemethods are set in a predictive learning context, tree-basedmethods
can also be used in other contexts. One of the most popular methods for unsupervised
anomaly detection is called isolation forests (IF). The basic idea behind IF is to recur-
sively split the data based on random tests, until each instance is in a separate leaf (is
“isolated” from all others). Instances that are very different from other instances tend
to get isolated more quickly. Due to this, the depth of an instance’s leaf is an indication
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of how anomalous the instance is. Isolation forests learn multiple trees in this way, and
eventually assign an anomaly score to instances on the basis of the average depth of
their leaf in these trees.

7.3.8 If-then-rules

If-then-rules have been popular representation formats in AI from its very beginning.
An if-then-rule is simply an expression of the form:

IF conditions THEN decision

Depending on the context, the “decision” can be a predicted value for some target vari-
able, a recommended action, a diagnosis, or just about anything else. The condition part
typically contains a set of individual conditions, all of which have to be satisfied in order
for the rule to apply.

A rule set is a set of such rules. A rule list (also called decision list) is an ordered
set of such rules. In a rule list, rules are typically evaluated from first to last, and the
first rule whose condition is fulfilled is the one considered relevant.

The difference between rule sets and rule lists is easily illustrated on a small exam-
ple that everyone is familiar with: the definition of leap years (which have 366 days).
A year is a leap year if it is a multiple of 4, except for years ending in 00: those are only
leap years when they are a multiple of 400. This definition can be written using if-then-
rules as follows:
– As a rule set:

if multiple of 4 and not multiple of 100 then leap year

if multiple of 400 then leap year

if not multiple of 4 then regular year

if multiple of 100 and not multiple of 400 then regular

year

– As a rule list:

if multiple of 400 then leap year

else if multiple of 100 then regular year

else if multiple of 4 then leap year

else regular year

The rule list is written using the “else if” format to remind the reader that a rule only
applies when none of the earlier rules apply.

Rule lists tend to be more compact than rule sets. When a simple rule exists that is
almost correct but has some exceptions, the exceptions can be handled using separate
rules that precede this rule. In a rule set, the exceptions have to be excluded explicitly
from this rule.
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Rule sets, on the other hand, are easier to interpret. An individual if-then-rule is
easy to understand, but the rules in a rule list are only accurate when considered in the
context of the rules preceding it.

Just like decision trees, decision rules can be used for both classification and regres-
sion; they are then called classification rules and regression rules.

Learning classification and regression rules
Any decision tree can trivially be turned into a rule set: with each leaf of the tree, we
simply associate one rule that has all the test outcomes on the path from the root to that
leaf as its conditions, and the leaf’s prediction as its decision. However, there are also
algorithms that learn rule sets or lists straight from the data, without the detour via deci-
sion trees. They typically learn one rule at a time. A typical approach, sometimes called
the covering approach, is to repeatedly try to learn one rule thatmakes only correct pre-
dictions, and apart from that is as widely applicable as possible. Each consecutive rule
focuses on cases that have not yet been handled correctly by previous rules. A single
rule is typically learned by starting without any conditions, and repeatedly adding a sin-
gle condition in such a way that the condition maximally improves the rule’s accuracy.
Though relatively old, Cohen’s RIPPER algorithm (Cohen, 1995) is still state-of-the-art for
classification rules. An implementation of it can be found in the WEKA toolbox for data
mining.

Learning association rules
In the above discussion, the rule set was interpreted as a predictive function. However,
due to their interpretability, rule sets are also very useful for descriptive learning,where
the goal is to understand the data. When used for that particular purpose, the standard
rule learning algorithms are no longer effective.

A descriptive rule is useful when it adds information that was not provided by other
rules. A discriminative rule is useful when it contributes to a better discrimination be-
tween different classes.

To illustrate the difference: if we want a rule set that allows us to distinguish dogs
and cats, then the rule “if it barks, it’s a dog” suffices. The rule “if the animal buries
bones, it is a dog” may be equally accurate, but we have no need for it if the previous
rule already works well enough. A predictive rule learner will therefore not add the
second rule to the set. A descriptive rule learner, however, will typically return both
rules, as both may be interesting to a user who wants to gain insight into the behavior
of animals.

Association rules are one type of descriptive rules. Syntactically, they are very sim-
ilar to classification rules. They have the following format: P → P′, where P and P′ are
sets of properties that an instance may have. The rule expresses that when an instance
has all properties in the set P, it is more likely to also have all properties in the set P′.
Two numbers are typically associated with an association rule, called the support and
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confidence of the rule. The confidence is the fraction of instances with properties P
that also have properties P′. The support is the fraction of instances that have both P
and P′. Support expresses how broadly applicable the rule is, confidence expresses how
accurate it would be if it were interpreted as an if-then rule: “if P then P′.”

An association rule describes a pattern in the data, and the goal of association rule
mining is typically to find all patterns in the data that meet certain quality criteria. The
APRIORI system was among the first to solve the following problem: return all associa-
tion rules whose support and confidence are above given thresholds s and c.

The prototypical application of association rules is market basket analysis: what as-
sociations exist between products bought by customers in a supermarket? For instance,
assume that among all customers buying mozzarella and ham, 30% also buy tomatoes.
If the overall percentage of customers buying tomatoes is only 20%, this rule indicates
a clear positive association between buying mozzarella and ham and buying tomatoes.
Such rules provide insight into customers’ buying behavior, which can be invaluable to
the supermarket.

Although association rules look very similar to classification rules, there are impor-
tant differences. Classification rules predict the value of just a single variable (the target
variable), they aim at making this prediction with 100% accuracy, and a rule set typi-
cally contains as few rules as possible. In a set of association rules, a single rule may
predict multiple properties, the predicted properties vary from one rule to another, the
rules need not have near 100% accuracy in order to be useful, and a rule set may con-
tain many rules that would be redundant when used for the sole purpose of predic-
tion.

Inductive logic programming
As explained in Chapters 4 and 5, many formalisms for knowledge representation and
reasoning rely on some form of logic. Mathematicians distinguish propositional logic,
which have propositions (atomic statements) and logical connectives such as “and,” “or,”
“not,” and predicate logic, which uses a richer vocabulary where one can refer to ob-
jects in some universe of discourse, to properties of these objects or relationships among
them (using variables where needed). In predicate logic, the fact that a country can have
only one capital could for instance be expressed as∀x, y, z : Capital(x, y)∧Capital(x, z) →
y = z, which is to be read as: for all x, y, z, if y is the capital of x and so is z, then y and
zmust be equal. This rule cannot be expressed using propositional logic, it simply does
not have the vocabulary for that.

While the field of knowledge representation has moved beyond propositional logic
decades ago, most of machine learning (and related fields such as probability theory
and statistics) still employs propositional representations. All the example rules shown
above can be expressed in propositional logic. Inductive logic programming (ILP) is
an exception: it is a learning paradigm inwhich predicate logic is used to represent both
the data we learn from, and the results of the learning process.
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Suppose we have a geographic knowledge base, containing, among other things,
which city is the capital ofwhich country. Such a rule, stating that cities can be the capital
of only one country, could be discovered automatically by an ILP systemby analyzing the
data. In terms of application potential, the discovery of such patterns is not essentially
different from standard rule discovery: we can learn predictive rules that allow us to
fill in missing values or guess unknown information, we can learn descriptive rules that
explain properties of the data, we can detect errors or anomalies by looking for patterns
that are almost always satisfied (the exceptions then being considered anomalies), etc.
The main difference is that the increased expressiveness of predicate logic allows the
system to identify patterns that standard rule-learners could never find, because they
simply cannot express them.

ILP has been applied to a wide variety of concrete problems. Maervoet et al. (Maer-
voet et al., 2012) showhow it can be used for anomaly detection in geographical informa-
tion systems (GIS). In this application, an ILP system was used to find common patterns
in a road network, which were next used to identify errors in the data. For instance, the
system could discover the pattern that road crossings of one-way streets always have
both incoming and outgoing streets (to us this is obvious: a crossing with only incoming
streets could never be left without violating traffic regulations), that road segments ad-
jacent to primary schools always have a 30 km/h speed limit, etc. This led to the identifi-
cation of errors in the database. The ability to automatically discover unusual situations
in such a database, without first having to define what is unusual, is a major advantage
in the maintenance of complex knowledge bases, especially when these evolve. For in-
stance, a change in traffic law stating that road segments near primary schools must
have a 30 km/h speed limit, would be automatically picked up by such a system, and
exceptions to the rule reported. Clearly, this can be a major help for keeping GIS up to
date.

A road network is essentially a graph, and indeed analysis of such networks could
also be donewith graph-based learningmethods.Whatmakes first-order predicate logic
interesting is that it can express any knowledge that can be expressed using graphs and,
moreover, it is a well-studied mathematical formalism.

First-order predicate logic is expressive enough to allow the construction of com-
plete computer programs in it. The programming language Prolog exploits this fact. To
illustrate this: a Prolog implementation of the well-known quicksort algorithm (which
efficiently sorts an array from low to high) would typically contain the following rule:

Sorted(x, y) ← Split(x, xl , xr) ∧ Sorted(xl , yl) ∧ Sorted(xr , yr) ∧ Concat(yl , yr , y)

which can be read as follows: if you Split an array x into two parts xl and xr such that
all elements of xl are smaller than all elements of xr (this information would be in the
definition of the Split predicate, not shownhere), and yl and yr are the Sorted versions of
xl and xr , then Concatenating yl and yr gives a Sorted version of x. This can be read as a
simple if-then-rule, but at the same time, it is operational: it allows Prolog to actually sort
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arrays by splitting, sorting the sublists separately, and concatenating. Prolog programs
consist entirely of such sets of rules.

Interestingly, simple programs of this kind can be learned from examples. The idea is
to show some input/output pairs for a program, and have the computer discover a pro-
gram that is consistent with these pairs. This kind of task is called program synthesis.
ILP is one approach to program synthesis. With the current state of the art, relatively
complex programs such as quicksort can indeed be learned from examples, but only
when the right auxiliary predicates are already given. For instance, the above sorting
algorithm could be learned, if the predicates Split and Concatenate are provided. The
automatic discovery of useful auxiliary predicates is called predicate invention. This
is essentially an unsupervised learning task and, therefore, much harder. The lack of
effective methods for predicate invention has stalled ILP for decades, but recent devel-
opments in (among other areas) deep learning have created new opportunities.

An example of what is currently realistic, in terms of program synthesis, is the au-
tomatic discovery of spreadsheet equations. Excel’s Flashfill tool can automatically fill
in a column that nontrivially depends on other data, using a program synthesized from
very few examples. In a similar vein, the Tackle tool (Kolb et al., 2020), illustrated in Fig-
ure 7.12, is able to discover patterns that involve multiple tables and predict the value
of cells on the basis of the discovered patterns.

Figure 7.12: The Tackle tool, developed as part of Luc De Raedt’s SYNTH project, analyzes spreadsheets and
invents equations that show how some cells can be computed automatically from other cells.

7.3.9 Statistical model fitting

Minimizing a loss function
Manymachine learningmethods essentially try to fit a function to data, and in this sense,
machine learning has a clear connection with statistics.
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Amachine learning task is often described as follows: amodel class (sometimes also
called the hypothesis space) ℱ is given, and the task is to find, among all models in that
class, the “best”model. The quality of amodel is typically expressedusing a so-called loss
function l; the “best” model is the one with the lowest loss. The loss function typically
evaluates howwell the function fits the observed dataD, butmay also take other criteria
into account, such as the complexity of the model, or some preexisting preference for
certain types of models. In the tree and rule learning examples we saw earlier,ℱ would
be the set of all possible trees, rule sets, or rule lists.

Formally, machine learning is thus an optimization problem: find f ∗ =
argminf ∈ℱ l(f ,D), that is, a function f ∗ such that l(f ∗,D) is smallest among all l(f ,D)
where f ∈ ℱ .

In a purely predictive setting, where we do not care about the complexity of the
model but only want to find the model with the best predictive performance, we typi-
cally want the most accurate model on the population, which may differ from the most
accurate model on the training set D (otherwise there would be no such thing as over-
fitting). That means that the loss function lminimized during training is not necessarily
identical to the loss function whose expectation (over the population) we want to mini-
mize.

In some machine learning approaches, the optimization problem is implicit. Deci-
sion tree learners, for instance, try to find amodel with good predictive accuracy on the
population, by doing a heuristic search through the space of all possible trees. Its heuris-
tics point is in the direction of small trees with high predictive accuracy on the training
data. The underlying motivation is that large trees can more easily overfit the training
data.

Other machine learning approaches, including statistical approaches, explicitly de-
fine the loss function to be minimized. In least squares linear regression, for instance,
the task is to find a function f that fits the data best in the sense that the sum of squared
differences between f (x) and y, over all pairs (x, y) observed in the data, is minimal. In
other words, the loss function is the sum-of-squared-errors ∑(x,y)∈D(f (x) − y)

2.
In the case of linear regression with a fixed set of input variables, the optimal solu-

tion is unique when there are more data points than variables, and a formula exists for
computing it. For instance, if f (x) is of the form ax + b, formulas exist for computing the
values of a and b that minimize ∑(x,y)∈D((ax + b) − y)

2.
There are also situations where such a formula does not exist or is too complicated

to calculate. A step-by-step procedure, or algorithm, must then be used instead. An ex-
ample of such a procedure is stepwise linear regression. This procedure is used when
a tradeoff needs to be made between the complexity of the model (as measured by the
number of variables included in it) and how well it fits the data. Stepwise linear re-
gression starts with building a model with a single input variable. To find the best such
model, it considers each potential input variable in turn, finds the last squares solution
when only that variable is used, and among all models thus obtained, keeps the onewith
lowest loss. It then adds a second variable by trying each other input variable in turn,
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evaluating howmuch it improves themodel when added to the already chosen variable,
and keeping the one that gives the biggest improvement. It continues doing this for a
third, fourth, . . . variable, until the additional improvement is no longer compensated
by a sufficient decrease in loss.

Regularization
Stepwise linear regression is biased toward simple solutions in an algorithmic manner.
That is, the procedure is defined in such a way that it tends to yield simple models. But
we can also include a bias toward simple models in the loss function. Often, the loss
function contains two terms: one that measures the fit with the training data, and a sec-
ond one that penalizes models that have undesirable properties, for example, they are
complex or likely to overfit. This second term is often called a regularization term.
Regularization is a very generally applicable technique. In linear regression with many
variables, overfitting is often avoided by trying to keep the regression coefficients small.
The regularization term typically sums the squares of these coefficients, or their abso-
lute values. Thus, if we have, say, two input variables and one output variable, the linear
function to be constructed is of the form y = a1x1 + a2x2 + b, and the optimization ask is
to find the values for a1, a2, b that minimize∑(x,y)∈D((a1x1 + a2x2 + b) − y)

2 + C(a21 + a
2
2).

6

The first term ensures that the function fits the data well, the second term ensures that
the coefficients do not grow too large. The method’s hyperparameter C allows the user
to influence the tradeoff. The statistical methods known as ridge regression and lasso
are variants of this type of regularization. They impose an upper bound on, respectively,
the sum of squares and the sum of absolute values of the coefficients. Using the sum of
squares or sum of absolute values each has its own advantages. The sum of absolute
values criterion, as used by lasso, is that it tends to make many coefficients exactly zero,
which is not the case for the sum of squares. Elastic nets combine the advantages of
both by using both types of regularization terms.

Although these linear methods are most naturally used for regression with numeri-
cal input variables, they can easily be used with categorical input variables by encoding
these using groups of binary variables called dummy variables. For instance, a nominal
variable with values a, b, c can be replaced by two dummy variables that jointly take the
values 0, 0 for a, 0, 1 for b, and 1, 0 for c. Less trivially, these regression techniques can
also be used for classification. Logistic regression is an archetypical example of this
approach. In this approach, we try to predict the probability that an instance belongs to
a particular class. In the binary case where the classes are represented as 0 and 1, we
learn amodel that predictsP(y = 1 | x) from x. A problemwith this, however, is that prob-
abilities are restricted between 0 and 1, whereas linear regression, by nature, learns a
linear function that is not restricted to any interval. This mismatch is solved by actually

6 The bias term b is usually not included in the regularization term, because a large b does not increase
the model’s fitting capacity.
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predicting not p = P(y = 1 | x), but the so-called log-odds ratio, l = log( p1−p ). From this

formula follows p = el
1+el , so P(y = 1 | x) can easily be derived from l. The loss function

used in logistic regression is the so-called cross entropy: y log(p) + (1 − y) log(1 − p).
While all the above cases illustrate the use of statistical model fitting for learning

predictive functions, exactly the same principle can be used for clustering, density esti-
mation, probabilistic modeling, etc.

The principle of minimizing some loss function is present, either implicitly or ex-
plicitly, in almost all machine learning approaches. It may seem that explicit loss mini-
mization, as done in statistical model fitting, is in general a better approach, especially
when an optimizationmethod is used that provably returns the optimum. However, one
should keep in mind that when learning predictive functions, the loss function that we
actually minimize (a combination of fitting and regularization) is not the one that we
ultimately want to minimize (expected error on unseen examples). The practical bene-
fits of using (computationally expensive) exact optimization methods may therefore be
small.

The bias-variance tradeoff
The concepts of bias and variance, as known from statistical inference, are frequently
used in machine learning to describe properties of learning methods. To explain these
concepts, we need the concept of an estimator, a formula that estimates some popula-
tion parameter from a sample. (For instance, the mean of a randomly drawn sample is
often used to estimate themean of a population.) Given one sample, the estimator yields
one value, but for different randomly drawn samples typically yield different values.We
can therefore view the estimator’s value as a random variable with a certain mean and
variance. The statistical bias of an estimator is the difference between its mean and
the parameter value it estimates. It indicates whether the estimator has a tendency, on
average, to overestimate or understimate. For instance, the samplemean is an unbiased
estimator for the populationmean: indeed, there is no reason to believe that the sample
meanwould, on average, be higher than the populationmean (nor that it is lower, on av-
erage). In contrast, if we want to estimate the range of some population (the difference
between highest and lowest value), the range of a random sample can at most be equal
to that of the population (this happens when the sample happens to include both the
highest and lowest values in the population) and will often be less; hence, on average,
taken over all random samples, the sample range will be smaller than the population
range. Thus, this estimator has a negative bias.

The variance of an estimator is simply the variance of its probability distribution.
It indicates how strongly the estimated value may differ from one random sample to
another. Specifically, it is the expected value of the squared difference between the esti-
mator’s value and its mean.

The concepts of bias andvariance canbe generalized to the setting ofmachine learn-
ing in different ways. Consider the case where a predictive function ̂f is learned from
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a sample from the population; is supposed to approximate the “real” function f . Given
an instance x for which a prediction is made, the learner’s bias at x is the difference
between the expected value of ̂f (x), taken over all possible samples from which ̂f might
be learned, and f (x). The variance at x indicates how strongly ̂f (x)may vary around its
mean.

Generally, there tends to be a tradeoff between bias and variance, and this trade-
off is related to the tradeoff between underfitting and overfitting. Indeed, high vari-
ance essentially means that we might have obtained very different predictions if we
had learned from a different dataset (drawn randomly from the same population). This
shows that the learned model expresses accidental properties of the dataset, not actual
properties of the population. Conversely, a strong bias implies that the model will sys-
tematically underestimate or overestimate the target value at a particular point, nomat-
ter what dataset it was fed.

Regularization can be seen as a way of controlling the bias-variance tradeoff: by
insisting on small values for certain parameters, it reduces the variance of the learner,
at the cost of an increased bias.

7.3.10 Support vector machines

Support vectormachines (SVMs) becamepopular during the 1990s, and for over a decade
they were considered themethod of choice for learning classifiers. The intuition behind
them is simple and appealing, and while the technicalities are somewhat involved, they
exploit standard methods from convex optimization, a well-developed field. Together
with SVMs, the concept of kernel-based methods was introduced in machine learning.
Below, we first discuss the basic principles behind linear SVMs. Next, we will discuss the
role of kernels.

Linear support vector machines
Imagine a plane in which two types of instances (“positive” and “negative” instances)
are positioned, and imagine you are looking for a linear separator, that is, a straight
line that separates the positives from the negatives. Obviously, such a line represents a
decision criterion and, therefore, a model for predicting the class of unseen cases.

Any straight line that separates the positive training instances from the negatives
has 100% training accuracy. Still, not all these lines are equally natural. Consider Fig-
ure 7.13. Lines A and B are both perfect separators. But line A line implies that the in-
stance marked “?” is positive, even though it is very close to a negative and there is ab-
solutely no evidence that this instance should be positive. Line B is only slightly better.
Generally, a separator that comes unnecessarily close to any training instance implies
an unintuitive conclusion for unseen instances near that instance.

This leads to the following intuition: when creating a linear separator, we prefer a
line that is as far away fromall training instances as possible. In otherwords, we look for
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Figure 7.13: Left: two linear separators. Both get unnecessarily close to labeled instances, yielding unintu-
itive predictions. Right: the max-margin separator keeps the largest possible distance from all instances.

a line withmaximal margin, where the “margin” around the separator is the smallest
distance from the separator to any training instance.

Learning a support vector machine is nothing more than finding the linear separa-
tor with maximal margin. When the two classes are linearly separable, this max-margin
separator exists and is unique. Moreover, it can be found by solving a well-understood
type of optimization problem, namely finding the minimum of a quadratic function
over a convex domain. Whereas finding the minimum of a function is hard in gen-
eral, it is relatively easy in this particular case, and efficient off-the-shelf solvers ex-
ist.

Assume a dataset with elements (x, y) is given, with x a vector in the input space
and y its label, which is 1 for positive cases and −1 for negative cases. We will look for
a function f (x) = ax + b with the property that ax + b ≤ −1 for all negative instances,
and ax + b ≥ 1 for all positive instances. This function will be used for classification
as follows: x is positive if f (x) > 0, negative otherwise. Clearly, with this classification
rule, the separator is entirely consistent with the training data, and the separating line
is defined by f (x) = 0.

There are many such f . All of them are consistent with the data. The minimization
problem now states that we want that f for which ‖a‖ = ∑mi=1 a

2
i is minimal. One can

view this as a kind of regularization, but here it has a very concrete interpretation: the
f with this property turns out to be the max-margin separator.

Constrained optimization problems are often solved by constructing a so-called La-
grangian function. We leave out the technicalities here; what’s important is that the La-
grangian associates one variable (called a Lagrangemultiplier) with each constraint and
returns, together with the solution, a value for each of these variables. This indicates to
what extent the constraint affects the optimal solution. If it is 0, it means this constraint
does not actually constrain the solution: dropping the constraint would have yielded
the same solution. If it differs from 0, it indicates that a better solution could have been
found if this constraint were absent.

In the context of an SVM, we have one constraint per training instance. Training
instances with a nonzero value for their Lagrange multiplier are the so-called support
vectors: they are the ones closest to the separator. If such an instance were dropped, we
might find a better solution with a wider margin. The other instances do not affect the
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solution at all. In Figure 7.13, on the right-hand side, it is easy to see that there are three
support vectors.

This leads to an important insight: if we know the support vectors and their values,
we know the separator. It turns out that the max-margin separator f (x) = ax + b can
be rewritten using only the support vectors si and the corresponding Lagrange multi-
pliers λi:

f (x) = ∑
si
λi yixix + b

Not only do the Lagrange multipliers suffice for making predictions, the optimiza-
tion problem itself can also be rewritten directly in terms of them. More specifically,
instead of finding the a that minimizes ‖a‖, we find the values for all λi that maximize

∑
i
λi −

1
2
∑
i
∑
j
λiλj yi yjxixj

under the constraints λi ≥ 0. In optimization terminology, this is called the dual prob-
lem.

We present this formula here because we want to draw attention to its structure.
The training set influences the formula only through the dot products of all training in-
stances (multiplied by yi yj = −1 for instances with opposite labels). If these dot products
are computed in advance, no further access to the training instances is needed at this
point.

Thus, for a dataset with N m-dimensional instances, the separator is uniquely de-
fined by a and b (together m + 1 values), but also by the nonzero λ-values and the cor-
responding support vectors. The number of these support vectors cannot exceedN . The
smallest representation of these depends on the dataset. When learning from a small
dataset in a high-dimensional input space, the separator is more efficiently represented
using the support vectors.

All the above insights are essential for understanding the main strength of SVMs,
which we will describe next.

Kernels and nonlinear SVMs
Wehave seen that learning a linearmax-margin separator boils down to an optimization
problem that requires as inputs, apart from the labels, only the dot products between
training instances.

Now, how can we learn nonlinear separators? The SVM approach is as follows.
Imagine that we transform the input space to some higher-dimensional space, learn
a linear separator there, and transform the result back to the original space. For in-
stance, the transformation Φ(x1, x2) = (x1, x2, x1x2, x

2
1 , x

2
2) transforms a 2-dimensional

input space to a 5-dimensional one. A linear separator in this transformed space has the
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form a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2 + b = 0. This is at the same time a quadratic form

in the original space. Hence, we can learn quadratic separators by following this proce-
dure. These separators do not have the max-margin property in the original space, but
they do in the transformed space. Figure 7.14 illustrates the process for a simpler version
of the transformation.

Figure 7.14: A set of instances of two classes (red/blue) that is not linearly separable is transformed to a
3-dimensional space. In that space, they can be separated by a plane. Finding the max-margin plane and
transforming it back to the original space gives a circular separator in the original space. (In practice, the
transformed space is usually of much higher dimension than shown here.)

Now, because learning an SVM requires only dot products, learning an SVM in the
transformed space requires only computing the dot products Φ(xi)Φ(xj) for all training
instances. The computation of these dot products is done by a kernel function K(xi, xj).

In practice, when learning SVMs,we directly choose a kernel function, withoutmak-
ing the detour of choosing Φ. Not each function is suitable as a kernel function; the func-
tion must be such that some transformation Φ exists such that K(xi, xj) = Φ(xi) Φ(xj).
Technically, a kernel functionmust satisfyMercer’s condition: the kernel matrixmust be
positive semi-definite for any dataset. Predefined families of suitable kernel functions
exist. Well-known examples are the polynomial kernels, K(xi, xj) = (1+xixj)

p, and the
radial basis function kernels, K(x1, x2) = exp(−‖x1 − x2‖

2/(2σ2)), with σ a parameter.
From the point of view of feature representations, the above can also be interpreted

as follows: the kernel implicitly defines a set of relevant features, and the SVMconstructs
a linear separator in this feature space.

The above kernels are defined on Euclidean vector spaces, but kernels can be de-
fined for different types of inputs too. For instance, to learn a support vector machine
that classifies graphs, all that is needed is a kernel function that works on graphs. Intu-
itively, such a kernel function gives an indication of how similar two graphs are.7 We

7 For example, if we consider graphs similar if they have a similar number of edges and nodes, and only
thatmatters, thenwe could decide to useK(G1,G2) = (n1, e1, 1) ⋅(n2, e2, 1), where ni and ei are the number
of nodes and edges of graph Gi , respectively. In practice, more complex kernels are typically used.
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use the kernel function to create the kernel matrix (containing the pairwise similarity
between each pair of graphs in the input data), we feed this to the optimizer, and out
comes an SVM that can classify the graphs.

The strength of support vector machines is that they have a very strong regulariza-
tion criterion. They can learn from small datasets in very high-dimensional spaces, a
task that is very challenging for most other approaches. On the other hand, the neces-
sity to construct an N -by-N kernel matrix (with N the number of instances) makes the
approach computationally complex for large datasets.

We have discussed SVMs in the context of binary classification, but similar tech-
niques have also been developed for regression and other variants of predictive learn-
ing. SVMs are often used for data that is not in the standard format, for example, classi-
fication of text, sequences, graphs, etc., or where the number of dimensions is very high,
relative to the number of instances.

7.3.11 Neural networks

Neural networks are a relatively old approach to artificial intelligence that has gone
in and out of fashion multiple times. A neural network is a specific type of highly
parametrized model that can be fit to very diverse types of input data. Neural networks
are to some extent inspired by biological nervous systems, which include the human
brain, but in the interest of conciseness we will not discuss this aspect and go straight
to a description of the format.

Simple neural networks
A neuron is a simple unit that takes a number of numerical inputs and aggregates them
into a single numerical value, which is then output. The aggregation operator typically
consists of two parts: first, a weighted sum of the inputs is computed; next, a so-called
activation function is applied to the weighted sum. If we represent the inputs as a vec-
tor x and the corresponding weights as a vector a, then the weighted sum equals the
dot product of these vectors: ax = ∑i aixi. Thus, a neuron outputs σ(ax), with σ the ac-
tivation function. Activation functions often “binarize” the output in the sense that they
map their input to two clearly distinguished levels, “low” or “high.” Figure 7.15 shows a
few commonly used activation functions.

Many descriptions of neurons describe the first part as a function of the form ax+b,
with b called the bias parameter, rather than simply ax. Both formulations are equiv-
alent if we implicitly extend each input vector with one additional component that is
always 1; the weight of this additional component equals the bias. For simplicity of no-
tation, here we use the simpler notation ax.

A single neuron can be used as a predictive model in itself. When training such
a neuron, the activation function is assumed fixed, so training boils down to finding a
weight vector that minimizes some loss function. For instance, given a training setD, we
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Figure 7.15: Four different activation functions commonly used in neural networks.

try to find the a that minimizes the squared loss∑(x,y)∈D(σ(ax) − y)
2. If we assume for σ

the identity function, then this actually corresponds to least-squares linear regression.
Whereas least-squares linear regression has a closed-form solution, this is not generally
the case when σ is not the identity function.

The true strength of neural networks comes from combining these simple neurons
into a network. Here, the output of one neuron is fed as an input into another neuron.
The layout of the neurons (how many are there, how are they connected) is called the
architecture of the neural network. This architecture is typically given in advance, so
that the learning process remains limited to optimizing the parameter values.

Figure 7.16 shows a fully connected, 2-layered, feedforwardneural network. It is called
2-layered because there are two layers of neurons, feedforward because the output of a
neuron is fed into the neurons of the next layer, and fully connected because each neuron
is connected to all neurons of the next layer.

Figure 7.16: A fully-connected two-layered feedforward neural network.

Whereas a single neuron is strongly limited in terms of the kind of functions it can
represent, a 2-layered neural network can represent a wide variety of predictive func-
tions. For instance, in the classification context, a single neuron can only construct linear
separators, but a 2-layered neural network can construct any kind of separator, as long
as it has enough neurons in its first layer (see Figure 7.17). It is essential here that the
neurons have a nonlinear activation function. If linear activation functions are used,
their combination is still a linear function and there is no increased expressiveness.
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Figure 7.17: Activation regions of the neurons in a small neural network (for sigmoid activation function).
For the layer-1 neurons, the regions of high and low activation are linearly separable. By combining the
outputs of the layer-one neurons, the layer-2 neuron creates a high-activation region that is no longer
linearly separable from the rest (see the contour lines).

Training a neural network
In the context of predictive learning, training a neural network involves finding values
for its parameter such that the network fits the data well. This training process typically
takes use of a general optimization procedure called gradient descent. To explain this
procedure, we need some basic mathematical concepts.

The derivative of a function f (x) is a new function that indicates the slope of f (x)
at point x. For instance, the function f (x) = x2 has a slope of 0 at x = 0 and 2 at x = 1.
The function that indicates for each point x what the slope of f is at that point is, in this
case, g(x) = 2x.

For a function of multiple variables f (x, y, z), the partial derivative of f toward x
at point (x, y, z), denoted 𝜕f (x,y,z)𝜕x , indicates the slope of f (x, y, z) in the direction of the
X -axis at point (x, y, z). The gradient of f at point (x, y, z), denoted ∇f (x, y, z), is a vector
that contains the partial derivative of f toward each input:

∇f (x, y, z) = [𝜕f (x, y, z)
𝜕x
,
𝜕f (x, y, z)
𝜕y
,
𝜕f (x, y, z)
𝜕z
].

The gradient has the property that it indicates the direction in which f grows fastest.
Imagine standing on a hillside: the steepest direction uphill is the gradient. If you put a
ball on the floor and release it, it starts rolling in exactly the opposite direction of the
gradient. The length of the gradient vector (technically, its 2-norm) indicates how steep
the function is. Where it is 0, f is tangential to a horizontal plane.

The basic intuition behind gradient descent is simple: to find a minimum of f , start
at a random position and take a small step in the opposite direction of the gradient. Re-
peat this process at your new position. Keep repeating this until the gradient is zero.



280 � H. Blockeel

This basically means you go down until you cannot go down any further; at that point,
you have reached a local minimum. The term “local” stresses that you have reached a
lowest point in the immediate neighborhood of your location, but not necessarily a glob-
ally lowest point. Starting at a different position may yield a different local minimum.
Among all local minima, the smallest one is called a global minimum.

Now, let us apply all of this to curve fitting. There is some loss function, and we are
trying to determine the parameter values that minimize this loss. To do that, we need to
consecutively compute the gradient of the loss function for the current parameter values
(and then adapt the parameters in the direction of that gradient). The size of our step in
the opposite direction of the gradient determines how fast we move down; a large step
size moves faster but increases the risk of “jumping over” the minimum.

Consider the neural network drawn in Figure 7.18. Intuitively, the partial derivative
of the loss function toward one parameter can be found by imagining we increase that
parameter by a very small value ε. How does this tiny change affect the output, and
hence, the loss? In the shown network, the propagation of this change for a single (x1, x2)
input is shown. In practice, we have to repeat this for all (x1, x2) pairs in the training set,
and add up all the effects, to find partial derivative for that parameter. To compute the
gradient, this procedure needs to be repeated for all parameters.

Figure 7.18: A given neural network with inputs (2, 1) gives 11 as output. How does the output change
if we add a small number ε to parameter a11? We can recompute the output for the changed value (for
simplicity, linear activation functions are used here). The ratio between the output change and ε is the
partial derivative.

A single computation of the gradient clearly requires a lot of work. There are two
ways in which this can be reduced. First, instead of computing the gradient of the loss
function on the entire dataset, we can compute it on a random subsample. This is accept-
able because moving in the opposite direction of the gradient is essentially a heuristic
procedure: there is no guarantee that this is the best direction tomove in, we just choose
the gradient direction for lack of something better.8 This procedure is called stochastic
gradient descent.

8 Actually, better versions do exist—their motivation is too technical for this text—but that only rein-
forces the argument that we need not invest too much in computing the gradient exactly.
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Second, when computing the partial derivatives for many parameters, a large part
of the computations overlap. The change in a parameter value propagates toward the
loss function through multiple nodes; the change in the parameter affects some node n,
which in turn affects the output, which in turn affects the loss. Other parameters af-
fect the same node n and, instead of recomputing the effect of the change in n on the
loss, we can reuse outcomes computed earlier. This idea materializes in the concept
of backpropagation. Backpropagation essentially associates with each internal node
the partial derivative of the loss toward that node, then determines the effect of each
parameter on the loss by determining its effect on the nodes it is directly connected
to.

The concept of backpropagation is applicable to any function that can be expressed
as a so-called computational graph. In a computational graph, an edge x → y indicates
that the output of node x is an input for node y, and each node represents an operator
that computes the node’s output from its inputs. Very complex models can be defined
and trained in this manner. This leads to a machine learning approach called differen-
tiable programming, where the “program” defines the structure of the computational
graph while the parameter values are learned from data.

Deep learning
Consider a networkwith n layers. The output of the network (the n’th layer) is computed
entirely from the n − 1’th layer; there are no shortcuts to earlier layers. Therefore, the
n−1’th layer must have all the information needed tomake an accurate prediction. Sim-
ilarly, the state of the n − 1’th layer must be computable entirely from the n − 2’th layer,
and so on, up to the first layer, which is computed straight from the input x. In such a
network, each layer forms a different representation of the input. A layered neural net-
work can be seen as performing a series of transformations from one representation to
another. These transformations are learned in a largely unsupervised manner: we do
not tell the network what kind of representation it should have in its first, second, etc.
layer. The network discovers suitable representations by itself. In a sense, the backprop-
agation algorithm does not only yield suitable settings for the parameters, it also yields
a suitable sequence of internal representations. The fact that these representations are
learned in an unsupervised manner is interesting. We have seen earlier that it is easier
to make accurate predictions if the right features are available. In a sense, multilayered
neural networks invent the right features in such a way that the penultimate layer de-
fines a feature space from which the target is very easy to predict.

The more layers a neural network has, the more “unsupervised” the learning be-
comes. The term deep learning is used for learning networks with many layers. The
further away a layer is from both the (observed) input and output spaces, the more it
defines an underlying, “deep” representation that is learned without supervision. The
learning of useful deep representations is sometimes considered a goal in itself; this task
is called representation learning. Deep neural networks turn out to be very good at this
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task, and one of the best ways to illustrate this is to look at how they work in the context
of computer vision. That is the subject of the next section.

Convolutional neural networks
Convolutional neural networks are neural networks with a specific architecture that is
adapted to a particular type of processing. They are frequently used in the context of
computer vision (for instance, for recognizing objects in pictures or classifying images),
but also for processing audio signals, time series, and other sequences. In this text, we
describe them and their objectives from the point of view of visual object recognition.

For ease of discussion, we assume here that the pictures fed to the neural network
are black-and-white, c pixels wide, and r pixels high. Such a picture can be represented
as a matrix with r rows and c columns, where each cell has a number between 0 and 1
that indicates the brightness of the corresponding pixel.

A convolutional neural network typically consists of many layers. The first layers
in this network are typically special-purpose layers: so-called convolutional layers and
pooling layers occur intermittently. The layers closer to the output are typically general-
purpose layers. The idea behind this architecture is that the first layers construct a fea-
ture representation that is useful for object recognition, whereas the later layers get
trained for specific recognition tasks using these features as inputs.

A convolutional layer consists of multiple “convolutional nodes.” A convolutional
node is an array of neurons, all with the same inputweights, but connected to a different
part of the input image. More specifically, each neuron is connected to a different k-by-l
“window” on the matrix and gets activated when a particular pattern is present in that
window. As all neurons share the same weights, they recognize the same pattern. The
neurons are arranged in such away that nearby neurons are connected to nearby (over-
lapping) windows. As such, the convolution node forms a “map” that indicates in which
part of the matrix a particular pattern occurs (see Figure 7.19). Note that, although the
node is an array of neurons, we can conceptually think of it as a single neuron with a
matrix-valued output (the map).

Figure 7.19: A convolutional node is a matrix-valued node that indicates where in the input a certain pat-
tern occurs. Left: a single node in the map is connected to a particular subimage and gets activated when
a certain pattern occurs there. Each node in the map has the same activation pattern. Right: illustration of
what a map for a particular pattern might look like.
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As themap returnedby a convolutional nodehas a similar format as the input (ama-
trix), we could in principle define a second layer of convolutional nodes on top of it.
However, before doing that, a pooling layer is typically used to lower the resolution of
themaps. The pooling layer groupsmultiple nearby “map pixels” into a singlemap pixel,
thus reducing the size of the map by, for example, 4 or 9, if 2-by-2 or 3-by-3 pixel squares
are pooled. The pooling typically happens by computing the average ormaximum of the
pooled pixels. The motivation for this operation is that, first, the exact position (up to a
single pixel) where a low-level visual feature was found typically does not matter, and
second, the number of neurons in later layers is strongly reduced in his manner.

After the first pooling layer, a second convolutional layer is typically included. This
layer learns medium-level features that are formed by combining low-level features. It
is typically followed by a pooling layer, and possiblymore pairs of convolution and pool-
ing layers that construct higher-level features. When it is no longer necessary to define
even higher-level features, a general-purpose neural network (typically with few layers)
maps the features onto a prediction. Figure 7.20 illustrates how increasingly higher-level
features can be learned in this way.

Figure 7.20: Convolutional networks are good at recombining lower-level features (lower part of the im-
age) into medium and high-level features. The same low-level features can be recombined into different
patterns. (Picture after Lee et al., “Convolutional Deep Belief Networks for Scalable Unsupervised Learning
of Hierarchical Representations”).

Note that the local patterns that the network looks for in a picture are defined by the
weights of the convolutional nodes. In principle, we could make it look for predefined
features by fixing the feature weights appropriately. However, by letting the network
learn these weights, it creates by itself sets of features that are relevant for image pro-
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cessing. This ability is perhaps the most important leap that deep learning caused in
computer vision: until the early 2000s, computer vision relied on cleverly engineered
features, but with deep learning, even better features were discovered fully automati-
cally. This camewith a price: training deep networks requires huge amounts of data and
enormous computing power. However, the lower-level features turn out to be relatively
stable. What happens in practice is that people use a pre-trained network in which the
early layers (i. e., the visual features) are fixed, and only the final layers of the network
are tuned for the task at hand. This often provides excellent accuracy for a reasonable
training cost.

Although deep learning has revolutionized computer vision, it is not without its
challenges. It is possible to fool vision systemsbased ondeep learning inways thatwould
never fool humans. Figure 7.21 illustrates how humans can be made “invisible” to com-
puter vision, when we have no problem at all seeing them. Fooling the computer in this
way requires inserting carefully constructed signals in the image.

Figure 7.21: Automatic person detectors can easily be fooled by inserting carefully crafted subimages into
a picture. (Source of picture: https://nieuws.kuleuven.be/en/content/2019/ku-leuven-researchers-make-
themselves-invisible-to-ai-cameras).

Long short-termmemory networks (LSTMs)
Up until now, we considered only feed-forward networks, where the output of a layer
is fed into the next layer. Other architectures are possible. A recurrent network is a
network where the output of a neuron is fed back into the same layer, or even an earlier
layer (Figure 7.22). Such networks are useful for learning from sequences. Suppose we
have a sequence of inputs x1, x2, x3, and a single label y for the whole sequence. In a
recurrent network, we feed first x1 to it, then x2, then x3, and at that point observe y. In a
feed-forward network, y would be determined by x3 alone but, in a recurrent network,
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Figure 7.22: A neural network with one node whose output is fed back into it.

part of the input for y is information that was computed for x2 (and fed back into the
input together with x3), and the computations for x2 relied on x1 for the same reason.
The prediction of label y thus depends on the whole input sequence, not just on the last
input.

Recurrent networks are usually trained with a procedure called backpropagation-
through-time. This is the standard backpropagation algorithm, applied to an “unfolded”
version of the recurrent network (where the same node at different points in time is
represented as different nodes).

There is a significant problem with recurrent networks, which is inherent to the
way neural networks compute their outputs. Signals get multiplied by the weight of the
connection they travel through. When a signal is fed back into an input multiple times,
it also gets multiplied by the weight of that connection multiple times, so the strength
of that signal either increases or decreases exponentially (comparable to what happens
with microphone feedback). In the context of training, this leads to the vanishing gradi-
ent or exploding gradient problem. To control this effect, more advanced architectures
for recurrent networks have been proposed. The long short-term memory network
(LSTM) is one of the best-known examples.

An LSTM (Figure 7.23) has nodes that serve as a kind of memory. A feedback loop
fromamemory node to itself ensures that the node’s value can be remembered fromone
time step to the next (it can simply be copied). The memory node has trainable “gates”:
an input gate, which determines when a signal should be stored in the memory, a forget
gate, which determines when the memory should be cleared, and an output gate, which
determineswhen thememorized information should beused. Each gate is a small neural
network in itself.

LSTMs have been very successful for natural language processing, among other
things. We refer to Chapter 8 for more information on that topic.

Auto-encoders
Consider a feedforward neural network with as many output nodes as there are inputs,
but (much) fewer nodes in each intermediate layer. Assume this network is trained so
that its outputmatches the input. This may seem useless, since we simply learn the iden-
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Figure 7.23: Schematic overview of the structure of an LSTM. The state node feeds back into itself. The
purple, orange, and red “gates” decide are controlled by the current input and most recent output and
decide when the memory is updated, emptied, or used.

tity function. However, since each layer in the feedforward network is computed from
solely the previous layer, each layer must have complete information about the input
(i. e., sufficient information to accurately restore the input from this). For a layer with
few nodes, this implies the input is mapped losslessly to a lower-dimensional space. The
network thus defines a lossless compression mechanism. The part of the network that
maps the network to the lower-dimensional representation is called an encoder, the
part that restores the input from that is called the decoder. The network itself is called
an auto-encoder: it learns to efficiently encode the inputs in an unsupervised manner.

In the context of deep learning, such auto-encoders are sometimes stacked onto
each other: the encoding constructed by an auto-encoder is itself encoded by a new auto-
encoder, and so on. This leads to the concept of stacked auto-encoders.

Auto-encoders as described above are deterministic: an input is mapped to a sin-
gle point in the lower-dimensional space (also called latent space), and it can be recon-
structed from that point. There also exist probabilistic auto-encoders. Here, the encoder
maps an input to a distribution in the latent space, rather than to a single point; and sim-
ilarly, the decodermaps a single point to a distribution over the output space. Thismight
seem like a strange idea, but it is not essentially different fromwhat probabilistic graph-
ical models (Section 7.3.14) do. For example, for a feedforward neural network with sig-
moid activation functions, it suffices to define output nodes as binary-valued (0/1) and
interpret the output of the activation function as the probability that the output node is
1, rather than as the value of that node itself, to have a network that maps an input to
a distribution. Restricted Boltzmann machines (RBMs) use exactly this principle. Vari-
ational auto-encoders (VAEs) are another example of probabilistic auto-encoders. VAEs
are trained in such a way that a certain level of continuity is guaranteed: nearby points
in the latent space should represent inputs that are somehow similar; interpolation be-
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tween two points in latent space yields an input that is in some way “in between” the
corresponding input points, etc.

While deterministic auto-encoders can be used to reconstruct inputs, probabilistic
auto-encoders are useful to generate new data points that are similar, but not identical,
to a given input. They are very useful in the context of generative AI, for instance, for
generating pictures. One can generate a picture that is similar to a given picture, change
certain aspects of a picture, mix aspects of different pictures into one (through interpo-
lation in the latent space), or simply generate a picture from scratch.

The encoder–decoder structure is also used by transformer models, though the in-
put and output spaces may differ there: for instance, a piece of text (input) may be
mapped onto a point or distribution in the latent space, from which, through sampling,
an output picture could be generated. We refer to Chapter 8 for more information on
transformers and their use in natural language processing.

Further considerations about neural networks
Roughly since 2010, deep learning has been dominating machine learning. It is relevant
for a broader class of models than just neural networks (e. g., probabilistic models), but
it has revived the area of neural networks in a spectacular manner. Deep learning is in-
dispensable when the information to be learned from contains raw data: data for which
no (or not enough) meaningful features are predefined. That includes images, video,
audio, and written text.

7.3.12 Dimensionality reduction

The dimensionality of a dataset is simply the number of variables, or features, with
which each instance is described. High dimensionality poses problems for just about
all learners, to the extent that it is often referred to as the “curse of dimensionality.”
In linear regression, too, high dimensionality causes overfitting and makes the solution
nonunique. In nearest neighbormethods, high dimensionalitymakes the similaritymet-
ric highly uninformative. Density estimation is very hard, as even large datasets are
usually distributed extremely sparsely in a high-dimensional space. Support vector ma-
chines aremore or less the only approach that does not suffer from high dimensionality,
but to the contrary exploits it.

Given this situation, much research has gone into dimensionality reduction: map-
ping the data into a lower-dimensional space before any further analysis is performed.

Many successful systems implicitly perform a kind of dimensionality reduction. For
instance, image data are very high-dimensional. Part of the reason that convolutional
networks work well on such data, is that the convolutional layer is essentially a way
of performing dimensionality reduction. It defines a relatively small (compared to the
number of pixels in an image) number of features that make it possible to interpret
the image. Part of the dimensionality reduction method is hardcoded (the convolution
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principle), part of it is learned (the parameters, which define the patterns the system
should look for).

For other approaches, the dimensionality reduction aspect is more explicit, or can
even be considered the goal of the approach. For instance, as described above, an auto-
encoder maps a dataset to a lower-dimensional space in such a way that the dataset can
be reconstructed from this lower-dimensional representation. Hence, an auto-encoder
can be seen as a method for dimensionality reduction.

In statistics, arguably the most basic method for dimensionality reduction is princi-
ple components analysis (PCA). Intuitively, PCAworks as follows: assume a given dataset
with n numerical features. PCA defines new features that are linear combinations of the
original features. In a scatterplot, these linear combinations can be interpreted as direc-
tions. The first new feature is then the linear combination for which the variance of the
data maximal; in other words, the direction in which the data varies the most. We call
this the first principal component. Each consecutive feature (the second, third, etc. prin-
cipal component), is orthogonal to all previous components and is, among all features
with that property, the one with highest variance. Figure 7.24 illustrates this for a two-
dimensional dataset.

Figure 7.24: A two-dimensional point cloud. P1 and P2 are its principal components. The variance of the
dataset is maximal along P1, minimal along P2. The red arrows indicate the uncertainty on the location of
the point given one of its coordinates. If its coordinate along P1 is known, the uncertainty about its location
is minimal (blue arrow).

From the point of view of dimensionality reduction, this construction has the follow-
ing advantage: consider a 2-dimensional dataset with features x1, x2, as in Figure 7.24,
and assumewewant to reduce it to 1 dimension. We could simply keep x1 and drop x2: if
we know the x1 value of a point, we know the approximate location of the point. The re-
maining uncertainty about the location is given by the variance of x2: themore x2 varies
around its mean for x1, the more uncertainty remains. We could also choose to drop x1
and keep x2. This would be a less good solution, as the variance of x1 given some value of
x2 is high. However, instead of reducing the dimensionality by projecting points on one
of the original axes, we can also project them onto its first principal component, p1. The
uncertainty about the point’s location is then smaller, as the variance in the direction of
p2 is smaller than the variance in the direction of either x1 or x2. Because the data vary
maximally in the direction of p1, they vary minimally in directions orthogonal to p1. As



7 Learning from data � 289

such, if we want to indicate a point’s location with maximal precision using only one
number, that number should be its position on the p1 axis, which is the first principle
component.

Mathematically, computing the principle components boils down to computing the
eigenvectors of a matrix derived from the dataset. More precisely, if D is a matrix with n
rows andm columns that represents the original table withm features and n instances,
then D⊤D is an m × m matrix. The eigenvectors of D⊤D are the principal components,
and the corresponding eigenvalues are the square-root of the data’s variance along this
component.

PCA can be seen as identifying features that are linear combinations of the origi-
nal features and that are suitable for defining a lower-dimensional representation that
allows to reconstruct the data with maximal precision. In that sense, an auto-encoder
can be seen as a nonlinear version of PCA, as the identified feature are not merely lin-
ear combinations of the original features, but linear combinations to which a nonlinear
threshold function has been applied. This makes them somewhat more expressive. The
price to pay for this is that training an auto-encoder is a more complex procedure than
performing PCA.

7.3.13 Matrix factorization and tensor decomposition

Tomotivate the concept ofmatrix factorization, consider data thatmight be used to train
a recommender system for books. We have a matrix where rows are users, columns are
books, and the cells indicate to what extent a user likes a book. In practice, many of the
cells are empty, and we want to predict their values (which means we will predict, for a
user who has not read some book, to what extent that user will like the book).

Matrices are studied in the very well-developed field of linear algebra. One particu-
lar property that is relevant here is the question to what extent the rows of a matrix are
linearly independent. A vector is linearly dependent of other vectors if it can be writ-
ten as a sum of rescaled versions (a. k. a. a linear combination) of them. For instance,
(2, 4, 6) is linearly dependent of (1, 2, 3) (it suffices to multiply the latter by two), but
not of (1, 2, 4). (2, 4, 6) is linearly dependent of the pair {(1, 2, 4), (0, 0, 1)}, as (2, 4, 6) =
2 ⋅ (1, 2, 4) − 1 ⋅ (0, 0, 1).

In the remainder of this section, we drop the word “linearly” and simply talk about
(in)dependence. The rank of amatrix indicates howmany independent rows it contains.
In a rank 1matrix, each row is a rescaled version of the first (nonzero) row. For instance,
the matrix on the left-hand side of the following equation contains 3 rows, where the
second and third are rescaled versions of the first (resp., by a factor 3 and 4). We can
write that matrix as a matrix product of a single row and column as follows:

[[

[

1 2 3 4
3 6 9 12
4 8 12 16

]]

]

= [[

[

1
3
4

]]

]

[1 2 3 4]
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Indeed, following the standard definition of matrix multiplication, the right-hand side
yields a matrix with three rows where the first row equals 1 time [ 1 2 3 4 ], the second
row 3 times the same, and so on.

A rank-k matrix can be written as a sum of k rank-1 matrices, or equivalently, into
a product of a k-column matrix and a k-row matrix, where row i of the first matrix
contains the coefficients with which each row of the second has to be multiplied such
that the multiplied rows sum up to row i of the rank-k matrix. For instance,

[[[[[[

[

1 1 0 0 0 0 0
3 3 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2 2 2 0
0 0 0 2 2 2 0

]]]]]]

]

=

[[[[[[

[

1
3
0
0
0

]]]]]]

]

⋅ [1 1 0 0 0 0 0]

+

[[[[[[

[

0
0
0
2
2

]]]]]]

]

⋅ [0 0 0 1 1 1 0] =
[[[[[[

[

1 0
3 0
0 0
0 2
0 2

]]]]]]

]

⋅
1 1 0 0 0 0 0
[0 0 0 1 1 1 0]

How is all that matrix algebra useful in the context of recommender systems? Let us use
an example to illustrate this. Suppose some users like horror novels, others like sci-fi
novels, and still others like both (and love books that combine both). Assume the first
type of users gives 1 to horror novels and 0 to all others; the second gives 1 to sci-fi novels
and 0 elsewhere; and the third gives 1 to horror and sci-fi novels, 2 to novels that combine
both, and 0 elsewhere. In this context, if we have a row per user, we find that there are
two independent rows in the matrix: one representing “horror” and one representing
“sci-fi.” Some rows are a combination of both. In this particular case, the scores matrix
has rank 2.

This example illustrates how the rank of a scores matrix can be interpreted as the
number of different “genres” of books, where genre is to be interpreted in the following
manner: a user’s score for a novel depends on which genres it belongs to, and on the
user’s preference for each genre. Matrix factorization is basically a way of analyzing a
matrix that lays bare its underlying structure, in terms of howmany different (indepen-
dent) genres exist, to what extent these genres are present in each book, and to what
extent they are liked by each user. See Figure 7.25 for an illustration. In matrix algebra,
singular value decomposition (SVD) is one basic approach tomatrix factorization. SVD
identifies the genres, their relative importance for each user and relative presence in
each movie, and the overall importance of each genre for the scores. The scores matrix
may technically have high rank but be well approximated by a low-rank matrix. Using
SVD, an optimal approximation for a given low rank can be found by simply ignoring
the genres with low overall importance.
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Figure 7.25: A matrix of user-movie scores is “explained” by decomposing into three matrices, identifying 3
genres, their weights, and how users and movies connect with them. (This decomposition is not an SVD, it
merely illustrates the principle of how matrix decompositions identify structure in a matrix.)

The idea of dropping some variables is of course related to what we did in PCA, and
indeed there is a link between SVD and PCA.Whereas PCA tries to represent the original
data in a lower-dimensional space, SVD tries to represent the connection between two
types of entities (in this case, users and movies) using a lower-dimensional space.

Identifying the structure in the user-movie matrix is useful because once this struc-
ture has been found, it can be used to make all kinds of inference. For instance, given a
new movie, if we know some user’s scores for this movie, we can infer its combination
of genres, and given that, we can predict the scores of other users for the same movie.
That is obviously useful in the context of movie recommendation, or more generally, for
recommender systems.

Though we illustrated the principle using “genres” of movies, it is clear that the
underlying structure does not have to correspond to identifiable genres such as horror,
SF, etc. More generally, the dimensions of the lower-dimensional space that defines the
overall structure are called latent variables.

The principle of matrix decomposition can be extended to tensors. Matrix factor-
ization and tensor decomposition are a way to identify underlying structure in matrix-
or tensor-shaped data. This includes recommender systems, but also many other types
of data.

7.3.14 Probabilistic graphical models

Probabilistic graphical models (PGMs) are used tomodel a population bymeans of its
joint probability distribution (JPD). Once the JPD is known, all kinds of reasoning can be
performed with it: see Chapter 6 for details on that. Here, we focus on how JPDs can be
learned from data.

Joint probability distributions
Assume the instances in a dataset are described using a fixed set of variables, to which
values are assigned. For ease of discussion, we assume discrete variables for now.

The joint probability distribution p(x) is a function that describes the popula-
tion in the following way: for any instance x, p(x) gives the probability that an instance
drawn randomly from the population equals x. For instance, if the population consists of
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10 yellow, 5 red, and 5 greenmarbles in a jar, for any particularmarblem, p(m) = 1/20. If
we do not distinguish marbles of the same color and consider x to be simply the color of
the drawnmarble, then p(red) = 5/20. If amarble is described bymultiple variables, say
size (big/medium/small),material (glass/agate), and color (red/blue/yellow/green/white),
then p(s,m, c) gives for any size s, material m, and color c, the probability that a ran-
domly drawn marble has the specified size, material, and color.

Factorizations of JPDs
In principle, the joint probability distribution p could be defined using a table, listing for
each combination of values for the variables the probability of drawing an instance that
has exactly this combination. In the above marble example, we would need 30 rows but
when there aremanyvariables andpossible values, thenumber of combinations quickly
becomes astronomical. It is then impossible to even store such a table. Even when that
is possible, estimating the probability of each individual combination from data will re-
quire all existing combinations to occur at least once in the data, and probably multiple
times if we are to estimate the probabilities accurately; so, for a table with billions of
rows, we would also need billions of data points to learn from, before we can effectively
fill it in.

In such cases, a probability distribution is typicallywritten as a product of functions
with fewer variables.We call this a factorization. The simplest example of a factorization
is p(x1, x2) = p1(x1)p2(x2): the JPD is a simply written as a product of two independent
functions (called factors). Note that not each JPD over x1, x2 can be written as such a
product. For instance, if (x1, x2) denotes the outcomes of a roll of two dice, then sure,
p(2, 3) = 1/6 ⋅ 1/6 = 1/36. With 6 equally likely outcomes for a single die, there are 36
combinations, and all are equally likely. But if our jar contains 2 marbles, one (green,
glass, small) and one (red, glass, large), then p(green) = 1/2 (if I draw a randommarble,
there is a 50% chance it is green) and p(small) = 1/2, but p(green, small) = 0 as there are
no small green marbles in the jar, and obviously 0 ̸= 1/2 ⋅ 1/2. In statistics terminology,
when p(x, y) = p(x)p(y), variables x and y are said to be stochastically independent.
In the remainder of this section, (in)dependent means stochastically (in)dependent.

When we write a JPD as a product of multiple simple functions (with fewer vari-
ables), we are making assumptions about a certain independence among variables. The
advantage is that the factors may be much easier to estimate from data, as they contain
fewer variables. The disadvantage is that if the assumptions are violated, we get a poor
approximation of the JPD.

The following example illustrates this.
Suppose someone owns a loaded die; the sides 1–6 do not all have an equal proba-

bility, but you do not know the probabilities. Now if you throw this die 5 times, what are
the chances you obtain 5 sixes? You could find out by doing the experiment (throwing
5 times) a million times, counting how often you got 5 sixes, and dividing this number
by 1 million. If you repeat the experiment only 1000 times, it is likely that you never
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get 66666, which gives an estimated probability of 0—a poor approximation. But you
could also estimate p(6) (the probability of obtained a six if you throw once) by throw-
ing 1000 times, counting the number of sixes, and dividing that by 1000. This gives a
good approximation of p(6), and if we assume the different throws are independent
(i. e., the outcome of a new throw does not depend on what the previous outcome was),
then p(66666) = p(6)5. Making the assumption of independence allows us to obtain the
answer from much less data.

Naïve Bayes
Perhaps the simplest kind of factorization, in the context of predictive learning, is
used by a method called naïve Bayes. Consider a target variable Y and input variables
X1, . . . ,Xm. We write the variables Xi jointly as X . According to the definition of con-
ditional probability, given values for X , the probability that Y takes a certain value
is

P(Y |X) = P(X , Y )/P(X)

Assume we want to find the most likely value for Y , given X . Since P(X) does not
depend onY , the value ofY thatmaximizes P(X , Y ) alsomaximizes P(Y |X), so it suffices
to estimate P(X , Y ), the joint distribution of the inputs and outputs. Now, naïve Bayes
estimates this as follows:

P(X1,X2, . . . ,Xm, Y ) = P(X1 | Y )P(X2 | Y ) . . . P(Xm | Y )P(Y ).

This equality implies a condition called class-conditional independence: within a
certain class Y , the probability of Xi taking a particular value is not influenced by the
value of Xj for j ̸= i. To illustrate what this means: suppose we want to classify people
into two classes, say, football players and basketball players. Both populations are char-
acterized by variables such as height,weight, speed, etc. Naïve Bayes essentially assumes
that both height and weight depend on the class (e. g., the height of basketball players is
distributed differently from that of football players) but given that a certain person is a
football player, knowing their height does not provide any information on their weight
(an unrealistic assumption, in this particular case).

Under the assumptions made by the model, the JPD can be estimated efficiently: all
the factors have at most 2 variables, which means counting combinations of 2 values
suffices.

For instance, assume someone has a large bag containing hundreds of marbles with
size, material and color as explained before (3 sizes, 2 materials, 5 colors, yielding 50
possible combinations). Suppose you randomly draw 20 marbles from it, and writing
down their properties, you get the table shown in Figure 7.26.

Now, the fact that no big white glass marble was drawn does not mean there are
no such marbles in the bag: there are 50 possible combinations, of which at most 20 can
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Figure 7.26: A table listing 20 randomly drawn marbles. Some count-based estimates of (conditional) prob-
abilities are shown next to it.

occur in the table even if all 50 occur in the bag. So, to estimate the probability of a par-
ticular size/material/color combination, counting combinations of three values does not
work: we easily find an estimated probability of 0. However, if we assume that size, ma-
terial and color are all independent, we can estimate from the table the distribution of
material (15/20 are glass), size (5/20 are big), and color (4/20 are white), and estimate the
probability of drawing abigwhite glassmarble asP(big)P(white)P(glass) = 15

20
5
20

4
20 =

3
80 .

If we relax this assumption, and instead state that the size and color distributionsmay be
different for different materials (but size and color are still independent given themate-
rial), we estimate P(big,white, glass) as P(big | glass)P(white | glass)P(glass) = 4

15
2
15

15
20 =

0.027.
The naïve Bayes classifiermakes the assumption of class-conditional dependence

to predict the class of an object given its other attributes. In the above example, the
material variable represents the class. Let us assume that we observe that a marble is
big and white. The probability that it is made of glass, respectively agate, is then

P(glass | big,white) = P(big,white, glass)
P(big,white, glass) + P(big,white, agate)

=
0.027

0.027 + 0.02
= 0.57

P(agate | big,white) = P(big,white, agate)
P(big,white, glass) + P(big,white, agate)

=
0.02

0.027 + 0.02
= 0.43
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Naïve Bayes will predict the class with the highest probability, which is glass.
It is clear that the independence assumptionsmade by naïve Bayes are quite strong,

and likely violated in many practical applications. Despite this, naïve Bayes turns out to
work relatively well for classification. The reason is that the class that maximizes the
estimated probability often coincides with the class that maximizes the real probability,
even if the estimates themselves are not very accurate.

Probabilistic graphical models
Probabilistic graphical models impose a specific independence structure of the vari-
ables; equivalently, they imply that the JPD can be factorized in a specific manner. The
structure of the factorization is defined by a graph. Different formalisms exist for defin-
ing the structure using a graph.

Bayesian networks are directed graphs where each node represents a variable,
and with each node is associated a probability distribution that is conditional on the
parents of that node. The JPD corresponding to a Bayesian network is obtained by sim-
ply multiplying all the (un)conditional distributions. Bayesian networks are easiest to
interpret in a causal framework: an edge from x to y, “y depends on x”, is then inter-
preted as a causal dependency. However, while it is possible to expose causal structure
using a Bayesian network, there is no guarantee that the edges in any given Bayesian
network indeed indicate a causal relationship; it is perfectly possible to define Bayesian
networks where this is not the case.

Markov random fields, or Markov networks, are yet another format. They are
undirected graphs where, with each clique (set of nodes that are fully interconnected),
a so-called potential function is associated. The JPD is obtained by multiplying the po-
tentials. Yet another format is the factor graph. This is a graph with two types of nodes:
factor nodes and variable nodes. When the factorization contains a factor p(x, y), a fac-
tor node p is connected to two variable nodes x and y.

For all these formats, it holds that the JPD is a product of functions, where each
function can easily be estimated from data. For instance, for a Bayesian network, the
conditional probability tables shown in Figure 7.27 can easily be obtained by counting
in the data how often a burglary occurs, how often an earthquake occurs, how often
John called when the alarm was (not) going off, etc.

The ability to impose an independence structure on the variables in a flexible man-
ner gives the specialist user much modeling power. This becomes even more clear in
more complex forms of PGMs, such as dynamic Bayesian networks (DBNs). A DBN
models a sequential process where the values of the variables at step t may depend on
other variables at step t, but also on the values of the variables at step t−1. Similar kinds
of probabilistic models are used in natural language processing (see Chapter 8 for more
on this).
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Figure 7.27: A Bayesian network defining a JPD over 5 variables. It indicates an underlying causal structure:
a burglary or earthquake may cause the alarm to go off, the alarm may cause the neighbors to call. The
joint probability of any value combination can be found by multiplying the conditional and unconditional
probabilities found in the table.

A note on continuous variables
The above discussion assumed discrete variables. When a variable x is continuous
rather than discrete, p(x) is typically zero, for example, the probability that a randomly
drawn person from the population of all humans is exactly 178.32000000000. . . cm tall
is zero. If we round to 1 cm (i. e., we discretize the continuous variable), we get mean-
ingful probabilities, but we could also round to 1mm, 0.1mm, etc. Naturally, the smaller
the intervals, the smaller the probability of drawing an element in that interval. For
example, if 3% of the population is between 178 and 179 cm tall, then likely about 0.3%
is between 178.0 and 178.1 cm tall. The probability itself is not very meaningful unless
you know the granularity, but the “probability per mm” remains pretty much the same.
The probability density is the probability divided by the interval width, for very small
intervals (mathematically, the limit as the interval width approaches 0). Conversely, the
probability of an interval is the integral of the density over the interval.

A probability density is quite different from a probability (e. g., it can be greater
than 1), and to stress this difference, p(x) is often called a probability mass function
when x is discrete, and a probability density function when x is continuous. When x
is a tuple of multiple variables, some of which are discrete and other continuous, the
function is a hybrid between the two, and it is convenient to simply use the term joint
probability distribution.

While PGMS are a very powerful and flexible formalism, they are mostly used for
discrete variables. A difficulty with numerical variables is that the factors can no longer
be estimated and stored in tabular format. Instead, they are continuous functions that
must somehow be fit to the data. This is often done using parametric methods (e. g., fit-
ting a Gaussian). Care must be taken to use an appropriate family of functions in this
case, as choosing the wrong family may give arbitrarily bad results. For example, fitting
a bimodal distribution with a Gaussian will assign high probabilities to values in the
middle, when in fact these values may be very improbable. This would be like conclud-
ing from the 52–48 result of the Brexit referendum that most Brits were indifferent to
Brexit, when in fact opinions were strongly polarized.
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7.3.15 Clustering and density estimation

Like matrix factorization, clustering is an unsupervised learning task where we try
to find structure in the data. In its most basic form, clustering simply implies finding
“clusters,”groups of instances that are similar. In some variants, the clusters themselves
are grouped into larger clusters; this is calledhierarchical clustering. In other variants,
the clustering system does not only group the instances into clusters but also describes
these clusters; this is sometimes called conceptual clustering.

Flat clustering
A flat clustering is simply a partitioning of the instances in the dataset, into groups of
similar instances.Whenwe visualize the data space, clusters typically look like “islands”
of instances, or dense regions amid sparse or empty area. Any method that can reliably
estimate the density of the population in the data space implicitly indicates where there
are clusters. Conversely, clusteringmethods differentiate high-density from low-density
regions and in that sense can be seen as a rudimentary form of density estimation. An
important difference, however, is that clustering actually assigns individual cases to sub-
groups, whereas density estimation does not necessarily do so.

Perhaps the best-known clustering algorithm, though by no means the only useful
one, is called k-means. It has one hyperparameter: k, the number of clusters we want
to find. It finds a partitioning of the data into k clusters, using a very simple procedure:
start with k random instances called “seeds,” assign each instance in the dataset to the
closest seed, recompute seeds as themean of all instances assigned to them, repeat until
convergence.

A probabilistic counterpart of k-means is the expectation maximization proce-
dure, EM for short. It is an iterative procedure where a mixture of probabilistic models
is learned. For instance, it may be assumed that the population consists of several sub-
populations, each of which follows a Gaussian distribution—a “mixture of Gaussians.”
Each iteration consists of a so-called expectation step, where for each instance we guess
which subpopulation it belongs to, and a maximization step, where we update the pa-
rameters of the distributions to optimally fit the data, given the assumption about which
instance belongs to which subpopulation. These steps are continued until the process
converges.

Because k-means assigns points to the cluster whose center is closest, it tends to
find spherical clusters. That is not always what we want. Spectral clusteringmethods
work very differently: they define a graph in which nodes are instances, and edges exist
between instances that are similar. Spectral clustering tends to find clusters in which in-
stances are near other instances of the same cluster, but not necessarily near the center
of that cluster; in fact, the center of the cluster (defined as the mean of all its instances)
may not even belong to the cluster.
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Hierarchical clustering
A hierarchical clustering roughly corresponds to the concept of a taxonomy. Construct-
ing it is similar to what humans have been doing for centuries with, for instance, ani-
mals. We observe that there are certain types of animals that look alike: we call them
dogs. While all dogs have certain similarities (which is why we recognize them as one
species), we can also subdivide them into subtypes: German shepherds, border collies,
great Danes, huskies, etc. At the same time, dogs, elephants, and squirrels have in com-
mon that they are mammals, which are vertebrates, etc. The taxonomy of animals that
we have today is the result of a hierarchical clustering process.

Computers typically form cluster hierarchies in either a top-down way (starting
with one cluster that contains the whole dataset, and repeatedly splitting clusters into
subclusters) or bottom up (merging similar individual into a cluster, then merging clus-
ters into larger clusters, etc.). The result of the hierarchical clustering process is called a
dendrogram (Figure 7.28). It is basically like a taxonomy, except that at its lowest level
it contains the actual individuals.

Figure 7.28: A dendrogram, and a flat clustering derived from it by cutting the dendrogram at a certain
level. Here, the “single linkage” principle for merging clusters was used: the distance between two clusters
is the distance between their closest members.

Semisupervised clustering
A major challenge when performing clustering is that there must be a well-defined no-
tion of similarity. This notion may be subjective, for example, when we cluster pictures
of people, do we want to group them according to clothing style, pose, physical appear-
ance, etc.? A computer cannot know what the user means by “similar,” except through
a formal definition of similarity provided by the user. However, it may be hard for the
user to provide such a formal definition. For instance, to cluster pictures according to the
clothing style of the person on the picture, we need to define a mathematical function
that, given two-pixel matrices, tells us how similar the clothing styles are—a practically
impossible task.
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Semisupervised clustering methods allow the user to provide some guidance by
showing examples of instances that should (not) be in the same cluster. From these hints,
they derive a similarity criterion that seems consistent with the user’s opinion and use
that to form clusters. For instance, in constraint-based clustering, the user states for a
small number of pairs of instances whether they belong to the same cluster or not. Some
systems allow the user to do this interactively: see Figure 7.29 for an example.

Figure 7.29: The interactive semisupervised clustering system COBRAS-TS (https://dtai.cs.kuleuven.be/
software/cobras/) clusters time series based on limited interaction with the user. (Picture by Wannes Meert,
KU Leuven).

7.3.16 Automata and hidden Markov models

Finite automata
We earlier mentioned Flashfill, an Excel plug-in that can learn data transformations
on strings from examples. Such transformations require finding a common pattern in
strings. There are many ways in which string patterns can be described. Among them
are regular expressions. A regular expression or regex is a pattern that can “match,”
and to some extent parse, strings. A simple example is u[0-9]+, which stands for “the
letter u, followed by one ormore digits” (the [0-9] construct matches a digit, the +means
there can be one or more such matches). The regex gr[ea]y matches the strings “grey”
and “gray.” Such expressions are commonly used to find and substitute pieces of text.
When Flashfill learns, say, to turn the value pair (Clarke, Arthur, Charles) into the string
“Arthur C. Clarke,” it is learning a substitution rule that can be expressed using regexes.
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Checking whether a substring matches a given regular expression can be done
using a device known as a finite automaton. A finite automaton can be thought of as
a machine that reads a string from left to right. It is always in one of a finite number
of states and moves from one state to another upon reading a symbol. Depending on
the state it is in after reading the entire string, it accepts or rejects the string. Now,
for each regular expression, a finite automaton exists that accepts a string if and only
if the string matches the regular expression. As such, finite automata and regular ex-
pressions are equivalent. Learning a regular expression from examples can hence
be done by learning finite automata from examples, a task for which multiple algo-
rithms exist. For instance, the RPNI algorithm learns, from example strings labeled
as positive or negative, an automaton that accepts all positive example, rejects all
negative examples, and can be used to predict the label of new strings. To do this, it
first constructs an automaton that accepts exactly the positive strings and no other,
then merges states in this automaton in such a way that the automaton will accept
more strings, but never a negatively labeled string. See Figure 7.30 for an illustra-
tion.

Figure 7.30: Left: a finite automaton that accepts all strings of the form ⋅, ab, abab, ababab, etc. and no
other. Right: such a automaton can be learned by constructing an automaton that accepts exactly the pos-
itively labeled strings, and simplifying it by merging states as much as possible, subject to the constraint
that when two states are merged, states reached from them by the same symbol must also be merged, and
we cannot merge accepting and rejecting states. The end result, in this case, is an automaton that differs
from the intended one as it also accepts the strings bb, bbbb, etc. More data would be needed to prevent
that from happening.

Finite automata have a broad application potential: they are used by compilers to
parse computer programs, but also for verifying the correctness of software, hardware,
protocols, etc.
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Hidden Markov models
A hidden Markov model or HMM is somewhat similar to a finite state machine, but it
has a probabilistic component. Instead of reading symbols andmoving states according
to that, it spontaneously moves from one state to another and with each move produces
an output symbol. The state it moves to, from a given state, is determined probabilis-
tically: for each pair of states, there is a constant probability of moving from the first
to the second. Put differently, a conditional probability distribution P(s′ | s) defines the
probability that the automaton moves to state s′ if it is currently in state s. This distri-
bution is summarized in the so-called transition matrix. The output it produces on each
move is also stochastic.

Given some strings of symbols, we can then consider the following learning task:
determine the most likely transition matrix and output probability distribution of the
underlying HMM. Typically, a fixed number of states is assumed in this learning process.

7.3.17 Reinforcement learning

Reinforcement learning is a relatively general setting for learning. It can be ap-
proached in different manners. We first describe the general setting. Next, we describe
a concrete learning algorithm for deterministic environments, Q-learning, and discuss
the challenges of exploration and generalization.

The problem of reinforcement learning can be stated as follows. An agent can be
in a number of states and can take actions in these states. Each action can result in
an immediate reward, and in a change of state. For now, let us assume a deterministic
environment, where an action always has the same result. The goal is to find a policy,
prescribing what action to perform in each state, that leads to maximal accumulation of
rewards. Formally, the task is to find a function π: S → A (this is the policy) such that, if
we start in any state s0 and in each encountered state st take action π(st),∑t γ

tr(st , π(st))
is as high as possible. Here, r(s, a) is the reward that we get for doing action a in state s,
and γ < 1 is a so-called discount factor: it reduces the value of rewards far in the future.

As an example of this problem setting, consider playing chess: the board positions
are states, actions are moves, the reward for an action could for instance be +1 if you
win the game with that action, −1 if you lose, and 0 otherwise. The policy tells you what
move to make and finding a policy that maximizes the accumulation of rewards means,
in this case, learning to play the game well. In this particular example, the outcome of
an action is nondeterministic, in the sense that the next state in which you’ll need to
take action also depends on your opponent’s response to the action. Other examples
of such a setting are, for instance, industrial processes where an operator has to take
certain actions to keep the process under control; the yield of the process can be used
as a reward, but if something goes seriously wrong, this may result in a large negative
reward (or cost).
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Note that maximizing the accumulation of rewards is not the same as maximizing
immediate reward. For instance, consider a car racer: breaking too early in anticipation
of the next sharp turn makes him lose time (negative reward), but going at maximum
speed for too longmay get him into a situation where he will not be able to take the turn
and crash. The initial reward is higher, but the final outcome is worse. Reinforcement
learners need to plan ahead.

We can consider increasingly hard versions of the reinforcement learning problem.
The simplest one is the casewhere the agent has amodel of its environment that includes
the state transition and reward functions. That is, it knowswhich new state it will end up
inwhendoing an action in a given state, and it knowswhere the rewards are. In this case,
it is possible to compute an optimal policy by simply searching the whole state space.
This setting is comparable to playing chess against a computer while knowing how the
computer will respond to any move, for instance. There is also a second instance of the
same programwhere you can askwhat it will do in a given state. Even though thismakes
the problem deterministic (you could in principle keep trying out sequences of moves
until you find one where you win), the set of all possible sequences of moves is so large
that this problem is not practically solvable.

A harder version of the problem is onewhere the agent does not know the transition
or reward function. It can find out by simply trying. Such an agent could first learn all
there is to knowabout the environment by exploring (trying each action in each possible
state and seeing what state it leads to and what its immediate reward is) and then learn
the optimal policy as described before. In practice, reinforcement learning algorithms
merge these twophases (learning about the environment andfinding the optimal policy)
into one.

A well-known algorithm for solving such problems is the Q-learning algorithm.
Q-learning tries to find an optimal policy without even constructing a full model of
the environment. It only constructs a model of the quality of actions taken in any state,
where quality is to be understood as the accumulated reward thatwill result from taking
this action, assuming that you will behave optimally later on.

More specifically, Q-learning learns a function Q(s, a) that represents the “quality”
of performing action a in state s, where quality is defined as the accumulated reward
we will get if we take action a in state s, and after that, consistently choose the action
withhighestQ-value. Because of this definition, the following equationholds (sometimes
called a Bellman equation):

Q(s, a) = r(s, a) + γmax
a′

Q(δ(s, a), a′)

where δ(s, a) is the state we end up in after taking action a in state s. If these Q-values
are known, the optimal policy simply consists of always choosing the actionwith highest
Q-value.

The simplest version of the Q-learning algorithm works as follows. The algorithm
keeps a table with for all s, a-combinations its current estimate of the corresponding
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Q(s, a) combination; this table can be initialized with 0’s everywhere. The algorithm
repeatedly does the following: froma starting state s0, randomactions are taken, forever
or until some end point is reached (in which case we go back to the starting point). After
each action, the Q table is updated by calculating the right-hand side of the Bellman
equation and assigning the result to the left-hand side. This means that the Q(s, a) entry
in the table is updated using the immediate reward and the Q entries of the next state.
Thus, Q-values in some sense get back-propagated from the end to the beginning. It is
easy to see why this works when we think of games such as chess, this can work: for
states near the end, it is easier to see which moves are good and which are bad, than for
states at the beginning of the game. It can be proven that, if this procedure is repeated
infinitely, the Q table converges to the real Q-function.

Figure 7.31 illustrates how an agent without any knowledge about the environment
might explore by taking random actions and construct a model of which action is best
in which states. Blue/red arrows indicate actions with positive/negative rewards, and
the thickness of the arrow indicates how strongly positive/negative the Q-value is. Com-
pare the lower left and right figure to see how an action gets assigned a positive Q-value
despite having led to disaster in the last exploration run (upper red arrow leading to
crocodile), because the model already knows it discovered that taking a different action
after it would have led to a very positive outcome (treasure). Note that the model con-
structed by Q-learning (the Q-table) does not include the transition function; looking at
the Q-table we do not know which new state action a in state s led to. Indeed, to de-
termine an optimal policy it is not necessary to know the exact outcome of action a in
state s, we only need to knowwhich action is best. Thus,Q-learning gains some efficiency

Figure 7.31: Illustration of the gradual building of an environment model using Q-learning. Blue/red ar-
rows indicate positive/negative Q-values, thicker arrows indicate larger (absolute) values. Top left: situ-
ation after first Q-update (backpropagated). Top right: after second Q-update. Bottom left: before third
update (path followed s indicated, Q-values not yet updated). Bottom right: after third update. Note that
Q-learning explores the graph structure but does not actually learn (store) it; it only stores the Q-values.
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by not attempting to build a full environment model but constructing an abstraction of
it with just enough detail to be able to learn an optimal policy.

In a nondeterministic environment, the immediate reward as well as the next state
that results from an action may vary. Typically, this variation is modeled using a proba-
bility distribution for both the next state and the reward. The decision process that the
agent faces in this setting is often called a Markov decision process (MDP). Methods for
learning an optimal policy in this setting resemble the ones for deterministic settings;
the main difference is that, given that actual outcomes and rewards may vary, they op-
timize expected values of these variables. A crucial property of MDPs is that the agent
knows at all times what state it is in. A harder version of this type of problems is when
the agent cannot observe the state it is in; such problems are called POMDPs (partially
observable MDPs).

Exploration strategies
In the above description, we assumed that the agent, while learning, acts totally ran-
domly. If this goes on for long enough, the Q table converges to the real Q function.
However, we are really interested in finding a good policy, not in finding an accurate
Q function. To have an optimal policy, it suffices that the Q-value of the optimal action is
accurate, we do not need allQ-values. To refer back to the chess example: once we know
which action is best in a certain situation, we are not interested in exactly how bad the
other actions are.

For this reason, it makes sense to have an exploration strategy that is not entirely
random but gradually focuses more and more on the better actions, once it finds out
what those are. Often, a probability distribution over actions is associated with each
state, which is initially uniform, but as some actions are starting to appear better than
others, their probability is increased.

Exploration strategies for reinforcement learning are a research topic in itself.
This topic also relates tomultiarmed bandits. The multiarmed bandit problem is for-
mulated as follows. Assume you have one-armed bandits (the casino machines). With
each bandit is associated a probability distribution for the payout it will give you if
you pull its arm. This payout distribution may be different for each machine and is
unknown to you. Obviously, as a player, you want to maximize your expected payout.
If you can play infinitely many times, what is the best strategy for choosing the arms
to pull? In the beginning, you want to try all of them. After playing for a while, you
notice that certain bandits tend to give a higher payout on average, so you may start
using those more often. Once you are certain which bandit gives the best payout, you
want to always use that machine. If you decide too soon which bandit is best, there is a
risk you miss the best machine. If you wait too long, you miss an opportunity to maxi-
mize your profit. The contextual multiarmed bandit problem is similar, but now the
payout distribution of a bandit is not constant but depends on the state it is currently
in.
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The (contextual) multiarmed bandit problems are simplified versions of the explo-
ration problem in reinforcement learning. They are simplified in the sense that the pay-
out distribution describes the immediate reward, while in reinforcement learning, we
try to maximize the long-term accumulated reward. The latter depends also on what
state the current action will bring us to, and this, too, is unknown in the beginning. An
often-used exploration strategy is the so-called epsilon-greedy strategy: here, at any
time, the action that currently seems best (highest Q-value, in Q-learning) is selected
with a probability of 1 − ε (for some hyperparameter ε), and with a probability ε, a ran-
dom other action is chosen.

While exploration is important during reinforcement learning, there comes of
course a time when we want to start using what has been learned: there is no point in
learning an optimal policy if we are not going to use it. The exploration phase is there-
fore followed by an exploitation phase.Whereas inmost learning settings, the learning
phase and the operational phase are clearly separate (e. g., we first train a neural net-
work, and then we use it; training does not continue during its use), in reinforcement
learning they tend to overlap. As the learner learns what actions are valuable, it grad-
ually starts exploiting what it has learned by choosing the better actions more often
than the other. This is not only useful from the point of view of exploiting the learned
knowledge, but also from the point of view of learning itself: choosing the better actions
more often allows the agent to explore parts of the search space that look promising in
more detail.

A good illustration of this principle is Monte Carlo tree search (MCTS), an algo-
rithm for game playing that is similar to the traditional minimax algorithm but works
more probabilistically. Tomake the discussionmore concrete, consider again chess. The
minimax algorithm (call it player M) essentially evaluates a possible move by consid-
ering all possible responses by the opponent (player O), all possible responses by M to
each of these, all responses by O to each of these, etc. Basically, it tries all possible se-
quences of moves M-O-M-O-M-O-M-O (leaving out some that are provably nonoptimal)
up to a certain depth. Obviously, the number of such moves increases very fast: even
for small depths, it easily runs in the billions. MCTS differs in that it does not try all
sequences, but a random sample of them. Initially, this sample is entirely random, but
when after a while it seems that some initial moves lead more often to an advantageous
position than others, it will increase the probability of those moves, exploring this more
promising part of the search space in more detail.

Generalization
Until now, we have assumed that the Q-values are stored in a table that has one row
for each state and one column for each action. This works if there are not too many
states and actions. But if we consider a case where the state is defined by the values
of a number of variables, we can easily get an enormous number of states. It can even
be infinite, if some variables are continuous. Q-learning only converges if each state-
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action-pair has been encountered many times. Clearly, this condition is unrealistic in
very large state spaces.

In such case, itmakes sense to store the current approximation of theQ-function not
as a table, but using a different format: a neural network, decision tree ensemble, linear
model, etc. Of course, the Q-updates then can no longer be made by simply updating a
value in a table. Instead, the following procedure then follows: generate a large number
of Q(s, a) values in the regular; once there are enough, learn a model that given some
s, a-pair predicts Q; use these predictions in the right-hand side of the Bellman equa-
tion shown before; store the result of the right-hand side calculation as the target value
for a new training instance for Q(s, a). Once we have enough new training instances,
we retrain the model. Thus, generation of data using an old version of the Q-model and
training a newmodel on the basis of this data are interleaved, and this continues until a
good approximation of theQ-function is obtained. This approach, sometimes referred to
asmodel-based reinforcement learning, combines the generalization power of stan-
dard machine learning algorithms with the strengths of reinforcement learning.

7.3.18 Other aspects of learning

Hyperparameter tuning
Many machine learning algorithms have hyperparameters that affect their behavior.
For instance, when using a tree learner, we may wish to limit the depth of the trees,
or impose a minimum on the number of instances that gets sorted into each branch;
in k-nearest neighbors, the choice of k is relevant; the backpropagation algorithm for
neural networks uses a so-called learning rate, which affects the size of the steps that the
gradient descent proceduremakes; the choice of the kernel function in an SVMaffects its
performance, etc. It is important to choose the right values for these hyperparameters.
But how do we find them?

A straightforward way of tuning the hyperparameters is to simply try many differ-
ent values and see which gives the best results. This means more work for training (to
try 100 different hyperparameter settings, we need to train and evaluate 100 models).
An important aspect is that the evaluations used for tuning the hyperparameters should
be independent of the final evaluation (e. g., they cannot have access to the test set that
will be used for the final evaluation), otherwise there is a risk of overfitting the hyper-
parameter settings to the test set.

When there are few parameters, it may be feasible to systematically try all combi-
nations of their settings; this is called grid search. Inmany cases, this is not feasible and
more advanced methods are used. The field of automated machine learning (AutoML)
focuses on methods for determining what algorithm is optimal for your learning task,
with what parameter settings; techniques from Bayesian optimization are often used
for this. Advanced AutoML methods optimize not only the learning algorithm itself but
also aspects such as data preprocessing, feature selection, etc.
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Missing data and noise
When describing a method or algorithm, we explain the calculations it performs on its
inputs. In practice, it happens that data are incomplete. It is important to distinguish two
types of situations: missing data during training, and missing data at prediction time.

For instance, if we have a function y = 3x1 + 5x2 − 2x3, and we want to use it to
predict y for a new case where x1 = 1 and x2 = 2 but x3 is unknown, how do we do that?
A straightforward approach is to fill in for x3 some representative value, for example,
the mean. Somewhat more advanced, we can try to predict x3 from x1 and x2 (using a
regression function that was previously learned for this purpose) and fill in that value.

PGMs naturally deal with missing values at prediction time: the advanced infer-
ence procedures they have are developed for the general case where some variables
are known (evidence) while others are not. Some other methods have special ways of
handling missing values. For instance, in a decision tree, when the outcome of a test is
unknown, both paths can be followed; the instance thus ends up in multiple leaves, and
we can combine the predictions of these leaves into a single prediction.

Handlingmissing values at training time is a quite different task. Whenmissing val-
ues are rare, the instances containing them can simply be ignored.When there aremany
attributes, andmissing values are frequent enough thatmost instances have at least one
missing value, this obviously does not work. Some learning methods can internally deal
with missing values. A decision tree learner, for instance, when evaluating individual
tests, can simply ignore the instances whose outcome is unknown for that specific test
(while still using these instances when evaluating other tests). Some decision tree learn-
ers give a penalty to tests with many unknown outcomes: if an attribute’s value is often
unknown in the training set, it may also frequently be unknown at prediction time, re-
ducing its usefulness for prediction.

Formethods that do not explicitly deal withmissing values, an often-used approach
is to impute the missing values in the training dataset: replace all missing values by
some reasonable value (e. g., their mean or a random value drawn from their distri-
bution), then run the learning system. This obviously inserts some noise into the data.
Methods that are robust to noise will handle this approach better thanmethods that are
not.

Depending on the context, missing values may not occur randomly. Exit polls are
a well-known example: the probability of not answering the question “who did you
vote for” may depend on who you voted for, making exit polls notoriously unreliable. In
statistics, different mechanisms behindmissing values have been recognized. Themiss-
ing at random (MAR) condition states that the probability that a value is missing does
not depend on the real value of this or any other variables, except possibly the class.
Missing completely at random (MCAR) is stronger and also excludes dependence of
this probability on the class value. Not missing at random (NMAR) is the most general
setting: no conditions on randomness are imposed. While there has been a fair amount
of work thatmakemachine learningmethods robust againstmissing values, this robust-
ness does not necessarily hold for all settings.
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Apart from having missing values, there is also the problem of incorrect values, or
noise.

Some methods are not affected much by incorrect values as long as there are few
(even if the values themselves are very different from the right value), others can be
thrown off badly by even a single noisy value. Robustness against noise is strongly
related to overfitting avoidance. Indeed, a method prone to overfitting is more likely
to overfit the noise. However, this connection is not perfect. Linear regression in low-
dimensional input spaces, for instance, tends to underfit rather than overfit, and still, it
is very sensitive to outliers, to the extent that even a single noisy value can completely
change the outcome if it is extreme enough.

Integrating background knowledge
The best results with machine learning are obtained when the system exploits both the
data and the domain knowledge that the user may have. Some approaches (e. g., induc-
tive logic programming) allow the user to provide domain knowledge as part of the input
to the system. In other cases, the architecture of the model allows one to express certain
background knowledge (for instance, the causal or independence structure indicated by
a PGM, the network architecture of a neural network). Some methods allow the user to
interactively provide guidance to the system, for example, in constraint-based cluster-
ing.

For most machine learning approaches, the incorporation of background knowl-
edge into a system requires an advanced understanding of the machine learning meth-
ods. It therefore typically requires a close collaboration between machine learning ex-
perts and domain experts. This is often challenging and requires a substantial invest-
ment but, in many cases, it pays off.

Transfer learning
Consider the following task: wewant to learn amodel that can serve as an earlywarning
system for runners. A number of sensors measure all kinds of data of the runner (heart
rate, etc.). When there is an increased risk of injury, an app tells the runner to take some
rest. Each person is different, so ideally the model that the app uses is trained on data
from this user, but it may take a while before we have enough data about this user to
train an accurate model. On the other hand, there are also similarities among people,
which can be captured by models trained on a larger population of people.

Transfer learning refers to a setting where amodel is learned on one dataset, then
transferred to a different context. In this second context, we also have data andwewant
to use it to train a model, but we want to prime the model with the model learned from
the first dataset. Transfer learning refers to techniques for doing exactly that.

Transfer learning is useful in many circumstances. For instance, different hospitals
may have different procedures, different patient populations, etc. A predictive model
learned in one hospital may not fit well in another hospital but may be useful as a start-
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ing point for developing their ownmodel. As another example, in computer vision, pre-
trainednetworks are oftenused. They recognize features that are useful for awide range
of vision tasks. Special-purpose networks are often trained by starting from a general-
purpose pretrained networking, and merely adapting the weights in a few higher-level
layers. This, too, is a form of transfer learning.

7.4 Evaluating the results
When many different machine learning methods can in principle be used for a given
task, a relevant question is: which of all these methods should I use? The answer to that
depends on many different things. In some contexts, time or computational resources
are limited, so the learning process must be very efficient. In other contexts, computa-
tional resources for learning are practically unlimited and our goal is simply to find the
“best” model. Next comes the question: what is “best”? Many different criteria may be
important: interpretability of the model, runtime efficiency (the computational effort
needed to make a single prediction), noise robustness, etc. For some of these criteria, no
single evaluation measure exists (e. g., interpretability is highly application-dependent
and often subjective). In the context of predictive models, quality is often measured by
how accurate the predictions are, but even that can be defined and measured in differ-
ent ways.

Accuracy of classification
In classification contexts, the term accuracy is typically used for one specific thing: the
probability of making a correct prediction, given an instance drawn randomly from the
population. The term error is used for the probability ofmaking an incorrect prediction.
The sum of accuracy and error is 1.

Accuracy seems like a very natural criterion, yet it can be tricky to interpret. When
some predictive model A has an accuracy of 0.999, is that a high accuracy? If the task
is to predict who is a terrorist and who is not, then a model B that always predicts “no”
maywell achieve an accuracy of 0.999999 (misclassifying one in amillion)—much better
than A. At the same time, B is completely useless for finding terrorists, whereas if A flags
0.1% of the population as potential terrorists but this turns out to include all terrorists,
it may be useful, if only as a filtering tool. So, accuracy as defined above does not tell
everything—a less accurate model can be more useful than a more accurate one.

In many settings, there is a certain cost associated with making an incorrect predic-
tion, and that cost is not necessarily symmetric. For example, the cost of the fire alarm
going off when there is no fire is very different from the cost of the opposite happening.
If we assign a cost CFP to each false positive (false alarm), and CFN to each false negative
(undetected fire), then the expected cost of a single prediction is

CFP ⋅ P(FP) + CFN ⋅ P(FN) = CFP ⋅ FPR ⋅ P(Neg) + CFN ⋅ FNR ⋅ P(Pos),
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where P(FP) and P(FN) are the probability of having a false positive/negative. A false
positive occurs when a negative instance is drawn and predicted positive; the probabil-
ity of this happening is P(Neg) ⋅ FPR, with FPR, the false positive rate, the probability
of a random negative instance being predicted positive by the model. Similarly, P(FN)
equals P(Pos)⋅FNR. Note that predictivemodels with lower FPR tend to have higher FNR
and vice versa: an alarm that sets off very easily will tend to have a low FNR at the cost
of a higher FPR. Thus, there is typically a tradeoff between these two.

Maximizing accuracy minimizes the expected cost only when CFP = CFN . In all
other cases, a model with lower accuracy may be better in terms of cost. The optimal
model depends on the FPR and FNR of the models, but also on the ratio of positives ver-
sus negatives in the population. If that ratio changes, another model may become opti-
mal. A so-called ROC diagram (ROC stands for “Receiver Operating Characteristics”) is
often constructed to visualize the performance of models in this context. The ROC dia-
gram plots models in a two-dimensional space, where the horizontal axis indicates the
false positive rate, and the vertical axis the true positive rate TPR (which equals one mi-
nus the false negative rate). A perfect model is located in the upper left corner: it has
FPR = 0 and TPR = 1. Models with the same cost are situated on a straight line (called
an iso-cost line), the slope of which is determined by CFP, CFN , P(Pos), and P(Neg) (see
Figure 7.32). Models with lower cost are closer to the upper left. Given a number of mod-
els, plotting them in a ROC diagram allows us to select the model that is optimal under
certain operating conditions (misclassification cost ratio and class distribution). When
a single model has a parameter that can push it toward predicting positive or negative
(e. g., we could have a neural networks predict “positive” only if its numerical output is
above some threshold, which by default is 0.5 but could be changed to, say, 0.8, so that
it only predicts positive in those cases where it is most certain), changing this parame-
ter makes the systemmove on a curve in the ROC diagram. Depending on the operating
conditions, the system can be tuned to behave optimally under those conditions. When
these operating conditions are not known in advance, the area under the curve is often
used as a quality criterion for the system; it is referred to as AUROC or AUC, for “area
under the (ROC) curve.”

In some cases of binary classification, the positive class is of more interest to the
user than the negative class, and evaluation measures take that into account. Imagine
you are interested in finding a set of terrorists, and an AI system provides a number
of suspects. The precision of the AI system is the fraction of suspects that turn out to
be terrorists indeed, and the recall of the system is the fraction of terrorists that are
suspects. (Thus, recall is actually a synonym for TPR; precision, however, is not equal to
any of the above-mentioned rates.) There is typically a tradeoff between precision and
recall: themore eagerly the AI system treats people as suspect, the higher its recall tends
to be, but the lower its precision. Many systems have a tunable parameter that makes it
possible to make themmore or less sensitive. Varying the value of this parameter yields
a so-called precision-recall curve or PR-curve, plotted in a PR-diagram shows how
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Figure 7.32: A ROC diagram allows us to choose the most suitable classifier among a set, depending on
the class frequencies and cost ratios. The red and blue lines are lines of equal cost, under different circum-
stances. The ideal classifier is located in the upper left, at coordinates (0, 1).

this parameter influences both precision and recall. Systems are sometimes compared
on the basis of the area under the PR-curve, a measure often abbreviated as AUPRC.

Quality of regression
In a regression context, predictions are rarely entirely correct. When estimating the age
of someone who’s actually 51, 52 is pretty good, and certainly more accurate than 12. It
is not meaningful to simply categorize predictions as right or wrong. In this context, the
error is defined as the difference between the predicted and the actual value, and the
mean absolute error (MAE), the mean squared error (MSE), and the latter’s square
root (root mean squared error, RMSE) are more meaningful measures. Given a test
set T on which a model f is evaluated, the MSE of f on T is

MSE(f , T) = 1
|T |
∑
(x,y)∈T
(f (x) − y)2

For RMSE a square root is added, for MAE the square is replaced by the absolute value.
Whereas in a classification context, error is always between 0 and 1, in a regression

context, the MAE and (R)MSE are measured on a scale that is application-dependent.
Is an RMSE of 2 good or bad? When the task is to estimate someone’s age in years, it
is pretty good; when estimating someone’s height in meters, it is extremely bad. Some-
times, the MSE of a model is divided by the variance of the target (which equals the MSE
of a model that always predicts the mean). This measure is called relative MSE, and it
is typically between 0 (perfect prediction) and 1 (no better than always predicting the
mean). Similarly, the RMSE can be divided by the standard deviation in the population,
yielding relative root mean squared error (RRMSE).

Quality of clustering
As argued elsewhere, clustering is an inherently subjective task. As such, it is hard to
evaluate clustering. Some clustering systems try to find clusters with minimal intraclus-
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ter variance; in those cases, the average intracluster variance of the clusters is obviously
a suitable criterion. However, a clustering with many clusters will naturally have lower
intracluster variance, so this criterion can only be used to compare clustering with the
same number of clusters. Further, the criterion favors spherical clusters, which in some
contexts may not be desired.

In some cases, a reference clustering R is available with which the constructed clus-
tering C can be compared. TheRand index can then be used: it expresses the probability
that for a randomly drawn pair of instances, R and C agree on whether they are in the
same cluster or not. When R = C, the Rand index is 1. For a random clustering, the in-
dex is not zero. For that reason, the “adjusted Rand index” (ARI) is often preferred: it
rescales the Rand index so that the expected ARI of a random clustering is 0.

Efficiency, interpretability, fairness, safety
The above-mentioned measures all relate to some kind of accuracy: how well does the
learned model approximate reality? But, as said, there may be other criteria.

Efficiency is often important.We canmeasure the efficiency of the learning process,
in terms of computational effort (often less relevant) or how much data needs to be
collected (data collection can be costly, especially when it requires manual labeling of
examples). Then there is the operational efficiency of the learned model: how fast can it
make predictions, how costly is each prediction. It is important to distinguish these two
types of efficiency; they are largely uncorrelated.

Under some circumstances, interpretability is a requirement for AI systems (hence
the large interest in “explainable AI” or XAI).When theseAI systemsmakeuse of learned
models, this often means that the learned model and/or its predictions must be inter-
pretable. There is no general way of determining interpretability; often it is measured
by simply asking users how satisfactory they find some explanation.

Finally, models may have to fulfill additional criteria, such as safety and fairness.
These are typically expressed using constraints that the model or its predictions must
fulfill. For instance, if a self-driving car uses a learned model, one may want to have
guarantees that it will never decide to hit a wall at full speed because of some quirk in
the learnedmodel. Similarly, onemaydemand guarantees that algorithms used for scan-
ning job applications or algorithms used in law enforcement will not behave in a sexist
or racist manner, even when the data they are trained on reflect some unconscious bias.
It is currently very much an open problem how to ensure fairness in machine learning
and more generally in AI. We refer to Chapter 9 for more on this.

7.5 What are the limitations of learning?
Generally, machine learning should only be usedwhen a principled solution is not avail-
able. For instance, given that amathematical solution for least-squares linear regression
exists, there is no point in using neural network methods to solve this particular type
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of problem. Similarly, when theory about a domain is available, hard-coding it into a
knowledge base may be better than learning it from data. In some cases, a combina-
tion is possible: one can start from a model or knowledge base that represents current
knowledge, and improve it, for instance by tuning certain parameters to a particular
dataset using machine learning.

As an example, consider the scheduling of thesis defenses at a university. Assume
weprovide a computerwith info onwhich theses have to be evaluated,which professors
evaluate which theses, the exam schedule of students and evaluators, the availability of
rooms, etc. Some constraints are obvious: a professor cannot be in twoplaces at the same
time,we cannot have two defenses at the same time in the same room, etc. But theremay
also be less obvious constraints: two rooms may be too far apart for a person to be able
to attend a presentation at 10 am in room A and at 11 am in room B; some professors
may by default not be available after 6 pm while others are, etc. The person who uses
the program may not know all these constraints, yet ideally the program should take
them into account. It could do so by observing past schedules and learning generalizable
patterns from them.

Apart from decidingwhether to use machine learning at all, there is the problem of
deciding what machine learning approach to use. This depends on the task (classifica-
tion, regression, etc.) and on certain operational constraints (such as requirements on
interpretability or energy-efficiency of themodels), but also on properties of the dataset:
somemethods are good at handling high-dimensional data, some are not; some are com-
putationally efficient, others less so, etc.

All machine learning methods have a so-called inductive bias, a set of implicit as-
sumptions theymake about the targetmodel. An approachwill workwell if its inductive
bias matches well the task at hand. Unfortunately, inductive bias is a relatively elusive
concept; we do not understand the inductive bias ofmanymachine learning approaches
verywell, and also formany datasets it is unclearwhat inductive bias suits themwell. As
a relatively simple illustration, consider the following problem: we want to model how
an academic’s salary depends on their job, age, gender, and the country they live in. We
could do this with linear regression or regression trees. Linear regression assumes the
effects of different variables are additive: if, say, increasing input variable x1 by 1 in-
creases the outcome y by v1, and increasing x2 by 1 increases y by v2, then increasing
both by 1 increases y by v1 + v2. In our example, this implies, for instance, that the dif-
ference in salary between men and women does not depend on the country they live in
(the technical term in statistics is that there is no interaction). That may be unrealistic.
Decision trees do not make that assumption: if a tree notices a difference between coun-
tries, it may split the dataset based on country and learn a completely different model
for each group. A disadvantage of this approach is that the amount of data available
within each group quickly becomes small. As a result, the different sub-models may be
highly inaccurate, as they are learned from small datasets.

Given these concerns, onemight thinkwe should strive to developmachine learning
methods that have little or no bias, so they performwell under all circumstances. Unfor-
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tunately, such methods do not exist. The so-called no-free-lunch theorems by Wolpert
and others show that learning without any inductive bias at all is theoretically impossi-
ble. Also, aiming for a kind of “minimal bias” is not optimal: methods with a strong bias
will always perform better on datasets that fit their bias.

The concept of inductive bias is related to the statistical concept of bias, but not
identical.

The term bias is used in many different ways in the context of artificial intelligence.
Apart from the two ways in which it was used here (both reflecting an inherent prefer-
ence of learners toward models with particular properties), the term may also refer to
datasets being non-representative for the population (selection bias), reflecting miscon-
ceptions or prejudices among humans, etc. More on these types of biases is mentioned
in Chapter 9.

7.6 Industry examples

7.6.1 Predicting the metallization rate in iron production using
ensemble methods at ArcelorMittal
Oussama Chelly, Abrao Aqueri, Emmanuel Gillain

Many industrial processes that require feedback-loop regulation canbenefit from super-
vised machine learning algorithms. In fact, the state and parameters of the process can
be fed to regression models in order to predict the future state and, therefore, proac-
tively apply the parameter adjsutments required to optimize the outcome. One such
process is the direct reduction of iron in steel factories: impurities in the reagents add a
degree of variability that requires periodic adjustments to the conditions of the chemical
process in order to increase the metallization rate and, therefore, obtain better quality
steel.

ArcelorMittal Acindar is the leading producer of long carbon steel inArgentinawith
a 60% market share. The company operates a direct reduction plant in Villa Constitu-
ción. The objective of a direct reduction is to drive off the oxygen contained in various
forms of iron ore in order to purify the material and convert the ore to metallic iron
without melting it. The process uses a mixture of natural gases in order to reduce the
iron ore as illustrated in the diagram 7.33. Iron ore physical, chemical, and meturgical
characteristics have a direct impact on the process efficiency.

The most important performance indicator of a direct reduction plant is the “met-
allization rate,” that is, the purity of iron, which in turn determines the downstream
steel quality and efficiency. Ideallly, operators must keep the metallization at its highest
level, with minimum deviation in all input variables, at maximum productivity, and at
minimum energy consumption. In order to determine the metallization rate, produc-
tion samples are regularly taken to the lab and undergo a 2-hour-long analysis process.
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Figure 7.33: The process of direct reduction.

Hence, the obtained results are 2 hours old and the whole process could have deviated
in the wrong direction during all of that time. After lab measurements are ready, the
operators use a deterministic approach, combined with some human expert knowledge
to reach an average of about 94.75% metallization rate, with an estimated 0.3 mean ab-
solute error.

In the past, the metallization rate used to be only estimated based on the aforemen-
tioned lab measurements and without any anticipation. Operators used to take reactive
measures based on themeasurements of themetallization rate, which are obtainedwith
a 2-hour lattency. Anticipating these measurements and taking action based on the pre-
dicted values has a very positive impact on the process. In fact, a small variation in iron
quality can have a major effect on the end product quality and on the energy costs in
further downstream processes. May the reaction diverge, a high energy consumption
would be needed to redirect it to the desired levels. In a quest to improve the process
and product quality, Acindar launched a project to assess whether statistical methods
can do better than the current deterministic approach in predicting the metallization
rate with the smallest error possible, now and in the future.

One of the goals was to reduce the latency of the lab measurement process. Ide-
ally, the panel operator would not wait for 2 hours while lab measurements are being
processed but rather react instantly based on predictions made by a trained machine
learning model. The lab results would be used later to retrain and improve the predic-
tion model.

Thanks to the use of different supervised machine learning techniques using mul-
tiple predictors coming from telemetry and lab measurement data, operators can now
anticipate the metallization rate within a 0.1 error and ensure they adapt the process
parameters to maintain the highest possible quality of iron since they can regulate the
process without the necessity to wait for lab outputs. This has led to better quality end-
products and less energy consumption thus leading to higher profits for the company.

Creating the machine learning model used in the process starts with data collection
(cf. Figure 7.34). The collected data is composed of two types of features that describe ev-
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Figure 7.34: The pipeline for creating a regression model for metalization rate prediction.

ery sample. First, sensor data sampled every 30 seconds is available through a myriad
of sensors measuring temperatures, pressures, gas compositions and flows, the porosity
of the iron pellet, all at different steps of the process. Second, data on the current met-
allization rate is manually collected every 2 hours based on laboratory measures. The
latter is the real label data associated with the samples. Date and time are also taken
into account in the prediction model to associate the sensor data with the appropriate
lab measurements, which become available 2 hours later.

The collected data is then preprocessed. First, a single entry is created from each
set of 30 seconds worth of sensor data. Then the metallization rate measurements avail-
able 2 hours later are smoothed out by connecting the values at the two ends of each
2-hour interval and linearly inferring the values for every 30-second time stamp inside
the interval. The inferred values—which correspond to the labels—are added to each
entry with a 2-hour buffer since the goal is not to predict the current rate, but rather
the rate 2 hours in the future. Additionally, this label data is transformed to make the
time series stationary. This means that instead of the actual metallization rate value,
the label is replaced by the difference between the “’future” metallization rate and the
current one. The task is no longer to predict the next metallization rate but rather to
predict how much the current rate is going to increase or decrease. At this point, one
data entry is created every 30 seconds and is fully available 2 hours later because of the
lab process. Second, the average of the readings for every sensor is computed, which has
the effect of smoothing the readings and reducing the effect of outliers. In the third step,
statistics such as the slope and the skewness are also computed for the original read-
ings. These statistics are closely related to the derivatives of the sampled sensor values,
and are theoretically involved in chemical kinetics. In order to improve the training
data quality, Acindar’s data scientists were assisted by chemical engineers in order to
enrich the data by designing additional features. This was achieved by looking into the
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correlations between predictors and label data, and by taking into account theoretical
knowledge about physics and chemistry brought by the chemical engineers. One such
additional predictor is energy, which can be measured by multiplying the temperature
by the production rate. Finally, every predictor is scaled so that predictorswith large val-
ues do not outweight those with small values in the subsequent process. In total, more
than 60 predictors are used, and 2 years worth of data was available for the training of
machine learning models.

Once data is preprocessed, predictors were assessed based on the correlation be-
tween each pair of predictors as seen in Figure 7.35. As a result, pools of highly correlated
predictors were identified. Taking few predictors from each pool has the advantage of
simplifying the model and reducing overfitting with very limited quality loss in the pre-
diction performance.

Figure 7.35: Correlation map between predictors available after preprocessing.
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Many models were trained using the features selected from the preprocessed data.
In particular, Linear Lasso, LGBM, Gradient Boosting, and Random Forests were trained
to predict the evolution of the metallization rate. All of these models were trained in
order to minimize the mean absolute error of the metalization rate. Acindar opted for a
more stable model by combining the outcome of all 4 trained models in a single model.
This technique is one form of “ensemble methods,” where the outcome of several pre-
diction techniques are combined into one model. This has the advantage of reducing
the variability of the outcome. By taking the average of the 4 predictions, if a predic-
tion happens to have an outcome which is much higher or much lower than the other
3, averaging would reduce the difference.

Several iterations were necessary before a final model was created. For every iter-
ation, a model is trained and the importance of each predictor is assessed by its coef-
ficients in the prediction process. The higher the absolute value of the coefficient, the
more important the predictor (cf. Figure 7.36). Then the least important features are re-
moved and a newmodel is trained with less features. This feature selection process has
the advantage of reducing the model complexity and thus further reducing overfitting.

Figure 7.36: Top 20 features ranked by decreasing order of importance.

The trained model takes the set of measurements taken every 30 seconds and pre-
dicts the metallization rate—that is, label—to be achieved in 2 hours. The model can
currently predict the next metallization rate with a 0.1 mean absolute error, and Acin-
dar are working on improving the model.

Ironically, the final model’s accuracy could be “altered” by the operators. In fact,
as they use the prediction from the last iteration in order to improve the metallization
rate, they change the outcome predicted by the iteration itself (cf. Figure 7.37). When
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Figure 7.37: Actual vs. predicted metallization rate for a duration of 4 hours.

the operator takes the action to change control variables to improve the iron quality, he
changes the “course of events” and the actual output. This is indeed the goal of making
the prediction. To be fair with the model, a proper comparison of its predictive quality
requires a comparison of the predicted value when there were no changes made by the
operator, that is, a situation without the ML-based prediction.

It is possible to create amodel that takes this phenomenon into account by acquiring
newdata after operators start to account for the predictions as they tune the parameters.
With such a new model, quality is expected to improve, and a smaller mean absolute
error could potentially be achieved. In the future, Acindar will also be looking at both
simulating and predicting the impact of controlled variables to find the most optimal
settings.

7.6.2 Estimating the value of real estate with supervised
regression models, at KBC Group
Oussama Chelly, Michaël Mariën

Employing some 42,000 staff worldwide, KBC Group (7.5 billions EUR revenue, 280 bil-
lions EUR assets, 19.5 billions EUR equity, at the time of writing) is an integrated bank-
insurance group, catering mainly for retail, private banking, SME, and mid-cap clients.
The company serves approximately 11million clients with an omnichannel approach in-
cluding branches, insurance channels, aswell as online andmobile channels in Belgium,
Ireland, and Central Europe. KBC customers, millenials in particular, are increasingly
using digital channels to access information and purchase new products or services. To
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fulfill the needs of digital-minded customers, KBC is continuously looking at digitalizing
its sales process, aiming to be the reference as themost accessible and solution-oriented
bank insurer, ensuring a full role for each distribution channel. Home insurance is one
of KBC core “nonlife” core insurance product. The process of issuing home policy used
to be serviced by physical channels. The calculation of the premium is based on the
value of a home, which is itself derived from a questionnaire of about 20 to 30 questions.
Such process and approach were internally challenged as they didn’t meet the needs of
digital-minded customers looking for online, accessible, and easy-to-use services.

In mid-2016, the company launched a project to reinvent and simplify the process
with the goal to cover 75% of those digital-native customers needs through a simple and
digital process without losing quality and service. The classical evaluation system had
to be reworked into a lean and data-driven evaluation system, which can calculate a
quote based on solely the address of the property. From the address, a plethora of in-
formation can be inferred such as the type of the building, the number of floors, or the
surface in square meters. At this point, machine learning regression techniques are
used to combine these factors and infer the property value, which in turn determines
the market-based premium for the client. Once the premium is calculated, the policy
can then be closed immediately and online. KBC launched their new data-driven eval-
uation system through web and mobile application in November 2017. It is estimated
that the new system accounts for more than 30% of new policy production. By using
their new intelligent evaluation system, their intermediaries can also better focus on
personal advice and tailored cases.

In the current KBC home policy insurance app (cf. Figure 7.38), the customer no
longer answers a 20-to-30question questionnaire. Instead, the current implementation
asks the user for their address, the type of home, and the number of floors. Based on that,
KBC can automatically gather hundreds of features related to the property. These fea-
tures gathered from both internal and external sources include the coordinates, there-
fore the location, the neighborhood, the city, or town, the distance to public transporta-
tion, the price per square meter in the area, the construction date, the building surface
and number of floors, the flood risk, etc.

Not all external features are freely available to KBC. Hence, with some of these fea-
tures, having a substantial price tag, there is a tradeoff between costs andmodel quality.
KBC engineers therefore created several models using different subsets of the available
features, and a business decision had to bemade to choose themodel with the best qual-
ity versus complexity and price balance.

Various regression models were implemented using different combinations of the
afore-mentioned features. The models were trained and tested using historical data
from KBC’s database, then compared based on both their financial cost and Mean Ab-
solute Error (MAE). In this context, the cost refers to the financial cost associated with
acquiring the data used in the model, while MAE is the average difference between a
model’s estimate and the asset’s true value indicated in KBC’s data.
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Figure 7.38: Screenshots from the new mobile app.
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Figure 7.39: Architecture of the solution for insurance premium pricing.

The model that provided the best tradeoff between cost and quality measured by
the MAE uses LASSO regression on key features including surface area of the asset and
prices in the neighborhood to estimate the value of the property. From that point, the
home insurance policy is calculated using well-defined formulas and an offer is made
to the customer.

The deployed model can estimate the insurance premium based on the address. To
conclude and illustrate the descriptions provided above, we hereby provide a calcula-
tion example for a house located in Nieuwstraat (Rue Neuve) in Brussels, Belgium. In
the first step, the customer enters the address of the property as shown in Figure 7.40.
The address allows the algorithm to extract many features that describe the property.
Some of these features are described in Figure 7.41. Finally, the algorithm estimates the
insurance premium and provides almost instantly an insurance offer to the customer
that can be seen in Figure 7.42.

7.6.3 Fraud detection in insurance claims with unsupervised
outlier detection, at KBC Group
Oussama Chelly, Michaël Mariën

Fraud in insurance claims is unfortunately a wide-spread practice. It is extremely diffi-
cult to provide accurate estimates for the financial cost of this malicious endeavor given
that many, if not most, frauds go undetected. However, it is believed that in 2019 alone,
fraud set European insurers around 13 bn EUR back. Obviously, the financial costs of in-
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Figure 7.40: The customer enters the address.

Figure 7.41: The algorithm extracts the features associated with a given address.
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Figure 7.42: Insurance offer.

surance fraud provide more than enough motivation for insurers to invest heavily in
fraud detection. Many of them, such as KBC Group (an integrated bank-insurance group
with core markets in Belgium, the Czech Republic, Slovakia, Hungary, and Bulgaria), de-
cided to design and apply machine learning models in the detection of fraud. To assess
the validity of an insurance claim, and thus be able to distinguish between a legitimate
claim and fraudulent one, insurance companies organize their efforts and personnel
in three lines of defense. The first line consists of customer-facing agents who carry
out business objectives. First-line agents are only responsible for detecting the most fla-
grant fraud and do not carry out a thorough assessment of each claim. The second line
of investigators review and challenge the claims that make it past the first line. Mean-
while, the third line focuses on preventive measures as well as evaluation of the efforts
carried out at the first and second lines. Since the early nineties, many insurance com-
panies around the world have started to empower their second-line investigators with
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machine learning tools in order to help them more accurately and efficiently identify
nontrivial fraudulent insurance claims.

Fraud detection is an inherently complex machine-learning task because of several
factors. First, whenever labeled data is available, the labels are noisy at best. In fact,
available data cannot be labeled with total certainty as either fraudulent (positive class)
or legitimate (negative class). Many are the cases where frauders may have successfully
obtained compensation. These cases are referred to as false negatives or Type II error.
Meanwhile, in a few other cases—referred to as false positives or Type I error—a legit-
imate claim may have been refused. Consequently, semisupervized or, in this case, un-
supervised learning models need to be used to overcome the absence of reliable labels.

Second, there is a severe class imbalance since fraud is—despite its significant
volume—still rare when compared with the total volume of transactions in the insur-
ance industry. In otherwords, having orders ofmagnitude fewer examples in the “fraud-
ulent claim” class than in the “legitimate claim” classmakes it harder formachine learn-
ing models to accurately identify the boundaries between the two classes.

Third, the two types of error have imbalanced costs because Type I errors are
“more costly” than Type II errors both from the moral and from the financial per-
spectives. From the moral standpoint, tolerating some fraud is more acceptable than
refusing compensation to a legitimate claim. The situation is comparable to that of a
judge who would set a guilty suspect free rather than taking the risk of condemning an
innocent. While the moral aspect is obvious, the business reasoning is less trivial. At
first glance, rejecting a legitimate claim or accepting a fraudulent onemay seem to yield
identical financial costs from the insurer’s perspective: both decisions would require
the insurer to pay a compensation to the customer. However, error costs should not
only include the compensation paid to the customer but also the costs of potential legal
battles should a customer with a rejected legitimate claim decide to take legal action,
the loss of this customer in the future and, more importantly, the image of the insurance
company, which would be tarnished in such circumstances. With the complication of
having different costs for different errors, reducing the overall error rate is not optimal
from a cost perspective, and a machine learning model has to find the best tradeoff
between the two error types to minimize the combined error costs rather than simply
minimize the error rates.

Finally, the data often suffers from class overlap in that two claim files could
be entirely identical with one considered positive and the other negative. In the sim-
plest scenario, a frauder could copy a legitimate claim and ask for compensation. With
more data collection, the two claims could conceivably be separated. For instance,
information on the financial situation or legal history of the customer could help in
distinguishing fraud from legitimate claims. However, high data collection costs in ad-
dition to data privacy legislations could limit the accessibility or the usability of such
information.

To add a layer of complexity, it is not possible to conceive an all-around fraud detec-
tion algorithm that would operate on all products of an insurance portfolio. The unique-
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ness of each type of claim makes it hard to create a general-purpose model. In fact, the
inputs involved in those claims can greatly differ from one context to the other. For ex-
ample, information such as the type of road where a car accident took place are irrel-
evant in claims related to home insurance. Nonetheless, it is possible to design specific
tools for each product in the insurance portfolio. As explained, these algorithms are
domain-specific and cannot be generalized to all types of claims.

Despite these complications, investment in machine learning tools for fraud detec-
tion is still profitable. In fact, it is not necessary to achieve an impeccable error rate since
any improvement on existing methods has a significant financial impact. Consequently,
insurance companies developed fraud detection tools for a variety of their products.
KBC Group has developed machine learning tools for a variety of tasks for fraud de-
tection in job accident-related claims. We will focus on this example to illustrate how
unsupervised machine learning can be leveraged in the insurance industry.

For clarification, a high-level, generic overview of the business process and the in-
teraction with machine learning models can be found in Figure 7.43.

1. Client fill in the claim and deliver it to the insurance company
2. Claim is processed and stored in the system
3. Model runs on the claim data and score each claim
4. Based on the score the claims are ranked and stored in database
5. The claims are compared with the actually investigated claims and the top N not yet investigated are picked up

and pushed to the list that is later presented to the claim handlers and private investigators in the webapp web
app

6. Claim handlers assess the suspiciousness of the claims that are presented to them in the webapp
a) Not suspicious (it would be showed again only in case the suspiciousness increases)
b) Watchlist (Will stay in the list and, therefore, will be still presented to the claim handlers)
c) Suspicious (Go to private investigators for further investigation)
d) Fraud (Fraud procedure)

7. Suspicious claims are picked and investigated by private investigators in order to get more detailed assessment,
they can choose the same actions as claim handlers

Figure 7.43: Pipeline for evaluating an insurance claim.

In a job accident claim, inputs include information on the employee and on the em-
ployer, the date, location, and type of accident, as well as the expected duration of inca-
pacity. The latter is known to investigators to be positively correlatedwith the likelihood
of fraud. In other words, the longer a person is claiming to be unfit for work due to the
medical consequences of the job accident, the more suspicious the insurance claim.

Taking these inputs into account, KBC created a two-step approach to create a fraud
detection model. In the first step (cf. Figure 7.43, steps 3–4), they used the isolation for-
est algorithm to perform unsupervised outlier detection. The algorithm associates an
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“outlierness score” with each observation, that is, claim. In this algorithm, anomalies
are assumed to be “few and different,” hence the outlierness score indicates the rarity
of a given claim and its divergence frommore common claims. Since the algorithm can
only cope with numerical data, a preprocessing step is necessary. Indeed, categorical
inputs such as the sector of activity is transformed into binary inputs. For example, the
input corresponding to the sector of activity is removed and replaced with a column for
each sector that appears in the data, such as transportation and construction. Then a
claim that used to indicate “transportation” under the input “sector of activity” would
instead indicate a “1” under “transportation” and “0” for the rest of artificially created
inputs that indicate the rest of sectors (cf. Figure 7.44).

Figure 7.44: Isolation score as a measure of outlierness.

In a second step (cf. Figure 7.43, step 5), the outlierness score as well as available la-
bels are added to the rest of the inputs and fed to a supervised binary classification algo-
rithm. It is true that the labels in the training data carry a proportion of error, which in-
hibits the quality of the final model. But in the absence of clean and undisputable labels,
this error can be tolerated since the final model yields much better results compared to
the human investigators. The algorithm would then be trained to separate fraudulent
claims from legitimate ones. Datawas—asusualwith supervised algorithms—separated
into a training set used to train several algorithms and a testing set used to evaluate them
and select the best algorithm. The different algorithmswere evaluated for lift. This eval-
uation metric is the ratio of percentage of true positives identified by the model and
the percentage of positives in the test data. Lift is a more appropriate metric than ac-
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curacy when working with highly imbalanced classes. Under these circumstances, the
small class would be barely contributing to the accuracy score leading to bias toward
the larger class.

Several models were tested including Random Forests, Linear Support Vector Ma-
chines, and Logistic Regression. They all confirm the tendency that the longer the inca-
pacity, the higher the likelihood of a fraud. Other models such as auto-encoders do have
a potential to improve current results, but logistic regression has the best lift results and
was themodel deployed as the final solution that assists second-line investigators of KBC
with the task of identifying fraud in job-related insurance claims.

To illustrate how well the model works, two claims that were labeled by the algo-
rithm as fraudulent are provided. In the first example, a young employee claimed that
he had back injuries from lifting heavy furniture while performing his work duties. The
incident falls under the category “simple fall” and the injured employee received first
medical attention no earlier than 4 days after the claimed incident. Additional infor-
mation from KBC’s data shows that this is not the first claim made by this customer.
The claim estimated to 190.000e was flagged by the algorithm as a potential fraud. The
insurance company has therefore decided to appoint a private investigator who later
found elements proving that the claimed accident did not occur during work. The client
has not accepted the refusal and started a legal procedure. As of the time of writing, the
court has not provided a verdict.

In the second example, the victim “slipped away in the hallway on the way to the
kitchen” duringwork times. The accident is categorized as “slip and fall.” Nowitnesswas
present during the accident, and the victim was taken to hospital immediately despite
no apparent injuries. The claim was submitted 12 days after the accident without any
mention of injuries and with limited data about the incident. The extended incapacity
duration in relation with the type of accident was suspicious. These factors contributed
toward all four algorithms labeling this case as fraud. A dedicated claim handler from
the insurance company found no proof that accident happened theway it was described
by the victim. Furthermore, no doctor could confirm the relation between the injury
and the accident circumstances. However, doctors found proof of preexisting injuries
prior to the claimed accident. The claim—which has been estimated at 80.000e—was
refused, and neither the employee nor his employer decided to react to the refusal by
taking judicial action.

Being assisted with machine learning tools, KBC investigators can process a larger
volume of claims in a shorter amount of time and with higher accuracy. In fact, the
model requires a fraction of a second to assess a claim, compared to a few minutes in
the first line and a few hours of work in the second line. Additionally, in the pilot phase
45% of the top fraudulent claims were identified as suspicious by the model, compared
to only about 10% usually detected by human operators.
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7.6.4 Defect detection in textile using CNN, k-means clustering,
and unsupervised anomaly detection, at Veranneman
Technical Textiles
Jonathan Kesteloot, Oussama Chelly

Veranneman Technical Textiles produces textiles for use in industrial applications. In
other words, the end consumer of their product is not the retail industry and, therefore,
aesthetic defects are generally of no concern during the manufacturing process. How-
ever, while aesthetic defects have, by definition, no impact on the structural integrity of
the end-product, they can give the appearance of low quality textile. To give customers
a sense of quality about the delivered product, each produced roll of textile is subject to
a manual inspection over the complete length of the textile roll. This easily sums up to
multiple kilometers of textile for a single production run.

Preemptively flagging the location and severity of defects that occur during produc-
tion would relieve the human inspector of having to manually verify every single meter
of textile. The focus could then be shifted to other parts of the production process. The
scale of defects can range from 1 cm2 for the smallest aesthetic defects to significant
structural defects spanning over several meters of textile.

Figure 7.45:Microscope view of a portion of defect-free textile.

The solution provided by Robovision and Viu More allows for the automatic detec-
tion of defects and scoring of the quality of textile per meter. The techniques used allow
for real time monitoring of 2-meter-wide textile using three 12-megapixel cameras run-
ning during the entirety of the production process. Five classes of defects shown below
are being detected, and a quality score is assigned to each part of the textile.

The problem separates into two unsupervised tasks where defects are first detected
and then quality scores are given to each part of the roll, and a supervised taskwhere the
highlighted defects are classified in one of the five aforementioned defects. The pivotal
part of the complete solution is the unsupervised anomaly detection algorithm trained
on images of good textile. Obtaining an image of a good textile is considerably easier
since it is known that defects are rare.
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Figure 7.46: Various types of textile defects. Source: http://osif.de/Download/Flyer_GridInspector_Eng.pdf.

The task of assigning a quality score to an image of textile and highlighting defects
within the image is considered unsupervised for two reasons. First, there is no con-
sensus by textile producers on the how quality scores should be assigned; and second,
defects are rare. Manually labeling all defects from scratch would require traversing
through terabytes of data per roll.

The supervised task can then be stated as classifying highlighted defects into one of
five possible classes. This is a common problem in computer vision and many out of the
box solutions are available. For this use case, a basic ResNet50 was used.

The technique used for the anomaly detection is called a “backbone-based feature
dictionary.” It uses the resulting feature vector from a pretrainedmodel as ameasure of
“visual similarity” of image patches. This technique is unsupervised as it uses features
from an existing network trained with “good/perfect” images. It uses a combination of
PCA and k-means clustering to make it fit on the problem at hand. To accommodate
the images to a standard image size, it uses a sliding-window approach where patches
are cropped from the image to be processed. A summary of the solution is provided in
Figure 7.47 where the training pipeline and the inference pipeline are explained.

First, the initial image seen in Figure 7.48 is divided into patches as shown in Fig-
ure 7.49). From these patches, the original pixel values are transformed into a set of
features. This feature transformation known as transfer learning consists of transform-
ing the set of pixels into information about the presence or absence of certain shapes
within the patch. Simple shapes usually correspond to a horizontal, vertical, or oblique
lines. Then more complex shapes correspond to combinations of basic shapes, which
could be used to draw any pixelated curve. This is a generic operation that is often per-
formed in machine learning tasks on images and the extracted shape features are not
specific to the use case. In this model, a ResNet18 pretrained on ImageNet was used. No
further training on this backbone network was performed.
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Figure 7.47: Training and inference pipelines.

Second, we perform extract features, which are specific to our use case by perform-
ing PCA on the shape features. With this operation, features that are most relevant to
our images are kept while shape features that are irrelevant would be cleaned out. In
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Figure 7.48: Input image of textile.

Figure 7.49: Cutting the image into patches.

other words, the use of PCA transform forces the algorithm to distill the information
about what makes good textile.

In the third step, the features are normalized and used to cluster the images using
the k-means algorithm. Since the input data is assumed to be good, these clusters form
the representation of normal textile.

Finally, to detect defects, which are the outliers of our dataset, a distance metric
is defined. Each image patch whose features are far from the existing clusters is then
counted as an outlier. The definition of what distance is too far can then be set by the
customer. Example output of the algorithm at inference is shown below. A heatmapwith
the local distance is the result. These local distances then get converted to a quality score
of the entire image (cf. Figure 7.51).

Figure 7.50: Output of the outlier detection algorithm as a heatmap where red colors indicate textile de-
fects.
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Figure 7.51: Correctness scores for the example image in Figure 7.50.

7.6.5 Extracting information from forms using clustering
techniques with Microsoft Form Recognizer
Nicolae Duta, Oussama Chelly

Note. The service and version referred to in this section is Microsoft Form Recognizer
based on unsupervised learning techniques. Form recognizer nowmoved to a new service
called Azure AI Document Intelligence, which also added supervised learning and gener-
ative pre-trained transformer (GPT) based solutions. Each of them has advantages and
disadvantages, so the customers can use whatever works best for their problem.

Companies and people gather large amounts of data in various paper and digital docu-
ments such as invoices, receipts, purchase requests, tax forms, technical and scientific
literature, etc. Forms are documents that contain structured data such as key-value pairs
and/or tables and can include typed text or handwriting. Unfortunately, both the format
as well as the layout of the data (key-value pairs embedded in cell structures, complex
tables, etc.) make automated ingestion, information extraction, and use of any seman-
tic information very challenging. Figure 7.52 shows an invoice sample on left and the
structured information to be extracted on right.

Manually consolidating data from multiple forms can be a tedious and time-
consuming operation. In addition, the data layouts and formats may not be consistent
across different forms, especially ones from different sources. A system that looks for
specific keywords or locations will only be able to process a limited number of forms
or require multiple different configurations. In contrast, newer technologies identify
keys and values within documents without interaction and without being provided any
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Figure 7.52: An invoice form sample (left) and the structured information to be extracted (right).

key or value locations. These systems learn the keys and the table headers from differ-
ent types of forms and can then extract values for them without requiring user input
regarding keys, values, or layout of the documents.

Microsoft Form Recognizer uses unsupervised learning to understand the layout
and relationships between fields and entries in forms.When a set of forms is submitted,
the system clusters them by type, discovers what keys and tables are present, and asso-
ciates values with keys and entries with tables. This does not require manual data label-
ing or intensive coding and maintenance. The architecture of the unsupervised Form
Recognizer is shown in Figure 7.53. There are two main processing pipelines: one for
Training and one for Recognition.

Each pipeline consists of several modules starting with the same preprocessing
module, which takes as input an image file or PDF document, splits it into pages, and
then extracts all characters identified on each page and the coordinates of each of those
characters. To extract the characters, this module first uses a third-party page decompo-
sition software for digital pdf documents, then usesMicrosoft’s Optical Character Recog-
nition (OCR) to translate images into text. The extracted characters are aligned on their
vertical coordinates such that after sorting by vertical and then by horizontal coordi-
nates, they appear in reading (left-to-right and top-to-bottom) order. The characters are
then grouped into tokens based on multiple cues: horizontal spacing, presence of punc-
tuation or vertical lines, common prefix, etc.

In addition to extracting characters, the preprocessingmodule also extracts the line
structure (horizontal and vertical lines) present on each page either directly from a dig-
ital pdf or using computer vision algorithms such as the Hough transform whenever
the document is in image format. The extracted lines are subsequently grouped into
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Figure 7.53: Architecture of the Microsoft unsupervised Form Recognizer.

rectangular cells and the cells into connected components. The character tokens and
rectangular cells constitute the main objects used by system to compute features used
for classification. These features are usually statistics (counts) on various token and cell
alignment occurrences and may be quite complex. For example, the average percent-
age of (aligned) numeric tokens per row (cf. Figure 7.54) can distinguish well between

Figure 7.54: Example of a feature used by the Microsoft unsupervised Form Recognizer to assess page
content.
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various page contents: from numeric tables (high value) to invoices and tax documents
(medium value) to plain text (low value). In contrast to the complex and computation-
ally demanding feature computation, the classifiers used by the system are very simple
and fast, usually based on thresholding and hashing.

The second trainingmodule is page clustering, which takes as input the tokens pro-
duced by the preprocessing module and identifies sets of similar pages (e. g., invoices
coming from the same vendor with the same layout) and groups them in multiple clus-
ters (cf. Figure 7.55). As the case with clustering algorithms in general, a measure of
similarity is defined. Then different items are grouped in different clusters based on
how similar they are. Similarity in the case of the Form Recognizer is measured by the
number of tokens that are common between two documents, as well as the distance be-
tween the location of these tokens. This similarity measure is by design indicative of a
common visual layout of a set of pages than of a common semantic interpretation. That
is, if one just changes the provider’s name in some of the documents in one cluster, they
would still be clustered together while if one rearranges the location of tokens on the
page while keeping the same tokens, the page would be placed in a new cluster. Cluster-
ing is implemented as a hashing of the token text and approximate location. Hence, if
two pages have a certain percentage of common token text and location, they are placed
in the same cluster.

Figure 7.55: A set of 3 document clusters produced by the page clustering module.

Clustering complexity is linear in the number of pages clustered and constant in the
number of clusters, that is, it will roughly take the same time whether the data contains
10,000 clusters or 10 clusters. That allows Form Recognizer to mine large amounts of
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data simultaneously and be limited more by the amount of physical memory than by
the computation time.

Since pages in a cluster contain common tokens, it makes sense to consider some
of them as being “keys” (semantic entities whose values are to be extracted, e. g., “Ac-
count #,” “Transaction date,” “Total due” in Figure 7.56) and some as being“table header”
(e. g., “Quantity,” “Description,” Unit price,” “Amount”). One can even think of a table as
a set of multirow key-value pairs. Of course, not every repeated token can be a key or
a header; numeric entities (numbers, monetary amounts, dates) are usually excluded.
For each cluster, Form Recognizer identifies the set of likely “keys” and “table headers”
and stores them in a cluster model, which concludes the training pipeline.

Figure 7.56: Learning keys from a page cluster.

The recognition (i. e., inference) pipeline takes one document, splits it into pages,
and applies the same preprocessing module to extract the tokens and line structure.
The tokens are used to assign each page into one of the clusters seen at the training
stage. The key and table models for that cluster are retrieved and used to extract key-
associated values and table bodies. For all documents in a single cluster, the field names
will be the same while the associated values will be different. For one-of-a-kind pages,
the system can still extract some key-value entities and tables based on semantics but
may miss information that can only be extracted by seeing other similar documents.

Training onmultiple documents of the same type can also allow for correcting typos
or OCR. For example, a token “Net price” might be extracted by the OCR as “Nit price”
on some document and as “Not price” on another. However, seeing more of “Net price”
at some locations than versions containing random errors will prompt the system to
output the more common therefore likely correct version.
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The final module of the recognition pipeline is the confidence score computation.
It assigns a confidence score for each extracted key-value pair and table entry. The con-
fidence is based on the agreement of the semantic entities extracted for the same key
from multiple documents in the same cluster. For example, if the key “Net price” has
numeric values in 9 out of 10 documents in a cluster, then the 9 key-value pairs will get
a confidence of 1.0 while the 10th nonnumeric one will get a 0.0.

The output of recognition pipeline is a file containing identified cluster IDs, keys,
values, tables, and their locations, as well as confidence scores. Returning the cluster ID
back to the user allows him to also perform document classification and better manage-
ment of the document database.

7.6.6 Recommending pages in Microsoft News with reinforcement
learning
Saheli Datta, Oussama Chelly

As the web has expanded, reading online news has become very popular around the
world. A key challenge for news websites is to help their users find news articles that
would be appealing. This comes under the realm of news recommendation. Microsoft
News, formerly MSN, delivers high-quality news from popular and trusted publishers
across the globe. Amix of human and algorithmic curation decides themost appropriate
stories to show and how to position them on the page. In addition, the stories need to be
relevant to users’ interests.

Unlike traditional recommendation systems, news recommendation is inherently
non-stationary since news become less relevant once they are outdated. In addition,
the cold-start problem that is common to recommender systems is exacerbated in the
news scenario. In other words, starting without prior knowledge about the user prefer-
ences leads to a starting page with news potentially unrelated to his interests. To deal
with cold-start scenarios and the inherent nonstationarity of news, personalized rec-
ommendations have previously been formulated as a contextual bandit problemwhere
the system recommends content to users based on contextual information of both users
and contentwhile also adapting its content selection strategy by incorporating user click
feedback to maximize total user clicks.

When a user requests the homepage, MSN’s front-end servers need to decide which
content to choose froma readily available pool of content, then how to organize this con-
tent on the user’s homepage. This content needs to be presented to the user in away that
is relevant to him along with optimizing overall performance or engagement metrics.
Websites usually measure performance through a variety of click-based measurements
such as click-through rate (CTR).

Users who come into MSNwill generally fall into one of two buckets: users with his-
tory who have previously visited and interacted with content on MSN, and new users
with no history. A standard approach of all recommender systems is to build up an un-
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derstanding of users based on their past interactions with the system. This understand-
ing is often referred to as user preference. Additionally, it is also common to have meta-
data about the content available to the system.

Contextual bandits (CBs) were introduced as a variant of the multiarmed bandit
problem, while considering additional context. As in traditional bandits in casinos, the
player starts with a fixed number of coins and can spend a proportion of his coins to
evaluate the chances of winning in each machine. This step is known as “exploration”
since the player is exploring different machines to evaluate the probability of winning
in each one. Then the player typically spends the rest of his coins in the machine or set
of machines with the highest winning probability in order to maximize his gains. This
step is called “exploitation.” The tradeoff between exploration and exploitation is key in
bandit problems. In fact, the more a player invests in exploration the less risk he takes
during exploitation but also the less funds are left to exploit. In some cases, the funds
left for exploitation are not sufficient to cover for the exploration investment. Inversely,
when a player overlooks the exploration phase by not investing enough coins, he would
be taking much higher risks during the exploitation phase. In summary, spending more
money in the exploration minimizes risk but comes at the price of a portion of funds
otherwise available for exploitation. This tradeoff connects casino bandits to the more
general full reinforcement learning (RL) problems. In particular, CBs can be considered
as a 1-state RL problem.

In a contextual bandit setting, a dataset has four components, which are the context,
the action, the probability of choosing the action, and the reward for the chosen action.
In our scenario, the goal is to maximize user engagement using the CTR as a proxy. The
content pool that is available to be shown to the user are the set of actions available as
action choices. The probability of choosing a particular action is dictated by the explo-
ration policy that is fixed a priori. The reward in our case is the user clicks on a piece
of content.

In a first scenario, a user with previous history comes to Microsoft News. For such
user with previous user history, the user preference is available along with potential
demographic information to cater content. The content pool and all metadata about the
content are also available. These are the information that are passed as context to the
contextual bandit algorithm.

In a second scenario, a user with no previous history comes to Microsoft News. For
such user with no user history, some demographic information such as location can be
available and is used to help cater content. The content pool and all metadata about
the content is also provided. These are the information that are passed as context to
the contextual bandit algorithm in this case. Compared to the previous scenario, user
preference is not part of this information. In either case, apart from the presence or
absence of the user history information, there is no difference to the input to the CB
learner.

Microsoft News currently uses a customized implementation of personalizer sum-
marized in Figure 7.57. Personalizer is based on cutting-edge science and research in
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Figure 7.57: Figure illustrating how Azure Personalizer works (Picture Credit: Azure Personalizer).

reinforcement learning including papers, research activities, and ongoing areas of ex-
ploration in Microsoft research.

The primary learning loop uses machine learning to build the model that predicts
the top news article for users. Actions with features and context features are sent to a
ranking application programming interface (API). If a user is logged in, there is user-
specific context features: the topics of news stories he clicked on in the past; otherwise
only location is available. The action choices are the current set of news articles selected
for curation. These articles are typically less than 50 pieces of content. Each piece has
features that describe its topic. The ranking API decides to either exploit by choosing
the best action based on current learning from past data, or else explore by randomly
selecting a different action. If the API always picks the best action, the userwill no longer
be able to shift away fromhis initial choices. For example, a user interested in sports and
technology could have clicked on a sports article on his first visit to MSN. Without the
API exploration, the user would always be provided with sports articles to choose from,
and there would be no chance for the API to discover the user’s interest in technology.
The current implementation uses the default Epsilon-Greedy exploration policy with
epsilon in the range of 10–33% in different markets. This strategy consists of always
spending an epsilon-fraction of the available resources—that is, articles presented to
the user—in exploration, and the rest of resources in exploitation.

Once the ranked response is shown to the user, the systemcollects feedback from the
user—that is, whether there is a click or not—and sends it back to the training service
within the API to continue learning. Models are continuously updated based on config-
uration settings, usually every 10 to 15 minutes. Continuous optimization is important,
especially in the context of news, where breaking events are very common.
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Over the course of the next few examples and for the sake of simplicity, only the
following action choices will be considered: politics, sports, travel, and food. The system
will choose a ranked order of these actions for users coming in, based on its current
understanding of the world.

In a first scenario summarized in Figure 7.58, a user who has a history of reading
content on MSN lands on the site. She primarily likes reading politics and health con-
tent. The system is starting from a cold start, so it starts with exploring available action
choices by randomly sampling from the content pool with probability εn where n is
the number of choices available to show to the user at the top slot. The user does not
like what was provided in the top slot and does not click on it. This is sent as a negative
reward signal to the learner.

Figure 7.58: Illustration of user content interaction with negative reward.

Over the course of the next few iterations, the system continues to record signals
on whether its recommendations generated positive or negative rewards. Based on this
information, the system would learn a policy based on tuples of user and document
context, the probability with which an action was chosen, and the reward signal asso-
ciated with each iteration. By default, personalizer uses a linearmodel on the features
(context) as the training policy although other representations are available.

In a second scenario, a different user who likes to read sports content lands on Mi-
crosoft News as shown in Figure 7.59. The user context heavily reflects his preference
for sports-related content. If the learned policy exploits the user preference, it presents
sport news to this user. As he clicks on the content, a positive reward signal is generated
and sent back to the learner to continue online training.

In a third scenario, a new user with no history on Microsoft News opens the web
page. The system chooses to employ its best guess (exploit) and may predict sports for
this user. Assuming the user is not actually interested in sports, he would not click on
any content. This is sent back as a negative reward to the learner.
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Figure 7.59: A sport-loving user opens Microsoft News.

In a fourth and final scenario, we have a new user with no history on Microsoft News
and the system chooses to explore among its action pool and presents the user with a
politics document. The user clicks on this document, and it generates a positive reward
for the learner. This reward encourages the system to recommendmore politics-related
news to the user.

In this way, the system switches between exploration and exploitation in order to
maximize rewards for the scenario. As this is an online learning system and both users
and the available action choices can keep changing, the system continues to balance its
exploration with exploitation in an attempt to maximize total clicks.
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Walter Daelemans
8 Between language and knowledge

8.1 Why is natural language processing important
within the broader AI domain?

Language is closely linked to intelligence and thinking. We use language to describe and
explain facts and events, to express opinions and emotions, to tell stories, and for many
other reasons. Sometimes what we say or write is objective and factual, other times it
is an opinion or an expression of an emotion. We also use irony and humor. But most
importantly, wewant to communicate—wehave something to say. An essential property
of language is that we count on our listeners and readers to share sufficient contextual
and cultural knowledge with us. It is because of this shared common sense that we can
understand each other, even though what we say is often ambiguous and incomplete.

In this chapter, we will provide an overview of where the field of natural language
processing (NLP) currently is, with pointers to the literature and possibly fertile direc-
tions for further research and development. NLP encompasses most of the artificial in-
telligence (AI) techniques described in the other chapters in this book: search and prob-
lem solving, logic and knowledge representation, statistics and machine learning (ML),
and in addition information theory, linguistics, epistemology, cognitive science, math-
ematics, etc. It would be possible to write a 1000-page textbook about NLP, and in fact
this has already been done. We gladly refer the reader to Jurafsky andMartin (2009 and
the forthcoming third edition) for a more in-depth explanation of NLP algorithms and
approaches.1

In this section, we provide a brief overview of the history of NLP leading up to
the current situation in which large language models (LLMs) have become central. Sec-
tion 8.2 describes the challenges of the field, and its various subtasks. Rather than striv-
ing for completeness, we focus in Section 8.3 on the current state of the art: pretrained
languagemodels and sequence-to-sequencemodels, both currently based on the trans-
former architecture in deep neural networks. Section 8.3.5 provides an overview of the
more classicalmodular approach to analyzing language intomeaning, and Section 8.4
addresses the limitations of the state-of-the-art in NLP: the lack of true natural language
understanding.

To make the material more tangible, three examples of NLP applications have been
added to the end of this chapter (Section 8.5). The first example is a cloud-based bot ser-
vice calledAzureQnAMaker that lets you create a conversational question-and-answer
layer over your existing data. Hence, it is a good example of information retrieval and

1 Draft chapters of third edition available at https://web.stanford.edu/~jurafsky/slp3/
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conversational AI. The second example is the application LexagorIA as used by Legal
Village, an AXA business unit. LexagorIA analyzes, labels, classifies, and groups legal
data in order to make it more searchable, to build logical bridges between the different
documents, and to add indicators of completeness and relevance to track the evolution
of law. Finally, there is Icertis’ enterprise contract management system (ECMS) as
used byDaimler. The application extracts and encodes both the content and the dynamic
structure of contracts into a structured schema and a procedural code formulation so
that processes, such as onboarding new suppliers, can be automated, clear actions can
be defined, and compliance checks can be performed.

8.1.1 A short history of NLP

Throughout the history of natural language processing (NLP), we have seen an evolution
back and forth between data-oriented and knowledge-based methods for building the
models needed for developing language processing applications. Data-orientedmethods
combine language data with statistical pattern recognition techniques to learn models,
knowledge-based methods start from formal linguistic knowledge about some task and
handcraft models using this knowledge. NLP originated in machine translation (MT) in
the 1940swithin a data-oriented (cryptographic, information-theoretic, neural network)
framework (see, e. g., Warren Weaver’s 1949 ‘Translation’ memorandum).2 Given the
hardware restrictions and data poverty of the time, however, this program remained
an idea only. The engineered systems of that period did not achieve much more than
word-to-word translation with limited use of context.

Because of the then-perceived limitations of this statistical approach, from the 1970s
onward, models based on the implementation of linguistic rules and representations
were built. These models were applied not only for MT but also for many other appli-
cations, like question-answering, dialogue systems, information extraction, summariza-
tion, etc. The familiar modular NLP pipeline (Section 8.3.5) originated here, with mod-
ules for analysis and generation at word level (morphological analysis, lemmatization,
stemming, word sense disambiguation), at sentence level (syntactic analysis, sentence
semantics), and at text level (coreference resolution, discourse coherence, and struc-
ture analysis). For each module in each language, linguistic data and rules had to be
collected and designed. Consequently, the 1980s were the heyday of computational lin-
guistics, where linguistic theory was driving research and development. However, the
limitations of this approach soon became apparent: the models did not scale, had to be
developed for each language, task, and domain from scratch, were not accurate enough
for deployment in applications, and the pipeline architecture caused error percolation
to downstream modules.

2 Reproduced in (Locke and Booth, 1955).
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By the mid-1990s, most of the field had switched back to statistical and machine
learning approaches. This shift was inspired by successful application in information
retrieval and speech recognition and exploiting the availability of the first sizable
machine-readable text collections (corpora of only one or a few million words were
considered large before that time) and more computing power. They led to better ac-
curacy and more useful applications. This was a period when many statistical and ma-
chine learning methods were championed and compared, ranging from decision tree
learning and rule induction over Bayesian learning, maximum entropy approaches,
transformation-based error-driven learning, and memory-based learning to different
types of neural networks. By the start of the century, the clear winner within the field
of NLP seemed to be statistical learning theory and its “optimal” machine learning
method SVMs: support vector machine with kernel methods (see Chapter 7). The ML
methods were applied both to individual pipeline modules (training a syntactic ana-
lyzer using statistical methods, for example) as well as directly to applications (e. g.,
a machine learning approach to text categorization tasks like spam filtering). Although
the adage “there’s no data like more data” was commonly accepted, a more specific
result was often neglected, namely that as more data becomes available, apparently
large differences between different machine learning methods disappear and they be-
come interchangeable, suggesting that in NLP, as in many other fields, it is the data that
matters most, not the ML method.

In the machine learning approach, designing input representations (feature engi-
neering) was still a crucial and highly specialized skill involving linguistic and applica-
tion insight. This was because of the inherent complexity: most machine learning meth-
ods are sensitive to the “curse of dimensionality” and its impact on training complex-
ity and overfitting. Developers had to come up with a compact and relevant feature set.
Apart fromproviding state of the art accuracy and a strong theoretical framework, SVMs
allowed the use of tens of thousands of input features and automatically weighing their
relevance or transforming themwith kernel methods to feature spaces suited for learn-
ing nonlinear problems. Still, careful feature engineering couldmake a large difference.

Thedeep neural network revolution (calleddeep learning, DL fromhere on) from
around 2010 onward, was not so much a revolution (multilayer perceptrons have been
around from the start of NLP) as it was a choice for a method even better than SVMs at
making feature engineering unnecessary thanks to the availability of even more data
and computational resources. Current state of the art models for NLP like BERT and
GPT (generative pre-trained transformer), allow for self-supervised learning on huge
corpora and then fine-tuning the resulting language model to models for specific NLP
tasks. These large background language models implicitly contain morphological, syn-
tactic, and semantic patterns and arguably evenworld knowledge. Gone is the necessity
for bothmodel design and feature engineering. In essence, the focus ofmachine learning
based NLP switched from learning models of transformations between linguistic input
and output representations to learning rich reusable representations and frommodular
systems to end-to-end architectures.
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A sobering thought is that, regardless of the technical algorithmic progress made in
deep learning the last decade,most of the techniques used throughout the history of NLP
were already well-established in the 20th century. What drove the evolution was the ex-
ponentially increasing availability of data and computing power. This also allowed for
the end-to-end training of complex language processing tasks. The necessity to factorize
a complex task into modules, each with their own input features, model, and represen-
tations disappeared.

With the benefit of hindsight, the history of NLP followed a logical route.When little
data and processing power are available, linguistic knowledge-based methods compen-
sate for that deficiency, resulting in modular and heavily engineered models. As soon
as sufficient data and processing power are available, statistical and machine learning
methods become possible. This modifies the role of the developer to that of a feature en-
gineer and pipeline designer, assisting in pattern matching, or serving as an annotator
of data for supervised learning.With evenmore data and computing power, deep neural
network architectures become possible, making feature engineering unnecessary and
pretrained models and end-to-end learning possible and preferable. The main recent
innovation is the shift in focus from processing to representation learning, the result
of self-supervised pretraining of language models on huge amounts of language data.
Thesemodels can then be fine-tuned to specific NLP tasks. This has led to the current sit-
uation where models exist such as Open AI’s GPT-3 with 175 billion parameters trained
on 500 billion words (Brown et al. 2020). Suchmodels perform awide range of NLP tasks
with an accuracy that is comparable to that of several different special-purpose models
each trained for a separate task.3

This brief history of NLP of course does not do justice to the complexity of the field.
Classical statistical andmachine learningmethods like SVMs are still used, especially for
tasks where little training data is available (e. g., for languages and dialects for which
few resources have been developed). And even linguistic knowledge-based methods,
often in combination with machine learning methods, still have a role to play in many
applications where explainability is crucial. Figure 8.1 provides a summary of the main
evolutions in the history of NLP discussed in this section.

8.2 What category of problems does natural
language processing solve?

It is not by accident that language understanding has been tightly coupled with artifi-
cial intelligence from the very start (Turing, 1950). Despite progress in artificial intel-
ligence on many aspects of natural language processing, automatic natural language

3 This chapter was written just before the introduction of ChatGPT and GPT-4, which only made even
more clear the superiority of pretrained large language models.
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Figure 8.1: NLP Approaches and properties as a function of exponential data and processing availability
growth over time.

understanding and generation still is partially an unsolved problem. NLP focuses on the
analysis, production, translation, and transformation of language (both as speech and
as text). Engineering has led to significant progress in accuracy onmany subtasks. How-
ever, it may not have provided a solution for the basic research questions involved in
understanding rather than processing language yet. Nevertheless, this improvement in
accuracy does make an increasing number of applications possible. In a world where
a large part of knowledge is encoded in thousands of different natural languages and
the amount of available text is estimated to double every year, NLP technology plays an
increasingly important role. Text and speech are unstructured data, like images, video,
and audio data, and must be interpreted before they can be handled with computa-
tional methods. The main challenge of NLP is that the symbolic representations of lan-
guage (characters, words, sentences, documents) must be made numeric while preserv-
ing meaning.

This challenge is carved up into the tasks of understanding, producing, and translat-
ing language, as well as communication in language. These diverse tasks can be reduced
to a single computational problem, namely implementing transformations between
representations using models. For example, to solve the problem of speech recogni-
tion, a model can bemade that takes an acoustic signal as input representation and pro-
duces a transcription in text as its output representation. Likewise, the problem of ma-
chine translation can be modeled as a transformation between a text representation in
the source language to a text representation in the target language. As there is a natural
temporal order in language utterances, these are named sequence-to-sequence trans-
formations (seq2seq). These transformations are not trivial and models implementing
them must address three types of difficulties: (i) the same input can have different out-
puts in different contexts (ambiguity), (ii) the same output can be associated withmany
different inputs (paraphrase), and (iii) often the input does not even contain sufficient
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information to compute the output, and external or contextual knowledge is needed in
the model (inference).

8.2.1 NLP tasks
Figure 8.2 provides a complete overview of what can currently be achieved with dif-
ferent transformations between text, speech, and image. In this figure, we see map-
pings between sequences for different NLP tasks, also between language and images.
It takes some flexibility to see images as (just) sequences of pixels, though. As wewill ex-
plain in the next section, all these transformations can be learnedwith encoder–decoder
sequence-to-sequence transformer models or variants of that approach. In fact, it is dif-
ficult to find a technology other than NLP that has been so thoroughly and completely
transformed and taken over by a single methodology. Transformer architectures are re-
cently also taking over many AI fields beyond NLP, where they were developed.

Figure 8.2: Example transformations between representations that are currently investigated in NLP.

An essential consequence of this evolution is that the NLP tasks are not split up into
modules but learned end-to-end, bypassing an important aspect of NLP: constructing the
meaning of language fragments (be they text or speech or gestures). What is missing, in
other words, is the transformation between language and explicit meaning. We will
return to this below in Section 8.3.5.

8.2.2 Speech to text processing
Speech output (speech synthesis from text) can be regarded as a largely solved prob-
lem. Indeed, its quality is so good that it has become a matter of concern recently that it
is possible to clone a voice and have it saywhatever youwant in any language youwant.
Interesting remaining research questions concern the synthesis of intonation patterns.
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For example, a sentence like “He bought her flowers” can have sentence accent on he,
her, flowers or even bought, each intonation pattern having a different meaning, ap-
propriate in different contexts. However, it could be argued that this problem should
be solved in the text generation module. The addition of appropriate emotional load to
speech output also remains a research problem.

Speech recognition is a harder challenge: despite enormous progress using deep
neural network approaches, several problems remain, includingmodeling regional and
dialectical speech, speech in languages for which little data is available, speech recog-
nition in noisy environments, capturing emotion from speech, producing punctuation
for recognized speech, etc. Nevertheless, the accuracy with which YouTube movies, for
instance, are automatically transcribed (subtitled) using speech recognitionwould have
seemed impossible less than a decade ago. It is no exaggeration to state that off-the-shelf
text to speech and speech to text have become usable post- and preprocessing models to
text generation and text understanding.

8.2.3 Image to text processing

A recent addition to the toolbox of NLP applications is image to text and text to image
processing, routinely defined as seq2seq tasks these days. Similar to how speech syn-
thesis and recognition are useful preprocessors to NLP and have many practical appli-
cations, image recognition and synthesis could potentially have an analogous impact
(think, e. g., of environment description for the visually impaired, reporting in text or
speech from camera streams, helping designers to visualize their ideas, etc.). In addition,
the multimodal combination of text or speech and images can lead to further progress
and additional applications.

Thanks to deep learning progress, the two necessary technologies, image process-
ing (CNNs and transformers) and language processing (recurrent language models and
transformers) can be combined in innovative ways. Going from image to text is called
image captioning. The task is to generate a textual description of an image (or a video
fragment represented as a sequence of snapshots). Givenmultimodal input, several DL
training techniques have been proposed to learn how to align image and text sections
for later use in text generation from images. In some architectures, the image infor-
mation is injected into the language model while it is processing text, in others it is
merged with the output of the language model in multimodal layers. Companies have
played an important part in the development of this technology, thanks to their access
to large training data. Similar architectures have also been developed for image gener-
ation from text. The most impressive to date is OpenAI’s DALL-E, a 12-billion parameter
GPT transformer model that interprets natural language inputs and generates relevant
corresponding images (Ramesh et al. 2021). Figure 8.3 shows the infamous avocado arm-
chair example. These early examples of multimodal “text-to-anything” AI applications
have resulted in a boom in generative AI (GenAI) applications.
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Figure 8.3: Images generated from text by DALL-E (from https://openai.com/blog/dall-e/).

8.2.4 Text to text processing

Given a text as input, we can train models to translate it, simplify it, summarize it, nor-
malize it, answer questions about it, initiate a conversation about it, and many other
transformations. All these tasks fall under the label of text-to-text processing.

The most visible NLP application in this category is machine translation (MT). It
motivated and initiated the discipline of computational linguistics in the USA in the Cold
War period because of the interest in the Russian-English language pair. Its evolution fol-
lowed the historical sketch in Section 8.1 to the letter, from initial statistical ideas that
were not workable with the computing power of the day, over linguistic knowledge-
based approaches in the 1970s and 1980s, to statistics from the 1990s onward, and fi-
nally to deep-learning-based sequence-to-sequencemodels using transformers (as used,
e. g., by Google Translate or DeepL). For some language pairs, accuracy of translation is
considered human level or close. It is difficult to ascertain this as automatic evaluation
methods that are routinely used have repeatedly been shown to correlate poorly with
human translation quality assessment. On the other hand, it is clear that current qual-
ity levels for the more popular language pairs have increased to usable levels in routine
translation. Of course, themodels are only as good as the data onwhich they are trained.
They contain bias and sometimes produce unexpected mistakes. As an example of bias,
consider the following example from an MT system translation.4

4 Example from Stanowski et al., 2019; See their proceedings for a collection of recent work in this area
https://aclanthology.org/P19-1164/



8 Between language and knowledge � 351

E. The doctor asked the nurse to help her in the procedure
SP. El doctor le pidió a la enfermera que le ayudara con el procedimiento

In this example, the doctor is assigned male gender and the nurse female in the transla-
tion while the doctor is female are the nurse gender-neutral in the original (more about
bias in Chapter 9).

As translated texts are needed to train these models, the methodology should be
considered a supervised learning approach. However, some self-supervised models
(e. g., GPT-3), trained on general internet corpora for the task of word prediction, have
also been shown to be able to achieve machine translation close in performance to
supervised approaches. This even eliminates the need for explicitly aligned transla-
tions.

Text summarization also fits the sequence-to-sequence learning approach. Sum-
marization reduces the size of a text by producing a shorter alternative text that con-
tains themost important information of the input text. It canbe abstractive or extractive.
In the first case, a summary is generated based on some “understanding” of (parts of)
the complete text, potentially rephrasing the original. Such a system should combine
extracting, integrating, and generating information into one single model. In the case of
extractive summarization, where the task is relatively simpler, informative sentences in
the original are selected and combined into a summary. The problem here is that a set of
extracted sentences is not yet a coherent and cohesive summary (e. g., in avoiding rep-
etition, handling pronouns, and their antecedents, etc.) and must be post-processed. In
a seq2seq approach, the abstractive approach has advanced to high quality levels, and
also the more complex abstractive approach is tackled. Text simplification can also be
regarded as a translation problem (in this case into a different style of the same lan-
guage). Using data such as a simplified version of Wikipedia,5 seq2seq models can be
trained to this end. One such application would be the simplification of legal and gov-
ernmental texts to a level, which is understandable by peoplewith only lower secondary
school education.

Even question answering (QA) systems and the related task ofmachine reading
comprehension can fit in the template of sequence-to-sequence learning. The huge pre-
trained languagemodels, described below, such as GPT-3, already encode a lot of factual
information. We can query these language models directly to answer questions. Other
QA research, however, still uses a classical knowledge-based or information retrieval-
based approach. In the former, questions are linguistically analyzed and matched to
similarly analyzed knowledge bases, in the latter, sentence similarity is used to search
and rank potential answers to questions.

The samemodel also fits conversational agents (chatbots, dialogue systems). Most
companies using conversational agents prefer to have control over the output of the

5 https://simple.wikipedia.org/wiki/Main_Page
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system, which still is hard to achieve in deep learning-based systems. An unexpected
or biased answer produced by a chatbot can do a lot of harm to an organization. Also,
the dialogue management needed to keep the conversation consistent and relevant in
task-based conversational agents is at this point hard to achieve with neural models,
so frame-based or decision tree-based approaches to task-based dialogue still dominate.
For chit-chat conversational agents, however, deep learning approaches have consider-
ably advanced in recent years.6 With the introduction of ChatGPT, an LLM finetuned for
conversation, long dialogues can be produced that are consistent.

Considering the NLP tasks described in this section as directly trainable high-
accuracy end-to-end systems, rather than as needing complex modular pipelines, has
completely changed the field. Now, these complex tasks can be used as applications in
their own right or used as pre or post-processing modules in more complex systems.
In the next section, we go into the NLP research state of the art that has made this
revolutionary progress possible.

8.3 How are natural language processing problems
solved?

What are the current methods in NLP? In the previous section, we have seen how most
NLP tasks fit the sequence-to-sequence, end-to-end, transformation pattern. In this sec-
tion, we focus on the current workhorse methods in NLP that solve this mapping. Cur-
rent approaches inNLP are based on the idea of transfer learning (see Chapter 7). In the
case of NLP thismeans thatmodels (called languagemodels these days) are pretrained
in an unsupervised or self-supervised way on large amounts of text data and are fine-
tuned to the task at handwith a typically not very large amount of supervised task data.
Some tasks and languagemodelsmayworkwith just a few examples (few-shot learning)
or even just a prompt (zero-shot learning). As context is important in sequence learning
tasks, attention mechanisms are used, mostly as a component of transformer models.
We briefly track the origin of this approach and describe the state-of-the-art methods.

8.3.1 Static word embeddings

One influential idea from linguistics in NLP is the theory of distributional semantics
of the nineteen fifties, associated with linguists like Zellig Harris and John R. Firth. The
idea was quite simply that words occurring in similar contexts have similar meaning. It
was first introduced in NLP in the early 1990s by Hinrich Schütze. Variants of this idea,

6 For an overview: McTear (2020).
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applied to large datasets with sufficient computing power, revolutionized NLP from 2013
onward as the concept of word embeddings.

Until then, for representing the meaning of words, NLP researchers often made
use of hand-crafted resources such as WordNet7 and similar dictionaries and ontolo-
gies that provide information about definitions and semantic relations like synonymy,
meronymy (part-whole relations), and hyponymy (instance-subtype-type relations).
Their advantage is that these resources are generally precise and accurate; the dis-
advantages are that they are expensive to construct and keep up to date, that their
coverage of the complete vocabulary is usually low, and that the sense distinctions they
make are often either too fine-grained or too coarse-grained for specific applications.

Distributional semantics opened the door to corpus-based, unsupervised, extrac-
tion of word semantics. By assuming that linguistic items that occur in the same con-
texts have similar meanings, it follows that a representation of the contexts in which a
word occurs is a good meaning representation for that word. One count-based way of
operationalizing this idea is to construct a word-word matrix. For each word (row in
the matrix), count the number of times that word occurs in the context of other words
(columns in the matrix). The context size could, for example, be two words to the left
and two words to the right. By representing a word as the vector of these (normalized)
counts of the number of times they appear with the context words, we have effectively
vectorized (made numeric) the meaning of that word, and we can use similarity func-
tions like cosine similarity to compute the semantic distance between words and by
simple vector operations also other linguistic entities like sentences, paragraphs, and
documents. However, these vectors are large and sparse, and while dimension reduc-
tion techniques like principal components analysis (PCA) may alleviate this problem,
they may also lose information about relations between words.

Word2vec (Mikolov et al. 2013) was a milestone evolution in this approach because
it created a fast and efficient way of generating dense (low-dimensional) vectors with
usually better generalization than previous count-based methods (see Figure 8.4). Two
algorithms were used in this approach: in the skip-gram version, given a word, the
model learns to predict the left and right context of that word; in the continuous bag-
of-words (CBOW) approach, the left and right context are used to predict the word in
between.

The model is important because it showed that semantic representations that are
dense (i. e., vectors without many zeroes) can be learned efficiently using unsupervised
learning on very large corpora, and that these semantic representations incorporate
linguistic and world knowledge. This was demonstrated with the famous word vector
analogies showing that vector operations (addition, subtraction, averaging, etc.) could
be used to do semantic computations:man− king+woman= queen, or Beijing− China+
Russia =Moscow, etc. But syntactic analogies like singular-plural and comparatives are

7 https://wordnet.princeton.edu/
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Figure 8.4: The 2 architectures in Word2vec (from Mikolov et al., 2013, arXiv:1301.3781 [cs.CL]).

implicitly present in the vector space as well. In addition, the similarity between words
as operationalized in, for example, cosine distance between word vectors, seems to
match well with human intuitions about word similarity. These advantageous proper-
ties of pre-trained models will return in the discussion of language models below.

What will also return is a problematic aspect of these pretrained semantic rep-
resentations: they also incorporate the bias implicit in the corpora on which they
were trained, coming up, for example, with unwanted analogies like father − doctor +
mother = nurse.

8.3.2 Language models

Language is inherently sequential and has an implicit order. Language data comes in
various lengths, including short and long phrases, sentences, and texts. In addition,most
language processing tasks are sequence-to-sequence learning problems (transforming
a sequential input representation into a sequential output representation) as explained
earlier. Machine translation is a typical example of this.

Languagemodels address the problem of sequence prediction given previous con-
text by predicting the conditional probability of a next word given the previous words
(the history):

P(w(t+1) |w(1),w(2), . . . ,w(t))
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For example, in a count-based approach using a language corpus and a vocabulary,
the probability of “cheese” given “cats like” is estimated. This is done by dividing the
number of times “cats like cheese” occurs in the corpus by the number of times ‘cheese’
occurs. In this case the languagemodel is ann-gram languagemodelwith n = 3. Because
the probabilities based on complete histories are too sparse, this simplifying “Markov
property assumption” is made (the complete history is not taken into account, but only
the immediately preceding part of the history).

A language model also allows us to compute the probability of a sequence (e. g.,
a sentence or a text) as the product of the probability of each word given its (simplified)
history, and to compute the probability of a (new) sentence or text given the language
model. These language models have played an important role in NLP in areas as di-
verse as spelling and grammar correction, speech recognition, authorship attribution,
machine translation, summarization, etc.

However, this approach runs into difficulties of sparsity (some probabilities can-
not be computed because counts are zero, necessitating smoothing techniques such as
adding 1 to all counts) andmemory requirements for storing all the n-grams are high.
The higher the size of n, the better the performance of the models in applications, but
also the higher the sparsity andmemory problems become. There is an analogywith the
problem of count-based methods in word semantics described in the previous subsec-
tion. And also in this case, neural models solve the sparsity problem.

Fixed-window neural language models, which take a fixed window size as input,
and the next word as output, solve these sparsity and memory problems in an efficient
way by implicitly representing the n-gram patterns of the training data in their weights.
Figure 8.5 gives an overview of the fixed-window neural language model architecture.
The embeddings of the three input words are fed-forward through hidden layers to an
output vector, which is associated with the following word.

Figure 8.5: Fixed-width window neural language model. Colored dots represent neurons, arrows weight
matrices. The first layer are word embeddings, the second layer is a hidden layer, and the output layer the
embedding of the output word.
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Thesemodels are still limited as they can only handle fixed length input and output,
that is, for a particular model the input and output layer size are fixed, so the size of the
input is limited, as is the size of the output. In practice, thesemodels also don’t scale very
well because adding more context blows up the size of the models.

This is unfortunate because the mapping to be made in most language tasks is
dependent on context. Sometimes local context is sufficient (e. g., to decide whether
“work” is a noun or a verb only a few words of context are needed), but it is often the
case that long-distance context is needed, for example, to solve problems like corefer-
ence resolution (see Section 8.3.5) and for end-c-end problems in general.

In conclusion, while fixed-window neural language models offer efficient solutions
to sparsity andmemory challenges, they comewith certain limitations. As a solution for
this, simple recurrent neural network (RNN) were proposed. For any variable length
input sequence (and corresponding output sequence during training), these networks
split up the sequence into tokens and take input token by input token, processing them
by the same network. Starting from the second token, the model combines the input
(the current/ second token) with the hidden state from the preceding token, creating a
“recurrent” connection. This process continues until the end of the sequence. This way,
information earlier in the sequence can help solve the mapping of later parts of the se-
quence. Figure 8.6 illustrates the approach by describing an “unfolded” recurrent net-
work, providing a visual representation of how the network processes input sequences

Figure 8.6: Simple recurrent neural network language model. The figure is to be read from left to right
and starts with inputting “dogs” and an initialization of the internal state. The second step, ‘and’ is input,
and the internal state when processing ””“dogs” previously. This goes on for the complete input sequence.
Note that the figure represents an “unrolled” representation of what is happening in the same network
over time.
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step by step. Notice that the same network is used each time step, integrating the in-
put embedding of a word with the hidden state of the previous word processed. As the
hidden state is continuously updated, it contains information from all input that came
before. Also, in this neural language model, usually word embeddings are used in the
input.

While the network remains the same for each input token and its previous internal
state, during training, the effect is akin to using a network as deep as the number of
input items in the sequence. This is due to the need to compute gradients for the entire
input string. This is highly problematic because of the “vanishing gradient” problem
that this causes. The deeper a network, the smaller or bigger the weights become layer
after layer and, therefore, also the gradients. The gradients go to zero or infinity de-
pending on whether they start smaller or larger than one, leading to networks that are
hard to train. In addition, although in principle information from all previous context
is passed from input to next input, there is no control exactly which information is kept
and which is overwritten. This problemmotivated the development of long short term
memory networks (LSTMs) in the 1990s (Hochreiter and Schmidhuber, 1997), a specific
type of GRU (gated recurrent unit) network. In this architecture, a gate is simply a vec-
tor containingweights that represent the relevance of the components of another vector
(in this case the hidden state passed on to the next time step in the recurrent network).
Simply put, it determines what information to pass on and what to retain for later.

Long short-termmemory networks have extra learned parameters to control mem-
ory and forgetting. They follow the same approach as described for GRUs but for each
step they have apart from the short term state (previous hidden state) also a long term
state that consist of an input gate (as in GRUs) that decides what to add to the long-term
state from the previous hidden state, a forget gate that controls what to forget in the
long-term state, and an output gate that decides what to use as output. This way the ef-
fect of vanishing gradients is counter-balanced and more relevant context information
is kept until later in the sequence. Figure 8.7 shows the architecture of an LSTM cell.

GRU networks and LSTMs counteract the vanishing gradient problem, but like the
simple RNN, they are computationally slow because they must process input sequen-
tially making it impossible to parallelize the computation of the processing of complete
inputs.

8.3.3 Transformers

The transformer network (Vaswani et al. 2017) (Figure 8.8) when used as a language
model is a neural network design that can be easily parallelized because it does not im-
plement recurrence of input (see Figure 8.6) but looks simultaneously at long stretches
of input, which would have to be done in separate steps in an RNN. However, this does
come at the cost of needing more memory. Figure 8.8 shows this approach: contrary to
the RNN, the recurrence arrows that are still present in Figure 8.6 are now missing and
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Figure 8.7: An LSTM cell with gates for input, forgetting, and output (Illustration from Wikipedia).

Figure 8.8: Transformer architecture for a language model (word prediction). Here, the complete input
sequence is input at the same time and the hidden layers have access to all input words at the same time.
The output sequence is also produced in parallel.

each hidden state has access to all previous inputs. As usual in language model neural
networks, the input will be word embeddings.

A crucial element in this architecture is the concept of attention, which was also
already present in some GRU recurrent models. Called self-attention in transformers,
it allows during the processing of input words (queries), within a single transformer
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self-attention layer, to access all other input words (keys) weighing their learned rele-
vance. This means that the input word can be related to every other word in its context.
Multiheaded self-attentionmeans that different aspects of the context can be learned
within the same self-attention layer. This way different heads can pay attention to dif-
ferent aspects of the context.

Self-attention layers, hidden layers, and shortcut connections are combined into
transformer blocks. In addition, positional embeddings, which are representations of
word order, are added to the input word embeddings to allow the transformer to pro-
vide the transformer with information about the location of each word in the input.

We have now explained all the building blocks for sequence-to-sequence transform-
ers. As shown in Figure 8.9, they contain an encoder part and a decoder part. The en-
coder translates the input representation into an internal representation and has access
to all input, both left and right. The decoder part predicts the next output token given
the previous inputs and the internal representation of the encoder. This turned out to be
a successful architecture for NLP as so many NLP tasks can be described as sequence-
to-sequence tasks, as we have shown above. The main strength of the architecture is its
solution to the problem of long-distance dependencies thanks to the attention mecha-
nism.

8.3.4 Contextual word embeddings

Now that we have introduced the transformer neural network architecture, we can ex-
plain another crucial element in current NLP by focusing on the left-hand side of Fig-
ure 8.9, the encoder part of a full sequence-to-sequence transformer. As a reminder, the
left-hand side of the transformer network represents the encoding of text into inter-
nal representations. Theword embeddings described earlier (Section 8.3.1) are “static”
word representations because they represent the meaning of a word regardless of its
context. But words have different meanings and behavior depending on their context.
So, building on ideas from ELMo’s contextualized word representations (Peters et al.
2018) and ULM’s proposals on fine-tuning (Howard and Ruder, 2018), BERT (Devlin et al.
2018), the bidirectional encoder representations from transformers, and its succes-
sors, quickly became the state-of-the-art approach for contextual word embeddings.
The way to train BERT is to mask a percentage (15%) of the input words (while still look-
ing at left and right context) and learn to predict the masked words. In addition, BERT
also proposed to learn pairs of sentences, determining which is more likely to precede
the other, but it is unclear whether this plays an important role inmany tasks. BERT con-
textual word embeddings can be used as is, but they can also be fine-tuned to specific
classification or sequence prediction tasks.

Just like we could explain contextual word embeddings by referring to the left-hand
side of Figure 8.9, we can refer to text generation, that is, generative language models
like GPT (generative pre-trained transformer), by referring to the right-hand side, that



360 � W. Daelemans

Figure 8.9: The transformer architecture (from Vaswani et al., 2017). It consists of an encoder (like BERT-
type models) and a decoder (like GPT-type models), and as a whole, implements a sequence-to-sequence
model (like BART-type models).

is, the decoder. In that case, only the left-hand input context is input, and the model
predicts the next word like in the language models described earlier in this section.

While more classical ML approaches, such as those described in Chapter 7, are also
still used in NLP, at this time, almost all work has converged on transformer-related ar-
chitectures. Two concepts, implemented in an efficient way in these models, stem from
this. The first is the concept of pretraining: by training language models (like GPT) and
contextual word embeddings (like BERT) on large amounts of language data, these
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models learn the general patterns and aspects of language in a self-supervised way. The
second concept is fine-tuning: by reusing these pretrained models in specific domains
and tasks by fine-tuning them on data from those domains or tasks, we have faster con-
vergence and better results as the linguistic and other knowledge is transferred to the
new domain or task (transfer learning). Even more interesting, the pretrained models
not only seem to learn linguistic patterns, but also semantic patterns and world knowl-
edge.We already discussed the semantic analogies implicit in (static) word embeddings,
but language models like GPT-3 also show competence in a great diversity of tasks not
directly related to language modeling, for example, translation, question answering,
conversation, etc. The introduction of ChatGPT, GPT-4, and the alternative LLMs from
Google, Meta, Anthrop\c, and other companies has strongly corroborated this result.

Of course, as mentioned before, pretrained models inherit any bias that exists in
the data that was used to train them. If training corpora scraped from the internet con-
tain hate speech, and biased language use, the model may generate or use it at un-
expected moments, even as a reaction to innocent input. The training data may also
contain privacy-sensitive information that might be extracted from the model. These
ethical issues are further discussed in Chapter 9. Fine-tuning the LLMs with human
supervised input or RLHF (reinforcement learning by human feedback) alleviates this
problem but does not completely solve it.

The impressive results of transformer models on sequence-to-sequence learning
tasks, sometimes reaching human performance levels, should not blind us to their limi-
tations: they only work with large amounts of training data, make unpredictable errors,
and more generally, they are limited to the information used to train the language mod-
els. For example, in language models trained on data before 2020, no information will
be found on COVID-19 and, therefore, no useful inferences will be made about the dis-
ease in language processing tasks. The different reactions to GPT-3, both by experts and
by the general public, are informative in this respect. Hailed by some as an important
step toward artificial general intelligence, it is put away by others as an expensive par-
lor trick. Assigning their real value to these models is probably more complex. These
models are excellent pattern analyzers and generators, and their internal representa-
tions reflect knowledge in some way, but they don’t understand anything, they have no
opinions, and no reflection and their capacity for reasoning is rudimentary at best. Most
importantly, they don’t have anything to say, and they only want to continue a prompt.
Their knowledge is second-hand, based not on direct perception of and interaction with
reality, but on texts written about reality by many different people. Nevertheless, the
patterns theymanage to extract from that second-hand information are impressive and
useful.

The good old-fashioned NLP approach with its modular pipeline approach to trans-
forming text or speech to knowledge (semantics) therefore remains an interesting ap-
proach and provides components of commercial value.While it may eventually be over-
shadowed, these tools remain essential for the NLP developer. We investigate this ap-
proach in the following section.
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8.3.5 From text to knowledge and back

When defining NLP tasks in an end-to-end fashion, often we find no need to concern
ourselves with meaning. The difference between an MT system and a human transla-
tor is that the human translator will have understood and be able to think about what
they translated. This will not be the case, at least not for now, for theMT system. Inmany
applications, this explicit representation ofmeaning is nevertheless needed to allow rea-
soning and problem solving. A good example is the task-based conversational agents dis-
cussed earlier. They require semantic representations of both previous dialogue and of
the context. Many basic research questions remain about causal and temporal reason-
ing, handling implicit and figurative language, understanding situational context,
using common sense knowledge, etc. It is not clear yet whether it will be possible to
extend pretrained language models used in sequence-to-sequence tasks to handle this.
Until that time, we will need modular pipelines that extract explicit representations of
knowledge andmeaning (see Figure 8.10). Thesemeaning representations (mostly based
on symbolic logic or semantic graphs) allow inference and reasoning and are under-
standable by humans.

Figure 8.10:Modules in a classical NLP pipeline (from the NLTK book, Bird, Klein, and Loper, 2009).

8.3.5.1 Preprocessing modules, the word level

The initial step in anNLP pipeline inevitably remains preprocessing the text data (which
may also be an automatic transcription of speech to text) into basic building blocks like
words and sentences.
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Tokenization finds the entities that most people would call a word: a string of al-
phabetic characters (e. g., “worked” is a word token). Lemmatization is a process in
which different word tokens that are part of the same word family are mapped to the
same “lemma” (e. g., work, works, worked, and working are all mapped to the lemma
“work-Verb”), Lemmas are a first step toward semantics: all work tokens belonging to
the same lemmapartially share the samemeaning. A good lemmatizerwould assign two
lemmas to the word token “work”: work-Verb and work-Noun. In sentence splitting, a
text is split into sentences based on capitalization, punctuation, and spacing informa-
tion. For most commercially interesting languages, good sentence splitters, tokenizers,
and lemmatizers are easily available. That is less the case for smaller or commercially
less prominent languages. There are quite a few complexities to be solved for many lan-
guages: tokens may contain punctuation (as in “we’ve” as a short form of “we have”: the
tokenizer should decide whether to split this into we and have or to keep it together).
Sentences may contain abbreviations ending in a full stop creating a spurious sentence
split: abbreviation lists are a solution here. Some languages don’t have spaces between
word tokens and need a dedicated approach. Methods used range from regular expres-
sions to machine learned models.

Also, in preprocessing, the neural network approach has changed the game con-
siderably. Some models are character-based and don’t bother about splitting input text
into words or sentences. This approach solves the tokenization and sentence splitting
problem by ignoring it as a separate problem. Other neural models may work subword-
based. This approach implicitly creates its own definition of what a token is. A good
example is byte pair encoding, a method that combines characters into subwords based
on frequency of cooccurrence in a corpus.

Morphological analysis is a segmentation problem. A complex word like “rework-
ing” consists of a prefix “re” followed by a stem “work” and a suffix “ing.” Knowing
the decomposition of a word into morphemes like prefixes, suffixes, and stems allows
compositional computation of the word meaning. Just like they implicitly solve the to-
kenization and sentence splitting problem, recent neural network models don’t delve
into morphological analysis (the subwords discovered often correspond to something
between syllables and morphemes, however). In a more traditional approach, methods
such as finite-state morphology can be used to segment and analyze complex words.
These methods are based on hand-made finite state automata that transduce an input
word to morpheme structures. There are also unsupervised learning methods for mor-
phological decomposition, but these are basically analogous to byte pair encoding.

In the final stage of the word level module in the pipeline, we have isolated the
word tokens and related them to their respective types and lemmas, segmented them
into morphemes (the smallest meaningful elements in language), and split off punctu-
ation marks (which, incidentally, are also regarded as meaningful tokens). This is an
important first step toward meaning representations.
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8.3.5.2 Syntactic modules, the sentence level

At a level between words and sentences, part of speech (PoS) tagging assigns gram-
matical classes to word tokens in context. Tokens can be ambiguous between different
classes (e. g., “bank” can be a Noun or a Verb). A PoS tagger utilizes both the context of
the word and a lexicon, listing the possible PoS tags for each word. Of course, the com-
plete arsenal of classical and neural ML methods has been applied to this classification
(actually, seq2seq) subtask and PoS-tagged texts are used as separate representations in
applications like stylometry, spelling correction, and information retrieval.

Classical methods of sentence analysis (parsing) are grammar-based. Consider a
grammar fragment (a set of rewrite rules): “VP→ V NP” saying that a Verb Phrase can
be rewritten as a sequence of a Verb and a Noun Phrase and “NP→ Det N” saying that
an NP can consist of a determiner (e. g., “a” or “the”) followed by a Noun. Determiner,
Noun, and Verb are lexical categories, NP and VP are nonlexical categories (phrases).
Lexical categories represent all words of that category listed in a lexicon (dictionary).
Given these two (context-free) grammar rules, a sentence fragment like “eat a pizza”
can be analyzed as an application of “VP→ V NP” and “NP→ Det N” giving rise to the
tree structure (a “parse tree”) in Figure 8.11. The right-hand side demonstrates a de-
pendency formalism. In dependency grammar relations are defined directly between
words, rather than indirectly as configurations in parse trees. As an example, the link be-
tween eat and pizza can be labeled directly as “object” in the dependency tree, whereas
it must be defined indirectly as “the NP dominated by the VP” in the constituent-based
approach to the left of the figure.

Figure 8.11: A syntactic tree.

Parsing is a search procedure using a grammar and a lexicon that can be either
bottom up (starting with the words of the sentence to be parsed and rewriting them
to syntactic categories using lexicon lookup and applying the rules right to left) or top
down (starting with the top rule and testing the rules left to right until a match is found
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with the sentence). A grammar can also be used to generate sentences by top-down ap-
plication of the rules and lexicon lookups. Grammars constructed by hand were often
incomplete (missing rules or lexical items) and at the same time generated too many
possible parses most of which were possible according to the grammar but unlikely for
people (this is called spurious ambiguity). Rather than handcrafting a grammar, the sta-
tistical NLP approach introduced the idea of a treebank, a corpus of sentences that was
syntactically analyzed by hand (a correct parse tree was provided for each sentence),
and hence provided a sample of real language use with the associated syntactic anal-
ysis. Such a treebank can then be used to automatically learn probabilistic grammars
from the data. Rather than giving each grammar rule the same probability, frequencies
of occurrence in a treebank could be used to weigh the probability of each grammar
rule, leading to a way to rank parse trees found according to their probability.

8.3.5.3 Semantic modules and the discourse level

Wealready discussedword level semantics in the previous section.Contextual or static
word embeddings are currently the state-of-the-art for representing word meaning,
but semantic lexicons like WordNet provide more explicit representations in terms of
semantic relations between words, which makes it easier to integrate word meaning
in symbolic knowledge representations, such as ontologies, supporting reasoning, and
inference. Of course, a word can have different meanings (senses) in different contexts;
so, in that approach,word sense disambiguation becomes anecessarymodule, forwhich
both handcrafted knowledge-based and machine learning based solutions have been
proposed.

A special case of word meaning analysis is named-entity recognition (NER). The
task here is to find instances of a specific type of concept, for example, person names,
organization names, addresses, URLs, locations, etc. Also, domain-specific concepts can
be detected, for example, gene and protein names in a biomedical domain. Techniques
used range from regular expressions over lists of names (gazetteers) and handwritten
rules to machine learning methods (especially conditional random field methods and
more recently sequence-to-sequence learning methods).

Given syntactic representations and word and concept meanings, semantic rules
can be defined to assign a semantic representation to sentences in a compositional way.
Syntactic and semantic analysis at the sentence level will bemuchmore intertwined: se-
mantic constraints will guide the selection of the most appropriate of possible syntactic
analyses (parse trees), and the parse treeswill help in detecting semantic structures such
as semantic frames.8 The target symbolic representation for this process of semantic in-
terpretation is mostly some form of predicate logic or semantic graphs. Such a symbolic

8 https://framenet.icsi.berkeley.edu/
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semantic representation language should support inference, be compatible with sym-
bolic knowledge representation formalisms, and be unambiguous and canonical (same
meanings should have the same representation, whatever the form). At this point, we
have a literal sentencemeaning, butwe are only halfway computing the intendedmean-
ing of a sentence. The meaning of the sentence may change depending on the context, a
process that may involve inference from background knowledge and from the meaning
of other sentences of the text. One difficult task that must be solved is coreference res-
olution. In a short fictitious text like the following, we must infer from background and
common-sense knowledge and from the sentence meaning that the first “his” refers to
the president, that “Peterson” refers to the secretary of state, that the second “his” refers
to the president and so on.

“The president was quick to fire his secretary of state. In reaction, Peterson went straight to the
press and revealed his crime.”

Coreference resolution is essential in linking together the semantic representations of
the sentences into cohesive units. Furthermore, we must break down larger discourses
and deduce their structure, such as identifying causal relationships between sentences.
It is only at this point that the real complexity of language becomes clear. Deep learn-
ing approaches swipe all this complexity under the rug of end-to-end systems, doing so
efficiently and with growing accuracy.

8.4 What are the limitations of natural language
processing?

We sketched an overviewof the recent evolution of the field of natural language process-
ing and the never-seen-before convergence of the field to a single paradigm: adeep neu-
ral network (transformer) approach based on self-supervised pretrained models
and supervised fine-tuning to specific sequence-to-sequence and classification tasks.
This approach fits almost all NLP tasks. Even more remarkably, this approach has also
achieved a convergence between different subfields of artificial intelligence, for exam-
ple, image and speech processing. If nothing else, at least the transformer deep neural
network approach has brought back a useful and long-lost synergy between these sub-
fields.

Made possible by an exponential growth in data availability and processing power,
this approach has led to significant improvements in almost all areas of NLP, and has
made possible new applications, for example, those translating between images and
text. The success of the approach has led to end-to-end approaches for tasks that used to
be carved up in separately designed or learned modules combined in special-purpose
pipelines. Three examples of this improved state-of-the-art in applications are described
in the following section.
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For all its strengths, the approach also has limitations: pretrained models contain
bias picked up from their training material, which may lead to undesirable effects in
fine-tuned tasks. Debiasing pretrained models is currently a hot area of research and
engineering. An even more serious challenge is that it is unclear which knowledge is
present in these pretrained models. Many morphological, syntactic, and semantic pat-
terns are picked up in this language model learning approach, and to some extent also
world knowledge that can be used in common-sense reasoning. It is also clear that
transfer learning by fine-tuning these models to specific tasks, even without or with
little supervised training data (zero-, one-, and few-shot learning), makes it possible to
put the learned patterns to work in awide range of end-to-end tasks that used to require
intricately engineered pipelines. However, for some tasks, especially when not a lot of
appropriate data for pretraining models is available, accuracy is not that much better
than the state of the art before deep learning.

While there is still a considerable journey ahead, particularly in tasks requiring rea-
soning, it is crucial to acknowledge that labeling anything as impossible for large lan-
guage models is dangerous, given the potential advancements in subsequent versions.
It is unclear for now whether remaining limitations are inherent to the deep learning
approach or if, in principle, solutions are possible within this framework.

For that reason, we also described the now almost old-fashionedmodular approach
inNLP,which defines differentmodules (either based on knowledge-based handcrafting
or on machine learning) needed for a pipeline that translates language into explicit
semantic representations. These representations make it easier to connect language
to symbolic background knowledge in knowledge bases and to reason with them. The
downside is that systems developed thisway are not scalable. And of course, the classical
approach also doesn’t have good solutions for many semantic problems yet.

Hybrid systems at first sight seem to be the most straightforward way ahead, and
some interesting neuro-symbolic approaches have emerged. But for now, they have
not been very influential in NLP.

With the exponential growth of data and computing power, research interest in
the field of NLP and AI in general has exploded as well, so there is a good chance we
may soon know whether in reaching for the moon we are just climbing a higher tree or
whether NLP has really found its escape velocity.

8.5 Industry examples

This chapter features three industry examples to demonstrate the theory in a practical
way. The first example discusses the main techniques involved in answering questions
with chatbot technology, while the other two examples provide solutions to deal with
the commonproblemof extracting andfinding valuable information buried in countless
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documents. The second example, applied to contract processing, provides a less techni-
cal overview, emphasizing the logical reasoning process behind document classification.
It serves as an introduction to the procedures of both document processing and docu-
ment modeling. In contrast, the last example, supporting lawyers in their tasks, delves
more deeply into the employed techniques and articulates the reasons behind their se-
lection.

These use cases emphasize that technology, often driven by a pursuit of efficiency
and innovation, perpetually evolves to optimize current solutions and meet expanding
needs. However, human intervention often remains crucial for approving outcomes or
handling cases beyond the software’s capabilities. These advancements not only ensure
the optimization of processes, but also allow employees to allocate extra time to specific
tasks, such as intricate chatbot interactions or complex legal cases. A focused approach
in these instances yields greater benefits, including increased productivity for employ-
ees.

The AI techniques discussed are drawn from industry examples that were used
around the years 2019–2020, when they were first chosen for the book. GPT-2 was just
launched. They might not represent the state of the art anymore. They still illustrate,
however, important features and concepts of AI, such as embeddings and transformers,
that remain fundamental for the reader to understand newer developments.

8.5.1 Automate question answering using NLP with Microsoft
QnAMaker
Parag Agrawal, Achraf Chalabi, Anneleen Artois

Nowadays, intelligent chatbots are much desired software applications that companies
seek to implement into their websites and mobile apps to hold seamless conversations
with their clients and visitors. These bots enrich the user experience by providing al-
ternative means of communication and information retrieval. Additionally, they also
significantly reduce the need for human intervention (i. e., support teams) by handling
frequently asked questions (FAQ), anticipated queries, and other inquiries in real-time
whenever feasible. Moreover, as many websites have huge reference documents such
as FAQ pages, making it hard for users to browse through, adding a conversational layer
over raw data can speed up the process of finding relevant information.

However, many end-users express frustration with malfunctioning chatbots, high-
lighting a pressing need to humanize their interactions. QnAMaker, part of Azure AI Lan-
guage, improves the precision and relevance of responses, leading to amore natural and
effective interaction and making the chatbot more adept at understanding user intent.

The technology serves as a conversational interface for semistructured data such
as FAQ pages, product manuals, and support documents. It stands as a viable option for
extraction and question-answering as a service. More specifically, QnAMaker aims to
simplify the process of information retrieval by extracting question-answer (QA) pairs



8 Between language and knowledge � 369

Figure 8.12: Logical process. The steps of 1. Knowledge extraction, 2. Retrieval, 3. Ranking, 4. Span predic-
tion.

from data previously stored into a knowledge base (KB) and by designing a conver-
sational layer on top (see Figure 8.12). When a developer utilizes QnAMaker to create
a knowledge base, he automatically gains access to a set of NLP capabilities, which we
will delve into shortly.

QnAMaker includes a persona-based chit-chat layer, enhancing the bot’s capability
to handle small-talk queries with personalized and human-like responses. The tone and
(in)formality of the replies depends on the selected personality. Additionally, bot devel-
opers get automatic feedback from the system based on end-user traffic and interaction.
This helps them in turn to enrich the knowledge base. This feature is called active learn-
ing. Finally, QnAMaker also allows users to add multiturn questions and answers to
a knowledge base, particularly valuable for refining answers through follow-up ques-
tions. QnAMaker currently supports over 50 languages.

Note that technology evolves quickly and that this illustration, rooted in a 2020 snap-
shot, may not represent the current state of the art for QnAMaker. Newer and more
advanced versions for question answering are now available on the market, includ-
ing options from Microsoft’s Azure AI Language services. The application still shows,
however, some of the building blocks and concepts that will help the reader understand
newer developments.
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Figure 8.12 provides a comprehensive overview of the QnAMaker process, consist-
ing of four major steps:
1. The initial phase involves knowledge extraction, whereby the system is responsible

for understanding the layout of a given document and extracting potential QA pairs.
2. These QA pairs then serve as the foundation of the Azure Search knowledge base,

providing information to the QnA-Maker Ranker based on the matching of user
queries with existing QA pairs.

3. The Ranker system is responsible for reordering and refining the initially retrieved
top number of results.

4. Finally, span prediction is used to predict the boundaries that correspond to the
target answers within a text.

Logical Block 1: Knowledge extraction
AsFigure 8.13 displays the initial phase, knowledge extraction consists of 4 phases,which
we will explore individually:
1. document parsing
2. layout understanding
3. structure understanding
4. augmenting the output by adding entities

Figure 8.13: Knowledge extraction in 4 steps: 1. Parsing 2. Layout understanding 3. Structure understand-
ing 4. Augmentation (Entity extraction with metadata).

In the first step, the documents are fetched by a crawler. Regardless of format, each
document is transformed into anHTMLfile, typically containing both text and hypertext
links. Also, documents from deep links are retrieved as the crawler scans the documents
for hyperlinks and adds them to a job queue.
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In a subsequent step, layout understanding plays a crucial role in grasping the doc-
ument’s layout elements. The documents are parsed by extracting basic building blocks,
such as columns, tables, lists, graphics, and paragraphs from the source documents. Uti-
lizing the top-downpage segmentation technique knownas the recursiveX-Y cut, doc-
uments are cut into distinct blocks while accounting for nested elements. Noteworthy
for its language-agnostic nature and low computational costs, this preprocessing tech-
nique for document analysis operates efficiently in linear time. Thismeans that the time
it takes to segment a document is proportional to the document’s size.

In a subsequent stage, named structure understanding, each element undergoes
tagging through a rule-based approach. This approach employs explicit rules to label el-
ements, such as headers, footers, table of content, index, watermark, table, image, table
caption, image caption, heading, heading level, and answers. Agglomerative cluster-
ing is then used to group similar data points, or content, based on parameters such as
font and style. As a result, one can identify similar sections and subsections within the
document, constructing an intent9 tree, a structured representation of different intents,
organized in a tree-like structure whereby the tree reflects the relationships between
different intents, with more general intents at the higher levels and more specific in-
tents as branches or leaves. For example, leaf nodes are identified asQA pairs. Despite
its high computational demands resulting from its hierarchical nature and the necessity
to compute pairwise similarities at each step, this technique is preferred for its efficacy
in managing the hierarchical structure of input documents, ultimately delivering com-
mendable results.

Finally, the intent tree is further augmented and annotatedwith extracted actions
or entities,10 such as “USB Port” (entity), “switch off” (action), or “engine oil” using con-
ditional randomfield (CRF)-based sequence labeling (see Chapter 6), a statistical mod-
eling technique for labeling sequential data. Intents that are repeated in and across doc-
uments are further augmented with their parent intent, adding more context to resolve
potential ambiguities (see “Laptop” in Figure 8.14). The top-level intents are extracted

Figure 8.14: Example of Extracted Entities.

9 In the context of NLP and conversational AI, intent represents the user’s purpose or goal in their com-
munication with a system.
10 Words that consistently refer to the same object, classified into categories (person name, location,
company name, date, etc.)
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for every document and every top-level intent is connected to child-nodes. The number
of levels is not fixed and depends on the structure of the document.

Logical Block 2: Retrieval
Once the raw data has been extracted and valuable metadata has been added, QnA-
Maker uses a search engine as its retrieval layer to filter out the most relevant results
(Level L1) and to then implement a reranking mechanism (Level L2) on top (see Fig-
ure 8.15). This two-layer retrieval and ranking system ensures both computational effi-
ciency and improved relevancy of the results.

More concretely, the search service enables the creation of an index—a data struc-
ture that enables efficient searching over textual content—and utilizes inverted in-
dexing to map each unique term in the corpus to the list of documents containing
that term. The retrieval of top results is based on term frequency–inverse document
frequency (TF-IDF) scores, a technique which evaluates the importance of a word
within a document relative to the entire corpus. To consider possible spelling mistakes,
fuzzy matching based on edit-distance is supported. Furthermore, it also incorporates
lemmatization and tokenization as a pre-processing step (see Section 8.3.5.1). An index

Figure 8.15: Retrieval and ranking.11

11 The expanded form of the terms “DSSM” and “GBM” is provided for clarity and context. However, it
is not essential for the reader to fully grasp these concepts to understand the main text. DSSM = Deep
Semantic Structured Modeling; Light GBM = Gradient Boosting Model.
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created in a search service can scale up tomillions of documents, lowering the burdenon
theQnAMaker application, receiving fewer than 100 results for reranking, the next step.

Logical Block 3: Ranking
Once the initial set of top 100 results is returned, the next step involves enhancing ac-
curacy through advanced deep learning models. Given the diverse nature of content
domains, variations in the number and length of QAs, and the presence of alternate
questions per QA, the QnAMaker’s ranker model employs generic features applicable
across various use cases. It deliberately avoids any domain-specific features and relies
on generic similarity and relevance-based signals. However, users can use the QnA-
Maker for certain domain specific data because the features are generic enough to be
able to fit a wide range of domains.

Transformer features (Figure 8.16) support the query question similarity and
query-answer relevancemodules and play a crucial role in determining the ranking of

Figure 8.16: Transformer features. The user query is sent to 2 different modules: Query question similarity
(left- hand side) and query-answer relevance (right-hand side).
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results. The Transformer architecture, detailed in Section 8.3.3. of this chapter, is used to
encode and represent questions, answers, and other relevant information. During the
ranking phase, these encoded representations are used to compute similarity scores
and measure the relevance of potential answers to a given query.

As stated above, the ranking layer uses transformers for two modules, namely
query-question similarity and query-answer relevance. Whenever a bot developer
creates a knowledge base in QnAMaker, all the QA pairs are encoded into embeddings
(Section 8.3.4) and cached. Embeddings are vector-based representations of entities in
a vector space where the distance between the vectors capture semantic relationships.
For instance, the mathematical representations of “apple” and “orange” have a smaller
distance between them than the distance between “apple” and “house.”
– Query-question similarity.When a user initiates a query, the QnAMaker-Sent En-

coder Model converts the query into an embedding. This embedding is then com-
pared to precomputed and cached embeddings stored in the system, using a dis-
tance metric. More information on static embeddings and contextual embeddings
can be found in Sections 8.3.1. and 8.3.4. Note that a single QA can contain alternate
questions. Hence, the similarity score of the question with which the user query
has the best match is taken as the final feature score value.

– Query-answer relevance. QnAMaker doesn’t assess the similarity between a user
query and potential answers; instead, it computes a relevance score. This ap-
proach recognizes that questions like “How are you,” “How do you do,” and “What’s
up” share similarity, yet “I am fine” is only a relevant answer to “How are you.”
To achieve query-answer matching, a separate transformer-based model, trained
on question-answer relevance tasks, comes into play. This is achieved by training
different encoders for queries (query-relevance encoder) and answers (answer-
relevance encoder).

Logical Block 4: Answer span detection (Figure 8.17)
Sometimes, just picking a correct answer isn’t enough. What the end-user might need is
not only a correct, but also a concise and to the point answer. For instance, the answer
“Apple was founded by Steve Jobs in 1976” potentially answers 3 different question in-
tents: “Who founded Apple?”, “What was founded by Steve Jobs in 1976?”, and “When
was Apple founded?”. To address this need for precision, span detection is used. This
technique identifies the exact span in the text relevant to the question, allowing QnA-
Maker to deliver more accurate responses. QnAMaker uses the span detection trained
on ALBERT, A Lite BERT v2, as a base model. The model is fine-tuned using datasets
created by inhouse crowdsourcing. An example applying span detection is illustrated in
the figure below.

Finally, a fewwords about active learning. QnAMaker’s ranking system attempts to
reply to user questions with the most suitable answer, but sometimes there are several
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Figure 8.17: Before span detection (left) and after span detection (right).

candidates for the answer. To deal with such uncertainty, QnAMaker relies on an am-
biguity detection mechanism to identify such user queries and generate suggestions
for bot developers, giving them the capability to disambiguate between answers for the
suggested user query by clicking on approve or reject (Figure 8.18). Clustering is used
to group all similar suggestions into one representative suggestion (cluster head), which
pops up as a recommendation. This is done to ensure that the suggestions displayed are
diverse enough and similar suggestions are not shown. If the bot developer approves
the recommendation, it gets added as an alternate question to the same answer in the
knowledge base.

Figure 8.18: Disambiguation by the developer. Source: https://learn.microsoft.com/en-us/azure/ai-
services/qnamaker/how-to/improve-knowledge-base (third picture).
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In conclusion, with a transformer based ranking system, QnAMaker is able to fur-
ther reduce the effort of content editors by understanding semantic matches to a great
extent. The gains observed vary a lot based on the end-user content and requirements.
While certain end users have experienced a substantial enhancement of over 40% in
query-answer quality, others less reliant on semantic understanding, perceived the
quality to be comparable to non-deep learning models. Enhancements were brought
since then and a newer version with question answering capability is available as part
of Azure AI language service. QnAMaker, as a standalone service, will be retired in
March 2025.

8.5.2 Extract information from contracts using NLP, the case of
Daimler
Sunu Engineer, Anneleen Artois

Facing a multitude of more than 400,000 suppliers in its supply chain, Daimler, a pro-
ducer of premium cars and manufacturer of commercial vehicles, used to manage its
sourcing processes in old and fragmented systems across multiple platforms. These pro-
cesses were supported by manual inspections of the contractual documents. This was
a labor-intensive process as contracts not only come in different shapes and formats
(e. g., paper, digital), but also have become longer over the last decade. Knowing that
companies process an average of 10,000 to 15,000 contracts a year with an average size
of 8 pages, it comes as no surprise that contractual knowledge often lies mired in pages
and pages of complex legalese.

On-boarding new suppliers (i. e., issuing RFPs, selecting possible suppliers, track-
ing their performance as well as their contract terms) required Daimler’s procurement
team to go through multiple disparate systems. This naturally promoted errors, com-
plicated thorough analysis, and limited the scope of contractual compliance controls,
thereby raising legal and compliance challenges.

Therefore, Daimler decided to overhaul its procurement process by streamlining
and automating its supplier contracting processes. Information had to be automatically
extracted and classified from contracts. Leveraging Icertis’ enterprise contract man-
agement (ECM) system, Daimler has now moved to a solution where all contracts, at all
levels in the supply chain, are automatically subject to compliance analysis and checks
with the required contractual conditions, irrespective of geography or language. As this
solution reduces cycle-time, eliminates errors, and reduces risks by automating key as-
pects of the contract review process, it proves to be a highly profitable activity.

Icertis automatically parses contracts from different languages, sources, and for-
mats (scanned document, pdf, jpg, word) intomeaningful building blocks, identifies con-
tractual clauses, classifies them, and then extracts relevantmetadata and its meaning or
semantics (e. g., identifying that “Mars” means Mars Inc., the global foodmanufacturing
company, not the planet). It then makes the processed information available for struc-
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tured, rich semantics-based searches and reports. Privacy of the information is strictly
maintained as the NLP engines are designed to identify only the required clauses and
process them accordingly.

Daimler’s procurement teams are now assisted by a solution that semiautomati-
cally (as contracts still must be validated by the legal teams) processes more than 25,000
contracts of 15–20 pages in average length per year, reducing the time spent on man-
ual checks to the bare minimum. To address the need for trust between the different
involved parties in the supply chain, the system also uses a highly secured distributed
ledger based on blockchain technologies to ensure an immutable audit trail with
strong role-based access control models.12

For the sake of this use case, a contract is defined as an agreement between several
parties, recorded in a document. The language that is used is decided upon by Daimler’s
legal department. In this case, the legal department has a set of legal clauses, which are
categorized in 72 different clause types. When a contract (NDA, MSA, etc.) is drawn up,
it is then assembled out of these clause types. Inside the clauses, we find parameters or
attributes such as the name of a person and the amount to be paid for the service, and
these attributes are what determines the structure of the contract. In other words, the
business aspect of the contract is encoded into these parameters. For example: Party A,
Party B, Address of Party A, Address of Party B, Start Date, End Date, Duration, Execu-
tion Date, Place of Jurisdiction (optional), Signatory A (optional), Signatory B (optional),
Penalty Terms (optional), etc.

The representational structure or form that exists in relation to a contract is pro-
vided by the document. The document is usually divided into sections, which consist
of paragraphs, sentences, and words. The legal view of the contract, as discussed ear-
lier, is hierarchically divided into sections, clauses, and attributes. The legal contract’s
hierarchy may be mapped to the document’s hierarchy in a variety of ways (one para-
graph per legal clause/multiple paragraphs per legal clause/multiple legal clauses per
paragraph). Embedded in the paragraphs are “attributes,” which are treated as named
entities. Named entities of interest are structures, which identify the parties to the con-
tract, the objects that constitute the state, and a variety of other objects that provide
the context and environment in which the contract is executed. The relationships as
described below are illustrated with excerpts from a sample Master Services Contract
(MSC), which can be found in the Addendum of this chapter. The mapping can be visu-
alized as follows:

Legal Contract Document
– Sections – Sections

— Clauses — Paragraphs
— Sentences

— Attributes —Words

12 However, this is not in scope of this article.
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Figure 8.19: End-to-end pipeline. Logical flow of Icertis solution.

The logical flow as depicted in Figure 8.19 will be followed so the reader can witness the
journey of a real document. The aim is to show the logical steps to introduce document
processing and document modeling techniques. The main problem, as discussed above,
is that Daimler deals with a large number of contracts, written in the past, present, and
future tense, which need to be converted into a flow of information that is structured
to improve business processes. The conversion of a document to structured data and
actionable information goes through the following sequence of steps:

Logical Block 1: Scanning
Daimler has different types of source documents such as digital documents in a com-
puter readable format and physical documents in paper form (mainly legacy contracts).
The first step in the process is therefore to scan physical contracts and to transform them
into high resolution images.Meanwhile, additional error correction processes and noise
removal techniques (e. g., image rotation, shot noise removal,margin noise removal) are
applied.

Logical Block 2: Document cracking
The second step is to convert these images into machine encoded text. This is called
document cracking. Legal documents contain text, images, tables aswell as other struc-
tures in various layouts and formats and are usually written in the legal language of a
corresponding natural language such as English. Extracting information from these doc-
uments involves dealing with both form and content. As such, Icertis extracts both data
and metadata from individual contracts and stores it into a database. To extract both
printed and handwritten text from high resolution images, optical character recogni-
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tion (OCR)13 is used. The efficacy of the OCR and the correctness of the output depend
on many factors, such as the deterioration of the physical document (through age or
storage), the scanning quality (resolution and contrast), possible noise introduced while
scanning, orientation errors, etc. Some of these errors can be reduced by using other
components such as spell checkers and dictionary lookup engines. When all content is
extracted, it is mapped into a JSON14 data structure to facilitate storage and to pass it
around the network by using application programming interface (API) calls.

Logical Block 3: Clause identification
Next, the machine encoded text, which emerges from the OCR pipeline, is passed to an
NLPmodulewhich identifies the legal clauses embedded in the text. The contract is sepa-
rated into sections and legal clauses. This step is called clause identification. Legal con-
tracts traditionally aremade out of “legal clauses.”15 Clause delineation involves break-
ing up the document into different clauses. Different techniques such as whitespace-
based delineation and section-title identification to discover the start and end of para-
graphs and sentences are used. As discussed earlier, the clauses may be mapped to one
or more paragraphs, or one paragraph can contain multiple legal clauses. The process
of breaking up the contract into disjoint pieces involves finding the logical beginning
and ending of each clause. Breaking paragraphs into sentences and subsequently em-
ploying a rule-based engine to reassemble them into clauses proves to be a beneficial
technique during the clause delineation process. This is especially valuable when deal-
ingwith clauses thatmay span acrossmultiple segments. On a technical note, the clauses
are vectorized using a TF-IDF vectorizer and trained against an annotated dataset. Ad-
ditional vectorizations such as GLOVE and BERT are used to check the results. Note that
there is a recursive identification problem at hand: The clauses must be identified cor-
rectly to find the contract category or contract type belonging to the contract as a whole.
Knowing the contract type allows one to disambiguate some clause categories, which
may bemistakenly identified in return. Therefore, additional training data is sometimes
added, or manual annotation and correction are needed.

13 Discovering tables and embedded imageswithin documents requires special processing of the images
of the pages to detect lines and regions, partitioning the space into smaller cells, and doing OCR on the
contents of the cells to get the text within.
14 A lightweight, human-readable data interchange format that uses key-value pairs to represent data.
15 The document is broken up into clauses via a multistage algorithm. The initial document is broken
into paragraphs based on the bounding box information and the paragraphs are classified as belonging
to different legal clauses based on the keyword content. In addition, headings and section titles are dis-
tinguished and used to separate clauses. The paragraphs are recombined to form legal clauses depending
on the classification and adjacency of the paragraphs.
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Logical Block 4: Clause classification
To classify clauses, Daimler relies on the knowledge of legal coworkers which define a
priori the types and names of the clause types. There is also a need for a domain expert
to define extraction masks (e. g., a mask for the social security number). The actual
clauses may be based on predefined structures called templates: structures with place-
holders embedded into the text, which can be replaced by suitable values. Such a collec-
tion of templates is referred to as a clause library.16 Acontractmaybe templated aswell,
being made up of an ordered sequence of clauses from the clause library. There are sev-
eral ways in which classification algorithms can be trained. There exist both supervised
and unsupervised learning for data classification and both binary andmulticlass classi-
fication algorithms. Given that legalese is a muchmore constrained environment (more
constrained than natural language), a TF-IDF based vectorization algorithm trained on
a large set of contracts (700,000 approximately) has led to a clause identifier routine,
which is capable of classifying the clauses and deriving the contract type. The accuracy
of the trained system, a linear SVM (see Chapter 7) is above 85% across the different
contract types seen in business contexts today.

Example. This clause is identified as a Preamble.

IMPORTANT-READ CAREFULLY: THIS MASTER SERVICES AGREEMENT (THIS “MSA”) IS BINDING
AND ENFORCEABLE
BETWEEN YOU (“CUSTOMER”) AND XXXXXXXXXX., A DELAWARE CORPORATION HAVING ITS
PRINCIPAL PLACE OF
BUSINESS AT 2000 NORTH AMERICAN STREET, SUITE 2, MINNEAPOLIS, MINNESOTA, FOR ITSELF
AND ITS AFFILIATES
(“XXXXXXXXX”). “YOU” REFERS TO THE ENTITY OR ORGANIZATION USING THE PLATFORM,
PRODUCTS, AND/OR SERVICES
DESCRIBED IN THIS MSA. BY SIGNING AN ORDER FORM TO USE THE PLATFORM AND/OR
PRODUCTS AND/OR TO RECEIVE
SERVICES, YOU ARE ACCEPTING AND AGREEING TO BE BOUND BY THIS MSA. YOU SHALL INFORM
ALL USERS OF THE
PRODUCTS OF THE TERMS AND CONDITIONS OF THIS MSA.

Logical Block 5: Entity extraction
Once the clauses are identified, the required attributes are extracted. This involves pars-
ing the clauses into sentences, applying named entity recognition (NER) algorithms,
extracting the attributes, and classifying them using various models and rule engines
in terms of the required known categories. The NER system operates on the obtained
clauses to extract metadata with their semantics, which the Contract Management Plat-
form refers to as “attributes.” This system is based on a conventional codebase using a

16 Note: A given clause type can have multiple template forms such as multiple ways of formulating a
“termination clause.”
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linear conditional randomfield (CRF), (Chapter 6) algorithm,which tags the attributes
as Organization, Place, Date, Number, etc. The attributes that are tagged by the NER sys-
tem are presented to the user if requested for manual validation and learning in the
pipeline. A separate NER system utilizing a bidirectional LSTM17 is used to accept the
user feedback and retrain the classifier. This framework is an option tomake the system
more accurate and adaptive. For example, in the above text, Minneapolis andMinnesota
are labeled as “location.”

Logical Block 6: Commonmodel for contracts
The contract with the identified type, the clauses and clause categories, the attributes
and their values, and the sentences (along with the layout information when relevant)
are sent to a rule-based engine, which applies a set of predefined rules. For example:
The Effective Date should precede the Expiry Date, the difference between Expiry Date
and Effective Date must match the Duration. The “understanding” of the contract that
emerges from this step allows the system to create a common data model (see Fig-
ure 8.20) encompassing multiple categories of contracts and connecting them together.

Figure 8.20: Steps to create a common data model.

Logical Block 7: Obligations and entitlements in code
In parallel, the clauses are analyzed for obligations and entitlements such as deliver-
ies and payments, which are embedded within. Obligations and entitlements are logical
actions to be performed as part of the transactions identified in the contract. This logi-
cal sequence of actions and associated conditions and constraints form the active core
of the contract. By parsing the clauses identified as potentially containing obligations
and entitlements, one can identify the implied modalities in the clauses. One must, One
should, One has to, One may, etc. are mapped to a second-order deontic logic model,
which allows these obligations to bemodeled in code. This, in conjunction with the enti-
ties and other attributes identified in the previous stage, allows the contract to be mod-

17 One can describe this in detail. An example reference: https://towardsdatascience.com/named-entity-
recognition-ner-meeting-industrys-requirement-by-applying-state-of-the-art-deep-698d2b3b4ede
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eled as a dynamic object. This is used in the smart autonomous contract part of Icertis’
platform.

Logical Block 8: What If simulations
Once the above elements are extracted from the contract document, the contract is
“understood”. At this point, both the static structure, representing the informational
content, and the dynamic structure, depicting the flow of activities associated with the
contract, are extracted and encoded into a structured schema within a database. This
schema follows a standardized format across all contracts and an object oriented or
procedural code formulationwhose execution simulates that of the contract. These com-
putable representations allow the contracts to be simulated,What If scenarios to be ex-
amined, risks to be computed, and more (see Figure 8.21). From Daimler’s point of view,
these techniques allow them to understand their contracts more in depth.

Figure 8.21: Contract flow.

In addition to getting a better understanding of the contracts, it is also necessary
to ensure compliance (see Figure 8.22) to a class of certifications and sustainability cri-
teria such as ethical practices, proper hazardous waste management, environmental
sensitive operations, and so on during the creation of the contracts. To comply, Daim-
ler turned once more to the use of the AI engine in conjunction with a consortium
blockchain component that is built into the contractmanagement platform. The consor-
tium of suppliers who participate in the supplier blockchain is able to submit complete
contracts or parts of their contracts into the blockchain and to have it verified automat-
ically by an NLP program that matches the clauses in terms of structure and intent.

The engine is capable of translating clauses from other languages, comparing
them with the required clause set via distance metrics such as fuzzy matching or earth
mover’s distance and of producing a report regarding the presence or absence of re-
quired clauses and estimated degree of conformity with the required clause text. This
is very useful when the contract is framed in a foreign language, and we have to grade
a contract in terms of its degree of compliance with the sustainability clauses.
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The resulting information is modeled and put into a connected graph, which mod-
els the physical supply chain. A powerful visualization immediately indicates to Daimler
the degree of compliance of the complete supply chain network to their sustainability
clauses. Contracts which are red (meaning that they lack the required clauses), yellow
(meaning that most of the clauses are present or that all are present, but modifications
are required to become compliant), and green (fully compliant) are shown in the con-
nected graphical network model (Figure 8.22). The reporting structure underlying it al-
lows for messaging to the contract parties and subsequent corrections of the contracts
to make them fully compliant before the supply chains are kicked off.

Figure 8.22: Compliance check.

Conclusion
The use of an intelligent contract repository analysis system allows for the extraction of
useful knowledge. A variety of statistical measures permit Daimler to immediately see
the different types of contracts and the connections between them. Analyzing specific
contract types such asmaster service agreements, scope ofworks, human resources con-
tracts, etc. in bulk also allows for the construction of large-scale business flow models.
Post analysis, the static and dynamic structure of the contracts that emerge can be visu-
alized in many ways. These make the contracts easy to decipher and understand. More-
over, it helps Daimler to detect errors, anomalies, and inconsistencies efficiently. On top
of that, the large-scale statistical models of contract pricing, penalty clauses, force ma-
jeure clauses and alike allow for several risks to be modeled and estimated. These anal-
yses also aid in the contract creation process by identifying the commonly negotiated
clauses and acceptable parameter ranges. The analyses of obligations and entitlements
allow for details related to payments, eligible discounts, and penalties to be detected au-
tomatically and operated upon without failure, thus minimizing losses and recovering
money “left on the table.” All the above strategies pave the way toward a high level of
automation leading to “autonomous contracting” as the foundation of global commerce.
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8.5.3 Analyze legal content for lawyers at AXA’s legal protection
unit
Pierre-Yves Thomas, Anneleen Artois

Legal Village NV., AXA’s online legal assistance platform, is a claims settlement office
specialized in handling legal aid files and in offering innovative legal services.AXA Bel-
gium entrusts Legal Village NV. with the management of claims for all contracts in its
insurance portfolio related to the legal assistance branch.

One of the most important tasks in the day-to-day work of lawyers is the retrieval
of legal content from the internet and internal knowledge bases to identify and develop
legal arguments for ongoing law cases. Legal data comes in different shapes and formats
and is to be consulted in a wide spectrum of data sources. As a result, one of the biggest
challenges for lawyers is to efficiently find the right content at the right time, as different
sources typically have different, non-consistent descriptions of meta-metadata and no
indicator for the relevance and completeness of documents. Crucial information might
not be found.

At the same time, law and jurisprudence are a livingmatter, as they naturally result
from people living together and interacting with each other. As a result, legal data is
published at a fast-paced rhythm and knowledge mining has become indispensable in
the field of case law.

To address themajor challenges in the area of knowledgemining, Legal Village uses
a solution called LexagorIA, developed by PythagorIA, a company based in Luxem-
bourg, that offers professional solutions for knowledge management and text mining.
LexagorIA not only retrieves and presents relevant content (concepts, legal references,
named entities, etc.) from internal and external sources in a language independentman-
ner, but also creates and extracts a homogeneous set of metadata to describe the mean-
ing of the content and to build logical bridges between the different documents. This
ensures that one can, among others, track the evolution of law.

The solution also anonymizes documents, and thus preserves the integrity of the
people named in the legal documents by detecting and classifying named entities and
their relations (persons, organizations, lawyers, judges, dates, etc.). This is especially
important to protect confidentiality.

Note that the language model at the basis of LexagorIA’s suggestion engine18 has
been trained on data previously published by LexagorIA. The main languages that were
used are English, French, Dutch, and German. Approximately 4,500,000 legal documents
classified as law and 3,200,000 documents classified as case law covering the territories

18 The suggestions are filtered based on the user’s role. The main idea is that one will never get a
suggestion that doesn’t point to a result. Hence, the suggestions are not limited to a « begin with … »
suggestion. For example, as one types “concur,” it can result into “clause de nonconcurrence,” https:
//ksg.lexagoria.ai/#/search-results?u=law&search= as a suggestion.
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Figure 8.23: End-to-end pipeline of how LexagorIA processes the documents for lawyers.

of Belgium, France, the Netherlands, Luxembourg, Switzerland, the USA, and some Eu-
ropean institutions (Court of Justice of the European Union, European Court of Human
Rights and Official Journal of the European Union) have been used to this end.

Below we will take you step-by-step through the end-to-end pipeline of LexagorIA
depicted on Figure 8.23.

Logical Block 1: Crawl and avoid duplicates
It’s Monday evening. A di-
vorce attorney finalizes
writing a legal document
and uploads it on the com-
pany’s file server. Lexago-
rIA, which crawls the
internal storage systems
(e. g., Google Suite, Mi-

crosoft SharePoint) on a daily basis, picks up the document and processes it so its
content becomes searchable and gets linked to other legal data. Once the document
is picked up by the crawler, LexagorIA verifies whether it has been processed before.
Since the same document can be stored in different formats (e. g., pdf and word), the
vectorized version of documents are compared to identify doubles. Vectorization is
achieved based on the extraction of words and legal phrases stored in a dictionary.
Each extracted item gets a vector value and an ID, which are stored in a database. Note
that the same document can be storedmultiple times in a different language. When this
happens, both versions are retained, but some clustering is done later in the schema.
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When the input document is a scan or ahandwrittenfile,19 optical character recog-
nition (OCR) is used. This adds an additional complexity as some broader problems can
be distinguished. As explained by Kukich (1992) we need to deal with complexities such
as non-word error detection (e. g., recognizing lawsut for lawsuit), isolated-word error
correction (e. g., correcting lawsut into lawsuit) and context-dependent error detection
and correction (e. g., I suit you for I sue you).

Logical Block 2: Classification
Once we know for sure that the crawled
document is a unique entry in LexagorIA,
we determine what type of legal document
it is. Whereas all public content gets classi-

fied as case law (CL), law (L), or other (O), internal client systems use more detailed
classification patterns based on their professional needs. A One-vs.-All SVM20 model has
been trained on millions of legal documents to classify every new entry. Initially, there
were around 6 million documents for the first step classification and 600,000 to build
the learningmodel related to the domain classification. Hence, amulticlass problem has
been solved by mapping it out onto several supervised biclass models.

Part of speech (PoS) Tagging has been used in one of the earlier versions of Lexago-
rIA as well because in legal documents the tense of a verb (future, past, conditional, etc.)
is indicative of the type of document. For example, documents labeled as law (L) are only
written in the present or future tense. Different tag sets are used depending on the lan-
guage and the corpus available to train with. Since PoS tags are also applied to punctua-
tion (e. g., exclamation mark, parenthesis, etc.), it is important to perform tokenization
beforehand.

Figure 8.24: PoS tags, dependence analysis, and NER in IOB format.

19 LexagorIA is very careful with pdf documents containing a scan or picture of a physical copy of the
document. Sometimes the pictures have been made with a smartphone and are of very poor quality.
Therefore, the pdf version with the image is always published for the users to have a look at.
20 N different binary classifies are trained. For each classifier, one class is treated as positives and all
other classes are treated as negative. For SVM see Chapter 7.
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Logical Block 3a: Anonymization, entity, and relation extraction
The next step consists of hashing entities
to anonymize and filter out predefined en-
tities. To this end, the extracted content
of the document is used and not the vec-
tors. LexagorIA’s anonymization rules de-
pend on the type of document and the role
of the person who requests access. For ex-
ample, if the text is classified as case law

(CL) and the person who wishes to consult it is external to the company, the (full) name
of the lawyers and judges as well as the location of the court can be kept AS IS, while
all other names and locations have to be masked and replaced by a Dummy Token (e. g.,
Person1, Organization1, Address1, etc.).

First, a model for entity extraction must be built to find patterns in data. A very
widespread and easy to use technique is REGEX (regular expressions). While REGEX
is very useful when the underlying structure of the entity we want to extract (e. g., ID,
e-mail, telephone number, etc.) is known, this technique won’t help to detect names,
job titles, and locations.21 What is needed is a probabilistic sequence classifierwhich,
“given a sequence of units (words, letters, morphemes, sentences, whatever), (…) com-
pute[s] a probability distribution over possible labels and choose[s] the best label se-
quence” (Jurafsky and Martin, 2009).

A well-known example of such a sequence classifier is a (fully-connected) hidden
Markov model (HMM, Chapter 6), which computes probabilities about both the ob-
served events (the words, entities we try to classify) and hidden events (PoS tags). Apart
from probabilistic sequence classifiers, we also have exponential sequence classifiers
such as the Maximum Entropy Markov Model (MeMM) and the conditional random
field (CRF)model. The lattermodel is chosen to classify entities in LexagorIA as it proves
to be a good method for entity recognition.

Once the required entities are extracted, their relationshipsmust be found (see Fig-
ure 8.25). This process is backed up by a cascade of tools and processes. The focus lies on
two types of relationships. First, we want to know which person/location has what title
(e. g., defender). Second, it is important that Ann Art, Ann, and Miss Ann are all recog-
nized as the same entity. All the different versions of this namemust be clustered as the
same entity when anonymizing the document. To this end, a similar strings identifica-
tion (SSI) is used based on the n-gram extraction of strings with the Jaccard algorithm
as a similarity metric.

21 As goes for locations, there are lots of open data resources that contain all the addresses and cities in
Belgium and Luxembourg.
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The goal is to end up with a graph, which explains the relationships between all
the named entities, for example, Jan is a defender of CompanyXYZ located in Brussels,
Belgium.

Figure 8.25: Example of a legal text with entity and relation extraction.

Logical Block 3b: Extraction of additional meta-data
At the same time, some metadata related
to the content is extracted. The set of meta-
data that is extracted depends on the kind
of document that is processed. For example,
if the document has been classified as case
law (CL), we look for the date of delivery,
the legal concept (e. g., labor court, cassa-
tion court, constitutional court), the name

of the parties involved, the author, the title, and the publisher. Figure 8.26 demonstrates
the full metadataset that can be extracted. Somemetadata comes from the NER (e. g., the
legal concept is related to the analysis of PoS tagging and the syntactic analysis of the
content), other metadata comes from a different set of algorithms.22

22 Various algorithms are employed for specificmetadata tags. For jurisdiction, resort, and dates, combi-
nations of TensorFlow with BERT, alongside post-tagging or dependency parsing with rules, are utilized.
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Figure 8.26: The full metadataset that LexagorIA tries to capture.

Additionally, anonymization also applies to the schemas and drawings. When OCR is
used, it is important to remove signatures, stamps, etc., but to retain pictures or drawings
which, for example, describe the position of cars at the time an accident happened.

Logical Block 4: Multilevel domain classification
To label23 document entries, multilevel
domain classification is applied. Lexago-
rIA has two-level classifications. A doc-
ument can be classified as social right
(level 1) and belong to the subclass of in-
ternational social right (level 2). While for
the first level, there is a single classifier, for
the second level there is one classifier per

class (for about 800 classes). Hence, one document can be classified into several sub-
classes of a first level class. The main technique used to this end is (semi) supervised
text categorization using long short-termmemory (LSTM) for region embeddings (see
Section 8.3.2. of this chapter). Note that multilevel classification is independent of the
language used in the search query.

Legal and domain metadata, on the other hand, utilize SVM or CNN in conjunction with regions and
word embedding.
23 This is based on the UTU classification, a universal tree structure that allows for the organization and
incorporation of the different sources of law (https://bartoc.org/en/node/369).
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Logical Block 5: The legal references
The next step after classifying the texts by
legal domain and subdomain is to identify
and disambiguate the legal references in
documents (see Figure 8.27, orange text).
Occasionally, the reference to a particular

law is very detailed, such as in the example below, but often there is only a single piece
of information available (e. g., the date) about the referred law. In this case, LexagorIA
depends on the documents context, for example, the existence of an extracted legal con-
cept, to do a disambiguation. After identifying the law that the document refers to, a
hyperlink is added to the law with a citation of all the other case laws that are found in
the original document.

Figure 8.27: Legal references in a legal text (French).

As mentioned before, annotation is independent of the language used in the search
query. If there are doubles in a different language, all versions are retained and shared
metadata at analysis time is added to all the related documents in order to make a clus-
ter in the system and to collapse all versions into one label. Hence, when searching for
“contrat de travail,” LexagorIA automatically translates the search term from French
to Dutch and English so all the documents in the system related to work law can be
found, independently of the language in which they are published. This is called cross-
language search.24 Note that virtual clusters are also used to relate historical versions

24 Another reason to cluster the documents is because one gets different results for “contrat de travail”
(French) as for “werkcontract” (Dutch) because the French term is composed of three words versus one.
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of a document. When a lawmodifies, adds, or repeals an article of another law, a histor-
ical version of the modified law is created. LexagorIA manages these different versions
and explains the differences between the old and new documents (Figure 8.28).

Figure 8.28: The historical and new version of a document.

In the previous steps, LexagorIA has annotated each document with generated
metadata (metaset, extraction, of legal concepts, NER, etc.) and has linked semantically
related documents in a semantic cluster. This results in a semantic map of every docu-
ment. Imagine once again a divorce attorney trying to find information about the case
of a colleague. The attorney searches for the name of colleague and the date of the
court order, finds a hyperlink to the correct document, and clicks on it. At this moment,
LexagorIA forgets about the search query itself and only semantically related content,
based on the semantic map of this document, is suggested to the end user.

Logical Block 6: Question and Answer (QA) pairs
For this final feature,
it is crucial to perform
speaker identifica-
tion. When searching
for answers through
LexagorIA, it is crucial

that the response originates from a judge rather than a party’s lawyer or an individual
lacking legal authority. Without input from a legally authoritative source, the answer
lacks any legal standing and remains a mere opinion. Currently, there are two ap-
proaches to manage speaker identification and legal authority. (1) The legacy approach
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for which the model must be adapted every time a new language is added. (2) The usage
of amultilingual BERTmodel, which allows the coverage of different languages with the
same learning data. The latter is easier to adopt new documents and to add additional
languages as there is only one sample of learning data for all languages needed.

Imagine once again a divorce attorney with access to an interface to ask questions.
Upon typing, a scroll-down list appears with generic questions to choose from. When
clicking on a question, an answer immediately appears because the questions from the
scroll-down list are stored as QA pairs in theQ&Adatabase. If the attorney doesn’t click
on a suggested question, LexagorIA will try to find the answer in the content database,
containing thewhole corpus from thewebsite. In this case a different QA process is used
whereby some abstract candidates in full text that contain the answer are selected. Note
that LexagorIAmakes a clear distinction between suggestions and recommendations.
Whereas the former are created at search time and are user agnostic, the latter are re-
lated to a user profile and match the cases the user works on with a new document in
the system.

8.6 Addendum

Addendum 1.

PREAMBLE

THIS MASTER SERVICES AGREEMENT (THIS “MSA”) IS BINDING AND
ENFORCEABLE
BETWEEN YOU (“CUSTOMER”) AND ABCDE, INC., A DELAWARE CORPORATION
HAVING ITS PRINCIPAL PLACE OF
BUSINESS AT 200 NORTH WIND STREET, SUITE 2, INDIANAPOLIS, INDIANA 46207,
FOR ITSELF AND ITS AFFILIATES
(“ABCDE”). “YOU” REFERS TO THE ENTITY OR ORGANIZATION USING THE
PLATFORM, PRODUCTS, AND/OR SERVICES
DESCRIBED IN THIS MSA. BY SIGNING AN ORDER FORM TO USE THE PLATFORM
AND/OR PRODUCTS AND/OR TO RECEIVE
SERVICES, YOU ARE ACCEPTING AND AGREEING TO BE BOUND BY THIS MSA.
YOU SHALL INFORM ALL USERS OF THE
PRODUCTS OF THE TERMS AND CONDITIONS OF THIS MSA.

ThisMSA includes the General Terms and Conditions set forth on the following pages and all terms and condi-
tions set forth in all Product Addenda specific to the Products purchased as part of Your subscription. Product
Addenda, as well as the most current version of this MSA, are available for review at www.abcde.com/legal/.
The parties’ complete agreement with respect to the subject matter set forth in the Order Forms executed by
the parties during the Term includes this MSA (including all applicable Product Addenda) and all such Order
Forms, all of which shall be hereinafter referenced as the “Agreement.” You expressly agree that the terms
and conditions of this MSA shall govern all Products and Services provided to You during the Term and are a
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material part of ABCDE’s agreement to provide such Products and Services, whether or not the same is made
express at the time of provision.

ABCDE hereby agrees to make the Products and/or Services described in each Addendum hereto available
to You, and You agree to purchase such Products and/or Services from ABCDE, subject to the terms and
conditions of the Agreement.

This MSA was last updated on March 4, 2013. It is effective between You and ABCDE as of the date of You
accepting this MSA.

GENERAL TERMS AND CONDITIONS
1. DEFINITIONS
“Affiliate” shall mean, with respect to a party, any entity that directly or indirectly controls, is controlled by, or
is under common control with such party, where “control” (or variants of it) shall mean the ability (whether
directly or indirectly) to direct the affairs of another by means of ownership, contract, or otherwise.
“Applicable Law” shall mean any international, federal, state, or local statute, regulation, or ordinance, ex-
pressly, including without limitation those relating to individual privacy or the distribution of email and other
one-to-one digital messages.
“Confidential Information” shall have the meaning set forth in Section 6.
“Data” shall mean all data and other information uploaded by Customer to the Platform or to a Product.
“Malicious Code” shall mean viruses, worms, time bombs, Trojan horses, and other harmful or destructive
code, files, scripts, agents, or programs.
“Order Form” shall mean the ordering documents for Customer’s purchases of Products or Services from
ABCD that are executed by the parties from time to time, which shall be governed by the terms of this MSA.
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Erik Mannens
9 Some words about ethics. The angles of
fairness and transparency

9.1 The challenges of ethical AI

While considering the fundamental problem-solving capabilities of any artificial intel-
ligence (AI) technique, practitioners should foremost and upfront consider the ethical
implications of any machine learning (ML) project they envision. As such, ethical AI is
a nuanced, complex, and still emerging discipline with many angles to look at, which
means there are few concrete guidelines already to follow today. But the definition of
ethical AI definitely encompasses: (1) the safeguarding of a person’s individual and fun-
damental rights; (2) respecting a person’s end-to-end privacy; (3) being nondiscrimina-
tory in the broadest sense; and (4) being nonmanipulative in any way.

Concretely, this first means AI systems need to be trained with the right data to take
well-informed ethical decisions. An early example from 2016 being a bot trained with
obviously biased and discriminatory Twitter feeds, hence the bot of course also answer-
ing normal questions with hostile and racist remarks, being a classic example of an AI
system fed with the wrong training dataset, that is, the engineers not checking enough
if the data set was balanced and without any ethical issues, for example, unbiased and
inclusive towards gender, race, age, religion, political orientation, etc. Only if one is cer-
tain that the right data is used to train an AI system, one can truly say that AI systemwill
take fair decisions.

Second, any AI solution in production needs to be trustworthy, that is, an AI sys-
tem cannot start to degrade in quality or accuracy without flagging an alarm. This then
would result in making false claims, and thus again possibly treating people differently
over time. An AImodel should therefore be as robust as an aircraft, with the samemetic-
ulous continuous monitoring and maintenance, for all people to always trust using it.

Third, any AI system should be transparent. We should strive to use AI systems that
can always tell us why a certain decision was taken, that is, via the use of interpretable
AI and more specifically white box algorithms. As such, by using interpretable AI, one
enables the trust and transparency needed to also make the claim an AI system is ac-
countable for its decisions.

Lastly, AI systems (as any other software system connected to theWorldWideWeb)
should be end-to-end secure, so that malicious people or bots cannot exploit the AI sys-
tem by changing the model or knowing how to trick the model from within and should
guarantee the end-to-end privacy of the individual also whenmultiple data sets (that by
merging them might tamper the individual privacy) are taken into account.

As such, there’s globally a consensus the pillars of ethical AI can be summarized as
follows:

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111426143-009
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– Fairness: AI systems should treat all people fairly and equally aiming to empower
everyone inclusively. Therefore, multiple possible biases are to be considered. The
translation system as discussed in Chapter 8 can be taken as an example, that is,
when making a general translation system from Dutch to English, it is important
that the vocabulary, speaking style, etc. of different Dutch geographical regions as
well as different age groups are included.

– Trustworthiness: AI systems should be reliable, robust, and safe under any dynam-
ically changing circumstances, that is, if the world is changing the AI model needs
to dynamically adapt to represent the world at hand, relearn and retake the right
decision. Only then does one deal with AI systems one can fully trust.

– Transparency: AI systems should be understandable and be able to explain why a
certain decision was made by the algorithm. As such, completely fair and transpar-
ent AI systems are accountable.

– Security: AI systems should have built in privacy-by-design. Data driven solutions
should always treat data in a securemanner with, among others, encryption at rest
and in transit, and respect the individual’s data privacy. Take the example of Lexago-
rIA in Chapter 8 where, depending on the role of the data requester, some entities
(such as name and address) are hashed as not everyone has the same level of data
access.

Within this chapter, we will primarily focus on Fairness (more specifically bias) and
Transparency (more specifically interpretability). The theory section will focus on the
five different kinds of biases out there. Some of the biases are embedded in the data and
some in the AI models, and we will describe techniques (preprocessing, in-processing,
and post-processing) to handle all kinds of biases. Furthermore, interpretability can be
described explicitly via two different umbrella techniques, that is, explainability by in-
trinsic global design and by post-hoc local interpretation.

Following the theory section, two concrete case studies are chosen to exemplify the
use of the techniques and tooling described in the theory section. The first case study is
fromEY that built an AI solution for financial institutions to embed Fairness in their loan
division. Here, the focus lies in the use of the Fairlearn tooling with embedded fairness
techniques.

The second case study addresses Interpretable AI, with a model that detects fraudu-
lent behaviors including the description of a feedback loop architecture that guarantees
trust and transparency for the decision support system. Tomake the systemaccountable,
the exemplified techniques from interpretML tooling were used.

9.2 Initial framing of fairness
To further fully explain and understand algorithmic bias, an initial question needs to be
addressed: “What does fairness mean?” And this is already a difficult one, as there are
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tons of definitions for fairness. So, how to pick the right one? (spoiler alert: the “right”
one cannot just be picked, as everything is context dependent as will be shown later on).

Let’s start with the not-so-mathematical basic idea. A common paradigm for think-
ing about fairness in universal law is disparate treatment and disparate impact. Both
terms refer to practices where a group of people sharing protected characteristics
(e. g., age, disability, gender, marital status, pregnancy, race, religion, and sexual orien-
tation) are disproportionately disadvantaged. These “protected characteristics” are
traits such as race, gender, age, physical or mental disabilities, where differences due to
such traits cannot be reasonably justified. Ideally, one should have a set of sensitive traits
that can be checked against. But in reality, what constitutes “protected characteristics”
varies by context, culture, and country. Next, the phrase “disproportionately disadvan-
taged” dismisses differences in treatment due to statistical randomness. The difference
between disparate treatment and disparate impact can be summarized as explicit in-
tent. Disparate treatment is explicitly intentional, while disparate impact is implicit or
unintentional.

Let’s use Amazon’s Free Same-Day delivery service as an example. Since it is in the
beta stage, Amazon wants to trial the service before rolling it out to everyone. Suppose
Amazon implements amodel that picks lucky neighborhoods to get a first glimpse on the
Free Same-Day delivery service. Using race to decide who should get this service is cer-
tainly unjustified. So, if Amazonhad explicitly used racial composition of neighborhoods
as an input feature for the model, that would be disparate treatment. In other words,
disparate treatment occurs when protected characteristics are used as input features.
Disparate treatment is relatively easy to spot and resolve once the set of protected char-
acteristics is determined, as one just must make sure none of the protected characteris-
tics are explicitly used as input features. On the other hand, Amazon might have been
cautious about racial bias and deliberately excluded racial features from their model
and, for example, used ZIP codes instead. Focusing on ZIP codes with high density of
Amazon Primemembers makes perfect business sense. But what if the density of Prime
members correlates with racial features?

The image (Figure 9.1) below from a 2016 Bloomberg article by David Ingold shows
that there is indeed a large racial bias in the selected neighborhoods, nevertheless. De-
spite not using any racial features, the resulting model appears to make recommenda-
tions that disproportionately exclude predominantly black ZIP codes. This unintentional
bias can be seen as disparate impact. In general, disparate impact occurs when pro-
tected characteristics are not used as input features but the resulting outcome still ex-
hibits disproportional disadvantages. Disparate impact ismore difficult to fix since it can
come frommultiple sources, such as: a nonrepresentative dataset, a dataset that already
encodes unfair decisions, or input features that are proxies for protected characteristics
in the first place.

So, how does one know how much disparity is unfair? What is unfair in one case
might be justified in another, depending on the specific contextual circumstances. One
can easily find and calculate some basic fair metrics (Verma et al., 2018), among others,
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Figure 9.1: Racial bias in Amazon’s Prime Members “same day delivery” regions.

Predictive Parity, Counterfactual Fairness, Demographic Parity, Group Fairness, Equal-
ized Odds, Conditional Use Accuracy Equality, Overall Accuracy Equality, Treatment
Equality, Calibration, or Fairness through Awareness. The awesome thing about these
metrics is that they can be put into a loss function. Then a model can be trained to
optimize the function to act fair with respect to that specific fairness metric. Except, it
doesn’t necessarily work like that. A major issue with these metrics (besides the ques-
tion of how to pick the right and best ones) is that they neglect the larger context. The
fairness metrics can be a systematic way to check for bias, but they are only one piece
of the puzzle. A complete assessment for fairness needs one to get down and dirty with
the complete problem at hand. Most of the fairness metrics focus on equality in the
rates of true positives, true negatives, false positives, false negatives, or some combina-
tion of these. But remember that these metrics are insufficient when they exclude the
larger context of the AI system and neglect contextual justifications. After all, notions of
fairness are heavily based on context and culture. To get this context into the equation,
try asking the following sociotechnical questions to a group of real end-users of your AI
application to be:
– What is the ultimate aim of the application?
– What are themain privacy concerns for thosewho are impacted by the application?
– Are there discrepancies between the application’s privacy policy and the applica-

tion’s workings?
– What are the pros and cons of an AI system versus other solutions?
– What are the AI systems (un)intended effects?
– What is the current system that the AI system will be replacing?
– How can the AI system be misused by unknowing or malicious actors?
– What examples of fair and unfair predictions can one find andwhy are they fair/un-

fair?
– What are the relevant protected traits in this problem?
– Which fairness metrics should we prioritize?



9 Some words about ethics. The angles of fairness and transparency � 399

– When we detect some disparities among protected groups, is this disparity justified
or is it considered unfairness?

9.2.1 Generic definition on bias

As AI is already becomingmainstream as part of the solution in amyriad of end-user ap-
plications, among others, any mobile phone’s voice-controlled personal assistant, it is of
the uttermost importance that one has a transparent and unambiguous understanding
of why and how unwanted side effects and consequences arise in any kind of AI-driven
services. Whatever harmful decisions are taken to particular individuals and/or groups
of people are often attributed to “biased” data, but by default merely blaming imperfect
AI-driven applications using those two words is too coarse-grained and often just faulty.
As one will find out hereafter, there are at least five distinct categories of “biased” data
that downstream harm the end-to-end machine learning pipeline from data generation
up to the evaluation of an AI model. Hereafter will be described how these different fla-
vors of bias arise, how they are relevant to specific AI-driven applications, and how they
push toward different kinds of solutions. As such, one gets a clearer picture of specific
reasonable claims, rather than generically relying on what may or may not be called
“fair” in the eye of the beholder.

9.2.2 What is the problem to solve?

There are a “trillion” types of biases as stated in (Mehrabi et al., 2019), but to not make
things overly complicated, the focuswill be onfivemajor types of bias that creep into the
different stages of AI systems, that is, Historical Bias, Representation Bias, Measurement
Bias, Aggregation Bias, and Evaluation Bias.

Hereafter, one can identify issues that commonly pop up in AI applications that lead
to undesired and occasionally societally malignant outcomes. As such, decomposing the
consequences of a particular algorithm should begin with the complete comprehension
of the data generation pipeline followed by the machine learning processing pipeline
that led to its output in the first place. As one will see, the origins of bias investigated
originate at different stages in that very pipeline (see Figure 9.2a and 9.2b, Suresh and
Guttag).
1. Historical bias is a normative concern in the world as one knows it. It is a struc-

tural and fundamental issue within the first step of the data generation process and
can arise even when perfect sampling and proper feature selection has been done.
For instance, even if one has access to the perfectly measured feature “crime,” it
might still echo historical factors that have led to more “crime” in pauperis neigh-
borhoods, because in some systems “crime” is used as a proxy for “arrested.” Such
systems, even if they precisely reflect theworld “as is,” can still damage certain parts
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Figure 9.2a: Data generation pipeline.

Figure 9.2b:Model building and implementation pipeline.

of a population. Contemplating on historical bias implicates evaluating the repre-
sentational harm (such as intensifying stereotypes) to particular identity groups. As
such, recognizing historical bias requires a retrospective notion of both themachine
learning application and the data generation process over time.

Example. Back in 2018, only 5% of the Fortune 500 CEOswere female. Should image
search results for “CEO” echo that number? Eventually, a variety of stakeholders,
including affected representatives of the use case, should evaluate the particular
disadvantages that this result could cause in this particular and adjacent use cases
and voice a final opinion. Their decision may be at odds with the current available
data even if that data is a perfect reflection of the world as one knows it. Indeed,
Google has recently altered their Image Search results for “CEO” to display a higher
ratio of women. For example, today’s search term for “CEO” on Google resulted in
10% percent of CEO pictures to depict women.

2. Representation bias heavily depends on the definition of the population and the
sampling thereof, that is, when certain parts of the input space are underrepre-
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sented. As such, representation bias arises if the probability distribution over the
input space samples too few examples from a particular part of that input space.
When one lacks data about some part of the input space, the learned mapping will
be more uncertain for new data pairs in that area. It is worth noting that even if
some group is a minority that only makes up 5% of the true distribution, then even
perfect sampling, that is, with no representation bias, from the true data distribu-
tion will likely lead to a significantly less robust model for this group anyway. Rep-
resentation bias can occur due to at least these two reasons:
– The sampling techniques only reach some part of the population. For example,

datasets harvested via smartphone applications can under-represent lower-
income or older groups, who are less likely to own or heavily use smartphones.
Likewise, medical data for a particular disease is maybe only collected from
the population of patients who were considered serious enough to bring in for
further in-depth screening.

– The population of interest has altered or is different from the population used
during model training. Data that is representative for the population of Brus-
sels, for example, may not be representative if used to analyze the population
of London. Likewise, data representative of Brussels 50 years ago will most cer-
tainly not reflect today’s population.

Example. ImageNet is a broadly utilized image dataset consisting of 1.2 million la-
beled images. About 45% of the images in ImageNet were photographed in the US,
and the bulk of the remaining images are taken in Canada or Western Europe. Re-
spectively, 1% and 2.1% of the images come from China or India. As such, it can
come to no surprise that the performance of a classifier trained on ImageNet is sig-
nificantly worse for various categories (e. g., “bride” or “groom”) on pictures that
are crowdsourced from vastly underrepresented countries such as Pakistan, India,
or Vietnam versus pictures taken from North America and Western Europe.

3. Measurement bias originates from subsequently choosing and measuring only
some particular features of interest. Valid measured data are regularly a proxy for
some ideal features and labels, that is, arrest rates are frequently used as a proxy
for crime rates. If the measurement method just appends random noise, the model
parameters will converge to thosewhichwould eventually anticipate uponwith the
correctly measured features (given abundant data). On the other hand, measure-
ment bias often arises because proxies are generated differently across populations
(also known as differential measurement error). Measurement bias can occur due
to at least these three reasons:
– The granularity of data varies across populations, that is, if a group of factory

workers is more rigorously or regularlymonitored, more errors will be noticed
in that group. This can also lead to a feedback loop wherein the group is sub-
ject to even additional monitoring because of the obviously higher rate of mis-
takes.
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– The quality of data varies across populations, that is, structural discrimination
can lead to systematically higher error rates in a certain population. For ex-
ample, women are more likely to be misdiagnosed or not diagnosed at all for
conditions where self-reported pain is a symptom (in this case “diagnosed with
condition X” is a biased proxy for “has condition X”), as they have a higher pain
threshold than men, and thus are underrepresented in the self-reported pain
feature.

– The defined classification job is an oversimplification. In order to build a su-
pervisedmachine learningmodel, some label to predict must be picked. Dimin-
ishing a decision to a single attribute can create a biased proxy label as it only
captures a specific aspect of what one genuinely wants to measure. Contem-
plate on the prediction task of deciding whether a student will be successful
or not in a university admission context. Completely capturing the outcome
of “successful student” in terms of one single measurable attribute is almost
impossible because of its inherent complexity. In cases such as these, algorithm
modelers just depend on some available label such as “GPA score,” which ig-
nores different talents and abilities demonstrated by parts of the population as
other indicators of success.

Example. As mentioned earlier, in predictive policing applications, the proxy vari-
able “arrest” is often used to measure “crime” or some underlying notion of “risk to
commit crimes.” As minority communities are often more heavily patrolled and, as
a consequence, have higher arrest rates, there is a different mapping from crime to
arrest for people from these communities. Former arrests and friend/family arrests
were two of many wrongmeasured proxy variables used in the recidivism risk pre-
diction tool COMPAS. These were unmistakably factors that in the end led to higher
false positive rates for black versus white defendants. It is worth noting that in the
same realm even an evaluation by the proxy label “rearrest” used to measure “re-
cidivism” is doubtful to be correct, too.

4. Aggregation bias originates from flawed assumptions about the population affect
model definition, that is, when a one-size-fits-all model is used for populations with
different conditional distributions. Underlying aggregation bias is an assumption
that the mapping from inputs to labels is consistent across populations. In reality,
this is frequently not the case. Population membership can be indicative of differ-
ent backgrounds, cultures, or norms, and a given variable can signify something
entirely different for a person in a different population. Aggregation bias can lead
to a model that is suboptimal for any population, or a model that is just fit to the
dominant population (if combined with representation bias). If there is a nonlin-
ear relation between population membership and outcome, for example, any sin-
gle linear classifier will have to offer performance on one or both populations. In
some cases, embodying information about population differences into the design
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of a model can lead to simpler learned functions that improve performance across
these populations.

Example. Diabetes patients have known odds in associated complications across
ethnicities. Studies have also suggested that HbA1c levels (widely used to diagnose
and monitor diabetes) differ in complex ways across ethnicities and genders. Be-
cause these factors have different meanings and magnitudes within different sub-
populations, a single model is unlikely to be best suited for any group in the popu-
lation even if they are equally represented in the training data.

5. Evaluation bias emerges during model iteration and evaluation, that is, when the
evaluation and/or benchmark data for an algorithm is not representative for the
target population. A model is optimized on its training data, but its quality is often
measured on benchmarks (MovieLens, FaceScrub, ImageNet, etc.). As such, a mis-
representative benchmark fosters the development of models that only perform
well on a subset of the population. Evaluation bias originates because of the neces-
sity to objectively compare models against one another. Applying different models
to some set of external datasets tries to serve this purpose, but it is often further
used to make generic statements about how good a model is. These generalizations
are frequently not statistically valid, and thus can lead to overfitting to particular
sets of benchmarks. This is particularly problematic if the benchmark is further-
more not that representative. This is a self-fulfilling process, as the more successful
a benchmark is if more and more people use it for comparative assessments, the
more serious this problem of overfitting will become. Evaluation bias can be fur-
ther sharpened by specific metrics that are used to report performance, that is, by
only looking at the single metric “accuracy” varied disparities in other types of er-
rors like “false positives” are likely to be hidden as well.

Example. It is known that current commercial facial analysis algorithms, execut-
ing tasks such as gender or smile detection on dark-skinned females perform badly.
Just by looking at some common facial analysis benchmark datasets, it becomes ob-
vious why such algorithms should be considered inappropriate for use as just 5%
of the images in these benchmark datasets are of dark-skinned female faces. Al-
gorithms that underperform on this slice of the population therefore suffer quite
little in their evaluation performance on these benchmarks, as the algorithms’ un-
derperformance is likely due to representation bias in the training data, but the
benchmarks (alas suffering from the same representation bias) failed to discover
and penalize this. Since this malfunctioning was discovered, other algorithms have
been benchmarked on more balanced face datasets, changing the overall develop-
ment process to encourage models that perform well across different diverse pop-
ulations.
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9.2.3 How do we mitigate it?

Currently, the two most elaborated (and still constantly evolving) tool kits are IBM’s ini-
tiated AIF 360 tool kit and Microsoft’s initiated FairnLearn tool kit. Hereafter, the bias
mitigation algorithms of both frameworks are discussed as they rely on a myriad of +75
(jointly overlapping) metrics. The bias mitigation algorithm categories are based on the
locationwhere these algorithms can intervene in a completemachine learning pipeline.
If the algorithm is allowed to modify the training data, then preprocessing can be used.
If it is allowed to change the learning procedure for a machine learning model, then
in-processing can be used. If the algorithm can only treat the learned model as a black
box without any ability to modify the training data or learning algorithm, then only
post-processing can be used. This is illustrated in Figure 9.3 below.

Figure 9.3: Bias mitigation strategies for ML models.

Pre-processing algorithms involve modifying the training data, with the aim of
preventing the algorithmic model from learning discriminatory decision-making rules
in the training stage. This can be accomplished by, for example, modifying the train-
ing data itself, for instance by changing the values of specific attributes for individual
records or even removing attributes entirely. Reweighing (Kamiran et al., 2012) gener-
ates different weights for the training examples in each (group, label) combination to
ensure fairness before actual classification. The idea is to apply appropriate weights
to different tuples in the training dataset to make the training dataset discrimination-
free with respect to the sensitive attributes. Instead of reweighing, one could also apply
techniques (nondiscrimination constraints) such as suppression (remove sensitive at-
tributes) or massaging the dataset—modify the labels (change the labels appropriately
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to remove discrimination from the training data). However, the reweighing technique
is more effective than the other two mentioned earlier. Optimized preprocessing (Cal-
mon et al., 2017), on the other hand, learns a probabilistic transformation that edits
the features and labels in the data with group fairness, individual distortion, and data
fidelity constraints and objectives. Furthermore, learning fair representations (Zemel
et al., 2013) finds a latent representation that encodes the data well but obfuscates infor-
mation about the protected attributes. Disparate impact remover (Feldman et al., 2015)
edits feature values to increase group fairness while preserving rank-ordering within
the groups. The last two algorithms are “reduction” algorithms that cause the reweight-
ing and relabeling of the input data. The key idea is to reduce fair classification to a
sequence of cost-sensitive classification problems, whose solutions yield a randomized
classifier with the lowest (empirical) error subject to the desired constraints. This re-
duces the problem back to standardmachine learning training and is thusmore generic
than the other preprocessing algorithms. Exponentiated gradient (Agarwal et al., 2018)
allows for anydefinition of fairness that can be formalized via linear inequalities on con-
ditional moments, such as demographic parity or equalized odds metrics. It shows how
binary classification subject to these constraints can be reduced to a sequence of cost-
sensitive classification problems. Only black-box access to a cost-sensitive classification
algorithm is required, which does not need to have any knowledge of the desired defi-
nition of fairness or protected attribute. The solutions to this sequence of cost-sensitive
classification problems yield a randomized classifier with the lowest (empirical) error
subject to the desired fairness constraints. In some situations, though, it is preferable
to select a deterministic classifier, even if that means a lower accuracy or a modest vi-
olation of the fairness constraints, that is, when the protected attribute is binary then
Grid search (Agarwal et al., 2019) can in fact be conducted in a single dimension. Indeed,
when the number of constraints is very small, as is the case for demographic parity or
equalized odds with a binary protected attribute, it is also reasonable to consider a grid
of constraint values, calculate the best response for each value, and then select the value
with the desired trade-off between accuracy and fairness.

In-processing algorithmsmethods involvemodifying the algorithmicmodel itself.
One approach is to train separate models for each protected group in isolation of one
another, and then only use the relevant model for decisions concerning that group as
this would, however, be difficult in many situations where certain individuals may be-
long to multiple categories (Asian and female, for example). Another is to change the
criteria that result in “branches” in a decision tree to ignore or correct the influence of
protected characteristics. However, many in-processing methods require personal data
regarding protected characteristics to be available, which cannot be taken for granted
due to the legal sensitivity of this data. The legal status and necessity of monitoring for
biasmeanswell-intentioned data scientists wishing to detect discrimination in their sys-
tems can face barriers to obtaining the necessary data or information about protected
characteristics, especially if they did not seek consent to gather and process the data
for these purposes from the beginning. Adversarial debiasing (Zhang et al., 2018) learns
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a classifier to maximize prediction accuracy and simultaneously reduce an adversary’s
ability to determine the protected attribute from the predictions. This approach leads
to a fair classifier as the predictions cannot carry any group discrimination information
that the adversary can exploit. Prejudice remover regularizer (Kamishima et al., 2012),
on the other hand, adds a discrimination-aware regularization term to the learning ob-
jective. Furthermore, Meta fair classifier (Celis et al., 2018) takes the fairness metric as
part of the input and returns a classifier optimized regarding the fairness metric. Fi-
nally, Rich subgroup fairness (Kearns et al., 2018) is an algorithm for learning classifiers
that are fair in respect to rich subgroups, which are defined by (linear) functions over
the sensitive attributes and the statistical fairness notions (false positive, false negative,
and statistical parity rates). The implementation uses a maximum of two regressions
as a cost-sensitive classification oracle, and supports linear regression, support vector
machines, decision trees, and kernel regression.

Post-processing algorithms methods involve removing discriminatory rules or
otherwise modifying a model (e. g., confidence intervals, weights, probabilities, pre-
dicted classes, or labels) after it has been trained. This might mean, for example, mod-
ifying a model so that it places less significance on particular postcodes, which could
be closely correlated with one specific ethnic group. Outcomes or decisions can also
be artificially adjusted to ensure equitable treatment across groups within the affected
population. For example, if it is known that a probation risk assessment algorithm
consistently ranks one ethnic group as a higher risk than others, any risk assessment
relating to an individual from that group might be downgraded by a human probation
officer to ensure an equitable outcome. Equalized odds post-processing (Hardt et al.,
2016) solves a linear program to find probabilities with which to change output labels to
optimize equalized odds. Calibrated equalized odds post-processing (Pleiss et al., 2017),
on the other hand, optimizes over calibrated classifier score outputs to find probabilities
with which to change output labels with an equalized odds objective. Furthermore, Re-
ject option classification (Kamiran et al., 2012) gives favorable outcomes to unprivileged
groups and unfavorable outcomes to privileged groups in a confidence band around
the decision boundary with the highest uncertainty. Finally, Threshold Optimizer (Hardt
et al., 2016) takes as input an existing classifier and the sensitive feature and derives a
monotone transformation of the classifier’s prediction to enforce the specified parity
constraints. The idea is that the classifier is obtained by applying group-specific thresh-
olds to the provided estimator. These thresholds are chosen to optimize the provided
performance objective subject to the provided fairness constraints.

9.2.4 When do we apply these techniques?

With the increasing popularity of AI and machine learning over the past decade, and
their already exponential spread in different applications, safety and fairness con-
straints should become a huge issue for researchers and engineers. Machine learning
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is used in courts to assess the probability that a defendant recommits a crime. It is used
in different medical fields, in childhood welfare systems (Chouldechova et al., 2018),
and autonomous vehicles. All of these applications have a direct effect in our lives and
can harm our society if not designed and engineered correctly, with consideration to
fairness. Current AI systems (Osoba et al., 2017) (Howard et al., 2018) already affect our
daily lives with their inherent biases, such as the existence of bias in AI chatbots, face
recognition, search engines, employment matching, flight routing, and automated le-
gal aid for immigration algorithms, and search and advertising placement algorithms.
Therefore, it is important for researchers and engineers to be concerned about the
downstream applications and their potential harmful effects when modeling an algo-
rithm or a system. Hence, the question is not “When” as the answer is “Always,” but
all involved in developing these new AI systems should be made aware to the fullest of
possible bias creeping into the data and models used for any envisioned (AI) applica-
tion. As such, “fairness” should be one of the key requirements that should constantly
be on a checklist when software applications are being architected, developed, tested,
and (re)deployed.

9.2.5 What are the limitations?

Unknown unknowns. The introduction of bias is not always crystal clear during a
model’s construction because one may not realize the downstream impacts of one’s
data and choices there upon until much later. Once one does, it is hard to retroac-
tively identify where that bias came from and then figure out how to get rid of it. In
Amazon’s AI recruiting case, when the engineers initially discovered that its tool was pe-
nalizing female candidates, they reprogrammed it to ignore explicitly gendered words
like “women.” They soon discovered that the revised system was still picking up on
implicitly-gendered words—verbs that were highly correlated with men over women,
such as “executed” and “captured”—and using that to make its (biased) decisions.

Imperfect processes. First, many of the standard practices inmachine learning are not
designedwith bias detection inmind, among others, deep-learningmodels are tested for
performance before they are deployed, creating what would seem to be a perfect oppor-
tunity for catching bias. However, in practice, testing usually looks like this: (male) com-
puter scientists randomly split their data before training into one group that is actually
used for training and another that is reserved for validation once training is done. That
means the data one uses to test the performance of one’s model has the same biases as
the data one used to train it. Thus, it will fail to flag skewed or prejudiced results.

Lack of social context. Similarly, the way in which computer scientists are taught to
frameproblems often is not compatiblewith the bestway to think about social problems.
Within computer science, it is considered good practice to design a system that can be
used for different tasks in different contexts. But what that does is ignore a lot of the
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social context. One cannot have a system designed in Brussels and then apply it directly
in Bangalore because chances are that different communities have different versions of
fairness. Likewise, one cannot have a system that one applies for “fair” criminal justice
results and then immediately apply it to employment. How one thinks about fairness in
those contexts is just totally different, hence “the portability trap” is encountered (Selbst
et al., 2019).

The definitions of fairness. It is also not clear what the absence of bias should look like.
This isn’t true just in computer science—this question has a long history of debate in
philosophy, social science, and law. What is different about computer science is that the
concept of fairnessmust be defined inmathematical terms, like balancing the false posi-
tive and false negative rates of a prediction system. But as researchers have discovered,
there are many different mathematical definitions of fairness that are also mutually ex-
clusive. Does fairness mean, for example, that the same proportion of black and white
individuals should get high risk assessment scores? Or that the same level of risk should
result in the same score regardless of race? It is impossible to fulfill both definitions at
the same time, so at some point one must pick one. But whereas in other fields this de-
cision is understood to be something that can change over time, the computer science
field has a notion that it should be fixed. “By fixing the answer, one solves a problem that
looks very different than how society tends to think about these issues,” says Selbst.

Identifying and mitigating bias in AI systems is essential to building trust between
humans and machines that learn. As AI systems find, understand, and point out human
inconsistencies in decision making, they could also reveal ways in which we are par-
tial, parochial, and cognitively biased, leading us to adopt more impartial or egalitarian
views. In the process of recognizing our bias and teaching machines about our common
values, one may improve more than AI. Wemight just improve ourselves along the way.
As such, it is not merely technological solutions that will get the bias out of our data
and AI systems. Further socio-economic and sociocultural (read: all but technological)
recommendations can also make the much-needed awareness’ difference, that is:
– Identify critical services and subsystems that require “human-in-the-loop” decision

making. Selection criteria may include high-risk systems or systems that require
special accountability. Limit the role of artificial agents in these systems to a strictly
advisory capacity. Emphasize the need for the ability to audit the results of these
advisory artificial agents.

– Establish best practices for auditing algorithmic decision-making aids designed for
use in government services and policy domains (e. g., the criminal justice system
and social services administration). This should include specific guidance discour-
aging the use of unaccredited third-party black-box algorithmic solutions. Audit
procedures should also address questions of disparate impact.

– Adopt standardized disclosure practices to inform stakeholders when decisions af-
fecting them are algorithmically generated. Institute standard procedures for ap-
pealing or reviewing such decisions.
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– Invest science research funds in research on algorithmic disparate impact. Engage
with the commercial AI community to share best practices.

– Address diversity issues in the science, technology, engineering, and math educa-
tional pipeline. Update accreditation guidelines for engineering schools to include
more training on the effects of technology on society and sociotechnical systems
more generally.

9.3 Initial framing of Interpretability

Somemachine learningmodels are simple and easy to understand.Weknowhowchang-
ing the inputs will affect the predicted outcome and canmake justification for each pre-
diction. However, with the recent advances in machine learning and AI, models have
become very complex, including complex deep neural networks and ensembles of dif-
ferent models. These complex models are referred to as black box models.

Unfortunately, the complexity that gives extraordinary predictive abilities to black
boxmodels alsomake them very difficult to understand and trust. The algorithms inside
the black box models do not expose their secrets. They don’t, in general, provide a clear
explanation of why they made a certain prediction. They just give us probability, and
they are opaque and hard to interpret. Sometimes there are thousands (even millions)
of model parameters, there is no one-to-one relationship between input features and
parameters, and often combinations of multiple models using many parameters affect
the prediction. Some of themare also data hungry. They need enormous amounts of data
to achieve high accuracy. It is hard to figure out what they learned from those datasets
and which of those data points have more influence on the outcome than the others.

Due to all those reasons, it is very difficult to understand the process and the out-
comes from those techniques. It is also difficult to figure out whether one can trust the
models and whether one can make fair decisions when using them. What happens if
they learn the wrong thing? What happens if they are not ready for deployment? There
is a risk of misrepresentation, oversimplification, or overfitting. Thus, one needs to be
careful when using them, and one should better understand how those models work.
As such, interpretability means giving explanations to the end-users for a particular
decision or process. More specifically, it entails:
– Understanding the main tasks that affect the outcomes.
– Explaining the decisions that are made by an algorithm.
– Finding out the patterns/rules/features that are learned by an algorithm.
– Being critical about the results.
– Exploring the unknown unknowns for your algorithm.

It is not merely about understanding every detail about how a model works for each
data point in the training data.
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9.3.1 What is the problem to solve?

Why is accuracy not enough? In machine learning, accuracy is measured by compar-
ing the output of a machine learning model to the known actual values from the input
dataset. Amodel can achieve high accuracy bymemorizing the unimportant features or
patterns in a dataset. If there is a bias in an input dataset, this can also affect its model
afterwards. In addition, the data in the training environment may not be a good rep-
resentation of the data in the production environment in which the model is deployed.
Even if it is sufficiently representative initially, considering that the data in the produc-
tion environment is not stationary as it can become outdated very quickly. Thus, one
cannot rely only on the prediction accuracy achieved for a specific dataset. One needs
to knowmore to further demystify the black boxmachine learningmodels and improve
transparency and interpretability to make them more trustworthy and reliable.

Why is interpretability needed? Well, interpretability is important to different peo-
ple for different reasons:
– Data scientists want to build models with high accuracy. They want to understand

the details to find out how they can pick the best model and improve that model.
They also want to get insights from the model so that they can communicate their
findings to their target audience.

– End-users want to knowwhy amodel gives a certain prediction. They want to know
how they will be affected by those decisions. They want to know whether they are
being treated fairly and whether they need to object to any decision. They want to
have a certain measure of trust when they are shopping online or clicking ads on
the web.

– Regulators and lawmakerswant tomake the system fair and transparent. Theywant
to protect consumers. With the inevitable rise of machine learning algorithms, they
are becoming more concerned about the decisions made by models.

All those users want similar things from the black box models. They want them to be
transparent, trustworthy, and explainable.
1. Transparent: The system can explain how it works and/or why it gives certain pre-

dictions
2. Trustworthy: The system can handle different scenarios in the real world without

continuous control.
3. Explainable: The system can convey useful information about its inner workings,

for the patterns that it learns and for the results that it gives.

In a typical machine learning pipeline, one has control over the dataset used to train the
model, one has control over the model being used, and one has control over how those
models are being assessed and deployed.

Two types of pipeline and interpretability are instantiated—during training and
during inference. On the one hand, in the pipeline during training, it is important to
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have transparency and see the feature importance as a tool to verify data leakage and
remove noise, to design the model and optimize the model for bias and performance.
Here, global explanations are useful, looking at the aggregated view of the feature im-
portance.

During inference, on the other hand, it is key to see each individual prediction—how
themodel came to its conclusion, for example, for a classification—fraud or not fraud—
give transparency and trustworthiness for each case, where continuousmonitoring can
detect changes of patterns and data drift. Here, local explanation is useful, looking at the
individual predictions and its feature importance.

9.3.2 How do we mitigate it?

Explainable AI is only beginning to get the attention it really deserves, both in academia
and in industry. As this is new ground to cover, hereafter some initial frameworks are
discussed that make hints toward solving the explainability issue by extending current
AI modeling techniques.

9.3.2.1 Explainability by intrinsic global design

One can by design choose to avoid certainmachine learning algorithms of a black boxna-
ture, such as neural network-based algorithms and instead select tree-based algorithms,
which by nature have a white box design, that is, do not require Mimic explainers and
surrogate models afterwards to make the black, white again.

GIRP (global interpretation via recursive partitioning) (Yang et al., 2018) builds a
global interpretation tree for a wide range of machine learning models based on their
local explanations. That is, one recursively partitions the input variable space by maxi-
mizing the difference in the contribution of input variables averaged from local expla-
nations between the divided spaces. By doing so, one ends up with a binary tree that
is called the interpretation tree describing a set of decision rules that is an approxima-
tion of the original machine learning model. NBDT (neural-backed decision trees) (Wan
et al., 2020), on the other hand, build modified hierarchical classifiers that use trees
constructed in weight space. As such, NBDT achieves both interpretability and neural
network accuracy. It preserves interpretable properties, for example, leaf purity and
a nonensembled model, and demonstrates interpretability of model predictions both
qualitatively and quantitatively. In short, an NBDT is a hierarchical classifier that uses
a hierarchy derived from model parameters to avoid overfitting, and that can be cre-
ated fromany existing classificationneural networkwithout architecturalmodifications
Furthermore, it retains interpretability by using a single model, sequential discrete de-
cisions, and pure leaves. NBDT is built in 2 steps, that is, first it constructs a tree struc-
ture using the weights of a trained network, dubbed an induced hierarchy; and second,
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it retrains or fine-tunes that classification network with an extra hierarchy-based loss
term, called a tree supervision loss. For the forward pass, one needs to run the fully con-
nected layer as embedded decision rules, which are variants of oblique decision rules
for arbitrary branching factors. Finally, RFEX (random forest explainer) (Petkovic et al.,
2019) goes far beyond simple ranking of features and provides many other measures
to enhance random forest explainability, for example, trade-offs vs. accuracy, ranking
of feature combinations, and feature interactions via feature cliques. It further imple-
ments the permutation feature importance (PFI) technique used to explain classification
and regression models. At a high level, the way it works is by randomly shuffling data
one feature at a time for the entire dataset and calculating how much the performance
metric of interest changes. The larger the change, the more important that feature is. As
such, PFI can explain the overall global behavior of any underlying model but does not
explain individual predictions.

These kinds of model-specific interpretability methods are limited to specificmodel
classes, as intrinsic global methods are by definition model-specific. The drawback of
this practice is that when one requires a particular type of interpretation, one is limited
in terms of choice to models that provide it, potentially at the expense of using a more
predictive and representativemodel. Therefore, therehas beena recent surge in interest
in model-agnostic local interpretability methods as they are model-free. As such, even
though a multitude of techniques is used in literature to enable global interpretabil-
ity, arguably, global model interpretability is hard to achieve in practice, especially for
models that exceed a handful of parameters. Analogically to humans, who focus effort
on only part of the model in order to comprehend the whole of it, local interpretability
as mentioned hereafter is more readily applicable.

9.3.2.2 Explainability by post-hoc local Interpretation

The current “hot” kid in town is SHAP (SHapley additive exPlanations) (Lundberg et al.,
2017), which is a game theoretic approach to explain the output of any machine learn-
ing model. The goal of SHAP is to explain the prediction of an instance x by computing
the contribution of each feature to the prediction. The SHAP explanation method com-
putes Shapley values from coalitional game theory. The feature values of a data instance
act as players in a coalition. Shapley values tell us how to fairly distribute the “payout”
(= the prediction) among the features. A player can be an individual feature value, for
example, for tabular data. A player can also be a group of feature values. For example, to
explain an image, pixels can be grouped to super pixels and the prediction distributed
among them. One innovation that SHAP brings to the table is that the Shapley value
explanation is represented as an additive feature attribution method, a linear model.
As such, it connects optimal credit allocation with local explanations using the classic
Shapley values from game theory and their related extensions. In a way, these SHAP
values act as a unified measure of feature importance. By now, there are already a few
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SHAP explainers around for different specific machine learning models, that is, SHAP
LinearExplainer computes SHAP values for a linear model, optionally accounting for
interfeature correlations. SHAP TreeExplainer focuses on a polynomial time fast SHAP
value estimation algorithm specific to trees and ensembles of trees. SHAPDeepExplainer
is a high-speed approximation algorithm for SHAP values in deep learning models that
builds on DeepLIFT (Shrikumar et al., 2017), and finally SHAP KernelExplainer uses a
specially weighted local linear regression to estimate SHAP values for any model (and
thus makes it model agnostic).

LIME (local interpretablemodel-agnostic explanation) (Ribeiro et al., 2016) is another
good algorithm to provide a technique for explaining a predictive model in an inter-
pretable and faithful manner. Local surrogate models are interpretable models that are
used to explain individual predictions of black box machine learning models. LIME is a
concrete implementation of such local surrogate models. Surrogate models are trained
to approximate the predictions of the underlying black box model. Instead of training
a global surrogate model, LIME focuses on training local surrogate models to explain
individual predictions. The idea is quite intuitive. First, forget about the training data
and imagine one only has the black box model where one inputs data points and gets
the predictions of the model. One can probe the box as often as wanted. The goal is
to understand why the machine learning model made a certain prediction. LIME tests
what happens to the predictions when giving variations of the data into the machine
learning model. LIME generates a new dataset consisting of permuted samples and the
corresponding predictions of the black boxmodel. On this newdataset, LIME then trains
an interpretable model, which is weighted by the proximity of the sampled instances to
the instance of interest. This newly learned model should be a good approximation of
the machine learning model predictions locally, but it does not have to be a good global
approximation. This kind of accuracy is called local fidelity.

Other older, but nevertheless interesting, feature selection methods to look at and
to further learn from are L2X, which seeks a variational approximation of the mutual
information andmakes use of a Gumbel-softmax relaxation of discrete subset sampling
during training (Chen et al., 2018), Saliency, which computes the gradient of the selected
class with respect to the input feature and uses the absolute values as importance
scores (Simonyan et al., 2013), and DeepLift, which decomposes the output prediction of
a neural network on a specific input by backpropagating the contributions of all neu-
rons in the network to every feature of the input. As such, it compares the activation
of each neuron to its “reference activation” and assigns contribution scores according
to the difference (Shrikumar et al., 2017). Older, more visual interactive data mining
methods are also worth studying and having a look at, that is, partial dependence plots
(PDP), which show the marginal effect one or two features have on the predicted out-
come of a machine learning model (Friedman, 2001), individual conditional expectation
(ICE) displays one line per instance that shows how the instance’s prediction changes
when a feature changes (Goldstein et al., 2017), and accumulated local effects (ALE),
which describe how features influence the prediction of a machine learning model
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on average. ALE plots are a faster and unbiased alternative to PDP plots (Apley et al.,
2019).

One can also choose the best of both worlds, that is, mix global with local inter-
pretability, to expand the bucket of choice for machine algorithms. As such, since the
white box model may not score the best, here explainability needs to be designed by
oneself. A common approach is to use mimic explainer with surrogate models to mimic
the black box model as a white box model. InterpretML’s Mimic explainer is based on
the idea of training Global Surrogate Models to mimic black box models. A global sur-
rogate model is an intrinsically interpretable model that is trained to approximate the
predictions of any black box model as accurately as possible. Data scientists can then
interpret the surrogate model to draw conclusions about the black box model. Within
Mimic Explainer, one can use one of the following interpretable models as your Sur-
rogate Model: LightGBM (LGBMExplainableModel), Linear Regression (LinearExplain-
ableModel), Stochastic Gradient Descent explainable model (SGDExplainableModel),
and Decision Tree (DecisionTreeExplainableModel). With these techniques, one gets
both Global and Local relative feature importance. On top of that, one will also get a
Global and Local feature prediction relationship, which gives us the same information
as a white box model as, for example, by Design in a SHAP TreeExplainer. The benefit
of a Mimic explainer is that it is model agnostic, that is, it can both handle tree-based
models, linear models, or even deep learning models. This is in comparison to most
SHAP explainers, which are mostly model specific, the exception being the SHAP Ker-
nelExplainer, which also is model agnostic.

9.3.3 When do we apply these techniques?

If interpretability is needed, first one needs to ask why it is needed and in which stage
of this process interpretability is needed? It may not be necessary to understand how a
model makes its predictions for every application. However, one might need to know it
if those predictions are used for high-stakes decisions. After the purpose is defined, one
should focus on what techniques are needed in which stage of the process, that is, we
have the following:

Interpretability in premodeling (interpretability of model inputs) Understanding
the dataset is very important before one starts building models. One can use different
exploratory data analysis and visualization techniques to have a better understanding
of the dataset. This can include summarizing the main characteristics of the dataset,
finding representative or critical points in the dataset, and finding the relevant features
from that dataset. After one has an overall understanding of the dataset, one needs to
think about which features are going to be used in modeling. If one wants to explain
the input–output relationship after the modeling, one needs to start with meaningful
features. While highly engineered features (such as those obtained from t-distributed
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stochastic neighbor embedding, random projections, etc.) can boost the accuracy of
your model, they will not be interpretable when one puts the model to use.

Interpretability inmodeling Models can be categorized aswhite box (transparent) and
black box (opaque) models based on their simplicity, transparency, and explainability,
that is:
1. White box (transparent) models: Decision trees, rule-lists, and regression algo-

rithms are usually considered in this category. Thesemodels are easy to understand
when used with few predictors. They use interpretable transformations and give
onemore intuition about how things work, which helps one understand what is go-
ing on in the model. One can explain them to a technical audience. However, if one
has hundreds of features and one builds a very deep, large decision tree, things can
still become complicated and uninterpretable.

2. Grey box (semitransparent) models: There is also a solution in between, where
one can check to some extent why an algorithm made a certain decision. This
is called a “grey box” algorithm, for example, consider a mix of linear regression
(white box) with a neural network (black box). The ultimate goal is tomake asmany
types of algorithms as “white” as possible (Adadi et al., 2018). A trace of provenance
metadata can also make a substantial difference in turning “black box” models into
“grey” and / or “white” boxmodels (Mannens et al., 2012). As with predictability, it is
another way to provide proof why an algorithm made that decision, which makes
the model transparent.

3. Black box (opaque) models: Deep neural networks, random forests, and gradi-
ent boosting machines can be considered in this category. They usually use many
predictors and complex transformations. Some of them have many parameters. It
is usually hard to visualize and understand what is going on inside these models.
They’re harder to communicate with a target audience. However, their prediction
accuracy can be much better than other models. Recent research in this area hopes
to make these models more transparent. Some of that research includes techniques
that are part of the training process. Generating explanations in addition to the pre-
dictions is oneway to improve transparency in thesemodels. Another improvement
is to include visualization of features after the training process.

Interpretability in post-modeling (post hoc interpretability) Interpretability in the
model predictions helps to inspect the dynamics between input features and output pre-
dictions. Some post-modeling activities are model-specific, while the others are model-
agnostic. Adding interpretability at this phase can help to understand the most impor-
tant features for a model, how those features affect the predictions, how each feature
contributes to the prediction, and how sensitive themodel is to certain features. As said,
there are local model-agnostic techniques such as SHAP, LIME, PDP, and ICE, in addition
to the global model-specific techniques, such as variable importance output from ran-
dom forest.
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9.3.4 What are the limitations?

Taking some limitations into account from the above-mentioned solutions, one can al-
ready state that the SHAP KernelExplainer is slow. This makes it impractical to use when
you want to compute Shapley values for many instances, as all global SHAP methods,
such as SHAP feature importance, require computing Shapley values for all instances.
Furthermore, SHAP KernelExplainer also ignores feature dependence. Most other
permutation-based interpretationmethods have this problem, too. By replacing feature
values with values from random instances, it is usually easier to randomly sample from
the marginal distribution. However, if features are dependent, for example, correlated,
this leads to putting toomuchweight on unlikely data points. SHAP TreeExplainer solves
this problem by explicitly modeling the conditional expected prediction. On the other
hand, SHAP TreeExplainer can produce unintuitive feature attributions. While SHAP
TreeExplainer solves the problem of extrapolating to unlikely data points, it introduces
a new problem. SHAP TreeExplainer changes the value function by relying on the con-
ditional expected prediction. With the change in the value function, features that have
no influence on the prediction can get a SHAP TreeExplainer value different from zero.
Lastly, the disadvantages of ordinary Shapley values also apply to SHAP, that is, Shapley
values can bemisinterpreted and access to data is needed to compute them for newdata.

As for pinpointing some limitations from that other currently used interpretability
solution framework, within LIME the correct definition of the neighborhood is a very
hard problem, which even remains unsolved when using LIME with tabular data. For
each application, one must try different kernel settings and see whether the explana-
tions make any sense. Also, sampling could be improved in the current implementation
of LIME. Data points are sampled from a Gaussian distribution, ignoring the correlation
between features. This can lead to unlikely data points, which can then be used to learn
local explanation models. Furthermore, the complexity of the explanation model has to
be defined in advance. In all, a minor remark, as in the end the user always has to define
the compromise between fidelity and sparsity. Another really big problem though is the
instability of the explanations, that is, if you repeat the sampling process, then the ex-
planations that come out can be different. Instability means that it is difficult to trust the
explanations, and one should be very critical about that if it comes to interpretability.

The following scenarios illustrate when one does not need or even does not want in-
terpretability of machine learningmodels. First, interpretability is not required if the
model has no significant impact. Let’s say Sofie is an engineering student working on
amachine learning side-project to predict where her friends will go on holiday based on
their Facebook data. Sofie just likes to make educated guesses about where her friends
will spend their next summer. In fact, it is not a problem if her model is wrong. It is also
not a problem if Sofie cannot explain the output of her model. As such, it is perfectly
fine not to have interpretability in this particular scenario. The situation would change,
though, if Sofie started building a business around these holiday destination predictions.
If hermodel is wrong, the business could go bankrupt, or hermodelmayworkworse for
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some kinds of people as of learned racial bias. As soon as the model has a significant im-
pact, be it financial or social, interpretability becomes relevant. Second, interpretabil-
ity is also not required when the problem at hand is well studied. A good example
here is a machine learning model for optical character recognition that processes im-
ages from postal envelopes and extracts the addresses. There already are decades of ex-
perience with these systems and they clearly work. As such, one is not really interested
in gaining additional insights about this task at hand. Third, interpretability might
enable people or programs to manipulate the system. Problems with users who de-
ceive a system result from amismatch between the goals of the creator and the user of a
model. Credit scoring is, for example, such a system because banks want to ensure that
loans are only given to applicants who are likely to return them, and some applicants
aim to get the loan even if they already know the bank will not give one to them. This
mismatch between the goals introduces incentives for applicants to trick the system to
increase their chances of getting a loan. If an applicant knows that having more than
two credit cards negatively affects his score, he simply returns his third credit card to
improve his score and organizes a new card after the loan has been approved. While
his score improved, the actual probability of repaying the loan remained unchanged.
A system can only be tricked if the inputs are proxies for a causal feature, but do not
actually cause the outcome. Whenever possible, proxy features should be avoided as
they make models prone to fraud. As such, models should ideally only use real causal
features because these are not gameable.

9.4 Industry examples

9.4.1 Fair loan adjudication models with Fairlearn at EY
Joakim Åström, Yanyun Hu, Mario Schlener, Jason Tuo, Yara Elias

One of the biggest barriers to current adoption of AI is a lack of trust. Professional ser-
vices firm EY is therefore committed to providing the frameworks and tools that organi-
zations need to support andmonitor the responsibility application on top of their AI sys-
tems. This helps these organizations, for example, to better understand their customers,
identify fraud, and security breaches sooner, andmake fair loan decisions faster. The EY
Trusted AI Platform primarily uses the open-source machine learning fairness toolkit
Fairlearn to assess and mitigate unfairness in machine learning models, to further help
their customers—and their regulators—to develop confidence in their machine learn-
ing applications.

When, for instance, a bank grants or denies a loan, the reasonsmust be appropriate,
fair, and defensible for every application. The US Equal Credit Opportunity Act therefore
prohibits banks from discriminating against credit applicants based on things like race,
religion, and sex. But what if an algorithmic system denies a loan? How do you know
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it has done so for the right unbiased reasons? As financial services organizations begin
to use AI and machine learning to optimize their operations, this has become an impor-
tant question. With the ability to analyze vast amounts of data, AI holds great potential
to help finance companies, for example, to better understand their customers, identify
fraud and security breaches sooner, andmake loan decisions faster andmore efficiently.
At the same time, finance companies have concerns about adding AI to their daily busi-
ness practices. Exactlywhat factors domachine learningmodels take into account? How
does an organization know whether its AI system is behaving unfairly? Without solid
answers to these questions, many companies won’t fully embrace AI. In fact, only 4%
of respondents use AI across multiple processes to perform advanced tasks today, even
though 71% consider AI an important topic for executive management, according to a
recent European joint study by EY—a global leader in assurance, tax, transaction, and
advisory services—and Microsoft.

“AI represents such a broad spectrum of technologies that organizations struggle to
gain the skills, capabilities, and frameworks to fully assess the risks and feel comfort-
able that they’ve got them all under control,” says Cathy Cobey, EY Global Trusted AI
Advisory Leader. As mentioned earlier in the chapter, AI systems can behave unfairly
for many reasons, including societal biases reflected in the datasets used to train them.
To help customers determine and improve the trustworthiness of their AI systems, EY
built their EY Trusted AI Platform. The platform identifies areas of risks and suggests
ways to mitigate them. Using it also helps organizations develop a robust AI risk man-
agement system. EY’s AI developers use Fairlearn to assess a model’s fairness by looking
at its performance across different demographics. Then they use one of the Fairlearn
algorithms to mitigate any observed unfairness by retraining the model as will be thor-
oughly explained hereafter.

9.4.1.1 Introduction to Fairlearn usage and capability at a high level

Fairlearn, an open-source Python package released by Microsoft, aims to help data sci-
entists and developers of AI systems to assess and improve the fairness of their systems.
The design of Fairlearn reflects the understanding that there is no single definition of
fairness and that prioritizing fairness in AI often means making trade-offs based on
competing priorities. Fairlearn therefore enables data scientists and developers to se-
lect a fairness metric that is appropriate for their setting, to navigate trade-offs between
fairness and model performance, and to select an unfairness mitigation algorithm that
best fits their needs. Fairlearn focuses on negative impacts for groups of people, such as
those defined in terms of race, sex, age, or disability status. Fairlearn supports a wide
range of fairness metrics for assessing a model’s impacts on different groups of people,
covering both classification and regression tasks. The fairness metrics can be evaluated
using an interactive visualization dashboard, which also helps with navigating trade-
offs between fairness and performance. Besides the assessment component, Fairlearn
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also provides a range of unfairness mitigation algorithms appropriate for a wide range
of contexts.

9.4.1.2 Fairness metrics

Fairlearn provides a wide range of fairness metrics that quantify the extent to which
a model satisfies a given notion of fairness. Fairlearn covers several standard notions
of fairness for binary classification as well as some additional notions appropriate for
regression. These notions either require a parity in performance (e. g., accuracy rate, er-
ror rate, precision, recall) or a parity in selection rate (e. g., loan approval rate) between
different groups defined in terms of a sensitive feature like “sex” or “age.” One should
note that the sensitive feature need not be used as an input feature to the model, as it
is only required to evaluate the fairness metrics. For example, in classification settings
where a more accurate prediction corresponds to a better user experience (e. g., spam
detection or fraud detection), the following notions might be appropriate:
– Bounded group loss: The accuracy rate within each group should be above some

threshold corresponding to an acceptable level of service. The corresponding fair-
ness metric is the worst-case accuracy rate (the lowest accuracy rate across all
groups).

– Accuracy-rate parity: The accuracy rates across all groups should be equal. The
corresponding fairness metric is the difference between the largest and smallest
group-level accuracy rate.

On the other hand, in classification settings where being classified as “positive” results
into an allocation of resource (e. g., loan approval) and having a positive label in the data
means the individual is “qualified,” the following notions might be appropriate:
– Demographic parity:All groups should receive the positive outcome at equal rates.

Equivalently, selection rates should be equal across all groups.
– True-positive-rate parity: The qualified individuals in each group should receive

the positive outcome at equal rates. Equivalently, true-positive rates should be equal
across all groups.

– Equalized odds: The qualified individuals in each group should receive the posi-
tive outcome at equal rates, and the unqualified individuals in each group should
receive the positive outcome at equal rates. Equivalently, true-positive rates should
be equal across all groups, and false-positive rates should be equal across all groups.

Note that in the loan adjudication case study that EY performed, the meaning of the
“positive” label is to withhold the resource (loan), and so the meaning of positive and
negative label is flipped. This has no effect on demographic parity and equalized odds
(since they treat positive and negative labels symmetrically), but the interpretation of
true-positive-rate parity is changed, so a symmetric notion of true-negative-rate parity
might be more appropriate.
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9.4.1.3 Unfairness mitigation algorithms

Fairlearn includes two types of unfairnessmitigation algorithms—post-processing algo-
rithms and reduction algorithms—that are intended to help users improve the fairness
of their AI systems. Both types operate as “wrappers” around any standard classifica-
tion or regression algorithm. All the constraints (which can be specified by the selected
fairness metric) currently supported by reduction algorithms are group-fairness con-
straints. Note that the choice of a fairness metric and fairness constraints is a crucial
step in the AI development and deployment, and that choosing an unsuitable constraint
can lead to harms instead of desired unfairness mitigation.

9.4.1.4 Post-processing threshold optimizer algorithms

Fairlearn’s post-processing threshold optimizer algorithms take an already-trained
model and transform its predictions so that they satisfy the constraints implied by the
selected fairness metric (e. g., demographic parity) while maximizing model perfor-
mance (e. g., accuracy rate); there is no need to retrain the model. For example, given a
model that predicts the probability of defaulting on a loan, a post-processing algorithm
will try to find a threshold above which an applicant should be rejected. This threshold
typically needs to be different for each group of people (defined in terms of the selected
sensitive feature). The post-processing algorithm is based on a specific technique (Hardt
et al., 2016), which takes as input an existing classifier and the sensitive feature and de-
rives a monotone transformation of the classifier’s prediction to enforce the specified
parity constraints.

One can emphasize that this limits the scope of post-processing algorithms, because
sensitive features may not be available to use at deployment time, or may be inap-
propriate to use, or (in some domains) prohibited by law, such as the ECOA. Overall,
the post-processing mitigation techniques have the following common advantages and
disadvantages:
Advantages:
– The technique can be applied on any classifiers’ result.
– They have a good performance in fairness measures.
– They do not need to modify the classifier.

Disadvantages:
– The techniques need to access the protected attribute in test time.
– The techniques cannot be applied to regression models.
– There is a lack of flexibility for picking any accuracy and fairness trade-off.
– They require to set a different threshold for eachprotected group to achieve fairness

which may be inappropriate to use by regulation.
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9.4.1.5 Reduction algorithms

At a high level, the reduction algorithms within Fairlearn enable unfairness mitigation
for an arbitrary machine learning model with respect to user-provided fairness con-
straints. Fairlearn’s reduction algorithmswrap around standard classification or regres-
sion algorithm, and iteratively (a) reweight the training data points and (b) retrain the
model after each re-weighting. Aftermany iterations, this process results in amodel that
satisfies the constraints implied by the selected fairnessmetric whilemaximizingmodel
performance. Note that reduction algorithms do not need access to sensitive features at
deployment time, and work withmany different fairness metrics. These algorithms also
allow for training multiple models that make different trade-offs between fairness and
model performance, which users can compare using Fairlearn’s interactive visualiza-
tion dashboard.

Exponentiated Gradient and Grid Search, which are explained briefly below, are
two optimization approaches under the reduction algorithmswithin Fairlearn. Both ap-
proaches are backed up by a mathematical theory (Agarwal et al., 2018).

Exponentiated gradient. The idea is to incorporate fairness into the training algorithm
itself and framing the problem as a constrained optimization problem solvable by the
Lagrange multipliers method. The Lagrange multipliers is a technique for constrained
optimization, and the base problem is maximization of accuracy denoted by the pre-
dictor f over nonsensitive attributes x and sensitive attributes y. By adjusting λ, the
Lagrange equation (i. e., L(x, y, λ) = f (x, y) + λg(x, y)) can result in multiple solutions
but all solutions will satisfy the fairness constraint imposed by the new fairness con-
straint g. One can refer to a published work (Agarwal et al., 2018) for details about the
Exponentiated Gradient reduction algorithm, which has been implicitly implemented
within Fairlearn.

Grid search. The same idea as the exponentiated gradient approach is desired which
is incorporating fairness into the training algorithm itself. However, framing the prob-
lem as a constrained optimization problem in the grid search approach simplifies the
problem as a deterministic searching problem by sacrificing accuracy. The grid search
predefines a grid of λ values and calculates themodel prediction f (x, y) for each λ value,
and then selects the model with the desired trade-off between accuracy and fairness.
Grid search is a deterministic approach, which involvesmoderately violation of fairness
constraints allowed by the user. For regression, the grid-search variant of the algorithm
is used (Agarwal et al., 2019).

The reduction algorithms are types of in-trainingmitigation techniques, which have
some advantages and disadvantages as listed below:
Advantages:
– Flexibility to choose the trade-off between accuracy and fairness measures based

on the user’s favors.
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– High accuracy (exponentiated gradient).
– Computationally simplified (grid search).

Disadvantages:
– Computationally expensive (exponentiated gradient).
– Grid Search has lower accuracy compared to exponentiated gradient.

Probability of default models
In the case study, the goal was to develop probability of default (PD) models for auto-
matic loan rejection—the setting which can be viewed through the lens of binary classi-
fication. PD is formulated here as the probability that the applicant falls behind on pay-
ments by more than 90 days during the coming year. The study was constructed with
the following steps:
– First, a PD model (as the initial model) is trained on the historical loan application

data with a standard machine learning algorithm (specifically, LightGBM) which
shows unfairness across groups defined in terms of the sensitive feature “sex” even
though “sex” is not used as an input feature to the model

– Second, Fairlearn is introduced to assess and mitigate this unfairness. In this step,
two types of unfairness mitigation algorithms from Fairlearn have been explored:
Post-processing threshold optimizer and reduction grid search.

From the perspective of the financial services organization, there are two kinds of ad-
verse events caused by a classifier: false positives and false negatives. False positives are
rejections of applicants that would not default, which reduces the organization’s profits.
False negatives are approvals of applicants that default, which increases the organiza-
tion’s loan-default risk. The costs of these two kinds of events are not equal.

The performance metrics of the PD model include: (1) false positive rate (FPR) and
false negative rate (FNR) to measure frequency of the two adverse events, and (2) cost
rate and weighted error rate to measure the cost impact on the business.

For fairness assessment and unfairness mitigation, the negative impacts on “male”
and “female” groups defined in terms of the “sex” feature have been evaluated by as-
sessing between-group differences in the occurrence of the two adverse events:
– FPR difference: the absolute difference between false positive rates for the “male”

group and the “female” group, defined as |FPR(“male”)-FPR(“female”)|.
– FNR difference: the absolute difference between false negative rates for the “male”

group and the “female” group, defined as |FNR(“male”)-FNR(“female”)|.
– Equalized odds difference: the maximum of the FPR difference and the FNR dif-

ference.

When the equalized odds difference equals zero, the two groups (i. e., “male” and “fe-
male”) have equal false positive rates and equal false negative rates. This property cor-
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responds to the standard quantitative fairness definition, which we introduced earlier,
called equalized odds, hence the name. These fairness metrics, alongside many other
metrics, are part of the Fairlearn module fairlearn.metrics.

With both Fairlearn’s post-processing threshold optimizer and reduction grid
search algorithms, the observed unfairness (in this case, the equalized odds differ-
ence) in the initial model can be mitigated without much impact on the performance
metric (in this case, weighted error rate).

In addition, reduction algorithms are also used to navigate trade-offs between fair-
ness and performance. The plot below (Figure 9.4) shows the fairness and overall perfor-
mance of the initial model (at the performance-optimizing single threshold), the model
obtained using the post-processing algorithm (ThresholdOptimizer), as well as several
models obtained using the reduction grid search algorithm (GridSearch).

Figure 9.4: Trade-offs between fairness and performance using Fairlearn.

When EY put the Fairlearn framework to the test with real mortgage adjudication
data—including transactions, payment histories, and other unstructured and semistruc-
tured data—it improved the fairness of loan decisions. Before mitigation, the models
had a disparity of 7% betweenmen andwomen in the accuracy of approving or denying
loans. Aftermitigation, the disparitywas less than 0.5%. In constructing and implement-
ing the Trusted AI Platform, the EY team supports fairness considerations and stream-
lines development throughout the full end-to-end machine learning life cycle. EY data
scientists and IT teams use automation,monitoring, validation, and governance capabil-
ities as part of their machine learning operations to accelerate their work while main-
taining fairness levels. “Due to scrutiny fromregulators, onewants the transparency and
repeatability fully integrated into themachine learning operations,” says AlexMohelsky,
Partner and Advisory Data, Analytic, and AI Leader at EY Canada. “It is now understood
at every stage in the process how the system is sourcing and selecting data and guiding
models to a particular result, revealing any fairness issues.”
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EY customers using the Trusted AI Platform can choose several ways to mitigate un-
fairness through the Fairlearn package. That is important, because unfairness can look
different depending on the context and situation. “Customers often ask, ‘What’s the best
approach to ensuring fairness?What are the different ways of looking at fairness?”’ says
Mario Schlener, Partner, Financial Services Risk Management and AI Risk/Validation
Lead at EY. By incorporating Fairlearn into the interactive visualizations in its Trusted
AI Platform, EY gives customers the ability to navigate any trade-offs between fairness
and performance and to select the mitigation strategy that best fits their needs.

EY believes that fairness and interpretability go hand-in-hand. By combining these
two areas, any company can bring a level of transparency in its models that ensures
greater trust in their results. “Every time a model changes with new data, its fairness
and interpretability will change as well,” explains Jason Tuo, Senior Manager, Quan-
titative Risk Advisory at EY. “For that reason, one monitors them at every step of the
process.” Not just customers but regulators too appreciate that ability to understand
how machine learning models work. EY hopes that clarity about the inner workings of
machine learning models will lead to greater trust in AI and give organizations more
confidence to use it to improve their businesses and their service to all customers.

We emphasize that fairness in AI is a sociotechnical challenge, and so no software
or analytical tool will “solve” fairness in all AI systems. That is not to say that software
tools cannot play a role in developing fair AI systems—simply that they need to be pre-
cise and targeted, embedded in a holistic risk management framework that considers
the sociocultural context of the systems being developed, and supplemented with ad-
ditional resources. Fairlearn is one such tool and here it has been shown how EY and
other companies can use Fairlearn to prioritize fairness in AI systems.

9.4.2 Detect and reduce fraud for loyalty services using
InterpretML to respect ethical AI principles
Joakim Åström

Fraud in loyalty programs is a common problem for, for example, hotel chains, gas com-
panies, airlines, or the retail industry. These loyalty programs are a target for fraud be-
cause loyalty points are valuable monetary assets, where scammers try to gain points in
multiple ways to redeem them for their own usage. Using machine learning as an effi-
cient tool to detect fraud is less exceptional today, but here you might find a responsible
AI framework attractive for multiple reasons. When accusing someone of fraud via AI
systems, it has been a top priority to also have full transparency of how themodel comes
to such conclusions:

“How did the AI model come to its conclusion of fraud—as I’m actually accusing someone of fraud,
I need full transparency on its decision.”
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One key takeaway when talking to this Microsoft customer was that they consider it
extremely important to fight fraud to ensure the end-to-end integrity of their loyalty
program. Deploying a transparent AI model to solve the fraud problem was a major
boost for the validity and the trustworthiness of their loyalty program. For AI systems to
be fully transparent, interpretability techniques come into play. As such, the customer
is using the AI interpretability library InterpretML and its integration within Azure’s
machine learning package. By using these two packages, the customer together with
Microsoft was able to debug the model, get full transparency, and perform the right
features selection.

Another takeaway is that interpretability was needed for two different scenarios at
different points in time. There was both a need to detect real-time fraudulent behavior
when illegal points are being redeemed by scammers, but also to proactively look for
historic fraudulent behaviors. The customer successfully used these AI techniques for
both the historical and real-time inference scenarios.

Historical and real-time inference are jointly supported by the open source Inter-
pretML package within Microsoft’s Azure reference architecture (partly seen in Fig-
ure 9.5). Together, they cover the full chain of ethical aspects, that is, via the automated
retraining feedback loop in the architecture both reliability and historical biases are
taken care of. The final AI model is made interpretable via two ways: the InterpretML
toolkit is used to boost transparency, accountability, enhance the privacy of the model,
whereas on top different techniques of interpretability are used to support the overall
process flow via Azure’s machine learning package and retraining feedback loop.

Figure 9.5: Architecture: To get a trustworthy, reliable, transparent fraud detection system that actively
learns and adapts to real world changes.

The fraud detection model can both be served and deployed as an online web ser-
vice at inference time, or as a scheduled batch inference pipeline to score the historical
data. In both cases, the customer can use the scored data with further local feature im-
portance techniques to be presented in a UI for their manual fraud team to take the
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final decisions based on the AI fraud alerting. By keeping the-human-in-the-loop, human
corrective actions can be taken if AI errorswould occur by flagging nonfraudulent trans-
actions, thus the machine learning model can be retrained with the corrective data for
better future fraud prognosis.

Naturally, one must ensure that by using the fraud detection model no false accusa-
tion of fraud against an innocent customerwould bemade. Hence, always keep a human
in the equation to make the final decision. As such, it is of the uttermost important that
the machine learning model is solely based on explainable factors and is not the output
of a “black box.”

InterpretML provides both global feature importance at the time of model training,
and local feature importance at the time of real-time inference, for example, when the AI
webservice is called, as such getting case-by-case importance. Indeed, both techniques
are valuable but are used for different purposes, that is, global features (“Explainabil-
ity by global design”) for training purposes and global transparency, and local features
(“Explainability by local interpretation”) for individual transparency, bias detection, and
reliability.

9.4.2.1 Applicable for airline and hotel industry

Let’s look at a real-world customer example that needed both global and local inter-
pretability and the process for this. Building a machine learning model is an interactive
process, that is, one starts with a large feature set and iteratively one can use different
interpretability features (using both global feature importance for global explanation,
and individual local feature importance for local explanation) in the machine learning
life cycle to debug and compare different training runs that the Azuremachine learning
keeps track of, to come to a smaller set of the most important features.

One customer in the airline industry used InterpretML for exactly these two pur-
poses: both historical and real-time inference. They started off with a combination of
data from seven data sources, and after a couple of iterations they detected the less im-
portant features to remove and the more important features to get real insights from.
Using these capabilities, they were able to decrease the number of initial features im-
mensely with ∼40% without losing any accuracy.

Reducing the number of features to fuel a model is good for many reasons: (1) au-
toremoval of sensitive features for privacy reasons; (2) increased performance during
training and inference; and (3) decreased complexity in the model to debug, with full
transparency. By using InterpretML, they boosted feature importance both during train-
ing andduring inference. As such, their initial goal to both open the “black box” andhave
amore performant feature selection (by reducing the number of features)was achieved.

This customer example meets the goals of responsible AI by jointly using the ref-
erence architecture for active learning and InterpretML, as can be seen in Figure 9.5
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showing the process with embedded techniques for a fraud prevention solution. The
following ethical AI goals are being addressed by this solution architecture:
1. Full transparency. Interpretability is fused into the “black box” by using a Mimic

explainer in InterpretML. In this case, it utilized a surrogate model via a light gra-
dient boosting machine. With this approach, we again get a “white box” solution,
which enabled full visibility on how the model came to its conclusion, what is in
fact key for any accountability.

2. Accountability. While removing less important data by using the feature impor-
tance analysis of InterpretML, it remains key to track data sources to get account-
ability of theAI system. Due to the overall AzureML integration (which incorporates
this needed tracking feature within AutoML), one knows what dataset version the
model was trained on. This lineage is achieved by using a technique built into Au-
toML of both saving themodel and its training data, togetherwith all accompanying
training runs and results, all connected by a metadata versioning number.

3. Trustworthiness and reliability. This is case-by-case achieved by InterpretML’s
technique of continuous monitoring and improvement at prediction time, together
with its accompanying feature importance visualization. Customers are thus able
to detect both feature pattern changes and data drifting. An extra custom feedback
loop technique (Figure 9.5) is further able to correct and retrain themodel to always
keep it reliable and trustworthy. This approach then addresses historical bias, too.

4. Fairness. This desired behavior is further strengthened by excluding protected fea-
tures that have some risk to be unfair, yet are of low importance for the accuracy of
the model.

5. Biases. By removing features via the feature importance technique of the surrogate
model light gradient boostingmachine to get a “white box”model, the customer also
automatically removed possible representation bias. In the process of starting wide
with 54 features and reducing it to just 31 features by iterative feature importance
weighing and accompanying correlation analysis, measurement bias was also ad-
dressed. Within Azure’s AutoML, the customer further also used the built-in cross-
validation k-fold technique as an addition to a hold-out test set to further address
possible evaluation bias, too. The default number of folds depends on the number
of data rows, that is, if the dataset is less than 1,000 rows, ten folds are used. If the
number of rows is between 1,000 and 20,000, three folds are used. Above 20,0000
rows, some custom folding can be chosen.

Besides addressing the main goals of deploying a responsible AI system, some further
additional positive side effects were obtained, too:
– A less complexmodelwasdeployed, lessmaintenanceneeded, and easier to debug.
– Ease of usage at real-time inferences, as there were less features to consider, which

in the end also gave a better overall performance.
– Less cost since less data needed to be processed and further easier processing.

Since the customer was able to remove high cardinality features, it saved on com-
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puting power due to them high cardinality features being performance heavy for
the machine learning algorithms. These chucked features were autodetected by us-
ing InterpretML within Azure’s AutoMLmachine learning platform.

By using InterpretML techniques and a Mimic explainer with a surrogate model, one
gets the benefits of explaining the entire global model behavior or just individual local
predictions for engineered features. Another benefit with the Mimic explainer is that
it is model agnostic. The client gathered this information and used an extra visualiza-
tion dashboard to interact with these model explanations. They also deployed a scoring
explainer alongside the model to observe explanations during further inferencing.

During the training phase, themimic explainerwas also used. As such, the client has
the option of choosing different machine learning algorithms, all to turn the “black box”
model to a “white box” model. While scoring a specific scoring tree explainer was used
during inference. It was used as a feedback loop technique to keep the model reliable
and trustworthy, and further correct the model during retraining.

One other learning from the field of fraud detection was that by using these inter-
pretability techniques, not only did the client gain full understanding of the models,
but they also got deeper insights into the levels of fraud that was earlier hard to find.
If someone tried to commit fraud on a large scale, it was relatively easy to find because
they stood out. Now by usingmachine learningwith embedded interpretability, they are
much better equipped to identify fraud both on a small scale and at a large scale.

The overall benefits can thus be summarized as follows:
– Keeping the loyalty points as a TRUE premier service (hotel room, seats on an air-

plane, etc.) for their TRUE loyal customers without being hassled by scammers try-
ing to downgrade their service.

– Surfacingmore fraudulent transactions than earlier detection software on the same
data and this by combiningmore real-time data sources with continuously retuning
and optimizing their model.

– Detecting both the small and big frauds.
– Decreasing the number of features without losing any accuracy.
– Detecting and dropping features with high cardinality, which further lead to saving

computing costs.

9.5 Final conclusions on AI ethics

As seen, AI systems can behave unfairly for a variety of reasons. Sometimes, it is be-
cause of societal biases reflected in the training data and in the decisions made during
the development and deployment of these systems. In other cases, AI systems behave
unfairly not because of societal biases, but because of characteristics of the data (e. g.,
too few data points about some group of people) or characteristics of the systems them-
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selves. It can be hard to distinguish between these reasons, especially since they are not
mutually exclusive and often exacerbate one another. Therefore, one defines whether
an AI system is behaving unfairly in terms of its impact on people—that is, in terms of
harms—and not in terms of specific causes, such as societal biases, or in terms of intent,
such as prejudice. As such, theory or practice, in the end it boils down to what harm can
be done to an individual or a group of individuals. To that extent, two types of harm can
be distinguished: allocation harm and representation harm.

Allocation harm can occur when AI systems extend or withhold opportunities, re-
sources, or information. Some of the key applications are in hiring, school admissions,
and lending. Representation harm can occur when a system does not work as well for
one person as it does for another, even if no opportunities, resources, or information
are extended or withheld. Examples here include varying accuracy in face recognition,
document search, or product recommendation.

Therefore, the way forward to get technical solutions that are as fair as possible,
we need to adopt an interdisciplinary way of working. As such, these ethical AI issues
are at least as much societal as they are technical. Hence, one needs to create maximum
awareness of the possible flaws at hand in the current solutions and put a maximum
effort on developing the right software tooling, among others, robust and trustworthy
AI algorithms via interdisciplinary teams, that is, social scientists together with law and
business researchers, data engineers, and computer science researchers. Let’s hope that
this chapter pointed you toward possible solutions in the bias and interpretability realm
of AI and above all created the awareness of the current pitfalls thereof. In the end,
when it comes to the fairness of machine learning, one always has to ask the following
two questions and act accordingly during all phases of any AI & software development
project: (1) “Who is going to benefit from the systems one is building?” and (2) “Who
might be harmed?”
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Oussama Chelly and Hendrik Blockeel
10 Industry examples where different AI

techniques are combined

In this chapter, we demonstrate how applications can combine different artificial intel-
ligence (AI) techniques from the previous chapters for more advanced applications and
how they can cooperate.

The first example shows how anAI based chatbot helpsKBCGroup, a Belgian bank-
insurance group, to automate 50% of the processing of the insurance claims using a
chatbot. The second example from themanufacturing industry uses a combination of
machine learning methods and symbolic AI techniques to offer a digital engineering
assistant that can automatically extract relevant information from engineering draw-
ings and assist the engineers with their choice.

10.1 An AI-enabled chatbot for the Casco1 insurance
industry, an example from KBC Group
Oussama Chelly, Michaël Mariën

Motor-vehicle insurance has been the largest nonlife insurance market over the past
decade. In Europe, it accounted for 36% of the global Property and Casualty (P&C) mar-
ket with the total motor premium income amounting to e149 bn in 2020.

With over three thousand insurers fiercely competing in the European market, im-
proving the insurance offering for the B2C segment became crucial for every insurer
to gain a competitive edge. Consequently, competition was no longer limited to offering
better price-to-risk ratios but extended from competition in pricing to competition in the
quality of services being offered to the end-customer. In this context, digitally enabled
vehicle insurance services have been gaining more prominence and were estimated
to cover as high as 12% of the vehicle insurance market in Europe as of 2020.

Statistics reflect a shift in consumer preferences from the traditional B2C trans-
actions usually carried out in person, over the phone, or by mail to a more digital com-
munication. The change prompted more competition in the race to the digital transfor-
mation of B2C insurance policies.

From the consumer point of view, the insurance claim process has been—and still
is—widely considered to be long and tedious. While the process length and complexity
may vary from country to country based on the local regulations, and from insurer to

1 Casco stands for CASualty and Collision (automobile insurance).

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
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insurer based on the service license agreements, the driver is rarely satisfied with the
quality of service. It should be highlighted that a driver involved in an accident is typ-
ically not in the best psychological condition to objectively evaluate the quality of the
insurance service. To add more context to the situation in which such claims typically
take place, one should rewind back to themoment when the vehicle is involved in a traf-
fic accident. From that moment, the driver is usually under a high amount of stress. Be-
sides any physical injury, post-traumatic effects, or legal consequences, the driver could
be faced with the financial implications of healthcare assistance, repairing his vehicle,
as well as being deprived of it for an unknown amount of time. That is without mention-
ing the impact of the accident on his personal and professional plans. Consequently, the
claim handling process becomes very sensitive.

In the traditional process displayed in Figure 10.1, the customer notifies the insur-
ance company about the accident by contacting an agent from the company over the
phone. In addition to the notification, the customer indirectly expresses his insecurity
by inquiring about his current insurance policy. The type of policy, the deductible, and
the financial limits are among the most frequently asked questions. Then the customer
registers the data about the accident. This data includes the circumstances leading to
the accident, information about any other vehicles or persons that were involved, and
damage to the parties involved. Once the data is registered, the customer waits while
the claim is being processed by the insurance. During this time, the agent has to manu-
ally log the data in the company’s systemand communicate the case to the claimhandler.
The latter checks for potential fraud, verifies the coverage and liability of the driver, and
determines the value of the damage, before issuing the payment to the customer. This
process lasts anywhere between a few days and a few weeks. Customer-obsessed insur-
ance companies typically perform this processwithin 2 to 3 days.While thiswaiting time
is reasonable and competitive, it leaves the customer in a situation of uncertainty, inse-
curity, and anxiety. Inmost cases if not all, he is only relievedwhen the claim is paid out.

Figure 10.1: The traditional process of claim handling in car insurance.
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From the insurers’ point of view, the claim processing is a time-consuming and
costly endeavor. Even in the most straightforward claim cases, the decision is manu-
ally made by a claim handler. Any partial automation of the process would significantly
enhance the claim handling capacity of the company, increase consistency of the claim
decisions, decrease the costs of handling, and reduce the processing time for both the
company, and more importantly, the customer.

Many insurers have invested significantly in the modernization of their services to
automate several parts of the process. KBC Group, an integrated bank-insurance group
from Belgium (see chapter 7), offers aAI-enabled service to its customers since Novem-
ber 2018.

In KBC’s service, the claim process has been drastically shortened in particular for
the straightforward cases (cf. Figure 10.2). When a vehicle has an accident, all the driver
needs to do is to connect to the insurance app on his phone to start the process. Ad-
ditional digital channels including the company’s website are also an option that the
customer can opt for. The process that follows can be divided into three phases: catego-
rizing the claim, assessing the damage, and making a decision.

Figure 10.2: The modern claim handling process for car insurance in the KBC Group application.

In the first phase, the customer interacts with a chatbot, which plays the role of
the company’s agent. The chatbot is implemented using Rasa, which is an open-source
framework for building intelligent chatbots. The chatbot can be decomposed into an
input module, which uses natural language understanding (NLU) algorithms to un-
derstand user inputs, and an output module, which performs natural language gen-
eration (NLG) to produce human-like text. The NLUmodule starts with vectorization to
convert the text into a vector, then a classification to associate the vectorwith an intent.
In parallel, each sentence is tokenized, then chunked, before named entity recognition
is performed and, therefore, entities are identified. With Intents and Entities identified
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from each step in the discussion, business logic is used to allow the chatbot to react to
every user input through the output module. This output module relies on a long-short-
termmemory (LSTM)network. As explained in Chapter 7, this type of recurrentneural
network (RNN) has the ability to maintain a neural representation of the dialog history.
Consequently, the context of each sentence in the dialog is inherently maintained.

Besides answering the user’s questions on the process and insurance policies, this
chatbot captures the story of the accident in text format. The text is then forwarded to
two natural language processing (NLP) classificationmodels in order to categorize the
accident in one of many categories such as “collision with an animal” or “collision with
a vehicle.” The first of the two models is a k-nearest neighbors (KNN)model, which is
a well-established classification technique, while the second is a more recent recurrent
neural network (RNN). The use of two models is motivated by the “four-eye principle”
as explained in Figure 10.3.

Figure 10.3: Handling the claim uses two models. A decision is only made when both models yield the
same category.

In order to use the k-NN model, the customer description of an accident is first trans-
formed into a binary vector indicating the presence of certain predefined key words.
Let’s assume that our keywords are the following: (car, deer, highway, wall). If the cus-
tomer says “I was driving on the highway when a deer crossed the road, and I could not
avoid it,” then the corresponding vector would be (0, 1, 1, 0). The resulting vector is then
compared to a set of known vectors extracted from a historical database. The distance
metric used to assess similarity is the cosine similarity. In other words, the similarity
between two vectors is measured by the cosine of the angle separating them. After com-
paring the vector to those in the historical database, the k most similar vectors are
extracted. The vector is labeled with most represented category in those k vectors.
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To use the RNN model, the phrase provided by the driver is first tokenized. After
this process, we obtain a sequence of numbers representing the position of eachword in
the tokens’ dictionary. The vector is then fed into a series of long short-term memory
(LSTM) networks, which can transform the representation of the vector based on the
words interdependencies. Therefore, the order of the words plays an important role in
the classification. Finally, a dense network is used to label the transformed vector and,
therefore, the original corresponding sentence.

Based on the test data, bothmodels agree on a category with a high confidence level
in 65.2% of the cases. On these cases, the accuracy of the classification is 99.4%. In
this scenario, the claim is labeled with the detected category and processed instantly.
In the other scenario where the models yield a low confidence score or disagree on the
category, the claim is then processed manually.

In the second phase of the claim, the customer submits photos of the accident. The
photos are processed using a convolutional neural network to identify the type and
extent of the damage. This data is then crossed with information on the car to assess the
cost of repairs.

In the third and final phase, the insurance app is able to retrieve the customer data
and instantly confirm if his insurance policy covers the claimed accident. The chatbot
also offers the customer the chance to ask his questions which are then categorized in
the same way using an LSTM model to reply with the appropriate answer.

The whole process takes less than a minute before the claim is categorized and re-
solved. This alleviates the uncertainty on the customer side. It is worthy to mention that
during the process the claim data is processed in the background to detect potential
fraud which was covered in Chapter 7.

In order to improve the quality of its models, KBC implemented a retraining loop
for the claims where the two models were uncertain or did not agree (Figure 10.4) . In
addition to those claims, 10% of all claims labeled by the two models are evaluated by

Figure 10.4: The retraining loop in the AI models used for claim categorization.
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Figure 10.5: The distribution of claims based on their complexity in the traditional and new claim handling
process at KBC Group.

human agents tomonitor the quality of the model. All manual labels are then fed back
into the training of the models to improve classification quality.

The outcomes of the new product are overwhelming for KBC. In fact, 50.4% of the
claims are currently fully automated (cf. Figure 10.5). Moreover, by replacing human
intervention with AI in the core process of claim handling, the organization has become
more cost-efficient and focused on complex claims.WithAI processing half of the claims,
the complex claim can get more time and attention, which results in better service qual-
ity for the insurance customers.

10.2 An automated engineering assistant that uses
a mix of learning and reasoning techniques in
manufacturing2

Hendrik Blockeel, Wannes Meert, Joost Vennekens

This example is taken from a collaboration betweenKULeuvenUniversity and amulti-
national company active in design andmanufacturing. The company produces parts for
all kinds of machines. Given a specification of the functionality of some required part,
this part needs to be designed andmanufactured. The goal of the projectwas to create an

2 Section 10.2 is based on two scientific papers: (1) Van Daele et al., 2021; (2) Aerts et al., 2022.
The research was supported by Flanders Innovation & Entrepreneurship (VLAIO O&O project ‘Digital
Engineer’), the FlemishGovernment (“OnderzoeksprogrammaArtificiële Intelligentie Vlaanderen”), and
the European Research Council (ERC) (Horizon 2020 research and innovation programme, grant agree-
ment No. 694980, SYNTH: Synthesising Inductive Data Models).



10 Industry examples where different AI techniques are combined � 437

automated engineering assistant using AI technology to help with this. The assistant
should allow design engineers to work more efficiently by better disclosing expertise
already available in the company. Below, we provide more context and give details on
the solution that was developed during the project.

10.2.1 The problem setting

The main type of document used by design engineers is the technical drawing. Such a
drawing typically consists of 2D and 3Dvisual descriptions ofmachines or parts, together
with annotations such as measurements, a bill of materials, etc. When designing a new
object, engineers produce such a technical drawing.

A customerwill typically contact the companywith a requirements specification for
the product they need. This includes its functionality, the conditions under which it will
operate (e. g., extreme temperatures), and so on.

Sometimes, a standard solution is already available for what the customer needs,
and the sales department can immediately handle the order. When that is not the case,
an engineer is facedwith the task ofdesigninganewproduct. Often, they can start from
a basic type of design that they know was already deployed and evaluated in the field
and adapt it to the needs of the customer; more rarely, they need to design something
from scratch.

Engineers obviously use their own expertise when designing a product, but they do
not have direct access to their (former) colleagues’ expertise. The company therefore
keeps a database in which earlier designs are stored, so that engineers can tap into it.
Being able to find relevant earlier designs that are close to what is needed in a new use
case can boost the engineers’ productivity. Moreover, such a database helps retain to
some extent the expertise of retired engineers.

At the start of this project, a large database with product designs was available.
This database is linked to databases on sales and after-sales that provide additional rel-
evant information (e. g., what kind of unexpected problems were frequently encoun-
tered with a given design). Partially because the database spans many years of exper-
tise, different companies, and multiple regions, it is very heterogenous: recent techni-
cal drawings are typically stored in a digital format, but older ones are simply scans of
drawings on paper. This database can be searched based on keywords. There is con-
siderable variance in what keywords are used to describe a design: terminology may
differ between different company locations and even among engineers at one location;
new types of materials become available over the years; insights on what are the most
relevant keywords evolve; typing mistakes, etc. Thus, there is heterogeneity not only
in the designs themselves but also in the metainformation about them. This makes it
hard to search the database effectively. Looking up information can take a substantial
amount of time and effort from the engineer: it may take many attempts before a suf-
ficiently good combination of keywords is found (one that yields a relatively small set
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of previous designs that are sufficiently relevant to be useful). Even then, there is no
guarantee of completeness: perhaps the best design to start from is not even in this set.

A better way of disclosing the database could significantly increase the efficiency
with which engineers can do their job. Hence, one goal of the project described here
was to build an AI-based system that helps the engineer to find relevant information
in this database.

By themselves, however, relevant past designs provide only a limited amount of in-
formation. For instance, the engineer has no way of knowing whether the past design
was actually successful. In addition, the solutions that used to be optimal, perhaps are
no longer optimal today (e.g„ because new, superiormaterials have been invented). Per-
haps most importantly, a design drawing tells the engineer which design choices were
made, but notwhy these choices were made.

The company therefore also had a second goal, which was to extract the knowl-
edge of key senior engineers and to explicitly store it in a formal knowledge base, such
that it will remain available for future generations of engineers. In addition, this knowl-
edge can then be used to provide flexible and explainable decision support to the
engineers.

10.2.2 How are those problems solved ? A mix of techniques from
Chapters 4, 5, and 7

The developed software uses multiple AI technologies to assist the design engineers: it
combines computer vision, inductive logic programming, pattern mining, knowl-
edge representation, logic reasoning, and constraint reasoning (Chapters 4, 5,
and 7).

10.2.2.1 Reading the drawings

Technical drawings consist of a 2D and 3D drawing (the “CAD” drawing) together with
annotations including measurements, a list of parts and/or materials, and so on. A lot
of relevant information is in the 2D drawing itself. A vision component was developed
that can analyze a drawing and extract relevant information from it. This vision compo-
nent reads the drawing as a bitmap image (so it works as well with scans of designs on
paper as with digital drawings). The image is first segmented using standard computer
visionmethods, and segments are then classified as “table,” “two-dimensional CAD,” or
“irrelevant.” This classification determines the next processing step: table segments are
handled differently from CAD segments, whereas irrelevant segments are ignored. The
segmentation and classification were found to be 100% accurate in the available data
(which is in linewith the fact that line drawings are generally not very hard to segment).
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10.2.2.2 Reading the tables

Data in tables are organized partly through annotation (e. g., column or row titles) and
partly through positioning (e. g., all cells below some column title belong to that column).
Different tables may have a different organization, however, and tables do not always
have a simple matrix form (m rows, n columns): cells may span multiple columns or
rows, a cell may contain a subtable, etc. The system therefore needs to learn how to
parse tables.

An inductive logic programming (ILP) approach was used for this. The ILP system
takes as input, descriptions of cells (cell text, cell location), relational information de-
rived from this (relative cell positions, neighboring cells, the order in which cells occur),
and labels of the cells. It produces as output “mini programs” that state how to derive
the label of a cell from the other information. An example of a rule that the system finds
is:

author(A):- cell_contains(B, “drawn”), above(B, A),

which states: when the cell above this one contains the text “drawn,” this cell contains
the name of the author. Figure 10.6 shows another example of a program and how it
interprets a table.

Figure 10.6: Example of a table and a mini-program defining the concepts “bill of materials” and “header.”
The highlighting shows what the program defines; it is not part of the original drawing. (Figure by Van
Daele et al., 2021.)

Rules similar to these were introduced for all labels. Some cells can be classified
quite well using such basic rules, others are harder to classify accurately. The overall
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quality was substantially improved by introducing a novel element into this ILP ap-
proach, called bootstrapping. The basic idea is to let classification rules for difficult la-
bels exploit the results of other classification rules for easier labels. A dependency graph
is constructed, where labels are ranked according to the accuracy with which they can
be predicted and the size of the program predicting it. After a first learning run, simple
ruleswith high accuracy are added to the backgroundknowledge that the ILP systemcan
exploit, then a second learning run is made that can exploit the additional knowledge
that has become available in this way. This process is repeated for each consecutive run.
One task that benefits from this procedure is to recognize the bill of materials, where
first the concept of a header is detected, after which recognizing rows of materials is
easy.

10.2.2.3 Reading the CAD drawings

To perform searches based on CAD drawings, a meaningful similarity measure for
such drawings needs to be available. Specifically, two drawings should be considered
maximally similar if they represent the same design (making abstraction of rotations,
translations, mirror symmetries, etc.) To learn a suitable similarity measure, self-
supervised learning is used: for each image, 10 more images are constructed with
irrelevant variations of the original (e. g., rotating the image); then a “siamese net-
work” is trained that for any pair of images should output whether they represent the
same design or not (using so-called contrastive learning , where pairs of images de-
rived from the same original are positive pairs, and random samples of image pairs are
negatives). The siamese network processes each image in a given pair using the same
network (a convolutional neural network with ResNet architecture), then combines
the outputs of these networks using a few fully connected layers. In this way, a neural
network is trained that can assess to what extent two drawings represent the same
design.

10.2.2.4 Identifying relevant designs

With the functionality described in previous sections, it becomes possible to define a
measure for the similarity between two designs. Each design is first represented using
two feature vectors:
– The first relates to the tables. As the description of the table resulting from 2.2 uses

a logical format, an ILP system called Warmr is used to find frequent patterns in
the logical description that are likely relevant for determining similarity. A feature
is introduced for each relevant pattern. These features form the “tabular” feature
vector. For tabular feature vectors, which have binary values, similarity is defined
as the proportion of features that have the same value.
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– The second feature vector, which relates to the CAD part, contains the nodes in the
penultimate layer of the siamese network that determines whether two drawings
represent the same design (these are obviously relevant for the similarity between
designs). For these CAD feature vectors, the cosine similarity measure is used.

The overall similarity between two designs is finally defined as the geometric mean of
both similarities.

10.2.2.5 The knowledge base

To complement the database of designs, a knowledge base was built that captures the
knowledge of key domain experts. To construct this knowledge base, several interac-
tiveworkshopswere held, inwhich experts fromdifferent sites worldwide participated,
guided by a knowledge engineer. The knowledge base is written in the FO(.) language,
which is a rich extension of classical first-order logic (Chapter 4).

During such workshops, it is important to represent the knowledge in a formal
language that not only the knowledge engineers but also the domain experts can un-
derstand. In this way, the domain experts can immediately check whether the knowl-
edge engineer has correctly understood what they are saying, which greatly reduced
the number of mistakes that end up in the knowledge base.

While the FO(.) language is powerful and easy to use for trained experts, it can be
challenging for people who first encounter it. The workshops therefore made use of the
decision model and notation (DMN) standard, and its extension cDMN. This offers an
intuitive table-based representation, which has been specifically developed to be usable
by domain experts. An example of a cDMN table is shown in Figure 10.7.

Figure 10.7: A cDMN table that defines which materials can be used for which components in which types
of design. For instance, in a closed design type, any material apart from M2 can be used to manufacture
the body of the component.

10.2.2.6 Interactive decision support

To build a usable decision support tool, it is key that the tool can adapt to the way
of working of the engineers, rather than forcing the engineers to adapt their way of
working to the tool. A decision support tool was therefore developed using KU Leuven’s
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Figure 10.8: The Interactive Consultant providing an explanation for why an open design must be used.
This is the case because the engineer has entered the requirements that the design should be able to
release back pressure and to cope with pressures up to 167. Other information that the system has already
derived is that material M5 cannot be used to manufacture the body of the component.

generic Interactive Consultant interface (idp-z3.be),which is poweredby the IDP-Z3 rea-
soning system for FO(.). Figure 10.8 shows a screenshot of this interface.

An important property of this system is that it adheres to the knowledge base
paradigm: the knowledge base itself is purely a declarative representation of knowl-
edge (i. e., by itself, it does not do anything), to which different logical inference algo-
rithms can then be applied to derive different kinds of conclusions from different input.
In this way, the system can give the engineer the freedom to work in whichever way
they choose. They can start from the requirements, they can start from a specific design,
they can start by choosingmaterials, etc. Whatever information the engineer chooses to
enter, the system will use the knowledge base to derive further conclusions from this.
In this way, the engineer and the AI system cooperate to gradually reduce the number
of options that remain, until finally a single, complete design remains. Because all the
information that the system provides is derived by means of logic reasoning from the
knowledge base that has been constructed and verified by the domain experts, informa-
tion coming from this system is at least as reliable as information that an expert would
provide themselves. Moreover, all the output is also explainable, in the sense that the
system can always point to a precise combination of choices made by the engineer and
parts of its knowledge base that suffice to reach this output.
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At any point during the design process, the engineer can use the same user inter-
face to inspect the database of previous designs. In this case, the current state of the
design process is used to return only designs that match this specific context. Moreover,
the properties of each design are shown using the same concepts that are used in the
configuration interface. This makes it easy for the engineer to spot the key differences
between different designs and to copy relevant parts over to their design.

10.2.3 How well does it work?

The time that engineers need to come up with a good design given specifications was
substantially reduced. The time spent searching the database to see what already exists,
what were the problems with some earlier designs, which designs were successful, and
which were not (and under what circumstances) is reduced significantly, by 15–30 min-
utes per use. This comes on top of the fact that engineers rarely spend more than an
hour on this search: if they cannot find anything fast enough, they start designing from
scratch, which may take dozens of hours. The AI provides much smarter access to the
database, and the interaction allows the engineer to quickly zoom in on the most rele-
vant cases. The integration into a configurator allows the engineer to quickly come up
with new variations that meet specific requirements.
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Emmanuel Gillain
11 Conclusion – Moving forward

Academic review by Professor Hendrik Blockeel

11.1 So far…

By this stage, readers are expected to have gained a fundamental understanding of
various artificial intelligence (AI) techniques and their applicability in addressing com-
mon industry challenges. This book provided a comprehensive, albeit non exhaustive,
overview of prevalent AI techniques that can help humans to make decisions more ef-
fectively and efficiently by
– searching and planning (Chapter 3),
– reasoningwith symbolic AI algorithms, which explicitly represent knowledge and

reason over that knowledge using different syntaxes and logics suchfirst-order logic
(Chapter 4) or descriptive logics (Chapter 5),

– reasoning innondeterministic environment, with probabilistic graphicalmodels
that can capture uncertain knowledge and infer conclusions (Chapter 6), and

– learning, from raw data, or from rewards in interacting with the environment
(Chapter 7).

In Chapter 8, we have learned how natural language processing (NLP) methods en-
able human-machine communication. Thesemethods allowmachines to either produce
or understand human language, often using many of the methods of the other chapters,
while also possessing their own unique features. By elucidating the limitations of vari-
ous AImethods, we hope that the reader has also gained some insight into the challenges
that the current AI-based systems encounter. Furthermore, we discussed how the short-
comings of certain techniques can sometimes be mitigated by others. Chapter 9 particu-
larly focused on addressing some of the ethical challenges that AI systems face. Chap-
ter 10 illustrated how different AI techniques can also be combined together for even
richer applications.

11.2 Moving forward
The field of AI is evolving extremely rapidly to address the limitations of the current
state of the art. This book does not intend to advocate for any specific direction in AI re-
search.Most likely, no one has a definitive answer as towhich directionswill provemost
promising. We suggest however to conclude the book by delving into some promising
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prospects: the concepts of hybrid AI, seen by a large community as one possible promis-
ing approach that reconciles the two fundamental AI paradigms covered in this book,
as well as the principles of causal AI, also known as causal inference or reasoning, as
it represents a significant and relatively recent paradigm shift. Causal inference theory
fills indeed an important theoretical gap in the AI techniques toolkit, paving the way
towards stronger or more general AI. This theory focuses on studying cause-and-effect
relationships to address questions about the effect of one variable on another. Finally,
we’ll end with a few additional words about generative AI (GenAI) trends, as genera-
tive AI is revolutionizing theway peoplework and learn andwill have significant effects
on the business and society overall.

11.2.1 Hybrid AI systems to merge the best of both worlds
Symbolic AI and statistical data-driven AI have unfortunately been somehow discon-
nected disciplines in practice whereas they offer obvious complementarity: machine
learning (ML) and deep neural networks are very powerful at certain types of learning,
modeling, and action1 but have currently limited capability for abstraction, symbolic
reasoning, and for the inclusion of prior structured knowledge. Traditional machine
learning techniques also have challenges to generalize the learning if the environment
differs, sometimes even in small ways, from the context on which they are trained. And
it is still uncertain and controversial among researchers howwell large languagemod-
els in the field of NLP can do abstraction and reasoning, and how far they can go.2

Symbolic AI, on the other hand, is powerful at modeling and reasoning over ab-
stractions, can easily integrate prior structured knowledge, is compositional (i. e., can
combine different concepts), but deals poorly with empirical data to establish links and
correlations to make new hypotheses from raw data. Accordingly, hybrid AI systems,
which bring the strengths of both statistical and symbolic approaches together, are seen
by some researchers in the AI community as the way to move toward stronger, more
general AI. It seems to be one of the promising domains of research: the capacity to
learn from large scale data sets associated with the capacity of symbolic AI to represent
abstract representations3 and reason about those.

So-called neuro-symbolic AI systems, for example, pursue such a concept. Deep
neural networks are used for their pattern recognition capabilities, which include fea-
ture learning and feature engineering. These networks learn domain knowledge from
raw data. This knowledge is then represented in a structured symbolic form using a log-
ical representation. Following this, symbolic AI is employed to apply logical reasoning
to this structured data. This process uncovers new facts and relations And vice versa:

1 when applied in the context of reinforcement learning.
2 This is also an active area of research.
3 especially when there are only small datasets.
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knowledge about an application domain can help guide the learning process by inject-
ing prior knowledge. The main concept of neuro-symbolic AI systems is well expressed
by Sebastian Bader and Pascal Hitzler: “A symbolic system at the front-end is used to
provide symbolic (partial) expert knowledge to a neural or connectionist system that can
be trained on raw data, possibly considering the symbolic knowledge that is represented
internally. Knowledge acquired through the learning process can then be extracted back
to the symbolic system (which now also acts as a back end), and made available for fur-
ther processing in symbolic form” (Sebastian Bader and Pascal Hitzler, “Dimensions of
Neural-symbolic Integration—A Structured Survey,4” November 2005).

Interested readers will find a recent survey about the advancements in neural-
symbolic or neuro-symbolic systems from distinct perspectives in the research paper
titled “A Survey on Neural-symbolic Learning Systems” (Dongran Yu, Bo Yang, Dayou
Liu, Hui Wang, Shirui Pan, June 2023).

11.2.2 Cause-effect and causal AI
« Correlation isn’t causation » is probably a quote familiar to the reader. Classical statis-
tics and ML techniques don’t capture cause-effect relationships. For a long time, they
have focused much on correlation without uncovering the real causal relationships.
They uncover patterns, find correlations in the data, make predictions but do not pro-
vide a language for causality with a causal model. Analyzing the P(Y |X) by observ-
ing the impact of the X values on Y doesn’t guarantee to find causality. To estimate the
causality of a variable X (like a drug) on the variable Y (like the recovery), the effects of
a confounding variable Z that can influence either the taking of the drug or the recov-
ery (like the age or a healthy life) must be removed. Even if the designer of a Bayesian
network models his network with causal links between variables, the fundamental as-
sumption of his model remains (e. g., independence, conditional independence, etc.).

Models that can capture causal relationships are more generalizable and allow us
to understand what would happen if some of the assumptions in the model change, like
predicting the effect of an action without actually taking that action or answer causal
question like “Does that drug cause recovery?” This is particularly useful for examples
where we can’t apply experiments and randomized controlled trial (RCT),5 a classical
approach to causal inference. In addition to this, causal inference models can predict
facts that didn’t happen. They can compare the observed world to a counterfactual one,
something that experiments and data alone can not achieve. This capability is essential

4 https://arxiv.org/abs/cs/0511042
5 RCT typically randomly allocate subjects to 2 groups, treat them differently (like a treatment group
vs placebo), and then compare them with respect to a measured outcome like recovery. The reason of
randomization is to remove possible effects from confounders, dissociates the variable of interest (drug,
no drug) from other variables that would otherwise affect them both, like the age or a healthy life.
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to answer the “Why” questions: “What is factor X that caused Y?” Imagine that Sarah
started a new fitness routine and lost 10 pounds a month later. We are interested in
determiningwhether her new routinemight have caused herweight loss. To answer this
question, we need to envision a scenariowhere Sarahwas about to start the exercise but
changed hermind.Would she have still lost 10 pounds? Classical statistics do not provide
a framework for posing this counterfactual question. Causal inference not only provides
a formal notation for such questions but also offers a method for finding a solution.

Judea Pearl6 is a prominent figure in the field of AI, particularly known in the field
ofprobabilistic reasoning and causal theory. He created and developed a general the-
ory of causationwith amathematical language to formally express causal questions and
handle causes and effects. His work on causality has significantly advanced the under-
standing of cause-and-effect relationships in various fields, including philosophy, psy-
chology, and computer science. In recognition of his groundbreaking work on the the-
ory of probability and causal inference, he was awarded the Turing Award, one of the
most prestigious awards in computer science, in 2011.

Without going into the details, here are some fundamental ideas. Simply observing
P(y|x), as in classical statistics, is what Judea Pearl sees as the first level in his causal
hierarchy, the level of association, because it purely invokes statistical relations (Chap-
ter 6). Leveraging graph models and causal diagrams to make it operational, his first
key idea is about an intervention formalized by introducing an explicit operator “do”
in the form of P(y|do(x), z) for predicting the effect of a deliberate action X7 set to x,
observe event Z = z, and learn the effect y of that intervention. Such expressions can be
estimated by RCT or analytically by using causal Bayesian network. Judea Pearl calls it
the second level in his causal hierarchy. Building on that second intervention layer, the
next key concept is to handle counterfactuals, a world that cannot be seen in the data
because it contradicts what is seen in the data. This counterfactual layer sits at the top of
Judea Pearl’s hierarchy to address counterfactual questions such as “What if Sarah didn’t
exercise?” to continue with the above example. The formalization is then expressed as
follows with a subscript: “P(Y = yX=x |X = x′, Y = y′), which stands for “The probability
that event y would be observed had X been x, given that we actually observed X to be x′

and Y to be y′.” For example, the probability that Sarah wouldn’t have lost 10 pounds
had she not taken that fitness, given that she lost 10 pounds and took that exercise, all
the rest being the same.

Judea Pearl’s fundamental ideas are well summarized as follows: “The main point is
this:While probabilities encode our beliefs about a (uncertain) static world, causality tells
us whether and how probabilities change when the world changes, be it by intervention or
by act of imagination. The Causal Revolution has been to explain how to predict the effects
of an intervention without actually enacting it and predict facts that didn’t happen, both

6 Judea Pearl – A.M. Turing Award Laureate (acm.org).
7 X being the control variable.
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things that ML can’t do”. Excerpt from “The Book of Why: The New Science of Cause and
Effect”, Judea Pearl and Dana Mackenzie, 2018.

11.2.3 Generative AI

Generative AI (GenAI) techniques are based on the techniques covered in Chapter 8.
They are poised to significantly impact the way people work across all industries and
learn. To explain GenAI and illustrate its power in practice, the paragraph that follows
has been written based on questions entirely answered by using ChatGPT, a conversa-
tional agent launched by OpenAI in November 2022. At the time of testing it in February
2023, ChatGPT used GPT-3.5, a fine-tuned version of GPT-38 to be a general purpose
chatbot. GTP-4 version was launched the month after, in March 2023.

Question Answers captured in February 2023 from the public ChatGPT tool, which was
based on GPT-3.5 at the time.

Who are you ? I am ChatGPT, a language model developed by OpenAI. My purpose is to engage
in natural language conversations with humans and provide helpful responses to
their questions and prompts. I use a combination of machine learning algorithms
and a large dataset of text to generate responses that are coherent and
contextually relevant to the input I receive. I do not have a physical form or
consciousness; I am a program that operates in a computer system. My creators
designed me to be a helpful tool for people seeking information or assistance
with various topics.

What is generative AI? Generative AI refers to a type of artificial intelligence that is designed to generate
new, original content rather than simply responding to inputs or executing
predefined actions.
Generative AI models are trained on large datasets and can generate text, images,
music, or other types of content that resemble human-created content. These
models are often based on deep learning techniques such as neural networks,
which enable them to learn patterns in data and use those patterns to generate
new content.
Some examples of generative AI models include language models like GPT-3,
which can generate text in a wide range of styles and genres, and generative
adversarial networks (GANs), which can generate realistic images, videos, and
sound.

How old is the data
you’ve been trained
on?

The data I’ve been trained on comes from a variety of sources and covers a wide
range of topics. The specific datasets used to train me were collected between
2015 and 2021, with the most recent data being used to train me being up to the
knowledge cutoff date of September 2021. It’s worth noting that the training data
used to create me is constantly updated and refreshed by my creators at OpenAI
to ensure that I stay up-to-date with the latest developments in language and
knowledge.

8 Up to 175 billion parameters.
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Question Answers captured in February 2023 from the public ChatGPT tool, which was
based on GPT-3.5 at the time.

What can generative AI
do in practice?

Generative AI can be used to create a wide range of outputs, depending on the
type of model and the training data used. Here are some practical applications of
generative AI:
– Text generation: Generative language models like GPT-3 can be used to gener-

ate text in a variety of styles and genres. This can be useful for content creation,
chatbots, language translation, and more.

– Image generation: Generative adversarial networks (GANs) can be used to gen-
erate realistic images, which can be useful in fields like fashion design, architec-
ture, and art.

– Music generation: Generative AI models can be trained to generate music in
various styles and genres, which can be useful in music composition, sound
design, and other creative applications.

– Video generation: GANs can also be used to generate realistic videos, which can
be used in fields like film and animation.

– Data augmentation: Generative AI can be used to generate synthetic data that
can be used to augment existing datasets for trainingmachine learningmodels.

– Drug discovery: Generative AI can be used to generate newmolecules and pre-
dict their properties, which can be useful in drug discovery.

Overall, generative AI has the potential to revolutionize many fields and enable
new applications that were previously impossible. However, as with any powerful
technology, there are also concerns about its potential misuse and unintended
consequences.

What’s the impact of
generative AI on the
industry?

Generative AI has the potential to impact various industries in significant ways.
Here are some potential impacts:
– Creative industries: Generative AI can help automate and augment creative pro-

cesses, such as music composition, art, and writing. For example, AI-generated
music and artwork have already gained popularity, and AI-assisted content cre-
ation could become more common in the future.

– Content creation: Generative AI can help generate content at scale, such as
product descriptions or news articles, which could reduce the need for human
writers in some cases.

– Personalization: Generative AI can help personalize content for individuals,
such as personalized news feeds, advertisements, and music playlists.

– Customer service: Generative AI can improve customer service by automating
responses to common queries and enabling more efficient communication.

– Healthcare: Generative AI can help accelerate drug discovery by generating and
testing newmolecules, which could lead to faster and more cost-effective drug
development.

– Financial services: Generative AI can help automate financial analysis and
risk management, leading to more accurate predictions and better-informed
decision-making.

However, the widespread adoption of generative AI could also lead to job
displacement and ethical concerns, such as the potential misuse of the
technology for propaganda, disinformation, and surveillance. As with any
disruptive technology, it is important to consider its potential impacts and to
develop strategies to mitigate negative consequences.
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NLP language models can produce high-quality text and images and show impres-
sive results. Recent advancements in multimodality, have recently been substantial,
particularly in the development of multimodal large language models, supporting mul-
timodal inputs or outputs (processing text, images, audio, video). Multimodality repre-
sents a significant step forward in the evolution of NLP, enabling models to better un-
derstand and interact with a more complex, multi-faceted world. For instance, a mul-
timodal model can analyze an image along with its accompanying text to get a better
context, something that a text-only model would miss. This makes multimodal models
more versatile and capable of handling real-world applications more effectively.

With their fundamentally stochastic approach, there is also much research on-
going to better understand and address the phenomenon of hallucinations and how
far large language models can go for reasoning (see chapter 2, limitations of natural
language processing). An interesting debate within the scientific community revolves
around the question of whether large language models are merely stochastic parrots
that mimic statistical patterns in their training data, or if they’re capable of more com-
plex understanding and original thought. See for example the article of VentureBeat
titled “With GPT-4, dangers of ‘Stochastic Parrots’ remain, say researchers. No wonder
OpenAI chief executive officer (CEO) is a ‘bit scared’.”9 Finally, small language models
are another promising direction for the future of language models. These models are
significantly smaller (typically a few billion parameters) than large language models
like GPT-3 or GPT-4, which have hundreds of billions to trillions of parameters, but aim
to achieve performance on par with the larger models. Despite their smaller size, some
models, like the Phi-2model10 released byMicrosoft Research end 2023, already demon-
strate remarkable performance on a variety of benchmarks. Even though it shouldn’t be
forgotten that those models reflect the bias of their training data, all the aspects men-
tioned above are important areas of continuous research that keep advancing the AI
abilities at an extremely fast rate.

11.3 Final word

Wehave seen that there aremanyAI-related techniques that canhelp humans in various
tasks. These can be roughly classified into 2 main and complementary AI paradigms:
the symbolic approaches and the statistical, data-driven, approaches. Both approaches
have their strengths and weaknesses but they also have synergy, meaning that they can
sometimes be combined for more complex applications.

9 https://venturebeat.com/ai/with-gpt-4-dangers-of-stochastic-parrots-remain-say-researchers-no-
wonder-openai-ceo-is-a-bit-scared-the-ai-beat/
10 https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-
models/
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Due to the rapidly evolving nature of developments and the book writing process,
the information provided may not be the most up to date. Nevertheless, the knowledge
acquired should empower the reader with concepts that facilitate an understanding of
the broad domain of AI, its different fields and the more recent advancements.

The aim of this introductory book was to clarify some of the main concepts that un-
derpin AI applications today, by combining basic theoretical foundations with industry
examples. The authors and reviewers of this book accepted the challenge to provide a
rather comprehensive view of the AI world, while trying to balance the depth of the
formal academic methods and a higher-level language that can be grasped by business
practitioners, all in a limited number of pages. A real challenge.We’ll let the reader judge
whether that challenge has been achieved!
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