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Preface

This book is primarily intended as a textbook for beginning mathematics students.
It does not presume any knowledge of mathematics: it starts with the basics of
counting. However, it is certainly helpful having digested some school mathematics:
familiarity with some mathematical notions and less fear for formulas.

Large parts of the book originate from lecture notes of a first year course at the
Radboud University. It is a mildly edited version of the original Dutch edition
”Getallen”, which was published by Epsilon Uitgaven in Utrecht, The Netherlands.

The best way to learn mathematics is by doing mathematics. For beginning stu-
dents it sometimes is a problem determining what to assume when looking for a
proof. For the exercises in this textbook this situation does not occur: except for
Part I all is built on Peano’s axioms for the natural numbers, using the language
of intuitive set theory only. Part I describes the way mathematics works: the use
of set theory and the relation between language and mathematical entities.

The common thread in the book is the construction of the number system all the
way from the natural numbers, via the rationals and the reals to the complex
numbers. For the student the advantages of this approach are:

� One learns concepts which are fundamental for all of mathematics.
� The common thread offers a natural way for the introduction of these con-
cepts. It helps to stay motivated during the course.

� One learns to think like a mathematician.
� One obtains insight in the way mathematics is built from simple ideas.
� It helps to decide whether one is fitted for a mathematics study.

For the interested reader extra topics—not covered by the lectures—are included,
such as in particular the other possible completions of the rationals, the p-adic
numbers. The book contains more than just the construction of the number system:
there is also attention for its use, especially in combinatorics, number theory and
cryptography, leaving mathematical analysis to the many textbooks for analysis
and calculus courses.

I have benefited a lot of comments of students as well as of one of the reviewers.
Cian Jameson made suggestions for improving the English in the book. I am
grateful to all of them.

Nijmegen, August 2024 Frans Keune
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Introduction

For doing mathematics three aspects are important:

1. understanding how mathematics works,
2. understanding some mathematics,
3. creating mathematics.

Having seen large parts of mathematics, for instance for use in other disciplines,
does not guarantee that one really understands the way mathematics works. For
many people mathematics is a tool and the more the tool is available in software,
the less they have to understand. Real understanding assumes an understanding
of the way mathematics is organized. Mathematicians try to add something new
to mathematical knowledge, a new result or a new proof for an old result. Of
course, understanding a lot of mathematics is helpful for doing mathematics. But
creativity is on all levels: for instance solving an exercise problem is a deed of
creativity.

Higher Mathematics

This book is on ‘higher’ mathematics. It is the mathematics taught at universities.
Higher mathematics is just mathematics. The meaning is not: difficult mathemat-
ics. Often, if one says that something is higher mathematics, it means that it is
incomprehensible for an ordinary person. The truth of a new result in mathematics
is established by logic alone. No mathematics without proofs. On the other hand
one has ‘school mathematics’. In school mathematics there is the tendency to omit
proofs and to be sloppy with definitions of concepts. If the title of the book was
‘Elements of Mathematics’ the title would not say much and might even give a
wrong impression of its contents.

There are five parts. The idea behind each of them is explained next in this intro-
duction. More explanation is on the introductory page in each of the parts. Some
concepts are illustrated using the programming language Python. The motivation
behind this is explained below.

The book contains too much mathematics for a beginning course in mathematics.
Several choices are possible, see below under Course: Introduction to Mathematics.

xiii



Introduction

Overview

Part I: The Rules of the Game. In this part it is explained how mathematics is
organized, how it works. It is done by analyzing the puzzle The Tower of
Hanoi, an invention of the French mathematician Edouard Lucas. Nowadays
mathematics is founded on the notion of set, introduced by the German
mathematician Georg Cantor. In mathematics it is customary to work with
sets in an intuitive way. It is closely connected with logic. In this first part
of the book knowledge of simple arithmetic is assumed. The assumptions are
even further reduced in the next part.

Part II: Foundations. The book series Elements of Euclid of Alexandria dates from
around 300 BC. For long it was considered to be the basis for all of mathemat-
ics. The fundamental notions were geometrical: point, line, circle. Numbers
were used, but only in an intuitive way. In this book we start with natural
numbers the way Euclid started by giving axioms for geometrical objects.
The axioms for the natural numbers are Peano’s axioms, named after the
Italian mathematician Giuseppe Peano. The principles of counting are ex-
plained and in this part the number system is extended, first with negative
numbers and later with fractions.

Part III: Investigations and Applications. Part II is mainly about the foundation
of the number system. Now we can investigate the system that has been
created by the human mind. For instance the notion of prime number emerges
and one may ask simple questions about these numbers and the factorization
of integers. Numbers are used for counting. This leads to what is known as
combinatorics. Modular arithmetic and in particular the theory of quadratic
residues is applied to testing the primality of numbers.

Part IV: Completions. The rational numbers do not suffice, especially not in ge-
ometry. In this part the step from rational to real is made. This is the biggest
step in the construction of the number system. It is done by completing the
number system using the absolute value on the rationals. The method is
analytic, the previous steps being of a more algebraic character. The real
numbers are basic for what is known as calculus. There are other absolute
values on the rationals, for each prime there is one. Completion with respect
to these other absolute values leads to totally different number systems.

Part V: Extensions. The step from rational to real is a big one. A more modest
step is done by adjunction of the root of an algebraic equation, the minimal
way of extending a number system such that this root is in the extension.
The simplest nontrivial extension is by adjoining the square root of a number
which is not a square. This part starts with the construction of the complex
numbers, the number system obtained by adjoining the square root of −1.
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The complex number system is the end of a chain of constructions. Applica-
tions of adjoining square roots in number theory are given. This is the most
advanced part of the book.

Course: Introduction to Mathematics

The course I used to give treats the construction of the number system as well as
properties of this system. It gives the opportunity to learn the fundamentals of
mathematics. This does not include the chapters 14, 15, 18, 20 and 21 containing
topics in number theory: quadratic residues, prime tests, p-adic numbers, Hilbert
symbols, infinite continued fractions. Some sections of the other chapters can be
omitted as well, depending on time and on ones personal preferences. Such a course
is ideally given in the first semester of the first year. The non-treated topics are
meant as furher reading for those interested.

Python

The computer programming language Python is used to strengthen the formal as-
pects of mathematics: mathematical notions are clear, they can be handled by
computer. An advantage of Python is its clear syntax. Not much is needed for un-
derstanding many of the simple Python functions. They are simply straightforward
translations of mathematical definitions and procedures. Not every mathematician
likes computer programming. The Python sections in the book are not necessary
for the mathematics, so one may skip them without any problem. On the other
hand, just having a look at the returns of some of the Python functions is already
instructive. The Python code can be downloaded from the website of the Radboud
University Press. The book ‘Think Python’ by Alan Downey offers a nice intro-
duction to Python. It is published by O’Reilly and freely downloadable from the
website of Green Tea Press.

Further Reading

For those who want more help when making the step from school mathematics to
higher mathematics the following books may be useful.

[1] Lara Alcock, How to Study for a Mathematics Degree, Oxford University Press,
Oxford (UK), 2009.

[2] R. Earl, Towards Higher Mathematics: A Companion, Cambridge University
Press, Cambridge, etc., 2017.
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[3] P. Eccles, An Introduction to Mathematical Reasoning: Numbers, Sets and Func-
tions, Cambridge University Press, Cambridge, etc., 1997.

[4] K. Houston, How to Think Like a Mathemaician: A Companion to Undergrad-
uate Mathematics, Cambridge University Press, Cambridge, etc., 2009.

The common thread of this textbook is an introducion to mathematics through
the construction of the number system. The extras in the book are mainly about
the study and the use of numbers: in number theory and in combinatorics. For
supplementary reading the following books are advised.

[5] J.H. Conway and R.K. Guy, The Book of Numbers, Copernicus, New York,
1996.

[6] R. Courant and H. Robbins, What is Mathematics?: An Elementary Approach
to Ideas and Methods, 2nd ed. (I. Stewart, ed.), Oxford University Press, Ox-
ford UK, 1996.

[7] R Crandall and C. Pomerance, Prime Numbers: A Computational Perspective,
2nd ed., Springer Verlag, Berlin, etc., 2005.

[8] G.H. Hardy, A Course of Pure Mathematics, 10th ed., Cambridge University
Press, Cambridge, UK, 1993.

[9] J.-P. Serre, Cours d’Arithmétique, Presses Universitaires de France, 1970; En-
glish transl. in A course in arithmetic, Graduate Texts in Mathematics, vol. 7,
Springer-Verlag, New York, 1973.

[10] H. Stark, An Introduction to Number Theory, The MIT Press, Cambridge,
Mass., 1973.

An excellent general introduction to ‘higher’ mathematics is [6] by Richard Courant
and Herbert Robbins. The first edition dates from 1941. Later, in the 90’s it was
edited and brought up to date by Ian Stewart.

The book [8] by the well-known number theorist G.H. Hardy is a textbook for
beginning mathematics students and is mainly focused on mathematical analysis,
an important part of mathematics. The first edition dates from 1908 and was
edited by the author till 1937.

John Conway and Richard Guy wrote the beautiful book [5] on numbers. Harold
Stark, another famous number theorist, wrote a well written easily accessible in-
troduction to number theory [10].

Parts of chapter 20 are based on Jean-Pierre Serre’s [9], which however, is written
on a much higher level. The well-written book [7] by Robert Crandall and Carl
Pomerance describes many algoritms for prime testing and factorization of integers,
the subject of chapter 15.
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Part I

The Rules of the Game

The mathematics in this book is built from scratch. This is done
from Part II onwards. In this introductory part it is explained
the way we do this. Characteristic for mathematics is that new
results require a proof: they have to be a logical consequence of
earlier results. It is inevitable that something has to be accepted
in advance. In this book this will be some very simple properties
of natural numbers, the numbers 0, 1, 2, . . . .
The logic will be not more than what is used in every day life.
Only, the language is made more precise: for example we have to
agree on the meaning of the word ‘or’. Also it is important that we
know what we are talking about, what the mathematical objects
are. For this we use the notion of set. We will deal with sets in an
intuitive way. This is made more precise in chapter 2.
The notion of graph in chapter 3 serves as a first example of an
abstract mathematical structure. Abstraction is characteristic for
mathematics. Irrelevant details are omitted and abstract struc-
tures remain. We try to clarify this with a puzzle: the Tower of
Hanoi, described in chapter 1. Of course, there are more important
things than puzzles. Here it’s the principle that matters.
If the language is very precise, it is suited for communication with a
computer. A good understanding of an abstract structure enables
us to instruct the computer doing tasks which for humans are dull
and time consuming.





1 The Tower of Hanoi

Figure 1.1: Starting position (5 discs)

The Tower of Hanoi is a puzzle. It was
invented in 1883 by the French math-
ematician Edouard Lucas. The puzzle
consists of three vertical pegs and a num-
ber of discs. A hole in the middle of each
disc makes it possible to place them on
the pegs. The discs have varying diame-
ters and are placed in order of decreasing
size on one of the pegs, see Figure 1.1.
The aim is to transfer all discs to one of
the two other pegs by making moves. A
move is the transfer of one of the top discs from one peg to one of the two others.
It is not allowed to place a disc on top of a smaller one. It is not so easy to provide
a full proof description of the puzzle in plain English. Usually an appeal is made
on the reader’s intuition and also a picture like the one in Figure 1.1 makes it more
understandable. In daily life that suffices.

Figure 1.2: The position 11232

There are three pegs. We label them
with the digits ‘1’, ‘2’ and ‘3’. A po-
sition of the puzzle will be denoted by
a word (or string) in these three digits:
the first digit indicates on which peg the
largest disc is situated, the next digit in-
dicates where the second largest is, etc.
The position in Figure 1.2 is denoted by
the word ‘11232’. It is a word of 5 digits,
since it is a puzzle with 5 discs.

Notice how these words of digits are used:

� 1232321 is a position of the Tower of Hanoi in the case of seven discs,
� ‘1232321’ is a word of seven tokens (digits in this case).

Compare this with sentences like:

� John is my brother,
� ‘John’ consists of four letters.
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1 The Tower of Hanoi

F. Edouard Lucas (Amiens 1842 – Paris 1891)

Lucas published his puzzle under the name professor N.
Claus (of Siam), mandarin of the College of Li-Sou-Stian.
He had made up a nice story. The game was found in
the writings of the mandarin Fer-Fer-Tam-Tam which by
decree of the Chinese government had to be published in
the near future. In Japan, China and Tonkin the discs were
of porcelain. As we will see, for the solution of a game
with 64 discs 18 446 744 073 709 551 615 moves are needed.
According to an old legend priests in the temple of Benares
are solving the puzzle with 64 golden discs with diamonds.
As soon as all the discs are transferred to another peg, the
world will vanish.

A move is the transfer of a disc from one peg to another. For the corresponding
words this means the replacement of one of the digits by another. The move is
only allowed if:

� the disc to be transferred is on top: the same digit has no occurrence in the
word to the right of the digit to be replaced,

� the disc is not placed on top of a smaller one: neither has the new digit an
occurrence in the word to the right of the digit to be replaced.

In position 11232 three moves are possible:

� the smallest disc is transferred from peg 2 to peg 1,
� the smallest disc is transferred from peg 2 to peg 3,
� the second smallest disc is transferred from peg 3 to peg 1.

The new positions after these moves are respectively 11231, 11233 and 11212, see
Figure 1.3.

It is irrelevant whether the puzzle is made of wood, porcelain or gold. Many
implementations are possible. It can be without pegs, with matches of different
sizes instead of discs, or with the rule that discs have to be placed on smaller ones.
The words of digits for the positions and the allowed moves are applicable to all
these variations. It makes communication about the game possible, irrespective of
its implementation. In a way the Tower of Hanoi with a given number of discs is
an abstract notion: using our imagination there is no need to have it physically
realized. Of course it is a bit silly, but there is no problem considering a Tower of
Hanoi with a billion discs. The notation for positions is far more efficient than the
representation of positions by figures like in Figure 1.2 and Figure 1.3. Even for
not so large number of discs, say 64 discs, the use of pictures would be far more
complicated and far less understandable.
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1

2

Figure 1.3: Three possible moves

When all discs are on one single peg, two moves are possible. In all other cases
the number of possible moves is three. These moves can be described in various
ways. Here we will describe a move by giving the initial position together with the
peg that is not involved in the move. Such a move does not exist for the position
111 . . . 111 and the peg 1, and similarly for the two other cases in which all discs
are on one single peg. In all other cases it describes a unique move. In Figure 1.3
the three moves are indicated this way.

Python

The notation for positions of the Tower of Hanoi enables us to communicate about
the puzzle with a computer. Computer languages know the data structure string.
Strings of the symbols ’1’, ’2’ and ’3’ can be used to represent positions of the
puzzle and moves can be programmed.

In the module hanoi.py we keep Python functions related to the Tower of Hanoi.
Thus they are available through the command from hanoi import *. The func-
tion

replace(i,word,char)

returns the string obtained by replacing the character with index i in the string
word by the character char. In Python a character in a string can not be directly
substituted by another character: strings are immutable. Here the new string is
obtained by assembling parts of the old string with the character char in between.
In Python concatenation of strings is done with +. If i is not in the range of the
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1 The Tower of Hanoi

indices of the string word the returned string is chosen here to be just the unchanged
word.

hanoi.py
def replace(i, word, char):

if i not in range(len(word)): return word

else: return word[:i] + char + word[i+1:]

Use of the function replace:

>>> from hanoi import *

>>> replace(2,’eer7r7eabvey’, ’P’)

’eeP7r7eabvey’

>>> replace(-1,’eer7r7eabvey’, ’P’)

’eer7r7eabvey’

>>> replace(17,’eer7r7eabvey’, ’P’)

’eer7r7eabvey’

The function nextposition(peg,position) returns the position obtained from the
position position with the move that does not involve the peg peg.

hanoi.py
def nextposition(peg, position):

i1 = position.rfind(’1’)

i2 = position.rfind(’2’)

i3 = position.rfind(’3’)

if peg == ’1’:

if i2 < i3: return replace(i3, position, ’2’)

else: return replace(i2, position, ’3’)

if peg == ’2’:

if i1 < i3: return replace(i3, position, ’1’)

else: return replace(i1, position, ’3’)

if peg == ’3’:

if i1 < i2: return replace(i2, position, ’1’)

else: return replace(i1, position, ’2’)

For example:

>>> nextposition(’3’, ’123331113233’)

’123331113133’

>>> nextposition(’1’, ’123331113233’)

’123331113232’

>>> nextposition(’2’, ’123331113233’)

’123331113231’

>>> nextposition(’2’,’222222222222’)

’222222222222’

Note that in Python word.rfind(char) returns -1 if the character char does not
occur in the string word.
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2 Intuitive Set Theory

In mathematics the only way to establish new results is by logical reasoning. It
is reasoning about properties of objects, just the way we do this in every day life.
In this chapter the reasoning is about the Tower of Hanoi, the positions of discs
and the moves of discs. Here we use simple counting principles. This in contrast
to the next chapters, where it is shown how arithmetic is based on some simple
assumptions.

2.1 Sets

The Tower of Hanoi with three discs has 27 positions:

111, 112, 113, 121, 122, 123, 131, 132, 133,

211, 212, 213, 221, 222, 223, 231, 232, 233,

311, 312, 313, 321, 322, 323, 331, 332, 333.

We will see all these positions of the Tower of Hanoi with three discs together as
one entity, an entity consisting of 27 objects. In mathematics the terms ‘set’ and
‘element’ are used. The 27 positions of the Tower of Hanoi with three discs are
the elements of a set, the set of all these positions. This set is denoted as follows:

{ 111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222,
223, 231, 232, 233, 311, 312, 313, 321, 322, 323, 331, 332, 333 } .

It is denoted as a comma separated enumeration of its elements, enclosed in braces.
Let’s denote the set of all positions of the Tower of Hanoi with n discs by V (n).
Then the above set is the set V (3). So

121 is an element of V (3)

is just another way of saying that

121 is a position of the Tower of Hanoi with three discs.

To indicate that x is an element of a set S, the symbol ∈ is used: x ∈ S. So for
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2 Intuitive Set Theory

Georg Cantor (St. Petersburg 1845 – Halle 1918)

The notion of set was originated by Cantor. He introduced
new infinite numbers to denote the number of elements of
an infinite set (the cardinal number of the set, see also
page 386).

121 is an element of V (3)

we have the shorter expression

121 ∈ V (3).

Note that this still is an ordinary sentence: 121 and V (3) are names of two objects
and the ∈ tells that the first object is an element of the second. It is a declarative
sentence, i.e. a sentence that makes a statement. To indicate that something is not
an element of a set one uses the symbol /∈, e.g.

1332 /∈ V (3),

also a declarative statement. In logic declarative statements are usually called
propositions.

It is useful—as we did above—to consider the totality of all positions of the Tower
of Hanoi as one single object. Such an object can have a name (like V (3)), which
can be used for communication. Objects can have properties: a property of V (3)
for example is that it has 27 elements. Sets can also occur as elements of other sets.
In the paragraph below and in the next two sections we will see some examples
of this phenomenon. The number of elements of a set we usually denote using #:
the number of elements of S is #(S). The number of elements of a finite set is a
natural number. In Chapter 4 natural numbers are treated and in Chapter 5 there
is more about the notions ‘number’ and ‘finite’.

The Tower of Hanoi puzzle is determined by the totality of all its positions and
all pairs of positions that are connected by one single move. For every number
n of discs these pairs form a set E(n). Note that the elements of E(n) are sets
themselves, in this case sets of two elements. The set E(2) for example is the set

8



2.2 Equality

Robert Recorde (Tenby 1510 – London 1558)

Robert Recorde studied medicine in Oxford and Cambridge.
He practised medicine in London. He wrote books on
medicine, astronomy and mathematics. The last were al-
gebra textbooks written in English: The Grounde of Artes
and The Whetstone of Witte. He introduced the symbol =,
but it took two centuries before it was generally accepted.

{ {11, 12}, {11, 13}, {12, 13}, {21, 22}, {21, 23}, {22, 23},
{31, 32}, {31, 33}, {32, 33}, {12, 32}, {13, 23}, {21, 31} } .

The set E(2) has 12 elements.

2.2 Equality

In the notation of a set based on the enumeration of its elements, the order of the
elements is irrelevant and multiple occurrences make no difference:

{0, 1}, {1, 0}, {0, 1, 0} and {1, 0, 1, 0, 1}

all denote the same set, the set with the numbers 0 an 1 as its members. A set
is thought of being completely determined by its elements. Sets having the same
elements are equal. In mathematics objects (sets) are equal if there is no distinction
between them whatsoever.

2.1 Notation. Equality of mathematical objects A and B is denoted by A = B.
The symbol = for equality was introduced by the Welsh mathematician Robert
Recorde for use in equations.

So for instance

{0, 1} = {1, 0} = {0, 1, 0} = {1, 0, 1, 0, 1}.

These are five different ways to denote the same set.

Note that in programming languages = often has a different meaning: in Python it
is used to assign a value to a variable: a = 5, the value 5 is assigned to the variable
a. For equality == is used:

9



2 Intuitive Set Theory

>>> a = 5

>>> a

5

>>> 2 + 3 == 5

True

>>> 5 == 6

False

2.3 Properties and Subsets

Some pairs of different positions of the Tower of Hanoi with n elements represent
a move and for n > 1 there are pairs which do not. Let X be a pair of different
positions. Then either X represents a move or it does not. Let’s abbreviate the
sentence

‘X represents a move’ to ‘P (X)’.

Thus the P stands for a property a pair of different positions may have: P (X)
is true if X represents a move and otherwise P (X) is not true. Let F (n) denote
the set of all pairs of different positions. So, in other words, for each X we have a
proposition P (X) depending on X. The set E(n) of all different pairs of positions
which represent a move can be given as follows:

E(n) = {X ∈ F (n) | P (X) }.

This is the notation for the set of elements left of the symbol |, which have the
property P . Using this notation, the set F (n) can be given by

F (n) = { {x, y} | x, y ∈ V (n) and x ̸= y }.

2.2 Definition. Let A and B be sets. Then B is a subset of A if every element of
B is also an element of A. Notation: B ⊆ A. We say that the set B is contained
in the set A and also that the set A contains the set B.

This is the first definition. In a definition a new notion is introduced. It is described
in terms of notions that are already known. Here the new notion is: subset. Notions
already known are: set, element. Often a notation is introduced as well; here:
B ⊆ A. The notation ‘B ⊆ A’ is short hand for ‘Every element of B is an element
of A’. Sometimes there are variations in the terminology, like here ‘B is contained
in A’ and ‘A contains B’.

A definition often starts with a sentence describing the context, a sentence telling
what it is about. Here that is the sentence: ‘Let A and B be sets.’ Subsequently
the new notion is introduced.
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2.4 New Sets from Old

An example of a subset: E(n) ⊆ F (n), every pair representing a move is a pair of
different positions. For each X ∈ E(n) we have another example: X ⊆ V (n).

Every property P that elements of a set A can have determines a subset of A, the
set of all a ∈ A such that P (a):

{ a ∈ A | P (a) } ⊆ A.

Conversely, given a subset B of a set A, the set B is given by a property for
elements a of A, namely the property P stating for a ∈ A that a ∈ B. Properties
of elements of a set A are said to be equivalent if they determine the same subset
of A.

If all elements of a set A are also elements of a set B and, conversely, all elements
of B are elements of A, then both sets have the same elements, that is they are
equal. So the assertion

A ⊆ B and B ⊆ A

comes down to (is equivalent to):

A = B.

We allow a set to have no elements. Such a set is a subset of any other set. If
Z1 and Z2 are both sets without elements, then Z1 ⊆ Z2 and Z2 ⊆ Z1, and so
Z1 = Z2. As a consequence there exists just one set without elements, so we may
speak of the set without elements.

2.3 Definition. The set without elements is called the empty set. It is denoted by
∅.

A set of three elements, say the set {1, 2, 3}, has eight subsets: {1, 2, 3}, {2, 3},
{1, 3}, {1, 2}, {1}, {2}, {3} and ∅. Note that both the set itself and the empty set
are subsets.

2.4 New Sets from Old

When talking about a property objects may have, it is convenient to look at the
totality of all objects with the given property. It helps reasoning with properties.
Combining properties leads to constructions with (sub)sets.

Properties P and Q for objects x of, say a given set U , leads to the new property
which states that the properties both hold for x, that is P (x) and Q(x).

2.4 Definition. Let A and B be sets. By A ∩ B we denote the intersection of A
and B, the set of the elements that A and B have in common:

A ∩B = {x | x ∈ A and x ∈ B }.

11



2 Intuitive Set Theory

A B A B A B

A ∩B A ∪B A \B

Figure 2.1: Intersection, union and difference of A and B

Note that in all cases there is an intersection, even if the sets have no elements in
common: { 1, 2 } ∩ { 3, 4 } = ∅. That is one of the advantages of having a thing like
the empty set. Is the intersection empty, then we say that the sets are disjoint.

Just as P and Q leads to ‘P (x) and Q(x)’, it also leads to ‘P (x) or Q(x)’. In
mathematics ‘or’ always is the inclusive or: it is not excluded that both assertions
hold.

2.5 Definition. Let A and B be sets. By A ∪B we denote the union of A and B,
the set of the elements that are in at least one of both sets:

{x | x ∈ A or x ∈ B }.

Clearly for sets A, B and C we have

(A ∩B) ∩ C = A ∩ (B ∩ C) and (A ∪B) ∪ C = A ∪ (B ∪ C).

The operations ‘taking the intersection’ and ‘taking the union’ are said to be asso-
ciative. In case of an associative operation in expressions like those above omitting
parentheses causes no ambiguity and is therefore common practice.

2.6 Definition. Let A and B be sets. The difference A\B is the set of the elements
of A which are not in B:

A \B = {x | x ∈ A and x /∈ B }.

If B ⊆ A, then A \ B is also called the complement of B in A. For A fixed the
complement might also be denoted by Bc or as B′.

Visualizing the sets A and B as discs in the plane, the sets A∩B, A∪B and A\B
can be indicated as in Figure 2.1. This visualization is helpful when reasoning with
unions, intersections and differences of sets.. They are known as Venn diagrams.

12



2.4 New Sets from Old

John Venn (Hull 1842 – Cambridge 1923)

John Venn was an English mathematician best known for
the Venn diagrams. Though they are named after him, he
was not the first who made such diagrams. However, he was
the first to formalize their usage.

2.7 Rules and logic. Using ∩, ∪ and \ new sets can be made from old. Starting
with sets A, B and C various sets can be made. The following rules hold, see
Figure 2.2:

a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),
c) A \ (B ∪ C) = (A \B) ∩ (A \ C),
d) A \ (B ∩ C) = (A \B) ∪ (A \ C).

B C

A

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

B C

A

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

B C

A

A \ (B ∪ C) = (A \B) ∩ (A \ C)

B C

A

A \ (B ∩ C) = (A \B) ∪ (A \ C)

Figure 2.2: Rules for intersection, union and difference
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2 Intuitive Set Theory

For a given object x put p, q and r for respectively the propositions x ∈ A, x ∈ B
and x ∈ C. Then the rules express the following for the object x:

a) p and (q or r) is equivalent to (p and q) or (p and r),
b) p or (q and r) is equivalent to (p or q) and (p or r),
c) p and not (q or r) is equivalent to (p and not q) and (p and not r),
d) p and not (q and r) is equivalent to (p and not q) or (p and not r).

Truth tables

A way of understanding the equivalence of propositions is by verifying all possible
cases. For each of the propositions p, q and r there are two possibilities: either it
is true or it is not. All together for the expressions above there are eight cases.

Given propositions p and q new propositions can be formed using ‘and’, ‘or’, ‘not’,
‘if, then’ and ‘if and only if’ (= ‘is equivalent to’ and often abbreviated as ‘iff’).
The truth of these new propositions is determined by the truth of p and q. If we
indicate by a 1 that a proposition is true and by a 0 that it is not, then we can
form a truth table, a table that shows how the truth of the new proposition is
determined by the truth of p and q.

p not p

0 1

1 0

p q p and q p or q if p, then q p iff q

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1

Logical symbols may be used:

not p: ¬p
p and q: p ∧ q
p or q: p ∨ q

if p, then q: p⇒ q

p if and only if q: p⇔ q

In mathematical texts usually only the last two logical symbols are used, and
mostly not very frequently.

As an example of the use of truth tables we verify the logical equivalence of the
propositions p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r):

14



2.4 New Sets from Old

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

The meaning of the logical connectives is given by their truth table. For under-
standing the truth of ‘if p, then q’ for untrue p and true q some explanation may
be helpful. Two reasons:

� Let A and B be subsets of a set U such that A ⊆ B. The proposition A ⊆ B
now has the description

for all x ∈ U : if x ∈ A, then x ∈ B.

In particular, also in case x ∈ U \ A, the proposition ‘if x ∈ A, then x ∈ B’
is considered to be true.

� If there exists some reasoning which leads from a proposition p to a proposi-
tion q, you want ‘if p, then q’ to be true. Take for p the proposition 0 = 1,
then also 1 = 0. So 0+1 = 1+0. From a false p we derived a true proposition.

Power sets and a paradox

Sets can be formed that have sets as their elements. To get used to this idea we
consider here the set of all subsets of a set:

2.8 Definition. Let A be a set. The set whose elements are the subsets of A is
called the power set of A. This set is denoted by P(A). Thus:

P(A) = {U | U ⊆ A }.

We have

P({1, 2, 3}) = {{1, 2, 3}, {2, 3}, {1, 3}, {1, 2}, {1}, {2}, {3}, ∅}
P({1, 2}) = {{1, 2}, {1}, {2}, ∅}
P({1}) = {{1}, ∅}

P(∅) = {∅}.

If #(A) = n, then A has 2n subsets, or equivalently #(P(A)) = 2n: a subset U of
A is given by specifying for each of the n elements of A whether it is an element of
U or not. See also section 5.9.
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2 Intuitive Set Theory

Lord Bertrand Russell (Ravenscroft 1872 – Penrhyndeudraeth 1970)

Russell contributed to the foundations of mathematics and
was known as a philosopher. Together with A.N. White-
head he wrote the book Principia Mathematica on the log-
ical foundations of mathematics. He was an activist, orig-
inally as a pacifist. The Russell tribunal for war crimes in
Vietnam was named after him.

The theory of sets as introduced by Cantor contained contradictions. Restrictions
to the formation of sets were needed to avoid contradictions. Russell’s paradox is
a clear example of a contradiction:

Let X be the set of all sets. This is a very very large set. For X it holds
that X ∈ X, because X itself is a set as well. That already is strange.
Let’s take the set of all sets which do not have this strange property:

Z = {Y | Y /∈ Y }.

What is the case: Z ∈ Z or Z /∈ Z ? If Z ∈ Z, then Z /∈ Z. And if
Z /∈ Z, then Z /∈ Z does not hold, so Z ∈ Z.

So there can’t be such a thing as the set of all sets. Russell’s paradox teaches
us to be careful with the formation of sets. In this book we base ourselves on
intuitive set theory. That is what mathematicians usually do. Because set theory
plays the role of foundation for the whole of mathematics it is important that
paradoxes are avoided. At the same time the theory should be flexible enough to
build mathematics as we like it to be. This is the purpose of axiomatic set theory.
For our purposes intuitive set theory suffices: we refrain from wild formations of
sets.

Exercises

1. Determine #(V (n)), i.e. the number of positions of the Tower of Hanoi with n discs.

2. As the previous exercise, but now for #(E(n)).

3. Let A and B be sets. Show that A ∩ B = B is equivalent to B ⊆ A. Also show
that A ∪B = A is equivalent to B ⊆ A.
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Exercises

4. Let P and Q be propositions. Show that the following propositions are equivalent:

P ⇒ Q, (¬P ) ∨Q, ¬(P ∧ (¬Q)).

5. We define the symmetric difference U ÷ V of sets U and V as follows

U ÷ V = (U \ V ) ∪ (V \ U).

Let A be a set and U , V and W subsets of A.

(i) Show that U ÷ V = (U ∪ V ) \ (U ∩ V ).

(ii) Show that (U ÷ V )÷W = U ÷ (V ÷W ).

(iii) Show that U ÷ ∅ = U , U ÷ U = ∅.
(iv) Show that there is a unique X ∈ P(A) such that U ÷X = V .

6. Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
(i) How many subsets does V have?

Let W be the set of all words of length 10 formed with the digits 0 and 1, for
example 0101010101 and 0000000000.

(ii) Determine #(W ).

(iii) What is the connection between P(V ) and W ?

7. Let A and B sets. Show that P(A) ⊆ P(B) is equivalent to A ⊆ B. If P(A) =
P(B), does A = B hold as well?

8. Let A and B be sets.

(i) Show that P(A ∩B) = P(A) ∩ P(B).

(ii) If A and B are disjoint, are P(A) and P(B) then disjoint as well?

(iii) Give sets A and B such that P(A ∪B) ̸= P(A) ∪ P(B).

9. Let V be a set of n elements and W the set of all subsets D of V with #(D) = 2.
Determine #(W ).

Directions for doing the exercises

a) If in an exercise it is asked to show something, then the answer consists of a
reasoning. Formulate the solution in ordinary English.

b) While reasoning, use common sense. Act as if abstract entities like numbers
and sets are ordinary objects like apples and oranges.

c) When it is asked to show something for every set A, assume some arbitrary
set A being given. Then use that A is a set and that this is all we know about
A.

d) In the exercises 1, 2, and 9 it is asked to determine a number depending on
an arbitrary number n. The answer is a formula containing n. Clarify as well
as possible the correctness of that formula. Anything helpful, like drawing
pictures, is allowed.
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3 Structure

It is the abstractness of mathematics that allows for mathematical models of real
phenomena. These can be technical, economical or from natural science, but also
from daily life. Since a mathematical model is an abstract structure, its properties
can not be established by observation. Logical reasoning is the only way. Subse-
quently, properties of the model can be interpreted in terms of the original real
phenomena. This is the general situation when mathematics is applied. In this
chapter we consider just one type of such an abstract mathematical structure: a
graph.

3.1 Graphs

3.1 Example. Given a company of eight persons, let’s assume that for each pair
of them there are two mutually exclusive possibilities: they know each other or
they don’t. In order to indicate what the situation is, we can enumerate all pairs
of persons that know each other. Let’s assume that we have labelled the persons
with the numbers 1 to 8. The enumeration can be something like {1, 2}, {1, 4},
{1, 5}, {2, 3}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 8}, {6, 7}, {7, 8}. That is for
instance all we need when we want an answer to the question: is there for every
pair of persons a person they both know? The situation can be further clarified by
drawing a picture: dots for the persons (or numbers) and lines connecting persons
that know each other, see Figure 3.1. It is clear that for the persons 1 and 7 there
is no person in the company they both know.

1

5

6

2

7

3

8

4

Figure 3.1: Picture of a graph

The picture provides a clear overview of the
whole structure. Taking the vertices of a cube
and as a property of a pair of vertices ‘being
connected by an edge of the cube’, will result in
the same picture. And the same holds for the
sides of an octahedron and the property ‘having
an edge of the octahedron in common’. This
structure is an example of a graph. A graph
consists of a set (of vertices of the graph) to-
gether with a set of subsets of two elements each
(the edges of the graph). This is typical for a mathematical structure: a set with
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3 Structure

something extra satisfying certain conditions. We will give a more precise defini-
tion.

3.2 Definition. A graph G (= (V,E)) is a finite set V together with a set E of
subsets of V each having exactly two elements. The elements of V are called the
vertices of the graph, those of E the edges.

Thus in the graph described in Example 3.1 we have V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = { {1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 6}, {3, 4}, {3, 7}, {4, 8}, {5, 6}, {5, 8}, {6, 7},
{7, 8} }.

The notion of ‘graph’ is completely described in terms of sets. A graph G consists
of two sets: the set of vertices of G and the set of edges of G. Edges are just pairs
of (different) vertices. And a vertex is nothing else then an element of a set, the set
of vertices. That is all. What the vertices actually are is irrelevant. This is a first
example of an abstract mathematical structure. Later we will see other examples:
partitions, groups, rings, fields, ordered sets, . . .

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 3.2: Sliding puzzle

3.3 Example (14-15 puzzle). A well-known puz-
zle consists of fifteen square blocks numbered 1 up
to 15 on a 4 by 4 board of square fields. The aim is
to slide the blocks from an arbitrary position on 15
of the 16 squares in such a way that they are in the
right order with the field below right being empty.
One might consider the graph of this puzzle: the
vertices are all the positions of the puzzle and edges
indicating single moves between two of the posi-

tions. We are not going to make a picture of this graph: it has 16 · 15 · 14 · · · 3 · 2
vertices and even more edges. This puzzle, with only the blocks 14 and 15 inter-
changed, was introduced as the ‘14-15 puzzle’ by Sam Loyd in 1878. For analyzing
the puzzle it is helpful to discover more structure than just the structure of a graph.
We will do so in chapter 12, section 12.5.

2 1

3

Figure 3.3: Mini
sliding puzzle

An extremely simplified version of the puzzle consists of 3 blocks
on a 2 by 2 board. It has only 24 positions. From each position
exactly two others can be reached in one move. While sliding
either you slide backwards or you slide to a unique next position.
In any situation it is obvious whether it is possible to move
the blocks to a given position. A position can be denoted by
placing the numbers 0, 1, 2 and 3 in some order, for example
2103 denotes the position given in Figure 3.3: 2 in field 1, 1 in

field 2 and 3 in field 4. The 0 is used to indicate which field is empty. In this
notation a move amounts to interchanging the 0 with one of the other numbers,
but this not allowed when the two numbers are both in the middle or both at the
end. In Figure 3.4 a picture of this graph is shown. As you see the positions come
in two kinds: in half of the positions the right order can be reached. The same
holds for the sliding puzzle with 15 blocks, but that result is much harder to obtain.
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3.2 The Solution of the Tower of Hanoi

2013
0213

1203

1230

1032

0132
3102

3120

3021

0321

2301

2310
1023

0123

2103

2130

2031

0231
3201

3210

3012

0312

1302

1320

Figure 3.4: Graph of the mini sliding puzzle

Figure 3.5: The graph H(3)

3.4 Example (The Tower of Hanoi). To the Tower
of Hanoi with n discs there is an associated graph
H(n): a vertex set V (n) together with a set E(n) of
edges. (Thus H(n) = (V (n), E(n)).) Figure 3.5 is
a picture of the graph H(3). In the next section the
way it is constructed will be explained. This graph
is connected , that is one can go from any vertex to
any other vertex by moving along the edges. If the
vertex below left is 111 and if the top vertex is 333,
then one sees in the picture of the graph that it is
possible to go from position 111 to position 333 in
7 moves. Since the graph is connected any position
of the discs can be reached from any other position.

3.2 The Solution of the Tower of Hanoi

The graph H(1) associated to the Tower of Hanoi with just one disc is quite trivial,
see Figure 3.6, where the positions are given by pictures, respectively by codes.

In the Tower of Hanoi with two discs there are six moves with the largest disc: this
disc is on one of the three pegs and it can move to the peg with no disc. If the
largest disc remains fixed we are in fact dealing with three Towers of Hanoi with
just one disc, see the top of Figure 3.7. In the bottom left codes for the positions
are used and all possible moves are indicated: it is a picture of the graph H(2).
The graph in the bottom right is another picture of H(2) using mirror images of
the small triangles. In general: leaving the largest disc fixed in the Tower of Hanoi
with n + 1 discs means you are dealing with three Towers of Hanoi with n discs.
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3 Structure

2 1

3
1 231

3

2

2

3

1

Figure 3.6: Moves of the Tower of Hanoi with one disc

Adding the six moves of the largest disc completes the Tower of Hanoi with n+ 1
discs.

Figure 3.8: 9 subgraphs of H(3)

The edges of H(3) corresponding to moves of
the smallest disc constitute 9 subgraphs of 3
vertices each, see Figure 3.8. Moving in the
graph H(3) from the vertex below left (posi-
tion 111) to the top vertex (position 333), con-
sists of 7 single moves. Alternately the small-
est disc and the unique other possible disc are
moved. The moves of the smallest disc are
from peg 1 to peg 3, from peg 3 to peg 2, or
from peg 2 to peg 1. That determines which
of the two possible moves of the smallest disc
have to be made. In case of 4 discs the moves
of the smallest disc are in the opposite direc-

tion, if the goal is position 3333, otherwise you will end in position 2222. That is
related to the graph H(4) being obtained out of three copies of H(3) using reflec-
tions. It is clear that the direction of the moves of the smallest disc is determined
by the parity of the number of discs. This solution is one of the easiest to remem-
ber. The solution of the Tower of Hanoi with 2 discs is easily seen in Figure 3.7,
which is a picture of the graph H(2). From 11 one comes to 22 with three moves:
first move 2, then 3 and finally 1. This succession can be noted by 231. From 22
one arrives at 33 by 312.

For the solution of the Tower of Hanoi with 3 discs first go from 111 to 122, next
by move 2 we arrive at 322 and finally go to 333. The resulting succession of moves
is 2312312. The first three moves are those of H(2) from 11 to 22, next move 2
and finally three moves of H(2) from 22 to 33.

For H(4) this way one obtains 321321321321321. For H(n) with n even one goes
from 111 . . . 111 to 333 . . . 333 with 321321321321 . . . and for odd n this is done by
231231231231 . . . .
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3.2 The Solution of the Tower of Hanoi

2 1

3

2 1

3

2 1

3

11 12311

13

2

12

13

1

21 22321

23

2

22

23

1

31 32331

33

2

32

33

1

2

3

1

11

12

3

11 132

12

13

1

1

21

22

3

21

23

2

2

2223 1

3132 3

3

31

33

2

32

33

1

Figure 3.7: Graph of the Tower of Hanoi with two discs. Top: with pictures and
only moves of the smallest disc. Bottom both left right: H(2).
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3 Structure

111111111111

211121112111

311131113111

121112111211

221122112211
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122112211221
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113111311131
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313131313131
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223122312231
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233123312331

333133313331
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232223222322

332233223322

113211321132

213221322132

313231323132

123212321232

223222322232

323232323232

133213321332

233223322332

333233323332

111311131113

211321132113

311331133113
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231323132313

331333133313

112311231123

212321232123

312331233123

122312231223

222322232223

322332233223

132313231323

232323232323

332333233323
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213321332133
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123312331233

223322332233

323332333233

133313331333 233323332333

333333333333

Figure 3.9: H(4)

A table of successive positions

For the puzzle with three discs one has:

2 3 1 2 3 1 2

111 113 123 122 322 321 331 333

This table is constructed from left to right. In the first row the successive moves
are given. The second row contains the successive positions obtained by applying
the moves in the first row: the red move applied to the red position has the blue
position as a result.
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Exercises

Python

What was done by hand can easily be done by computer. Having programmed
the three types of moves, every next position of the solution can be printed. The
succession of the moves depends only on the parity of the number of discs. We add
the function solution(number) to the module hanoi.py. For the Tower of Hanoi
with number discs the successive positions are shown on the screen by means of the
print command.

hanoi.py
def solution(number):

start = number * ’1’

end = number * ’3’

parity = number % 2

print(start, end = " ")

if parity == 0:

peg, position = ’3’, start

while position != end:

position = nextposition(peg, position)

peg = {’1’:’3’, ’3’:’2’, ’2’:’1’}[peg]

print(position, end = " ")

else:

peg, position = ’2’, start

while position != end:

position = nextposition(peg, position)

peg = {’1’:’2’, ’2’:’3’, ’3’:’1’}[peg]

print(position, end = " ")

For n = 6 this results in:

>>> solution(6)

111111 111112 111132 111133 111233 111231 111221 111222 113222 113223

113213 113211 113311 113312 113332 113333 123333 123331 123321 12332

2 123122 123123 123113 123111 122111 122112 122132 122133 122233 1222

31 122221 122222 322222 322223 322213 322211 322311 322312 322332 322

333 321333 321331 321321 321322 321122 321123 321113 321111 331111 33

1112 331132 331133 331233 331231 331221 331222 333222 333223 333213 3

33211 333311 333312 333332 333333

Exercises

1. How many moves are needed for the solution of the Tower of Hanoi with n discs?

2. Let W (n) be the set of words of length n in the digits 0 and 1. The graph K(n)
has W (n) as vertex set. The edges of K(n) are the subsets of W (n) consisting of
two words that differ in exactly one place. How many edges does K(n) have?
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3 Structure

3. We change the rules of the Tower of Hanoi: moves from peg 1 to peg 3 and visa
versa are no longer allowed.

(i) Make a picture of the corresponding graph.

(ii) Show that the puzzle can be solved, no matter how many discs are used.

(iii) How many moves are needed for the puzzle with n discs?

Directions for doing the exercises

a) In exercise 3(ii) it is asked to show something. Formulate the answer in
ordinary English.

b) In the exercises 1, 2 and 3 it is asked to determine a number depending on
an arbitrary number n. The answer is a formula containing n. Clarify as well
as possible the correctness of that formula. Anything helpful, like drawing
pictures, is allowed.
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Part II

Foundations

Counting one learns at a very young age. This counting is primar-
ily simply the enumeration of numbers: (0,) 1, 2, . . . . Their names
are based on a systematic way of addressing numbers which is
nowadays used throughout the world: the decimal system. Chap-
ter 4 is about the basic properties of these numbers, which we will
call natural numbers. What is minimally required is described by
the axioms of Peano.
Counting in the sense of determining the number of elements of a
set is treated in chapter 5. It is described mathematically using
maps from one set to another. Maps occur everywhere in mathe-
matics.
A transformation is a map from a set to itself. Chapter 6 is about
properties of repeated application of a transformation.
In chapter 7 the natural numbers are extended with negative num-
bers. Up to this point no use is made of negative numbers. To-
gether with the natural numbers they form the integral numbers,
or integers as they are usually called. The way this extension is
made makes that the rules of arithmetic for the integers is a direct
consequence of these rules for the natural numbers. This method
is common practice in all of mathematics.
In chapter 8 the decimal notation is generalized to a notation using
an arbitrary base and it is shown how to convert from one notation
to another.
Finally in this part fractions are introduced. The integers are
extended with fractions by the same method as used for the con-
struction of the integers. For the rational numbers thus obtained
it is again easily verified that they obey the familiar rules of arith-
metic.





4 The Natural Numbers

For every natural number there is a next natural number, its successor. We will
reduce operations like addition and multiplication to repeatedly taking successors.
Thus these operations are fixed, but that does not mean that their properties,
the well-known rules of arithmetic, are obvious. These rules require proofs. The
starting point for all of this is formed by Peano’s axioms, which are very basic
properties of the natural numbers. The main difficulty lies in the fact that we
want to prove general rules that hold for all natural numbers of which there are in
fact infinitely many. An important basic property of the natural numbers is the
principle of mathematical induction. It is a way of dealing with infinity.

Peano’s axioms are given in section 4.2. After some first examples of the use of
mathematical induction in section 4.3 the operations addition, multiplication and
exponentiation will be defined in section 4.4. In the three sections that follow the
familiar rules of arithmetic are proved. The way the rules of arithmetic are deduced
from Peano’s axioms is explained in section 4.5 in which the rules for addition are
proved. In the sections that follow the rules for multiplication and exponentiation
are proved. The last section is about the ordering of natural numbers: the meaning
of less and greater and the properties of these notions.

The rules proved in this chapter are familiar to everybody who has a basic knowl-
edge of arithmetic. Learning how to do proofs in mathematics is often difficult,
because in this stage it is not clear what to assume. Here the basic properties are
fixed and in this way this difficulty is avoided. A disadvantage of this is that it is
not really exciting.

One may just accept the familiar rules for the arithmetic of natural numbers as
being obvious and skip Peano’s axioms. However, even then it is important to
become acquainted with the principle of mathematical induction and with the way
notions are defined inductively. Moreover, in this chapter various steps in logical
reasoning are made explicit and for many that may be quite instructive.
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4.1 Counting

While learning to count one experiences two simple principles:

a) After each number comes another number, a number not encountered before
while counting.

b) There are no other numbers than the numbers reached by counting.

In this chapter the meaning of counting is just the enumeration of numbers in the
right order. The main use of it is the determination of the number of elements in
a set. This is the subject of the next chapter. It is a matter of taste whether one
starts counting with 0 or with 1. The numbers we consider here are called natural
numbers. Since they are used to indicate numbers of elements in a finite set, we
let counting start with 0: #(∅) = 0, the empty set has 0 elements. All natural
numbers together constitute a set, the set N of natural numbers, so

N = {n | n is a natural number } = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . }.

The set of natural numbers ̸= 0 we denote by N+. So N+ = N \ {0}.

Starting with 0 is not generally accepted, even not among mathematicians. So
in other texts the symbol N may stand for { 1, 2, 3, . . . }. In that case N is often
denoted by Z≥0 or Z≥0.

For the names of the natural numbers we use words in the ten digits: 0, 1, 2, 3, 4,
5, 6, 7, 8, 9. Words ̸= 0 with the left most digit being 0 are excluded. The name of
the next natural number (the successor of that number) is obtained by replacing the
digits 9 at the end of the word (possibly there are none) by digits 0 and by replacing
the digit in front of them by the next digit (in the order 0, 1, 2, 3, 4, 5, 6, 7, 8, 9). For
a word of 9’s only a 1 is put in front after replacing the 9’s by 0’s. It is obvious that
a number can be retrieved from its successor by the inverse process. The number
0 is the unique number that is not a successor.

The use of ten digits, i.e. the number ten as a base for our numeral system, is
for historic reasons. The term ‘numeral system’ refers to the way numbers are
addressed, their notation. It is a practical choice: we can use our ten fingers for
counting. This kind of notation for numbers is very powerful. Many properties
of numbers can easily be seen in their notation, for example whether a number is
greater than another number.

For a very primitive notation one might use just one digit, a vertical bar | for
instance. The notation for 0 then is an empty word and the successor of a number
is denoted by placing an extra bar. Then instead of 5 one writes |||||. One can also
tally, meaning counting in fives. That is just a bit less primitive and is a first step
in the use of five as a base. In chapter 8 numeral systems are considered for any
given base.
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Python

All programming languages have a data type for natural numbers. However, since
we are interested in minimal requirements for operating with natural numbers, the
successor function is all we will use when operating with this data type.

All the arithmetic which we will base on the successor function, will be collected in
the module integer.py. We start with the function succ which for every natural
number returns its successor.

integer.py
def succ(x):

return x + 1

>>> succ(5728002869)

5728002870

Thus we trust Python that this function is doing what we want. It feels like
cheating: we have no idea what what Python actually is doing. Alternatively, we
could have taken the description of the successor on page 30: it is a conversion of
a word in 0 to 9 into another such word. The reader might do this himself, if so
inclined. Or even more basic: represent natural numbers just by strings in | alone,
the successor being obtained by adding an extra |.

4.2 Axioms

In Greek Antiquity mathematical thinking made a big leap ahead. In a sense at
that time mathematics originated as a discipline. In those times geometry was
the principal interest: points, lines, circles. It was based on primitive notions
(notions which are not defined) and postulates (or axioms), properties which are
not proved. Primitive notions in classical mathematics are for example: point, line,
a line passing through a point (or: a point lying on a line). One of the axioms
is: through two points there passes a unique line. It is all beautifully written in
Euclid’s Elements, see the nice site

aleph0.clarku.edu/~djoyce/java/elements/elements.html.
1

Primitive notions are not defined. But they do have properties. Such properties
are considered as true if they can be derived from the axioms. In geometry the
notions of point and line are not defined, but the axioms attribute to them some
properties. If some property can be derived from the axioms there is no need to
take it as an axiom. One tries to do mathematics with as few axioms as possible.

1The site has many interactive geometric figures based on java. Nowadays for security reasons
the use of java in browsers is discouraged.
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Euclid ((probably) Alexandria, about 325 BC – Alexandria, about 256 BC)

Euclid was one of the most important mathematicians in An-
tiquity. Of his life only little is known. For many centuries
the series Elements (thirteen volumes) have been considered
as the base of all mathematics. Until just a few decades ago
mathematics education was largely based on Euclid’s geom-
etry.

Modern mathematics is based on sets, as primitive notions are used: set, being
element of a set. Thus axiomatic set theory is the foundation of all of mathematics.
Here we start from ‘naive’, nonaxiomatic, set theory. As long as one does not go
wild with constructions of sets this will cause no problems. Wanting something like
the set of all sets is asking for trouble, see Russell’s paradox on page 16.

The Greeks used numbers mainly for counting and numbers also occurred as (ratios
of) lengths of line segments and areas of geometrical figures. In Euclid’s Elements
there are a lot of interesting ideas about numbers, though geometry was the prin-
cipal interest of the Greeks. They were not inclined to treat numbers the way
they treated geometrical objects. The use of numbers was as obvious as the use
of logic in mathematics. As with the Romans there was no convenient notation
for numbers. Just try to describe in some programming language the successor of
a number using the Roman notation for numbers. Not every word in the letters
used for numbers in that notation represents a number: it is already complicated
to indicate which words actually do. The Italian mathematician Peano was the
first to describe the system of natural numbers axiomatically.

Peano’s Axioms

In Peano’s axiomatic treatment of the natural numbers there are three primitive
notions: zero, natural number, the successor of a natural number.

The axioms are:

1. Zero is a natural number.
2. The successor of a natural number is a natural number.
3. Zero is not the successor of a natural number.
4. Natural numbers having equal successors are equal.
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4.2 Axioms

Giuseppe Peano (Cuneo 1858 – Turin 1932)

Peano was one of the founders of mathematical logic and
has contributed to the foundations of mathematics and to
the development of a formal logical language.

5. If a property holds for the number zero and if it moreover holds for the
successor of every number with that property, then all natural numbers have
that property.

Actually, Peano let the natural numbers start with 1 instead of 0, but that hardly
matters. The above formulation does not use the terminology of sets. Let’s formu-
late these axioms using the language of sets.

We have:

1. a set N, the elements of which are called natural numbers;
2. an element σ(n) ∈ N, one for each n ∈ N, called the successor of n;
3. an element 0 ∈ N, called zero.

Peano’s axioms:

(N1) There is no n ∈ N with σ(n) = 0.

(N2) For all m,n ∈ N with σ(m) = σ(n) we have m = n.

(N3) Let P (n) be a property of natural numbers such that

a) P (0),
b) for all n ∈ N with P (n) we also have P (σ(n)).

Then P (n) for all n ∈ N.

Axiom (N3) is called the principle of mathematical induction. We will use it
frequently. Peano’s axioms describe our idea of counting. It is clear to us that 0 is
not a successor (axiom (N1)). Axiom (N2) is a way to express that a successor of a
number is the successor of only that number. Axiom (N3) expresses the idea that
there are no other natural numbers than the numbers you can reach by counting,
starting from 0: for P (n) take the following property of a natural number n:

If you start counting from 0, then (in principle) you will reach n.

33
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We will not prove it here, but Peano’s axioms are such that they fully determine the
system of natural numbers. One says that the axiom system is categorical. Starting
with 0 and by taking successors repeatedly, an ever growing list of natural numbers
is built. It does not contain any repetition and this potentially infinite list contains
all natural numbers.

In section 2.3 the relation between properties and subsets was described. Instead
of looking in axiom (N3) at a property P , we can also consider the subset U of N
determined by P :

U = {n ∈ N | P (n) }.

Then the formulation of (N3) becomes:

(N3’) Let U be a subset of N such that

a) 0 ∈ U ,
b) for all n ∈ U also σ(n) ∈ U .

Then U = N.

4.3 Reasoning with Numbers

The number 0 is not a successor of a natural number. In fact it is the only natural
number with this property. That is not in the axioms. It is a logical consequence
of the axioms, or as one says, it can be derived from the axioms. Such a derivation
is called a proof. In a proof every assertion (proposition) has to be a direct logical
consequence of the axioms and propositions proven beforehand. In mathematics
theorems are important proven propositions. If such a proposition is less important,
then it just called a proposition, but of course in that case a proof is still required.
The end of a proof is indicated by a 2. In other, mostly older, texts ‘QED’ or ‘qed’
is used: ‘quod erat demonstrandum’, Latin for ‘what was to be demonstrated’.

4.1 Proposition. Let m be a natural number different from 0. Then m is the
successor of a natural number.

PROOF. We prove that every natural number ̸= 0 is a successor. Consider the
property

P (n) : n = 0 or n is a successor.

Clearly P (0) holds.

Let n be a natural number for which P (n) holds. Because σ(n) is a successor,
P (σ(n)) holds as well.

Hence P (σ(n)) holds for all n for which P (n) holds. From axiom (N3) it follows
that P (n) holds for all n. Since m ̸= 0, it follows that m is a successor.
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4.3 Reasoning with Numbers

This proof is quite formal. If you understand that every natural number can be
reached by counting, then the proposition is clearly true.

In order to show in this proof that P (σ(n)) follows from P (n) for all n, we start with
the assumption that P (n) holds for a particular but otherwise arbitrary n. With
this fixed n we continue reasoning. As long as the text is indented we reason with
this particular n. For this n we derive that also P (σ(n)) holds. After that we end
the indentation and conclude—the n being arbitrary—that for every n satisfying
P (n) also P (σ(n)) holds. Schematically a proof by mathematical induction is along
the following lines.

mathematical induction
. . .

So P (0).

Suppose n is a natural number such that P (n).

. . .

So P (σ(n)).

Hence P (σ(n)) for all n ∈ N satisfying P (n).

By mathematical induction P (n) for all n ∈ N.

The dotted places (. . . ) stand here for reasonings that justify the conclusion that
follows.

This scheme for mathematical induction contains a subscheme. Let A be a set. In
order to prove a proposition ‘Q(a) for all a ∈ A’, one can take an arbitrary element
a of A and prove the property Q(a) (for this arbitrary element a of A).

all

Let a ∈ A.

. . .

So Q(a).

So Q(a) for all a ∈ A.

Of a we only used the fact that it is an element of A. Therefore, the reasoning that
leads to Q(a) is valid for any a ∈ A. In the case of the subscheme of mathematical
induction A is the set {n ∈ N | P (n) } and Q(n) the property P (σ(n)).

Mathematical induction and the Tower of Hanoi

In the first chapter we concluded that the Tower of Hanoi is solvable for any number
of discs. We did so by looking at the graph of the puzzle, and in particular at the
relation between the graph and the graph of the puzzle with one extra disc. These
graphs tell you more than the solvability of the puzzle alone. For the moment we
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concentrate on the solvability. The solvability of the puzzle with n discs can be
seen as a property of the natural number n:

P (n) : the Tower of Hanoi with n discs is solvable.

By mathematical induction we will show that the puzzle is solvable for any number
of discs.

PROOF. P (0) is trivially true: no moves at all.

Let n be a natural number satisfying P (n). We will show that then also
P (σ(n)). We assume all σ(n) discs being on peg 1 and we will show that
by a series of allowed moves they can be transferred to peg 3. Because P (n)
holds we can move all discs but the largest to peg 2. Next we move the
largest disc. The largest disc is then on peg 3. Since P (n) holds, we can
subsequently move the remaining discs from peg 2 to peg 3.

So for each natural number n for which P (n) holds, P (σ(n)) is holds as well.
Because also P (0), we have by mathematical induction that P (n) holds for all
n ∈ N.

4.4 Addition, Multiplication and Exponentiation

Taking the successor is all we have. Addition is basically done by repeatedly tak-
ing successors, multiplication is repeated addition and exponentiation is repeated
multiplication. In this section we will make this explicit. It is only about the
definitions of addition, multiplication and exponentiation; the properties of these
operations, the rules of arithmetic, are dealt with in the sections 4.5, 4.6 and 4.7.

4.4.1 Addition

When one counts from 5 and stops after the third step, i.e. when one counts 6, 7, 8,
the last number is denoted by 5 + 3. So 5 + 3 = 8. We will define generally the
meaning of m + n for all natural numbers m and n. To this end we take a fixed,
but arbitrary, number m ∈ N and describe the meaning of the numbers m + 0,
m+1, m+2, . . . , in this order. Then m+ n will be defined for all n. Because we
did so for any m, we thus have defined m+ n for all m and n.

4.2 Definition. Let m be a natural number. We define m+ n, the sum of m and
n (or m plus n), for all n by:{

m+ 0 = m,

m+ σ(n) = σ(m+ n) for all n ∈ N.
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4.4 Addition, Multiplication and Exponentiation

In the first line the meaning of m + 0 is given. The second line tells us what
m+ σ(n) means given the meaning of m+ n. So for example:

5 + 0 = 5

5 + 1 = σ(5 + 0) = σ(5) = 6

5 + 2 = σ(5 + 1) = σ(6) = 7

5 + 3 = σ(5 + 2) = σ(7) = 8

Since 1 = σ(0), we have: m+1 = m+σ(0) = σ(m+0) = σ(m). So instead of σ(m)
we can also write m + 1. Then the second line reads (m + n) + 1 = m + (n + 1).
The notation n+ 1 for σ(n) we will use frequently.

This definition is an example of an inductive or recursive definition. The meaning
of m+ σ(n) depends on the meaning of m + n. The meaning of m + 0 is given
directly.

Algorithm

The determination of the sum of m and n goes as follows. Start with the numbers
0 and m and take their successors simultaneously. Repeat this with the resulting
two numbers, etc. Continue until the first number is n. Then the second number
is m + n. This recipe uses the definition of addition in every step. A scheme for
7 + 12:

0 1 2 3 4 5 6 7 8 9 10 11 12

7 8 9 10 11 12 13 14 15 16 17 18 19

This table is made from left to right: each column determines the next column. The
process terminates when the first number in the column is n (here: n = 12). This
is an example of an algorithm: it is a succession of tasks that results in achieving
a certain goal. The algorithm terminates since any number will be reached by
repeatedly taking successors starting from 0. Such an algorithm can conveniently
be done by computer.

Python

We define the sum of natural numbers by repeatedly taking successors. This func-
tion isum rests on the function succ alone.

integer.py
def isum(x, y):

u, v = x, 0

while v != y: u, v = succ(u), succ(v)

return u

>>> isum(255603,16624)

272227
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The powerful decimal notation of numbers is not used: the successor function is
applied 16624 times.

4.4.2 Multiplication

Multiplication is repeated addition:

5 · 0 = 0,

5 · 1 = 0 + 5 = 5,

5 · 2 = 5 + 5 = 10,

5 · 3 = 10 + 5 = 15.

Starting with 0 the number 5 is added 3 times. The meaning of m · n is given by
the following inductive definition.

4.3 Definition. Let m be a natural number. We define m ·n, the product of m and
n (or m times n), for all n by:{

m · 0 = 0,

m · σ(n) = m · n+m for all n ∈ N.

Writing n+ 1 for σ(n) the second line reads:

m · (n+ 1) = m · n+m.

Algorithm

Start with the numbers 0 and 0. Add m to the second number and replace the first
by its successor. Repeat this until the first number is n. Then the second number
is m · n. A computation of 12 · 11 using this algorithm.

0 1 2 3 4 5 6 7 8 9 10 11

0 12 24 36 48 60 72 84 96 108 120 132

Python

We add the code for multiplication to the module integer.py.

integer.py
def iprod(x, y):

u, v = 0, 0

while v != y: u, v = isum(u, x), succ(v)

return u
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For the computation of the product 15 · 17 starting with 0 the number 15 is added
17 times:

>>> iprod(15,17)

255

4.4.3 Exponentiation

Exponentiation is repeated multiplication:

4.4 Definition. Letm be a natural number. For all natural numbers n the meaning
of mn, the n-th power of m (or m to the n-th power), is defined by:{

m0 = 1,

mσ(n) = mn ·m for all n ∈ N.

The last line can also be written as: mn+1 = mn ·m. We have for example:

30 = 1

31 = 1 · 3 = 3

32 = 3 · 3 = 9

33 = 9 · 3 = 27

34 = 27 · 3 = 81

35 = 81 · 3 = 243

Notice that m0 = 1 for all m, so in particular 00 = 1. On the other hand 0m = 0
for all m ̸= 0.

Algorithm

Start with the numbers 0 and 1. Replace the second by its product with m and the
first by its successor. Repeat this until the first number is n. Then the second is
mn. The computation of 58 goes as follows:

0 1 2 3 4 5 6 7 8

1 5 25 125 625 3125 15625 78125 390625
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Python

We add to integer.py the code for exponentiation.

integer.py
def ipower(x, y):

u, v = 1, 0

while v != y: u, v = iprod(u, x), succ(v)

return u

For example:

>>> ipower(5,8)

390625

4.5 Rules for Addition

Addition is a binary operation on natural numbers: to any pair m,n of natural
numbers a number m + n is assigned. In general the order of m and n is of
importance. For addition however it is not, but that is a rule we still have to
prove. It is one of the rules in the following theorem. If you want to call an
operation an addition, then you certainly want the first three rules of this theorem
to hold.

4.5 Theorem.

� Addition is associative:

For all k,m, n ∈ N (k +m) + n = k + (m+ n).

� The number 0 is a neutral element (a zero element) for the addition:

For all n ∈ N n+ 0 = 0 + n = n.

� Addition is commutative:

For all m,n ∈ N m+ n = n+m.

� Cancellation law for the addition:

For all k,m, n ∈ N: if k + n = m+ n, then k = m.

4.6 Definitions. A set together with an associative operation is called a semi-
group. If there is moreover a neutral element, then it is called a monoid . And if
the operation is commutative as well, then it is called an abelian2 monoid .

So the natural numbers together with the addition is an example of an abelian
monoid with a cancellation law .

2The adjective ‘abelian’ refers to Abel, but since it applies to many kinds of mathematical
notions—many of them Abel never thought of—it is generally not written with a capital A.
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4.5 Rules for Addition

Niels Henrik Abel (Frindø 1802 – Froland 1829)

Many notions in mathematics are named
after the Norwegian mathematician Abel.
He proved in 1824 that there is no gen-
eral formula for the solution of equations
of degree five, so-called quintic equations,
as there is for equations of degree ≤ 4, see
also chapter 19. In 2001 the Norwegian
government established the Abel price.
Since 2002 this prize is yearly awarded and
may be considered as the Nobel price for
mathematics.

Python

We have defined the function isum. This function is based on succ. Using the
computer one can verify that the addition thus defined is commutative:

>>> isum(6369,7087)

13456

>>> isum(7087,6369)

13456

With the computer this rule can only be verified for finitely many cases. That is
not sufficient for a proof. The instructions differ, but the results are the same.

We will prove the four rules in this theorem separately: the propositions 4.7, 4.8,
4.10 and 4.11. The principle of mathematical induction will be applied repeatedly.
We start with associativity.

4.5.1 Associativity

4.7 Proposition. For all k,m, n ∈ N: (k +m) + n = k + (m+ n).

PROOF.

Let k and m be any natural numbers. We will prove the assertion

P (n): (k +m) + n = k + (m+ n) for all n ∈ N

by mathematical induction. First we show that P (0) holds:

(k +m) + 0 = k +m (definition of addition)

= k + (m+ 0) (definition of addition).
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Assume that n is a natural number for which P (n) holds. Then also
P (n+ 1), because

(k +m) + (n+ 1) = ((k +m) + n) + 1 (definition of addition)

= (k + (m+ n)) + 1 (follows from P (n))

= k + ((m+ n) + 1) (definition of addition)

= k + (m+ (n+ 1)) (definition of addition).

Hence P (n + 1) holds for every n for which P (n) holds. By the principle of
mathematical induction we conclude that P (n) holds for all natural numbers
n.

So (k +m) + n = k + (m+ n) for all k,m, n ∈ N.

This proof is quite detailed. It follows the all scheme and within this scheme the
mathematical induction scheme. Usually one writes shorter proofs:

all (short)

Let a ∈ A.

. . .

So Q(a).

Thus omitting the obvious conclusion. This makes a proof by mathematical induc-
tion less elaborate:

mathematical induction (short)
. . .

So P (0).

Let n be a natural number with P (n).

. . .

Hence P (n+ 1).

By mathematical induction P (n) for all n ∈ N.

In k+m+n parentheses may be placed in two ways. Associativity means that the
way they are placed is irrelevant for the meaning of the expression. This not only
holds for a sum with three terms but also for sums with more terms. For example
with four terms:

k + ((l +m) + n) = ((k + l) +m) + n = (k + l) + (m+ n)

= k + (l + (m+ n)) = (k + (l +m)) + n.

Since the way parentheses are placed makes no difference for the meaning, we
rather do not place them at all. We simply agree that k + m + n has the same
meaning as this expression with any placement of parentheses.
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4.5.2 Neutrality of 0

4.8 Proposition. For all n ∈ N: n+ 0 = 0 + n = n.

PROOF. By the definition of addition n + 0 = n for all n ∈ N. We will prove by
mathematical induction that

Q(n): 0 + n = n

holds for all n ∈ N. The propositionQ(0) follows from the definition of the addition.

Suppose n is a natural number such that Q(n), that is 0 + n = n. Then
0 + n+ 1 = n+ 1. So Q(n+ 1) holds.

By mathematical induction it follows that Q(n) holds for all n ∈ N.

4.5.3 Commutativity

Before proving the commutativity of the addition we first derive a special case.

4.9 Lemma. For all m ∈ N: m+ 1 = 1 +m.

PROOF. We will prove by mathematical induction that the following proposition
holds for all m ∈ N:

R(m) : m+ 1 = 1 +m.

R(0) follows from the definition of the addition: 0 + 1 = 1 = 1 + 0.

Let m be a natural number such that R(m), that is m + 1 = 1 +m. Then
m+ 1 + 1 = 1 +m+ 1. So R(m+ 1) holds also.

By mathematical induction it follows that R(m) holds for all m ∈ N.

4.10 Proposition. For all m,n ∈ N: m+ n = n+m.

PROOF. Let m be any natural number. We will prove by mathematical induction
that the following proposition holds for all n ∈ N:

S(n) : m+ n = n+m.

From proposition 4.8 follows 0 +m = m = m+ 0, so S(0) holds.

Let n be a natural number such that S(n), that is m+ n = n+m. Then by
lemma 4.9:

m+ n+ 1 = n+m+ 1 = n+ 1 +m.

Hence also S(n+ 1).

By mathematical induction it follows that S(n) for all n ∈ N.
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Associativity of the addition made it unnecessary to place parentheses in a sum
with more then two terms. Since 0 is a neutral element terms 0 may be omitted.
The commutativity of the addition implies that also the order of the terms makes
no difference for the meaning of the expression.

4.5.4 Cancellation

4.11 Proposition. For all k,m, n ∈ N: if k + n = m+ n, then k = m.

PROOF. Let k and m be any natural numbers. We will prove by mathematical
induction that the proposition

T (n) : if k + n = m+ n, then k = m

holds for all natural numbers n. For n = 0 this follows directly from the definition
of the addition.

Suppose n is a natural number such that T (n).

Assume that k + n + 1 = m + n + 1. Because the successors of k + n
and m + n coincide, k + n and m + n are equal as well (axiom). From
T (n) it follows that k = m.

Hence T (n+ 1).

By mathematical induction it follows that T (n) for all n ∈ N.

In order to prove a proposition of the form

if P , then Q

one can assume P and prove Q using this assumption. Scheme:

if, then

Suppose P

. . .

Hence Q.

So: if P , then Q.

4.5.5 Extra Rules

We will need two extra rules for the addition of natural numbers.

4.12 Proposition. Let m and n be natural numbers such that m + n = 0. Then
m = n = 0.
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PROOF.

Suppose n ̸= 0. From proposition 4.1 it follows that n is a successor: n =
n′ + 1 for an n′ ∈ N. Then m+ n = m+ n′ + 1. Hence m+ n is a successor
and therefore m+ n ̸= 0 (axiom). Contradiction.

So n = 0. Then also m = 0.

This is an example of a proof by contradiction. A way to prove a proposition of the
form ‘not P ’ is given in the following scheme.

not

Suppose P .

. . .

Contradiction.

Hence not P .

A proof by contradiction is based on the idea that a proposition is either true or
false:

contradiction

Suppose not P .

. . .

Contradiction.

Hence P .

4.13 Proposition. Let m and n be natural numbers such that m + n = 1. Then
m = 0 or n = 0.

PROOF.

Suppose n ̸= 0. Then n is a successor: n = n′ + 1 for an n′ ∈ N (proposi-
tion 4.1). We have m+ n′ + 1 = 1 = 0 + 1. The numbers m+ n′ and 0 have
the same successor. So m + n′ = 0. From proposition 4.12 it follows that
m = 0.

Hence m = 0 or n = 0.

In order to prove a proposition of the form ‘P or Q’ it suffices to prove P :

or
. . .

So P .

Hence, P or Q.

Mostly, as above, for proving a proposition of the form ‘P or Q’ another approach
is more effective, in particular when it is not clear whether P holds or Q holds:
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if not, then

Suppose not P .

. . .

So Q

Hence P or Q.

For the sake of completeness we also include a scheme for a proposition of the the
form ‘P and Q’. We have a proof if we have proofs for both P and Q.

and
. . .

So P .

. . .

So Q.

Hence P and Q.

4.6 Rules for Multiplication

As there are rules for addition, there are rules for multiplication. One of these rules
connects addition and multiplication. That is no wonder, since multiplication is
repeated addition.

4.14 Theorem.

� Multiplication is associative:

For all k,m, n ∈ N (k ·m) · n = k · (m · n).
� The number 1 is a neutral element (or unit element) for the multiplica-
tion:

For all n ∈ N n · 1 = 1 · n = n.

� Multiplication is commutative:

For all m,n ∈ N m · n = n ·m.

� Cancellation law for the multiplication:

For all k,m, n ∈ N: if m · k = n · k and k ̸= 0, then m = n.

� Multiplication is distributive over addition:

For all k,m, n ∈ N k · (m+ n) = k ·m+ k · n.
The set N together with the multiplication is an abelian monoid. From lemma 4.21
it follows that multiplication is an operation in N+ as well. The set N+ together
with the multiplication is an abelian monoid with cancellation law.

Below the rules will be proved separately: the propositions 4.20, 4.15, 4.18, 4.19 and
4.22.
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4.6 Rules for Multiplication

4.6.1 Neutrality of 1

4.15 Proposition. For all natural numbers n: n · 1 = 1 · n = n.

PROOF. First we prove that n · 1 = n for any n ∈ N:

n · 1 = n · 0 + n (definition of multiplication)

= 0 + n (definition of multiplication)

= n (proposition 4.8).

We will prove 1 · n = n for all natural numbers n by mathematical induction. For
n = 0 it follows from the definition of multiplication.

Suppose n is a natural number such that 1 · n = n. Then

1 · (n+ 1) = 1 · n+ 1 (definition of multiplication)

= n+ 1.

The proposition now follows by mathematical induction.

4.6.2 Commutativity

4.16 Lemma. For all natural numbers n: 0 · n = 0.

PROOF. We prove by mathematical induction that the proposition

P (n) : 0 · n = 0

holds for all natural numbers n. For n = 0 this follows from the definition of
multiplication.

Suppose n is a natural number such that P (n). Then

0 · (n+ 1) = 0 · n+ 0 (definition of multiplication)

= 0 + 0 (P (n))

= 0 (definition of addition).

Hence P (n+ 1).

By mathematical induction it follows that P (n) for all n ∈ N.

4.17 Lemma. For all natural numbers m and n: (n+ 1)m = nm+m.

PROOF. Let n be any natural number. We prove by mathematical induction that

Q(m): (n+ 1)m = nm+m
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holds for all natural numbersm. From the definitions of addition and multiplication
it follows that Q(0) holds.

Let m be a natural number such that Q(m). Then

(n+ 1)(m+ 1) = (n+ 1)m+ n+ 1 (definition of multiplication)

= nm+m+ n+ 1 (Q(m))

= nm+ n+m+ 1 (commutativity of addition)

= n(m+ 1) +m+ 1 (definition of multiplication).

It follows by mathematical induction that Q(m) for all natural numbers m.

4.18 Proposition. For all m,n ∈ N: mn = nm.

PROOF. Let m be any natural number. We prove by mathematical induction the
proposition

R(n): mn = nm.

R(0) follows from the definition of multiplication and lemma 4.16.

Suppose n is a natural number such that R(n). Then

m(n+ 1) = mn+m (definition of multiplication)

= nm+m (R(n))

= (n+ 1)m (lemma 4.17).

Hence R(n+ 1).

It follows by mathematical induction that R(n) for all n ∈ N.

4.6.3 Distributivity

4.19 Proposition. For all k,m, n ∈ N: k(m+ n) = km+ kn.

PROOF. Let k and m be any natural numbers. We prove the proposition

S(n): k(m+ n) = km+ kn

by mathematical induction. From the definitions of addition and multiplication
follow k(m+ 0) = km and km+ k0 = km+ 0 = km, so S(0).

Suppose n is a natural number such that S(n). Then

k(m+ n+ 1) = k(m+ n) + k (definition of multiplication)

= km+ kn+ k (S(n))

= km+ k(n+ 1) (definition of multiplication).

Hence S(n+ 1).
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By mathematical induction it follows that S(n) holds for all n ∈ N.

4.6.4 Associativity

4.20 Proposition. For all k,m, n ∈ N: (km)n = k(mn).

PROOF. Let k and m be any natural numbers. We prove by mathematical induc-
tion the proposition

T (n): (km)n = k(mn).

T (0) follows from the definition of multiplication.

Let n a natural number such that T (n). Then

(km)(n+ 1) = (km)n+ km (definition of multiplication)

= k(mn) + km (T (n))

= k(mn+m) (distributivity)

= k(m(n+ 1)) (definition of multiplication).

By mathematical induction it follows that T (n) holds for all natural numbers n.

Because multiplication is associative and commutative and since 1 is a neutral
element (equivalently, N together with the multiplication is an abelian monoid), in
products with more than two factors parentheses may be omitted, the order of the
factors makes no difference and factors 1 can be left out.

4.6.5 Cancellation

4.21 Lemma. Let m and n be natural numbers with mn = 0. Then m = 0 or
n = 0.

PROOF.

Suppose m ̸= 0 and n ̸= 0. Then m and n are successors: m = m′ + 1 and
n = n′ + 1 for natural numbers m′ and n′. Then mn is a successor as well:
mn = (m′ + 1)(n′ + 1) = m′n′ + n′ +m′ + 1. Contradiction.

Hence m = 0 or n = 0.

4.22 Proposition. Let n be a natural number ̸= 0. Then for all k,m ∈ N:

if kn = mn, then k = m.

PROOF. We prove by mathematical induction the proposition
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U(m): for all k ∈ N: if kn = mn, then k = m.

Suppose k ∈ N with kn = 0 · n, or equivalently kn = 0. Then, since n ̸= 0,
from lemma 4.21 it follows that k = 0.

So U(0).

Let m be a natural number with U(m).

Suppose k ∈ N such that kn = (m+1)n. Then kn ̸= 0, since m+1 ̸= 0
and n ̸= 0. So also k ̸= 0. This means that k is a successor: k = k′ + 1
for a k′ ∈ N. Then (k′+1)n = (m+1)n and so k′n+n = mn+n. From
the cancellation law for the addition it follows that k′n = mn. From
U(m) follows that k′ = m, that is k = m+ 1.

Hence U(m+ 1).

By mathematical induction it follows that U(m) holds for all m ∈ N.

An extra rule for the multiplication of natural numbers:

4.23 Proposition. Let m and n be natural numbers with mn = 1. Then m = n = 1.

PROOF. Because mn ̸= 0 we have m ̸= 0. So m is a successor: m = m′ +1 for an
m′ ∈ N. Then m′n+n = 1. Since also n ̸= 0 it follows that m′n = 0 (lemma 4.13).
So m′ = 0, that is m = 1. Then n = 1 as well.

4.7 Rules for Exponentiation

4.24 Proposition. For all k,m, n ∈ N: kmkn = km+n.

PROOF. Let k and m be any natural numbers. We prove the proposition

P (n): kmkn = km+n

by mathematical induction. P (0) follows from kmk0 = km1 = km and km+0 = km.

Let n be a natural number such that P (n). We have

kmkn+1 = kmknk (definition of exponentiation)

= km+nk (P (n))

= km+n+1 (definition of exponentiation).

Hence P (n+ 1).

By mathematical induction it follows that P (n) holds for all n ∈ N.

4.25 Proposition. For all k,m, n ∈ N: (km)n = kmn.
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PROOF. Let k and m be any natural numbers. We prove the proposition

Q(n): (km)n = kmn

by mathematical induction. Q(0) follows from (km)0 = 1 and km0 = k0 = 1.

Let n be a natural number such that Q(n). We have

(km)n+1 = (km)nkm (definition of exponentiation)

= kmnkm (Q(n))

= kmn+m (proposition 4.24)

= km(n+1) (definition of multiplication).

So Q(n+ 1).

By mathematical induction it follows that Q(n) holds for all n.

4.26 Proposition. For all k,m, n ∈ N: (km)n = knmn.

PROOF. Let k and m be any natural numbers. We prove the proposition

R(n): (km)n = knmn

by mathematical induction. R(0) follows from (km)0 = 1 and k0m0 = 1 · 1 = 1.

Let n be a natural number such that R(n). We have

(km)n+1 = (km)nkm (definition of exponentiation)

= knmnkm (R(n))

= knkmnm (commutativity of multiplication)

= kn+1mn+1 (definition of exponentiation).

Hence R(n+ 1).

By mathematical induction it follows that R(n) holds for all n.

4.8 Ordering

4.27 Definition. Let m and n be natural numbers. Let x be a natural number such
that m+ x = n. Then x is called the difference of n and m. Notation: x = n−m.

Note that if such an x exists, there is no other: if y is a natural number with
m+y = n, then m+y = m+x, and so by the cancellation law for addition: y = x.
That is why we can speak of the difference.

The difference of n and m exists if one arrives at n when starting to count from
m. If in this process the successor is taken x times, the difference is x.
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4.28 Definition. Let m and n be natural numbers. We say that m is less than or
equal to n if there exists an x such that m + x = n. Notation: m ≤ n (or n ≥ m
and then we say that n is greater than or equal to m). If x ̸= 0, so if m ̸= n, then
we say that m is less than n. Notation: m < n (or n > m: n greater than m).

So: m ≤ n ⇐⇒ the difference of n and m exists.
m < n ⇐⇒ the difference of n and m exists and is not 0.

4.29 Proposition. The relation ≤ is an ordering of N, i.e.:
(i) n ≤ n for all n ∈ N,
(ii) for all k,m, n ∈ N: if k ≤ m and m ≤ n, then k ≤ n,
(iii) for all m,n ∈ N: if m ≤ n and n ≤ m, then m = n.

PROOF.

(i) Since n+ 0 = n, we have n ≤ n.
(ii) If k + x = m and m+ y = n, then k + x+ y = m+ y = n and so k ≤ n.
(iii) If m + x = n and n + y = m, then m + x + y = m = m + 0. From the

cancellation law it follows that x + y = 0. So x = 0 (lemma 4.12), that is
m = n.

There are no natural numbers between a natural number and its successor:

4.30 Lemma. Let n and k be natural numbers with n ≤ k ≤ n+1. Then k = n or
k = n+ 1.

PROOF. There are x, y ∈ N such that n + x = k and k + y = n + 1. Then
n+x+y = k+y = n+1. From the cancellation law for the addition it follows that
x+ y = 1. By proposition 4.13 we have x = 0 or y = 0, so n = k or k = n+ 1.

The next proposition states that the natural numbers are totally ordered by ≤: for
natural numbers m and n we have m ≤ n or n ≤ m. Both m ≤ n and n ≤ m
only if m = n. So exactly one of the following three propositions is true: m < n,
m = n, n < m.

4.31 Proposition. Let m and n be natural numbers. Then m ≤ n or n ≤ m.

PROOF. Let m be any natural number. We prove by mathematical induction that
the proposition

P (n): m ≤ n or n ≤ m

holds for all natural numbers n. Clearly P (0) holds: 0 ≤ m.

Let n be a natural number such that P (n). If m ≤ n, then m ≤ n + 1. So
suppose thatm ≤ n is not the case. By P (n) we have n < m and so n+x = m
for an x ∈ N+. Since x ̸= 0, the number x is a successor: x = y + 1, with
y ∈ N. Then n+ 1 + y = m and so n+ 1 ≤ m.

The next proposition describes a connection with addition.
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4.32 Proposition. Let m, n and k be natural numbers. Then

m+ k ≤ n+ k ⇐⇒ m ≤ n.

PROOF.

⇐: Suppose m ≤ n. Then there is an x ∈ N such n = m + x. Then also
m+ k + x = n+ k and so m+ k ≤ n+ k.

⇒: Suppose m+k ≤ n+k. Then there is an x ∈ N such that n+k = m+k+x.
From the cancellation law for the addition it follows that n = m+ x. Hence
m ≤ n.

A connection with multiplication is described in the next proposition.

4.33 Proposition. Let m, n and k be natural numbers. Then:

(i) if m ≤ n, then mk ≤ nk;
(ii) if mk ≤ nk and k ̸= 0, then m ≤ n.

PROOF.

(i) Suppose m+ x = n for an x ∈ N. Then mk + xk = nk and so mk ≤ nk.
(ii) Suppose mk ≤ nk and k ̸= 0.

Suppose that not m ≤ n. Then by proposition 4.31 n < m, that is
n + x = m for an x ∈ N+. Then nk + xk = mk and so nk > mk,
because xk ̸= 0. Contradiction.

Hence m ≤ n.

Since for any pair of natural numbers m,n we have m ≤ n or n ≤ m, one of the
differences n−m and m− n exists.

4.34 Definitions and notations. If the equation m · x = n is solvable, then we
say that n is a multiple of m and if m ̸= 0 we denote the solution as n

m . (By the
cancellation law for the multiplication this solution is unique.)

If the equation xm = n is solvable, then we say that n is an m-th power and if
m ̸= 0 we denote the solution as m

√
n. This solution is unique if x ̸= 0. (This follows

by mathematical induction using the cancellation law for the multiplication.)

If the equation mx = n is solvable, then we say that n is a power of m and if m ≥ 2
we denote the solution as m log n. Also this one is unique.

An important goal of the extensions of the number system is to have solutions
for equations, but that is not all we want. We also insist the normal rules for
arithmetic to remain valid. Maybe that is asking too much. Anyway, the existence
of such extensions is far from obvious.
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Algorithm

Proposition 4.31 makes it so that there is an algorithm for determining the difference
of two natural numbers if it exists: take successors of both numbers, repeat this for
the result, etc. Do so until one of the original numbers reappears. The proposition
states that this will happen. In a scheme for the numbers 6 and 19:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 20 21 22 23 24 25 26 27 28 29 30 31 32

This shows that 6 ≤ 19 and moreover, that 19− 6 = 13.

Python

The algorithm can easily be converted to Python-code. We add it to integer.py.

integer.py
def idiff(x, y):

u, v, w = 0, x, y

while v != y and w != x: u, v, w = succ(u), succ(v), succ(w)

return u,v,w

def leq(x, y):

return idiff(x, y)[1] == y

def geq(x, y):

return idiff(x, y)[2] == x

def difference(x, y):

return idiff(x, y)[0]

Then:

>>> leq(567,120)

False

>>> geq(567,120)

True

>>> difference(567,120)
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Exercises

1. In exercise 3 of chapter 1 we saw that the Tower of Hanoi remains solvable if moves
between pegs 1 and 3 are not allowed, whatever the number of discs. We observed
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Exercises

this by looking at the corresponding graph. Show by mathematical induction that
this puzzle is solvable for any number of discs.

2. Let a and b be natural numbers. Then

(a+ b)2 = a2 + 2ab+ b2.

Prove this.

3. Natural numbers occur as numbers of elements of sets. Having 3 pairwise disjoint
sets of 5 elements, the 15 elements can also be grouped in 5 sets of 3 elements,
see Figure 4.1. The number of elements of a set can be determined by counting

Figure 4.1: Commutativity of the multiplication

the elements. It is crucial that the result is independent of the order in which the
elements are counted. Rules of arithmetic—such as here the commutativity of the
multiplication—can be visualized by grouping the elements in different ways. Visu-
alize the distributivity of the multiplication over the addition of natural numbers.

4. Let k and m be natural numbers such that k ≤ m.

(i) Prove that k2 ≤ m2.

(ii) Prove that kn ≤ mn for all n ∈ N.

5. Let k, m and n be natural numbers such that m ≤ n and k ̸= 0. Prove that
km ≤ kn.

6. (i) Show that exponentiation is not associative. (The convention is that k(mn)

can be denoted as kmn

.)

(ii) We want to use the notation m ∗ n for repeated exponentiation: m ∗ 1 = m,
m ∗ 2 = mm, m ∗ 3 = mmm

, . . . How should m ∗ n be defined? What would
m ∗ 0 be?

7. Prove that for any natural number n the number n5 − n is a multiple of 5.

8. Prove that for all natural numbers n we have: n < 2n.

9. Let a and b be natural numbers with b ≤ a. Prove the identity

(a− b)2 = (a2 + b2)− 2ab.

10. Let a and b be natural numbers such that b ≤ a. Prove the identity

(a− b)(a+ b) = a2 − b2.
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11. Prove that for all n ∈ N the inequality 2n+1 ≥ n2 + n+ 2.

Directions for doing the exercises

a) Indicate exactly in the exercises 2, 4, 5, 7, 8, 9 and 10 which propositions or
rules are used.

b) In the exercises 7, 9 and 10 the difference of natural numbers occurs. The
number a − b is, if it exists, the number that added to b gives a. Use that.
Since negative numbers are not yet introduced in this stage a− b can not be
seen as a+ (−b).
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Natural numbers are made for counting - counting in the sense of determining the
number of elements of a set. Intuitively it is clear what is meant by ‘number of
elements’, we have been using this in Part I. In this chapter a more precise meaning
of counting is introduced. As a consequence we have to prove properties of counting
which are intuitively obvious, e.g. the outcome being independent of the order in
which elements are counted. As is to be expected, in these proofs mathematical
induction is used frequently; it is a fundamental property of the natural number
system. The operations addition, multiplication and exponentiation of natural
numbers are closely related to operations on sets. We will make this explicit. The
counting in this chapter is very elementary. Chapter 11 deals with a smarter kind
of counting, also known as combinatorics. In section 5.7 elementary, but important,
counting principles are treated.

Maps and all related notions, as composition of maps, injectivity and such are
frequently used in mathematics. In this book they will be used regularly. In this
chapter the emphasis is on their connection with counting.

5.1 Maps

For the comparison of sets we use maps between these sets. First we define this
very important notion in mathematics of map.

5.1 Definition. A map (or mapping) f from a set A to a set B consists of

a) a set A, the domain of f ,
b) a set B, the codomain of f ,
c) for each element a of A an element f(a) of B, the image of a under f .

5.2 Notations. If f is a map from A to B, then we denote this as f : A → B or

as A
f→ B. To indicate that a b ∈ B is the image under f of an a ∈ A, so f(a) = b,

we also write f : a 7→ b. Note the difference in the use of the symbols → and 7→.

5.3 Terminology. Another word for map is function. A map from A to B is also
called a function on A with values in B. In the function terminology one usually
calls f(a) the value of the function f in a. Here we will mainly use the word
function if the codomain is a set of numbers and moreover, the codomain is not
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Figure 5.1: Picture of a map

seen as an important aspect of the structure. We then simply speak of a function
on A. The function values are numbers. Extension of the number system leads
to having more functions on A. For the time being we only have functions with
values in the natural numbers.

5.4 Example. Let A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5}. A map f from A to B
is determined by the assignment of an element of B to each a ∈ A; that element
is denoted by f(a). So for example: f(1) = 2, f(2) = 2, f(3) = 1 and f(4) = 5.
In this way we have an image f(a) ∈ B for each a ∈ A. See Figure 5.1 for a
picture of this map. This map may be denoted by f =

(
1 2 3 4
2 2 1 5

)
. The top row is

an enumeration of the elements of A and for each of these elements its image is
given directly underneath. The notation reveals the domain, but not completely
the codomain, only the image of elements in the codomain.

We will not often use this way to denote a map f : A → B. It is not a generally
accepted notation. In many cases there are better ways to denote a map.

5.5 Examples. For each natural number n there is its successor σ(n). This can
be seen as a map σ from N to N, in fact a transformation of N:

σ : N → N, n 7→ σ(n).

Other examples of transformations of N are:

αm : N → N, n 7→ n+m (add m),

µm : N → N, n 7→ nm (multiply with m).

The maps αm and µm are given by a formula, namely n+m, respectively nm. Or,
if you prefer an x in a formula, x +m and xm. In secondary school mathematics
a map (a function) is often defined as a formula. Note that in the definition given
here there is no mention of a formula, see also example 5.4, where no formula was
given. All that is required, is designating to every element of the domain an image
element in the codomain.
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5.2 The Graph of a Map

René Descartes (La Haye (now Descartes) 1596 – Stockholm 1650)

Descartes, or Cartesius, made the application of algebra
to geometry possible by the introduction of coordinates,
nowadays often called Cartesian coordinates. Long before
Descartes, already in the 14th century, coordinates were
used by the French mathematician N. Oresme. He lived
in The Netherlands during a long part of his lifetime.

5.6 Definition. Let f : A → B and U ⊆ A. The restriction of f to U is the map
U → B, u 7→ f(u). A map g : A′ → B, where A′ ⊇ A is called a prolongation of f
to A′ if f is the restriction of g to A .

A map has a unique restriction to a given subset. There is no unique prolongation
of a map f : A → B to an A′ ⊇ A, unless A′ = A or #(B) = 1.

5.2 The Graph of a Map

An ordered pair (a, b) has a first element a and a second element b. We allow that
a = b. Characteristic for ordered pairs is that they satisfy

(a, b) = (c, d) ⇐⇒ a = c and b = d.

One way to see an ordered pair as a set is to define it as follows:

(a, b) = {{a}, {a, b}}.

See also exercise 1.

5.7 Definition. Let A and B be sets. The Cartesian product of A and B is the set

A×B = { (a, b) | a ∈ A and b ∈ B }.

The Cartesian product is also called the product for short.

A map f : A → B consists of a domain A, a codomain B and for each a ∈ A an
f(a) ∈ B. The map f may also be given by the subset of A × B consisting of all
ordered pairs with an element of the domain A as the first element and its image
in B as the second.

5.8 Definition. The graph of a map f : A→ B is the following subset of A×B:

Γ(f) = { (a, f(a)) | a ∈ A }.
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Note that the word graph has now two meanings: the graph of a map and the graph
as a structure consisting of vertices and nodes as defined earlier. When used the
meaning should be clear from the context.

5.9 Example. The graph of the map f : {1, 2, 3, 4} → {1, 2, 3, 4, 5} of example 5.4
is a subset of the product {1, 2, 3, 4} × {1, 2, 3, 4, 5}. See Figure 5.2. The dots
correspond to elements of the Cartesian product. The graph is the subset of the
elements indicated by the big dots. Note that in such a picture every vertical line
contains exactly one element of the graph.

Figure 5.2: The graph of the map f of example 5.4

5.10 Examples. The graphs of σ, αm and µm of examples 5.5 are subsets of
N× N. Pictures of these graphs are of course incomplete, see Figure 5.3.

...

. . .

...

. . .

...

. . .

Figure 5.3: The graphs of σ, α2 and µ2

5.3 Maps and Subsets

If f is a map from a set A to a set B, then we have for each element a of A an
image element b ∈ B. For a subset U of A, we can form the set of images of all
elements of U . Thus we obtain a subset of B.
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5.11 Definition. Let f : A→ B. The map f∗ : P(A) → P(B) is defined by:

f∗(U) = { f(a) | a ∈ U } (for all U ⊆ A).

The subset f∗(U) of B is called the image of U under f , usually also denoted by
f(U). The subset f∗(A) of B is called the image of the map f .

The image of a map is a subset of its codomain. In general it is not the codomain
itself. In example 5.4 the image of f is the set {1, 2, 5}. The elements 3 and 4 of the
codomain do not belong to the image. As another example, the image of σ : N → N
is N+, while the codomain is N.

In the function terminology one uses the word range for the image of a function.

A map f : A→ B comes with a map f∗ : P(A) → P(B). It also comes with a map
in the opposite direction: from P(B) to P(A).

5.12 Definition. Let f : A→ B. The map f∗ : P(B) → P(A) is defined by:

f∗(V ) = { a ∈ A | f(a) ∈ V } (for all V ⊆ B).

The subset f∗(V ) of A is called the inverse image of V under f . It is often denoted
by f−1(V ).

5.13 Example. For the map f of example 5.4 we have the following inverse images
of the one element subsets of B:

f∗({1}) = {3}, f∗({2}) = {1, 2}, f∗({3}) = f∗({4}) = ∅ and f∗({5}) = {4}.

5.4 Injective, Surjective and Bijective

5.14 Definition. A map f : A→ B is called

� injective if for all a, a′ ∈ A the following holds: if f(a) = f(a′), then a = a′;
� surjective if for all b ∈ B there is an a ∈ A such that f(a) = b;
� bijective if f is both injective and surjective.

An injective map is also called an injection. In the same manner we speak of
surjections and bijections.

Equivalent formulations:

f is injective if for every b ∈ B the set f∗({b}) has at most one element;

f is surjective if for all b ∈ B the set f∗({b}) at least one element;

f is bijective if for all b ∈ B the set f∗({b}) has exactly one element;

f is surjective if f∗(A) = B (the image of f is the whole codomain).
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5.15 Examples. The transformation σ : N → N is injective. That is one of
Peano’s axioms. The transformation αm : N → N, n 7→ n + m is injective as
well. That is the cancellation law for the addition. The cancellation law for the
multiplication tells us that µm : N → N, n 7→ nm is injective for m ̸= 0. Since
0 is not a successor, the map σ is not surjective. The transformation αm is only
surjective in case m = 0. The transformation µm is only surjective in case m = 1.
In fact α0 = µ1 = 1N, see definition 5.18 for the definition of the transformation
1A of a set A.

By definition, when f : A → B is a map, then for each a ∈ A there is a unique
element b ∈ B such that (a, b) is in the graph of f , namely b = f(a). Conversely,
for an element b ∈ B there might be more elements a ∈ A such that (a, b) ∈ Γ(f).
In that case f is not injective. Or, there is not any a ∈ A such that (a, b) ∈ Γ(f),
in which case f is not surjective. If a map f from A to B is bijective, then there
is for each b ∈ B a unique a ∈ A such that (a, b) ∈ Γ(f), that is f(a) = b. So a
bijective map f : A→ B comes with a map from B to A which maps every image
element f(a) back to a ∈ A.

5.16 Definition. Let f : A→ B be bijective. The inverse of f is the map f−1 : B →
A defined by f−1(b) = a if f(a) = b. (Note that a is the unique element of f∗({b}).)

Later, the −1 in the expression f−1 will be seen as a number, a negative number.
Here it is merely part of the notation for the inverse map.

5.17 Definition. A map from a set A to itself is also called a transformation of A.
A permutation is a bijective transformation.

5.18 Definition. Let A be a set. The identity map 1A from A to A is determined
by

1A(a) = a (for all a ∈ A).

1A is also called the identity transformation of A.

The identity transformation is a permutation. The inverse of the identity transfor-
mation is the identity transformation itself.

The identity transformation maps every element to itself. That seems to be a
highly uninteresting map. Nevertheless it is an important notion, comparable with
the number 0 and the empty set. In case you prefer a formula for this identity
transformation: the formula is x.

5.19 Definition. Let a and b be different elements of a set A. The permutation
τa,b of A defined by

τa,b(x) =


a if x = b

b if x = a

x otherwise.

It is called the transposition of a and b.
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Clearly a transposition is a permutation. The inverse of a transposition is the
transposition itself: τ−1

a,b = τa,b.

5.20 Example. The transposition of 2 and 6 in {1, 2, 3, 4, 5, 6} is the permutation

τ2,6 =
(
1 2 3 4 5 6
1 6 3 4 5 2

)
,

see Figure 5.4.
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Figure 5.4: The transposition in {1, 2, 3, 4, 5, 6} of 2 and 6

Reformulation of Peano’s Axioms

Using the map terminology the axioms have a compact formulation.

We have a triple (N, σ, 0) consisting of:

a) a set N (its elements are called natural numbers),
b) a transformation σ of N (the successor transformation),
c) an element 0 of N (the number zero).

The following are satisfied:

a) 0 /∈ σ∗(N);
b) σ is injective;
c) for all U ⊆ N: if 0 ∈ U and σ∗(U) ⊆ U , then U = N.

5.5 The Composition of Maps

If the codomain of a map f and the domain of a map g coincide, then these maps
can be composed.

5.21 Definition. Let f : A→ B and g : B → C be maps. The composition gf of f
and g is a map from A to C and is determined by

(gf)(a) = g(f(a)) (for all a ∈ A).
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The composition of f and g is also denoted by g ◦ f . Sometimes that notation is
preferred for the sake of clarity.

Notice the order in the notation of the composition: first f and then g:

a 7→ f(a) 7→ g(f(a)).

5.22 Example. Let f : A → B be the map of example 5.4. Figure 5.5 contains
pictures of this map and of the map g : B → C, where C = {1, 2, 3} and g(1) =
g(2) = 3, g(3) = g(5) = 1, g(4) = 2. The composition gf : A→ B is the map with
(gf)(1) = (gf)(2) = (gf)(3) = 3 and (gf)(4) = 1.
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Figure 5.5: The composition of maps

5.23 Proposition. The composition of maps is associative, i.e. let f : A → B,
g : B → C and h : C → D be maps, then

h(gf) = (hg)f.

PROOF. The maps h(gf) and (hg)f both have domain A and codomain D. It
remains to prove that (h(gf))(a) = ((hg)f)(a) for all a ∈ A. This is a direct
consequence of the definition of composition: for all a ∈ A we have

(h(gf))(a) = h((gf)(a)) = h(g(f(a)))

((hg)f)(a) = (hg)(f(a)) = h(g(f(a))).

Since the composition is associative there is no need for parentheses; no matter how
they are placed the result is the same.

5.24 Proposition. Let f : A→ B be a map. Then

f ◦ 1A = f = 1B ◦ f.
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PROOF. These maps have A as domain and B as codomain. Furthermore, for all
a ∈ A:

(f ◦ 1A)(a) = f(1A(a)) = f(a) = 1B(f(a)) = (1B ◦ f)(a).

From the definition of the inverse of a bijection it follows that f−1f = 1A and
ff−1 = 1B . Conversely these properties characterize the inverse:

5.25 Proposition. Let f : A → B and g : B → A be maps with gf = 1A and
fg = 1B. Then f is bijective and g = f−1.

PROOF. Suppose a, a′ ∈ A such that f(a) = f(a′). Then (gf)(a) = (gf)(a′), and
so a = a′. Hence f is injective. For b ∈ B we have f(g(b)) = (fg)(b) = b. So b is the
image of g(b) under f . It follows that f is surjective. Since f is bijective, the inverse
map f−1 exists. For this inverse we have f−1 = (gf)f−1 = g(ff−1) = g.

If for example a transformation τ of a set A satisfies ττ = 1A, then it follows that
τ is a permutation having τ itself as inverse.

The next proposition describes how injectivity and surjectivity behave under the
composition of maps.

5.26 Proposition. Let f : A→ B and g : B → C be maps. Then:

(i) if f and g are injective, then gf is injective,
(ii) if gf is injective, then f is injective,
(iii) if f and g are surjective, then gf is surjective,
(iv) if gf is surjective, then g is surjective,
(v) if f and g are bijective, then gf is bijective and we have (gf)−1 = f−1g−1,
(vi) if gf is bijective, then f is injective and g is surjective.

PROOF.

(i) Suppose f and g are injective and let a, a′ ∈ A be such that (gf)(a) =
(gf)(a′). Then g(f(a)) = g(f(a′)) and so f(a) = f(a′), since g is injective.
It follows that a = a′, since f is injective.

(ii) Suppose gf is injective and let a, a′ ∈ A be such that f(a) = f(a′). Then
g(f(a)) = g(f(a′)) and so a = a′, since gf is injective.

(iii) Suppose f and g are surjective and let c ∈ C. Then there is a b ∈ B with
g(b) = c, since g is surjective. Because f is surjective, there is an a ∈ A
with f(a) = b. Then we have (gf)(a) = g(f(a)) = g(b) = c. Hence gf is
surjective.

(iv) Suppose gf is surjective and let c ∈ C. Because gf is surjective, there is
an a ∈ A with (gf)(a) = c. Then there is a b ∈ B with g(b) = c, namely
b = f(a).

(v) The first part follows from (i) and (iii). The second part from proposition 5.25
together with f−1g−1gf = f−1f = 1A and gff−1g−1 = gg−1 = 1C .

(vi) This follows from (ii) and (iv).
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5.6 Numbers of Elements

Under a bijective map f : A→ B the elements of A correspond to the elements of
B. So in a sense the sets A and B have the same number of elements. However,
we have not defined what the ‘number of elements’ actually means.

5.27 Definition. Sets A and B are called equipotent (or equipollent, or equinumer-
ous, or equivalent) if there exists a bijection from A to B. Notation: A ≈ B.

The notion equipotent satisfies properties one can expect:

5.28 Proposition. Let A, B and C be sets. Then:

(i) A ≈ A,
(ii) if A ≈ B, then B ≈ A,
(iii) if A ≈ B and B ≈ C, then A ≈ C.

PROOF.

(i) 1A is a bijection from A to A.
(ii) If f is a bijection from A to B, then f−1 is a bijection from B to A.
(iii) If f is a bijection from A to B and g a bijection from B to C, then gf is a

bijection from A to C.

In order to indicate the number of elements of a set, the set can be compared with
a standard set. For each natural number n we have a standard set n.

5.29 Notations. Let n ∈ N. By n we denote the set of natural numbers from 1
up to n:

n = { k ∈ N | 1 ≤ k ≤ n } = {1, 2, . . . , n}.

We also use the following notation:

Nn = { k ∈ N | k < n } = {0, 1, . . . , n− 1}.

Thus we have 0 = ∅ and for all n ∈ N: n+ 1 = n ∪ {n + 1}. This determines n
inductively, just as the Nn are determined by N0 = ∅ and Nn+1 = Nn∪{n}. Clearly
Nn ≈ n.

The idea is that n is the standard set having n elements. Then a set A has n
elements if A ≈ n. Both A ≈ m and A ≈ n cannot hold for different m and n. But
why not? We will give a proof.

5.30 Proposition. For all natural numbers m and n: if there exists an injective
map f : m→ n, then m ≤ n.

PROOF. We prove by mathematical induction that the following holds for all nat-
ural numbers n.

P (n): for all m ∈ N: if there exists an injection f : m → n, then
m ≤ n.
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Figure 5.6: From an injection 6 → 8 to an injection 5 → 7

If there is an injection m→ ∅, then m = 0. So P (0) holds.

Suppose n is a natural number such that P (n). We will prove that then also
P (n+1). Let f : m→ n+ 1 be an injective map. Because 0 ≤ n+1 we may
assume that m ̸= 0. Let g : n+ 1 → n+ 1 be defined by

g(k) =


f(m) if k = n+ 1

n+ 1 if k = f(m)

k otherwise.

Otherwise put: if f(m) = n + 1, then g = 1n+1, and if f(m) ̸= n + 1,
then g = τf(m),n+1. Since g is injective, gf is injective as well. We have
(gf)(m) = g(f(m)) = n + 1 and, since gf is injective, gf maps the subset
m− 1 into n, see also Figure 5.6. Thus by restriction we have an injective
map fromm− 1 to n. From P (n) it follows thatm−1 ≤ n, that ism ≤ n+1.

Hence P (n) holds for all natural numbers n.

5.31 Corollary. Let m and n be natural numbers and let A be a set such that
A ≈ m and A ≈ n. Then m = n.

PROOF. From A ≈ m and A ≈ n it follows that m ≈ n. So there is a bijection
f : m → n. Both f and f−1 are injective. Hence m ≤ n and n ≤ m, that is
m = n.
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This corollary justifies the following definition.

5.32 Definition. A set A has n elements if A ≈ n. Notation: #(A) = n. We call
n the number of elements of A. If such an n exists then the set A is said to be
finite. A bijective map n→ A is said to assign numbers to the elements of A.

Counting elements of a set is a very natural thing to do and many properties of
counting we see as obvious. We used this already in some examples and some
exercises. This section however is about its mathematical foundation.

In definition 5.32 it is defined what it means for a set to be finite. A consequence
of giving a definition for a notion that is intuitively clear, is that obvious properties
require a proof, as is the case for the following proposition.

5.33 Proposition. Let B be a subset of a finite set A. Then B is finite and #(B) ≤
#(A).

PROOF. First we prove that subsets of A are finite. We do so by induction on
#(A). For #(A) = 0 it is obvious.

Suppose that for an n ∈ N it is true that subsets of a set with n elements are
finite. Let A be a set with n+1 elements. Let f : n+ 1 → A assign numbers
to the elements of A. It determines an assignment n → A \ {f(n + 1)} of
numbers to the elements of A \ {f(n + 1)} and so #(A \ {f(n + 1)}) = n.
Let B be a subset of A. The subset B \ {f(n+1)} of A \ {f(n+1)} is finite.
There are two possibilities: f(n+ 1) ∈ B and f(n+ 1) /∈ B. In both cases it
follows easily that B is finite.

By mathematical induction it follows that subsets of finite sets are finite. Now let
B be a subset of a set A with #(A) = n. Then B is finite, say #(B) = m. There
are bijections f : A→ n and g : m→ B. The map m→ n, x 7→ f(g(x)) is injective
and so it follows from proposition 5.30 that m ≤ n.

Yet another consequence of proposition 5.30:

5.34 Corollary. For all natural numbers m and n: if there exists a surjective map
f : m→ n, then m ≥ n.

PROOF. Suppose f : m → n is surjective. Choose for every b ∈ n an ab ∈ m such
that f(ab) = b. Thus we have a map g : n→ m, b 7→ ab. Then fg = 1n and so the
map n→ m, b 7→ ab is injective. From proposition 5.30 it follows that n ≤ m.

5.7 Some Counting Principles

Some counting principles that are widely used will be derived in this section.
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Johann Peter Gustav Lejeune Dirichlet (Düren 1805 – Göttingen 1859)

One of Dirichlet’s interests was number theory. He gave
a proof for Fermat’s Last Theorem for the exponents 5 and
14, see subsection 10.4.2 for Fermat’s Last Theorem. A well-
known theorem of Dirichlet states that in an arithmetic pro-
gression a, a+ b, a+ 2b, a+ 3b, . . . of natural numbers there
is a prime number if a and b have only 1 as a common factor.
In the proof complex numbers are used.

5.35 Theorem (Dirichlet’s principle). Let A and B be finite sets such that
#(A) > #(B). Let f be a map from A to B. Then f is not injective. (To put
it differently: there is an element b ∈ B such that f∗({b}) has more than one
element.)

PROOF. Put #(A) = m and #(B) = n. There are bijections g : m → A and
h : B → n.

Suppose f is injective. Then hfg : m → n is also injective. However m > n.
This contradicts proposition 5.30.

Hence f is not injective.

Dirichlet’s principle is also known as the ‘pigeonhole principle’ and as the ‘Schub-
fachprinzip’, the German name Dirichlet gave to the principle: if you put objects in
drawers (‘Schubfachen’ in German) and there are more objects than drawers, then
there will be a drawer containing more than one object.

We also have:

5.36 Theorem. Let A and B be finite sets such that #(A) < #(B). Let f be a
map from A to B. Then f is not surjective. (Alternatively: there is an element
b ∈ B such that f∗({b}) is empty.)

PROOF. Put #(A) = m and #(B) = n. There are bijections g : m → A and
h : B → n.

Suppose f is surjective. Then hfg : m→ n is also surjective. Howeverm < n.
This contradicts Corollary 5.34.

Hence f is not surjective.

69



5 Counting

5.37 Theorem. Let f : A → B be a map where A and B are finite sets such that
#(A) = #(B). Then:

f is injective ⇐⇒ f is surjective.

PROOF.

⇒: Suppose f is not surjective. Then there is an element b ∈ B such that
b /∈ f∗(A). The map A → B \ {b}, a 7→ f(a) is injective as well, while
#(B \ {b}) = #(B)− 1 < #(A). In contradiction with proposition 5.35.

⇐: Suppose f is not injective. Then there are a1, a2 ∈ A such that a1 ̸= a2 and
f(a1) = f(a2). Then A \ {a2} → B, a 7→ f(a) is surjective as well, while
#(A \ {a2}) = m− 1 < #(B). In contradiction with proposition 5.36.

In particular a transformation f : A→ A of a finite set A is injective if and only if it
is surjective. For an infinite (= not finite) set the situation is completely different.
The map σ : N → N for example is injective, but not surjective: the injectivity is
an axiom and another axiom states that 0 is not in the image. Since σ∗(N) = N+

we have a bijection from N to N+. So N \ {0} ≈ N. After removing 0 from N the
same ‘number’ of elements remain! In later chapters we will consider more infinite
sets.

5.38 Definition. A set A is called countable if A ≈ N.

Countable sets are infinite. For a countable set A there is a bijection N → A, n 7→
an. Thus a sequence containing all elements of A can be formed, which is without
repetition. There are other (larger) infinite sets. They are called uncountable. In
chapter 17 we will have a closer look at these.

5.8 Operations on Numbers and Sets

Natural numbers are invented for counting, for indicating the number of elements
in a finite set. Operations on natural numbers correspond to operations on sets:
addition corresponds to the union, multiplication to the Cartesian product.

5.39 Lemma. Let m and n be natural numbers. Then n ≈ m + n. (The notation
m+ n stands for the set {m+ k | k ∈ n }.)

PROOF. The map n→ m+n, k 7→ m+k has an inverse: m+n→ n, l 7→ l−m.

The following proposition, which connects the addition of numbers to the union of
sets, is obviously true. It is however fundamental for many counting principles.

5.40 Proposition. Let A and B be disjoint finite sets. Then A ∪ B is also finite
and #(A ∪B) = #(A) + #(B).
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PROOF. If #(A) = m and #(B) = n, then there are bijections f : A → m and
g : B → m+ n. The map h : A ∪B → m+ n defined by

h(x) =

{
f(x) if x ∈ A,

g(x) if x ∈ B,

is bijective. Hence #(A ∪B) = m+ n = #(A) + #(B).

The multiplication of natural numbers corresponds to the Cartesian product of
sets:

5.41 Proposition. Let A and B be finite sets. Then A × B is also finite and
#(A×B) = #(A) ·#(B).

PROOF. We prove this with induction on #(B). For #(B) = 0, i.e. for B empty,
A×B is also empty.

Assume the proposition is true for sets B with #(B) = n. Then we must
prove that it is also true if #(B) = n+1. So suppose #(B) = n+1. Choose
an element b ∈ B. We have

A×B = (A× (B \ {b})) ∪ (A× {b}).

From proposition 5.40 it follows that

#(A×B) = #(A×(B\{b}))+#(A×{b}) = #(A)·n+#(A) = #(A)·(n+1).

5.42 Notation. Let A and B be sets. The set of all maps from A to B we denote
by BA. Thus

BA = { f | f : A→ B }.

Exponentiation of natural numbers corresponds to this set of maps:

5.43 Proposition. Let A and B be finite sets. Then BA is also a finite set and
#(BA) = #(B)#(A).

PROOF. We prove this by induction to #(A). For #(A) = 0 the set BA has only
one element: #(B∅) = 1.

Assume the proposition is true if #(A) = n. Then we aim to prove that it
also holds for #(A) = n + 1. So suppose #(A) = n + 1. Choose an a ∈ A.
The map

F : BA → BA\{a} ×B, f 7→ (f ′, f(a)),

where f ′ is the restriction of f to A\{a}, is a bijection and so it follows from
proposition 5.41 that

#(BA) = #(BA\{a} ×B) = #(B)n ·#(B) = #(B)n+1.
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In the proofs of the propositions 5.41 and 5.43 no explicit bijections were given. In
chapter 8 we will look at this again. For proposition 5.41 see also the exercises 8
and 9 of this chapter.

5.9 Number of Subsets

We have already seen that the number of subsets of a set A of n elements, i.e. the
number of elements of P(A), equals 2n. According to the previous section this also
is the number of maps from A to {0, 1}. We will show that the sets P(A) and
{0, 1}A are equipotent by constructing a bijection between these sets, whether A
is finite or not.

5.44 Definition. Let A be a set and U a subset of A. The characteristic function
of U on A is the function

χU : A→ {0, 1}, x 7→

{
1 if x ∈ U

0 if x /∈ U .

5.45 Definition. Let A be a set and f : A→ {0, 1}. The support of f is the subset

D(f) = {x ∈ A | f(x) = 1 }

of A.

5.46 Proposition. Let A be a set. Then P(A) ≈ {0, 1}A.

PROOF. We will prove that the maps U 7→ χU and f 7→ D(f) are each others
inverses: D(χU ) = U for all U ⊆ A and χD(f) = f for all f : A→ {0, 1}.

Let U be a subset of A. Then for all x ∈ A:

x ∈ D(χU ) ⇐⇒ χU (x) = 1 ⇐⇒ x ∈ U.

Hence D(χU ) = U .

Let f : A→ {0, 1}. Then for all x ∈ A:

χD(f)(x) = 1 ⇐⇒ x ∈ D(f) ⇐⇒ f(x) = 1.

Hence χD(f) = f .

5.47 Example. Let A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The subset U = {3, 4, 6, 8, 9} of
A corresponds to the map f =

(
0 1 2 3 4 5 6 7 8 9
0 0 0 1 1 0 1 0 1 1

)
. We have f = χU and U = D(f).

See also exercise 6 of chapter 1.

5.48 Corollary. Let A be a finite set. Then #(P(A)) = 2#(A).
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Exercises

PROOF. #(P(A)) = #({0, 1}A) = #({0, 1})#(A) = 2#(A).

Characteristic functions of unions and intersections of subsets are determined by
the characteristic functions of these subsets.

5.49 Proposition. Let U and V be subsets of a set A and χU and χV the charac-
teristic functions of U and V on A. Then:

(i) a 7→ χU (a)χV (a) is the characteristic function of U ∩ V on A.
(ii) a 7→ χU (a) + χV (a) is the characteristic function of U ∪ V on A if U ∩ V =

∅.

Exercises

1. Show that {{a}, {a, b}} = {{c}, {c, d}} ⇐⇒ a = c and b = d.

2. Let A be a set. How many maps are there from ∅ to A? And how many from A to
∅ ?

3. Let f : A → B and g : B → C.

(i) Prove that (gf)∗ = g∗f∗.

(ii) Prove that (gf)∗ = f∗g∗.

4. Let f : A → B be surjective.

(i) Show that f∗ : P(A) → P(B) is surjective.

(ii) Show that f∗ : P(B) → P(A) is injective.

5. Let f : A → B be injective.

(i) Show that f∗ : P(A) → P(B) is injective.

(ii) Show that f∗ : P(B) → P(A) is surjective.

6. Let f be a map from A to B. Show that A ≈ Γ(f).

7. Let G = (V,E) be a graph and v ∈ V , that is v is a vertex of the graph G. The
degree of v is the number of e ∈ E with v ∈ e. We denote the degree of v as deg(v),
so

deg(v) = #{ e ∈ E | v ∈ e }.

Show that, if #(V ) ≥ 2, there are two vertices of G with the same degree.

8. Let m and n be natural numbers.

(i) Prove that for all x ∈ Nm and all y ∈ Nn we have xn + y ∈ Nmn. (See
notation 5.29 for the notation Nn.)

(ii) Prove that the map f : Nm × Nn → Nmn, (x, y) 7→ xn+ y is injective.

(iii) Prove that the map f is bijective.
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9. Let A and B be finite sets with #(A) = m and #(B) = n. Then there are bijections
g : A → m and h : B → n. Consider the map F : A×B → mn which is the following
composition:

A×B
s→ m× n

t→ Nm × Nn
f→ Nmn

u→ mn,

where f is the bijection from exercise 8 and the maps s, t and u are determined by
s(a, b) = (g(a), h(b)), t(x, y) = (x− 1, y − 1) and u(z) = z + 1.

(i) Show that F is bijective.

(ii) Show that F (a, b) = (g(a)− 1)n+ h(b).

In this manner we have not only shown that #(A × B) = mn, but we also
constructed a bijection F : A×B → mn out of given bijections g : A → m and
h : B → n.

10. Let A be an infinite set. Show that there is an injective map f : N → A. (Construct
such an f step by step: show that an injective fn : Nn → A can be extended to an
injective fn+1 : Nn+1 → A.)

11. Let A be an infinite set and let a be an element of A. Prove that A ≈ A \ {a}.
(Hint: use exercise 10.)

12. Let A a countable set and B an infinite subset of A. Prove that B is countable.

13. Let A be a countable set and f : A → B a surjective map with B infinite. Prove
that B is countable.

14. Let A and B be countable sets. Prove that A×B is countable.

15. Let U and V be subsets of a set A. These subsets correspond to characteristic
functions χU and χV on A.

(i) Show that the function

A → {0, 1}, a 7→ χU (a) + χV (a)− 2χU (a)χV (a)

is the characteristic function of U ÷ V . See exercise 5 of chapter 2.

(ii) How is the characteristic function of U ∪ V determined by χU and χV ?

16. Let A0, A1, A2, . . . be countable sets with bijections f0 : N → A0, f1 : N → A1,
f2 : N → A2, . . .

(i) Show that the map

F : N× N →
∞⋃

n=0

An, (n,m) 7→ fn(m)

is surjective.

(ii) So the set
⋃∞

n=0 An is countable. Why?

(iii) Show that the map F from item (i) is bijective if and only if Ai ∩Aj = ∅ for
i ̸= j.
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6 Iteration

For transformations domain and codomain coincide. So transformations of the
same set can always be composed. In particular a transformation can be composed
with itself, and again the result can be composed with that transformation, etc.
This is the so-called iteration of the transformation.

6.1 Transformations

By definition 5.17 a transformation is a map with the same set as domain and
codomain.

6.1 Example. Let A = 10. A transformation f of A is given by the image
elements f(a) of all elements a of A. For example, f(1) = 4, f(2) = 10, f(3) = 4,
f(4) = 10, f(5) = 5, f(6) = 9, f(7) = 1, f(8) = 2, f(9) = 10, f(10) = 3. Since
domain and codomain coincide, one can make a picture of a transformation by
indicating with arrows in a picture of the set A how elements are mapped. In
Figure 6.1 there is a picture of this transformation.

1

2

3

4 5

6

7

8

9

10

Figure 6.1: Picture of a transformation
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Once more Peano’s Axioms

Peano’s axioms concern a triple (N, σ, 0), where N is a set, σ a transformation of
N and 0 an element of N.

We will give three triples (A, σ, 0) of sets A with a transformation σ and an element
0 such that in each of the three cases exactly two of the three axioms are satisfied.

a) A transformation not satisfying the first axiom, but satisfying the other two:

0

b) Not satisfying the second axiom, but satisfying the other two:

0 1

c) Not satisfying the third axiom, but satisfying the other two:

∗ 0 1 2 3 4 5 6 7 8 . . .

From this it follows that each of the three axioms is not a consequence of the other
two.

6.2 Sequences and Tuples

A sequence a0, a1, a2, . . . in a set A can be seen as a map. In fact one can define
sequences as maps.

6.2 Definition. An infinite sequence in a set A is a map from N to A. Usually,
infinite sequences are just called sequences.

6.3 Notation. If a : N → A is a map, then every n ∈ N has an image element
a(n) ∈ A. Instead of a(n) one often writes an. The sequence is usually denoted
by a0, a1, a2, . . . and also by (an), where it is understood that the n ‘varies’ over
the natural numbers. The image of n, that is an, is called the n-th term of the
sequence.

There is no end to a sequence: there is no last term. Also sequences that do have
an end can be considered:

6.4 Definition. Let n ∈ N. A sequence of length n, or an n-tuple, in a set A is a
map from Nn to A. It is also called a finite sequence without further reference to
its length.
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6.5 Notation. An n-tuple a : Nn → A is often denoted by a0, a1, . . . , an−1.

6.6 Notations. Let A be a set. For later use we introduce the following notations:

R(A) : the set of infinite sequences in A (= AN),

F(A) : the set of finite sequences in A,

Fn(A) : the set of finite sequences of length n in A (= ANn).

6.3 Recursive Definitions

Let A be a set. A sequence (an) in A can be given by a direct definition of the
terms an. For example: an = n2. In this example the sequence (an) is the sequence
of the squares. A sequence (an) can also be determined in a recursive way: then
an is defined in terms of (a0, . . . , an−1).

A special case is the so-called simple recursion. Then every term in the sequence is
determined by the preceding term, except for the first term. In this way a sequence
(an) in a set A is given by its first term a0 and a transformation f of A:{

a0 = a,

an+1 = f(an) for all n ∈ N.

6.7 Examples. The definitions of addition, multiplication and exponentiation of
natural numbers in section 4.4 are examples of simple recursion.

Addition. For each m ∈ N a sequence m+0,m+1,m+2, . . . in N is defined:
the first term is m and the transformation is σ, the successor map.

Multiplication. For each m ∈ N a sequence m · 0, m · 1, m · 2, . . . in N is
defined: the first term is 0 and the transformation is αm, adding m.

Exponentiation. For each m ∈ N a sequence m0,m1,m2, . . . in N is defined:
The first term is 1 and the transformation is µm, multiplication by m.

6.8 Example. On page 35 we saw that the Tower of Hanoi is solvable for any
number if discs. We saw how from a solution for n discs a solution for n+ 1 discs
can be constructed. In the solution thus obtained the largest disc is moved only
once. It follows that this solution is one with a minimal number of moves. If we
denote the number of moves in this solution for the case of n discs by an, we obtain
a recursively defined sequence a0, a1, a2, . . . :{

a0 = 0,

an+1 = 2an + 1 for all n ∈ N.
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In chapter 1 it was evident from the graphs of the Tower of Hanoi that in case of
n discs 2n − 1 moves are needed. Can we conclude that the sequence (bn) with
bn = 2n−1 is the same sequence as (an) ? The sequence (an) is defined recursively.
If the sequence (bn) satisfies the defining conditions for (an), these sequences must
coincide. We have to show that{

b0 = 0,

bn+1 = 2bn + 1 for all n ∈ N.

This is easily verified: b0 = 20−1 = 0 and 2bn+1 = 2(2n−1)+1 = 2n+1−1 = bn+1

for all n ∈ N.

Later we will often use n! (n factorial). A recursive definition is easily given:

6.9 Definition. The natural number n! is for natural numbers n defined by{
0! = 1,

(n+ 1)! = (n+ 1) · n! for all n ∈ N.

Thus for example 5! = 5 · 4! = 5 · 4 · 3! = 5 · 4 · 3 · 2! = 5 · 4 · 3 · 2! = 5 · 4 · 3 · 2 · 1! =
5 · 4 · 3 · 2 · 1 · 0! = 5 · 4 · 3 · 2 · 1. Less formally one can write

n! = n · (n− 1) · (n− 2) · · · 2 · 1.

This is not a simple recursion: the n-th term is not only determined by its pre-
decessor, but also by its number n. However, a definition by simple recursion is
possible using a transformation of N× N instead of a transformation of N:

N× N → N× N, (n, x) 7→ (n+ 1, (n+ 1)x).

Then there is a sequence (n, an) in N× N with{
(0, a0) = (0, 1),

(n+ 1, an+1) = (n+ 1, (n+ 1)an) for all n ∈ N.

Thus the sequence (an) is the sequence (n!). In some cases each next term is
determined by the two preceding terms, if they exist:

6.10 Example. The sequence f0, f1, f2, . . . is defined by:
f0 = 0,

f1 = 1,

fn+2 = fn + fn+1 for all n ∈ N.

So each next term is the sum of the last two terms; if there are no two last terms,
the term is given directly. Thus the sequence is formed by starting with 0 and 1
and repeatedly adding a term by taking the sum of the two last terms:
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Fibonacci (Pisa(?) 1170 – Pisa(?) 1250)

Fibonacci’s real name was Leonardo Pisano. He con-
tributed a lot to the revival of mathematics in Europe. He is
still well-known for the Fibonacci-numbers he introduced in
his book Liber abaci. In that book he also introduced in Eu-
rope the decimal system for the notation of numbers. This
notation originated in India and the Arabic world. The Fi-
bonacci numbers were about the number of pairs of rabbits
in the n-th generation when starting with 1 pair (f1 = 1) and
making the assumption that every pair generates a new pair
in the next generation and also in the generation thereafter,
but thereafter the pair will die.

n: 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
fn: 0 1 1 2 3 5 8 13 21 34 55 89 · · ·

The number fn is called the n-th Fibonacci-number . The sequence can also be
given by simple recursion using the transformation (x, y) 7→ (y, x+y) of N×N and
(0, 1) as first term:{

(a0, b0) = (0, 1),

(an+1, bn+1) = (bn, an + bn) for all n ∈ N.

Then (an, bn) = (fn, fn+1) for all n ∈ N. Fibonacci-numbers pop up in many
places and they have intriguing properties. There even is a journal—The Fibonacci
Quarterly—devoted to these numbers and related topics.

6.4 Iteration of Transformations

If f is a transformation of a set A, then by simple recursion a sequence (an) in A
is defined for any a ∈ A: {

a0 = a,

an+1 = f(an) for all n ∈ N.

So

a = a0
f7→ a1

f7→ a2
f7→ · · · f7→ an

f7→ an+1
f7→ · · ·

6.11 Definition. The sequence (an) is called the course of a under f .
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6.12 Example. Let f be the transformation of example 6.1. The course of 7 under
f is the sequence 7, 1, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, . . . . The course of
5 is 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . . .

Python

In the Python module combinatorics.py we put some functions which return (a
part of) the course of an element under a transformation. The function course(f,

N, a) returns the first N terms of the course of the element a under the transfor-
mation f.

combinatorics.py
def course(f, N, a):

seq = [a]

i = 1

while i < N:

a = f(a)

seq.append(a)

i = i + 1

return seq

Below some examples are given of transformations f for use with the Python func-
tion course(f,N,a). The first is the transformation of example 6.1. The others
are from integer.py. The transformation lambda x:isum(x,7) for example is the
transformation which adds x to the natural number 7.

>>> def fun(x):

... return {1:4, 2:10, 3:4, 4:10, 5:5, 6:9, 7:1, 8:2, 9:10, 10:3}[x

]

...

>>> fun(7)

1

>>> course(fun, 20, 7)

[7, 1, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3]

>>> from integer import *

>>> course(succ, 11, 17)

[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

>>> course(lambda x: isum(x, 7), 11, 25)

[25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95]

>>> course(lambda x: iprod(x, 7), 6, 25)

[25, 175, 1225, 8575, 60025, 420175]

Thus for each n ∈ N and a ∈ A we have an element an ∈ A, that is we have
a transformation a 7→ an of A. These transformations can also easily be defined
using the composition of transformations:
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6.13 Definition. Let f be a transformation of A. The transformations fn with
n ∈ N of A are defined by{

f0 = 1A,

fn+1 = ffn for all n ∈ N.

The transformation fn of A is called the n-th iterate of f .

Another word for ‘transformation’ is ‘operator ’. One also says that a transformation
of A (= operator on A) operates on the elements of A, or that the transformation is
applied to elements of A. Iteration of a transformation is the repeated application
of the transformation.

6.14 Proposition. Let f be a transformation of A and a ∈ A. Then the sequence
(fn(a)) is the course of a under the transformation f .

PROOF. The sequence (fn(a)) satisfies the definition of the course:

f0(a) = 1A(a) = a,

fn+1(a) = (ffn)(a) = f(fn(a)).

6.15 Definition. A couple (A, f) consisting of a set A and a transformation f of
that set is sometimes referred to as a (discrete) dynamical system.

Calling such a couple (A, f) a dynamical system indicates one’s interest in the
course of the elements under f . In fact it is just a transformation. There also is
the suggestion that one is dealing with a process in time: one starts with an a at
time 0 and goes through the sequence fn(a), at time n being at fn(a).

6.16 Examples. Using iterates of transformations one can see the operations of
addition, multiplication and exponentiation as repeatedly applying a transforma-
tion:

Addition is repeatedly taking the successor: m+ n = σn(m).

Multiplication is repeated addition: mn = αnm(0).

Exponentiation is repeated multiplication: mn = µnm(1).

6.17 Proposition (Rules for iterates). Let f be a transformation of a set A, let
m and n be natural numbers and let g be a transformation of A which commutes
with f , that is fg = gf . Then

(i) fnfm = fm+n.
(ii) (fm)n = fmn.
(iii) (gf)n = gnfn.

PROOF.

(i) By induction on n. The induction step is as follows: fn+1fm = ffnfm =
ffm+n = fm+n+1.
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(ii) By induction on n. The induction step: (fm)n+1 = fm(fm)n = fmfmn =
fmn+m = fm(n+1).

(iii) First prove by induction on n that f commutes with gn. The induction step is
here: fgn+1 = fggn = gfgn = ggnf = gn+1f . Next to prove by induction on
n that (gf)n = gnfn. The induction step: (gf)n+1 = gf(gf)n = gfgnfn =
ggnffn = gn+1fn+1.

These rules were proved by induction, but it is also important to understand the
rules intuitively. The notation fn stands for the composition of n times the trans-

formation f , so fn =

n︷ ︸︸ ︷
f . . . f . Then the first rule is obvious:

fnfm =

n︷ ︸︸ ︷
f . . . f

m︷ ︸︸ ︷
f . . . f =

m+n︷ ︸︸ ︷
f . . . f .

Also the other rules can be understood this way.

Python

The function iterate(f, n, a) returns the image of a under the n-th iterate of f.

combinatorics.py
def iterate(f, n, a):

i = 0

while i != n:

a = f(a)

i = i + 1

return a

>>> iterate(fun, 12, 7)

10

>>> iterate(lambda x:isum(x, 12), 45, 123)

663

6.5 Repeating Sequences

Sequences which occur as the course of an element under a transformation have a
special shape: when two terms in the sequence happen to be equal, the sequence
is repeating.

6.18 Definition. A sequence (an) in a set A is called repeating (or eventually
periodic) if there are an m ∈ N and a k ∈ N+ such that an = an+k for all n ≥ m.
We also say that the sequence repeats from the m-th term. The finite sequence
am, . . . , am+k−1 we call a period of length k of the sequence. The finite sequence
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a0, . . . , am−1 we call the initial part preceding the period am, . . . , am+k−1. The
sequence is called purely repeating (or periodic) if moreover m = 0.

If the sequence (an) repeats from the m-th term with a period of length k, the
sequence is often notated as follows

a0, a1, a2, . . . , am−1, am, . . . , am+k−1.

The number sequence 1, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, . . . has a
period 4, 5, 6, 7 of length 4 with 1, 2, 3 as initial part:

1, 2, 3, 4, 5, 6, 7.

Or a period 5, 6, 7, 4 of length 4 with initial part 1, 2, 3, 4:

1, 2, 3, 4, 5, 6, 7, 4.

Or a period 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4 of length 12 with initial part 1, 2, 3, 4:

1, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4.

There are infinitely many possibilities. There exist, in the notation used in the
definition, least numbers m and k. Here they are respectively 3 and 4.

6.19 Proposition. Let f be a transformation of a set A and let the sequence (an)
be the course of the element a ∈ A. Then, either n 7→ an is injective, that is all
terms are different, or the sequence (an) repeats.

PROOF. Suppose n 7→ an is not injective. Then we must prove that (an) repeats.
Since n 7→ an is not injective, there exist n1, n2 ∈ N with n1 < n2 and an1

= an2
.

Put k = n2 − n1. Then the sequence repeats from the n1-th term with a period of
length k, because for all l ∈ N:

an1+l = fn1+l(a) = f lfn1(a) = f l(an1) = f l(an1+k) = f lfn1+k(a) = an1+l+k.

6.20 Corollary. Let f be a transformation of a finite set A. Then for all elements
of A the course under f repeats.

PROOF. The course is not injective, because A has only finitely many transfor-
mations.

6.21 The 3n+ 1 conjecture. Here is a simple transformation f of N+ for which
the nature of the course of elements is an open problem:

f(n) =

{
3n+1

2 if n is odd,
n
2 if n is even.

The course of 1: 1, 2.
The course of 3: 3, 5, 8, 4, 2, 1.
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The course of 6: 6, 3, 5, 8, 4, 2, 1.
The course of 7: 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1.
The conjecture is that the course of every number repeats with period 2, 1. For
numbers up to 10 · 258 this has been verified by computer, but still infinitely many
numbers remain for which it is unknown. The conjecture is also known as the
Collatz conjecture, the Ulam conjecture, the Syracuse conjecture. It probably was
first formulated by Collatz in 1937.

Python

If the course repeats, for its computation you can stop as soon as a term equals a
previous term. The function repcourse(f,a) returns for a transformation with a
repeating course the smallest initial part and the smallest period.

combinatorics.py
def repcourse(f, a):

pper = []

while a not in pper:

pper.append(a)

a = f(a)

i = pper.index(a)

return [pper[:i], pper[i:]]

>>> repcourse(fun, 7)

[[7, 1], [4, 10, 3]]

>>> repcourse(fun, 3)

[[], [3, 4, 10]]

>>> repcourse(fun, 5)

[[], [5]]

The function collatz(n) is the transformation from example 6.21. Here we use
the natural numbers as they occur in python: the data type integer together with
its methods.

>>> def collatz(n):

... if (n % 2) == 1: return (3 * n + 1) // 2

... else: return n // 2

...

>>> collatz(721)

1082

>>> collatz(722)

361

>>> repcourse(collatz, 67)

[[67, 101, 152, 76, 38, 19, 29, 44, 22, 11, 17, 26, 13, 20, 10, 5, 8,

4], [2, 1]]
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>>> repcourse(collatz, 2**10 - 1)

[[1023, 1535, 2303, 3455, 5183, 7775, 11663, 17495, 26243, 39365, 590

48, 29524, 14762, 7381, 11072, 5536, 2768, 1384, 692, 346, 173, 260,

130, 65, 98, 49, 74, 37, 56, 28, 14, 7, 11, 17, 26, 13, 20, 10, 5, 8,

4], [2, 1]]

Exercises

1. The transformation f of the set 10 is given by f(1) = 2, f(2) = 3, f(3) = 4,
f(4) = 1, f(5) = 6, f(6) = 7, f(7) = 8, f(8) = 9, f(9) = 10 and f(10) = 5.

(i) Draw a picture of this transformation.

(ii) What is the course of 8 under f ? And of 2 ?

(iii) Draw pictures of f2 and f3.

(iv) The sequence f0, f1, f2, f3, . . . repeats. What is the length of the smallest
period?

2. (i) Let f be a transformation of a finite set A. Show that the sequence f0, f1, f2,
f3, . . . repeats.

(ii) What is the length of the smallest period of this sequence if f is the transfor-
mation of example 6.1.

3. We fill rectangles of width 2 and length n (2× n-rectangles) with 2× 1-rectangles.
A tessellation of a 2× 7-rectangle is for example:

Let an be the number of ways a 2× n-rectangle can be filled with 2× 1-rectangles.

(i) Determine a1, a2, a3 and a4.

(ii) What is an ?

4. The sequence (gn) is defined in the same way as the sequence of Fibonacci numbers,
but with other initial values:

g0 = 1,

g1 = 0,

gn+2 = gn + gn+1 for all n ∈ N.

(i) What is the relation between the numbers gn and the Fibonacci numbers fn ?

(ii) Let more generally the sequence (xn) be defined with the initial values x and

85



6 Iteration

y. 
x0 = x,

x1 = y,

xn+2 = xn + xn+1 for all n ∈ N.
Describe a relation between the numbers xn and the Fibonacci numbers fn.

5. The sequence (sn) of natural numbers is defined by{
s0 = 0,

sn+1 = sn + 2n+ 1 for all n ∈ N.

Give a formula for sn and prove its correctness.

6. Let b ∈ N. The sequence (an) is defined by:{
a0 = b,

an+1 = 2an + 1 for all n ∈ N.

For b = 0 this is the sequence of example 6.8. Determine a formula for an.

7. A variation on the transformation of the 3n + 1 conjecture, see example 6.21.
Consider the transformation g of N+ defined by

g(n) =


3n− 1

2
if n is odd,

n

2
if n is even.

Can a ‘3n− 1 conjecture’ be formulated?

8. The sequence d0, d1, d2, . . . of natural numbers is defined by{
d0 = 0,

dn+1 = dn + n+ 1 for all n ∈ N.

The numbers dn one calls, for obvious reasons, triangular numbers. Determine a
formula for dn.

9. Show that the map N2 → N, (m,n) 7→ (m+n)2+3m+n
2

is bijective. (Hint: compute
the images for small m and n and use the triangular number dm+n from exercise 8.)

10. We define the natural numbers n? for n ∈ N by:{
0? = 1,

(n+ 1)? = (2n+ 1) · n? for all n ∈ N.

Prove that 2n · n! · (n+ 1)? = (2n+ 1)! for all n ∈ N.

11. The transformation g of N2 is defined by

g(a, b) = (2b+ 1, 3a+ 2) (for all a, b ∈ N).
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Exercises

(i) Is g injective? Is g surjective?

(ii) Show that g2n(0, 0) = (6n − 1, 6n − 1) for all n ∈ N.

12. The transformation τ of N is defined by

τ(n) =

{
n− 1 if n ≥ 1,

0 if n = 0.

(i) Show that τσ = 1N and στ ̸= 1N. (Here σ(n) is the successor of n.)

(ii) Give a transformation τ ′ of N with τ ′σ = 1N and τ ′ ̸= τ .

(iii) Prove that τkσk = 1N for all k ∈ N.
(iv) Prove that for every n ∈ N there is a k ∈ N such that σkτk(n) ̸= n.

13. Let fn be the n-th Fibonacci number. Prove that for all n ∈ N
n∑

k=0

fk
2 = fnfn+1.

14. Let f0, f1, . . . be the sequence of Fibonacci numbers.

(i) Prove that for all n, k ∈ N with n ≥ k

fn+1 = fk+1fn+1−k + fkfn−k.

(ii) Prove that for all m ∈ N we have f2m+1 = f2
m+1 + f2

m.

15. The transformation f : N+ → N+ is defined by

f =

n+ 2 if n is not divisible by 3,
n

3
if n is divisable by 3.

(i) Prove that for every n ∈ N+ there is a k ∈ N such that fk(n) ≤ 2.

(ii) Is there a k ∈ N such that fk(n) ≤ 2 for every n ∈ N+?
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7 The Integers

In this chapter we will extend N (the natural numbers) with negative numbers to
Z (the integers). As far as it concerns only the set of integers this is not hard to
do: we might simply add new elements −1, −2, −3, . . . to N. But when we want
to extend addition and multiplication of natural numbers to the set of all integers,
this procedure leads to distinguishing many cases, in particular when deriving the
rules of arithmetic. That is why we proceed differently.

What do we want to achieve? In N equations

m+ x = n (7.1)

do not have a solution in general. There is a unique solution n−m if m ≤ n and
there is no solution if m > n. We want to extend N to a set Z and moreover extend
the addition in N to an addition in Z in such a way that:

a) equations like (7.1) have a unique solution for any m,n ∈ Z;
b) the rules for addition of natural numbers are extended to rules for addition

of integers;
c) every ‘new’ number is needed to fulfill the two conditions above.

Having achieved this, we proceed to extend the multiplication in N and the ordering
of N to Z. Equation (7.1) must have a solution for any m,n ∈ N. Such a solution
is an integer. Thus every ordered pair (n,m) determines an integer. We will see
integers as differences of natural numbers. Because we would like to do arithmetic
with the integers as we do with the natural numbers, we are forced to see differences
that represent integers as being equal: if n1−m1 = n2−m2, then n1+m2 = m1+n2,
and what this means we know, since it refers only to arithmetic in N. We will
introduce Z by grouping all ordered pairs (n,m) into classes and those classes
will be integers by definition. In order to follow this program we first set up the
basic mathematical machinery for such constructions. Here it might appear to
be somewhat overdone, but this machinery is used in mathematics over and over
again. It is worthwhile to become familiar with it at an early stage.

7.1 Partitions

A map f : A → B determines the image f∗(A) of f : the subset of B consisting of
all images under f of elements of A. By replacing the codomain B of f by the
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Figure 7.1: Picture of an f -partition

image f∗(A) we obtain a surjective map A→ f∗(A), a 7→ f(a). Thus we forced
the map to become surjective by adjusting the codomain. The resulting map is
bijective if and only if f is injective.

By adjusting the domain A of a map f : A → B we can force the map to become
injective in such a way that the resulting map is bijective if and only if f is surjec-
tive. In a way we do this by seeing elements of A having the same image under f
as being equal.

7.1 Definition. Let f : A→ B be a map. For every a ∈ A there is the subset of A
of all elements which map under f to the same element as a:

[a]f = {x ∈ A | f(x) = f(a) }

This subset of A is called the f -class of a. Let Af be the set of all these f -classes:

Af = { [a]f | a ∈ A }.

This set of classes is called the f -partition of A.

7.2 Example. The map f =
(
1 2 3 4
2 2 1 5

)
: 4 → 5, see example 5.4, gives the following

f -partition of 4:
4f = {{1, 2}, {3}, {4}},

See Figure 7.1.

Clearly the f -partition of A has the following properties:

a) f -classes are not empty.
b) For all a ∈ A there is a unique f -class containing a.

As we associated to a map f : A → B a surjective map A → f∗(A), a 7→ f(a), we
now also have an injective map Af → B, [a]f 7→ f(a). Thus f is a composition of
three maps:

A→ Af → f∗(A) → B.
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7.2 Relations

The first is surjective, the second bijective and the third is injective. Is f surjective,
then Af → B is a bijection.

7.3 Example. The map of example 7.2 induces a bijection

{{1, 2}, {3}, {4}} → {1, 2, 5},

where {1, 2} 7→ 2, {3} 7→ 1 and {4} 7→ 5.

An f -partition of A is a subdivision of the elements of A into classes of elements
having equal images under f . For describing a subdivision into classes a map f
need not to be given.

7.4 Definition. Let A be a set. A set Φ of subsets of A is called a partition of A if:

a) ∅ /∈ Φ,
b) for all a ∈ A there is a unique U ∈ Φ such that a ∈ U .

The sets U ∈ Φ we call classes of the partition. If a ∈ U , where U ∈ Φ, then we
call a a representative of U . We also say that U is the class of a; notation U = [a]Φ.
A subset R of A having precisely one element in common with each of the classes
U ∈ Φ, we call a system of representatives of Φ.

7.5 Example. In example 7.3 we have the partition {{1, 2}, {3}, {4}} of {1, 2, 3, 4}
consisting of 3 classes. A system of representatives is {1, 3, 4}. Also {2, 3, 4} is one.

In the second requirement for a partition the word unique occurs. This can be split
into two requirements:

a) Every element of A is in at least one of the classes of Φ, that is the union of
all classes is the set A:

⋃
U∈Φ U = A.

b) Every element of A is in at most one of the classes of Φ, that is two different
classes are disjoint: U ∩ V = ∅ for all U, V ∈ Φ with U ̸= V .

Since for every a ∈ A there is a unique U ∈ Φ such that a ∈ U , a map A → Φ is
defined by a 7→ U . Because ∅ /∈ Φ this map is surjective. Thus a partition Φ of A
determines a surjective map A → Φ, a 7→ [a]Φ. Notice the analogy with: a subset
U of B determines an injective map U → B, u 7→ u.

7.2 Relations

The truth of ‘n is even’ depends on the natural number n. It corresponds to a
subset of N: the set of all even natural numbers. The truth of something like
m ≤ n depends on the natural numbers m and n, or what amounts to the same, it
depends on the ordered pair (m,n). Ordered pairs are used to describe relations.
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Figure 7.2: The relation ≤ of example 7.6

7.6 Example. For elements m and n of N4 we consider m ≤ n. It determines a
relation in the set N4. This relation can be given by enumerating all ordered pairs
(m,n) satisfying m ≤ n: (0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3),
(3, 3). They all are elements of the set of all ordered pairs (m,n) with m,n ∈ N4,
that is they form a subset of the Cartesian product N4 × N4, also denoted by N2

4,
see Figure 7.2. In mathematics one usually identifies relations with such subsets.

7.7 Definition. A relation in a set A is a subset of A2.

If R is a relation in A, then ‘(a, b) ∈ R’ is a good notation. Often the notation
‘aR b’ is used, the so-called infix notation.

Since a relation in a set A is just a subset of A × A, it is easy to compute the
number of relations in A:

number of relations in A = #(P(A×A)) = 2#(A×A) = 2#(A)2 .

So for example: if #(A) = 4, then this number is 24
2

= 216 = 65536. There are
many relations in such a small set!

Special relations

Often relations have nice properties and for such relations we have special names.

7.8 Definition. A relation R in a set A is called reflexive if aRa (that is (a, a) ∈ R)
for all a ∈ A.

The relation ≤ in N is reflexive, because every number is (less than or) equal to
itself.

In a picture of a relation in a set A (as part of the product set A2) reflexivity means
that it contains the diagonal.

7.9 Definition. A relation R in a set A is called transitive if for all a, b, c ∈ A:

if aR b and bR c, then aR c.
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7.2 Relations

The relation ≤ in N is transitive: if a ≤ b and b ≤ c, then a ≤ c.

In terms of a picture it is not so easy to tell what transitivity means.

7.10 Definition. A relation R in a set A is called symmetric if for all a, b ∈ A:

if aR b, then bR a.

The relation ≤ in the set N is not symmetric. We have 0 ≤ 1, but not 1 ≤ 0.

For a picture of a relation symmetry means that it is symmetric under reflection in
the diagonal.

7.11 Definition. A relation R in a set A is called antisymmetric if for every a, b ∈ A

if aR b and bR a , then a = b.

The relation ≤ in N is antisymmetric and the same holds for ≥.

Under reflection in the diagonal of a picture of the relation off-diagonal elements in
the relation map to elements not in the relation.

Two important types of relations are the orderings and the equivalence relations.
Here are their definitions:

7.12 Definition. A relation R in a set A is called an ordering of A if R is reflexive,
antisymmetric and transitive.

The relation ≤ in N is an ordering of N. That is exactly proposition 4.29.

7.13 Definition. A relation is called an equivalence relation if it is reflexive, sym-
metric and transitive.

7.14 Example. Let the relation ≡ in N be defined as follows:

a ≡ b ⇐⇒ a+ b is even.

This is an equivalence relation. The reflexivity and the symmetry are obvious. The
transitivity is demonstrated as follows:

Suppose a, b and c are natural numbers with a ≡ b and b ≡ c. Then a + b
and b + c are even, say a + b = 2k and b + c = 2l with k, l ∈ N. Then
a+ 2b+ c = 2k + 2l and so a+ c = 2k + 2l − 2b = 2(k + l − b). From this it
follows that a+ c is even, that is a ≡ c.

Hence for all a, b, c ∈ N with a ≡ b and b ≡ c it also holds that a ≡ c.

7.15 Example. The relation ≍ in N defined by

a ≍ b ⇐⇒ ab ̸= 0

is not reflexive, because 0 ≍ 0 does not hold. It is the only reason why it is not an
equivalence relation. All other requirements are fulfilled.

93



7 The Integers

7.3 Equivalence Relations

Let A be a set. As discussed in section 2.3 subsets of A can be given by a property
P (a) which elements a of A might have:

{ a ∈ A | P (a) }.

For a given U ⊆ A one can take for P (a) the property a ∈ U .

As subsets are given by properties, partitions are given by equivalence relations.
That is what this section is about. For an equivalence relation we often use a
symbol like ∼ or ≃ instead of a letter like R. The idea of an equivalence relation
is that it expresses that elements in a sense are similar. A symbol like ∼ is then
more suggestive.

7.16 Example. For the equivalence relation ≡ of example 7.14 it holds that even
numbers are similar and so are the odd numbers, whereas an even number and an
odd number are not. So the equivalence relation ≡ is connected to the subdivision
of N into two subsets: one of the even numbers and one of the odd numbers. The
relation determines this partition of N.

We will show that every equivalence relation determines a partition and visa versa.

7.17 Definition. Let ∼ be an equivalence relation in a set A and let a ∈ A. Then
the set

{x ∈ A | x ∼ a }

is called the equivalence class (with respect to ∼) of the element a. It is a subset
of A and is denoted by [a]∼ or [a] for short. The set

{ [a]∼ | a ∈ A }

of all equivalence classes with respect to ∼ we denote by A/∼.

7.18 Lemma. Let ∼ be an equivalence relation in a set A. Then

for all a, b ∈ A: a ∼ b ⇐⇒ [a]∼ = [b]∼.

PROOF.

⇒: Suppose x ∈ [a]∼. Then x ∼ a. Because a ∼ b, it follows from the
transitivity that also x ∼ b. So x ∈ [b]∼.

So for every x ∈ [a]∼ we have x ∈ [b]∼, that is [a]∼ ⊆ [b]∼. Since the relation
is symmetric and so also b ∼ a, we have similarly that [b]∼ ⊆ [a]∼. Hence
[a]∼ = [b]∼.

⇐: The reflexivity implies that a ∈ [a]∼. So a ∈ [b]∼, that is a ∼ b.
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7.4 Construction of the Integers

7.19 Proposition. Let ∼ be an equivalence relation in a set A. Then A/∼ is a
partition of A.

PROOF. Consider the map f : A→ A/∼ defined by f(a) = [a]∼. From lemma 7.18
it follows that A/∼ is the partition Af of A.

7.20 Example. For the equivalence relation ≡ of example 7.14 we have

[0] = {x ∈ N | x ≡ 0 } = {x ∈ N | x is even },
[1] = {x ∈ N | x ≡ 1 } = {x ∈ N | x is odd }.

So N/≡ = {[0], [1]}. A system of representatives is {0, 1}, but there are many
others, for example {2012, 101}.

Let A be a set. For a partition Φ of A there is an equivalence relation ∼ such
that the equivalence classes with respect to this relation are just the classes of Φ:
define a ∼ b as [a]Φ = [b]Φ. Conversely for an equivalence relation ∼ in A there
is a partition A/∼ of A which in turn determines the original equivalence relation
∼. Partitions and equivalence relations are linked one to one to each other. There
are as many partitions in a set as there are equivalence relations in that set.

7.4 Construction of the Integers

Suppose we already have what we want: an extension Z of N such that m+ x = n
always has a solution and the rules of arithmetic hold for this extension as well.
Integers we see as differences of natural numbers and so we have a surjective map

f : N× N → Z, (n,m) 7→ n−m.

This f determines a partition of N×N and the corresponding equivalence relation
is

(n1,m1) ∼ (n2,m2) ⇐⇒ f(n1,m1) = f(n2,m2) ⇐⇒ n1 −m1 = n2 −m2.

The rules of arithmetic for Z imply that this equivalence relation can also be
described in terms of natural numbers alone:

(n1,m1) ∼ (n2,m2) ⇐⇒ n1 +m2 = n2 +m1.

Thus we have a bijection
(N× N)/∼ → Z.

Conclusion: if there exists an extension Z of N as desired, then the relation ∼ in
N × N is an equivalence relation and the elements of Z correspond to equivalence
classes in N × N. For constructing Z it is now clear what to do: prove that ∼ is
an equivalence relation and define Z to be the set (N×N)/∼. Next an addition in
this set has to be defined, etc. We start with the definition of the relation ∼:
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7.21 Definition. For n1, n2,m1,m2 ∈ N we define

(n1,m1) ∼ (n2,m2) ⇐⇒ n1 +m2 = m1 + n2.

(Thus the relation ∼ is a relation in N2.)

7.22 Lemma. ∼ is a equivalence relation in N2.

PROOF. From the definition of ∼ it immediately follows that (n,m) ∼ (n,m) for
all n,m ∈ N. So reflexivity is clear, as is symmetry. We prove the transitivity.

Let n1,m1, n2,m2, n3,m3 be natural numbers such that (n1,m1) ∼ (n2,m2)
and (n2,m2) ∼ (n3,m3). Then n1 +m2 = m1 + n2 and n2 +m3 = m2 + n3,
and therefore:

n1 +m2 + n2 +m3 = m1 + n2 +m2 + n3.

By the cancellation law for addition in N,

n1 +m3 = m1 + n3

and so (n1,m1) ∼ (n3,m3).

So the relation ∼ is transitive. Hence ∼ is an equivalence relation.

7.23 Definition. Z = N2/∼. The elements of Z are called integers. The equivalence
class [(n,m)]∼ of (n,m) ∈ N2 we denote for the time being as [n,m].

Think of [n,m] as being the difference of the natural numbers n and m. See
Figure 7.3 for a picture of the partition of N2: connected dots form an equivalence
class, an integer that is.

7.4.1 Addition in Z

We will define the addition of integers. Since we want the usual rules of arithmetic
to remain valid, we are forced to do it in such a way that:

[n1,m1] + [n2,m2] = [n1 + n2 , m1 +m2]

↑ ↑ ↑
addition in Z addition addition

to be defined in N in N

It has to be this way, because if we see pairs [n,m] as differences n−m and if we
insist on the rules of arithmetic being valid also in Z, then

(n1 −m1) + (n2 −m2) = (n1 + n2)− (m1 +m2).
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7.4 Construction of the Integers

Figure 7.3: The partition Z of N2

Therefore, we are forced to define the sum of a, b ∈ Z as follows: choose n1,m1 ∈ N
such that a = [n1,m1] and choose n2,m2 ∈ N such that b = [n2,m2], then

a+ b = [n1 + n2,m1 +m2].

A difficulty when defining addition this way is that the result [n1 + n2,m1 +m2]
might depend on the choice of the representatives of the classes a and b. In fact it
does not and this follows from the following.

7.24 Lemma. Le t n1,m1, n
′
1,m

′
1, n2,m2, n

′
2,m

′
2 ∈ N be such that (n′1,m

′
1) ∼

(n1,m1) and (n′2,m
′
2) ∼ (n2,m2). Then

(n′1 + n′2,m
′
1 +m′

2) ∼ (n1 + n2,m1 +m2).

PROOF. This follows directly from definition of ∼.

7.25 Definition. For a, b ∈ Z we define the sum of a and b as follows:

a+ b = [n1 + n2,m1 +m2],

if a = [n1,m1] and b = [n2,m2].
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Next we will derive rules for the addition in Z. All we need are the rules of addition
in N.

7.26 Proposition. Z together with the addition + is an abelian group, that is

� The addition is associative:

a+ (b+ c) = (a+ b) + c (for all a, b, c ∈ Z).

� The addition is commutative:

a+ b = b+ a (for all a, b ∈ Z).

� [0, 0] is a neutral element (or zero element) for the addition:

a+ [0, 0] = a (for all a ∈ Z).

� Every element a has an opposite −a:

a+ (−a) = [0, 0].

PROOF.

Associativity: Choose m1, n1,m2, n2,m3, n3 ∈ N such that a = [n1,m1], b =
[n2,m2] and c = [n3,m3]. Then

(a+b)+c = ([n1+n2,m1+m2])+[n3,m3] = [(n1+n2)+n3, (m1+m2)+m3].

Similarly

a+ (b+ c) = [n1 + (n2 + n3),m1 + (m2 +m3)].

So (a+ b) + c = a+ (b+ c).

Commutativity: Choose m1, n1,m2, n2 ∈ N such that a = [n1,m1] and b =
[n2,m2]. Then

a+ b = [n1,m1] + [n2,m2] = [n1 + n2,m1 +m2]

and similarly

b+ a = [n2 + n1,m2 +m1].

Neutral element: Choose m,n ∈ N such that a = [n,m]. Then

a+ [0, 0] = [n,m] + [0, 0] = [n+ 0,m+ 0] = [n,m] = a.

Opposite: Choose m,n ∈ N such that a = [n,m] and put b = [m,n]. Then

a+ b = [n,m] + [m,n] = [n+m,m+ n] = [0, 0].
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Note how easily these rules for Z are derived from the rules for N. The existence
of opposites is new. Equations a + x = b are not always solvable in N, but in Z
they are: the (unique) solution is x = b− a, that is x = b+ (−a).

In N we had a cancellation law for addition. This law holds in Z as well. For a
proof only the rules for addition in Z are needed: if a+ b = c+ b, then (writing 0
for the zero element [0, 0]):

a = a+ 0 = a+ (b+ (−b)) = (a+ b) + (−b)
= (c+ b) + (−b) = c+ (b+ (−b)) = c+ 0 = c.

7.4.2 N as part of Z

There still is a little problem. The set N is not a subset of the set Z. However,
inside Z there is a subset which with the addition of Z is very much like N itself:

N = { [n, 0] | n ∈ N }.

This set can be seen as a copy of N:

[m, 0] = [n, 0] ⇐⇒ m = n

and

[m, 0] + [n, 0] = [m+ n, 0].

So addition in N amounts to the same as addition in N. Writing n for [n, 0] and so
−n for −[n, 0], it looks like as if N ⊆ Z and everything is as we want it to be. For
the integer [n,m] we then have

[n,m] = [n, 0] + [0,m] = [n, 0]− [m, 0] = n−m.

We postpone this change in notation till after the introduction of the multiplication
in Z.

Note that the set N, together with the element [0, 0] and the transformation σ with
σ([n, 0]) = [n+1, 0], satisfies Peano’s axioms. So also for that reason the set N can
be seen as the system of natural numbers.

In fact we have an injective map i : N → Z, n 7→ [n, 0] and it satisfies i(σ(n)) =
σ(i(n)) for all n ∈ N. The image i∗(N) is the set N.
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7.4.3 Multiplication in Z

By now we have the set Z together with an addition satisfying the familiar rules.
Next we will define a multiplication in Z. Since we see the integers as differences
of natural numbers and we want the rules of arithmetic to remain valid, for the
definition of the product there is no choice: (n1−m1) ·(n2−m2) = n1n2+m1m2−
(m1n2 + n1m2).

7.27 Definition. Let a and b be integers. We define the product a · b of a and b as
follows. Choose m1, n1,m2, n2 ∈ N such that a = [n1,m1] and b = [n2,m2]. Then

a · b = [n1n2 +m1m2,m1n2 + n1m2].

Also in this case the verification that the definition does not depend on the choices
made is straightforward:

7.28 Lemma. Let n1,m1, n2,m2, n
′
1,m

′
1, n

′
2,m

′
2 ∈ N such that (n′1,m

′
1) ∼ (n1,m1)

and (n′2,m
′
2) ∼ (n2,m2). Then

(n′1n
′
2 +m′

1m
′
2,m

′
1n

′
2 + n′1m

′
2) ∼ (n1n2 +m1m2,m1n2 + n1m2).

PROOF. The proof is in two steps.

First assume that (n′2,m
′
2) = (n2,m2). We have

n′1n2 +m′
1m2 +m1n2 + n1m2 = (n′1 +m1)n2 + (m′

1 + n1)m2

= (m′
1 + n1)n2 + (n′1 +m1)m2 = m′

1n2 + n′1m2 + n1n2 +m1m2.

Hence

(n′1n2 +m′
1m2,m

′
1n2 + n′1m2) ∼ (n1n2 +m1m2,m1n2 + n1m2). (7.2)

Now assume that (n1,m1) = (n′1,m
′
1). Then

n′1n
′
2 +m′

1m
′
2 +m′

1n2 + n′1m2 = (n′1 +m′
1)n

′
2 + (m′

1 + n′1)m
′
2

= (m′
1 + n′1)n

′
2 + (n′1 +m′

1)m
′
2 = m′

1n2 + n′1m2 + n′1n
′
2 +m′

1m2.

Hence

(n′1n
′
2 +m′

1m
′
2,m

′
1n

′
2 + n′1m

′
2) ∼ (n′1n2 +m′

1m2,m
′
1n2 + n′1m2). (7.3)

By the transitivity of ∼ the lemma follows from (7.2) and (7.3).

7.29 Proposition. The set Z together with the operations + and · as defined above
is a commutative ring, i.e. Z together with the addition is an abelian group and the
following rules hold for all a, b, c ∈ Z:
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� The multiplication is associative:

a · (b · c) = (a · b) · c.
� The multiplication is commutative:

a · b = b · a.
� [1, 0] is a neutral element (or unity element) for the multiplication:

a · [1, 0] = a.

� The multiplication is distributive over the addition:

a · (b+ c) = a · b+ a · c.

PROOF. Put a = [n1,m1], b = [n2,m2] and c = [n3,m3].

Associativity: a · (b · c) and (a · b) · c are equal to respectively

[n1(n2n3+m2m3)+m1(m2n3+n2m3),m1(m2n3+n2m3)+n1(m2n3+n2m3)]

and

[(n1n2+m1m2)n3+(m1n2+n1m2)m3, (m1n2+n1m2)n3+(n1n2+m1m2)m3].

Commutativity: a · b and b · a are equal to respectively

[n1n2 +m1m2,m1n2 + n1m2] and [n2n1 +m2m1,m2n1 +m1n2].

Unity element: [1, 0] is the unity element: a · [1, 0] = [n1 + 0, 0 +m1] = a.

Distributivity: a · (b+ c) and a · b+ a · c are equal to respectively

[n1(n2 + n3) +m1(m2 +m3),m1(n2 + n3) + n1(m2 +m3)]

and

[(n1n2 +m1m2) + (n1n3 +m1m3), (m1n2 + n1m2) + (m1n3 + n1m3)].

7.4.4 Exponentiation in Z

Just as in N, exponentiation in Z is repeated multiplication.

7.30 Definition. Let a ∈ Z. For natural numbers n ∈ N the integers an are defined
by {

a0 = 1,

an+1 = aan for all n ∈ N.
Note that we only take nth powers for n ∈ N. This definition of exponentiation can
be given for any monoid. Then the usual rules for exponentiation hold. In Z the
exponentiation is an extension of the exponentiation in N. For −a with a ∈ N we
now have (−a)n = (−1)nan.
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7.4.5 Ordering of Z

7.31 Definition. The ordering ≤ of N can be extended to an ordering ≤ of Z:

a ≤ b ⇐⇒ b− a ∈ N.

Here we see N as a part of Z and that is what we will do from now on. Instead of
a ≤ b we also write b ≥ a. We have: a ∈ N ⇐⇒ a ≥ 0.

For ≤ the requirements for an ordering hold and also the rules that connect the
ordering with addition and multiplication:

7.32 Proposition. The relation ≤ is an ordering of Z, i.e. it is reflexive, anti-
symmetric and transitive. Moreover for all a, b, c ∈ Z:

� if a ≤ b, then a+ c ≤ b+ c,
� if a ≤ b and c ≥ 0, then ac ≤ bc.

PROOF.

Reflexivity: a ≤ a, because a− a = 0 ∈ N.

Antisymmetry: If b − a ∈ N and a − b ∈ N, then, because (a − b) + (b − a) = 0,
also a− b = 0.

Transitivity: If b− a ∈ N and c− b ∈ N, then also c− a = (c− b) + (b− a) ∈ N.

Relation with addition: If b− a ∈ N, the also (b+ c)− (a+ c) ∈ N.

Relation with multiplication: If b−a ∈ N and c ∈ N, then also bc−ac = (b−a)c ∈
N.

Other rules can be derived. For instance, if in the last rule c ≥ 0 is replaced by
c ≤ 0, then −c ≥ 0 and so by the same rule ac − bc = (b − a)(−c) ∈ N, that is
ac ≥ bc.

7.4.6 Absolute value

7.33 Definition. Let a ∈ Z. We define the absolute value of a, notation |a|, as
follows:

|a| =

{
a if a ≥ 0,

−a otherwise.

Thus we have a = ±|a|. Integers are introduced as ‘formal’ differences of natural
numbers: if a = [n,m], then—with the identification of natural numbers n with
the integers [n, 0]—we have a = n−m. From the definition of |a| it follows directly
that |a| ≥ 0. The absolute value is a map Z → N, a 7→ |a|.

102



7.5 Algebraic Structures

This absolute value has properties we will require more generally for absolute val-
ues:

7.34 Proposition. The absolute value Z → N, a 7→ |a| has the following properties:

(i) |a| = 0 ⇐⇒ a = 0 (for all a ∈ Z),
(ii) |ab| = |a| · |b| (for all a, b ∈ Z),
(iii) |a+ b| ≤ |a|+ |b| (for all a, b ∈ Z).

PROOF.

(i) Follows directly from the definition.
(ii) |a| · |b| = (±a)(±b) = ±ab = ±|ab|, and since |ab|, |a| · |b| ≥ 0, we have

|ab| = |a| · |b|.
(iii) a ≤ |a| and b ≤ |b|, so a+ b ≤ |a|+ |b|. Because |−a| = |a|, we have similarly

−a− b ≤ |a|+ |b|. Hence: |a+ b| = ±(a+ b) ≤ |a|+ |b|.

7.35 Proposition. The commutative ring Z has no zero divisors, i.e.

for all a, b ∈ Z we have: if ab = 0, then a = 0 or b = 0.

PROOF. Let a and b be integers with ab = 0. Because also |a|.|b| = 0, lemma 4.21
implies that |a| = 0 or |b| = 0.

It follows that the cancellation law for multiplication also holds for the multiplica-
tion of integers.

7.36 Corollary. Let a, b and c be integers. Then:

if ac = bc and c ̸= 0, then a = b.

PROOF. If ac = bc, then (a− b)c = 0, and if moreover c ̸= 0, then a− b = 0.

7.5 Algebraic Structures

An algebraic structure consists of a set and a number of operations in that set
which satisfy some given properties, usually called axioms. One example we have
already met is the monoid: a set with an associative operation for which there is
a neutral element. In this chapter we came across some algebraic structures which
are important for modern mathematics.

The idea of Euclid’s axioms for geometry, for Peano’s axioms for the natural num-
bers and for the axioms of set theory is that they are categorical, which means that
the structure they describe is in a sense completely determined. These axioms are
meant to be a foundation for mathematics. With axioms for an algebraic struc-
ture the situation is quite different. There the power of the approach lies in the
abundance of examples.
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7.5.1 Groups and abelian groups

The notion of (abelian) group is abstract. We will give the definition. It enables
us to give compact formulations for theorems. Group theory is a highly developed
part of algebra. In this book we will not go into this theory and confine ourselves
mainly to the use of its terminology.

7.37 Definition. An abelian group is a set A together with an operation A2 → A,
(a, b) 7→ a+ b such that a number of requirements (axioms) are fulfilled:

(G1) Associativity: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ A.

(G2) Neutral element: There is an n ∈ A such that a + n = n + a = a for
all a ∈ A.

(G3) Opposite: For all a ∈ A there exists a b ∈ A such that a+b = b+a = n
(with n as in (G2)).

(G4) Commutativity: a+ b = b+ a for all a, b ∈ A.

If n′ is also a neutral element, then by (G2): n′ = n+n′ = n. So there is a unique
neutral element. That element is usually denoted by 0 and is called zero or the
zero element.

If there are for a given a elements b and b′ such that a + b = a + b′ = 0, then
b′ = b′ +0 = b′ + (a+ b) = (b′ + a) + b = 0+ b = b. We call b the opposite of a and
denote it by −a. Thus: −a is the unique element such that a+(−a) = (−a)+a = 0.

We have seen that for the addition in Z the cancellation law holds. For the proof we
only used the fact that Z together with the operation + is an abelian group. Hence,
we actually derived that the cancellation law holds in any abelian group. That is
the advantage of abstraction: if something is an abelian group, then anything that
is derived from just the group axioms holds for that object in particular.

Without axiom (G4), the commutativity, we have the definition of the abstract
notion of group. (That is why in the formulation of the axioms (G2) and (G3)
no use is made of the commutativity.) The operation in a group usually is not
seen as addition (with a +), but as a multiplication (with another notation for the
operation: (a, b) 7→ ab), especially when commutativity does not hold. The neutral
element is then denoted by 1 and is called one or the unity element. Also the term
‘opposite’ is not used in that case, but the term is inverse and the notation is: a−1.
Thus we have:

7.38 Definition. A group is a set G together with an operation G2 → G, (g, h) 7→
gh such that the following holds:

(G1) Associativity: (gh)k = g(hk) for all g, h, k ∈ G.

(G2) Neutral element: There is a 1 ∈ G such that g1 = 1g = g for all g ∈ G.
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(G3) Inverse: For all g ∈ G there is an h ∈ G such that gh = hg = 1 (with 1
as in (G2)).

7.5.2 Rings, commutative rings, integral domains

A structure with operations addition and multiplication which satisfy the usual
rules of arithmetic is called a ring. The exact definition is as follows.

7.39 Definition. A ring is a set R together with two operations, an ‘addition’
R2 → R, (a, b) 7→ a+ b and a ‘multiplication’ R2 → R, (a, b) 7→ ab (or: a · b), such
that R together with + is an abelian group and moreover the following axioms are
satisfied:

(R1) Associativity of the multiplication:
(ab)c = a(bc) for all a, b, c ∈ R.

(R2) Unity element: there is a 1 ∈ R such that a · 1 = 1 ·a = a for all a ∈ R.

(R3) Distributivity of the multiplication over the addition:
a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

If also the following axiom is satisfied

(R4) Commutativity of the multiplication: ab = ba for all a, b ∈ R,

then R is called a commutative ring.

In a ring it is possible that ab = 0 while a ̸= 0 and b ̸= 0. For commutative rings
we have a name for this.

7.40 Definition. Let R be a commutative ring. An element a ̸= 0 for which there
is an element b ̸= 0 such that ab = 0 is called a zero divisor of the ring R. If a
commutative ring R has no zero divisors, then R is called an integral domain or
simply a ring without zero divisors.

So the ring Z is an example of an integral domain.

7.6 Orderings

We constructed the ring Z using an equivalence relation. That is why we took a
closer look at equivalence relations. In N and also in Z we have the ordering ≤.
An ordering is a reflexive, antisymmetric, transitive relation, see definition 7.12.
In this section we consider this other important type of relations. For a given, but
arbitrary, ordering we will often use the symbol ⪯: it looks like ≤, but that symbol
usually has a more specific meaning.
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Figure 7.4: Four orderings of N5

7.41 Definition. Let ⪯ be an ordering of a set A. Then (A,⪯) is called an ordered
set.

7.42 Examples. (N,≤), (N,≥), (Z,≤) and (Z,≥) are examples of ordered sets.
Note that the relation ≥ is an ordering as well. If ⪯ is an ordering, then so is ⪰,
defined by a ⪰ b ⇐⇒ b ⪯ a. If (A,⪯) is an ordered set and U is a subset of A,
then the restriction of ⪯ to U is an ordering of U .

Orderings of sets which are not too big can be represented by a picture. Figure 7.4
for example consists of pictures of four different orderings of the set N5. The idea is
that if you can move along the connections from a to b in an upward direction, then
this means that a ⪯ b. Such a picture is called a Hasse diagram of the ordering.

We will distinguish some types of orderings.

7.43 Definition. An ordering ⪯ of a set A is called total if for every a, b ∈ A the
following holds: a ⪯ b or b ⪯ a. We then say that (A,⪯) is a totally ordered set.

7.44 Examples. The orderings ≤ and ≥ of the sets N and Z are total. For Z this
is a simple consequence of the ordering of N being total.

7.45 Definition. Let ⪯ be an ordering of a set A and let U be a subset of A. Then
a ∈ A is called the least element of U (with respect to the ordering ⪯) if

a) a ∈ U ,
b) a ⪯ u for all u ∈ U .

If a is the least element of U , then we denote this by a = min(U). If a is the least
element of U with respect to the ordering ⪰ (where a ⪰ b ⇐⇒ b ⪯ a), then
a is called the greatest element of U (with respect to the ordering ⪯), notation
a = max(U).
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Helmut Hasse (Kassel 1898 – Ahrensburg 1979)

Hasse was a German mathematician who did a lot of funda-
mental research in algebraic number theory. Since in that
part of mathematics often substructures of a given structure
are considered, it is convenient to make diagrams of such col-
lections of objects. That type of diagrams one started to call
Hasse diagrams.

If U has a least element, then that element is unique. This follows easily from the
antisymmetry of ⪯. It depends on U and ⪯ whether such a least element exists.

The subset Z of Z has no least element with respect to ≤.

The subset N of N has no greatest element with respect to ≤.

7.46 Definition. An ordering ⪯ of a set A is called a well-ordering if every non-
empty subset of A has a least element with respect to ⪯. Then (A,⪯) is called a
well-ordered set.

We will prove that (N,≤) is a well-ordered set. That is so obvious that you might
wonder why a proof is needed. As a matter of fact the same holds for mathematical
induction, a property of N we took as an axiom. In a sense the well-ordering of
N is equivalent to mathematical induction. First we will derive a new version of
mathematical induction.

7.47 Proposition. Let U be a subset of N. Suppose that n ∈ U for every n ∈ N
which satisfies Nn ⊆ U . Then U = N.

PROOF. By mathematical induction we prove that Nn ⊆ U for all n ∈ N. For
n = 0 this is clear: N0 = ∅.

Suppose Nn ⊆ U for an n ∈ N. Then n ∈ U , and so Nn+1 = Nn ∪ {n} ⊆ U .

Hence Nn ⊆ U for all n ∈ N. For every n ∈ N we have n ∈ Nn+1 ⊆ U and so
N ⊆ U .

7.48 Theorem. The ordering ≤ of N is a well-ordering.

PROOF. Let U be a subset of N without a least element. We will show that U = ∅.
Consider V = N \ U . To prove that V = N.
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Suppose n ∈ N with Nn ⊆ V . Then k /∈ U for all k < n. If n ∈ U , then n
would have been the least element of U . So n /∈ U , that is n ∈ V .

From proposition 7.47 it follows that V = N.

Proposition 7.47 and theorem 7.48 are variations on the principle of mathematical
induction and are often used in proofs. Proposition 7.47 gives the strong principle
of mathematical induction.

mathematical induction (strong)

Suppose n ∈ N such that P (k) for all k < n.

. . .

So P (n).

Hence P (n) for all n ∈ N such that P (k) for all k < n.

By mathematical induction it follows that P (n) for all n ∈ N.

With ordinary induction one tries to prove P (n + 1) under the assumption P (n).
With this strong form of induction one tries to give a proof of P (n) under the
assumption that P (k) holds for all k < n. It might give the impression that forget
the case n = 0. However. for n = 0 it says that P (0) should hold if P (k) holds for
all natural numbers k < 0, but such natural numbers do not exist. In a proof along
the lines of the strong induction principle usually case distinction occurs: cases in
which the induction hypothesis is used and cases in which it is not used. In case
n = 0 it certainly can not be used.

The ordering ≤ of Z is not a well-ordering. Nonempty subsets have a least element
only under an extra condition.

7.49 Definition. Let (A,⪯) be an ordered set. An a ∈ A is called a lower bound
of a subset U of A if a ⪯ u for all u ∈ U . A subset U is called bounded below if
there is a lower bound for U .

A b ∈ A is called an upper bound of a subset U of A if u ⪯ b for all u ∈ U . The
subset U is called bounded above if there is an upper bound for U .

7.50 Theorem. Nonempty subsets of Z which are bounded below have a least ele-
ment. Nonempty subsets of Z which are bounded above have a greatest element.

Talking about the ordered set Z we mean (Z,≤). A greatest element is a least
element with respect to ≥.

PROOF. If a ∈ Z is a lower bound of a nonempty U ⊆ Z, then −a+U = {−a+u |
u ∈ U } is a nonempty subset of N. If c ∈ N is the least element of −a + U , then
a+ c is the least element of U .

If b ∈ Z is an upper bound of a nonempty V ⊆ Z, then −b is a lower bound of
−U = {−u | u ∈ U }. If d is the least element of −U , then −d is the greatest of
U .
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A total ordering is not necessarily a well-ordering. The converse however holds.

7.51 Theorem. Let ⪯ be a well-ordering of a set A. Then ⪯ is a total ordering.

PROOF.

Let a, b be elements of A. Then {a, b} is a subset of A. Since ⪯ is a well-
ordering, this subset has a least element. If a is the least, then a ⪯ b. If b is
the least, then b ⪯ a. So a ⪯ b or b ⪯ a.

Hence for all a, b ∈ A we have: a ⪯ b or b ⪯ a. This means that the ordering ⪯ is
total.

An important example of an ordering is the relation ‘is a subset of’. This is a
relation in the power set of a given set.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 7.5: Hasse diagram
of P(3,⊆)

7.52 Example. Let B be a set. The power set P(B)
is an ordered set: (P(B),⊆). Here the inclusion is
the ordering. The set P({1, 2, 3}) has 8 elements and
Figure 7.5 is a Hasse diagram of this ordered set. This
ordering is neither a total ordering nor a well-ordering.

7.7 Directed Graphs

In some cases one wants the edges of a graph to have a direction. In the sliding
puzzle with 15 blocks on a 4 by 4 board there is no need for a direction, since the
sliding goes both ways. The same holds for the Tower of Hanoi. For the well known
solitary puzzle the situation is different: with each move a piece is taken and the
goal is to have only one piece left. If you want to represent this by a graph, then
the possible positions of the puzzle can be taken as vertices and the moves as edges
with a direction, that is the edges connect a first to a second vertex. The abstract
notion is very simple:

7.53 Definition. A directed graph (V,E) is a finite set V together with a subset E
of V 2. The elements of V are called the vertices and the elements of E the edges of
the directed graph. An edge (v1, v2) has a head and a tail : the head is the vertex
v2, and the tail the vertex v1.
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Figure 7.6: Directed graph of a simple solitary puzzle

Thus a directed graph is just a relation in a finite set. The use of the word graph
is merely an invitation for a special geometrical interpretation of the relation.

7.54 Example. Figure 7.6 is a picture of a directed graph representing an ex-

tremely simplified solitary puzzle: the puzzle with the board and with

the initial position . The number of possible positions is 28 = 256; the

picture contains only the positions which can be reached departing from the initial
position.

7.55 Example. In the set {1, 2} there are 22
2

= 16 relations. Each of these
relations can be seen as a directed graph with 1 and 2 as vertices. The number
of edges is at most 22 = 4. In Figure 7.7 all possible relations are represented (as
subsets of ) together with the corresponding directed graph.

For each R ⊆ A2 we have a directed graph (A,R). If R is moreover the graph
of a transformation of A, then the picture of this transformation is the same as
the picture of the directed graph. It is the special case in which there is for each
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1 1 2 9 1 2

2 1 2 10 1 2

3 1 2 11 1 2

4 1 2 12 1 2

5 1 2 13 1 2

6 1 2 14 1 2

7 1 2 15 1 2

8 1 2 16 1 2

Figure 7.7: Directed graphs having 1 and 2 as vertices

a ∈ A exactly one edge of type (a, b). (Note that we used the word graph here with
two different meanings: the graph as a combinatorial structure and in the sense of
graph of a map.)

If R is an ordering, we prefer a different kind of picture, namely the Hasse diagram:
since the direction of the arrows is always upwards we do not draw the arrow tips
and we also do not draw edges, the existence of which is ensured by transitivity or
reflexivity.

If R is an equivalence relation, then we do not draw the edges, but only indicate
the equivalence classes. Inside an equivalence class all ordered pairs are edges.

Exercises

1. Which of the following properties are satisfied by the relation R in the set A:
reflexivity, symmetry, transitivity, antisymmetry?

(i) any A and: aR b ⇐⇒ a = b.
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(ii) any A and: aR b for all a, b ∈ A.

(iii) A = N and: aR b ⇐⇒ a < b.

(iv) A = N and: aR b ⇐⇒ a+ b is a multiple of 3.

Which of these relations is an ordering and which an equivalence relation?

2. Which of the 16 relations in {1, 2} is an ordering, which is an equivalence relation
and which is the graph of a transformation? See example 7.55 and Figure 7.7.

3. Let A be a set of 10 elements. Determine the number of

(i) relations in A,

(ii) reflexive relations in A,

(iii) symmetric relations in A,

(iv) reflexive symmetric relations in A,

(v) reflexive antisymmetric relations in A.

4. Let R be both an ordering of a set A and an equivalence relation in A. What is R?

5. What is wrong in the following ‘derivation’ of the proposition: symmetric, transitive
relations are reflexive.
Let ∼ be a symmetric, transitive relation in a set A.

Let a be an element of A. For b ∈ A such that a ∼ b also b ∼ a holds because
of symmetry of ∼. From transitivity it then follows that a ∼ a.

Hence a ∼ a for all a ∈ A. So ∼ is reflexive.

6. Let ∼ be a reflexive relation in a set A which also satisfies: if a ∼ b and c ∼ b, then
a ∼ c (for all a, b, c ∈ A). Is ∼ an equivalence relation?

7. How many partitions are there of the set {1, 2, 3, 4, 5}? And how many equivalence
relations are there in this set?

8. Show that the multiplication in Z is well defined, meaning that it does not depend
on the choice of representatives.

9. Is there an equivalence relation in N with all its equivalence classes infinite and
also the equivalence classes infinite in number? If no, give a proof. If yes, give an
example.

10. We have constructed Z as a partition of N2 which was obtained by an equivalence
relation. If we apply the ‘same’ construction to Z instead of N, what do we get?

11. From the exercises 13 and 14 of chapter 5 it follows that Z is countable. How?

12. The sequence (an) in Z is defined by{
a0 = 0,

an+1 = an + (−1)n(n+ 1) for all n ∈ N.

Prove that the map N → Z, n 7→ an is bijective.
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13. Let a and b be integers. Prove the following rules

a2 − b2 = (a− b)(a+ b)

a3 − b3 = (a− b)(a2 + ab+ b2).

Indicate which rules of arithmetic have been used.

14. Let a and b be integers with a2 = b2. Prove that a = b or a = −b.

15. Prove that a2 + ab + b2 ≥ 0 for all a, b ∈ Z and that a2 + ab + b2 = 0 only if
a = b = 0.

16. Let X be a finite nonempty set. For A,B ∈ P(X) we define

A ∼ B ⇐⇒ #(A÷B) is even.

(i) Prove that ∼ is an equivalence relation in P(X).

(ii) How many equivalence classes are there?

17. Let (A,⪯) be an ordered set and let f be the following map:

f : A → P(A), a 7→ {x ∈ A | x ⪯ a }.

(i) Prove that f is injective.

(ii) Prove that f is not surjective.

18. Let A be a set and let B be s subset of A. In P(A), the power set of A, the relation
≏ is defined by

U ≏ V ⇐⇒ U ∪B = V ∪B (for all U, V ⊆ A).

(i) Show that ≏ is an equivalence relation.

(ii) Let U ⊆ A. Assume that B is nonempty. Show that the equivalence class of
U has more than one element.

(iii) Prove that
{U ∈ P(A) | U ⊇ B }

is a system of representatives of P(A)/≏.

19. Show that the number of orderings of a finite set is odd.
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We denote natural numbers by words in the digits 0 up to 9. This is a very rich
notation, but so far we have made no use of this. We have described operations in
terms of the successor, and these descriptions have little to do with the notation
used. For example from the definition of addition it is not immediately clear that
something like 6535535301 + 100000 = 6535635301 holds. As everyone knows
there is a close relationship between this notation and the operations of addition,
multiplication and exponentiation. As soon as that is clear the application of the
rules of arithmetic leads to faster ways of performing the operations, in fact it is
the way you have learned at primary school.

The use of ten digits is arbitrary, we could have used any number of digits greater
than 1. The purpose here is that an understanding of this kind of notation is
reached which is good enough to understand how to convert in a fast way from one
notation to another.

Fundamental for the way we denote natural numbers is the notion of ‘division with
remainder’. In fact many properties of natural numbers are consequences of this
division with remainder.

8.1 Division with Remainder

Inside Z division is not possible in all cases, but what we do have is ‘division with
remainder’.

8.1 Theorem (Division with remainder). Let a ∈ Z and b ∈ N+. Then there are
unique q ∈ Z and r ∈ Nb such that a = qb+ r.

PROOF. Consider the subset U = {xb | x ∈ Z and xb ≤ a } of Z. The integer a is
an upper bound for this set. Letm be the greatest number in U . Thenm = qb for a
q ∈ Z. Since qb is the greatest in U , it follows that (q+1)b > a. So qb ≤ a < qb+b,
that is 0 ≤ a− qb < b. So a = qb+ r with r ∈ Nb.

If also a = q′b+ r′ with r′ ∈ Nb, then q′b ≤ a and so q′b ≤ qb, because qb was the
greatest in U . Since (q′ + 1)b = a + (b − r′) > a we also have (q′ + 1)b > qb. So
q′ ≤ q and q′ ≥ q, that is q′ = q. Then also r′ = r.
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8.2 Definition. Let a ∈ Z and b ∈ N+. The unique q ∈ Z and r ∈ Nb such that
a = qb + r are called respectively the quotient of a by b and the remainder of a
after division by b. The number a is called the dividend.

8.3 Notations. Division with remainder by a b ∈ N+ gives for every a ∈ Z a
unique quotient q and a unique remainder r. So we have maps

qb : Z → Z, a 7→ q (the quotient by b),

rb : Z → Nb, a 7→ r (the remainder after division by b).

Thus a = qb(a)b+rb(a) for all a ∈ Z. Theorem 8.1 states that the map Z× Nb → Z,
(q, r) 7→ qb+ r is bijective. The inverse is a 7→ (qb(a), rb(a)).

Algorithm

Here we consider only the case a ∈ N. Instead of comparing multiples of b with a,
one can subtract b repeatedly, starting from a. For division of a by b, start with the
numbers 0 and a. Take the successor of the first and subtract b from the second (if
a ≥ b), repeat this with the resulting pair of numbers, and continue doing so until
the second number is less than b. Then this second number is the remainder of a
after division by b and the first is the quotient. We divide 253 by 41:

0 1 2 3 4 5 6

253 212 171 130 89 48 7

So the quotient equals 6 and the remainder equals 7.

Python

Given two natural numbers a and b we can determine whether a ≥ b, and if so we
can determine their difference. This we can use for division with remainder. For
this we add to the module integer.py a function quotres:

integer.py
def quotres(a, b):

q, d = 0, idiff(a, b)

while d[2] == a: q, a, d = succ(q), d[0], idiff(d[0], b)

return [q, a]

>>> quotres(234, 13)

[18, 0]

>>> quotres(1234, 13)

[94, 12]
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Addition in Z is associative. Given an n-tuple of integers a0, . . . , an−1, i.e. a map
Nn → Z, we have the notion of sum of these integers since it is irrelevant how
parentheses are placed, for example

(a0 + a1) + (a2 + a3) = a0 + (a1 + (a2 + a3)) = a0 + ((a1 + a2) + a3)

= (a0 + (a1 + a2)) + a3 = ((a0 + a1) + a2) + a2.

So one may write a0 + a1 + a2 + a3 for short. More generally, the notation a0 +
· · ·+ an−1 has a unique meaning. A more precise notation is

∑n−1
k=0 ak, a notation

which avoids the use of the · · · . Even of a sequence of length 0 the sum can be
taken: we just agree that this empty sum equals 0. Thus the meaning of

∑n−1
k=0 ak

is given inductively: 

−1∑
k=0

ak = 0

n∑
k=0

ak =

(
n−1∑
k=0

ak

)
+ an.

This notation can be used more generally, namely in the case of a set with an
associative and commutative operation + for which there is a neutral element 0,
so for an abelian monoid with the additive notation for its operation.

We can generalize this notation further to maps I → Z, i 7→ a(i), where I is a
finite set and not just a standard set Nn:∑

i∈I
a(i).

It can be defined as follows: choose a bijection Nn → I, k 7→ ik, and put:

∑
i∈I

a(i) =

n−1∑
k=0

a(ik).

This is independent of the chosen bijection by commutativity of the addition. A
set I used this way is called an index set .

For I the empty set this sum equals 0. This notation can be used more generally
for abelian monoids with the additive notation for its operation.

8.2.1 Geometric progressions

8.4 Definition. A geometric progression (or geometric sequence) is a sequence of
the form a, ar, ar2, . . . , where a and r are integers. Integers are the only numbers
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we have so far. Later, when more numbers are available, these will be allowed as
well. The number r is called the common ratio of the geometric progression.

A geometric progression a, ar, ar2, . . . can be seen as the course of a under the
transformation x 7→ xr of Z.

Let a, ar, ar2, . . . be a geometric progression. Let sn be the sum of the first n terms
of the progression:

sn =

n−1∑
k=0

ark = a+ ar + · · ·+ arn−1.

These sums form a sequence s0, s1, s2, . . . Apart from the obvious connection

sn+1 = sn + arn

between sn+1 and sn, we also have

sn+1 =

n∑
k=0

ark = a+

n∑
k=1

ark = a+ rsn.

So the sequence (sn) is also determined by{
s0 = 0,

sn+1 = rsn + a for all n ∈ N,

that is: (sn) is the course of 0 under the transformation x 7→ rx + a. These
observations lead to two theorems.

8.5 Theorem. Let a and r be numbers (integers) with r ̸= 1. Then the sum sn of
the first n terms of the geometric progression a, ar, ar2, . . . is given by

sn = a · r
n − 1

r − 1
.

PROOF. We already saw that sn + arn = a + rsn. From this it follows that
(r − 1)sn = a(rn − 1).

Here we only considered integers, because that is all we have. In general this holds
in any integral domain. For a = 1 we have (r− 1)(rn−1 + · · ·+ r2 + r+1) = rn − 1,
that is rn−1 + · · ·+ r2 + r + 1 = rn−1

r−1
. Multiplication of all terms by a, obviously

results in a times their sum.

8.6 Theorem. Let a and r be numbers (integers) with r ̸= 1. Let the sequence (sn)
be defined by {

s0 = 0,

sn+1 = rsn + a for all n ∈ N,

Then for all n ∈ N
sn = a · r

n − 1

r − 1
.
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PROOF. We already noted that the sequence (sn) is the same as the sequence (sn)
from theorem 8.5.

8.7 Example. In example 6.8 we saw that the sequence (an) determined by{
a0 = 0

an+1 = 2an + 1 for all n ∈ N

coincides with the sequence given by an = 2n − 1. This can be seen as a special
case of theorem 8.6: a = 1 and r = 2.

8.2.2 Sums, subsets and partitions

The sum of as many numbers 1 as there are elements in A obviously is the number
of elements of A: ∑

a∈A
1 = #(A).

Here A is the index set and the map from A to Z maps every element of A to 1.

For U a subset of a finite set A, χU : A → {0, 1} the characteristic function of U
on A, and f a function on A we have∑

a∈A
χU (a)f(a) =

∑
a∈U

f(a)

and in particular ∑
a∈A

χU (a) =
∑
a∈U

1 = #(U).

If Φ is a partition of a finite set A, then every a ∈ A is an element of exactly one
U ∈ Φ and so for every a ∈ A: ∑

U∈Φ

χU (a) = 1.

For Φ a partition of a finite set A and f a function on A we have∑
a∈A

f(a) =
∑
U∈Φ

∑
a∈U

f(a).

Here the sum is taken of the function values class by class and subsequently the
sum is taken over all classes. Obviously we have in particular:

#(A) =
∑
U∈Φ

#(U).
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We could have done this using characteristic functions as well:∑
a∈A

f(a) =
∑
a∈A

∑
U∈Φ

χU (a)f(a) =
∑
U∈Φ

∑
a∈A

χU (a)f(a) =
∑
U∈Φ

∑
a∈U

f(a).

We changed the order of the sums. It can be seen as taking a sum over a product
set in two ways. See below.

8.2.3 Double sums

Above we had a double sum and interchanged the sums. Why doesn’t this have
effect on the result? Suppose we have a function f : Nm × Nn → Z. We take the
sum of the function values over all pairs (i, j):∑

(i,j)∈Nm×Nn

f(i, j).

This sum has mn terms, see also exercise 8 of chapter 5 for a bijection Nmn →
Nm × Nn (the inverse is (i, j) 7→ in+ j). So we take the sum of all terms

f(0, 0) f(1, 0) f(2, 0) . . . f(m− 1, 0)

f(0, 1) f(1, 1) f(2, 1) . . . f(m− 1, 1)

f(0, 2) f(1, 2) f(2, 2) . . . f(m− 1, 2)

...
...

...
...

f(0, n− 1) f(1, n− 1) f(2, n− 1) . . . f(m− 1, n− 1)

The sum of the numbers in the ith column (numbered from 0 to n− 1) is∑
j∈Nn

f(i, j).

So the total sum is ∑
(i,j)∈Nm×Nn

f(i, j) =
∑
i∈Nm

∑
j∈Nn

f(i, j).

By first taking the sums of the rows we obtain∑
(i,j)∈Nm×Nn

f(i, j) =
∑
j∈Nn

∑
i∈Nm

f(i, j).

So the sums can be interchanged:∑
i∈Nm

∑
j∈Nn

f(i, j) =
∑
j∈Nn

∑
i∈Nm

f(i, j).
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8.3 The g-Adic Notation of Natural Numbers

So far we used the decimal notation of numbers. For the arithmetic we have
not used this powerful notation, since every operation was constructed using the
successor transformation only. Now we take a closer look at this notation. First we
will see that it is based on division with remainder. Instead of taking the number
ten we fix an arbitrary natural number g greater than 1 for the g-adic notation of
natural numbers. The number g is called the base of this notation.

Let a ∈ N. We divide by g, then we divide the quotient by g, and so on. Here to
divide stands for to divide with remainder. After N divisions:

a = a0 = a1g + c0 with a1 ∈ N and c0 ∈ Ng,
a1 = a2g + c1 with a2 ∈ N and c1 ∈ Ng,
a2 = a3g + c2 with a3 ∈ N and c2 ∈ Ng,
...

aN−1 = aNg + cN−1 with aN ∈ N and cN−1 ∈ Ng.

Thus we have

a = a1g + c0 = a2g
2 + c1g + c0 = a3g

3 + c2g
2 + c1g + c0 = · · ·

= aN−1g
N−1 + cN−2g

N−2 + · · ·+ c1g + c0. (8.1)

The sequence a0, a1, a2, . . . satisfies{
a0 = a,

an+1 = qg(an) for all n ∈ N.

In other words the sequence a0, a1, a2, . . . is the course of a under the transforma-
tion qg of N. For the iteration of a transformation see section 6.4.

8.8 Lemma. For every a ∈ N there exists an N ∈ N such that qng (a) = 0 for all
n ≥ N .

PROOF. Let b ∈ N. Division by g gives b = qg + r with q ∈ N and r ∈ Ng. From

(b− q)g = bg − qg = bg − b+ r = b(g − 1) + r ≥ b

it follows that b > q if b > 0. So the course of an a under qg is a sequence
a0, a1, a2, . . . with

a = a0 > a1 > a2 > · · · > aN−1 > 0 and an = 0 for all n ≥ N.
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8.9 Notation. Let (x0, x1, . . . , xn−1) be a sequence of natural numbers of length
n. Then

[xn−1, . . . , x1, x0]g =

n−1∑
i=0

xig
i = x0g

0 + x1g
1 + · · ·+ xn−1g

n−1.

This notation is also determined by
[x0]g = x0,

[x1, x0]g = x0 + x1g,

[xn, xn−1, . . . , x0]g = [[xn, xn−1, . . . , x1]g, x0]g for all x0, . . . , xn.

So for example [5, 3, 2, 4]8 = [43, 2, 4]8 = [346, 4]8 = [2772]8 = 2772. Notice the
order: [4, 7, 2]10 = 2 · 100 + 7 · 101 + 4 · 102. The notation [4, 7, 2]10 becomes a
notation for 472.

Using this notation the chain (8.1) of equalities can be written as follows:

a = [a1, c0]g = [a2, c1, c0]g = [a3, c2, c1, c0]g = · · · = [aN−1, cN−2, . . . , c1, c0]g.

If aN = 0, then aN−1 < g.

8.10 Definition. Let a be a natural number. If there exist natural numbers
a0, a1, . . . , an−1 with ai < g for i = 0, 1, . . . , n−1 and, if n ̸= 1, an−1 ̸= 0 such that

a = [an−1, . . . , a1, a0]g,

then we say that a can be written g-adically. The expression on the right hand
side is called the g-adic notation of a.

We have seen by using repeatedly division with remainder that:

8.11 Proposition. Every natural number can be written g-adically.

8.12 Notation. Let A be a set and c ∈ A. The set of sequences (an) in A is
denoted by R(A). The subset of sequences (an) for which an N ∈ N exists with
an = c for all n ≥ N we denote by Rc(A). They are repeating sequences of the
form

a0, a1, . . . , an−1, c,

where c is the constant sequence c, c, c, c, . . . . We say that such sequences have a
c-tail.

In this section only the case c = 0 is used, but in, for example, decimal representa-
tions of rational numbers we will see other values of c. Think of 1

3
= 0.333 · · · = 0.3.

We have a map
R0(N) → N, (an) 7→ [aN−1, . . . , a1, a0]g, (8.2)

where for every sequence (an) an N is chosen such that an = 0 for all n ≥ N .
For [aN−1, . . . , a1, a0]g we will also write [. . . , a2, a1, a0]g since the choice of N is
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irrelevant. The set R0(Ng) is the subset of R0(N) consisting of sequences in Ng
with a 0-tail. Restriction of the map (8.2) to this subset yields a map

R0(Ng) → N, (an) 7→ [. . . , a2, a1, a0]g. (8.3)

Since every natural number can be written g-adically, the map (8.3) is surjective.
We will see that it is also injective, in other words that the g-adic notation is
unique. Clearly the map (8.2) is surjective: (a, 0) 7→ [a]g = a. It is not injective:
(g, 0) 7→ [g]g = g and (0, 1, 0) 7→ [1, 0]g = g.

We will show that the map (8.3) is bijective by giving an inverse. This inverse is
the map

N → R0(Ng), a 7→ c0, c1, c2, . . . , (8.4)

where cn = rg(an) for all n ∈ N, the sequence a0, a1, a2, . . . being the course of a
under the transformation qg of N. We have already seen that a = [. . . , c2, c1, c0]g.
It remains to show that, if a = [. . . , c2, c1, c0]g, the numbers cn are equal to rg(an).
From [. . . , c2, c1, c0]g = [. . . , c2, c1]g · g + c0 it follows that

qg([. . . , c2, c1, c0]g) = [. . . , c2, c1]g and rg([. . . , c2, c1, c0]g) = c0.

So also qng ([. . . , c2, c1, c0]g) = [. . . , cn+1, cn]g, that is an = [. . . , cn+1, cn]g, and
indeed rg(an) = cn. We have shown:

8.13 Theorem. Every natural number can be written g-adically and this notation
is unique.

Algorithm

Determination of the g-adic notation of a natural number comes down to repeated
division with remainder. The computation of the 8-adic notation of 851 by repeated
division by 8:

851 = 106 · 8 + 3

106 = 13 · 8 + 2

13 = 1 · 8 + 5

1 = 0 · 8 + 1

So 851 = [1, 5, 2, 3]8. The computation can be written as follows:

851 = [851]8 = [106, 3]8 = [13, 2, 3]8 = [1, 5, 2, 3]8.

In a scheme made from right to left:

0 1 13 106 851

1 5 2 3

Left to a number in the top row the quotient after division by 8 and below the
remainder after this division. The bottom row is the 8-adic notation.
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Python

In Python the g-adic notation can be determined by division with remainder, col-
lecting the remainders in a list. We use for this the data type list. The terms
in such a list have an index, a natural number. Since we are representing natural
numbers we will make no use of this and use only some simple operations on lists.

The function repres(a,g) returns the g-adic notation of a as a list:

integer.py
def repres(a, g):

result = [a]

while leq(g, result[0]): result[:1] = quotres(result[0], g)

return result

>>> repres(2304, 10)

[2, 3, 0, 4]

>>> repres(2304, 16)

[9, 0, 0]

>>> repres(2304, 2)

[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

>>> repres(2304, 100)

[23, 4]

And backwards:

integer.py
from functools import reduce

def nat(nrlist, g):

def sumg(a, b): return isum(iprod(a, g), b)

return reduce(sumg, nrlist)

>>> nat([2,0,3,6], 7)

713

>>> nat([2,0,3,6], 10)

2036

The 2-adic notation is also called the binary notation. Usually one writes words in
0 and 1: instead of [1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1]2 one writes 110101001001 for short.
It is understood that it is based on the binary notation.

Division by 8 gives only the numbers 0 to 7 as possible remainders. The 8-adic
(= octal) notation of a number is a finite sequence of these numbers. The 8-adic
notation of 3401 is [6, 5, 1, 1]8 or 6511 for short. In the octal notation numbers are
words in the digits 0 to 7.
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The 16-adic (= hexadecimal) notation of a number is a finite sequence consisting
of numbers from 0 to 15:

3401 = [3401]16 = [212, 9]16 = [13, 4, 9]16

For a compact hexadecimal notation also symbols for the numbers 10 to 15 are
needed. Usually the letters A to F are used for this purpose. The hexadecimal
notation of 3401 then is D49.

8.4 Arithmetic in a g-Adic System

The arithmetic (addition, subtraction, multiplication, division with remainder) in
the decimal system is in a well-known way based on the arithmetic using only the
symbols 0, 1, . . . , 9. More generally, the arithmetic in the g-adic system can be
reduced to the arithmetic with the numbers 0, . . . , g − 1. For doing calculations
g-adically it is advantageous to know the multiplication tables of 0, . . . , g − 1. For
g = 2 only little remains to learn by heart; on the other hand many computations
are needed: compare the addition of 268 and 341 in the decimal and the binary
system:

268
341
609

100001100
101010101

1001100001

Algorithms

For addition, multiplication and division with remainder there are algorithms that
are well-known in the decimal notation. For division with remainder there is the
well-known method of long division. In these algorithms one computes with multi-
ples of powers of the base number. It is all based on the rules of arithmetic for the
natural numbers:

268 + 341 = [2, 6, 8]10 + [3, 4, 1]10 = 2 · 102 + 6 · 10 + 8 + 3 · 102 + 4 · 10 + 1

= (2 + 3) · 102 + (6 + 4) · 10 + (8 + 1) = [5, 10, 9]10 = [5 + 1, 0, 9]10

= [6, 0, 9]10 = 609.

48 · 234 = [4, 8]10 · [2, 3, 4]10 = 4 · [2, 3, 4, 0]10 + 8 · [2, 3, 4]10
= [8, 12, 16, 0]10 + [16, 24, 32]10 = [9, 3, 6, 0]10 + [1, 8, 7, 2]10

= [10, 11, 13, 2]10 = [1, 2, 2, 3, 2]10.
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Python

First some simple conversions:

integer.py
def remove0(nrlist):

while nrlist[0] == 0 and nrlist != [0]: del nrlist[0]

return nrlist

def normalize(nrlist, g):

normalform = []

while nrlist != []:

qr = quotres(nrlist.pop(), g)

if nrlist != []: nrlist[-1] = isum(nrlist[-1], qr[0])

elif qr[0] != 0: nrlist = [qr[0]]

normalform.insert(0, qr[1])

return remove0(normalform)

def equalize(nrlist1, nrlist2):

list1, list2 = [0 for i in nrlist1], [0 for i in nrlist2]

nrlist1 = list2 + nrlist1

nrlist2 = list1 + nrlist2

while nrlist1 != [0] and nrlist2 != [0] and\

nrlist1[0] == nrlist2[0] == 0:

del nrlist1[0]

del nrlist2[0]

return (nrlist1, nrlist2)

Their effect is shown in the examples:

>>> remove0([0, 0, 0, 5, 11, 3])

[5, 11, 3]

>>> normalize([0, 0, 0, 5, 11, 3], 8)

[6, 3, 3]

>>> equalize([3, 4, 34], [45, 0, 1, 1, 12])

([0, 0, 3, 4, 34], [45, 0, 1, 1, 12])

The sum and product of natural numbers:

integer.py
def gsum(nrlist1, nrlist2, g):

(nrlist1, nrlist2) = equalize(nrlist1, nrlist2)

return normalize([isum(nrlist1[i], nrlist2[i]) for i in\

range(len(nrlist1))], g)

def gprod(nrlist1, nrlist2, g):

products = [[iprod(i, j) for j in nrlist2] for i in nrlist1]

def sum1(list1, list2): return gsum(list1 + [0], list2, g)

return normalize(reduce(sum1, products), g)
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Examples:

>>> gsum([3, 4, 34], [45, 0, 1, 1, 12], 8)

[5, 5, 0, 5, 2, 6]

>>> gprod([3, 4, 34], [45, 0, 1, 1, 12], 8)

[2, 6, 5, 3, 7, 2, 2, 5, 0]

We add to integer.py the algorithms for the ordering and the subtraction. The
ordering:

integer.py
def lesseq(nrlist1, nrlist2):

(nrlista, nrlistb) = equalize(nrlist1, nrlist2)

while nrlista != [] and nrlista[0] == nrlistb[0]:

del nrlista[0]

del nrlistb[0]

if nrlista == []: return True

else: return leq(nrlista[0], nrlistb[0])

>>> lesseq([2, 0, 4, 4], [2, 0, 5, 1])

True

>>> lesseq([2, 0, 15, 4], [2, 0, 5, 1])

False

Subtraction:

integer.py
def sub0(nrlist1, nrlist2, g):

(nrlist1, nrlist2) = equalize(nrlist1, nrlist2)

diffs = []

while nrlist1 != []:

diffs.append(difference(isum(nrlist1.pop(0), g),\

succ(nrlist2.pop(0))))

diffs[-1] = succ(diffs[-1])

diffs = normalize(diffs, g)

diffs[:1] = []

return diffs

def sub(nrlist1, nrlist2, g):

return remove0(sub0(nrlist1, nrlist2, g))

def gmultiples(nrlist, g):

mults = [[0, [0]]]

h = difference(g, 1)

while mults[-1][0] != h:

s = succ(mults[-1][0])
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>>> lesseq([2, 0, 4, 4], [2, 0, 5, 1])

True

>>> lesseq([2, 0, 15, 4], [2, 0, 5, 1])

False

>>> sub0([4, 2, 8, 0], [4, 2, 7, 11], 16)

[0, 0, 0, 5]

>>> sub([4, 2, 8, 0, 13], [4, 2, 7, 11], 16)

[3, 14, 5, 9, 2]

8.5 Direct Conversion Between Numeral Systems

A number given in the hexadecimal system can easily be converted to the decimal
system since we are familiar with decimal arithmetic:

4FE (hex) = 4 · 162 + 15 · 16 + 14 = 1278.

If you are familiar with arithmetic in the hexadecimal system, you might prefer
long divisions in that system.

A/4FE\7F
46
9E
96
8

A/7F\C
78
7

A/C\1
A
2

A/1\0
0
1

and so 4FE (hex) = 1278 (decimal). For doing hexadecimal arithmetic it is advis-
able to know the multiplication tables of 0 up to F, see Figure 8.1 on page 130.
Especially for long divisions knowledge of these tables is advantageous.

Python

For direct conversion into another numeral system one performs the division algo-
rithm in the given system repeatedly. For the conversion from g1-adic to g2-adic
one does g1-adic arithmetic, so g2 has to be represented in the g1-adic notation. In
the division algorithm the multiple of the divisor has to be determined which will
be subtracted from the dividend. For that purpose first a list of multiples of the
divisor is made with gmultiples. The function gdivmod0 is the step in the long
division, which is repeatedly used. The long division is done by gdivmod.
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integer.py
def gmultiples(nrlist, g):

mults = [[0, [0]]]

h = difference(g, 1)

while mults[-1][0] != h:

s = succ(mults[-1][0])

mults.append([s, gprod([s], nrlist,g)])

return mults

def gdivmod0(nrlist1, nrlist2, g):

lista = [[0, [0]]]

listb = gmultiples(nrlist2, g)[1:]

while listb != [] and lesseq(listb[0][1], nrlist1):

lista.append(listb.pop(0))

return [lista[-1][0], sub0(nrlist1, lista[-1][1], g)]

def gdivmod(nrlist1, nrlist2, g):

nrlist1copy = nrlist1[:]

nrlist2copy = nrlist2[:]

rlist = []

dlist = []

qlist = []

while nrlist1copy != [] and nrlist2copy != []:

rlist.append(nrlist1copy.pop(0))

dlist.append(nrlist2copy.pop(0))

if nrlist2copy != []: return [[0], nrlist1]

else:

while nrlist1copy != []:

qr = gdivmod0(rlist, dlist, g)

qlist.append(qr[0])

rlist = qr[1]

rlist.append(nrlist1copy.pop(0))

qr = gdivmod0(rlist, dlist, g)

qlist.append(qr[0])

rlist = qr[1]

return [remove0(qlist), remove0(rlist)]

>>> gmultiples([1, 4], 8)

[[0, [0]], [1, [1, 4]], [2, [3, 0]], [3, [4, 4]], [4, [6, 0]], [5, [7,

4]], [6, [1, 1, 0]], [7, [1, 2, 4]]]

>>> gdivmod0([5, 1], [1, 4], 8)

[3, [0, 5]]

>>> gdivmod([5, 4, 6, 0, 1, 4], [1, 4], 8)

[[3, 5, 6, 5, 3], [1, 0]]

The conversion of one system into another consists of repeatedly applying the di-
vision algorithm.
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0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 0 2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E

3 0 3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D

4 0 4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C

5 0 5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 4B

6 0 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 0 7 E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69

8 0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 0 9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 0 A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 0 B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 0 C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 0 D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E 0 E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F 0 F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

Figure 8.1: Hexadecimal multiplication table

integer.py
def convert(nrlist, g1, g2):

result = [nrlist]

g = repres(g2, g1)

while lesseq(g, result[0]):

result[:1] = gdivmod(result[0], g, g1)

return [nat(i, g1) for i in result]

>>> convert([3, 5, 0, 5, 7], 8, 12)

[8, 7, 5, 3]

Addition and multiplication ultimately rest on taking the successor. No use is made
of the decimal notation of natural numbers. Exploiting this notation provides fast
algorithms, even so with the primitive means used here.

Exercises

1. Write the number 2008 (decimal notation) in the 7-adic notation. The remainder
after division by ten is eight. Make this division as a long division in the 7-adic
numeral system.
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2. Multiply D6EE and A3A3 (hexadecimal notation). Do this in the hexadecimal
system using the multiplication tables.

3. Let [cn, cn−1, . . . , c0]10 be the decimal notation for an a ∈ N. Prove:

a and c0 + c1 + · · ·+ cn have the same remainder after division by 9.

4. Have another look at exercise 2 of chapter 1. Now use theorem 8.6.

5. Let a and r be integers with r ̸= 1. Let the sequence (tn) be the course of a c ∈ Z
under the transformation x 7→ rx+ a:{

t0 = c,

tn+1 = rtn + a for all n ∈ N.

Determine a formula for tn.

6. The sequence (an) is the course of 0 under the transformation x 7→ 7x+ 3 of Z.
(i) Determine the 7-adic notation of an.

(ii) Which formula for an follows from theorem 8.6?

7. The sequence (an) is the course of 0 under the transformation x 7→ 7x + 11 of Z.
Determine the 7-adic notation of an.

8. The 8-adic notation of an an ∈ N consists of 2n digits: 51515151 · · · 51, alternating
5 and 1.

(i) What is the hexadecimal notation of an ?

(ii) Which formula for an follows from theorem 8.5?

9. (i) Since 8 equals 23 there is a very simple connection between the octal and the
binary notation. Conversion between these notations is easy. What is this
connection?

(ii) In the operating system Unix (and Linux) every file has an ‘owner’ and this
owner is a member of a ‘group’. The owner determines what others are allowed
to do with his file. He does so for: the owner, the group and the world (=
everybody). In each of these cases there are three actions which are permitted
or not:

r - reading of the file (then for example copying is possible),
w - writing in the file (you may change it),
x - the execution of the file (which makes sense for an executable file).

To indicate whether something is off or on 0 and 1 will be used. Three of
these bits are needed to indicate permissions. For example 110 means rw-:
the file can be read and changed, but not executed. That is 6 (= 4 + 2 + 0)
in the octal system. For owner, group and world three of these digits are
needed. Thus 640 means that the owner can read and write but not execute
(convenient when it is not an executable, a document for example), members
of the group can only read and others cannot do anything with the file.

a) What is the meaning 764 here?
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b) Describe with three octal digits that a computer program may be copied,
changed and executed by the owner, that members of the group can copy
and execute it, while by others it can only be executed.

The Unix command to set the permissions of a file foo to for example 640 is

chmod 640 foo

10. Eight bits form a byte. In the ascii-code characters are given as bytes. Often a
byte is written in the hexadecimal system. For a byte two hexadecimal digits are
needed.

(i) Bytes may be given in the decimal, binary, octal or hexadecimal system. What
is 10011011 in these notations?

True color means that colors displayed on the monitor are given in the rgb-code by
three bytes, one for Red, one for Green and one for Blue. Sometimes the decimal
and sometimes the hexadecimal notation is used. In the decimal notation there
are three numbers from 0 up to 255, for example 210.35.106. In the hexadecimal
notation this is D2316A (without the dots). In html-files for example #D2316A is
used, with a # for the hexadecimal notation. Each of the three numbers stands for
the intensity of the corresponding color.

(ii) How many colors are there in the true color scheme?

(iii) The rgb-code for white is FFFFFF. What are the rgb-codes for red, purple,
black and gray?

(iv) If the sum of two color codes equals FFFFFF, then the two colors are called
complementary to each other. Which colors are complementary to red, green
and blue?

11. Let the number a be given g-adically:

a = [cn, . . . , c0]g.

(i) Show that gn ≤ a < gn+1.

(ii) Show that cng
n ≤ a < (cn + 1)gn.

(iii) How can the number cn be determined without c0, . . . , cn−1 being determined
first?

(iv) How can we determine the g-adic notation [cn, . . . , c0]g of a from left to right,
that is first cn, then cn−1, and so on?
(The disadvantage of this method is that sufficiently many powers of g have
to be computed first.)

12. The Cantor representation. Show that every natural number ̸= 0 is uniquely
representable as

c1 · 1! + c2 · 2! + c3 · 3! + · · ·+ cn · n!,

where for i = 1, . . . , n the number ci is a natural number ≤ i, and cn ̸= 0. (Hint:
first determine n and cn.)

13. Let g ∈ N with g > 1. We consider the directed graph having R0(N) as vertex set
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and as edges the ordered pairs

((a0, a1, . . . , ak, ak+1, ak+2, . . . ), (a0, a1, . . . , rg(ak), ak+1 + qg(ak), ak+2, . . . )),

where (a0, a1, a2, . . . ) ∈ R0(N) and k ∈ N.
(i) Verify

[. . . , a2, a1, a0]g = [. . . , ak+2, ak+1 + qg(ak), rg(ak), . . . , a1, a0]g.

(ii) How many of the edges have a given vertex as tail?

(iii) Which vertices are both head and tail of a loop?

(iv) Starting at a vertex of the graph and walking along edges (in the direction
of these edges) will you then ultimately arrive in a loop? (Hint: consider the
sum of the terms of a sequence.)

(v) Walks starting at a given vertex, what do they have in common?

14. Prove that R0(N) is countable.

15. Prove that F(N) is countable, see notation 6.6.

16. Let A be a finite set and B a countable set. Prove that BA is countable. How can
a bijection N → BA be easily made from bijections f : Nn → A and g : N → B?

17. Prove that for all n ∈ N
n∑

k=0

(−1)k · k2 = (−1)n ·
n∑

k=0

k.

18. Let a0, a1, a2, . . . be a sequence of integers. The sequence of sums (sn) of this
sequence is given by sn =

∑n−1
k=0 ak. Let be given

s1 = 1 and s100 = 100.

(i) Prove that there is an m ∈ N such that sm is odd and sm+1 is even.

(ii) Prove that there is a k ∈ N such that ak is odd and ak+1 is even.
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9 The Rational Numbers

In chapter 7 the system N has been extended to the number system Z in order to
make subtraction possible in all cases. The rules of arithmetic also hold in this
extended number system. That in fact is the main reason for calling Z a number
system. Now we are going to extend the number system further to make division
by nonzero numbers possible. For extensions like these it is usually clear what we
want to achieve, but it is not clear that such an extension actually exists. Maybe
we want something impossible.

We constructed Z from N by seeing integers as differences of natural numbers.
Similarly we will construct the rationals from Z by seeing them as quotients of
integers, also called fractions. This construction is in fact applicable to any integral
domain, but here we will confine to Z.

The new property of the extended system, the system of rational numbers, is the
possibility of division by nonzero elements. Such a structure is called a field. In
this chapter we will have a first look at equations over a field in general.

The representation of a rational as a fraction of integers is not unique. The sim-
plification of fractions leads in a natural way to the notion of greatest common
divisor of integers. We will take a closer look at the simplification of fractions and
the related computation of greatest common divisors.

In geometry numbers frequently occur as ratios of lengths of line segments. We
will see that the system of the rationals is not sufficient for this purpose. More
numbers are needed.

9.1 The Construction of Q

In order to achieve that equations m+ x = n are solvable for all m and n we have
extended N to Z. Now we will extend Z further. We want all equations bx = a
(with b ̸= 0) to be solvable and the rules of arithmetic to remain valid. Let’s
assume we have indeed such an extension of Z. Let a1, a2, b1, b2 be integers with
b1, b2 ̸= 0 and let x1 and x2 be numbers in the extended number system such that
b1x1 = a1 and b2x2 = a2. Since the rules of arithmetic are assumed to hold, we
have

b1b2x1x2 = a1a2 and b1b2(x1 + x2) = a1b2 + a2b1,
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9 The Rational Numbers

so the number x1x2 is a solution of b1b2x = a1a2 and the number x1 + x2 of
b1b2x = a1b2 + a2b1. Writing the solution of bx = a as a ‘fraction’ ab we see that
the collection of these fractions is all we need for addition and multiplication, the
sum and the product of fractions being again such a fraction:

a1
b1

+
a2
b2

=
a1b2 + b1a2

b1b2
and

a1
b1

· a2
b2

=
a1a2
b1b2

.

If Q is the desired extension of Z, then we have a surjection

Z× (Z \ {0}) → Q, (a, b) 7→ a

b
.

What then is the corresponding equivalence relation in Z× (Z \ {0}) ? If b1x = a1
as well as b2x = a2, then b1b2x = a1b2 and b1b2x = a2b1, and so a1b2 = b1a2.
From all this it is clear how to construct the set Q and how to define addition and
multiplication in this set.

9.1.1 The construction

Our starting point is the set of all pairs (a, b) of integers with b ̸= 0.

9.1 Definition. For (a1, b1), (a2, b2) ∈ Z× (Z \ {0}) we define

(a1, b1) ≃ (a2, b2) ⇐⇒ a1b2 = b1a2.

This defines a relation ≃ in Z× (Z \ {0}).

9.2 Proposition. The relation ≃ is an equivalence relation.

PROOF. We prove that ≃ is reflexive, symmetric and transitive.

reflexive: For a ∈ Z and b ∈ Z \ {0} we have (a, b) ≃ (a, b), since this means
ab = ba.

symmetric: From (a1, b1) ≃ (a2, b2) follows a1b2 = b1a2 and this is equivalent to
(a2, b2) ≃ (a1, b1).

transitive: From (a1, b1) ≃ (a2, b2) and (a2, b2) ≃ (a3, b3) follows: a1b2 = b1a2 and
a2b3 = b2a3. So

a1b2b3 = b1a2b3 = b1b2a3

and since b2 ̸= 0 the cancellation law for the multiplication in Z implies
a1b3 = b1a3, that is (a1, b1) ≃ (a3, b3).

9.3 Definition. Q = (Z×(Z\{0})/≃). We denote the class of (a, b) ∈ Z×(Z\{0})
by a

b . Elements of Q are called rational numbers. The expression a
b is called a

fraction. The a is the numerator of the pair (a, b) representing the fraction a
b and

b is its denominator.
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9.1 The Construction of Q

Figure 9.1: The partition Q of Z× (Z \ {0})

Pairs (a1, b1) and (a2, b2) represent the same class if and only if (a1, b1) ≃ (a2, b2).
In other words the rational numbers a1

b1
and a2

b2
are equal if and only if a1b2 = a2b1.

Figure 9.1 is a picture of the partition Q of Z × (Z \ {0}). From a geometrical
point of view the classes are formed of the lattice points lying on the same straight
line through the origin. Intersection of these lines with the line y = 1 defines a
correspondence of the equivalence classes with points on this line. This gives a
clear geometrical picture of the extension of Z to Q.

In the introduction of this section it is shown how to add and multiply in the desired
extension of Z if such an extension exists. So the definitions of addition and multi-
plication in definition 9.5 is not a surprise. The following lemma shows that these
definitions are correct: they are independent of the choces of the representatives
in the equivalence classes.

9.4 Lemma. Let (a1, b1), (a2, b2), (a
′
1, b

′
1), (a

′
2, b

′
2) ∈ Z× (Z \ {0}) be such that

(a′1, b
′
1) ≃ (a1, b1) and (a′2, b

′
2) ≃ (a2, b2). Then

(a′1b
′
2 + b′1a

′
2, b

′
1b

′
2) ≃ (a1b2 + b1a2, b1b2) and (a′1a

′
2, b

′
1b

′
2) ≃ (a1a2, b1b2).

PROOF. The integers b1b2 and b1b2 are nonzero. Since a′1b1 = b′1a1 and a′2b2 =
b′2a2, we have

(a′1b
′
2 + b′1a

′
2)b1b2 = (a′1b

′
2b1b2 + b′1a

′
2)b1b2 = a1b

′
2b1b2 + b′1a2b1b2

= a1b
′
2b

′
1b2 + b′1a2b1b

′
2 = (a1b2 + b1a2)b

′
1b

′
2
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and

a′1a
′
2b1b2 = a1a2b

′
1b

′
2.

9.5 Definition. Addition in Q:

a1
b1

+
a2
b2

=
a1b2 + b1a2

b1b2
.

Multiplication in Q:
a1
b1

· a2
b2

=
a1a2
b1b2

.

For the arithmetic with fractions the following rules are convenient.

9.6 Lemma. (i)
ac

bc
=
a

b
for a ∈ Z and b, c ∈ Z \ {0}.

(ii)
a

b
+
c

b
=
a+ c

b
for a, c ∈ Z and b ∈ Z \ {0}.

PROOF. (i) follows from ac · b = bc · a and for (ii):
a

b
+
c

b
=
ab+ bc

b2
=
a+ c

b
.

It still has to be shown that the rules of arithmetic hold in Q.

9.7 Proposition. Q is a commutative ring.

PROOF. The proof is straightforward. Because of its importance all axioms for a
commutative ring will be checked. Let a, a1, a2 and a3 be integers and b, b1, b2
and b3 nonzero integers.

(G1) Associativity:(a1
b1

+
a2
b2

)
+
a3
b3

=
a1b2 + b1a2

b1b2
+
a3
b3

=
a1b2b3 + b1a2b3 + b1b2a3

b1b2b3

=
a1
b1

+
a2b3 + b2a3

b2b3
=
a1
b1

+
(a2
b2

+
a3
b3

)
.

(G2) Zero element:
a

b
+

0

1
=
a+ 0

b
=
a

b
. So

0

1
is the zero element.

(G3) Opposite:
a

b
+

−a
b

=
ab+ b(−a)

b
=

0

b2
=

0

1
.

So
−a
b

is the opposite of
a

b
: −a

b
=

−a
b
.

(G4) Commutativity:
a1
b1

+
a2
b2

=
a1b2 + b1a2

b1b2
=
a2b1 + b2a1

b2b1
=
a2
b2

+
a1
b1

.

(R1) Associativity:
(a1
b1

· a2
b2

)
· a3
b3

=
a1a2a3
b1b2

=
a1
b1

·
(a2
b2

· a3
b3

)
.
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(R2) Unity element:
a

b
· 1
1
=
a

b
. So

1

1
is the unity element.

(R3) Distributivity:

a1
b1

·
(a2
b2

+
a3
b3

)
=
a1
b1

· a2b3 + b2a3
b2b3

=
a1a2b3 + a1b2a3

b1b2b3

=
a1a2b3
b1b2b3

+
a1b2a3
b1b2b3

=
a1a2
b1b2

+
a1a3
b1b3

=
a1
b1

· a2
b2

+
a1
b1

· a3
b3
.

(R4) Commutativity:
a1
b1

· a2
b2

=
a1a2
b1b2

=
a2
b2

· a1
b1

.

9.1.2 Z as part of Q

After Z was constructed we considered the elements [n, 0] with n ∈ N. Together
they form a number system that can replace the N we started with. Here we have
a similar situation: Z can be replaced by the subset of all a1 . This follows from:

a

1
=
b

1
⇐⇒ a = b (for all a, b ∈ Z),

a

1
+
b

1
=
a+ b

1
(for all a, b ∈ Z)

and
a

1
· b
1
=
ab

1
(for all a, b ∈ Z).

Instead of a1 we will simply write a.

9.1.3 Q is a field

The number system Q is a commutative ring with a special property:

for every r ∈ Q with r ̸= 0 there is an s ∈ Q such that rs = 1.

If ab = 0 (= 0
1 ), then a = a · 1 = b · 0 = 0 and vice versa, if a = 0, then a

b = 0. So if

r = a
b ̸= 0, then a ̸= 0 and for s = b

a we have:

rs =
a

b
· b
a
=
ab

ab
=

1

1
= 1.

9.8 Definition. An element r of a ring R is called invertible if there is an s ∈ R
such that rs = sr = 1. The element s is called the inverse of r and is denoted by
r−1.
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The invertible elements of a ring R form a group under multiplication. The inverse
in the ring is the same as the inverse in this group, see definition 7.38.

9.9 Notation. The group of invertible elements of a ring R we denote by R∗.

In the ring Z only 1 and −1 have inverses. So Z∗ = {1,−1}. We have seen that in
Q all nonzero elements have inverses: Q∗ = Q \ {0}.

9.10 Definition. A field is a commutative ring with 1 ̸= 0 and in which every
element ̸= 0 has an inverse.

If K is a field, then K \{0} = K∗ and this is an abelian group. The group operation
is the multiplication.

Instead of rs−1 we also write r
s . The fraction bar stands for ‘divided by’, which is

in accordance with the identification of a1 with the integer a. We have seen that in
Q nonzero elements have inverses and so:

9.11 Theorem. Q is a field.

In mathematics fields are important. In the chapters 17 and 19 the fields R (of the
real numbers) and C (of the complex numbers) will be constructed. There are also
finite fields. In chapter 13 we will see examples of finite fields. For fields often the
letter K is used. That goes back to the German word Körper which means body
or corps and in many languages the word for field is a direct translation of this
German word, but not so in English and neither in Russian.

Note that we achieved equations sx = r with s ̸= 0 to be solvable. The unique
solution is x = s−1r. If r = 0, then the unique solution is x = 0, that is a field has
no zero divisors. So fields are integral domains, but integral domains need not be
fields: Z is an integral domain, but is not a field.

9.1.4 Exponentiation in Q

For every r ∈ Q with r ̸= 0 there is an inverse of r. We denote it by r−1. Besides
exponents in N we now also have −1 as an exponent. We will extend this to
exponents in Z. First a lemma.

9.12 Lemma. Let r ∈ Q∗ and n ∈ N. Then (r−1)n = (rn)−1.

PROOF. To prove that (r−1)n is the inverse of rn. This follows from:

(r−1)n · rn = (r−1r)n = 1n = 1.

Integers are introduced as differences of natural numbers.

9.13 Lemma. For r ∈ Q∗ and a ∈ Z we have: if a = n − m = q − p with
m,n, p, q ∈ N, then

rn(r−1)m = rq(r−1)p.
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PROOF. From n + p = q + m it follows that rnrp = rqrm and so rn(rm)−1 =
rq(r−1)p. The lemma now follows using lemma 9.12.

As a consequence we can define ra for integers a as follows.

9.14 Definition. Let r ∈ Q∗ and a ∈ Z with a = n−m, where m,n ∈ N. Then we
define

ra = rn(r−1)m.

In particular ra has for a ∈ N the same meaning as before. Now we also have for
a ∈ N the following meaning of r−a: it is the a-th power of r−1. We could have
used this as a definition, but the more general approach has the advantage that the
rules of arithmetic are more easily verified.

9.15 Proposition. Let r and s be rational numbers ̸= 0 and let a and b be integers.
Then

(i) rarb = ra+b,
(ii) (ra)b = rab,
(iii) (rs)a = rasa.

PROOF. We write a = n−m and b = q − p with m,n, p, q ∈ N.
(i) rarb = rn−mrq−p = rn(r−1)mrq(r−1)p = rn+qr−1)m+p = ra+b.
(ii) (ra)b = (rn(r−1)m)q(rm(r−1)n)p = rnq(r−1)mqrmp(r−1)np

= rnq+mp(r−1)mq+np = rab.
(iii) (rs)a = (rs)n((rs)−1)m = rnsn((s−1)r−1)m = rn(r−1)msn(s−1)m = rasa.

9.1.5 The ordering of Q

We see Q as an extension of Z. The ordering ≤ of Z can be extended to Q.

9.16 Definition. Let r and s be rational numbers. We can write r and s as fractions
having a common denominator:

r =
a

b
and s =

c

b
with b > 0.

We define

r ≤ s ⇐⇒ a ≤ c.

The relation ≤ in Q is well defined: if also r = a′

b′ and s = c′

b′ with b′ > 0, then
a′b = ab′ and c′b = cb′ and we have

a ≤ c ⇐⇒ ab′ ≤ cb′ ⇐⇒ a′b ≤ c′b ⇐⇒ a′ ≤ c′.

9.17 Proposition. The relation ≤ is an ordering of Q.
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PROOF. Write the rational numbers under consideration as fractions having com-
mon denominators. Then the proof is easy.

On Q we also have an absolute value. This is important for the notion of limit which
is crucial for the further extension of the field of rationals. Limits are studied in
chapter 16.

Rational numbers always lie between integers, in fact:

9.18 Lemma. Let x ∈ Q. Then there is a unique m ∈ Z such that m ≤ x < m+1.

PROOF. Let x = a
b with b ∈ N+. Division with remainder gives a = qb + r with

q ∈ Z and r ∈ Nb. Then qb ≤ a < (q + 1)b, that is q ≤ x < q + 1. So take
m = q. The uniqueness follows from the uniqueness of the quotient after division
with remainder.

9.19 Definition. Let x ∈ Q. Then the unique m ∈ Z such that m ≤ x < m + 1
is called the floor of x (or also the entier of x). Notation: ⌊x⌋ = m. (Also the
notation [x] is widely used.) The unique n ∈ Z with n − 1 < x ≤ n is called the
ceiling of x. Notation: ⌈x⌉ = n.

Thus for x ∈ Z we have ⌊x⌋ = x = ⌈x⌉. For nonintegral rationals x we have
⌊x⌋ < x < ⌊x⌋+1 = ⌈x⌉. Division with remainder was used in the definition of the
floor of a rational number. Conversely we have: qb(a) = ⌊a

b
⌋ and rb(a) = a− ⌊a

b
⌋b.

9.2 Equations

9.20 Terminology. Equations of the form

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = 0,

where a0, . . . , an are elements of a field (like Q) are called polynomial equations.
The expression on the left hand side of the equation is called a polynomial in x
over the field. If an ̸= 0, then the polynomial and the equation are said to be
of degree n. The coefficient an is called the leading coefficient of the polynomial.
Equations of degree 1 are called linear, equations of degree 2 are called quadratic
and equations of degree 3 cubic.

9.2.1 Linear equations

Linear equations over a field have a unique solution in that field. The equation

ax+ b = 0

with a ̸= 0 has the unique solution x = − b
a : if ax + b = 0, then ax = −b and so

x = − b
a . If a and b are rational numbers, then so is − b

a .
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9.2 Equations

Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (Baghdad? ±780 – Bagh-
dad? ±850)

Al-Khwarizmi was the first to describe the solution of
quadratic equations in a systematic algebraic manner. He
did so in his book Hisab al-jabr w’al-muqabala. He proba-
bly knew Euclid’s geometrical completion of the square. The
word ‘algebra’ comes from ‘al-jabr’ and our word ‘algorithm’
is derived from ‘Al-Khwarizmi’.

9.2.2 Quadratic equations

The solution of a quadratic equation is given by the well-known quadratic formula.
For the solution of a quadratic equation there is a general recipe and when applied
to the general equation ax2 + bx + c = 0 with a ̸= 0 the quadratic formula is the
result. The recipe is known as the method of completing the square and applied to
the general quadratic equation over the field Q it goes as follows:

1. Divide by a:

x2 +
b

a
x+

c

a
= 0.

2. Introduce a new unknown: y = x + b
2a . Equivalently: substitute y − b

2a for
x. Then: (

y − b

2a

)2
+
b

a

(
y − b

2a

)
+
c

a
= 0,

that is

y2 − b

a
y +

b2

4a2
+
b

a
y − b2

2a2
+
c

a
= 0.

After simplification:

y2 =
b2

4a2
− c

a
=
b2 − 4ac

4a2
.

3. If b2−4ac
4a2 is a square (in Q), or, what amounts to the same, if b2 − 4ac is a

square, then the equation is solvable in Q and otherwise it is not.
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9 The Rational Numbers

4. Suppose b2 − 4ac is a square, say b2 − 4ac = d2. Then the equation becomes
y2 = ( d2a )

2, that is y2 − ( d2a )
2 = 0. The left hand side can be written as a

product: (
y − d

2a

)(
y +

d

2a

)
= 0.

Since a field has no zero divisors, it follows that y − d
2a = 0 or y + d

2a = 0,

that is y = d
2a or y = − d

2a .

5. Since x = − b
2a + y, the solutions are x = − b

2a + d
2a and x = − b

2a − d
2a :

x =
−b ± d

2a
.

Since d2 = b2 − 4ac, this can be written as:

x =
−b ±

√
b2 − 4ac

2a
,

the formula for the solution of the quadratic equation ax2 + bx+ c = 0.

Remarks

a) The number of solutions depends on the number b2 − 4ac. If it is 0, there is
exactly one solution. If b2 − 4ac is a square ̸= 0, then there are two solutions
and if it is not a square, then there are no solutions. In chapter 10 we will see
which rational numbers actually are squares. The number b2 − 4ac is called
the discriminant of the equation.

b) While completing the square, b
a
was divided by 2. What is 2 in an arbitrary

field? Simply, 2 = 1 + 1. But division is only possible if 2 ̸= 0. There are
fields in which 2 = 0, the so-called fields of characteristic 2. In such fields
one has 2a = 0a = 0, that is a + a = 0, or a = −a. In chapter 13 we will
see an example: a field with only two elements. For quadratic equations over
fields of characteristic 2 the recipe of completing the square is not applicable
and the quadratic formula is useless since it has 0 in the denominator of the
fraction.

c) In chapter 17 the field R of the real numbers will be constructed. Real numbers
are the kind of numbers many people experience as being ‘real’. We will see the
well-known fact that the nonzero squares in R are just the positive numbers.
That is why one usually looks at the sign of d for the number of solutions.

d) Also in chapter 18 the field Q will be extended, but there in a very unusual
way. Fields Qp of p-adic numbers will be constructed, one for each prime
number p. We will determine the squares in these fields as well.

e) In chapter 19 we extend R further to the field C of complex numbers. In that
field all numbers are squares and therefore each quadratic equation is solvable
in that field.

f) In chapter 13 we will consider finite fields consisting of p elements, one for
each prime number p. In chapter 14 we investigate which of the elements in
these fields are squares.
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9.2.3 Number of solutions

The following theorem is about the number of solutions of an equation of degree n
over a field. It is frequently used.

9.21 Theorem. Let n ∈ N. An equation of degree n over a field has at most n
solutions.

PROOF. We will prove the theorem by mathematical induction on n. For n = 0
it is trivially true (and for n = 1 there is exactly 1 solution).

Suppose that for some n ∈ N equations of degree n have at most n solutions.
Then to prove that equations of degree n + 1 have at most n + 1 solutions.
We consider an equation of degree n+ 1:

an+1x
n+1 + anx

n + · · ·+ a2x
2 + a1x+ a0 = 0, (9.1)

where a0, . . . , an+1 are elements of a field (Q for example) and an+1 ̸= 0. If
this equation has no solutions, then we are finished. If x = a is a solution,
that is

an+1a
n+1 + ana

n + · · ·+ a2a
2 + a1a+ a0 = 0,

then after subtraction

an+1(x
n+1 − an+1) + an(x

n − an) + · · ·+ a2(x
2 − a2) + a1(x− a) = 0.

For every k ∈ N+ we have

xk − ak = (x− a) ·
k−1∑
i=0

xiak−1−i,

as is easily seen by elaborating the right hand side. It is also a consequence
of theorem 8.5: for a ̸= 0 it is equivalent with

rk − 1 = (r − 1) ·
k−1∑
i=0

ri,

where r = x
a . Writing gk(x) =

∑k−1
i=0 x

iak−1−i the equation becomes

(x− a)(an+1gn+1(x) + angn(x) + · · ·+ a1g1(x)) = 0. (9.2)

The equation

an+1gn+1(x) + angn(x) + · · ·+ a1g1(x) = 0 (9.3)

is of degree n and, therefore, has at most n solutions. Because a field has no
zero divisors, any solution of equation (9.2) is a solution of equation (9.3) or
of x− a = 0. So equation (9.2), which is equivalent to equation (9.1), has at
most n+ 1 solutions.
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9 The Rational Numbers

By mathematical induction it follows that for every n an equation of degree n has
at most n solutions.

If x = p is a solution of the quadratic equation ax2 + bx+ c = 0, then by the above
method the equation can be rewritten as:

ax2+bx+c = a(x2−p2)+b(x−p) = (x−p)(a(x+p)+b) = a(x−p)(x+p+ b
a
) = 0.

So x = −p − b
a

is a solution and there are not more solutions. In chapter 19
the number system will be extended to C, the field of complex numbers. Over
C all polynomial equations of degree ≥ 1 have a solution. This is known as the
Fundamental Theorem of Algebra. A proof is given in subsection 19.4.3.

9.3 Simplifying Fractions

The representation of a rational number as a fraction is not unique. Instead of
2
3 you may also write 2002

3003 , being a more complicated expression. This section is
about the opposite: simplifying fractions.

9.3.1 Divisors

9.22 Definition. Let a and d be integers. The integer d is called a divisor of a if
there is an integer x such that dx = a. Notation: d | a. We also say: a is a multiple
of d. If d is not a divisor of a, then we denote this as: d ∤ a.

2 | 6, since 2 · 3 = 6.

2 | −6, since 2 · (−3) = −6.

−2 | 8, since (−2) · (−4) = 8.

12 | 0, since 12 · 0 = 0.

1 | −17, since 1 · (−17) = −17.

0 | 0, since 0 · 157 = 0.

Note that ‘2 | a’ means the same as ‘a is even’, and that ‘2 ∤ a’ means that a is odd.

For a and b integers, the expressions ‘b | a’ and ‘a
b
’ have a different meaning: the

first is a proposition concerning numbers a and b and the second is not, it stands
for a number. If b ̸= 0, we have

b | a ⇐⇒ a
b
∈ Z.

We will derive some simple rules for divisors. The straightforward proofs demon-
strate the use of the relation |.

9.23 Lemma. Let a be an integer. Then:

(i) 1 | a, (ii) a | a, (iii) a | 0.
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PROOF.

(i) 1 · a = a. So there is an integer x with 1 · x = a, that is 1 | a.
(ii) a · 1 = a. So a | a.
(iii) a · 0 = 0. So a | 0.

9.24 Proposition. Let a, b and c be integers. Then:

(i) if a | b and b | c, then a | c;
(ii) if a | b and a | c, then a | b+ c;
(iii) if ca | cb and c ̸= 0, then a | b.

PROOF.

(i) Suppose a | b and b | c. Then there are integers x and y such that b = ax and
c = by. Then c = axy and so a | c, since the integer z = xy satisfies c = az.

(ii) Suppose a | b and a | c. Then there are integers x, y such that b = ax and
c = ay. Then b+ c = ax+ ay = a(x+ y) and so a | b+ c.

(iii) Suppose ca | cb and c ̸= 0. There is an integer x such that cax = cb, or
c(ax− b) = 0. Since c ̸= 0 it follows that ax− b = 0, or ax = b. So a | b.

9.25 Proposition. Let m and n be natural numbers with m | n and n | m. Then
m = n.

PROOF. We distinguish two cases.

a) m = 0. Then also n = 0, because m | n. And so m = n.
b) m ̸= 0. Then also n ̸= 0, because n | m. There are natural numbers x, y with

n = mx and m = ny. It follows that n = mx = nyx and since n ̸= 0 we have
yx = 1. So x = y = 1, and therefore m = n.

9.3.2 The greatest common divisor

A nonzero integer a has only finitely many divisors. The number 0 has infinitely
many: every integer is a divisor of 0. On the other hand an integer a ̸= 0 has
infinitely many multiples, whereas only 0 is a multiple of 0. In this section we
consider the divisors which integers have in common.

9.26 Definition. Let a and b be integers. We say that d ∈ Z is a common divisor
of a and b if

d | a and d | b.

If a ̸= 0 or b ̸= 0 then there are only finitely many common divisors of a and b.
Then there also is a maximal one. This one we call the greatest common divisor of
a and b, and denote it by gcd(a, b). If gcd(a, b) = 1, then a and b are said to be
relatively prime.
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9.27 Example. The divisors of 24 are: ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24. The
divisors of −18 are: ±1, ±2, ±3, ±6, ±9, ±18. So the common divisors of 24 and
−18 are: ±1, ±2, ±3, ±6. Hence 6 is the greatest common divisor.

Since

gcd(a, b) = gcd(±a,±b),

it suffices to consider greatest common divisors of natural numbers. It also suffices
to consider positive common divisors only when determining the greatest.

9.3.3 Application to fractions

Given a fraction a
n , both the numerator and the denominator may be divided by

gcd(a, n), say a
gcd(a,n) = a′ and n

gcd(a,n) = n′. Then

a

n
=
a′

n′
.

And then gcd(a′, n′) = 1: if d | a′ and d | n′, then d·gcd(a, n) | a and d·gcd(a, n) | n
and so d · gcd(a, n) ≤ gcd(a, n), that is d ≤ 1.

9.28 Definition. Let r be a rational number. Let n ∈ N+ satisfy nr ∈ Z. Then n
is said to be a denominator of r.

So we have: if n ∈ N+ is a denominator of r, then r = nr
n with nr an integer.

There exists a denominator n′ such that gcd(n′r, n′) = 1. We will see that this
denominator is in fact the least.

9.4 The Euclidean Algorithm

Clearly, in principle the greatest common divisor can be calculated: determine all
divisors of the two numbers and take the greatest they have in common. That
can be a lot of work and for large numbers it might be practically impossible. A
fast way to determine the greatest common divisor was already known in ancient
Greece. First a lemma.

9.29 Lemma. Let a and b be integers, not both 0, and let t ∈ Z. Then

gcd(a+ tb, b) = gcd(a, b).

PROOF. A common divisor of a and b is a also common divisor of a + tb and b,
and vice versa. So the common divisors of a and b coincide with those of a + tb
and b. In particular in both cases the greatest common divisors are the same.
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9.30 Algorithm (Euclid). By using division with remainder, the calculation of
the greatest common divisor of a, b ∈ N can, if b ̸= 0, be reduced by lemma 9.29 to
the calculation of the greatest common divisor of b and a−qb, where 0 < a−qb < b.
This reduction can be repeated as long as the second number is not 0. If the second
number is 0, the first one is the greatest common divisor. This algorithm has been
described by Euclid and it is known as the Euclidean algorithm.

In detail, for given natural numbers a and b, not both zero, the algorithm is as
follows. If b ̸= 0, then apply division with remainder:

a = q1b+ r1 with 0 ≤ r1 < b.

Thus the pair (a, b) is replaced by the pair (b, r1) and r1 < b. If r1 ̸= 0, then again
by division with remainder

b = q2r1 + r2 with 0 ≤ r2 < r1

and if r2 ̸= 0, then again by division with remainder

r1 = q3r2 + r3 with 0 ≤ r3 < r2.

As long as the remainder is nonzero, division with remainder is applied. The
remainders form a strict descending sequence of natural numbers: if a remainder
is ̸= 0, then the remainder obtained in the next step is less. This process ends as
soon as a remainder 0 occurs:

rn−2 = qnrn−1 + rn with 0 < rn < rn−1,

rn−1 = qn+1rn + 0.

Then the greatest common divisor of a and b equals rn (= the last nonzero re-
mainder). This is a very fast algorithm. It does not involve the determination of
divisors in advance.

9.31 Example. We compute the greatest common divisor of 1665 and 978:

1665 = 1· 978 + 687

978 = 1· 687 + 291

687 = 2· 291 + 105

291 = 2· 105 + 81

105 = 1· 81 + 24

81 = 3· 24 + 9

24 = 2· 9 + 6

9 = 1· 6 + 3

6 = 2· 3 + 0

So gcd(1665, 978) = 3.
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The algorithm

The input for the algorithm is an ordered pair of numbers and this pair is replaced
by a pair having as first number the second of the previous pair. A descending
sequence of numbers is obtained with 0 as last number and the greatest common
divisor as the last but one:

1665 987 687 291 105 81 24 9 6 3 0

Python

We start a new python module, arithmetics.py. In this module we use the func-
tions and methods in Python for the data type integer. We do not restrict any
more to succ as we did in the module integer.

>>> 34 + 72 #sum

106

>>> 34 - 72 #difference

-38

>>> 45 * 12 #product

540

>>> 89 // 7 #quotient

12

>>> 89 % 7 #remainder

5

>>> divmod(89, 7) #quotient,remainder

(12, 5)

>>> pow(5, 8) #exponentiation

390625

>>> 5**8 #exponentiation

390625

The Euclidean algorithm is easily programmed in Python. The function gcd as
defined below returns the greatest common divisor using this algorithm. It is the
first function in the module arithmetics.py.

arithmetics.py
def gcd(a, b):

while b > 0: a, b = b, a % b

return a

>>> gcd(1665, 987)

3

>>> gcd(12578898999900224988,34536788999000823540)

12
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We represent rational numbers as 2-tuples of integers. Addition and multiplica-
tion are easily described in Python. Fractions are simplified using the Euclidean
algorithm.

arithmetics.py
def simplify(a, b):

d = gcd(a, b)

return (a // d, b // d)

arithmetics.py
def add(x, y):

return simplify(x[0] * y[1] + x[1] * y[0], x[1] * y[1])

def mul(x, y):

return simplify(x[0] * y[0], x[1] * y[1])

>>> simplify(234513, 378)

(26057, 42)

>>> add((2444, 2511), (112, 15))

(105964, 12555)

>>> mul((-2334, 45), (3301, 4562))

(-1284089, 34215)

9.5 Properties of the Greatest Common Divisor

The following theorem is a property of the greatest common divisor that is funda-
mental for many applications.

9.32 Theorem. Let a and b be integers, not both 0. Then there exist integers x, y
such that xa+ yb = gcd(a, b).

PROOF. The set

V = {xa+ yb | x, y ∈ Z and xa+ yb > 0 }

is a nonempty subset of N+: if for example a > 0, then a = 1 ·a+0 ·b ∈ V . Because
V ̸= ∅, there is a least element c in V , say c = x0a+ y0b with x0, y0 ∈ Z. We will
prove that c = gcd(a, b).

From gcd(a, b) | a and gcd(a, b) | b it follows that gcd(a, b) | x0a+ y0b = c.

Division with remainder of a by c gives a = qc+ r with r ∈ Nc. For r we have

r = a− qc = a− qx0a− qy0b = (1− qx0)a+ (−qy0)b.

For r ̸= 0 it follows that r ∈ V , which however is not the case, because r < c and
c is the least in V . So r = 0, that is c | a. Similarly, c | b. So c ≤ gcd(a, b). Since
also gcd(a, b) | c, it follows that gcd(a, b) = c
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Alternatively, it is not hard to see that the Euclidean algorithm produces the great-
est common divisor as a combination of the given numbers. At the end of this
section we will see how an extension of the Euclidean algorithm makes a fast com-
putation of the x and y possible.

We derive some easy, but very useful, consequences of the above theorem.

9.33 Proposition. Common divisors are divisors of the greatest common divisor.

PROOF.

Let c be a common divisor of a and b. We assume that a, b ∈ N. Then by
theorem 9.32 there are x, y ∈ Z such that gcd(a, b) = xa+ yb. From c | a and
c | b follows c | xa+ yb, that is c | gcd(a, b).

So every common divisor of a and b is a divisor of the greatest common divisor of
a and b.

9.34 Example. The common divisors of 24 and −18 are ±1, ±2, ±3, ±6, which
are the divisors of 6, the greatest common divisor of 24 and −18.

9.35 Proposition. Let a, b and c be integers. Then

a | bc and gcd(a, b) = 1 =⇒ a | c.

PROOF.

Suppose a | bc and gcd(a, b) = 1. By theorem 9.32 there are x, y ∈ Z such
that xa+ yb = 1. Then xac+ ybc = c. Since a | xac and a | ybc, we also have
a | c.

So: if a | bc and gcd(a, b) = 1, then a | c.

9.36 Proposition. Let a, b and c be integers with a, b ̸= 0. Then

a | c, b | c and gcd(a, b) = 1 =⇒ ab | c.

PROOF. Suppose a | c, b | c and gcd(a, b) = 1. Let d ∈ Z be such that ad = c.
From gcd(a, b) = 1 and b | c by proposition 9.35 it follows that b | d. And so
ab | ad, that is ab | c.

9.37 Proposition. Let a and b be integers, not both 0. Let c be an integer ̸= 0.
Then

gcd(ac, bc) = gcd(a, b) · c.
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PROOF. If d is a common divisor of a and b, then dc is a common divisor of ac
and bc, and so dc is a divisor of gcd(ac, bc). In particular for d = gcd(a, b) we have:

gcd(a, b) · c | gcd(ac, bc).

There are integers x, y with ax + by = gcd(a, b). Then acx + bcy = gcd(a, b) · c,
which implies:

gcd(ac, bc) | acx+ bcy = gcd(a, b) · c.

9.5.1 Reducing fractions

A rational number r is uniquely representable by a fraction having the least de-
nominator of r as denominator. Such fractions have a positive denominator and
their numerator and denominator are relatively prime. They are said to be in be
reduced or in reduced form.

9.38 Proposition. Let n be the least denominator of a rational number r. Then
every denominator of r is a multiple of n.

PROOF. Since n is the least denominator of r, we have gcd(nr, n) = 1, because
otherwise n

gcd(nr,n) would be a denominator less than n. Let m be any denominator

of r. Since n | n ·mr = m · nr, it follows from proposition 9.35 that n | m.

9.5.2 Linear Diophantine equations

We will use properties of the greatest common divisor for the solution of Diophan-
tine equations of type

ax+ by = c,

where a, b, c ∈ Z. The objective is to determine all solutions x, y ∈ Z.

9.39 Theorem. Let a, b and c be integers with a and b not both 0. Then the
Diophantine equation

ax+ by = c

is solvable if and only if gcd(a, b) | c.

PROOF.

Suppose the equation is solvable and (x0, y0) ∈ Z2 is a solution, that is

ax0 + by0 = c.

Then, since gcd(a, b) | a and gcd(a, b) | b, we also have gcd(a, b) | c.

So: if the equation is solvable, then gcd(a, b) | c.
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Diophantus ((probably) Alexandria 200 – 284)

Diophantine equations are equations where integer solutions
are asked for. They are called that way after Diophantus.
He wrote a series of 13 books called Arithmetica about the
solution of algebraic equations and number theory. Only six
books survived and probably there are traces of the other
books in Arabic texts.

Suppose gcd(a, b) | c, say c = k · gcd(a, b) with k ∈ Z. From theorem 9.32 it
follows that there are numbers u, v ∈ Z such that

au+ bv = gcd(a, b).

Then also

a(ku) + b(kv) = k · gcd(a, b) (= c)

and so (ku, kv) is a solution of ax+ by = c.

So: if gcd(a, b) | c, then the equation is solvable.

9.40 Example. The Diophantine equation

36x+ 21y = −1

is not solvable, because gcd(36, 21) = 3 ∤ −1. On the other hand the Diophantine
equation

36x+ 21y = 24

is solvable, because gcd(36, 21) | 24. Having a solution of 36x+ 21y = 3, a solution
of 36x+ 21y = 24 is obtained by multiplying with 8. One of the solutions of 12x+
7y = 1 is (3,−5), which is also a solution of 36x + 21y = 3; so a solution of
36x+21y = 24 is (24,−40). We will determine all (x, y) ∈ Z2 such that 36x+21y =
24.

Suppose x, y ∈ Z satisfy 36x+ 21y = 24. Then

36(x− 24) + 21(y + 40) = 0,

that is

12(x− 24) = −7(y + 40).
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Because gcd(12,−7) = 1, proposition 9.35 implies 12 | (y+40), so there exists
a t ∈ Z such that y + 40 = 12t, that is

y = −40 + 12t.

Then 12(x− 24) = −7 · 12t, or

x = 24− 7t.

So the solutions of 36x+ 21y = 24 are of the form{
x = 24− 7t

y = −40 + 12t
(where t ∈ Z)

and all these are in fact solutions. Thus we have determined all solutions of the
equation.

9.5.3 The least common multiple

9.41 Definition. Let a and b be integers. We say that c ∈ Z is a common multiple
of a and b if

a | c and b | c.

If a ̸= 0 and b ̸= 0, then there are positive common multiples of a and b. The least
among them is called the least common multiple of a and b; notation: lcm(a, b). It
is only defined for a ̸= 0 and b ̸= 0.

9.42 Example. The positive multiples of 24 are 24, 48, 72, 96, 120, etc. The least
one which is also a multiple of −18 is 72. So 72 is the least common multiple of 24
and −18.

The least common multiple is closely related to the greatest common divisor:

9.43 Theorem. Let a, b ∈ N+. Then

gcd(a, b) · lcm(a, b) = ab.

PROOF. Put c = lcm(a, b) and d = gcd(a, b). Because a
d | cd and b

d | cd , lemma 9.36

and proposition 9.37 imply that ab
d2 | c

d , that is ab | cd. From ab
d = a

d · b = a · bd
it is clear that ab

d is a common multiple of both a and b. So c ≤ ab
d , or cd ≤ ab.

Together with ab | cd this proves the theorem.

9.44 Corollary. Let a and b be nonzero integers. Then there are integers x and y
such that

1

lcm(a, b)
=
x

a
+
y

b
.
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PROOF. There are integers y and x such that gcd(a, b) = ya + xb. Then by
theorem 9.43

1

lcm(a, b)
=

gcd(a, b)

ab
=
ya+ xb

ab
=
x

a
+
y

b
.

The extended Euclidean algorithm

By lemma 9.29 the determination of numbers x and y such that ax+ by = gcd(a, b)
for given natural numbers a and b ̸= 0 can be reduced to the determination of
numbers u and v such that bu + rv = gcd(b, r)(= gcd(a, b)), where a = qb + r
and r < b. By keeping how each newly calculated remainder in the Euclidean
algorithm is a combination of the original pair of numbers a, b, we finally obtain
such a combination for the greatest common divisor. As an example we do this for
65 and 23:

65 23 19 4 3 1 0

2 1 4 1 3

1 0 1 -1 5 -6 23

0 1 -2 3 -14 17 -65

We proceed from left to right. In the second row we put the quotients, and above
these the new remainder: 19 is obtained by subtracting 2× 23 from 65. In the two
rows at the bottom every new number is obtained in the same way as a combination
of the two preceding numbers. In this example the greatest common divisor is 1.
Should we have started with 65a and 23a, the numbers in the top row would have
been multiplied by a.

Python
arithmetics.py

def euclid(a, b):

p = q = y = u = 0

x = v = 1

while b > 0:

p, a, q, b = (q, b) + divmod(a, b)

x, y, u, v = u, v, x - q * u, y - q * v

return x, y, a

>>> euclid(23414455667700999121, 19988778383883201442)

(-423838664099439595, 496476143775527043, 11)

9.6 Finite Continued Fractions

The Euclidean algorithm applied to 65 and 23 goes as follows:

65 = 2 · 23 + 19 or also: 65
23 = 2 + 19

23
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23 = 1 · 19 + 4 23
19 = 1 + 4

19

19 = 4 · 4 + 3 19
4 = 4 + 3

4

4 = 1 · 3 + 1 4
3 = 1 + 1

3

3 = 3 · 1 + 0

By the same calculation:

65

23
= 2 +

19

23
= 2 +

1

1 +
4

19

= 2 +
1

1 +
1

4 +
3

4

= 2 +
1

1 +
1

4 +
1

1 +
1

3

.

The result is a so-called continued fraction.

9.45 Definition. We define the continued fraction ⟨x1, . . . , xn⟩ of a finite sequence
of rational (later, in chapter 17: real) numbers x1, . . . , xn with x2, . . . , xn > 0
inductively:

⟨x1⟩ = x1

⟨x1, x2⟩ = x1 +
1

x2
⟨x1, . . . , xn⟩ = ⟨x1, ⟨x2, . . . , xn−2, xn−1, xn⟩⟩ for all n ≥ 3.

Thus the notation ⟨x1, x2, . . . , xn⟩ is in fact short for ⟨x1, ⟨x2, ⟨x3, . . . , ⟨xn⟩ . . . ⟩⟩⟩.
For numbers x1, x2, x3, x4 with x2, x3, x4 > 0 we have:

⟨x1, x2, x3⟩ = ⟨x1, ⟨x2, x3⟩⟩ = x1 +
1

⟨x2, x3⟩
= x1 +

1

x2 +
1

x3

.

⟨x1, x2, x3, x4⟩ = x1 +
1

⟨x2, x3, x4⟩
= x1 +

1

x2 +
1

x3 +
1

x4

.

Using continued fractions the Euclidean algorithm takes the form:

65
23 = ⟨2, 2319 ⟩ = ⟨2, 1, 194 ⟩ = ⟨2, 1, 4, 43 ⟩ = ⟨2, 1, 4, 1, 3⟩.

Note that also 65
23 = ⟨2, 1, 4, 1, 2, 1⟩, because 3 = ⟨2, 1⟩.

We write a few continued fractions as ordinary fractions, that is with only one
division bar:

⟨x1⟩ = x1 =
x1
1
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⟨x1, x2⟩ = x1 +
1

x2
=
x2x1 + 1

x2

⟨x1, x2, x3⟩ = x1 +
1

x2 +
1

x3

=
x3x2x1 + x3 + x1

x3x2 + 1
.

The numerator and the denominator are in these cases polynomials in x1, x2, . . . .
Below we will define polynomials pn(x1, . . . , xn) and qn(x1, . . . , xn) and subse-

quently we will prove that indeed ⟨x1, . . . , xn⟩ = pn(x1,...,xn)
qn(x1,...,xn)

.

9.46 Definition. We define the sequence of polynomials p−1, p0, p1(x1), p2(x1, x2),
p3(x1, x2, x3), . . . by

p−1 = 0

p0 = 1

pn(x1, . . . , xn) = xnpn−1(x1, . . . , xn−1) + pn−2(x1, . . . , xn−2) (all n ∈ N+).

The Euclidean algorithm applied to 65 and 23 gives 65
23 = ⟨2, 1, 4, 1, 3⟩. With the

use of the polynomials pn the fraction 65
23 can be retrieved:

p−1 = 0

p0 = 1

p1(3) = 3 · p0 + p−1 = 3

p2(3, 1) = 1 · p1(3) + p0 = 4

p3(3, 1, 4) = 4 · p2(3, 1) + p1(3) = 19

p4(3, 1, 4, 1) = 1 · p3(3, 1, 4) + p2(3, 1) = 23

p5(3, 1, 4, 1, 2) = 2 · p4(3, 1, 4, 1) + p3(3, 1, 4) = 65

For this method the quotients occurring in the algorithm are needed in reverse
order. Thus the remainders in the algorithm are retrieved in reverse order as well.
Remarkably enough it can be done the other way round. Though this might be
proved directly, we will derive it from the following theorem.

9.47 Theorem. For every n ∈ N+ we have pn(x1, . . . , xn) = pn(xn, . . . , x1).

PROOF. Let P (n) be the proposition

pn(x1, . . . , xn) = pn(xn, . . . , x1).

We will prove by mathematical induction that P (n−1) and P (n) hold for all n ≥ 2.
For n = 2 it is obviously true.
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Suppose P (n− 1) and P (n) hold for some n ∈ N with n ≥ 2. Then to prove
that also P (n+ 1) holds.

pn+1(x1, . . . , xn+1) = xn+1pn(x1, . . . , xn) + pn−1(x1, . . . , xn−1)

= xn+1pn(xn, . . . , x1) + pn−1(xn−1, . . . , x1)

= xn+1x1pn−1(xn, . . . , x2) + xn+1pn−2(xn, . . . , x3)

+ x1pn−2(xn−1, . . . , x2) + pn−3(xn−1, . . . , x3)

= x1(xn+1pn−1(xn, . . . , x2) + pn−2(xn−1, . . . , x2))

+ xn+1pn−2(xn, . . . , x3) + pn−3(xn−3, . . . , x3)

= x1(xn+1pn−1(x2, . . . , xn) + pn−2(x2, . . . , xn−1))

+ xn+1pn−2(x3, . . . , xn) + pn−3(x3, . . . , xn−1)

= x1pn(x2, . . . , xn+1) + pn−1(x3, . . . , xn+1)

= x1pn(xn+1, . . . , x2) + pn−1(xn+1, . . . , x3)

= pn+1(xn+1, . . . , x1).

9.48 Corollary. For every n ∈ N+ we have

pn(x1, . . . , xn) = x1pn−1(x2, . . . , xn) + pn−2(x3, . . . , xn).

PROOF.

pn(x1, . . . , xn) = pn(xn, . . . , x1) = x1pn−1(xn, . . . , x2) + pn−2(xn, . . . , x3)

= x1pn−1(x2, . . . , xn) + pn−2(x3, . . . , xn).

9.49 Definition. The sequence of polynomials q−1, q0, q1(x1), q2(x1, x2), . . . is de-
fined by q−1 = 1 and qn(x1, . . . , xn) = pn−1(x2, . . . , xn) for n ≥ 0.

Thus the sequence of polynomials qn is constructed the same way as the sequence
of the pn, only the initial values (for n = −1 and n = 0) are not 0 and 1, but 1 and
0.

9.50 Theorem. For all n ∈ N+ we have

⟨x1, . . . , xn⟩ =
pn(x1, . . . , xn)

qn(x1, . . . , xn)

for all rational (later: real) numbers x1, . . . , xn with x2, . . . , xn > 0.

PROOF. We prove this by induction on n. For n = 1 it is clearly true.

Suppose it holds for some n ∈ N+. Then by Corollary 9.48:

⟨x1, . . . , xn+1⟩ = x1 +
1

⟨x2, . . . , xn+1⟩
= x1 +

qn(x2, . . . , xn+1)

pn(x2, . . . , xn+1)
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= x1 +
pn(x3, . . . , xn+1)

pn(x2, . . . , xn+1)

=
x1pn(x2, . . . , xn+1) + pn−1(x3, . . . , xn+1)

pn(x2, . . . , xn+1)

=
pn+1(x1, . . . , xn+1)

pn(x2, . . . , xn+1)
=
pn+1(x1, . . . , xn+1)

qn+1(x1, . . . , xn+1)
.

9.51 Example. We rewrite ⟨2, 1, 4, 1, 3⟩ as an ordinary fraction using the above
theorem:

i : −1 0 1 2 3 4 5

xi : 2 1 4 1 3

pi : 0 1 2 3 14 17 65

qi : 1 0 1 1 5 6 23

So: ⟨2, 1, 4, 1, 3⟩ = p5
q5

= 65
23 . (The pi and qi are calculated from left to right: for

example p5 = 3 · 17 + 14 = 65 and q3 = 4 · 1 + 1 = 5.)

Compare this with the extended Euclidean algorithm. Apart from the sign the
same numbers occur, namely (−1)n+1pn and (−1)nqn. This is easily proved by
induction.

9.52 Theorem. For all n ≥ −1 we have

pnqn+1 − pn+1qn = (−1)n,

for all numbers x1, . . . , xn+1 with x2, . . . , xn+1 > 0, where pk stands for
pk(x1, . . . , xk) and analogously for qk.

PROOF. The proof is by mathematical induction. For n = −1 the formula holds:

p−1q0 − p0q−1 = 0 · 0− 1 · 1 = −1 = (−1)−1.

Let n ≥ −1 such that pnqn+1−pn+1qn = (−1)n for all x1, . . . , xn+1 such that
x2, . . . , xn+1 > 0. Suppose x1, . . . , xn+2 are numbers such that x1, . . . , xn+2 >
0. Then

pn+1qn+2 − pn+2qn+1 = pn+1(xn+1qn+1 + qn)− (xn+1pn+1 + pn)qn+1

= −(pnqn+1 − pn+1qn)

= −(−1)n = (−1)n+1.

9.53 Corollary. Let n ∈ N+ and let a1, . . . , an be integers with a2, . . . , an ∈ N+.
Then

gcd(pn(a1, . . . , an), qn(a1, . . . , an)) = 1.
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PROOF. We write pk for pk(a1, . . . , ak) and analogously for qk. Note that pk, qk ∈
Z for all k ≥ −1. From

pn−1qn − qn−1pn = (−1)n−1

it follows that 1 is the only positive common divisor of pn and qn. So their greatest
common divisor is 1.

So for a1 ∈ Z and a2, . . . , an ∈ N+ we have

⟨a1, . . . , an⟩ =
pn
qn

,

with gcd(pn, qn) = 1. Writing for example 130
46

as such a continued fraction we find
130
46

= ⟨2, 1, 4, 1, 3⟩ and so 130
46

= p5
q5

with p5 = 65 and q5 = 23.

Python

Conversion of fractions into continued fractions and vice versa is easily done by
computer. The conversion from ordinary fraction to continued fraction can be
supplemented to the extended Euclidean algorithm as described on page 156.

arithmetics.py
def confrac(a, b):

c = ()

while b > 0:

d = divmod(a, b)

a, b, c = b, d[1], c + (d[0], )

return c

def fract(con):

r, p = 0, 1

s, q = 1, 0

for i in con:

r, p = p, r + i * p

s, q = q, s + i * q

return (p, q)

def euclidext(a, b):

i = 0

r, p = 0, 1

s, q= 1, 0

while b > 0:

i = i + 1

d = divmod(a, b)

r, p = p, d[0] * p + r

s, q = q, d[0] * q + s

a, b = b, d[1]

return (a, (-1)**i * s, -(-1)**i * r)
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>>> confrac(240967887, 15570982)

(15, 2, 9, 1, 2, 7, 7, 16, 1, 2, 2, 13, 3)

>>> fract((1, 2, 3, 4, 5, 6, 7, 8, 9, 10))

(7489051, 5225670)

>>> euclidext(2364654, 74637435)

(3, -10520368, 333305)

9.7 Geometry and Rational Numbers

The Euclidean algorithm for the determination of the greatest common divisor of
two natural numbers has a geometrical interpretation. A line segment a is called a
measure for a line segment b if a goes into b exactly an integral number of times.
Two line segments are called commensurable if they have a common measure.
The geometrical version of the Euclidean algorithm is used for determining the
greatest common measure of two commensurable line segments. That is the way
the Euclidean algorithm was considered in ancient Greece. The focus was on line
segments and not on numbers.

The same process can be applied to two incommensurable line segments, but in
that case it does not terminate. On the other hand it returns better and better
approximations to the ratio of the two line segments.

With the Euclidean algorithm integral multiples of a line segment is subtracted
from another line segment. Taking the two line segments as the sides of a rectangle,
the process can be seen as the subtraction of squares from the rectangle as often as
possible. Finally the side of a small square in the figure is the the greatest common
measure of the sides of the rectangle. Applied to a rectangle with sides of length
65 and 23 the result is:

The Golden Ratio

In ancient Greece already there was much interest in a special ratio, the golden
ratio. It is the ratio obtained by dividing a line segment into two parts, a line
segment of length x and a smaller line segment of length y such that the ratio of
x and y equals the ratio of x+ y and x.
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x y

This ratio was considered to be the ideal ratio for the sides of a rectangle, the
golden rectangle:

y

x

A golden rectangle is characterized by the fact that after subtraction of a square
as in the figure below, a similar rectangle remains:

y

x− yy

Put τ = x
y . Then from

y

x− y
=
x

y

it follows that

τ =
x

y
=

1
x−y
y

=
1

τ − 1
,

that is τ2 = τ + 1. For the existence of a solution of this quadratic equation 5 has
to be a square. In chapter 10 we will see that this is not the case in Q.

Another argument is: suppose τ = a
b with a, b ∈ N+, then: a

b = b
a−b . Since b < a

we have written τ with a numerator less than a. Repeating this results in a strictly
descending sequence of numerators in N+. Such a sequence does not exist.

The golden ratio τ is the ratio of a diagonal and a side of a regular pentagon.

A

B

C

D

E
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It is not hard to see this. Just draw an extra diagonal.

A

B

C

D

E

F

The diagonal BD is parallel to the side AE and the diagonal AC to the side DE.
So DEAF is a diamond. The triangle BCD is proportional to the triangle CFB.
Let x be the length of a diagonal and y the length of a side. Then

x

y
=

y

x− y
.

Exercises

1. What goes wrong in the construction of Q if we use all pairs (a, b) ∈ Z2, so without
the condition b ̸= 0 ?

2. Prove that the set Q is countable. (Hint: exercises 12, 13 and 14 of chapter 5.)

3. Let r and s be rational numbers with r < s. Show that there are infinitely many
rational numbers t with r < t < s.

4. Verify that x = 4 is a solution of 9x3 = 109x+140. Are there other solutions? How
many? Which?

5. Let a and b be rational numbers. Let x = b be a solution of the equation x3 = a.
Show that it is the only solution (in Q).

6. Show that the relation | (‘is a divisor of’) in N is an ordering of N.

7. Simplify 1207
595

and 222677
−574469

.

8. Let a and b be odd integers such that gcd(a, b) = 1. Show that

gcd(a+ b, a− b) = 2.

9. (i) Use the Euclidean algorithm to determine the greatest common divisor of

a) 45 and 75,
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b) 102 and 442,

c) 1616 and 444,

d) 87505 and 23445.

(ii) Write in each of these cases the greatest common divisor as a combination of
the two integers.

10. Determine the greatest common divisor of 111111 and 11111111. What is the

greatest common divisor of

m︷ ︸︸ ︷
111 . . . 111 and

n︷ ︸︸ ︷
111 . . . 111 ?

11. Determine all x, y ∈ Z satisfying

17x+ 12y = 21.

12. A regular n-gon is called constructible if it can be constructed with a straight edge
and a compass starting from its center and one of its vertices.

(i) Let m and n be natural numbers with m,n ̸= 0 and m | n. Show: if a regular
n-gon is constructible, then so is a regular m-gon.

(ii) Show: if a regular n-gon is constructible, then so is a regular 2n-gon.

(iii) Let m and n be natural numbers ≥ 3 such that gcd(m,n) = 1. Show: if
regular m- and n-gons are constructible, then so is a regular mn-gon.

13. Write 460
267

as a continued fraction of integers.

14. Write ⟨2, 2, 2, 2, 2, 2, 2, 2⟩ as an ordinary fraction.

15. Let x1, . . . xn be rational numbers with x2, . . . , xn > 0. Prove that

pn(x1, . . . , xn) = ⟨x1, . . . , xn⟩ · ⟨x2, . . . , xn⟩ · ⟨x3, . . . , xn⟩ · · · ⟨xn−1, xn⟩ · ⟨xn⟩.

16. Let a1 ∈ Z and a2, . . . , an ∈ N+, where n ≥ 3. Prove that ⌊⟨a1, . . . , an⟩⌋ = a1.

17. Let A be the set of all finite sequences of length > 0 in N+. The map F : A → Q is
defined by

F (a1, . . . , an) = ⟨a1, . . . , an⟩.
What is the image of F ? Is F injective?

18. Use the following figure to show that there is no rational number having 2 as its
square. Give a geometrical and an algebraic proof (as we did for the golden ratio).
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19. We determine the rectangles with integral width x and integral length y having
equal circumference and area:

2x+ 2y = xy.

(i) Show that at least one of the numbers x and y is even. Let us assume that y
is even: y = 2z with z ∈ N+. Simplify the equation to

x(z − 1) = 2z.

(ii) Show that z − 1 | 2. Use this for the determination of all solutions.

20. Let d be the greatest common divisor of the integers a and b.

(i) Let the integers u and v satisfy ua + vb = d. Determine integers x and y
(depending on a, b, u, v) such that xa2 + yb = d2.

(ii) Derive from the previous part that gcd(a2, b) | d2.

21. (i) Determine gcd(2120 − 1, 275 − 1).

(ii) Determine gcd(21120 − 21000, 2175 − 2100).

22. (i) Determine all (x, y) ∈ Z2 which satisfy

x

8
+

y

125
=

1

1000
.

(ii) Show that gcd(x, y) = 1 for all these pairs (x, y).

23. Which of the rational numbers

⟨4, 1, 2, 7, 3, 8, 2⟩, ⟨4, 1, 2, 7, 3, 8, 3⟩ and ⟨4, 1, 2, 7, 3, 8, 2, 3⟩

is the greatest? Which is the least?

24. (i) Prove that for all n ∈ N

gcd(2n+2 − 1, 2n − 1) | 3.

(ii) Prove that for all n ∈ N

gcd(2n+2 − 1, 2n − 1) = 3 ⇐⇒ n is even.

25. The relation ≡ in Q is defined by

r ≡ s ⇐⇒ r − s ∈ Z (for all r, s ∈ Q).

(i) Show that ≡ is an equivalence relation.

(ii) Describe the equivalence class [ 1
2
]≡.

(iii) Give a system of representatives of the partition Q/≡.

(iv) Show that under the map f : Q → Q/≡, r 7→ [2r]≡ elements have the same
image if they represent the same equivalence class.
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26. The sequence d0, d1, d2, . . . is given by
d0 = 1

d1 = 1

dn+2 =
dndn+1

dn + dn+1
for all n ∈ N.

How are the numbers dn related to the Fibonacci numbers?

27. We have seen that the golden ratio τ is not a rational number. It is a proof by
contradiction. Show that a contradiction is also obtained when converting the
fraction to a continued fraction.
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Part III

Investigations and Applications

In constructing the number system we have reached in Part II the
field Q of rational numbers. This field was obtained in two simple
steps. In the next parts we extend the number system further:
real numbers in Part IV and complex numbers in Part V. In this
part we investigate what we have got so far. The number field
system is a creation of our mind, it is imaginary. Mathematics
now becomes doing research in an imaginary world. New concepts
emerge, such as the concept of prime number. It had no role in
the construction, but when investigating the multiplicative struc-
ture it is unavoidable. It leads to the Fundamental Theorem of
Arithmetic (in chapter 10).
In chapter 11 we apply our knowledge of the number system to
counting problems. General formulas are obtained, e.g. a formula
for the number of subsets with k elements of a set with n elements.
In chapter 12 more counting problems are studied: counting prob-
lems related to permutations of finite sets. Also the structure of
permutations is investigated.
Chapter 13 is about modular arithmetic. It’s a kind of arithmetic
with integers in which multiples of a given number are ignored. In
chapter 14 arithmetic modulo a prime number is studied and also
applied. The main theorem is the so-called Quadratic Reciprocity
Law. It is applied to prime tests in chapter 15. The last chapter
contains an application in the information technology: a widely
used cryptosystem using modular arithmetic.
For an understanding of the construction of the number system
most of the mathematics in this part is not needed. On the other
hand, in my opinion, it belongs to the general knowledge of a
mathematician, though not all mathematicians share this opinion
as far the chapters 14 and 15 are concerned.

In this book chapter 14 is only needed for the computations in
chapter 15 and for the application given in chapter 20.





10 The Fundamental Theorem of
Arithmetic

This chapter is about the structure of N+ and the closely related structure of
Q∗, the structure of the abelian group of the nonzero rational numbers under
multiplication. The building blocks of the monoid N+ are the prime numbers:
every positive integer is a product of a number of primes and is so in a unique way;
this is the Fundamental Theorem of Arithmetic. The prime numbers also act as
building blocks for the group of positive rational numbers under multiplication.

This knowledge will be used for understanding which of the natural (and rational)
numbers are n-th powers for a given natural number n. If a number is an n-th
power, then obviously that number has an n-th root. Extracting roots inside Q is
very limited, only the obvious n-th powers do have n-th roots.

In the previous chapter we considered linear Diophantine equations. Here we will
consider some nonlinear ones, especially the equation x2 + y2 = z2. The solutions
of this equation are called Pythagorean triples. Geometrically this is about right
triangles having sides of integer length. A well-known solution is the triple (3, 4, 5).

Arithmetic functions are functions defined on N+. Examples are: the number of
divisors, the sum of the divisors. We will apply the Fundamental Theorem of
Arithmetic in the study of these functions.

10.1 Prime Factorizations

10.1 Definition. A natural number p > 1 is called a prime number (or a prime)
if 1 and p are the only positive divisors of p. A prime number which divides an
integer a is called a prime divisor of a. The other integers > 1 are called composite
numbers. A divisor d of an integer a is called a proper divisor if d ̸= ±a and
d ̸= ±1. So a prime number is a natural number ̸= 1 without proper divisors.

Apart from 0 and 1 there are two kinds of natural numbers: prime numbers and
composite numbers. A composite number a has a factorization a = bc with b and
c natural numbers satisfying 1 < b, c < a.

We will show that every n ∈ N+ is a product of a number of primes, where one
allows no primes or only one.
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number of prime divisors: number of prime factors:

1 0 0

2 1 1

23 · 32 2 5

417 1 7

We will use the
∏
-notation for multiplication in the same manner as the

∑
-

notation for addition. Just as the empty sum was defined to be 0, the neutral
element for addition, the empty product will be 1, the neutral element for multi-
plication. A prime factorization of an n ∈ N+ can be written as follows:

n =
∏
p

pkp ,

where the kp are natural numbers and the product is taken over all primes. All but
a finite number of the kp are 0. For example 1665 = 3 · 555 = 3 · 5 · 111 = 32 · 5 · 37,
and so

1665 =
∏
p

pkp

with k3 = 2, k5 = 1, k37 = 1 and kp = 0 for all p ̸= 3, 5, 37. The product is meant
to be a finite product: it is the product of all factors ̸= 1 of which there are only
finitely many.

10.2 Proposition. Every natural number > 0 has a prime factorization.

PROOF. Let n be a natural number > 0. If n = 1, we are finished. For n > 1 let
p1 be the least divisor of n greater than 1. Note that there are divisors > 1, for
example n itself is such a divisor. The least divisor cannot have proper divisors,
because such divisors would be divisors of n as well. So p1 is a prime divisor.
Put n = p1n1. Repeat this with n1 instead of n: if n1 = 1, then we are finished.
Otherwise n1 = p2n2 with p2 the least divisor > 1 of n2. Thus we obtain

n = p1n1 with p1 a prime number and n1 > 1,

n1 = p2n2 with p2 a prime number and n2 > 1,

n2 = p3n3 with p3 a prime number and n3 > 1,

...

nr−1 = prnr with pr a prime number and nr = 1,

nr = 1.

The natural numbers n, n1, n2, . . . satisfy n > n1 > n2 > · · · . The process stops
at an nr with nr = 1. Then n = p1n1 = p1p2n2 = · · · = p1p2 · · · pr.
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10.2 The Fundamental Theorem

The set N+ together with the subset

{ (pn, n) | n ∈ N and p a prime }

of N+2
is a directed graph. A walk through the graph along edges (in the indicated

direction) starting in a vertex n ends in the vertex 1. Along the way the number
has been divided by primes p1, . . . , pr and so n = p1p2 · · · pr. In the above proof
we divided by least prime divisors.

The prime numbers can be seen as the building blocks of the numbers in N+. In
the next section we will prove that every such number is composed of primes in
a unique way. That is what the Fundamental Theorem of Arithmetic is about.
There are infinitely many natural numbers, but that does not imply that there are
infinitely many building blocks. A reason why this number is infinite is already in
Euclid’s Elements.

10.3 Theorem (Euclid). Let P be a finite set of prime numbers. Then there
exists a prime number q with q /∈ P .

PROOF. Let P be nonempty (otherwise take q = 2). Let n be the successor of the
product of the primes in P :

n = 1 +
∏
p∈P

p.

For every p ∈ P the remainder of n after dividing by p equals 1. So p ∤ n for
all p ∈ P . So a prime divisor q of n is not an element of P . According to
proposition 10.2 such a q exists.

So there is no greatest prime, because otherwise the number of primes would be
finite, whereas the theorem says that in that case one is missing. Having a list of
the first N prime numbers, the set of the primes not in the list is nonempty and
contains a least element, the N + 1-st prime number.

10.2 The Fundamental Theorem

The Fundamental Theorem of Arithmetic states that prime factorizations are
unique. In the proof we will use the following two propositions, which in fact
are useful in many other occasions.

10.4 Proposition. Let a ∈ Z with a ̸= 0 and let p be a prime number. Then there
are unique k ∈ N and b ∈ N+ such that a = pkb and p ∤ b.

PROOF. First we prove the existence of k and b. Consider the set S of all m ∈ N
such that pm | a. Since pm ≤ a this set is finite and because 0 ∈ S, it is nonempty.
So it contains a greatest number k, say a = pkb, where b ∈ N+. Then p ∤ b, because
otherwise pk+1 | a. Each l ∈ S different from k satisfies l < k and a = plpk−lb.
From this the uniqueness of k (and b) follows.
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10.5 Definition. For a, p and k as in proposition 10.4 the number k is called the
p-adic value of a. Notation: k = vp(a).

In other words vp(a) is the maximal number of factors p in a. Thus we have for
each prime p a map

vp : Z \ {0} → N,
the p-adic valuation on Z. This map clearly is surjective: vp(p

n) = n.

Let us denote by Z(p) the set of integers which are not a multiple of p. Then we
have a map

N× Z(p) → Z, (k, b) 7→ pkb.

From proposition 10.4 it follows that this map is bijective, the inverse map being

Z → N× Z(p), a 7→
(
vp(a),

a

pvp(a)

)
.

10.6 Proposition. Let a and b be integers and p a prime. Then

p | ab =⇒ p | a or p | b.

PROOF. Suppose p | ab. Then we must prove that p | a or p | b. We may assume
that p ∤ a, because otherwise we are finished. The only positive divisors of p are 1
and p, so 1 is the only positive common divisor of p and a, that is gcd(p, a) = 1.
From p | ab it follows by proposition 9.35 that p | b.

10.7 Fundamental Theorem of Arithmetic. Prime factorizations are unique.

PROOF. Let
a =

∏
p

pkp (with kp ∈ N).

be a prime factorization of a ∈ N+. We will prove that for every prime p the
exponent kp equals vp(k).

Let q be a prime. Then a = qkqb with b =
∏
p̸=q p

kp . From proposition 10.6
it follows that q ∤ b. So by proposition 10.4 kq = vq(a).

So for each prime p we have kp = vp(a).

As a consequence we can write the prime factorization of a ∈ N+ in general as
follows:

a =
∏
p

pvp(a).

We are used to the uniqueness of prime factorizations to such an extent that we
experience it as being obvious. The following example may show that uniqueness
of factorizations is not that obvious. Let S be the set of all natural numbers having
1 as remainder after division by 4. Clearly S is closed under multiplication: if
m,n ∈ S, then mn ∈ S. In S one can factorize numbers as a product of numbers
without a proper factorization in S. For example 441 = 9 · 49. The numbers 9 and
49 have no proper factorization in S. However: 441 = 21 · 21 and 21 has no proper
factorization in S either.
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10.3 Direct Consequences of the Fundamental Theorem

10.3 Direct Consequences of the Fundamental
Theorem

Let pn denote the n-th prime: p1 = 2, p2 = 3, p3 = 5, . . . . By the Fundamental
Theorem of Arithmetic the map

N+ → R0(N), a 7→ (vp1(a), vp2(a), vp3(a), . . . )

is a bijection. Here R0(N) is the set of all sequences in N which have a tail of zeros.
Under this bijection multiplication in N+ corresponds to component-wise addition
of sequences in N:

10.8 Lemma. Let a and b be nonzero natural numbers and let p be a prime number.
Then:

vp(ab) = vp(a) + vp(b).

PROOF. We have

ab =
∏
p

pvp(a) ·
∏
p

pvp(b) =
∏
p

pvp(a)+vp(b).

By the Fundamental Theorem vp(ab) = vp(a) + vp(b) for all prime numbers p.

This translation of the multiplication in N+ into the addition in R0(N) makes the
multiplicative structure of N+ more transparent.

10.9 Corollary. For a, b ∈ N+ we have:

a | b ⇐⇒ vp(a) ≤ vp(b) for all primes p.

PROOF.

⇒: Suppose a | b, say ac = b. Then vp(b) = vp(ac) = vp(a) + vp(c) ≥ vp(a) for
all primes p.

⇐: Suppose vp(a) ≤ vp(b) for all primes p. Then

b = a ·
∏
p

pvp(b)−vp(a)

and so a | b.

10.10 Example. The positive divisors of 1665 are the numbers 3i · 5j · 37k with
0 ≤ i ≤ 2, 0 ≤ j ≤ 1 and 0 ≤ k ≤ 1; so there are 12 (= 3 ·2 ·2) divisors. Figure 10.1
is the Hasse diagram of this ordered set (with the ordering |).

From the Fundamental Theorem of Arithmetic it follows that the prime factoriza-
tions of gcd(a, b) and lcm(a, b) are easily obtained from those of a and b:
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1

3

32

37

3 · 37

32 · 37

5

3 · 5

32 · 5

5 · 37

3 · 5 · 37

32 · 5 · 37

Figure 10.1: The positive divisors of 1665

10.11 Proposition. Let a, b ∈ N+. Then for all prime numbers p:

vp(gcd(a, b)) = min(vp(a), vp(b)) and vp(lcm(a, b)) = max(vp(a), vp(b)).

PROOF. A number d ∈ N+ is a common divisor of a and b if and only if vp(d) ≤
vp(a) and vp(d) ≤ vp(b), that is vp(d) ≤ min(vp(a), vp(b)), for all prime numbers
p. For the greatest common divisor we then have vp(gcd(a, b)) = min(vp(a), vp(b))
for all primes p. For the least common multiple the proof is similar.

Thus we have a way to determine the greatest common divisor of two numbers.
However, since the prime factorizations of these numbers have to be determined
first, this is for large numbers a formidable task. We return to this in chapter 15.
The determination of the greatest common divisor is done in a very efficient way
by the Euclidean algorithm, see section 9.4. Proposition 10.11 is theoretically im-
portant and for concrete calculations it is sometimes useful.

Note that the proposition gives a new and simple proof of the identity

gcd(a, b) · lcm(a, b) = ab.

The Fundamental Theorem of Arithmetic describes the multiplicative structure of
N+. It is easily extended to Q∗.

10.12 Definition. Let p be a prime number. The p-adic value vp(r) of an r ∈ Q∗

is defined as follows: put r = a
b with a, b integers, then

vp(r) = vp(a)− vp(b).

Note that this does not depend on the choice of a and b: if a
b
= c

d
, then ad = bc

and so vp(a) + vp(d) = vp(b) + vp(c), that is vp(a)− vp(b) = vp(c)− vp(d).
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We will denote the set of positive rational numbers by Q>0. The map

R0(Z) → Q>0, (k1, k2, k3, . . . ) 7→
∏
i∈N+

pkii

is bijective and its inverse is:

Q>0 → R0(Z), r 7→ (vp1(r), vp2(r), vp3(r), . . . ).

Multiplication (in Q>0) corresponds to component-wise addition in R0(Z), that is
vp(rs) = vp(r) + vp(s) for all r, s ∈ Q∗ and all primes p.

Powers of Rational Numbers

The Fundamental Theorem of Arithmetic enables us to describe the rational num-
bers which are n-th powers (of a rational number) in terms of their prime factor-
izations.

Let r be a positive rational number. The prime factorization of rn, where n ∈ N,
is easily determined by the prime factorization of r:

vp(r
n) = n · vp(r) for all prime numbers p.

So the p-adic value of an n-th power is a multiple of n for every prime p. Conversely,
if the p-adic value of an s ∈ Q>0 is a multiple of n for every prime p, then s is
an n-th power of a rational number: put vp(s) = kpn, then s is the n-th power of
r =

∏
p p

kp :

rn =
∏
p

pkpn =
∏
p

pvp(s) = s.

So we have shown:

10.13 Proposition. Let s ∈ Q>0 and n ∈ N. Then s is an n-th power of a rational
number if and only if n | vp(s) for every prime p. An a ∈ N+ is an n-th power of
a natural number if and only if n | vp(a) for every prime p.

10.14 Examples. The number 2 is not a square of a rational number, because
v2(2) = 1, which is odd. Similarly, the number 5 is not a square: v5(5) = 1. The
rational number 27

32 is not a cube of a rational number, because v2(
27
32 ) = −5, which

is not a multiple of 3.

By
√
2 we mean the positive number of which the square equals 2. Since 2 is not a

square, there is no
√
2 in Q. Later we will extend the rational numbers to the real

numbers and then there is such a number, it just is not rational, or as one says it
is irrational.
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10 The Fundamental Theorem of Arithmetic

10.4 Pythagorean Triples and Fermat’s Last Theorem

We will solve the Diophantine equation x2 + y2 = z2. For the solution the Fun-
damental Theorem of Arithmetic will be crucial. Fermat’s Last Theorem is about
the solvability of the Diophantine equation xn + yn = zn for n ≥ 3.

10.4.1 Pythagorean triples

10.15 Definition. A triple (x, y, z) ∈ N+3
is called a Pythagorean triple if it satisfies

x2 + y2 = z2.

Examples are (3, 4, 5) and (5, 12, 13). Geometrically, by Pythagoras, these triples
correspond to right triangles having sides of integer length.

Let (x, y, z) be a Pythagorean triple. If d ∈ N+ is a common divisor of x and y, then
d is also a divisor of z, say x = dx0, y = dy0 and z = dz0, and then (x0, y0, z0) is a
Pythagorean triple as well. So we can restrict our attention to so-called primitive
Pythagorean triples, being Pythagorean triples (x, y, z) such that gcd(x, y) = 1.
Note that if x and y are relatively prime, the same holds for x and z, as well as for
y and z.

Now let (x, y, z) be a primitive Pythagorean triple. Then x and y are not both
odd, since otherwise z2 would have 2 as the remainder after division by 4, which
for squares is not the case. We will assume that x is odd and y is even. Write the
equation as z2 − x2 = y2 and factorize the left hand side:

(z + x)(z − x) = y2.

The natural numbers z+x, z−x and y are all even, so z+x
2 , z−x2 and y

2 are natural
numbers, and we have:

z + x

2
· z − x

2
=
(y
2

)2
. (10.1)

If d is a common divisor of z+x2 and z−x
2 , then so it is of

x =
z + x

2
− z − x

2
and z =

z + x

2
+
z − x

2
.

Since (x, y, z) is primitive, we have gcd(x, z) = 1. So gcd( z+x2 , z−x2 ) = 1. We now
use the following lemma.

10.16 Lemma. Let n ∈ N+ and let a and b be elements of N+ such that ab is an
nth power and gcd(a, b) = 1. Then both a and b are n-th powers.
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u v x = u2 − v2 y = 2uv z = u2 + v2

2 1 3 4 5

3 2 5 12 13

4 1 15 8 17

4 3 7 24 25

5 2 21 20 29

5 4 9 40 41

6 1 35 12 37

6 5 11 60 61

7 2 45 28 53

7 4 33 56 65

7 6 13 84 85

etc.

Figure 10.2: Table of Pythagorean triples

PROOF.

Let p be a prime divisor of a. Then p ∤ b and so vp(a) = vp(ab), which is a
multiple of n.

From proposition 10.13 it follows that a is an nth power. By symmetry b is an nth
power as well.

By this lemma the identity (10.1) implies that both z+x
2 and z−x

2 are squares. Now
put

z + x

2
= u2 and

z − x

2
= v2.

Then x = u2 − v2, z = u2 + v2 and y = 2uv. So we proved:

10.17 Theorem. Let (x, y, z) be a primitive Pythagorean triple with y even. Then
there are u, v ∈ N+ such that

x = u2 − v2, y = 2uv and z = u2 + v2.

For which u and v is such a triple primitive? If d is a common divisor of u and
v, then also of u2 − v2 and 2uv, so gcd(u, v) = 1 is needed. Furthermore, u and v
cannot be both odd, because then u2 − v2 and 2uv would be both even, making 2
a common divisor of these numbers. These requirements suffice:

10.18 Proposition. Let u and v be natural numbers with u > v ≥ 1, gcd(u, v) = 1
and u and v not both odd. Then (u2 − v2, 2uv, u2 + v2) is a primitive Pythagorean
triple.

179



10 The Fundamental Theorem of Arithmetic

Andrew Wiles (Cambridge 1953)

Wiles proved Fermat’s Last Theorem in 1995. He had spent
seven years completing his proof. Nobody knew he was
working on the conjecture, until in 1994 he presented a proof
in Cambridge, but soon after a mistake was found. Luckily
it could be corrected, though the correction was far from
trivial.

PROOF. Let d be a common divisor of u2−v2 and 2uv. Then d2 | (u2−v2)2 = u4−
2u2v2+v4 and d2 | 4u2v2. Hence d2 | u4+2u2v2+v4 = (u2+v2)2 and so d | u2+v2.
We have d | 2u2(= (u2 + v2) + (u2 − v2)) and d | 2v2(= (u2 + v2) − (u2 − v2)).
From gcd(u, v) = 1 it follows that d | 2, and since u2 + v2 is odd, we have d = 1.
So gcd(u2 − v2, 2uv) = 1.

With these results it is now possible to make a potentially infinite table of all
primitive Pythagorean triples, see Figure 10.2. For a different proof, see exercise 23.

10.4.2 Fermat’s Last Theorem

Figure 10.3: Czech Republic, 2000

As we have seen, in infinitely many cases
the sum of two squares is again a square.
According to a note of Fermat in the mar-
gin of a copy of an edition of Arithmetica
by Diophantus for each n ≥ 3 the sum of
two n-th powers never is an n-th power.
For this he had a truly marvelous proof,
but the margin was too small to contain
it. This is known as Fermat’s Last Theo-
rem. Attempts to find a proof have given

rise to beautiful mathematical theories. It was not proved until 1995 when the
English mathematician Andrew Wiles gave a proof using techniques unavailable to
Fermat. It is a consequence of a conjecture on so-called elliptic curves Wiles had
proved. Fermat gave a proof for the case n = 4. For n = 3 a proof was given by
Euler. In fact in his proof there was a major gap, but the necessary lemma to fill
this gap can be found in Euler’s work elsewhere.
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Pierre de Fermat (Beaumont-de-Lomagne 1601 – Castres 1665)

Fermat was a lawyer and became well-known as an amateur
mathematician, mainly because of his work in number the-
ory. In those times it was customary to challenge each other
with problems. Many results of Fermat became known be-
cause of this challenging others. The proofs were found later.
‘Fermat’s Last Theorem’ as found in the margin of a copy
of Diophantus’ book was finally proved in 1995 by Wiles. In
proofs like the here given proof of Theorem 10.19 Fermat
used a technique known as ‘infinite descent’, a consequence
of the well-ordering of N.

If d | n, say n = dm and (x0, y0, z0) is a solution of xn + yn = zn, then

(xm0 )d + (ym0 )d = (zm0 )d

and so (xm0 , y
m
0 , z

m
0 ) is a solution of xd + yd = zd. Thus the problem is reduced to

n = 4 or n an odd prime, because if n is not a multiple of an odd prime, then it is
a power of 2, which is a multiple of 4 since n > 2.

Here we give a proof of Fermat’s Last Theorem for n = 4. It is a consequence of
the more general theorem which states that a square cannot be the sum of two
fourth powers.

10.19 Theorem (Fermat). There are no x, y, z ∈ N+ such that x4 + y4 = z2.

PROOF.

Suppose the equation does have a solution. Let z2 be the least square which
is the sum of two fourth powers, say z2 = x4 + y4. Then gcd(x, y) = 1, since
otherwise there would be a less square satisfying this property. So (x2, y2, z)
is a primitive Pythagorean triple and therefore there are u, v ∈ N+ such that

x2 = u2 − v2, y2 = 2uv, z = u2 + v2

gcd(u, v) = 1, u and v not both odd,

(if necessary swap x and y). Because x is odd, the remainder of x2 after
division by 4 equals 1. From x2 = u2 − v2 it follows that u is odd and v is
even. We have (y

2

)2
= u · v

2
and gcd

(
u,
v

2

)
= 1,
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so u and v
2 are both squares, say u = a2 and v

2 = b2. Because (x, v, u) is a
primitive Pythagorean triple, there are c, d ∈ N+ such that gcd(c, d) = 1 and

x = c2 − d2, v = 2cd, u = c2 + d2.

Note that x is odd and v is even. From cd = b2 and gcd(c, d) = 1 it follows
that c and d are squares. Also u is a square (u = a2) and from u = c2 + d2

it now follows that u is a sum of two fourth powers, and we have

a2 = u ≤ u2 < u2 + v2 = z ≤ z2,

so a2 < z2. Contradiction, since z2 was the least square which is the sum of
two fourth powers.

So no square is the sum of two fourth powers.

The proof above shows that for every square in N+ which is the sum of two fourth
powers there exists a smaller square with this property. So the set of all such
squares does not have a least element. This contradicts Theorem 7.48: (N,≤) is
well-ordered. Formulated this way the proof uses the method of infinite descent.

10.5 Arithmetic Functions

10.20 Definition. A function f : N+ → Q is called an arithmetic function.

So an arithmetic function f is just a sequence of rational numbers: f(1), f(2), . . .
Later, having more numbers at our disposal, we can extend this notion to functions
taking values in R or C.

10.21 Examples.

a) τ(n) = number of divisors of n. From Corollary 10.9 it follows that this
number is determined by the prime factorization of n:

τ(n) =
∏
p

(vp(n) + 1).

For example τ(1665) = (2 + 1)(1 + 1)(1 + 1) = 12, see example 10.10.
b) σ(n) = sum of divisors of n. For example σ(1665) = 1+3+9+5+15+45+

37 + 111 + 333 + 185 + 555 + 1665 = 2964, see Figure 10.1.
c) 1(n) = 1 (for all n), a constant function.
d) A function which in this context is of special importance:

1(n) =

{
1 if n = 1,

0 if n ̸= 1.

e) id(n) = n (for all n), the identity function.
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Note the difference between the arithmetic functions 1, 1 and id.

Starting with an arithmetic function f a new arithmetic function F can be produced
as follows:

F (n) =
∑
d|n

f(d).

Here it is understood that the sum is over all positive divisors d of n. Exam-
ples 10.21 a) and b) are determined this way by c) and e) respectively:

τ(n) =
∑
d|n

1 and σ(n) =
∑
d|n

d.

This construction of F from f is a special case of the following.

10.22 Definition. The Dirichlet product f ∗ g of arithmetic functions f and g is
the arithmetic function given by

(f ∗ g)(n) =
∑
d|n

f(d)g(nd ).

10.23 Examples.

a) (1 ∗ 1)(n) =
∑
d|n 1 · 1 = τ(n), so τ = 1 ∗ 1.

b) (id ∗ 1)(n) =
∑
d|n d · 1 = σ(n), so σ = id ∗ 1.

The Dirichlet product satisfies some simple rules:

10.24 Proposition. The operation ∗ is associative, commutative and 1 is a neutral
element.

PROOF.

Associativity:

((f ∗ g) ∗ h)(n) =
∑
d|n

(f ∗ g)(d)h(nd ) =
∑
d|n

∑
e|d

f(e)g(de )h(
n
d )

=
∑

(d1,d2,d3)
d1d2d3=n

f(d1)g(d2)h(d3),

where d1 = e, d2 = d
e and d3 = n

d . Evaluation of (f ∗ (g ∗ h))(n) yields the
same.

Commutativity: Follows directly from the definition.

Neutral element:
(f ∗ 1)(n) =

∑
d|n

f(d)1(nd ) = f(n).
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The arithmetic functions together with the Dirichlet product form an abelian
monoid with 1 as neutral element (unity element).

10.25 Definition. An arithmetic function f is called multiplicative if f(mn) =
f(m)f(n) for all m,n ∈ N+ with gcd(m,n) = 1. It is called strictly multiplicative
if f(mn) = f(m)f(n) for all m,n ∈ N+.

10.26 Proposition. Let f and g be multiplicative arithmetic functions. Then the
function f ∗ g is also multiplicative.

PROOF. For m,n ∈ N+ with gcd(m,n) = 1 we have:

(f ∗ g)(mn) =
∑
d|mn

f(d)g(mnd ) =
∑
d1|m
d2|n

f(d1d2)g(
m
d1

· nd2 )

=
∑
d1|m
d2|n

f(d1)f(d2)g(
m
d1
)g( nd2 )

=
(∑
d1|m

f(d1)g(
m
d1
)
)(∑

d2|n

f(d2)g(
n
d2
)
)

= (f ∗ g)(m) · (f ∗ g)(n).

This proposition can be used to show that an arithmetic function is multiplicative.
For n 7→ τ(n) it follows from Corollary 10.9 that it is multiplicative, see also
examples 10.21. Since the arithmetic function 1 clearly is multiplicative and τ =
1∗1, this also follows from the above proposition. Again the formula for τ(n) given
in examples 10.21 follows.

10.27 Corollary. The arithmetic function σ is multiplicative. We have:

σ(n) =
∏
p

pvp(n)+1 − 1

p− 1
.

PROOF. Since the arithmetic functions τ and 1 are multiplicative, σ = τ ∗ 1 is
multiplicative. For the power pk of a prime number p where k ∈ N+ we have:

σ(pk) =
∑
d|pk

d =

k∑
i=0

pi =
pk+1 − 1

p− 1
.

Because σ is multiplicative the formula for σ(n) follows directly.

So all functions in examples 10.21 are multiplicative, the functions 1, 1 and id are
strictly multiplicative.

We will see that the constant arithmetic function 1 is invertible with respect to the
Dirichlet product, that is it is invertible in the monoid of arithmetic functions.
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10.5 Arithmetic Functions

August Möbius (Schulpforta 1790 – Leipzig 1868)

Möbius learned mathematics and astronomy from Gauß and
Pfaff, the teacher of Gauß. He became well-known because
of the Möbius strip, being an example of a one-sided surface.

10.28 Definitions. An n ∈ N+ is called squarefree if vp(n) ≤ 1 for all prime
numbers p. The Möbius function is the arithmetic function µ defined by:

µ(n) =


0 if n is not squarefree,

1 if n is squarefree with an even number of prime divisors,

−1 if n is squarefree with an odd number of prime divisors.

The Möbius function is the inverse of the constant function 1 in the monoid of
arithmetic functions:

10.29 Lemma. µ ∗ 1 = 1.

PROOF. The arithmetic functions µ and 1 are multiplicative. So according to
proposition 10.26 the function µ ∗ 1 is multiplicative. Also 1 is multiplicative. We
compute the value of the function µ ∗ 1 in prime powers. We have (µ ∗ 1)(1) =
µ(1)·1 = 1 and for p a prime number and k ∈ N+ we have (µ∗1)(pk) =

∑
d|pk µ(d) =∑k

i=0 µ(p
i) = µ(1) + µ(p) = 1− 1 = 0. So (µ ∗ 1)(n) = 1(n) for all n.

10.30 Möbius Inversion Theorem. Let f be an arithmetic function and let
F = f ∗ 1. Then f = F ∗ µ.

PROOF. F ∗ µ = (f ∗ 1) ∗ µ = f ∗ (1 ∗ µ) = f ∗ 1 = f .

A direct consequence of this theorem and proposition 10.26 is:

10.31 Corollary. Let f be an arithmetic function and let F = f ∗ 1. Then:

f is multiplicative ⇐⇒ F is multiplicative.
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10 The Fundamental Theorem of Arithmetic

Leonhard Euler (Basel 1707 – St. Petersburg 1783)

The importance of Euler for the development of mathematics
has been enormous. He was by far the most productive
mathematician of his time. Numerous mathematical notions
bear his name. If everything he invented was named after
him, his name would have been used even more. He was a
master in making computations by heart. From this ability
he profited when he became blind at an older age, it did not
prevent him from producing new results.

10.5.1 Perfect numbers

In ancient Greece there was interest in perfect numbers for esthetic reasons. Perfect
numbers are equal to the sum of their positive proper divisors. Examples are
6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14.

10.32 Definition. An n ∈ N+ is called perfect if σ(n) = 2n.

Euclid already gave the following type of perfect number:

10.33 Proposition. Let p ∈ N be such that 2p − 1 is a prime number. Then
2p−1(2p − 1) is a perfect number.

PROOF. Since gcd(2p−1, 2p − 1) = 1, Corollary 10.27 implies:

σ(2p−1(2p − 1)) =
2p − 1

2− 1
· (1 + 2p − 1) = 2p(2p − 1).

The numbers 6 and 28 are of this type: 6 = 2 · (22−1) and 28 = 22 · (23−1). Euler
has shown that in fact all even perfect numbers are of this type:

10.34 Proposition (Euler). Let n be an even perfect number. Then there is a
p ∈ N+ such that 2p − 1 is a prime number and n = 2p−1(2p − 1).

PROOF. Put n = 2k−1m with k ≥ 2 and m odd. Then σ(n) = σ(2k−1)σ(m) =
(2k−1)σ(m) and, since n is perfect, also σ(n) = 2n = 2km. So 2km = (2k−1)σ(m).
Because gcd(2k − 1, 2k) = 1, it follows that 2k − 1 | m, say m = (2k − 1)q. Then
2kq = σ(m) ≥ m + q = 2kq and so σ(m) = m + q. So the numbers m and q are
the only divisors of m. Hence q = 1 and m (= 2k − 1) is a prime number.
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Marin Mersenne (Oize 1588 – Paris 1648)

Mersenne primes are named after the French monk
Mersenne. He became known because of his work in number
theory and in fact even more because of his correspondences
with important mathematicians.

So the even perfect numbers are in correspondence with primes of type 2p−1. It is
unknown whether there exist odd perfect numbers. The American number theorist
Carl Pomerance (1944) showed in 1972 in his dissertation that any odd perfect
number has at least seven distinct prime factors. As far as the even perfect numbers
is concerned, the problem remains which of the numbers 2p − 1 are prime.

10.35 Definition. A prime number of type 2p−1, where p ∈ N is called a Mersenne
prime.

If p is not prime, neither is 2p − 1:

10.36 Proposition. Let p ∈ N+ such that 2p − 1 is a prime number. Then p is a
prime number.

PROOF. From xn−1 = (x−1)
∑n−1
k=0 x

k for x, n ∈ N+ it follows that x−1 | xn−1.
So if xn − 1 is a prime number, then x − 1 = 1 or n = 1. Suppose p = ab with
a, b ∈ N+. Since (2a)b − 1 is a prime number it follows that 2a − 1 = 1 or b = 1. If
2a − 1 = 1, then a = 1. So p is a prime number.

The converse is not true: 211 − 1 = 23 · 89. On the site www.mersenne.org a
table of all known Mersenne primes is given. Now (September 9, 2024) there are
51 Mersenne primes known. The last one dates from December 21st 2018. Because
there is for this kind of numbers an efficient prime test of Lucas, improved by
the American number theorist D.H. Lehmer (1905-1991), the greatest known
Mersenne prime usually is the greatest known prime number. The 51-st known
Mersenne prime by now is also the greatest ever found:

282589933 − 1.

In the decimal notation it has 24862048 digits. It is unknown whether a smaller
one exists that has not been found.
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10.5.2 Euler’s totient function

10.37 Definition. Let n ∈ N+. Its totient φ(n) is the number of natural numbers
a < n satisfying gcd(a, n) = 1, so

φ(n) = #{ a ∈ Nn | gcd(a, n) = 1 }.

The function φ : n 7→ φ(n) is called the totient function (or Euler’s totient func-
tion).

Thus we have an arithmetic function φ with φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2,
φ(5) = 4, φ(6) = 2. Clearly φ(n) < n if n > 1. We also have:

10.38 Proposition. Let n ∈ N+. Then:

n is a prime number ⇐⇒ φ(n) = n− 1.

PROOF.

⇒: Let n be a prime number. Then for all a ∈ N+ we have n ∤ a ⇐⇒ gcd(a, n) =
1. So φ(n) = n− 1.

⇐: Since φ(n) = n − 1 (and so n ̸= 1) we have gcd(a, n) = 1 for all a with
1 ≤ a < n. So there is no divisor d of n with 1 < d < n, that is n is a prime
number.

For prime powers the totient is easy to determine:

10.39 Proposition. Let p be a prime number and k ∈ N+. Then φ(pk) = pk−pk−1.

PROOF. From gcd(a, pk) | pk it follows that gcd(a, pk) = 1 ⇐⇒ p ∤ a. There are
pk−1 multiples of p in Npk , namely the numbers 0, p, 2p, . . . , (pk−1 − 1)p.

10.40 Proposition. Let n ∈ N+. Then
∑
d|n φ(d) = n.

PROOF. Consider the n rational numbers

0

n
,
1

n
,
2

n
, . . . ,

n− 1

n
.

These are the rational numbers r with 0 ≤ r < 1 and n as a denominator. The
least denominator of a

n is n
gcd(a,n) . For each divisor d of n among these rational

numbers there are φ(d) having d as least denominator. Thus we obtain a partition
of { 0

n ,
1
n ,

2
n , . . . ,

n−1
n } where the classes are formed by rational numbers having the

same least denominator. From this the proposition follows.

10.41 Corollary. The Euler totient function is a multiplicative arithmetic func-
tion.

In chapter 13 another and maybe more conceptual proof of this will be given.
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PROOF. Proposition 10.40 states that φ ∗ 1 = id. Because id is multiplicative, the
function φ is by Corollary 10.31 multiplicative as well.

10.42 Theorem. Let n ∈ N+. Then

φ(n) = n
∏
p|n

(
1− 1

p

)
.

PROOF. This easily follows from Corollary 10.41 and proposition 10.39:

φ(n) =
∏
p

φ(pvp(n)) =
∏
p|n

(pvp(n) − pvp(n)−1)

=
∏
p|n

pvp(n) ·
∏
p|n

(
1− 1

p

)
= n ·

∏
p|n

(
1− 1

p

)
.

10.43 Example. We compute the totient of 1000. Because 2 and 5 are the only
prime divisors of 1000 we have:

φ(1000) = 1000 · (1− 1
2 )(1−

1
5 ) = 1000 · 1

2 · 4
5 = 400.

Corollary 10.41 and proposition 10.39 can also be used directly:

φ(1000) = φ(23)φ(53) = (8− 4)(125− 25) = 4 · 100 = 400.

Exercises

1. Let r be a rational number ̸= 0. Show that r ∈ Z if and only if vp(r) ≥ 0 for all
prime numbers p.

2. Let r be a rational number and let n ∈ N+. Show that rn ∈ Z implies r ∈ Z.

3. Show that there is no rational number x satisfying x3 = x+ 1.

4. Which natural numbers ̸= 0 have exactly 2 positive divisors? Which 3? And which
4?

5. Compute τ(252525), σ(252525) and φ(252525).

6. Show that for all n ∈ N+:

φ(2n) = φ(n) ⇐⇒ n is odd.

7. Let p be a prime number and let the p-adic notation of the natural number n ≥ 1
be as follows:

n = [cr−1, . . . , c0]p.

189



10 The Fundamental Theorem of Arithmetic

(i) Prove that pk | n ⇐⇒ ci = 0 for all i < k.

(ii) Prove that vp(n) = k ⇐⇒ ck ̸= 0 and ci = 0 for all i < k.

8. Let p be a prime number and let n ∈ N+.

(i) Show that for k ∈ N

#({ a ∈ n | vp(a) = k }) =
⌊ n

pk

⌋
−
⌊ n

pk+1

⌋
.

(ii) Show that

vp(n!) =
⌊n
p

⌋
+
⌊ n

p2

⌋
+
⌊ n

p3

⌋
+ · · · .

(There are only finitely many nonzero terms.)

(iii) Let [cr−1, . . . , c0]p be the p-adic notation of n. Prove that

vp(n!) = [cr−1, . . . , c1]p + [cr−1, . . . , c2]p + [cr−1, . . . , c3]p + · · ·+ [cr−1]p.

(iv) With how many zeros does the decimal notation of 70! end? And in the
hexadecimal notation?

9. (i) Show that the arithmetic function σ2 : n 7→
∑

d|n d2 is multiplicative.

(ii) Determine a formula for σ2(n).

10. Let ρ(n) be the number of prime factors of n:

ρ(n) =
∑
p

vp(n).

The arithmetic function λ is defined by λ(n) = (−1)ρ(n). (The function λ is some-
times called the Liouville function.)

(i) Show that λ is strictly multiplicative.

(ii) Prove that ∑
d|n

λ(d) =

{
1 if n is a square,

0 if n is not a square.

11. Let n ∈ N+. Show that the number of (k, l) ∈ N+2
with lcm(k, l) = n equals τ(n2).

12. At Amazon a poster could be ordered displaying the 51-st Mersenne prime number.
That number is given in its decimal representation. A magnifier is included so as to
make the more than 25 million digits visible. What would it look like in its binary
representation? And hexadecimal?

13. Show that for all n ∈ N+ the number τ(n) is odd if and only if n is a square.

14. For which n ∈ N+ is σ(n) odd?

15. Show that
∏

d|n d = n
τ(n)

2 . (Remark: if τ(n) is odd, then n is a square and the

formula is to be read as
∏

d|n d =
√
n

τ(n)
.)
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16. The arithmetic function χ is defined by χ(n) =
∑

d|n
1
d
.

(i) Show that χ is multiplicative.

(ii) Prove that χ(n)φ(n) =
∏

p|n(p
vp(n) − 1

p
) for all n ∈ N+.

17. Prove that for all m,n ∈ N+:

(i) φ(m)φ(n) = φ(gcd(m,n))φ(lcm(m,n)),

(ii) φ(m)φ(gcd(m,n)) = gcd(m,n)φ(m)φ(n).

18. Let n be a natural number ≥ 2. Show that the sum of all k ∈ n equals 1
2
nφ(n).

19. (i) Let n ∈ Z. Determine (depending on n)

gcd(n2 + n, 41) and gcd(41n2, n+ 1).

(ii) Show that for infinitely many n ∈ N none of the numbers

n, n2 + n+ 41 and 41n2 + n+ 1

is prime.

20. (i) For x, y ∈ N+ with gcd(x, y) = 1 let 4xy be a square of a natural number.
Show that both x and y are squares of a natural number.

(ii) For x, y ∈ N+ with gcd(x, y) = 1 let 2xy be a square of a natural number.
Show that exactly one of the numbers x and y is a square of a natural number.

21. (i) The arithmetic function f is defined by f(n) = µ(n)n. Show that f is multi-
plicative.

(ii) Show that f satisfies f ∗ id = 1.

22. An arithmetic function g is called invertible if there exists an arithmetic function
h such that g ∗ h = 1. Prove:

g is invertible ⇐⇒ g(1) ̸= 0.

23. An alternative proof of theorem 10.17. Let (x, y, z) be a primitive Pythagorean
triple with y even. Put d = gcd(x+ z, y), u = x+z

d
and v = y

d
.

(i) Show that
2uv

u2 + v2
=

y

z
and

u2 − v2

u2 + v2
=

x

z
.

(ii) Show that gcd(u, v) = 1 and that from
2uv

u2 + v2
=

y

z
it follows that u and

v are not both odd.

(iii) Prove that gcd(u2 − v2, u2 + v2) = 1.

(iv) Prove that x = u2 − v2, z = u2 + v2 and y = 2uv.

24. Let the natural number a be odd and let a2−1
8

be a prime number. Determine a.

25. (i) Show that there is no integer x such that (x2 − 18)x = 9.

(ii) Show that there is no rational number x such that x3 = 18x+ 9.
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10 The Fundamental Theorem of Arithmetic

26. Let N be a natural number having 3 as the last digit in its decimal representation.
Show that there are no natural numbers c and n such that

1

N
=

c

10n
.

27. (i) Prove that for all n ∈ N+ there is a k ∈ N such that φk(n) = 1.

(ii) Prove that for all k ∈ N there is an n ∈ N+ such that φk(n) ̸= 1.
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11 Combinatorics

Combinatorics is the art of counting, especially for obtaining results about finite
structures such as graphs. In chapter 1 for example we considered the number of
moves needed for the solution of the Tower of Hanoi puzzle using simple arithmetic.

Binomial coefficients are numbers of subsets of a given size. In mathematics these
numbers are often used: in counting problems, as in section 11.3, and also in an
algebraic context, for example when elaborating expressions like (a + b)n—which
in fact explains their name. Polynomial sequences are sequences in which the n-th
term is given by a polynomial in n, for example the sequence of squares: the n-th
term then is n2. In section 11.4 we study partial sum sequences and difference
sequences of polynomial sequences.

Stirling numbers of the second kind are numbers of partitions of a given size.
For these numbers there are formulas too, formulas which are somewhat more
complicated than those for binomial coefficients. Stirling numbers of the first kind
are treated in the next chapter.

11.1 Injective Maps and Subsets

Let A and B be finite sets such that #(A) ≤ #(B). The image of an injective
map f : A → B is a subset of B with #(A) elements. We will derive formulas for
the number of injective maps between finite sets and for the number of subsets of
a finite set with a given number of elements.

11.1.1 Injective maps

11.1 Notation. Let A and B be sets. We denote the set of injective maps from
A to B by Inj(A,B).

This is not a generally accepted notation. It is only used in this section.

11.2 Proposition. Let A and B be finite sets such that #(A) ≤ #(B). Then

#(Inj(A,B)) =
#(B)!

(#(B)−#(A))!
.
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PROOF. We prove the formula by mathematical induction on #(A). If #(A) = 0,
then A is empty and so there is just one injective map from A to B.

Suppose the proposition is true for all sets A with #(A) = k. Let A be a set
of k + 1 elements and B arbitrary, say a set of n elements, where n ≥ k + 1.
Since k + 1 > 0 and so A ̸= ∅, we can fix an a ∈ A. By assigning the image
of this a to an injective map we obtain a surjection

Inj(A,B) → B, f 7→ f(a).

This map induces a partition of Inj(A,B) with for each b ∈ B a class

{ f ∈ Inj(A,B) | f(a) = b }.

This class has as many elements as Inj(A\{a}, B \{b}), and by the induction
hypothesis this number is (n−1)(n−2) · · · (n−k). There are n of these classes,
all of the same size. So the total number is n(n− 1)(n− 2) · · · (n− k).

The same proof, but less formal. An injective map from A to B is made by sub-
sequently choosing images for the elements of A. Assume that the elements are
numbered from 1 to k. For the first element there are n possible images, then for
the second one n− 1, etc. So in total n(n− 1)(n− 2) · · · (n− k + 1).

A special case:

11.3 Corollary. Let A and B be finite sets such that #(A) = #(B) = n. Then
there are n! bijective maps from A to B.

PROOF. By theorem 5.37 injective maps from A to B are bijective.

11.4 The birthday paradox. What is the probability that in a company of N
persons two of them have the same birthday? Let’s ignore February 29th. The
probability that all persons have different birthdays equals

the number of injective maps N → 365

the number of maps N → 365
.

So this probability is 365·364···(365−N+1)
365N

=
∏N−1
j=0 (1 − j

365 ). By increasing N the
probability decreases: for N = 1 it is 1, for N > 365 it is 0. From which N onwards
is it less then 1

2 ? This question is known as the birthday problem. The solution is
N = 23, which is less then most people would guess. That is why it is often called
the birthday paradox. (Generally, when dealing with injective maps to M , this N
is in the order of magnitude of

√
M .)
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Python

The code for the computation of factorials is simple.

combinatorics.py
def factorial(n):

i, fact = 0, 1

while i < n:

i, fact = i + 1, fact * (n - i)

return fact

>>> factorial(77)

145183092028285869634070784086308284983740379224208358846781574688061

991349156420080065207861248000000000000000000

11.1.2 Subsets with k elements

11.5 Notation. Let A be a finite set with n elements and let k be a natural
number such that k ≤ n. We denote by Pk(A) the set consisting of all subsets of
A with k elements, so:

Pk(A) = {U ∈ P(A) | #(U) = k }.

We define:

11.6 Definition. Let n and k be natural numbers with k ≤ n. Then(
n

k

)
= #(Pk(n)).

This number is called a binomial coefficient. (In the next section it will become
clear why it is called this way).

In the definition we took A = n. Since, for #(A) = n it is not hard to see that
Pk(A) ≈ Pk(n), any set A with n elements could have been taken.

Let A be a finite set with #(A) = n. Let k be a natural number such that
0 < k < n. (So n ≥ 2.) We fix an element a of A. Then two kinds of subsets of A
with k elements can be distinguished:

a) subsets U such that a ∈ U ,
b) subsets U such that a /∈ U .

Subsets of the first kind correspond to subsets of A\{a} with k−1 elements. There
are

(
n−1
k−1

)
of these. Subsets of the second kind correspond to subsets of A \ {a}

with k elements and of these there are
(
n−1
k

)
. So we derived:
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Figure 11.1: Pascal’s triangle

11.7 Proposition. Let n and k be natural numbers with 0 < k < n. Then(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Other, more obvious, properties are:

11.8 Proposition. Let n and k be natural numbers with k ≤ n. Then:(
n

0

)
=

(
n

n

)
= 1 and

(
n

m

)
=

(
n

n−m

)
.

PROOF. This follows from:

a) The empty subset of n is the only subset of 0 elements.
b) n is the only subset of n of n elements.
c) Subsets U of n with k elements correspond to subsets V of n with n − k

elements: take V = n \U . In other words: the map Pk(n) → Pn−k(n), U 7→
n \ U is bijective.

The binomial coefficients can nicely be displayed in Pascal’s triangle, a triangular
diagram, see Figure 11.1. Using the propositions 11.7 and 11.8 the triangle is
easily computed, see Figure 11.2. It can be seen as an inductive definition of the
sequence of rows of the triangle. The numbers

(
n
k

)
in Figure 11.1 can be seen as the

number of paths in the directed graph of Figure 11.3 from the top downwards. The
number of paths ending in (n, k) equals the sum of the numbers of paths ending
in the vertices immediately above (n, k).

A path is formed by repeated choices for left or right: descending one vertex there
is a choice between the left and the right vertex. The row you end at depends on
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Blaise Pascal (Clermont 1623 – Pasequences 1662)

Pascal was a French mathematician who already as a youth
was occupied with mechanical addition of numbers. The
machines he built are in a sense the precursors of the com-
puter. Pascal’s triangle is named after him, but was then
already known for several ages. Pascal did use the triangle in
connection with probability calculus and he also has derived
various properties of the triangle. He had a clear way of
reasoning, though he preferred to use words over formulas.
He also contributed to projective geometry.

1 7 21 35 35 21 7 1

1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

Figure 11.2: Pascal’s triangle computed

the number of choices made. After n choices you end in row n. When of a total of
n choices k times has been chosen for right, you end in the vertex (n, k). Thus the
paths ending in this vertex correspond to subsets of {1, 2, . . . , n} with k elements.

In Pascal’s triangle a lot of remarkable properties can be discovered. For instance
that the sum of the numbers in row n equals 2n. This is the total number of subsets
of a set which has n elements. In that row these numbers are split up according to
the number of elements of the subsets.

Algorithm

The binomial coefficients are determined by propositions 11.7 and 11.8 and these
can be used for their computation. That is the way Pascal’s triangle in Figure 11.2
was computed. When designing an algorithm it is important that the same numbers
are not computed over and over again. For the computation of a binomial coefficient
only the numbers above that number in Pascal’s triangle are relevant. So there is a
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11 Combinatorics

(7, 0) (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)

(6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

(5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

(3, 0) (3, 1) (3, 2) (3, 3)

(2, 0) (2, 1) (2, 2)

(1, 0) (1, 1)

(0, 0)

Figure 11.3: Directed graph with vertices (n, k)

‘parallelogram’ of numbers which have to be computed. The list of numbers along
the side left above consists of ones only. The list of numbers directly below them
starts with a 1 in top and can be computed using the first list. Thus every next
list can be computed and finally the binomial coefficient to be computed is the last
number in the last list. See Figure 11.4 for the computation of

(
7
3

)
.

Python

combinatorics.py
def comb(n, k):

list0 = (n - k + 1) * [1]

i = j = 0

while i < k:

list1 = [1]

while j < n - k:

j = j + 1

list1.append(list1[-1] + list0[j])

list0 = list1

i, j = i + 1, 0

return list0[-1]
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11.1 Injective Maps and Subsets

∗ ∗ ∗ 35 ∗ ∗ ∗ ∗

∗ ∗ 15 20 ∗ ∗ ∗

∗ 5 10 10 ∗ ∗
1 4 6 4 ∗
1 3 3 1

1 2 1

1 1

1

Figure 11.4: The computation of
(
7
3

)

>>> comb(1209, 476)

230116158359325490132982607650290019977276112005917688014564482394933

407667069406658633828945204464182765630512325481132705106176377309772

405347735054365224940922421594166068837010493521907843522812670490559

054454495705418953437646984979117129356684864911536999791504325503341

708279703860428588289372343275707934120024223127888167649186881639650

286720

So far we computed binomial coefficients using Pascal’s triangle. There is also a
direct formula for a binomial coefficient, which is often taken as its definition:

11.9 Proposition. Let k and n be natural numbers such that k ≤ n. Then(
n

k

)
=

n!

k!(n− k)!
.

PROOF. Let A and B be finite sets with #(A) = k and #(B) = n. The surjective
map

Inj(A,B) → Pk(B), f 7→ f∗(A)

induces a partition of Inj(A,B). For every U ⊆ B with #(U) = k there is a class

{ f ∈ Inj(A,B) | f∗(A) = U }.

This class has as many elements as there are bijections from A to U . This number
is by Corollary 11.3 equal to k!. So

#(Inj(A,B)) =
∑

U∈Pk(B)

k! = k!
∑

U∈Pk(B)

1 = k! ·
(
n

k

)
.
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11 Combinatorics

From this it follows that (
n

k

)
=

n!

k!(n− k)!
.

This formula can also be derived by verifying the relations which determine the
binomial coefficients, or, what amounts to the same, the relations which determine
Pascal’s triangle.

11.2 Products of Binomials

Let a1, . . . , an and b1, . . . , bn be numbers. We are going to expand the expression

(a1 + b1)(a2 + b2) · · · (an + bn).

The result will be a sum of 2n terms, each term being a product of n factors. After
that we will have a look at special cases: for example all ai equal, or all ai equal
and the same for all bj .

11.10 Notation. We will use temporarily the following notation:

aI =
∏
i∈I

ai,

where a1, . . . , an are numbers and I a subset of n. Thus for example if n = 7, then

a{2,5,7} = a2a5a7, a{3} = a3 and a∅ = 1.

With this notation some formulas will be more readable, e.g. the formula in the
following theorem.

11.11 Theorem. Let a1, . . . , an and b1, . . . , bn be numbers. Then

n∏
i=1

(ai + bi) =
∑
I⊆n

aIbn\I ,

where
∑
I⊆n

stands for
∑

I∈P(n)

.

PROOF. The proof will be by mathematical induction on n. For n = 0 on the left
hand side we have an empty product and on the right hand side a∅b∅ = 1.

Suppose the formula is correct for some n ∈ N. Let a1, . . . , an+1 and b1, . . . , bn+1

be numbers. Then indeed

n+1∏
i=1

(ai + bi) = (an+1 + bn+1)

n∏
i=1

(ai + bi) = (an+1 + bn+1)
∑
I⊆n

aIbn\I
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11.2 Products of Binomials

=
∑
I⊆n

aIan+1bn\I +
∑
I⊆n

aIbn\Ibn+1 =
∑

J⊆n+1
n+1∈J

aJbn+1\J +
∑

J⊆n+1

n+1/∈J

aJbn+1\J

=
∑

J⊆n+1

aJbn+1\J .

Now we consider the special case a1 = a2 = · · · = an = a.

11.12 Theorem. Let a and b1, . . . , bn be numbers. Then

n∏
i=1

(a+ bi) =

n∑
k=0

ska
n−k,

where sk =
∑

#(I)=k bI .

PROOF. We apply theorem 11.11. Since aI = a#(I) we have

n∏
i=1

(a+ bi) =

n∑
k=0

∑
#(I)=k

akbn\I =

n∑
k=0

( ∑
#(I)=k

bn\I

)
ak

=

n∑
k=0

sn−ka
k =

n∑
k=0

ska
n−k.

This formula often occurs in the following form:

n∏
i=1

(x− ai) =

n∑
k=0

(−1)kskx
n−k,

where sk =
∑

#(I)=k aI . The right hand side is a polynomial in x of degree n
and the left hand side is a product of n factors each of the form x − a. Equating
the polynomial to 0 gives an equation of degree n with x = a1, . . . , x = an

as solutions. Starting from the solutions you find an equation. When solving an
equation somehow one has to go the other way round.

For n = 4 we have for example:

s0 = 1,

s1 = a1 + a2 + a3 + a4,

s2 = a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4,

s3 = a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4,

s4 = a1a2a3a4.
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11 Combinatorics

Isaac Newton (Woolsthorpe 1642 – London 1727)

Newton was both a mathematician and a physicist. He
invented what is now called calculus. So did the German
mathematician Gottfried Leibniz (1646–1716), who also
developed its present day notation. Calculus is the mathe-
matical foundation of the Newtonian mechanics, which for
example explains the shape of the orbits of the planets.

The Binomial Theorem

The numbers
(
n
k

)
are called binomial coefficients because they occur as coefficients

when expanding a power of a binomial.

11.13 Binomial Theorem. Let a and b be numbers, and let n ∈ N. Then

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

PROOF. We apply theorem 11.11 with b1 = · · · = bn = b. Since bI = b#(I) we
now have sk =

∑
#(I)=k b

k = bk
∑

#(I)=k 1 = bk
(
n
k

)
and so

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

The Binomial Theorem is often named after Newton, but the theorem was known
as early as five centuries before Newton. Newton used his calculus to generalize the
theorem to exponents in R (the real numbers) and not just in N:

(1 + x)a =

∞∑
n=0

(
a

n

)
xn

for all x ∈ (−1, 1), where
(
a
n

)
is defined as will be done in definition 11.27.

We already noticed that the sum of the numbers in row n of Pascal’s triangle equals
2n. Another way to see this is by applying the Binomial Theorem:

2n = (1 + 1)n =

n∑
k=0

(
n

k

)
.

Note that 00 = 1. In the proof we used for example b0 = 1 without saying. If we
want the formula to be generally valid, so also for b = 0, then it is desirable to
agree on 00 = 1, as in fact we did in chapter 4.
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11.3 Catalan Numbers

11.3 Catalan Numbers

A stack is an important data structure in computer science. Data can be stored in
a stack with the restriction that adding and deleting data is only possible on the
top of the stack. We will put the numbers 1 up to n in that order on the stack
and will count the number of ways they can leave the stack. We describe this with
discs numbered 1 up to n. In Figure 11.5 they are placed on peg 1.

8
7
6
5
4
3
2
1

Figure 11.5: Initial position with 8 discs

The discs will be placed on the stack (peg
2) by moving them one by one from peg
1 to peg 2. If there are discs on peg 2,
then the top disc may be moved to peg 3.
So on peg 3 the pins will be placed from
bottom to top in the order they leave peg
2. How many of these orders can occur
this way?

A final position is reached after exactly 2n moves. For the notation of intermediate
and final positions the ‘history’ that led to them can be used. There are two types
of moves:

a) type 0, where a disc is moved from peg 1 to peg 2; this corresponds to the
placement of a number on the stack,

b) type 1, where a disc is moved from peg 2 to peg 3; this corresponds to removal
of a number from the stack.

8
7
6

5

4

3
2

1

Figure 11.6: The position 001011010

A word of zeros and ones describes which
moves have been made and in which or-
der. The word 001011010 indicates that
first two times a disc is moved from peg 1
to peg 2, then one from 2 to 3, one from
1 to 2, two from 2 to 3, one from 1 to
2, one from 2 to 3 and finally one from 1
to 2. The number of zeros indicates how
many numbers have been placed on the
stack and the number of ones how many have left the stack. The word 001011010

describes the position in Figure 11.6. The number of zeros minus the number of
ones equals the number of discs on peg 2. For any position the number of ones does
not exceed the number of zeros. So a word of ones and zeros describes a position if
and only if in every initial segment the number of ones does not exceed the number
of zeros. Such a word will be called an admitted word. The given word is admitted,
since its initial segments are

0, 00, 001, 0010, 00101, 001011, 0010110, 00101101, 001011010
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11 Combinatorics

Eugène Charles Catalan (Bruges 1814 – Liège 1894)

Catalan is mainly known for the numbers named after him.
He studied the number of ways parentheses can be placed
in a word of given length. A product abc can be seen as
(ab)c and as a(bc). In case of 4 factors there are 5 ways:
(a(bc))d, ((ab)c)d, (ab)(cd), a((bc)d) and a(b(cd)). In case
of a product of n+ 1 factors it can be done in cn ways, see
exercise 11.

and for each of these words the number of ones does not exceed the number of
zeros. The number of final positions equals the number of admitted words which
contain n zeros and n ones. The problem of the number of possible orders on peg
3 is thus translated into the question: how many of these words are there?

The binomial coefficient
(
n
k

)
is equal to the number of paths in Figure 11.3 from

(0, 0) to (n, k). Admitted words correspond to paths through vertices (i, j) with
j ≤ i− j, see Figure 11.7.

For the number of admitted words we introduce a notation:

11.14 Definition and notation. Let n and k be natural numbers with k ≤ ⌊n2 ⌋.
Then

〈
n
k

〉
denotes the number of admitted words in {0, 1} of length n with exactly

k ones. The n-th Catalan number cn is the number
〈
2n
n

〉
.

Catalan numbers can be computed in the same way as binomial coefficients, see
Figure 11.8.

The numbers
〈
n
k

〉
are determined by:

〈
n

0

〉
= 1 for all n ∈ N,〈

2n

n

〉
=

〈
2n− 1

n− 1

〉
for all n ∈ N+,〈

n

k

〉
=

〈
n− 1

k − 1

〉
+

〈
n− 1

k

〉
for all k, n ∈ N with 0 < k < ⌊n2 ⌋,

that is in every vertex the number equals the sum of the numbers in the vertices
directly above in the scheme of Figure 11.8. Starting with a 1 in top, the whole
scheme can be completed row after row from top to bottom. After having computed
this way some of the numbers

〈
n
k

〉
the following theorem emerges:
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11.3 Catalan Numbers

(7, 0) (7, 1) (7, 2) (7, 3)

(6, 0) (6, 1) (6, 2) (6, 3)

(5, 0) (5, 1) (5, 2)

(4, 0) (4, 1) (4, 2)

(3, 0) (3, 1)

(2, 0) (2, 1)

(1, 0)

(0, 0)

Figure 11.7: Directed graph with vertices (n, k) where k ≤ n− k

11.15 Theorem. Let n and k be natural numbers such that 0 < k ≤ ⌊n2 ⌋. Then〈
n

k

〉
=

(
n

k

)
−
(

n

k − 1

)
.

PROOF. Put

c(n, k) =


(
n

k

)
−
(

n

k − 1

)
if 0 < k ≤ ⌊n2 ⌋,

1 if k = 0.

and show that these numbers satisfy the rules that determine the Catalan numbers:

a) c(n, 0) = 1 by definition.
b) We have c(2, 1) =

(
2
1

)
−
(
2
0

)
= 2− 1 = 1 = c(1, 0). And for n ≥ 2

c(2n, n) =

(
2n

n

)
−
(

2n

n− 1

)
=

(
2n− 1

n− 1

)
+

(
2n− 1

n

)
−
(
2n− 1

n− 2

)
−
(
2n− 1

n− 1

)
=

(
2n− 1

n− 1

)
−
(
2n− 1

n− 2

)
+

(
2n− 1

n

)
−
(
2n− 1

n− 1

)
= c(2n− 1, n− 1).
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1 6 14 14

1 5 9 5

1 4 5

1 3 2

1 2

1 1

1

1

Figure 11.8: Computation of the numbers
〈
n
k

〉
c) For n, k ∈ N such that 1 < k < ⌊n2 ⌋:

c(n− 1, k − 1) + c(n− 1, k) =

(
n− 1

k − 1

)
−
(
n− 1

k − 2

)
+

(
n− 1

k

)
−
(
n− 1

k − 1

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
−
(
n− 1

k − 2

)
−
(
n− 1

k − 1

)
=

(
n

k

)
−
(

n

k − 1

)
= c(n, k)

and for k = 1:

c(n− 1, 0) + c(n− 1, 1) = 1 +

(
n− 1

1

)
−
(
n− 1

0

)
= n− 1 = c(n, 1).

In particular we now have a formula for the n-th Catalan number:

11.16 Theorem. Let n ∈ N. Then

cn =
1

n+ 1

(
2n

n

)
.

PROOF. From theorem 11.15 follows

cn =

〈
2n

n

〉
=

(
2n

n

)
−
(

2n

n− 1

)
=

(
2n

n

)
− (2n)!

(n− 1)!(n+ 1)!

=

(
2n

n

)
− n

n+ 1

(
2n

n

)
=

1

n+ 1

(
2n

n

)
.

So the number of possible orders of the discs on peg 3 in case of n discs equals
1

n+1

(
2n
n

)
.

206



11.3 Catalan Numbers

A Direct Way

The number
〈
n
k

〉
of admitted words of zeros and ones of length n with k ones can

also be computed directly by counting the number of words that are not admitted.
That number has to be

(
n
k−1

)
. How to see this?

Let c1c2c3 . . . cn be a not admitted word with k ones, where 0 < k ≤ ⌊n2 ⌋. Then
there are numbers m with 0 < m ≤ n such that c1c2 . . . cm is a not admitted word
(for example m = n). Now let m with 0 < m ≤ n be the least of these numbers.
Then the initial segment of length m ends with a 1 and the number of ones exceeds
the number of zeros by 1. For example

0100111110000000001011111100000

is a not admitted word of length 31 and the least not admitted initial segment is

0100111.

Now replace in the smallest not admitted initial segment all zeros by ones and all
ones by zeros, leaving the remainder unchanged. In the example this gives the
word

1011000110000000001011111100000.

The word thus obtained is a word of length n with k − 1 ones. There are
(
n
k−1

)
of

such words. Each of these words is obtained this way from a not admitted word of
length n with k ones, as is seen as follows. A word of length n with k− 1 ones has
less ones than zeros and there has to be a smallest initial segment with less ones
than zeros. Replace in this segment all ones by zeros and all zeros by ones. The
resulting word will be not admitted and will have k ones. It is easily seen that this
defines a correspondence between not admitted words of length n with k ones and
words of the same length with k − 1 ones. Of these there are

(
n
k−1

)
.

A Recursive Description

We have seen that the numbers
〈
n
k

〉
can be computed in a similar way as was

done for the binomial coefficients. For the Catalan numbers cn =
〈
2n
n

〉
there is a

recursive description which can be used to compute them one by one:{
c0 = 1,

cn =
∑n−1
k=0 ckcn−1−k for all n ∈ N+.

This gives:

c0 = 1,
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c1 = 1 · 1 = 1,

c2 = 1 · 1 + 1 · 1 = 2,

c3 = 1 · 2 + 1 · 1 + 2 · 1 = 5,

c4 = 1 · 5 + 1 · 2 + 2 · 1 + 5 · 1 = 14,

c5 = 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1 = 42,

...

This recursive description can be understood as follows. Let n be a natural number
≥ 1. To each admitted word of n zeros and n ones there is a least m > 0 such that
the initial segment of length 2m has as many ones as zeros. This initial segment
starts with a 0 and ends with a 1. In between this 0 and 1 there is an admitted
word of length 2m− 2. So the word consists subsequently of

1. a zero,
2. an admitted word of m− 1 zeros and m− 1 ones,
3. a one,
4. an admitted word of n−m zeros and n−m ones.

For a given m there are cm−1cn−m of such words. So the total number is

c0cn−1 + c1cn−2 + c2cn−3 + · · ·+ cn−2c1.

11.4 Polynomial Sequences

The n-th term of the sequence (n2) is a polynomial in n. It is easily shown by

induction that
∑n−1
k=0 k

2 = 1
6n(n− 1)(2n− 1). So the sequence with the sum of the

first n squares as the nth term is a polynomial sequence as well. In this section we
study such sequences in general.

11.17 Definition. A polynomial sequence is a sequence (f(n)), where f(n) is a
polynomial in n. The degree of a polynomial sequence is the degree of the polyno-
mial f(n). (The sequence (0) is the only polynomial sequence with no degree.)

If f(x) is a polynomial, say f(x) = c0x
m + c1x

m−1 + · · · + cm−1x + cm, then
f(x+ 1)− f(x) is a polynomial as well:

f(x+ 1)− f(x) = c0((x+ 1)m − xm) + c1((x+ 1)m−1 − xm−1) + · · ·+ cm−1

and we have

(x+ 1)k − xk =

k−1∑
l=0

(
k

l

)
xl.

If deg(f) = m > 0, then the degree of f(x+ 1)− f(x) equals m− 1. The leading
coefficient of f(x+ 1)− f(x) is c0 ·m.
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11.4 Polynomial Sequences

11.18 Definitions. Let (an) be a sequence of numbers. The sequence (dn) with
dn = an+1−an is called the difference sequence of the sequence (an). The sequence

(sn) with sn =
∑n−1
k=0 ak is called the partial sum sequence of the sequence (an) or

also the series associated to the sequence (an). The sn are called the partial sums
of (an) and the an the general term of the series (sn).

Note that the difference sequence of the partial sum sequence of (an) equals the
original sequence (an). The partial sum sequence of the difference sequence of (an)
is the sequence (an − a0); the terms differ from the terms of (an) by the constant
a0.

11.19 Notation. For a polynomial f(x) we denote the polynomial f(x+1)−f(x)
as (∆f)(x). The difference sequence of a polynomial sequence (f(n)) is then the
polynomial sequence ((∆f)(n)).

∆ can be seen as a transformation of the set of polynomials. There is a unique
polynomial f(x) with (∆f)(x) = f(x), namely f(x) = 0, the 0-polynomial.

11.20 Example. The sequence of the cubes of the natural numbers is a polynomial
sequence. It is the sequence (n3). We take the difference sequence, the difference
sequence of the difference sequence, and so on:

0 1 8 27 64 125 216 343 . . .

1 7 19 37 61 91 127 . . .

6 12 18 24 30 36 . . .

6 6 6 6 6 . . .

0 0 0 0 . . .

We have (∆f)(n) = 3n2+3n+1, (∆2f)(n) = 6n+6, (∆3f)(n) = 6 and (∆kf)(n) =
0 for all k > 3.

11.21 Proposition. Let f(x) be a polynomial of degree m and let a be the leading
coefficient of f . Then (∆mf)(x) = m! · a.

PROOF. Because with every application of ∆ the degree of the polynomial goes
down by 1, the polynomial (∆mf)(x) is of degree 0, that is it is a nonzero constant.
Moreover with every application of ∆ the leading coefficient is multiplied by the
degree.

So the course of a polynomial f(x) of degree m under the transformation ∆ is

f(x), (∆f)(x), (∆2f)(x), . . . , (∆mf)(x), 0, 0, 0, 0, . . .

with (∆mf)(x) a nonzero constant.
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The partial sum sequence of a polynomial sequence has this polynomial sequence
as its difference sequence. We will show that the partial sum sequence is also a
polynomial sequence. In particular this means that the partial sum sequence of
(nm) (where m ∈ N), the sequence of m-th powers, is a polynomial sequence.

11.22 Notation. Let m ∈ N. The partial sum sequence of the sequence (nm) will
be denoted by (Sm(n)). So:

Sm(n) =

n−1∑
k=0

km.

11.23 Lemma. Let (an) and (bn) be sequences of numbers and let u and v be
numbers. If (sn) and (tn) are the partial sum sequences of (an) and (bn), and (dn)
and (en) the difference sequences, then (usn+ vtn) and (udn+ ven) are the partial
sum sequence and the difference sequence of of the polynomial sequence (uan+vbn).

PROOF. This follows from

n−1∑
k=0

uak + vbk = u

n−1∑
k=0

ak + v

n−1∑
k=0

bk

and
uan+1 + vbn+1 − uan − vbn = u(an+1 − an) + v(bn+1 − bn).

11.24 Proposition. The partial sum sequence of a polynomial sequence of degree
m is a polynomial sequence of degree m+ 1.

PROOF. We prove this by induction on m. For m = 0 it is clear: the partial sum
sequence of the constant sequence (c) is the sequence (cn).

Suppose the proposition holds for polynomial sequences of degree m. Then
we aim to prove that it holds for polynomial sequences of degree m + 1 as
well. By lemma 11.23 it suffices to prove this for the polynomial sequence
(nm+1). Let (tn) be the sequence with tn = 1

m+2n
m+2 − Sm+1(n). The

difference sequence of (tn) is the sequence with n-th term

1

m+ 2
(n+ 1)

m+2 − 1

m+ 2
nm+2 − nm+1.

This is a polynomial sequence of degree m. So (tn) is a polynomial sequence
of degree m+ 1. From Sm+1(n) =

1
m+2n

m+2 − tn it follows that (Sm+1(n))
is a polynomial sequence of degree m+ 2.

By lemma 11.23 the partial sum sequence of (c0n
m + c1n

m−1 + · · · + cm) is the
sequence (c0Sm(n) + c1Sm−1(n) + · · ·+ cmS0(n)). So the partial sum sequence is
determined by the partial sum sequences Sk(n) with k ≤ m. There are a0, . . . , am+1

with Sm(n) = a0n
m+1 + a1n

m + · · · + am+1. So the a0, . . . , am+1 have to be
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11.4 Polynomial Sequences

determined. Up to now we only know that a0 = 1
m+1 and am+1 = 0. We will give

three methods for finding the a0, . . . , am+1: Pascal’s method, Newton’s method and
Bernoulli’s method. Pascal’s method gives us a recursive relation for the Sm(n).
Newton’s method applies to any polynomial sequence, not just to (nm). The same
holds for Bernoulli’s method, but applied to sequences (nm) it will eventually lead
to a recursive relation, not for the polynomials Sm(n), but for their coefficients.

11.25 Notation. The partial sum sequence of a polynomial sequence (f(n)) is
denoted by ((Σf)(n)). By theorem 11.24 it is a polynomial sequence of degree one
higher than the degree of f(n).

11.4.1 Pascal’s method

Write the sequence (nm+1) as the partial sum sequence of its difference sequence.
The difference sequence of (nm+1) is the sequence with n-th term

(n+ 1)m+1 − nm+1.

By the binomial theorem this equals

m∑
j=0

(
m+ 1

j

)
nj .

The sequence (nm+1) is retrieved as the partial sum sequence:

nm+1 =

n−1∑
k=0

m∑
j=0

(
m+ 1

j

)
kj =

m∑
j=0

(
m+ 1

j

) n−1∑
k=0

kj =

m∑
j=0

(
m+ 1

j

)
Sj(n).

The Sj(n) for j < m being computed, the polynomial Sm(n) can be computed
from these.

11.26 Example. We compute S3(n). First we compute S0(n), S1(n) and S2(n),
in this order.

S0(n) =

n−1∑
k=0

k0 =

n−1∑
k=0

1 = n.

From n2 =
(
2
0

)
S0(n) +

(
2
1

)
S1(n) follows

S1(n) =
1
2n

2 − 1
2S0(n) =

1
2n

2 − 1
2n.

Next we compute S2(n):

n3 =

(
3

0

)
S0(n) +

(
3

1

)
S1(n) +

(
3

2

)
S2(n).
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So
S2(n) =

1
3 (n

3 − n− 3 · 1
2 (n

2 − n)) = 1
3n

3 − 1
2n

2 + 1
6n.

Finally

n4 =

(
4

0

)
S0(n) +

(
4

1

)
S1(n) +

(
4

2

)
S2(n) +

(
4

3

)
S3(n),

and so

S3(n) =
1
4 (n

4 − n− 4( 12n
2 − 1

2n)− 6( 13n
3 − 1

2n
2 + 1

6n)) =
1
4n

4 − 1
2n

3 + 1
4n

2.

11.4.2 Newton’s method

For binomial coefficients
(
n
k

)
we have(

n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!
.

The right hand side is a polynomial in n. We can extend the definition of binomial
coefficients.

11.27 Definition. For x ∈ Q and k ∈ N we define(
x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

The polynomial bk(x) =
(
x
k

)
is a polynomial in x of degree k.

These more general binomial coefficients satisfy the following familiar rule:

11.28 Proposition. For x ∈ Q and k ∈ N+ we have

(
x

k

)
=

(
x− 1

k − 1

)
+

(
x− 1

k

)
.

PROOF.(
x− 1

k − 1

)
+

(
x− 1

k

)
=

(x− 1) · · · (x− k + 1)

(k − 1)!
+

(x− 1) · · · (x− k)

k!

=
(x− 1) · · · (x− k + 1)k

k!
+

(x− 1) · · · (x− k + 1)(x− k)

k!

=
x(x− 1) · · · (x− k + 1)

k!
=

(
x

k

)

For every k ∈ N we now have a polynomial sequence (bk(n)) with bk(n) =
(
n
k

)
and

bk(n) = 0 for n < k. In Figure 11.8 these zero values are added to Pascal’s triangle.
The rows are the polynomial sequences (bk(n)).

11.29 Proposition. For all k ∈ N
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1 7 21 35 35 21 7 1

1 6 15 20 15 6 1 0

1 5 10 10 5 1 0 0

1 4 6 4 1 0 0 0

1 3 3 1 0 0 0 0

1 2 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

Figure 11.9: Polynomial sequences (bk(n)) in Pascal’s triangle

(i) (bk(n)) is the difference sequence of (bk+1(n))
(ii) (bk+1(n)) is the partial sum sequence of (bk(n)).

That is ∆bk+1 = bk and Σbk = bk+1.

PROOF. The difference sequence of (bk+1(n)) is (bk+1(n + 1) − bk+1(n)) and by
proposition 11.28 this is the sequence (bk(n)). Part (ii) follows from bk+1(0) =
0.

11.30 Theorem (Newton). Let (f(n)) be a polynomial sequence of degree m.
Then for all n ∈ N:

f(n) =

m∑
k=0

(∆kf)(0)

(
n

k

)
.

PROOF. We prove the theorem by induction on the degree m of f . For m = 0 the
right hand side is f(0) and this is f(n) since the degree is 0.

Suppose the formula is correct for polynomials of degree m. Let f(n) be a poly-

nomial of degree m + 1. Let g(n) =
∑m+1
k=0 (∆kf)(0)

(
n
k

)
. We prove that (f(n)) =

(g(n)). The sequences (f(n)) and (g(n)) have the same 0-th term:

g(0) =

m+1∑
k=0

(∆kf)(0)

(
0

k

)
= (∆0f)(0) = f(0).

We prove that the difference sequences are equal.

(∆g)(n) =

m+1∑
k=1

(∆kf)(0)

(
n

k − 1

)
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and since (∆f)(n) is a polynomial of degree m, by induction hypothesis

(∆f)(n) =

m∑
k=0

(∆k+1f)(0)

(
n

k

)
.

So the sequences (f(n)) and (g(n)) are equal.

Having a polynomial sequence f(n) of degree m, for a formula for f(n) we only
need to know f(0), (∆f)(0), (∆2f)(0), . . . , (∆mf)(0), the formula is determined by
the constant terms of the difference sequences.

11.31 Example. Again we determine the partial sum sequence of (n3). The
difference sequence of that partial sum sequence is (n3) and the constant term of a
partial sum sequence always is 0. In the following scheme there is all we need for
a formula for the terms indicated by a ‘?’.

0 ? ? ? ? . . .

0 1 8 27

1 7 19

6 12

6

We get

S3(n) = 0 ·
(
n

0

)
+ 0 ·

(
n

1

)
+ 1 ·

(
n

2

)
+ 6 ·

(
n

3

)
+ 6 ·

(
n

4

)
= 1

2n(n− 1) + 6 · 1
6n(n− 1)(n− 2) + 6 · 1

24n(n− 1)(n− 2)(n− 3)

= 1
4n

4 − 1
2n

3 + 1
4n

2.

11.4.3 Bernoulli’s method

The methods in the two preceding subsections for the determination of Sm(n)
require a lot of computation: for Pascal’s method all preceding Sk(n) have to be
computed first and subsequently the sum over all

(
m+1
k

)
Sk(n) has to be taken,

while for Newton’s method the initial terms of the difference sequences have to be
computed, the polynomials

(
n
k

)
have to be elaborated and finally a summation has

to be done.

Since a polynomial of degree m + 1 has to be computed, one might start with an
arbitrary polynomial of degree m+1 and compute the coefficients: the initial term
is known as well as the difference sequence. That is the simplest way. For each m
all this has to be done all over, unless one discovers some regularity in this process.
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11.32 Example. Again the partial sum sequence of (n3). Its degree is 4, say

S3(n) = A0n
4 +A1n

3 +A2n
2 +A3n+A4.

To compute A0, . . . , A4. We already know that A0 = 1
4 and A4 = 0. We compute

the difference sequence (in which there is no A4):

A0(4n
3 + 6n2 + 4n+ 1) +A1(3n

2 + 3n+ 1) +A2(2n+ 1) +A3.

For each n this has to be equal to n3, that is

4A0 = 1,

6A0 + 3A1 = 0,

4A0 + 3A1 + 2A2 = 0,

A0 + A1 + A2 + A3 = 0.

This results from comparing coefficients. These have to be equal since otherwise
there would have been an equation of degree at most 4 with more then 4 (and
even infinitely many) solutions. The system of equations is easily solved from
top to bottom and it is clear that there is a unique solution (what we already
knew). We find subsequently A0 = 1

4 , A1 = − 1
2 , A2 = 1

4 , A3 = 0. So indeed
S3(n) =

1
4n

4 − 1
2n

3 + 1
4n

2.

Bernoulli went even further. The description for the coefficients of Sm(n) as found
by Bernoulli is one that relates these coefficients for the various m. We start again
as above but this time for a general m. Write

Sm(n) =

m∑
k=0

Akn
m+1−k.

Since Sm(0) = 0, the constant term is 0. Then

Sm(n+ 1) =

m∑
k=0

Ak

m+1−k∑
l=0

(
m+ 1− k

m+ 1− k − l

)
nm+1−k−l.

The terms of the difference sequence are

nm = Sm(n+ 1)− Sm(n) =

m∑
k=0

m+1−k∑
l=1

(
m+ 1− k

m+ 1− k − l

)
Akn

m+1−k−l.

We collect equal powers of n and write k + l − 1 = s:

nm =

m∑
s=0

s∑
k=0

(
m+ 1− k

s+ 1− k

)
Akn

m−s.
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So the Ak satisfy the m+ 1 equations

s∑
k=0

(
m+ 1− k

s+ 1− k

)
Ak =

{
1 if s = 0

0 if 1 ≤ s ≤ m.

So far this is not different from what was done in the example for m = 3. Now for
a new move. We introduce new unknowns Bk:

Ak =
1

m+ 1

(
m+ 1

k

)
Bk.

We will see that the Bk do not depend on m. For this the following easily verifiable
identity will be used(

m+ 1

k

)(
m+ 1− k

s+ 1− k

)
=

(
m+ 1

s+ 1

)(
s+ 1

k

)
.

For s = 0 we get
1

m+ 1

(
m+ 1

1

)(
1

0

)
B0 = 1,

So B0 = 1. For s = 1, . . . ,m:

s∑
k=0

1

m+ 1

(
m+ 1

s+ 1

)(
s+ 1

k

)
Bk = 0,

that is
s∑

k=0

(
s+ 1

k

)
Bk = 0.

So for the Bk we have the equations

B0 = 1,

B0 +2B1 = 0,

B0 +3B1 +3B2 = 0,

B0 +4B1 +6B2 +4B3 = 0,

B0 +5B1 +10B2 +10B3 +5B4 = 0,

...

For the formula for Sm(n) only the first m+ 1 of these equations are needed.

11.33 Definition. The sequence of numbers Bn is defined by{
B0 = 1,∑n
k=0

(
n+1
k

)
Bk = 0 for all n ∈ N+.

The number Bn is called the n-th Bernoulli number.
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Jacob Bernoulli (Basel 1654 – Basel 1705)

Jacob Bernoulli came from a family of
merchants. In the family there were many
mathematicians. He, his younger brother
Johann and Johann’s son Daniel are
the most important exponents. Jacob
Bernoulli made influential contributions
to differential calculus and he was one of
the founders of stochastics, on which sub-
ject he wrote a famous book: ‘Ars Con-
jectandi’.

From the definition it is clear that every next Bernoulli number can be calculated
inside the field Q. So the Bernoulli numbers are rational numbers.

The numbers Bn are also determined by

B0 = B0

B0 + B1 = B1 + 1

B0 + 2B1 + B2 = B2

B0 + 3B1 + 3B2 + B3 = B3

B0 + 4B1 + 6B2 + 4B3 + B4 = B4

B0 + 5B1 + 10B2 + 10B3 + 5B4 + B5 = B5

...

Or, equivalently, we have for all m ∈ N:
m∑
k=0

(
m

k

)
Bk = Bm +

{
1 if m = 1

0 if m ̸= 1.

The first 15 Bernoulli numbers:

n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bn : 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66 0 − 691

2730 0 7
6

So we derived::

11.34 Theorem (Bernoulli). For all m,n ∈ N+ with n ≥ 2:

Sm(n) =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bkn

m+1−k.
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11.35 Example. Again S3(n). From theorem 11.34 follows

S3(n) =
1
4

((
4

0

)
B0n

4 +

(
4

1

)
B1n

3 +

(
4

2

)
B2n

2 +

(
4

3

)
B3n

)
= 1

4 (n
4 − 4 · 1

2n
3 + 6 · 1

6n
2) = 1

4n
4 − 1

2n
3 + 1

4n
2.

The computation of the first 15 Bernoulli numbers suggests that Bm = 0 for m odd
and ≥ 3. We will show that this is indeed the case. It is convenient to reformulate
what we found in terms of Bernoulli polynomials:

11.36 Definition. Let m ∈ N. The m-th Bernoulli polynomial Bm(x) is defined as
follows:

Bm(x) =

m∑
k=0

(
m

k

)
Bkx

m−k.

Theorem 11.34 now becomes: Sm(n) = 1
m+1

(Bm+1(n) − Bm+1(0)). The polyno-

mials Sm(x) and 1
m+1

Bm+1(x) have the same difference polynomial, namely xm,

that is the difference polynomial of Bm(x) is mxm−1. The constant term of Bm(x)
is Bm(0) = Bm. Moreover, from the definition of the Bernoulli numbers it follows
that

Bm(1) =

m∑
k=0

(
m

k

)
Bk = Bm +

{
1 if m = 1

0 if m ̸= 1.

We will show that Bm = 0 for m odd and ≥ 3. For that purpose we consider the
polynomials

Cm(x) = (−1)mBm(1− x).

First we compute the difference polynomial of Cm+1(x):

Cm+1(x+ 1)− Cm+1(x) = (−1)m+1Bm+1(−x)− (−1)m+1Bm+1(1− x)

= (−1)m(Bm+1(1− x)−Bm+1(−x)) = (−1)m(m+ 1)(−x)m = (m+ 1)xm.

The difference polynomials of Cm+1(x) and Bm+1(x) are equal and therefore the
polynomial Cm+1(x)− Bm+1(x) is constant. In particular both polynomials have
the same coefficient of x. The coefficient of x in the polynomial Bm+1(x) is(
m+1
m

)
Bm = (m + 1)Bm. The coefficient of x in the polynomial Cm+1(x) is equal

to

(−1)m+1
m∑
k=0

(
m+ 1

k

)
Bk · (−m− 1 + k) = (−1)m

m∑
k=0

(
m+ 1

k

)
Bk · (m+ 1− k)

= (−1)m
m∑
k=0

(m+ 1)

(
m

k

)
Bk = (−1)m(m+ 1)

m∑
k=0

(
m

k

)
Bk.

So for m ̸= 1 this coefficient is (−1)m(m+1)Bm. Because it equals (m+1)Bm we
have shown:
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Ernst Eduard Kummer (Sorau 1810 – Berlin 1893)

The German mathematician Kummer made progress in his
research on Fermat’s Last Theorem: he proved the theorem
to be true for exponents p, where p is a ‘regular’ prime.
A prime number p is regular if the least numerators of the
Bernoulli numbers Bk ̸= 0 for k < p are no multiples of p.
Unfortunately there are infinitely many irregular primes. If
you do arithmetic not only with the integers, but with the
integers extended with the p-th root of unity ζp (a complex
number ̸= 1 with ζp = 1, see chapter 19), then in that
extended system the analog of the Fundamental Theorem of
Arithmetic does not hold if p ≥ 23. However, for p regular
this system nevertheless has a structure that can be used for
Fermat’s Last Theorem.

11.37 Proposition. For m odd and > 1 we have Bm = 0.

From this it follows that Bm(x) and Cm(x) also have the same constant term:
for Bm(x) this is Bm and for Cm(x) it is (−1)mBm(1), which for m ̸= 1 equals
(−1)mBm. For m = 1 we have B1(x) = x − 1

2 and C1(x) = −B1(1 − x) =
−(1− x− 1

2 ) = x− 1
2 . Therefore:

11.38 Proposition. The polynomial (−1)mBm(1− x) is the same as Bm(x).

Python

For the computation of the n-th Bernoulli number Bn all preceding Bernoulli num-
bers are needed and also a new row in Pascal’s triangle. The function combrow(n)

returns the n-th row of binomial coefficients. The function bernoulli(n) returns
the list of Bernoulli numbers up to Bn: a new row of binomial coefficients is made
and subsequently used for the computation of the next Bernoulli number.

combinatorics.py
def combrow(n):

m = 0

row = [1]

while m < n:

row = [0] + row + [0]

row = [row[i] + row[i + 1] for i in range(m + 2)]

m = m + 1

return row
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combinatorics.py
from functools import reduce

from arithmetics import *

def bernoullist(n):

if n == 0: return [(1, 1)]

if n == 1: return [(1, 1),(-1, 2)]

else:

m = 1

row = [1, 2, 1]

bernoul = [(1, 1), (-1, 2)]

while m < n:

m = m + 1

row = [0] + row + [0]

row = [row[i] + row[i + 1] for i in range(m + 2)]

bernnew = [mul((row[i], 1), bernoul[i]) for i in\

range(m)]

bernoul.append(mul(reduce(add, bernnew),(-1, m + 1)))

return bernoul

def bernoulli(n):

return bernoullist(n)[n]

>>> combrow(32)

[1, 32, 496, 4960, 35960, 201376, 906192, 3365856, 10518300, 28048800

, 64512240, 129024480, 225792840, 347373600, 471435600, 565722720, 60

1080390, 565722720, 471435600, 347373600, 225792840, 129024480, 64512

240, 28048800, 10518300, 3365856, 906192, 201376, 35960, 4960, 496, 3

2, 1]

>>> bernoullist(20)

[(1, 1), (-1, 2), (1, 6), (0, 1), (-1, 30), (0, 1), (1, 42), (0, 1),

(-1, 30), (0, 1), (5, 66), (0, 1), (-691, 2730), (0, 1), (7, 6), (0,

1), (-3617, 510), (0, 1), (43867, 798), (0, 1), (-174611, 330)]

>>> [i[0]%37 for i in bernoullist(37)]

[1, 36, 1, 0, 36, 0, 1, 0, 36, 0, 5, 0, 12, 0, 7, 0, 9, 0, 22, 0, 29

, 0, 35, 0, 12, 0, 35, 0, 33, 0, 6, 0, 0, 0, 12, 0, 4, 0]

>>> bernoulli(32)

(-7709321041217, 510)

>>> divmod(-7709321041217, 37)

(-208360028141, 0)

>>> divmod(bernoulli(44)[0], 59)

(-471750331852559732797, 0)

[i[0]%37 for i in bernoulli(37)] returns the remainder after division by 37 of
the numerators of the Bk with k ≤ 37. The prime number 37 is the least irregular
prime. The next one is 59.
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11.5 The Inclusion-Exclusion Principle

The Inclusion-Exclusion Principle is applicable to many counting problems. In
section 12.1 we will apply it to the counting of derangements, permutations with
no fixed point. In the next section the principle will be used for deriving a formula
for the number of surjections between finite sets, a number related to the number
of partitions of a finite set with a given number of classes.

Let be given:

� a finite set A,
� a finite index set I,
� for each i ∈ I a subset Ai of A.

The Inclusion-Exclusion Principle is used for determination of the number of el-
ements of A not lying in one of the subsets Ai. The formula for this number
contains numbers of elements of intersections of subsets Ai only. For convenience
we introduce a short notation for these intersections. For J ⊆ I we write

AJ =


⋂
j∈J

Aj if J ̸= ∅,

A if J = ∅.

The
⋂
-notation has the following meaning:⋂

i∈I

Ai = { a ∈ A | a ∈ Ai for all i ∈ I }.

So A∅ = A, A{i} = Ai, A{i,j} = Ai∩Aj , A{i,j,k} = Ai∩Aj ∩Ak, etc. This notation
is similar to the

∑
-notation. Here too we have an abelian monoid: the set P(A)

together with the operation ∩; the neutral element is A itself. For the
⋂
-notation

the index set I is not necessarily finite: any collection of sets has an intersection.
Analogous to the

⋂
-notation there is a

⋃
-notation for the union of a collection of

sets. This section is about counting and therefore, sets are finite.

We will use characteristic functions of subsets of A, see the sections 5.9 and 8.2. The
behavior of characteristic functions under taking complements and intersections is
simple:

11.39 Lemma. Let U and V be subsets of A. Then for all a ∈ A:

χA\U (a) = 1− χU (a) and χU∩V (a) = χU (a)χV (a).

For the characteristic functions we will use short notations:

χi = χAi
and χJ = χAJ

.
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The Inclusion-Exclusion Principle yields a formula for #(A \
⋃
i∈I Ai). From

A \
⋃
i∈I Ai =

⋂
i∈I(A \Ai) follows

χA\
⋃

i∈I Ai
(a) = χ⋂

i∈I(A\Ai)
(a) =

∏
i∈I

χA\Ai
(a) =

∏
i∈I

(1− χi(a)).

We apply theorem 11.12:

χA\
⋃

i∈I Ai
(a) =

∑
J⊆I

(−1)#(J)χJ(a).

Summation over a ∈ A yields:

#
(
A \

⋃
i∈I

Ai

)
=
∑
J⊆I

(−1)#(J)
∑
a∈A

χJ(a) =
∑
J⊆I

(−1)#(J)#(AJ).

We introduce some standard notations:

N = #(A),

Ni = #(Ai),

NI = #(AI),

Sk =
∑

#(I)=k

NI .

Instead of for example N{1,2} we will usually write N1,2. We have: S0 = N∅ =
#(A∅) = #(A) = N . The Inclusion-Exclusion Principle can now be formulated as
follows:

11.40 Theorem (Inclusion-Exclusion Principle). Using the notations in this
section: the number of elements of A not in one of the subsets Ai equals

n∑
k=0

(−1)kSk.

11.41 Example. We will determine how many of the numbers in 100 are not
divisible by 2, 3, 5 or 7. We use the index set {2, 3, 5, 7}. Let A2, A3, A5 and A7

be the subsets of A = 100 of the multiples of respectively 2, of 3, of 5 and of 7. We
have S0 = N = 100 and

N2 = ⌊ 100
2 ⌋ = 50

N3 = ⌊ 100
3 ⌋ = 33

N5 = ⌊ 100
5 ⌋ = 20

N7 = ⌊ 100
7 ⌋ = 14,
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and so S1 = 50 + 33 + 20 + 14 = 117. Since the four numbers 2, 3, 5 and 7 are
pairwise relatively prime, we have

N2,3 = ⌊ 100
6 ⌋ = 16

N2,5 = ⌊ 100
10 ⌋ = 10

N2,7 = ⌊ 100
14 ⌋ = 7

N3,5 = ⌊ 100
15 ⌋ = 6

N3,7 = ⌊ 100
21 ⌋ = 4

N5,7 = ⌊ 100
35 ⌋ = 2,

and so S2 = 16 + 10 + 7 + 6 + 4 + 2 = 45.

N2,3,5 = ⌊ 100
30 ⌋ = 3

N2,3,7 = ⌊ 100
42 ⌋ = 2

N2,5,7 = ⌊ 100
70 ⌋ = 1

N3,5,7 = ⌊ 100
105⌋ = 0.

So S3 = 3+2+1 = 6. From 2 · 3 · 5 · 7 = 210 > 100 it follows that S4 = 0. So there
there are 100 − 117 + 45 − 6 = 22 numbers in 100 which are not a multiple of 2,
3, 5 or 7. Thus this number has been calculated without looking at the individual
numbers separately.

11.6 Surjective Maps and Partitions

11.6.1 Surjective maps

We will derive a formula for the number of surjective maps from n to k.

Let A be the set of all maps from n to k. We will use the Inclusion-Exclusion
Principle. As index set we take k. Let for i ∈ k the subset Ai of A consist of all
f : n→ k with i /∈ f∗(n). For J ⊆ k we have NJ = (k−#(J))n and, because there
are

(
k
j

)
subsets of k with j elements, we have Sj =

(
k
j

)
(k − j)n. So we have:

11.42 Proposition. The number of surjective maps from a set of n elements to a
set of k elements is

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

11.43 Example. At a bingo party 20 people participate and there are 25 prizes.
What is the probability that everybody wins a prize? This chance is given by the
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ratio of the number of surjective maps from 25 to 20 and the total number of maps.
The number of surjections is:(

20

0

)
2025 −

(
20

1

)
1925 + · · ·+ (−1)j

(
20

j

)
(20− j)25 + · · ·+

(
20

20

)
025

and the total number of maps is 2025. A computer is needed for the calculation of
this number. Also have a look at example 11.51.

11.6.2 Partitions with k classes

11.44 Definition. Let n, k be natural numbers. We define the Stirling number
{
n
k

}
of the second kind as the number of partitions Φ of a set of n elements satisfying
#(Φ) = k.

11.45 Example. The partitions of 4 with two classes are:

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}},
{{1}, {2, 3, 4}}, {{2}, {1, 3, 4}}, {{3}, {1, 2, 4}},
{{4}, {1, 2, 3}}

So
{
4
2

}
= 7.

The Scottish mathematician James Stirling (Garden 1692 – Edinburgh 1770)
was a contemporary of Euler. In Newton’s tradition he was working in the area of
calculus. He is known because of Stirling’s formula

n! ∼
√
2πn

(n
e

)n
,

an approximation of n! probably obtained earlier by the French mathematician
Abraham de Moivre (Vitry-le-François 1667 – Londen 1754) who, after he fled
France, was mainly active in England.

The Stirling numbers can be displayed in a triangle in the same way as the binomial
coefficients. The following recursive description can be used for their computation.

11.46 Theorem. Stirling numbers of the second kind satisfy:

(i)

{
n

0

}
= 0 for all n ∈ N+,

(ii)

{
n

n

}
= 1 for all n ∈ N,

(iii)

{
n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
for all n, k ∈ N+ with 0 < k < n.

PROOF. The first two parts are simple. For the last part choose a fixed element
a in a set A of n elements. The partitions with k classes come in two kinds:
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0 1 63 301 350 140 21 1

0 1 31 90 65 15 1

0 1 15 25 10 1

0 1 7 6 1

0 1 3 1

0 1 1

0 1

1

0 1 127 966 1701 1050 266 28 1

Figure 11.10: Triangle of Stirling numbers of the second kind

a) partitions Φ with {a} ∈ Φ; of these there are
{
n−1
k−1

}
,

b) partitions Φ with {a} /∈ Φ; these correspond to partitions of A \ {a} with k
classes together with a choice of one of these classes: the class to which a is
to be added; of these there are k

{
n−1
k

}
.

For small n we get the numbers as displayed in Figure 11.10.

Python

The Python code is analogous to the code for the computation of binomial coeffi-
cients.

combinatorics.py
def stirling2(n, k):

list0 = [1] + (n - k) * [0]

i = j = 0

while i < k:

list1 = [1]

i = i + 1

while j < n - k:

j = j + 1

list1.append(i * list1[-1] + list0[j])

list0 = list1

j = 0

return list0[-1]
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Eric Temple Bell (Peterhead, Scotland 1883 – Watsonville, USA 1960)

The Bell numbers are named after Eric Temple Bell, who is
known as a writer of books on the history of mathematics.
Under the name John Taine he also wrote science fiction.

>>> stirling2(153, 60)

616578310862199096208547253227976406265353676270629543580059477056658

923549136823575833236201554312588011711962563493018153940980871150296

15555572440350441028860002077054029219566424588400

In the triangle of Stirling numbers of the second kind row n consists of all numbers
of partitions of n with a given number of classes.

11.47 Definition. The n-th Bell number bn is the number of partitions of a set
which has n elements.

So by definition:

11.48 Proposition. For every n ∈ N we have bn =
∑n
k=0

{
n
k

}
.

11.49 Example. The Bell number can be computed from the Stirling numbers of
the second kind, see Figure 11.10:

b0 = 1

b1 = 0 + 1 = 1

b2 = 0 + 1 + 1 = 2

b3 = 0 + 1 + 3 + 1 = 5

b4 = 0 + 1 + 7 + 6 + 1 = 15

b5 = 0 + 1 + 15 + 25 + 10 + 1 = 52

b6 = 0 + 1 + 31 + 90 + 65 + 15 + 1 = 203

b7 = 0 + 1 + 63 + 301 + 350 + 140 + 21 + 1 = 877
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A surjective map from n to k determines a partition of n into k classes. Such a
partition Φ comes from k! of such surjective maps: these correspond to bijections
n/Φ → k. So from proposition 11.42 follows:

11.50 Proposition. For k, n ∈ N

k! ·
{
n

k

}
=

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

11.51 Example. We return to example 11.43. The number of surjections from
25 to 20 is 20! ·

{
25
20

}
and this last expression is more easily evaluated than the sum

found in 11.43.

>>> factorial(20) * stirling2(25,20)

15133124298524793200640000000

The probability asked for in example 11.43 is approximately 0.000045:

>>> (factorial(20) * stirling2(25, 20)) / pow(20, 25)

4.5100224907770134e-05

Exercises

1. Prove proposition 11.7 and proposition 11.8 using the formula
(
n
k

)
= n!

k!(n−k)!
.

2. Let n ∈ N+. Prove that nn ≥ n! 2n−1.

3. Prove that for all n ∈ N
n∑

k=0

(
n

k

)2

=

(
2n

n

)
.

4. Determine a formula for the sum of the 5th powers of the first n natural numbers.
Do so using Pascal’s method, Newton’s method and Bernoulli’s method.

5. Let p be a prime number and k ∈ N with 0 < k < p. Prove that p |
(
p
k

)
.

6. Prove Fermat’s Little Theorem: p | np − n for all prime numbers p and all n ∈ N.
Prove this theorem by mathematical induction on n. Use exercise 5. (There is
another proof in chapter 13: it is Corollary 13.23.)

7. Prove that for all m,n ∈ N

n∑
k=0

(
m+ k

k

)
=

(
m+ n+ 1

n

)
.
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8. Prove that for all n ∈ N

fn+1 =

⌊n
2
⌋∑

k=0

(
n− k

k

)
.

(The fn are the Fibonacci numbers.)

9. Prove that for all n ∈ N

cn =
2 · 6 · 10 · · · (4n− 2)

(n+ 1)!
.

(cn is the nth Catalan number.)

10. Find a formula for the number of ways an n-gon (without reflex angles) can be
divided in triangles by nonintersecting diagonals. Prove the formula. For a 5-gon
there are 5 ways:

And for a 6-gon the number is 14:

11. For a nonassociative operation (a, b) 7→ ab in a set A the expressions (ab)c and
a(bc) can have different meanings. In a word of 3 letters, parentheses can be placed
in 2 ways. In a word of length 4 it can be done in 5 ways:

a(b(cd)), a((bc)d), (ab)(cd), ((ab)c)d and (a(bc))d.

The problem is: in how many ways can it be done in a word of length n ? Give a
proof.
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12. How many of the 26! orders of the 26 letters of the alphabet do not contain the
following combinations: kim, john and nigel?

13. How many of the natural numbers n with 1000 ≤ n ≤ 10000 are no multiple of 2,
3, 5 or 7 ?

14. Let n ∈ N+.

(i) Let d | n. Show that the number of a ∈ Nn satisfying a | n is equal to n
d
.

(ii) Let P be the set of the prime divisors of n. Show that

gcd(a, n) = 1 ⇐⇒ p ∤ a for all p ∈ P .

(iii) Use the Inclusion-Exclusion Principle to determine a formula for φ(n), the
totient of n. Show that this formula agrees with φ = µ ∗ id.

(iv) Derive the formula φ(n) = n
∏

p|n(1 − 1
p
) from the previous part. Use theo-

rem 11.12.

15. Show that
∑n

j=0(−1)j
(
n
j

)
(n− j)n = n!.

16. We define polynomials xn as follows

xn = x(x− 1)(x− 2) . . . (x− n+ 1).

Or more precisely: {
x0 = 1,

xn+1 = xn · (x− n) for all n ∈ N.

Prove that for all n ∈ N

xn =

n∑
k=0

{
n

k

}
xk.

17. Find a polynomial f(x) satisfying f(x+ 1)− f(x) = x3 − 3x2 + 1.

18. (i) Show that
{
n
1

}
= 1 for all n ∈ N.

(ii) Show that
{
n+1
2

}
= 2n − 1 for all n ∈ N+.

(iii) Show that
{

n
n−1

}
is a triangular number for all n ∈ N+.

19. Let k ∈ N. Is the sequence (
{
n+k
n

}
) a polynomial sequence?

20. For m ∈ N the polynomial Dm(x) is defined as follows

Dm(x) = 2m−1(Bm(x
2
) +Bm(x+1

2
)).

(i) Show that Dm(x) and Bm(x) have the same difference polynomial.

(ii) Show that Dm(x) = Bm(x).

(iii) Show that Bm( 1
2
) = −(1− 21−m)Bm.
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21. Let n ∈ N+. The following numbers are given

A =

n∑
k=0

(
2n

2k

)
and B =

n−1∑
k=0

(
2n

2k + 1

)
.

Determine A and B. (Hint: look at A+B and A−B.)

22. Let n ∈ N+. Prove that ∑
I∈P(n)

#(P(I)) = 3n.
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12 Permutations

In this chapter we consider permutations of finite sets. Some parts of this chapter
will have applications in chapter 13, where we will work in finite rings. Multiplica-
tion by an invertible element in a finite ring is an example of such a permutation.
Permutations occur in many parts of mathematics, in particular in group theory.
The section on the sign of a permutation is also of interest for the theory of deter-
minants in linear algebra.

12.1 Orbits

Let σ be a permutation of a set A. In particular σ is a transformation and,
therefore, we also have iterates of σ, the transformations σn with n ∈ N. Because
σ is bijective, we also have the permutation σ−1, the inverse of σ. More generally
we have:

12.1 Definition. Let σ be a permutation of a set A. Permutations σn are defined
for all n ∈ Z by

σn =

{
σn for n ≥ 0

(σ−1)−n for n < 0.

As for exponentiation in Q∗, the usual rules are satisfied. The proofs are not
different from those we presented in subsection 9.1.4 for this exponentiation. In
fact, all this is applicable to any group; the permutations of a set form a group,
the operation being the composition of permutations.

12.2 Proposition. Let σ and τ be permutations of a set A satisfying στ = τσ and
let m and n be integers. Then:

(i) σmσn = σm+n,
(ii) (σm)n = σmn,
(iii) (στ)n = σnτn.

12.3 Definition. Let σ be a permutation of a set A. The set

[a]σ = {σn(a) | n ∈ Z }

is called the orbit of a under σ. We also say that it is an orbit of σ. The set of all
orbits of σ we denote by Aσ.
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5

6

9

1

2

3 4

7

8

Figure 12.1: Picture of a permuta-
tion

12.4 Example. Figure 12.1 is a picture of

σ =

(
1 2 3 4 5 6 7 8 9

2 5 4 3 6 9 7 8 1

)
.

There are 4 orbits:
{1, 2, 5, 6, 9}, {3, 4}, {7} and {8}.

A permutation σ of A determines an equivalence relation in A, the equivalence
classes are the orbits of σ.

12.5 Definition. Let σ be a permutation of A. Then a relation ∼σ is defined by

a ∼σ b ⇐⇒ there is an n ∈ Z with σn(a) = b.

12.6 Proposition. The relation ∼σ is an equivalence relation. The equivalence
classes are the orbits of σ.

PROOF.

Reflexivity: σ0(a) = a.

Symmetry: if σn(a) = b, then σ−n(b) = a.

Transitivity: if σn(a) = b and σm(b) = c, then σm+n(a) = c.

The equivalence class containing the element a is

{x ∈ A | x ∼σ a } = {σn(a) | n ∈ Z } = [a]σ.

12.2 Cycles

Cycles are permutations of a special kind:

12.7 Definition. Let A be a set and let (a1, a2, . . . , an) be a finite sequence of
different elements of A. We define a permutation σ of A by:

σ(ak) = ak+1 for 1 ≤ k < n

σ(an) = a1

σ(x) = x for all x ∈ A \ {a1, a2, . . . , an}.

Such a permutation is called an n-cycle. Notation: σ = (a1 a2 · · · an).
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The notation does not show which set is involved: the elements of A which do not
occur in the notation do not occur and only from the context can it be clear which
are these elements. A 1-cycle is the identical permutation: (a) = 1A for all a ∈ A.
So there is a unique 1-cycle, it is the identity. Note that (a) = (b) for any a, b ∈ A.
Also note that (a1 a2 · · · an) = (a2 · · · an a1).

Let σ be a permutation of a set A. An orbit [a]σ of m elements determines an
m-cycle τ of A:

τ(x) =

{
σ(x) if x ∈ [a]σ,

x otherwise.

It is the cycle (a σ(a) σ2(a) · · · σm−1(a)). Restricted to the orbit of a it
coincides with σ, the elements outside the orbit are mapped to themselves.

12.8 Definition. Let σ be a permutation of a set A. The set

D(σ) = { a ∈ A | σ(a) ̸= a }

is called the support of the permutation σ.

The support of a n-cycle with n > 1 has n elements; it is the unique orbit with
more than one element. In general the support is the union of the orbits with more
than one element. A 1-cycle is the identical permutation; it has an empty support.

12.9 Definition. Permutations σ and τ of a set A are said to be disjoint if their
supports are disjoint: D(σ) ∩D(τ) = ∅.

12.10 Proposition. Let σ and τ be disjoint permutations of a set A. Then στ = τσ.

PROOF. For every a ∈ A either a /∈ D(σ) or a /∈ D(τ). In both cases it is easily
shown that σ(τ(a)) = τ(σ(a)).

If σ is a permutation of a finite set A with k orbits, then σ is a product of k disjoint
cycles. Orbits of one element determine 1-cycles and these may be left out in the
product.

12.11 Example. The permutation σ of example 12.4 has four orbits, two of which
have more than one element. It is a product of a 5-cycle and a 2-cycle:

σ = (1 2 5 6 9)(3 4)(7)(8) = (1 2 5 6 9)(3 4).
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Python

We consider only permutations of the standard sets n. A permutation of n is
represented by a list of the numbers 1 up to n. The image of i is the number with
index i−1. In Python numbering starts with 0. The factorization of a permutation
as a product of disjoint cycles is easy. The result is a list of disjoint cycles. Cycles
are here represented by tuples. We keep the 1-cycles in the notation: they appear
as (a,).

combinatorics.py
def cycledecomposition(perm):

sublist = perm[:]

cycles = []

while sublist != []:

i = sublist[0]

cycle=(i, )

j = perm[i-1]

del sublist[0]

while j != i:

cycle = cycle + (j, )

sublist.remove(j)

j = perm[j - 1]

cycles.append(cycle)

return cycles

>>> cycledecomposition([12, 1, 13, 5, 4, 9, 7, 6, 3, 2, 8, 10, 11])

[(12, 10, 2, 1), (13, 11, 8, 6, 9, 3), (5, 4), (7,)]

Codes for the conversion from the cycle notation to the standard notation and for
the composition of permutations:

combinatorics.py
def permutation1(cycle, n):

i = 0

perm = []

cyclelist = list(cycle)

while i < n:

i = i + 1

if i in cycle and i != cycle[-1]:

perm.append(cycle[cyclelist.index(i) + 1])

elif i == cycle[-1]:

perm.append(cycle[0])

else:

perm.append(i)

return perm

def composition(perm1, perm2):

return [perm1[perm2[i] - 1] for i in range(len(perm2))]
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combinatorics.py
def permutation(cycles, n):

return reduce(composition, [permutation1(cycle, n) for

cycle in cycles])

>>> permutation1((4, 5, 6, 2, 7, 1), 9)

[4, 7, 3, 5, 6, 2, 1, 8, 9]

>>> composition([1, 5, 9, 4, 2, 8, 7, 2, 3], [8, 4, 3, 2, 9, 7, 6, 5,

1])

[2, 4, 9, 5, 3, 7, 8, 2, 1]

>>> permutation([(4, 5, 6, 7, 1), (2, 3), (8, 9)], 9)

[4, 3, 2, 5, 6, 7, 1, 9, 8]

>>> permutation([(4, 5, 6, 7, 1), (2,3 ), (8, 9), (1, 7, 8, 4, 2)], 9

)

[1, 4, 2, 3, 6, 7, 9, 5, 8]

12.3 Derangements

For a Dutch Sinterklaas-party n persons, numbered 1 up to n, draw lots with (the
names of) 1 up to n. This determines a permutation σ of n: σ(i) = j if person
j draws lot i. The idea is that at the party person j has a gift for person σ(j).
Obviously, the procedure succeeds when σ(j) ̸= j for all j. The permutation then
has no one element orbit. What is the chance for the procedure to succeed?

12.12 Definition. A permutation without fixed points is called a derangement.

We will use the inclusion-exclusion principle for finding the number of derange-
ments. The set A is the set of all permutations of n. As index set we take the set
n. For every j ∈ n we have the subset Aj of all σ with σ(j) = j.

The total number of permutations is #(A) = n!. The number of derangements is
#(A \

⋃n
j=1Aj).

For J ⊆ n the elements of AJ correspond to permutations of n\J and so NJ = (n−
#(J))!. There are

(
n
k

)
subsets J of n with #(J) = k and so Sk =

(
n
k

)
(n− k)! = n!

k! .
So we derived:

12.13 Proposition. The number of derangements of a set of n elements is

n!
(
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!

)
.

So the chance that the procedure of drawing lots for the Sinterklaas-party is suc-
cessful equals

1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
.
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So the chance tends to 1
e
, where e is the base of the natural logarithm, see sec-

tion 17.6. For even n it is larger, for odd n it is less.

12.4 Permutations with k Orbits

In the previous chapter Stirling numbers of the second kind were introduced. Now
a definition of Stirling numbers of the first kind:

12.14 Definition. Let n, k be natural numbers. We define the Stirling number
[
n
k

]
of the first kind as the number of permutations σ of a set A of n elements which
have k orbits, that is #(Aσ) = k.

12.15 Example. The permutations of 4 with 2 orbits are:

(1 2)(3 4) (1 3)(2 4) (1 4)(2 3) (2 3 4)

(2 4 3) (1 3 4) (1 4 3) (1 2 4)

(1 4 2) (1 2 3) (1 3 2)

So

[
4

2

]
= 11.

From the following theorem it follows that also these Stirling numbers can be
computed recursively.

12.16 Theorem. Stirling numbers of the first kind satisfy:

(i)

[
n

0

]
= 0 for all n ∈ N+,

(ii)

[
n

n

]
= 1 for all n ∈ N,

(iii)

[
n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
for all n, k ∈ N+ such that 0 < k < n.

PROOF. The first two parts are obvious. For the last part choose an element a in
a set A of n elements. There are two kinds of permutations of A with k orbits:

a) permutations σ satisfying {a} ∈ Aσ; of these there are
[
n−1
k−1

]
;

b) permutations σ satisfying {a} /∈ Aσ; these correspond to permutations of
A \ {a} with k orbits together with the placement of the element a in one of
these k orbits (there are n− 1 ways for this); in total there are (n− 1)

[
n−1
k

]
of these permutations.

Using this theorem the Stirling numbers in Figure 12.2 are easily computed.

236



12.4 Permutations with k Orbits

0 720 1764 1624 735 175 21 1

0 120 274 225 85 15 1

0 24 50 35 10 1

0 6 11 6 1

0 2 3 1

0 1 1

0 1

1

0 5040 13068 13132 6769 1960 322 28 1

Figure 12.2: Triangle of Stirling numbers of the first kind

Python

The computation of these Stirling numbers is done in the same way as the computa-
tion of the Stirling numbers of the second kind. The code for the Stirling numbers
of the second kind is easily adapted for this purpose. We add it to the module
combinatorics.py.

combinatorics.py
def stirling1(n, k):

list0 = [1] + (n - k) * [0]

i = j = 0

while i < k:

list1 = [1]

i = i + 1

while j < n - k:

j = j + 1

list1.append((i + j - 1) * list1[-1] + list0[j])

list0 = list1

j = 0

return list0[-1]

>>> stirling1(200, 75)

332687492727756077514076331727702878423573720921352531320487954824197

821686890496076217334714208403017547231566734204221964936495963577582

070586675932978747275472603451334934971565557199113946936863209849134

819810723574293858554548614855742202090877942541783227755733518112745

53312724268770918400000
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12.5 The Sign of a Permutation

Let A be a finite set and let a and b be elements of A such that a ̸= b. The
transposition τa,b, see definition 5.19, of a and b is the 2-cycle (a b). It is a
permutation of A.

12.17 Definition. Let σ be a permutation of a finite set A. The sign of σ, sgn(σ),
is defined as

sgn(σ) = (−1)#(A)−#(Aσ),

where Aσ is the set of orbits of σ, see definition 12.3. The permutation σ is
called even if sgn(σ) = 1, so if #(A) − #(Aσ) is even. If sgn(σ) = −1, that is
#(A)−#(Aσ) is odd, then σ is called an odd permutation.

12.18 Lemma. Transpositions are odd permutations.

PROOF. The number of orbits of a transposition is one less than the number of
elements of the set.

12.19 Example. The permutation σ = (1 2 4)(3 5) of 5 is a permutation of

a set of 5 elements and it has 2 orbits, so sgn(σ) = (−1)5−2 = −1. It is an odd
permutation.

12.20 Lemma. Let σ be a permutation of a finite set A, and let a and b be elements
of A. Then

#(A(a b)σ) =

{
#(Aσ) + 1 if a ∼σ b
#(Aσ)− 1 if not a ∼σ b.

PROOF.

Suppose a and b are in the same orbit of σ, say this orbit consists of the
following n elements of A:

a, σ(a), σ2(a), . . . , σk(a)(= b), . . . , σn−1(a)

(with 0 < k < n). Then the orbit of a under (a b)σ is

{a, σ(a), . . . , σk−1(a)},

and the orbit of b under (a b)σ is

{σk(a)(= b), σk+1(a), . . . , σn−1(a)}.

The other orbits of (a b)σ coincide with orbits of σ.

So the number of orbits of (a b)σ exceeds the number of orbits of σ by one if
a ∼σ b. See Figure 12.3.
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12.5 The Sign of a Permutation

a

b

a

b

Figure 12.3: Composition with transposition (a b)

Suppose a and b are in different orbits of σ. Let the orbit of a under σ be

{a, σ(a), σ2(a), . . . , σn−1(a)},

and the orbit of b

{b, σ(b), σ2(b), . . . , σm−1(b)}.

Then the orbit of a under (a b)σ is

{a, σ(a), . . . , σn−1(a), b, σ(b), . . . , σ
m−1(b)}.

The other orbits of (a b)σ coincide with orbits of σ.

So the number of orbits of (a b)σ is one less than the number of orbits of σ if not
a ∼σ b. See also for this case Figure 12.3. (This figure does not show whether a
and b are in the same orbit.)

12.21 Corollary. Let σ be a permutation of a finite set A, and let τ be a transpo-
sition of A. Then

sgn(τσ) = − sgn(σ).

PROOF. From #(A)−#(Aτσ) = #(A)− (#(Aσ)±1) follows sgn(τσ) = − sgn(σ).

12.22 Proposition. Let σ be a permutation of a finite set A, then σ is a product of
#(A)−#(Aσ) transpositions. (We consider the identical permutation as a product
of 0 transpositions.)

PROOF. If σ has an orbit with more than one element, then choose two elements
a1 and b1 in that orbit. The number of orbits of (a1 b1)σ then is 1 greater than the
number of orbits of σ. Repeat this process. It stops as soon as all orbits have only 1
element. Then (ak bk)(ak−1 bk−1) · · · (a1 b1)σ = 1A, where k = #(A)−#(Aσ).
So the permutation σ is a product of k transpositions:

σ = (a1 b1)(a2 b2) · · · (ak bk).

From the proof it follows that #(A)−#(Aσ) is in fact the least number of trans-
positions needed for writing σ as a product of transpositions.
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Python

The following code returns for a permutation a list of a minimal number of trans-
positions having this permutation as product.

combinatorics.py
def transpositions(perm):

trans = []

newperm = perm[:]

identity = list(range(1, len(perm) + 1))

while newperm != identity:

j = [i + 1 == newperm[i] for i in range(len(newperm))].\

index(0)

trans.append((j + 1, newperm[j]))

newperm[newperm.index(j + 1)] = newperm[j]

newperm[j] = j + 1

return trans

>>> transpositions([4, 6, 8, 10, 13, 11, 9, 7, 1, 2, 5, 12, 3])

[(1, 4), (2, 6), (3, 8), (4, 10), (5, 13), (6, 11), (7, 9), (8, 9), (

9, 10), (10, 11), (11, 13)]

12.23 Theorem. Let σ and τ be permutations of a finite set A. Then:

sgn(στ) = sgn(σ) sgn(τ).

PROOF. Let σ1, . . . , σn be transpositions such that σ = σ1 · · ·σn. Then

sgn(στ) = sgn(σ1 · · ·σnτ) = − sgn(σ2 · · ·σnτ) = · · ·
= (−1)n sgn(τ) = sgn(σ) sgn(τ).

12.24 Example. We write σ = (1 2 3 5)(4 6 7) as product of transposi-
tions.

(1 2)σ = (2 3 5)(4 6 7)

(2 3)(1 2)σ = (3 5)(4 6 7)

(3 5)(2 3)(1 2)σ = (4 6 7)

(4 6)(3 5)(2 3)(1 2)σ = (6 7)

(6 7)(4 6)(3 5)(2 3)(1 2)σ = (1)

So σ = (1 2)(2 3)(3 5)(4 6)(6 7).

12.25 Theorem. Let σ = σ1 · · ·σm with σ1, . . . , σm transpositions. Then

m is even ⇐⇒ σ is an even permutation.
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12.5 The Sign of a Permutation

PROOF. sgn(σ) = sgn(σ1) · · · sgn(σm) = (−1)m.

This means that an even permutation can only be written as a product of an even
number of transpositions, and an odd permutation only as a product of an odd
number of transpositions.

A 3-cycle is even. So any product of 3-cycles is even. In fact all even permutations
are of this type:

12.26 Theorem. Let A be a finite set with #(A) ≥ 3. Then every even permutation
of A is a product of 3-cycles.

PROOF. Let σ be an even permutation. Then σ is a product of an even number
of transpositions. For a composition of two transpositions we have the following
cases

a) (a1 a2)(a1 a2): this is equal to (1);
b) (a1 a2)(a2 a3) with a3 ̸= a1: this is equal to (a1 a3 a2);
c) (a1 a2)(a3 a4) with a1, a2, a3 and a4 all different: this product is equal

to (a1 a3 a2)(a1 a3 a4).

Using this we see that the product of an even number of transpositions is also a
product of 3-cycles.

Python

The sign of a permutation equals −1 to the power the number of elements minus
the number of orbits.

combinatorics.py
def sign(perm):

return (-1)**(len(perm) - len(cycledecomposition(perm)))

>>> sign([12, 1, 13, 4, 5, 9, 7, 6, 3, 2, 8, 10, 11])

1

Sam Loyd’s 14-15-puzzle

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

Figure 12.4: 14-15-puzzle

The sliding puzzle of example 3.3 is introduced in 1878
by Sam Loyd. The tiles were placed in the right or-
der except for the last two. That is why the puzzle
is known as the 14-15-puzzle. Loyd offered a prize of
$1000 for the solution, knowing that the puzzle has no
solution. A worldwide madness was the result. Com-
panies had to forbid their employees trying to solve it
during office hours.
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12 Permutations

Samuel Loyd (Philadelphia 1841 – New York 1911)

Samuel Loyd was active in recreational mathematics. He
designed many puzzles, some of which became known all
over the world. Another well-known puzzle is the ‘Get off
the Earth’-puzzle.

Coding positions and moves

We have a set Tiles of 16 tiles, among them one ‘virtual’ tile, and the set Places
of the 16 possible places for the tiles. A position of the puzzle is a bijection
f : Tiles → Places. For coding the positions we choose a numbering for the tiles
and for the places:

tile : 16 → Tiles and place : 16 → Places.

The tiles are numbered in such a way that tile(16) is the virtual tile. In the puzzle
the tile numbers 1 up to 15 are displayed on the tiles.

A position f now corresponds to a permutation of 16:

16
σ−−−−→ 16

tile

y yplace

Tiles −−−−→
f

Places

A position f : Tiles → Places corresponds to a permutation σ of 16 if

σ(i) = j ⇐⇒ f(tile(i)) = place(j).

Let’s denote the position having tile i on place σ(i) by [σ].

The puzzle can be turned into a graph. The vertices are the positions [σ], there
are 16! of them. Next we describe the edges. If τ is a permutation of 16, then
in position [τσ] tile i is on place τ(σ(i)): the place being at first j, changes into
τ(j). Replacing [σ] by [τσ] means changing the places of the tiles according to τ .
Thus a position is transformed into a new position. It depends on σ(16) which
moves are possible when starting from [σ]. There are two, three or four moves
possible depending on the place of tile 16. Each of these moves corresponds to a
transposition of 16 with another number.
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12.5 The Sign of a Permutation

The positions that can be reached

A succession of moves starting from position [σ] corresponds to a succession of
multiplications ( = compositions) on the left by transpositions. If ‘tile’ 16 is after
these moves back in place σ(16), then there have been an even number of vertical
moves and an even number of horizontal moves. Together this corresponds to an
even number of transpositions. If [σ′] is the result of the succession of moves, then
σ and σ′ have the same sign. So in particular the 14-15-puzzle is not solvable:
the initial position corresponds to an odd permutation and the final position to an
even one.

10 9 6 5

11 8 7 4

12 15 1 3

13 14 2 16

Figure 12.5: numbering of
places

For the unsolvability of the 14-15-puzzle there was
no need to number the places explicitly. By now it is
convenient to give a numbering. The place numbers
are indicated in Figure 12.5. In this figure tile(i) is on
place(i). So with this numbering of the places Fig-
ure 12.5 displays the position [(1)]. If a position [τ ]
with τ(16) = 16 is reached from this by a succession
of moves, τ is an even permutation.

We will show that conversely all positions [τ ] with τ
even and τ(16) = 16 can be reached. We look at the
totality of successions of moves under which tile(16) returns to place(16). Two of
such successions after one another is again such a succession. If positions [τ1] and
[τ2] can be reached, then also position [τ1τ2]. If tile(16) is moved along the places
2, 1, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3 and finally returns in place 16, then
the new position is [σ], where

σ = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15).

After being moved along 2, 1, 3, 16 the position corresponds to the permutation

ρ = (1 2 3).

Since for k ∈ N12 we have

σkρσ−k = (k + 1 k + 2 k + 3),

it follows from lemma 12.27 below that each position [τ ] with τ even can be reached.

12.27 Lemma. Let ∈ N with n ≥ 3. Then every even permutation of n is a product
of 3-cycles of type (k k + 1 k + 2) with k ∈ Nn−2.

PROOF. Let σ be an even permutation of n. A permutation can be denoted with
the images of the elements;

σ =

(
1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)

)
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Right multiplication with a 3-cycle (k k + 1 k + 2) yields

σ · (k k + 1 k + 2) =(
1 . . . k − 1 k k + 1 k + 2 k + 3 . . . n

σ(1) · · · σ(k − 1) σ(k + 1) σ(k + 2) σ(k) σ(k + 3) · · · σ(n)

)
.

In the bottom row σ(k+1) is moved one place to the left. By multiplications with
3-cycles on the right it can be achieved that 1 is on the left, 2 on the second place
and so on. This is repeated until n− 2 is on place n− 2. Since σ is even all these
newly obtained permutations are even as well. So it can not be the case that 1 up to
n−2 remain in place while n−1 and n do not. So we have 3-cycles of the indicated
type, say τ1, . . . , τm such that στ1τ2 . . . τm = (1), that is σ = τ2m · · · τ21 .

Exercises

1. We define polynomials xn as follows

xn = x(x+ 1)(x+ 2) · · · (x+ n− 1).

More precisely: {
x0 = 1,

xn+1 = xn · (x+ n) for all n ∈ N.
Prove that for all n ∈ N:

xn =

n∑
k=0

[
n

k

]
xk.

2. Write the following permutations as a product of transpositions:(
1 2 3 4 5 6

6 2 5 1 3 4

)
,

(
1 2 3 4 5 6

3 1 4 5 6 2

)
.

3. Which permutations of 4 are even?

4. Let A be a finite set with at least two elements. Prove that the number of even
permutations of A equals 1

2
n!.

5. Prove that

n∑
k=0

(−1)k
[
n

k

]
=


1 if n = 0

−1 if n = 1

0 if n > 1.

6. Let n ∈ N with n > 1. Determine the sign of an n-cycle. Write the n-cycle
(1 2 · · · n) as product of a minimal number of transpositions.
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Exercises

7. Let a1, a2, . . . , an be different elements of a set A and let σ be a permutation of A.
Show that

σ(a1 a2 · · · an)σ
−1 = (σ(a1) σ(a2) · · · σ(an)).

8. (i) Show that

[
n+ 1

1

]
= n! for all n ∈ N.

(ii) Show that

[
n

n− 1

]
is a triangular number for all n ∈ N+.

(iii) Determine

n∑
k=0

[
n

k

]
.

9. Let k ∈ N. Is the sequence

([
n+ k

n

])
a polynomial sequence?

10. Let σ be a permutation of A = 15 with σ5 = 1A and σ(i) ̸= i for all i ∈ A.

(i) Show that σ is a product of three disjoint 5-cycles.

(ii) Determine the sign of σ.

(iii) Show that there are transpositions τ1 and τ2 such that τ2τ1σ is a 15-cycle.

11. Let n ∈ N+. How many of the permutations of n do have exactly one orbit?

12. Let σ and τ be permutations of a finite set A. Show that the number of orbits of
σ in A is equal to the number of orbits of τστ−1.

13. Let σ and τ be permutations of a finite set A. Show that στσ−1τ−1 is an even
permutation.

14. Let V1 = {1, 2, 3, . . . , 100}, V2 = {101, 102, 103, . . . , 200} and V = V1 ∪ V2. Let σ
be a permutation of V . Show that

#{ i ∈ V1 | σ(i) ∈ V2 } = #{ j ∈ V2 | σ(j) ∈ V1 }.

15. How many permutations σ of 100 are there with σ(a) even for all a ≤ 50 ?

16. We denote the numbers in N1000000 using 6 digits: so 000000, 000001, 000002 up to
999999. The permutation σ of N1000000 maps a number to the number obtained by
shifting the digits in this notation one place to the right and putting the left most
digit in front, so for example σ(123456) = 612345 and σ(000562) = 200056.

(i) Describe the orbit of σ which contains the element 264264.

(ii) Show that the orbits of this permutation have 1, 2, 3 or 6 elements. Give for
each number of elements an example.

(iii) How many of the orbits of σ have 6 elements?

(iv) Determine sgn(σ).
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17. Let σ and τ be permutations of a finite set.

(i) Prove that σ and τστ−1 have the same number of orbits.

(ii) Prove that στ and τσ have the same number of orbits.

13 2 7 11

15 1 3

8 6 4 12

5 14 10 9

18. Is the sliding puzzle with this starting position
solvable?
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13 Modular Arithmetic

Arithmetic modulo m ∈ N+ is arithmetic with integers, where numbers are seen
as ‘the same’ when they differ by a multiple of m. In fact this is an equivalence
relation and the arithmetic is done with equivalence classes. The objects of the
arithmetic being clear, the arithmetic itself still has to be described, that is addition
and multiplication have to be defined and these operations have to satisfy the usual
rules. Arithmetic modulo m is arithmetic in a set with m elements. In this chapter
and the next we study the structure of the ring Z/m thus obtained. In chapter 15
applications of modular arithmetic will be given: prime tests, the factorization of
integers, the RSA-code (a cryptographic application).

13.1 Residue Classes Modulo m

13.1 Definition. Let m ∈ N+. For a, b ∈ Z we define

a ≡ b (mod m) ⇐⇒ m | a− b.

If a ≡ b (mod m) we say that a is congruent with b modulo m. “Congruence
modulo m” is a relation in Z. For each m ∈ N+ we have a congruence.

13.2 Proposition. Congruence modulo m is a equivalence relation.

PROOF. For every a ∈ Z we have m | a− a, and so the relation is reflexive. From
m | a−b followsm | b−a, which means that the relation is symmetric. Transitivity:
if m | a− b and m | b− c, then by proposition 9.24 m | (a− b)+ (b− c) = a− c.

13.3 Definition. Let m ∈ N+. An equivalence class of the congruence modulo m
is called a residue class modulo m. The set of residue classes modulo m is denoted
by Z/m. The residue class of a modulo m is denoted by [a]m or as [a] or even a
when it is clear which m is used.

13.4 Proposition. Let m ∈ N+. Then Nm is a system of representatives of Z/m.
In particular #(Z/m) = m.

PROOF. Let a ∈ Z. Division with remainder of a by m gives a = qm + r with
q ∈ Z and r ∈ Nm. From a− r = qm follows m | a− r, that is a ≡ r (mod m). So
r ∈ a and in each residue class there is an element of Nm, even a unique element:
if also s ∈ r with s ∈ Nm, then m | r − s while −m < r − s < m. So r − s = 0,
that is r = s.
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13 Modular Arithmetic

Division with remainder by m is a surjective map qm : Z → Nm. The induced
partition of Z is Z/m. Numbers are congruent modulo m if the remainders after
dividing by m are equal. The map qm : Z → Nm induces a bijection Z/m→ Nm.

So we have Z/m = {0, 1, . . . ,m− 1} and the elements 0, 1, . . . ,m− 1 are different.
We describe the residue class k. By definition

k = { a ∈ Z | a ≡ k (mod m) },

and a ≡ k (mod m) means that m | a − k, which in turn means that there is a
t ∈ Z such that a − k = tm, that is a = k + tm. The residue class k is the set of
all multiples of m plus k. It is the set of the numbers

. . . , k − 2m, k −m, k, k +m, k + 2m, . . . , k + tm, k + (t+ 1)m, . . . .

The classes a are the orbits of the permutation x 7→ x+m of Z.

Below the partition of Z into 5 residue classes modulo 5 is displayed:

Z Z
...

...
...

...
...

...

10 11 12 13 14 2

5 6 7 8 9 q5 1

0 1 2 3 4 −→ 0

−5 −4 −3 −2 −1 −1

−10 −9 −8 −7 −6 −2

...
...

...
...

...
...

r5

y
N5 0 1 2 3 4

13.2 The Ring Z/m

In this section m is a fixed nonzero natural number. We will define addition in the
set Z/m of residue classes modulo m. The addition will be induced by the addition
of integers.

13.5 Lemma. Let a, a′, b, b′ ∈ Z satisfy a = a′ and b = b′ (in Z/m). Then a+ b =
a′ + b′.

PROOF. Sincem | a−a′ andm | b−b′, we havem | a−a′+b−b′ = (a+b)−(a′+b′),
that is a+ b = a′ + b′.
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13.2 The Ring Z/m

13.6 Definition. Let a and b be integers. We define the sum a+ b of a and b:

a+ b = a+ b.

The residue classes a and b are given by their representatives a and b. That could
have been others, say a′ and b′. From lemma 13.5 it follows that the result is
independent of the choice of the representatives. That is why this sum of residue
classes is well-defined.

13.7 Proposition. The set Z/m is together with the addition defined above is an
abelian group.

PROOF. The proof is simple, but since this proposition is of some importance,
details will be given. We have to verify the abelian group axioms: associativity,
commutativity, existence of a zero element, existence of opposites.

Associativity: (a + b) + c = a+ b + c = (a+ b) + c = a+ (b+ c) = a + b+ c =
a+ (b+ c).

Commutativity: a+ b = a+ b = b+ a = b+ a.

Zero element: 0 is the zero element: a+ 0 = a+ 0 = a.

Opposite: − a is the opposite of a: a+ − a = a+ (−a) = 0.

So the fact that Z/m under this addition is an abelian group, is a direct consequence
of Z being an abelian group under addition. The advantage of this approach with
residue classes is that this proof is straightforward. If we had chosen for the set
Nm, then addition could have been defined using division with remainder: the sum
of a and b then is the remainder of a + b after division by m. To prove that the
structure thus defined is an abelian group is much more elaborate: for associativity
for example many cases have to be distinguished.

The additive structure of Z/m as defined here is quite simple, which will become
clear when making up an addition table:

+ 0 1 2 3 · · · m− 2 m− 1

0 0 1 2 3 · · · m− 2 m− 1

1 1 2 3 4 · · · m− 1 0

2 2 3 4 5 · · · 0 1

...
...

...
...

...
...

...

m− 2 m− 2 m− 1 0 1 · · · m− 4 m− 3

m− 1 m− 1 0 1 2 · · · m− 3 m− 2

The definition of multiplication in Z/m is similar to the definition of addition.
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13 Modular Arithmetic

13.8 Lemma. Let a, a′, b, b′ ∈ Z satisfy a = a′ and b = b′ (in Z/m). Then:
ab = a′b′.

PROOF. Since m | a− a′ and m | b− b′, we also have m | (a− a′)b+ a′(b− b′) =
ab− a′b′, that is ab = a′b′.

The definition of multiplication is based on this lemma.

13.9 Definition. Let a and b be integers. We define the product a · b of a and b:

a · b = ab.

The · is there for clarity and is often omitted.

13.10 Theorem. (Z/m,+, ·) is a commutative ring.

PROOF.

Z/m is an abelian group under the addition: This is proposition 13.7.

Associativity of the multiplication: (a · b) · c = ab · c = (ab)c = a(bc) = a · (bc) =
a · (b · c).

Commutativity: a · b = ab = ba = b · a.

Unity element: 1 is the unity element: 1 · a = 1a = a.

Distributivity: a · (b+ c) = a · b+ c = a(b+ c) = ab+ ac = ab+ ac = a · b+ a · c.
Similarly (a+ b) · c = a · c+ b · c.

So the fact that Z/m is a commutative ring is an easy consequence of Z being a
commutative ring.

The multiplication table of Z/m is more complicated than its addition table. The
multiplication tables for 2 ≤ m ≤ 6:

· 0 1

0 0 0

1 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1
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· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Python

For representing the elements of Z/m usually the system Nm of representatives
is used. Addition and multiplication is done for integers. Results are replaced
by their remainder after division by m. Thus the size of the numbers remains
restricted whatever the number of operations. We add the code to the module
arithmetics.py.

arithmetics.py
def modsum(x, y, m):

return (x + y) % m

def modprod(x, y, m):

return (x * y) % m

>>> modsum(53679298709, 456297098, 2345)

2162

>>> modprod(53679298709, 456297098, 2345)

712

13.3 Exponentiation in Z/m

Exponentiation in a ring is repeated multiplication:{
a0 = 1

an+1 = an · a for all n ∈ N.

The computation of an can be reduced to two operations: squaring and multiplica-
tion by a. To understand how this works it is convenient to use the binary notation
for the exponent n. Squaring maps ak to a2k. In the binary notation for k this
means that a 0 is added on the right. A 1 added on the right results in squaring
followed by multiplication with a: then ak maps to a2k+1. The binary notation of
n tells you exactly what to do to reach an using these operations.

251



13 Modular Arithmetic

13.11 Example. We compute 744 in Z. First determine the binary notation of
44. It is [1, 0, 1, 1, 0, 0]2, or 101100 for short. Here the binary notation is in red.
We have:

71 = 7

710 = 72 = 49

7101 = 492 · 7 = 2401 · 7 = 16807

71011 = 168072 · 7 = 282475249 · 7 = 1977326743

710110 = 19773267432 = 3909821048582988049

7101100 = 39098210485829880492 = 15286700631942576193765185769276826401.

When doing arithmetic modulo m intermediate results can be replaced by their
remainders after dividing by m.

13.12 Example. We now compute 7
44

in Z/33. With the exponents on the left
hand side in binary notation and ≡ to emphasize that the numbers are represen-
tatives:

71 = 7

710 = 72 = 49 ≡ 16

7101 ≡ 162 · 7 = 256 · 7 ≡ 25 · 7 = 175 ≡ 10

71011 ≡ 102 · 7 = 100 · 7 ≡ 1 · 7 = 7

710110 ≡ 72 = 49 ≡ 16

7101100 ≡ 162 = 256 ≡ 25.

So in Z/33 we have 7
44

= 25. Note that the numbers are not as large as in
the previous example. We could have computed 744 first and finally determine
the remainder after division by 33. But certainly when computing something like

7
543678299982762

this will not work.

Python

First compute the binary representation of a natural number:
arithmetics.py

def binary(x):

bin = []

while x != 0:

d = divmod(x, 2)

x, bin = d[0], [d[1]] + bin

return bin
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Code for exponentiation in Z/m:

arithmetics.py
def modpower(x, y, m):

bin = binary(y)

result = 1

for i in bin:

result = modprod(result, result, m)

if i == 1:

result = modprod(result, x, m)

return result

The function modpower calls the function binary.

>>> binary(24569209)

[1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,

0, 1]

>>> modpower(20029727, 24569209, 356582)

114547

In Python there is standard the function pow(x,y,z) which has the same effect as
modpower. That is why we will use pow from now on.

>>> pow(20029727, 24569209, 356582)

114547

As in example 13.12 we see that in Z/33 one has 7
10

= 1 (the exponent 10 is
here decimal, binary it is 1010). In Section 13.5 we will have a closer look at
such phenomena. From Euler’s theorem in that section it follows that in this case

7
20

= 1. In Section 13.6 we will understand why 7
10

= 1 without doing a lot of
computation.

13.4 Invertible Elements Modulo m

This section is about the multiplicative structure of the ring Z/m and in particular
the invertible elements, in other words it is about the group (Z/m)∗ of the invertible
elements in Z/m. See notation 9.9.

In the tables in section 13.2 we see that (Z/2)∗ = {1}, (Z/3)∗ = {1, 2}, (Z/4)∗ =
{1, 3}, (Z/5)∗ = {1, 2, 3, 4} and (Z/6)∗ = {1, 5}. So three of these five rings are
fields. We have fields with 2, 3 and 5 elements. We will see that Z/p is a field for
every prime number p.

13.13 Proposition. Let a be an integer. Then:

a ∈ (Z/m)∗ ⇐⇒ gcd(a,m) = 1.
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PROOF. Equivalent are:

a ∈ (Z/m)∗.

There is an x ∈ Z such that x · a = 1.

There is an x ∈ Z such that xa = 1.

There is an x ∈ Z such that xa ≡ 1 (mod m).

There is an x ∈ Z such that m | xa− 1.

There are x, y ∈ Z such that ym = xa− 1.

There are x, y ∈ Z such that xa+ (−y)m = 1.

gcd(a,m) = 1.

Algorithm

For determining whether an a ∈ Z/m is invertible it suffices to verify gcd(a,m) = 1
and that can be done very fast by Euclid’s algorithm (section 9.4). The extended
version of Euclid’s algorithm described on page 156 can be used to determine the
inverse of an a ∈ (Z/m)∗.

Python

We add a function which determines the inverse in modular arithmetic. It calls the
extended Euclidean algorithm.

arithmetics.py
def modinv(x, m):

return euclid(x, m)[0] % m

>>> gcd(244552, 177277)

1

>>> modinv(244552, 177277)

18148

The ring Z/m is a field if all elements ̸= 0 are invertible:

13.14 Theorem. Z/m is a field if and only if m is a prime number.

PROOF. Equivalent are:

Z/m is a field.

a ∈ (Z/m)∗ for all a ∈ Z with a ̸= 0.

gcd(a,m) = 1 for all a ∈ Z with m ∤ a.
gcd(a,m) = 1 or gcd(a,m) = m for all a ∈ Z.
m is a prime number.
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13.15 Notation. So for every prime number p there is a finite field: the field Z/p
with p elements. Fields are important in mathematics. That is why for these fields
there is a special notation: Fp.

The F in this notation comes from ‘field’, the English name for this notion. Other
finite fields than these exist. The number of elements of a finite field can only
be a power of a prime number. In fact there is a complete classification: up to
isomorphy there is a unique field for each prime power. We will not prove this here.
See section 20.2 for a construction of finite fields with the square of a prime number
as their number of elements.

Equations over Fp

Let p be a prime number. Because Fp is a field, all of section 9.2 on the solution
of polynomial equations is applicable to equations over Fp.

13.16 Example. We solve in F17 the linear equation

3x+ 10 = 0.

First we multiply with the inverse of 3, which is 6:

6 · 3x+ 6 · 10 = x+ 9 = 0.

So x = −9 = − 9 = 8.

13.17 Example. We solve in F17 the quadratic equation

3x2 + 16x+ 5 = 0.

First we multiply with the inverse of 3, so with 6:

x2 + 11x+ 13 = 0.

Next we ‘complete the square’ (note that 11 = 28 = 2 · 14):

(x+ 14)2 − 14
2
+ 13 = 0,

So
(x+ 14)2 = 14

2 − 13 = 9− 13 = 13 = 8
2
,

and so
(x+ 14)2 − 8

2
= (x+ 6)(x+ 22) = 0.

The solutions are x = 11 and x = 12.

For p ̸= 2 the solution of a quadratic equation in Fp comes down to extracting a
square root in Fp. So the problem is whether an element of this finite field is a
square, and if so what is its square root? For the first there is a solution as fast
as the Euclidean algorithm. Extracting square roots then still is a problem. We go
into this in chapter 14.
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13 Modular Arithmetic

13.18 Example. The following equation over F17

x4 − 1 = 0 (13.1)

has the solutions 1, −1, 4 and −4. Since the degree of this equation is 4, by
theorem 9.21 these are all solutions.

In the same field 6 is a solution of

x4 − 4 = 0.

Using the solutions of equation (13.1) three more solutions of this equation are
found: −6, 4 · 6 (= 7) and −7. In the last paragraph of this chapter this kind of
computation is described in general.

13.5 Euler’s Theorem

In this section we study the abelian group (Z/m)∗ of invertible elements in Z/m.
We have already seen that for a ∈ Z:

a ∈ (Z/m)∗ ⇐⇒ gcd(a,m) = 1.

So theorem 10.42 implies:

13.19 Proposition. Let m ∈ N+. Then #((Z/m)∗) = φ(m) = m·
∏
p|m(1− 1

p ).

In the next section another proof for this formula for the totient will be given.

Let a ∈ (Z/m)∗. Multiplication by a is a permutation of (Z/m)∗, multiplication
by a−1 being the inverse permutation. We denote the multiplication by a as σa:

σa : (Z/m)∗ → (Z/m)∗, c 7→ a · c (= ac).

If the orbit of a c under the permutation σa has k elements, then this orbit is the
subset

{c, ac, a2c, . . . , ak−1c},

where k is the least in N+ such that akc = c, that is ak = 1. So the size of the
orbit does not depend on c: all orbits are equal in size! If there are r orbits and
each of them has k elements, then rk = φ(m).

13.20 Definition. Let m ∈ N+ and a ∈ N with gcd(a,m) = 1. The least k ∈ N+

with ak = 1 is called the order of a modulo m. Notation: om(a) = k.

More generally this notion of order is applicable to an element of a group. The order
might be infinite (if such least k is not there, the orbit is infinite). For example:
the element 1 in the additive group Z. The orbit of a 7→ a + 1 is the entire set
Z. Also the permutations of the set n (with n ∈ N+) form a group: the operation
is the composition of permutations. A k-cycle is an example of a permutation of
order k. The order of a product of disjoint cycles is the least common multiple of
the orders of these cycles.
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Figure 13.1: The permutation σ7 of Z/33∗.

13.21 Example. In example 13.12 we computed 7
44

in the ring Z/33. Since
gcd(7, 33) = 1, the element 7 is invertible in Z/33, that is 7 ∈ (Z/33)∗. The
number of elements of the group (Z/33)∗ is φ(33) = φ(3)φ(11) = 2 · 10 = 20.
Figure 13.1 is a picture of the permutation σ7 of the set (Z/33)∗. It is a product of
two disjoint cycles, each of length 10. The powers of 7 are in the orbit on the left:

7
0
= 1, 7

1
= 7, 7

2
= 16, . . . . Starting in 1, after 40 steps the orbit is completed 4

times and after an extra 4 steps you arrive at 25. The orbit on the right is obtained
from the orbit on the left by multiplying each element by 2 (or any other element
of the orbit on the right). Multiplication by 2 has the effect of swapping the two
orbits.

The order is a divisor of the totient. This leads directly to the following theorem.

13.22 Theorem (Euler). Let m ∈ N+. Then for all a ∈ N such that gcd(a,m) = 1

aφ(m) ≡ 1 (mod m).

PROOF. Let r be the number of orbits of σa. Then φ(m) = om(a) · r and so

aφ(m) = ao(a)m·r = (ao(a)m)r = 1
r
= 1.

The special case m = p with p a prime number yields:

13.23 Corollary (Fermat’s Little Theorem). Let p be a prime number. Then

ap−1 ≡ 1 (mod p) for all a ∈ Z with p ∤ a,

and so also
ap ≡ a (mod p) for all a ∈ Z.

So the equation xp − x = 0 over Fp has p solutions: all elements of the field satisfy
the equation.
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13 Modular Arithmetic

If we know the prime factorization of m, then we can easily determine φ(m). As
a result powers of invertible elements of Z/m are easily computed using Euler’s
theorem.

13.24 Example. We compute 2
1000

in Z/45. We have φ(45) = φ(9)φ(5) =

6 · 4 = 24. Since gcd(2, 45) = 1 we have by Euler’s theorem: 2
24

= 1. Division

with remainder yields 1000 = 41 · 24 + 16, and so 2
1000

= 2
16
. And 2

16
is easily

computed, for example: 2
16

= 4
8
= 16

4
= 31

2
= 16, or 2

16
= 2

12 · 24 = 2
4
, because

2
12

= 1.

Note that φ(m) is not necessarily the least number k in N+ such that ak ≡
1 (mod m) for all a with gcd(a,m) = 1. For example φ(8) = 4, while a2 ≡ 1
for all a ∈ (Z/8)∗ (= {1, 3,−3,−1}).

13.6 The Chinese Remainder Theorem

Form,n ∈ N+ with gcd(m,n) = 1 arithmetic modulomn comes down to arithmetic
simultaneously modulo m and modulo n. That is what the Chinese Remainder
Theorem is about.

13.25 Chinese Remainder Theorem. Let m,n ∈ N+ satisfy gcd(m,n) = 1. Then
to every pair a, b of integers there is an integer c such that c ≡ a (mod m) and
c ≡ b (mod n). If also d is an integer such that d ≡ a (mod m) and d ≡ b (mod n),
then d ≡ c (mod mn).

PROOF. There are x, y ∈ Z such that xm + yn = 1. Take c = ayn + bxm. Then
c ≡ ayn (mod m) and so, since yn ≡ 1 (mod m) and c ≡ a (mod m). Similarly
c ≡ b (mod n).

Suppose that also d ≡ a (mod m) and d ≡ b mod n. Then d ≡ c (mod m) and
d ≡ c (mod n), that is m | d − c and n | d − c. Since gcd(m,n) = 1 we have
mn | d− c, that is d ≡ c (mod mn).

To put it differently, the map

Z/mn→ Z/m× Z/n, [c]mn 7→ ([c]m, [c]n)

is bijective if gcd(m,n) = 1. The set Z/m × Z/n has mn elements, as does the
set Z/mn. The surjectivity, the first part of the theorem, implies in fact the
injectivity, the second part of the theorem. Alternatively, one only proves the
injectivity, which is even more simple. The theorem implies that computation in
Z/mn can be done in Z/m× Z/n. An element [c]mn ∈ Z/mn then corresponds to
the element ([c]m, [c]n) ∈ Z/m×Z/n. Addition, multiplication and exponentiation
in Z/m × Z/n are done component wise. Furthermore, [c]mn is invertible if and

258
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only if both [c]m and [c]n are invertible. In other words, restriction of the map to
the invertible elements yields a bijection

(Z/mn)∗ → (Z/m)∗ × (Z/n)∗, [c]mn 7→ ([c]m, [c]n).

13.26 Example. Figure 13.2 consists of pictures of the permutations

� σ2 : (Z/35)∗ → (Z/35)∗, a 7→ 2a,

� (Z/5)∗ × (Z/7)∗ → (Z/5)∗ × (Z/7)∗, (a, b) 7→ (2a, 2b),

� σ2 : (Z/5)∗ → (Z/5)∗, a 7→ 2a,

� σ2 : (Z/7)∗ → (Z/7)∗, a 7→ 2a.

The first two permutations correspond via the Chinese Remainder Theorem. The
last two permutations determine the permutation of (Z/5)∗ × (Z/7)∗. It is easily
seen that the order of 2 modulo 5 equals 4 and that the order modulo 7 equals
3. So modulo 35 that order equals lcm(4, 3) = 12. For this there is no need to
compute the powers of 2 in (Z/35)∗.

From the Chinese Remainder Theorem it follows that the number of invertible
elements in Z/mn is equal to the number of invertible elements in Z/m × Z/n
under component wise multiplication. So in particular we have:

13.27 Corollary. Let m,n ∈ N+ satisfy gcd(m,n) = 1. Then φ(mn) = φ(m)φ(n).

A consequence is the formula for the totient which we already derived in chapter 10:

13.28 Corollary. Let m ∈ N+. Then φ(m) = m
∏
p|m(1− 1

p ).

PROOF.

φ(m) = φ

(∏
p|m

pvp(m)

)
=
∏
p|m

φ
(
pvp(m)

)
=
∏
p|m

(
pvp(m) − pvp(m)−1

)
=
∏
p|m

pvp(m) ·
∏
p|m

(
1− 1

p

)
= m

∏
p|m

(
1− 1

p

)
.

13.29 Example. Again we compute 2
1000

in Z/45, now using the Chinese Remain-

der Theorem. To that end we first compute 2
1000

in Z/5 and also in Z/9. In Z/5
we have 2

1000
= 1 since φ(5) | 1000. Furthermore φ(9) = 6 and 1000 = 166 · 6 + 4,

so in Z/9: 2
1000

= 2
4
= 16 = 7. So in Z/45: 2

1000
= 16, since 16 ≡ 1 (mod 5)

and 16 ≡ 7 (mod 9). This way it is clear that in Z/45 we even have a
12

= 1 for all
a ∈ (Z/45)∗, because [a]125 = [1]5 and [a]129 = [1]9 (note that φ(5), φ(9) | 12).
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The permutation a 7→ 2a of (Z/35)∗

The permutation (a, b) 7→ (2a, 2b) of (Z/5)∗ × (Z/7)∗

The permutation a 7→ 2a of (Z/5)∗ The permutation a 7→ 2a of (Z/7)∗

Figure 13.2: The permutation σ2 of (Z/35)∗ and the Chinese Remainder Theorem
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In order to determine the order of a modulo mn, the least k ∈ N such that
([a]km, [a]

k
n) = ([1]m, [1]n) can be determined. It is the least common divisor of

om(a) and on(a).

13.30 Example. In example 13.12 we saw that 7
10

= 1 in Z/33. Instead of
exponentiation in (Z/33)∗ we can do exponentiation in (Z/3)∗ × (Z/11)∗. The
order of an a in (Z/3)∗ is 1 or 2. In (Z/11)∗ the order of an element is a divisor
of 10. The order of an integer modulo 33 is therefore a divisor of lcm(2, 10) = 10.
The order of 7 modulo 3 is 1 and modulo 11 it is 10.

Isomorphisms

13.31 Definition. If A and B are algebraic structures like groups or rings, then
a bijection f : A → B is called an isomorphism if it preserves the operations.
If A and B are groups than f is called an isomorphism of groups or a group
isomorphism if f preserves the group operation (no matter how it is denoted).
If A and B are rings, then f is an isomorphism of rings or a ring isomorphism
if f(a1 + a2) = f(a1) + f(a2) and f(a1a2) = f(a1)f(a2) for all a1, a2 ∈ A and
moreover f(1) = 1. (We see 1 as an operation A0 → A).

Groups A and B are called isomorphic if there is a group isomorphism from A to
B. Similarly, rings A and B are called isomorphic if there is a ring isomorphism
from A to B. Notation: A ∼= B.

If we do not require the map f to be a bijection, but still do require it to preserve
the operations, then such an f is called a homomorphism. In particular we thus
have homomorphisms of groups and homomorphisms of rings.

13.32 Examples.

1. By the Chinese Remainder Theorem the map

Z/mn→ Z/m× Z/n, [c]mn 7→ ([c]m, [c]n)

is bijective if gcd(m,n) = 1 and, as we already remarked, it preserves the
operations. It is an isomorphism of rings, Z/m × Z/n being the ring with
component wise operations. Therefore, these rings are isomorphic.

2. Restriction of the isomorphism of rings to their invertible elements yields an
isomorphism of groups:

(Z/mn)∗ → (Z/m)∗ × (Z/n)∗, [c]mn 7→ ([c]m, [c]n).

So these groups are isomorphic.
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13.7 Maximal Orders Modulo m

We determine the order of a power ak of an element a ∈ (Z/m)∗, the order of a
being given.

13.33 Proposition. Let m ∈ N+ and a ∈ Z with gcd(a,m) = 1. Let om(a) = n.
Then for k ∈ Z:

om(ak) =
n

gcd(k, n)
.

PROOF. We determine the integers l satisfying (ak)l = 1. Equivalent are:

(ak)l = 1.

akl = 1.

n | kl.
n

gcd(k, n)

∣∣∣ k

gcd(k, n)
l.

n

gcd(k, n)

∣∣∣ l (
since gcd

( n

gcd(k, n)
,

k

gcd(k, n)

)
= 1
)
.

From this it follows that om(ak) =
n

gcd(k, n)
.

13.34 Corollary. Let m ∈ N+ and a ∈ Z with gcd(a,m) = 1. Let om(a) = n and
d ∈ N with d | n. Then

om(a
n
d ) = d.

PROOF. Apply proposition 13.33: om(a
n
d ) = n

gcd(n,n/d) =
n
n/d = d.

If two numbers occur as orders modulom, then so does their least common multiple.
To see this, we first treat a special case.

13.35 Lemma. Let m ∈ N+ and a1, a2 ∈ Z with gcd(a1,m) = gcd(a2,m) = 1. Let
om(a1) = n1, om(a2) = n2 and gcd(n1, n2) = 1. Then om(a1a2) = n1n2.

PROOF. We determine the numbers l ∈ Z which have the property that the l-th
power of a1a2 in (Z/m)∗ equals 1. Equivalent are:

(a1a2)
l = 1.

a1
l
= a2

−l
.

a1
l
= a2

−l
= 1 (since om(al1) | n1, om(al2) | n2 and gcd(n1, n2) = 1).

a1
l
= 1 and a2

l
= 1.

n1 | l and n2 | l.
n1n2 | l.
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So om(a1a2) = n1n2.

13.36 Proposition. Let m ∈ N+ and a1, a2 ∈ Z with gcd(a1,m) = gcd(a2,m) = 1.
Let om(a1) = n1 and om(a2) = n2. Then there exists an integer b such that
gcd(b,m) = 1 and om(b) = lcm(n1, n2).

PROOF. The number lcm(n1, n2) is a product of prime powers each being a divisor
of n1 or n2. Let pk be one of these prime powers, say pk | n1. By Corollary 13.34
there exists an integer ap such that om(ap) = pk. By lemma 13.35 for the product
b of the integers ap we have om(b) = lcm(n1, n2).

Using proposition 13.36 we derive that all orders occurring modulo m divide the
maximal order modulo m.

13.37 Proposition. Let m ∈ N+ and let N be the maximal order modulo m. Then
aN = 1 for all a ∈ (Z/m)∗.

PROOF. Choose a0 ∈ Z with gcd(a0,m) = 1 and om(a0) = N . Let a ∈ Z with a ∈
(Z/m)∗. Then om(a) ≤ N , because N is the maximal order. By proposition 13.36
there is an element b with om(b) = lcm(om(a), N). Then also om(b) ≤ N , that is
lcm(om(a), N) ≤ N . From this it follows that om(a) | N . So aN = 1.

Primitive roots modulo p

From proposition 13.37 it will follow that to each prime number p there is a number
g of order p− 1 modulo p. For such a g there are p− 1 different powers of g ∈ Fp,
that is

F∗
p = {1, g, g2, . . . , gp−2}.

13.38 Definition. Let m ∈ N+. An a ∈ Z with gcd(a,m) = 1 is called a primitive
root modulo m if om(a) = φ(m).

Not for all m does there exist a primitive root modulo m. There is no primitive
root modulo 8: o8(1) = 1 and o8(3) = o8(5) = o8(7) = 2.

13.39 Theorem. Let p be a prime number. Then there exists a primitive root
modulo p.

PROOF. Let N be the maximal order modulo p. Then N | p − 1. We have to
prove that N = p − 1. From proposition 13.37 follows that every a ∈ F∗

p satisfies

aN = 1. So each of the p− 1 elements a ∈ F∗
p is a solution of the equation xN − 1.

Because Fp is a field this equation has at most N solutions. So p − 1 ≤ N . Since
also N | p− 1, we have N = p− 1.

263



13 Modular Arithmetic

If g is a primitive root modulo a prime number p, then the map Z/(p− 1) → F∗
p,

k 7→ g
k
is bijective. It is an isomorphism of groups: k + l 7→ g

k
g
l
. The group

operation in Z/(p − 1) is the addition and in F∗
p it is the multiplication. This

isomorphism is an exponential map. Its inverse is a kind of logarithm.

13.40 Examples. Finding a primitive root modulo a prime number p is not
always easy. For small p you can simply try. For p = 17 for example you try 2
(doing arithmetic modulo 17):

22 = 4, 23 = 8, 24 = 16 ≡ −1

and clearly 28 ≡ 1. So o17(2) = 8. Next you try 3. Since the order divides 16, it is
convenient to square repeatedly:

32 = 9 ≡ −8, 34 ≡ 64 ≡ −4, 38 ≡ 16 ≡ −1,

so o17(3) = 16, that is 3 is a primitive root modulo 17.

When looking for a primitive root modulo a prime number p it helps when the
prime factorization of p− 1 is known, see Corollary 13.42 and example 13.43.

13.41 Lemma. Let n ∈ N+ and a ∈ Z be such that gcd(a, n) = 1. Suppose k ∈ N+

satisfies ak ≡ 1 (mod n). Then

on(a) = k ⇐⇒ a
k
q ̸≡ 1 (mod n) for all prime divisors q of k.

PROOF. From ak ≡ 1 (mod n) follows that on(a) | k. Equivalent are:

on(a) ̸= k.

There is a prime divisor q of
k

on(a)
.

There is a prime divisor q of k with on(a) | kq .

There is a prime divisor q of k with a
k
q ≡ 1 (mod n).

13.42 Corollary. Let p be a prime number and g ∈ Z such that p ∤ g. Then g is a
primitive root modulo p if and only if

g
p−1
q ̸≡ 1 (mod p) for all prime divisors q of p− 1.

PROOF. From p ∤ g follows that gcd(g, p) = 1. By Fermat’s Little Theorem
we have gp−1 ≡ 1 (mod p). Then apply lemma 13.41 with a = g, n = p and
k = p− 1.

Fast exponentiation while doing arithmetic modulo pmakes this proposition worth-
while in practice.
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13.43 Example. We look for a primitive root modulo the prime number 5441. The
factorization of 5440 is easy because of the many factors 2. We have 5440 = 26·5·17.
First we try 2: from 2

5440
2 = 22720 ≡ 1 (mod 5441) follows that 2 is not a primitive

root. We try 3. We get (with the method of section 13.3):

3
5440

2 = 32720 ≡ 5440, 3
5440

5 = 31088 ≡ 1685, 3
5440
17 = 3320 ≡ 2670,

So 3 is a primitive root modulo 5441.

Roots of unity

Solutions of equations of type xm − 1 = 0 are called roots of unity. In the field Q
there are only two of them, 1 and −1, but for fields Fp it is different. The roots of
unity terminology is introduced here mainly for later use.

13.44 Definition. Let K be a field and m ∈ N+. A ζ ∈ K is called an m-th root
of unity if ζm = 1 and a primitive m-th root of unity if moreover ζk ̸= 1 for all
k ∈ N+ with k < m.

Instead of ζm = 1 you might write ζ = m
√
1, but then you have to realize that in

general ζ is not determined this way. It does explain the terminology: it is a root
of 1, the unity element of the field.

13.45 Examples.

a) The field Q has two roots of unity: 1 and −1. These are 2nd roots of unity
and −1 is the only primitive 2nd root of unity.

b) The field F2 has only one root of unity and that is 1.
c) The field F5 has four roots of unity. The elements 2 and 3 are primitive 4th

roots of unity.

Let p be a prime number. For every a ∈ F∗
p we have ap−1 = 1. So the elements

of F∗
p are (p − 1)-st roots of unity. If the order of a modulo p equals k, that is

op(a) = k, then a ∈ Fp is a primitive k-th root of unity. Theorem 13.39 tells us
that in Fp there is a primitive (p− 1)-st root of unity.

Roots of unity have a role in solving equations of type xm − a = 0 with a ̸= 0. If
such an equation has a solution x = b and if the field has a primitive m-th root of
unity ζ, then the equation has m solutions: the elements b, ζb, ζ2b, . . . , ζm−1 are
m different zeros of the polynomial xm − a. There are no more zeros because the
degree is m. Therefore,

xm − a = (x− b)(x− ζb)(x− ζ2b) · · · (x− ζm−1b).

See also example 13.18. In chapter 18 we will determine the roots of unity in the
field Qp of the p-adic numbers and in chapter 19 those in the field C of the complex
numbers. In C there are plenty roots of unity: for each m ∈ N+ the number of
m-th roots of unity is m.
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13 Modular Arithmetic

Exercises

1. Solve in F167: 41 · x = 13.

2. Prove using modular arithmetic: 13 | 8 · 51n + 5 · 64n for all natural numbers n.

3. Let p be a prime number.

(i) Determine all x ∈ Fp satisfying x2 = 1.

(ii) Prove Wilson’s theorem: (p− 1)! ≡ −1 (mod p).

4. Determine the least natural number x satisfying:

x ≡ n− 1 (mod n)

for all natural numbers n with 2 ≤ n ≤ 10.

5. Compute #((Z/270)∗).

6. Solve in Z/16: x2 = 1.

7. In the decimal notation of a natural number it is easy to see whether it is divisible
by 2 or 5. Divisibility by 3, 9 or 11 is also easy. Let n ∈ N+ and let its decimal
notation be · · · a3a2a1a0. Show that

(i) 3 | n ⇐⇒ 3 |
∑

i ai.

(ii) 9 | n ⇐⇒ 9 |
∑

i ai.

(iii) 11 | n ⇐⇒ 11 |
∑

i(−1)iai.

8. Compute 2
1000000

in Z/55.

9. Prove that 63 | n7 − n for all n ∈ Z with 3 ∤ n.

10. Let m ∈ N+ and a ∈ Z with gcd(a,m) = 1. An alternative proof of Euler’s
theorem (theorem 13.22) is as follows . Let N be the product of all k ∈ Nm with
gcd(k,m) = 1.

(i) Show that N ∈ (Z/m)∗.

(ii) Let M be the product of all ak where gcd(k,m) = 1. Show that M = aφ(m)N .

(iii) Show that N = M .

(iv) Finish the proof of Euler’s theorem.

11. Let p be an odd prime number. The permutations σ and τ of F∗
p are defined by

σ(x) = −x and τ(x) = x−1 (for all x ∈ F∗
p).

(i) Show that σ, τ and στ are products of disjoint transpositions (2-cycles).

(ii) Determine sgn(σ), sgn(τ) and sgn(στ).

(iii) Show that there are 0 or 2 elements y ∈ F∗
p satisfying y2 = −1.

(iv) Prove that −1 is a square in Fp if and only if p ≡ 1 (mod 4).

12. Let p be an odd prime number and a ∈ F∗
p. The permutations σ and τ of F∗

p are
defined by σ(x) = ax and τ(x) = x−1 (for all x ∈ F∗

p)
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Exercises

(i) Show that στ is a product of disjoint transpositions.

(ii) Show that there are 0 or 2 elements y ∈ F∗
p with y2 = a.

(iii) Prove that σ is an even permutation if and only if op(a) | p−1
2

.

(iv) Prove that a is a square in Fp if and only if op(a) | p−1
2

.

13. By the Chinese Remainder Theorem exponentiation in Z/m corresponds to simulta-
neous exponentiation in Z/pvp(m) for each prime divisor p of m. For exponentiation
in a Z/pr, where p is a prime number and r ∈ N+, there are two cases.

(i) Let a ∈ Z with p ∤ a. Show that apr−1(p−1) ≡ 1 (mod pr).

(ii) Let a ∈ Z with p | a. Show that there is an N ∈ N with aN ≡ 0 (mod pr).
What is the least N having this property?

14. Let p and q be different odd prime numbers. What is the maximal order in (Z/pq)∗ ?
(Hint: use the Chinese Remainder Theorem.)

15. Let p be an odd prime number.

(i) Show that there is a primitive root modulo 2p.

(ii) Show that there is a primitive root modulo 4p.

(iii) Show that there is no primitive root modulo 8p.

16. (i) Prove that v2(5
2n − 1) = n+ 2 for all n ∈ N.

(ii) Let n ∈ N+. Determine the order of 5 modulo 2n.

17. We do arithmetic modulo 65. Determine 3
65

in three ways:

(i) by exponentiation while doing arithmetic modulo 65,

(ii) by using Euler’s theorem,

(iii) by using the Chinese Remainder Theorem.

18. Again exercise 11(iv). Now using the existence of a primitive root modulo a prime
number. Let p be an odd prime number.

(i) Prove that −1 is a square in Fp if and only if there is an a ∈ Z with op(a) = 4.

(ii) Prove that there is an a ∈ Z with op(a) = 4 if and only if p ≡ 1 (mod 4).

19. Let p a be an odd prime number and g a primitive root modulo p.

(i) Show that p− 1 | op2(g).
(ii) Show that op2(g

p) = p− 1.

(iii) Show that op2(p+ 1) = p.

(iv) Prove that there is a primitive root modulo p2.

20. (i) Determine the remainder of 572727272 after division by 72.

(ii) Determine the remainder of 272727272 after division by 72.

21. Let p and q be different odd prime numbers. Prove that 2
(p−1)(q−1)

2 ≡ 1 (mod pq).
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13 Modular Arithmetic

22. (i) Show that 25
36

≡ 2 (mod 109).

(ii) Determine the remainder of 26
36

after division by 109.

23. Let p and q be different prime numbers. Prove that

pq−1 + qp−1 ≡ 1 (mod pq).

24. Let p be a prime number and k ∈ N with k ≤ p. Prove that(
p− 1

k

)
≡ (−1)k (mod p).

25. For a, b ∈ Z we define a transformation τa,b : F5 → F5 by τa,b(x) = ax+ b.

(i) Prove that τa,b is a permutation if and only if 5 ∤ a. How many permutations
of F5 are there of this type?

(ii) Let G be the set of permutations τa,b of F5 with a, b ∈ Z and 5 ∤ a. Let σ ∈ G.
Show that σ−1 ∈ G.

(iii) Prove that for all m ∈ N

τm
2,1 = 1 ⇐⇒ 4 | m.

26. Let a ∈ N+ and p a prime number. The transformation σ of the set ap is defined
by

σ(a1, a2, . . . , ap) = (a2, . . . , ap, a1) (for a1, . . . , ap ∈ a).

(i) Show that σ is a permutation with orbits having 1 and p elements.

(ii) How many elements of ap belong to an orbit of p elements?

(iii) Prove Fermat’s Little Theorem using the previous part of this exercise.

27. We consider the sequence f0, f1, f2, . . . of Fibonacci numbers (with f0 = 0 and
f1 = 1). Given is an m ∈ N+.

(i) Prove that for all k ∈ N:

fm+k ≡ fm−1fk (mod fm).

(ii) Prove that for all l ∈ N+:

flm ≡ fm−1f(l−1)m (mod fm).

(iii) Prove that for all l ∈ N we have fm | flm.
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14 Quadratic Residues

A well-known problem is: which natural numbers are representable as the sum of
two squares? In principle it is possible to determine whether a given n ∈ N+ is
such a sum since there are only finitely many squares ≤ n. We will show that the
existence of a solution depends on the prime factorization of n. This was stated by
Fermat, but, which is less known, also the French mathematician Albert Girard
(1595-1632) did so before Fermat. It was not his habit to publish, but later others,
among them Euler, did publish proofs for Fermat’s results. A more general problem
is about writing numbers in the form x2 − ay2 with x, y ∈ Z, where a is a given
integer. For a = −1 this is the sum of two squares problem. In section 14.1 we will
show that this ‘representation problem’ leads to the question: for which odd prime
numbers p is a a square in the field Fp ? In the sections 14.2 up to 14.7 the theory
of squares in fields Fp is treated. It culminates in the Quadratic Reciprocity Law
(section 14.5). In section 14.7 a technique for extracting square roots of squares
in Fp is discussed. In the last section the theory of quadratic residues is applied
to the aforementioned representation problems. In the next chapter a completely
different application is given: the determination whether a number is prime or
composite.

14.1 Representation by Quadratic Forms (1)

14.1 Definition. Let R be a commutative ring. A polynomial in x and y of type
ax2 + bxy + cy2 with a, b, c ∈ R and (a, b, c) ̸= (0, 0, 0) is called a quadratic form
in x and y over R. Quadratic forms over Z are also called integral quadratic forms
and those over Q rational quadratic forms.

More generally a form of degree d is a homogeneous polynomial of degree d. A
polynomial in x1, . . . , xn being homogeneous of degree d if it is a sum of terms
axk1

1 · · ·xkn
n with k1 + · · ·+ kn = d and a an element of the ring.

In this chapter we consider only integral quadratic forms x2 − ay2 with a ̸= 0.
Gauß developed a beautiful theory for integral quadratic forms in general, but this
theory is not in the scope of this book.

14.2 Definition. Let a ∈ Z, not a square. We say that an n ∈ Z is representable
by the form x2 − ay2 if there are x, y ∈ Z such that x2 − ay2 = n.
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14 Quadratic Residues

For a given a we will study the following problem:

Which n ∈ Z are representable by the form x2 − ay2 ?

Thus for every nonsquare a we have a representation problem. For a = −1 this is
the problem

Which integers are the sum of two squares?

In this section we will solve this last problem. We will see that the representability
of an n as a sum of two squares depends on its prime factorization. A first important
step is a remark by Euler:

14.3 Lemma (Euler). If m and n are representable by the form x2 − ay2, then
so is mn.

PROOF. This follows from the identity

(x2 − ay2)(u2 − av2) = (xu+ ayv)2 − a(yu+ xv)2.

The following notion was introduced by Euler.

14.4 Definition. Let a ∈ Z be a nonsquare. An odd prime number p is called an
essential prime divisor of the form x2 − ay2 if there are x, y ∈ Z such that p ∤ a,
gcd(x, y) = 1 and p | x2 − ay2.

Note that a common divisor of x and y is a divisor of x2 − ay2. A divisor of a is a
divisor of 02 − a · 12 and 2 is a divisor of 12 − a · 12 if a is odd.

14.5 Proposition. Let a ∈ Z with a ̸= 0 and let p be an odd prime number. Then
the following are equivalent:

(i) p is an essential prime divisor of the form x2 − ay2,
(ii) a is a square in Fp.

PROOF.

(i)⇒(ii) There are x, y ∈ Z with gcd(x, y) = 1 and p | x2 − ay2. Then in Fp we have
x2 = a·y2. Moreover y ̸= 0, because otherwise p | gcd(x, y). So a = (x·y−1)2.

(ii)⇒(i) There is an x ∈ Z with a = x2 in Fp. From p ∤ a follows x ̸= 0. Since
a ≡ x2 (mod p), there is an integer k such that a = x2+kp, that is x2−a·12 =
−kp.

14.6 Example. Though −5 is a square in F3, the number 3 is not representable
by the form x2 + 5y2. If a prime number p is representable by a form x2 − ay2,
then p is an essential prime divisor of that form. The converse does not hold.
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14.1 Representation by Quadratic Forms (1)

Axel Thue (Tønsberg 1863 – Oslo 1922)

The Norwegian mathematician Thue contributed signifi-
cantly to the theory of Diophantine equations. Other impor-
tant work concerned the theory of ‘semigroups’ (sets with an
associative operation). He was professor in applied mathe-
matics. A quote from him on applied mathematics: “The
further removed from usefulness or practical application, the
more important.”

So the essential prime divisors of the form x2 − ay2 are the odd prime numbers p
for which a is a square in F∗

p. At first sight the determination of these essential
prime divisors seems to be impossible: there is an infinity of prime numbers. Nev-
ertheless a regularity can be discovered. This regularity is given by the Quadratic
Reciprocity Law (theorem 14.26), the most important theorem of this chapter.

Sums of two squares

In the exercises 11 and 18 of chapter 13 it is shown in two ways that for odd prime
numbers p the residue class −1 is a square in Fp if and only if p ≡ 1 (mod 4). In this
chapter we will see some more proofs of this: Corollary 14.20 and example 14.23.
For the case a = −1 this is the kind of regularity we are looking for. Later we will
see that there is such a regularity in general.

So by proposition 14.5 the essential prime divisors of the form x2 + y2 are the
prime numbers p with p ≡ 1 (mod 4). In this case these prime numbers not only
are essential prime divisors, they are representable by the form x2+y2 themselves.
We present a proof using Dirichlet’s principle (theorem 5.35). The idea of the proof
comes from the Norwegian mathematician Thue.

14.7 Lemma. Let p be a prime number and s ∈ Z. Then there are x, y ∈ Z with
p | x2 − s2y2, x and y not both 0, and x2, y2 < p.

PROOF. Let t be the natural number satisfying (t− 1)2 < p < t2. The set N2
t has

t2 elements, being more than p. Therefore, the map

N2
t → Fp, (a, b) 7→ a+ sb

is not injective. So there exist (a, b), (c, d) ∈ N2
t with (a, b) ̸= (c, d) and a + sb ≡

c + sd (mod p), that is a − c ≡ s(d − b) (mod p). Put x = a − c and y = d − b.
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14 Quadratic Residues

Then −(t − 1) ≤ x, y ≤ t − 1 and so x2, y2 ≤ (t − 1)2 < p. From x ≡ sy (mod p)
follows p | x2 − s2y2. These x and y are not both 0, since (a, b) ̸= (c, d).

14.8 Theorem. Let p be a prime number with p ≡ 1 (mod 4). Then there are
x, y ∈ Z with p = x2 + y2.

PROOF. There is an s ∈ Z with s2 ≡ −1 (mod p). From lemma 14.7 follows that
there are x, y in Z with p | x2 + y2 and 0 < x2 + y2 < p + p = 2p. From this it
follows that x2 + y2 = p.

Now it is easy to describe the representability of an n ∈ N+ by the form x2 + y2 in
terms of the prime factorization of n.

14.9 Theorem. Let n ∈ N+. Then n is representable by the form x2 + y2 if and
only if vp(n) is even for all prime numbers p with p ≡ 3 (mod 4).

PROOF. If vp(n) is even for all prime numbers p with p ≡ 3 (mod 4), then n is a
product of factors of the form

a) prime number p with p ≡ 1 (mod 4),
b) p2 with p a prime number ≡ 3 (mod 4),
c) 2.

Each of these factors is representable by the form x2+y2 and so is n by lemma 14.3.

Suppose n = x2 + y2 for certain x, y ∈ Z. Let p | n with p ≡ 3 (mod 4). Then
to prove that vp(n) is even. Let d = gcd(x, y). Then x = dx0 and y = dy0
with x0, y0 ∈ Z and we have gcd(x0, y0) = 1. Then n = d2(x20 + y20). Since p
is not an essential prime divisor and gcd(x0, y0) = 1, we have p ∤ x20 + y20 . So
vp(n) = vp(d

2) = 2vp(d).

14.2 Squares in Fp

In this section p is an odd prime number. The field Fp consists of the residue
classes modulo p:

Fp = {0, 1, 2, . . . , p− 1}.

Only the element 0 has no inverse:

F∗
p = {1, 2, . . . , p− 1}.

14.10 Definition. Let a ∈ Z. Then a ∈ Fp is called a square in Fp if there is a

b ∈ Z with b
2
= a. We then also say that a is a square modulo p or that a is a

quadratic residue modulo p. Integers which are not squares modulo p are called
nonsquares modulo p.
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14.2 Squares in Fp

14.11 Example. In F∗
13 we have:

a : 1 2 3 4 5 6 7 8 9 10 11 12

a2 : 1 4 9 3 12 10 10 12 3 9 4 1

So the squares in F∗
13 are: 1, 3, 4, 9, 10 and 12. There are 6 of them, that is half of

#(F∗
13) = 12.

14.12 Proposition. If a ∈ F∗
p is a square, then it is the square of exactly two

elements.

PROOF. Let a = b
2
. If for x ∈ F∗

p we have x2 = a, then

0 = x2 − a = x2 − b
2
= (x− b)(x+ b),

so x − b = 0 or x + b = 0, that is x = b or x = −b. Since b ̸= 0 there are two
solutions. Note that we used that p is odd: b ̸= −b.

14.13 Proposition. In F∗
p there are exactly p−1

2 squares.

PROOF. Consider the transformation

F∗
p → F∗

p, x 7→ x2.

There are exactly 2 elements in the inverse image of each of the image elements.
So the number of image elements is p−1

2 .

So in F∗
p there are as many squares as there are nonsquares.

By Fermat’s Little Theorem a
p−1

= 1 for every a ∈ F∗
p. The power a

p−1
2 determines

whether a is a square or not:

14.14 Theorem (Euler’s Criterion). For a ∈ F∗
p we have:

a is a square in Fp ⇐⇒ a
p−1
2 = 1.

PROOF. Since a ̸= 0 we have a
p−1 − 1 = 0. So(

a
p−1
2 − 1

)(
a

p−1
2 + 1

)
= 0.

All p−1
2 squares are zeros of the polynomial x

p−1
2 − 1: if a = b

2
, then

a
p−1
2 − 1 = b

2 p−1
2 − 1 = b

p−1
− 1 = 0.

Because the polynomial x
p−1
2 − 1 is of degree p−1

2 , it has no more zeros. So a

nonsquare is not a zero of this polynomial, but it is a zero of x
p−1
2 + 1.
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Adrien-Marie Legendre (Paris 1752 – Paris 1832)

The quadratic reciprocity law (see theorem 14.26) was
treated by Legendre extensively, however the proof he gave
was not complete. As a matter of fact the quadratic reci-
procity law was described earlier by Euler (and he too did
not prove it, though he came close to a proof). In later work
on number theory (Théorie des nombres) Legendre gave the
proof found by Gauß.

His Eléments de géométrie replaced the Elements of Euclid
and was since then the basis for many textbooks on geom-
etry. His work on ‘elliptic integrals’ was of importance for
mathematical physics. He showed in a relatively simple way
that the number π is not rational.

The only known portrait of Legendre is this caricature. Of-
ten erroneously a portrait of the politician and contemporary
Louis Legendre is shown.

A direct consequence is:

14.15 Corollary. For a, b ∈ F∗
p we have: ab is a square if and only if a and b both

are squares or both are nonsquares.

PROOF. This follows from ab
p−1
2

= a
p−1
2
b

p−1
2
.

14.3 The Legendre Symbol

The Legendre symbol
(
a
p

)
indicates whether a is a square modulo p.

14.16 Definition. Let p an odd prime number and a ∈ Z. We define:

(
a

p

)
=


0 if p | a,
1 if p ∤ a and a is a square in Fp,
−1 if p ∤ a and a is not a square in Fp.(

a
p

)
is called a Legendre symbol.

By definition the Legendre symbol
(
a
p

)
depends only on the residue class of a

modulo p:

14.17 Proposition. Let p be an odd prime number and a, b ∈ Z with a ≡ b (mod p).
Then

(
a
p

)
=
(
b
p

)
.
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14.4 Gauß’s Criterion

We will formulate the results on squares in Fp in terms of Legendre symbols. First
a reformulation of Euler’s Criterion (theorem 14.14):

14.18 Theorem (Euler’s Criterion). Let a ∈ Z and p an odd prime number.
Then (

a

p

)
≡ a

p−1
2 (mod p).

The following proposition is a reformulation of Corollary 14.15:

14.19 Proposition. Let p be an odd prime number. Then for all a, b ∈ Z:(
ab

p

)
=

(
a

p

)(
b

p

)
.

From Euler’s Criterion follows:

14.20 Corollary. Let p be an odd prime number. Then(
−1

p

)
= (−1)

p−1
2 .

PROOF. This follows from:
(−1
p

)
≡ (−1)

p−1
2 (mod p).

This is equivalent to:

−1 is a square modulo p ⇐⇒ p ≡ 1 (mod 4).

Example 14.11 is the case p = 13. Indeed, −1 is a quadratic residue: −1 ≡ 12 ≡
52 (mod 13).

14.21 Example. We use Euler’s Criterion to see whether 3 is a quadratic residue

modulo 19. We compute 3
19−1

2 :

3
19−1

2 = 39 = (33)3 = 273 ≡ 83 ≡ 512 ≡ 18 ≡ −1 (mod 19).

So 3 is not a quadratic residue modulo 19.

14.4 Gauß’s Criterion

Gauß was the first to prove the quadratic reciprocity law. According to his diary
this was on April 8th in 1796. Gauß was very proud of this. He gave it the name
Theorema Aureum, the golden theorem. Eventually he had six proofs. Nowadays
many more proofs are known. One of Gauß’s proofs, the third, is based on the
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14 Quadratic Residues

Carl Friedrich Gauß (Brunswick 1777 – Göttingen 1855)

Gauß’s influence was enormous, in mathematics, in physics
and in astronomy. Already at an early age he showed a reg-
ular 17-gon to be constructible with straight edge and com-
pass. Such construction problems dated from the Greek an-
tiquity. With the rise of algebra such problems became feasi-
ble. Gauß made many contributions to a variety of subjects:
number theory, analysis, differential geometry, geodesics, as-
tronomy, magnetism, optics.

so-called Gauß’s Criterion. For this we group the elements of F∗
p in pairs {s,−s}.

Thus we have a partition of F∗
p:

Φ = { {s,−s} | s ∈ F∗
p }.

It is the partition of F∗
p determined by the map F∗

p → F∗
p, x 7→ x2. Let S be a

system of representatives of this partition, for example

S = { 1, 2, . . . , p−1
2 }.

Thus F∗
p is partitioned into two halves: S and −S = {−s | s ∈ S }. Multiplication

by a is a permutation of F∗
p. It induces a permutation of the set Φ. Let y ∈ F∗

p be
the product of all s ∈ S:

y =
∏
s∈S

s.

The set aS (= { a · s | s ∈ S }) is also a system of representatives. We have:

a
p−1
2 y = a

p−1
2
∏
s∈S

s =
∏
s∈S

a · s = (−1)N
∏
s∈S

s = (−1)Ny,

where N is the number of the s ∈ S with a · s ∈ −S, that is N = #(aS ∩ −S).
because y ̸= 0 it follows that a

p−1
2 = (−1)N . Thus now we have, using Euler’s

Criterion:

14.22 Theorem (Gauß’s Criterion). Let p be an odd prime number. Let S be a
subset of F∗

p such that S ∪−S = F∗
p and S ∩−S = ∅. Then for all a ∈ Z with p ∤ a:(

a

p

)
= (−1)#(aS∩−S).
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14.4 Gauß’s Criterion

14.23 Example. Again we compute
(−1
p

)
, now using Gauß’s Criterion. Under

multiplication by −1 the subset S maps to −S. So:(
−1

p

)
= (−1)#(−S∩−S) = (−1)#(−S) = (−1)

p−1
2 .

We will compute the Legendre symbol
(
2
p

)
using Gauß’ Criterion. We take

S = { 1, 2, . . . , p−1
2 }.

Then

−S = { p+1
2 , p+3

2 , . . . , p− 1 }.

The elements of S are represented by the integers a with 0 < a < p
2 and those of

−S by the integers a with p
2 < a < p. Then the question becomes: for which of the

a with 0 < a < p
2 does p

2 < 2a < p hold? So to determine the number of integers
a with p

4 < a < p
2 . We distinguish two cases.

a) For p ≡ 1 (mod 4) these are the integers p+3
4 , . . . , p−1

2 .

Their number is p−1
2 − p−1

4 = p−1
4 .

b) For p ≡ 3 (mod 4) these are the integers p+1
4 , . . . , p−1

2 .

Their number is p−1
2 − p−3

4 = p+1
4 .

We only need the parity of these numbers, i.e. whether they are even or odd. We
have

p2 − 1

8
=

{
p−1
4

p+1
2 ≡ p−1

4 (mod 2) if p ≡ 1 (mod 4),
p−1
2

p+1
4 ≡ p+1

4 (mod 2) if p ≡ 3 (mod 4).

So we proved:

14.24 Theorem. Let p be an odd prime number. Then(
2

p

)
= (−1)

p2−1
8 .

Put differently: 2 is a quadratic residue modulo p ⇐⇒ p ≡ ±1 (mod 8).

14.25 Example. We already saw in example 14.21 that 3 is not a quadratic
residue modulo 19. Now we use Gauß’s Criterion. We look at the pairs {a,−a}
and their images under multiplication by 3:
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a −a 3a −3a

1 −1 3 −3

2 −2 6 −6

3 −3 9 −9

4 −4 −7 7

5 −5 −4 4

6 −6 −1 1

7 −7 2 −2

8 −8 5 −5

9 −9 8 −8

So
(
3
19

)
= (−1)3 = −1.

14.5 The Quadratic Reciprocity Law

The Quadratic Reciprocity Law relates
(
p
q

)
and

(
q
p

)
for two odd prime numbers p

and q. This law makes it possible to decide by means of a simple computation
whether an integer is a quadratic residue modulo a given prime. It can also be
used to answer questions like: modulo which prime numbers is a given a a square?
The proof given here is from Frobenius. It is an elementary proof that uses Gauß’s
Criterion.

14.26 Theorem (The Quadratic Reciprocity Law). Let p and q be odd prime
numbers with p ̸= q. Then (

p

q

)
·
(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Put differently:

(
q

p

)
=


−

(
p

q

)
if p ≡ q ≡ 3 (mod 4),(

p

q

)
otherwise.

PROOF. Take S = {1, . . . , p−1
2 } ⊆ F∗

p. Then:

#(qS ∩ −S) =
#{x ∈ N | 1 ≤ x ≤ p−1

2 and there is a y ∈ Z such that −p
2 < qx− py < 0 }.
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Figure 14.1: To the proof of the quadratic reciprocity law

Note that for each x there is at most one y, and that, if 0 < x < p
2 and −p

2 <

qx− py < 0, then qx < py < qx+ p
2 and so 0 < y < q+1

2 , that is 1 ≤ y ≤ q−1
2 . So:

#(qS∩−S) = #{ (x, y) ∈ N2 | 1 ≤ x ≤ p−1
2 , 1 ≤ y ≤ q−1

2 and −p
2 < qx− py < 0 }.

Now for S′ = {1, . . . , q−1
2 } ⊆ F∗

q :

#(pS′ ∩ −S′)

= #{ (x, y) ∈ N2 | 1 ≤ x ≤ q−1
2 , 1 ≤ y ≤ p−1

2 and − q
2 < px− qy < 0 }

= #{ (x, y) ∈ N2 | 1 ≤ x ≤ p−1
2 , 1 ≤ y ≤ q−1

2 and 0 < qx− py < q
2 }.

Hence:
(
p
q

)(
q
p

)
= (−1)N with

N = #{ (x, y) ∈ N2 | 1 ≤ x ≤ p−1
2 , 1 ≤ y ≤ q−1

2 and −p
2 < qx− py < q

2 }.

So we have (see Figure 14.1): N = #(lattice points in I), and since

#(lattice points in II) = #(lattice points in III),

we have

N + 2 ·#(lattice points in II) = p−1
2 · q−1

2 .

This can also be seen as follows. What matters is the parity of the number of
lattice points I. Because of the symmetry of I w.r.t. the middle of the rectangle,
this number is odd if and only if this middle is a lattice point. This last is the case
if and only if both p−1

2
and q−1

2
are odd, that is if and only if p ≡ q ≡ 3 (mod 4).
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Ferdinand Georg Frobenius (Berlin 1849 – Berlin 1917)

Georg Frobenius was a pupil of Weierstraß. He contributed
in an essential way to group theory and number theory. In
1891 he succeeded Kronecker as a professor in Berlin. He
had a difficult character, which was not helpful for having
good relationships between the institutes of mathematics in
Berlin and Göttingen, in those times the most important
ones in Germany.

14.27 Example. We determine
(
3
p

)
for prime numbers p ̸= 2, 3. From the

quadratic reciprocity law follows:(
3

p

)
= (−1)

p−1
2

(
p

3

)
.

The factor (−1)
p−1
2 depends on p modulo 4 and the factor

(
p
3

)
on p modulo 3. So(

3
p

)
depends on p modulo 12. There are φ(12) = 4 cases modulo 12:

(
3

p

)
=


1 · 1 if p ≡ 1 (mod 4) and p ≡ 1 (mod 3)

1 · −1 if p ≡ 1 (mod 4) and p ≡ 2 (mod 3)

−1 · 1 if p ≡ 3 (mod 4) and p ≡ 1 (mod 3)

−1 · −1 if p ≡ 3 (mod 4) and p ≡ 2 (mod 3).

So: (
3

p

)
=

{
1 if p ≡ 1, 11 (mod 12),

−1 if p ≡ 5, 7 (mod 12).

14.28 Example. By repeated application of the quadratic reciprocity law we can
determine whether 47 is a square in F163:(

47

163

)
= −

(
163

47

)
= −

(
22

47

)
= −

(
2

47

)(
11

47

)
= −

(
11

47

)
=

(
47

11

)
=

(
3

11

)
= −

(
11

3

)
= −

(
2

3

)
= 1.

So 47 is a quadratic residue modulo 163. Thus a b ∈ Z with b2 ≡ 47 (mod 163)
is not found. Finding such a square root is another problem. We return to this
problem in section 14.7. In fact 79 is a square root of 47 modulo 163.
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Carl Jacobi (Potsdam 1804 – Berlin 1851)

Jacobi contributed to number theory already at an early age.
Later he also worked on elliptical integrals and differential
equations. The ‘Jacobian’ in the theory of functions of sev-
eral variables is named after him; he wrote extensively on
this, but it had already been introduced by Cauchy.

14.6 The Jacobi Symbol

The Quadratic Reciprocity Law can be used for the computation of Legendre sym-
bols. A complication is that for the application of quadratic reciprocity to

(
a
p

)
the integer a has to be factorized. That can be avoided completely by extending
the Legendre symbol to the more general Jacobi symbol for which analogous rules
hold.

14.29 Definition. Let a and b be integers with b odd and positive. We define the
Jacobi symbol

(
a
b

)
by (

a

b

)
=
∏
p

(
a

p

)vp(b)
.

That is: if b = p1p2 · · · pr (p1, . . . , pr being prime numbers), then(
a

b

)
=

(
a

p1

)(
a

p2

)
· · ·

(
a

pr

)
.

Since b is odd, all prime factors pi are odd as well. (For b = 1 there are 0 prime
factors and the product equals 1.)

Simple properties of the Jacobi symbol are:

14.30 Proposition. Let a, a1, a2, b, b1 and b2 be integers with b, b1 and b2 odd
and positive. Then

(i)

(
a

b

)
= 0 ⇐⇒ gcd(a, b) > 1.

(ii) If a1 ≡ a2 (mod b), then

(
a1
b

)
=

(
a2
b

)
.

(iii)

(
a1a2
b

)
=

(
a1
b

)(
a2
b

)
.
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(iv)

(
a

b1b2

)
=

(
a

b1

)(
a

b2

)
.

PROOF.

(i) From the definition of the Jacobi symbol it follows that
(
a
b

)
= 0 if and only

if there is a prime divisor p of b such that
(
a
p

)
= 0, that is p | a.

(ii) If a1 ≡ a2 (mod b), then a1 ≡ a2 (mod p) for all prime divisors p of b.
(iii) (

a1a2
b

)
=
∏
p

(
a1a2
p

)vp(b)
=
∏
p

(
a1
p

)vp(b)
·
∏
p

(
a2
p

)vp(b)
=

(
a1
b

)(
a2
b

)
.

(iv) (
a

b1b2

)
=
∏
p

(
a

p

)vp(b1b2)
=
∏
p

(
a

p

)vp(b1)+vp(b2)

=
∏
p

(
a

p

)vp(b1)
·
∏
p

(
a

p

)vp(b2)
=

(
a

b1

)(
a

b2

)
.

The extension of the rules for the Legendre symbol to the Jacobi symbol rests on
the following lemma.

14.31 Lemma. Let m and n be odd natural numbers. Then

(i) mn−1
2 ≡ m−1

2 + n−1
2 (mod 2).

(ii) (mn)2−1
8 ≡ m2−1

8 + n2−1
8 (mod 2).

PROOF.

(i) Since both m − 1 and n − 1 are even, we have (m − 1)(n − 1) ≡ 0 (mod 4).
So mn− 1 ≡ (m− 1)+ (n− 1) (mod 4), that is mn−1

2 ≡ m−1
2 + n−1

2 (mod 2).
(ii) Since both m2 − 1 and n2 − 1 are multiples of 8, we have (m2 − 1)(n2 − 1) ≡

0 (mod 16). So m2n2 − 1 ≡ (m2 − 1) + (n2 − 1) (mod 16), that is (mn)2−1
8 ≡

m2−1
8 + n2−1

8 (mod 2).

These lemmas are about two odd numbers m and n. By induction it follows easily
that more generally for odd m1, . . . ,mt:

m1 · · ·mt − 1

2
≡ m1 − 1

2
+ · · ·+ mt − 1

2
(mod 2)

(m1 · · ·mt)
2 − 1

8
≡ m2

1 − 1

8
+ · · ·+ m2

t − 1

8
(mod 2).

We apply this to the prime factorization of an odd number.
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14.32 Corollary. Let a be an odd natural number. Then

a− 1

2
≡
∑
p

vp(a)
p− 1

2
(mod 2) and

a2 − 1

8
≡
∑
p

vp(a)
p2 − 1

8
(mod 2).

PROOF.

a− 1

2
=

∏
p p

vp(a) − 1

2
≡
∑
p

vp(a)
p− 1

2
(mod 2),

a2 − 1

8
=

∏
p p

2vp(a) − 1

8
≡
∑
p

vp(a)
p2 − 1

8
(mod 2).

14.33 Theorem. Let a and b be odd positive integers with gcd(a, b) = 1. Then:

(i)

(
−1

a

)
= (−1)

a−1
2 .

(ii)

(
2

a

)
= (−1)

a2−1
8 .

(iii)

(
a

b

)(
b

a

)
= (−1)

a−1
2

b−1
2

PROOF. We use Corollary 14.32.

(i) (
−1

a

)
=
∏
p

(
−1

p

)vp(a)
=
∏
p

(−1)vp(a)
p−1
2 = (−1)

∑
p vp(a)

p−1
2 = (−1)

a−1
2 .

(ii) Analogous to part (i).
(iii) (

a

b

)(
b

a

)
=
∏
q

(
a

q

)vq(b)
·
∏
p

(
b

p

)vp(a)

=
∏
q

∏
p

(
p

q

)vp(a)vq(b)
·
∏
p

∏
q

(
q

p

)vq(b)vp(a)

=
∏
p

∏
q

((
p

q

)(
q

p

))vp(a)vq(b)
=
∏
p

∏
q

(−1)vp(a)vq(b)
p−1
2

q−1
2

= (−1)N

with

N =
∑
p

∑
q

vp(a)vq(b)
p− 1

2

q − 1

2
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=

(∑
p

vp(a)
p− 1

2

)(∑
q

vq(b)
q − 1

2

)
≡ a− 1

2

b− 1

2
(mod 2).

14.34 Example. Is 54321 a quadratic residue modulo the prime number 73673?(
54321

73673

)
=

(
73673

54321

)
=

(
19352

54321

)
=

(
23 · 2419
54321

)
=

(
2419

54321

)
=

(
54321

2419

)
=

(
1103

2419

)
= −

(
2419

1103

)
= −

(
213

1103

)
= −

(
1103

213

)
= −

(
38

213

)
= −

(
2 · 19
213

)
=

(
19

213

)
=

(
213

19

)
=

(
4

19

)
= 1.

So it is a quadratic residue.

Python

The method followed in the above example is very much like the Euclidean algo-
rithm. Here you start with two numbers with greatest common divisor equal to 1
and in every step factors 2 are taken apart and the sign is adjusted.

arithmetics.py
def factors2(a):

v2 = 0

while a % 2 == 0:

a, v2 = a // 2, v2 + 1

return a, v2

def jacobi(a, b):

p = 0

a, b = a % b, b

if a == 0: return 0

f2 = factors2(a)

a, b, p = f2[0], b, (f2[1] * ((b * b - 1) // 8) + p) % 2

while a > 1:

a, b, p = b % a, a, ((a - 1) * (b - 1) % 8) // 4 + p % 2

if a == 0: return 0

else:

f2 = factors2(a)

a, b, p = f2[0], b, (f2[1] * ((b * b - 1) // 8) + p)\

% 2

return (-1)**p

>>> jacobi(3, 19)

-1

>>> jacobi(543456543409090, 234452611773869)

1
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14.7 Square Roots in Fp

If we know that a is a square in the field Fp, for example by computing
(
a
p

)
, Then

that does not mean that we know a square root of a. In this section it is shown
that extracting square roots in Fp can be done by exponentiation. As we have seen
exponentiation in modular arithmetic can be done fast. We start with a simple
case.

14.35 Proposition. Let p be a prime number with p ≡ 3 (mod 4). Let a (with p ∤ a)
be a quadratic residue modulo p. Then for b = a

p+1
4 we have b2 ≡ a (mod p).

PROOF. This follows from Euler’s Criterion:

b2 ≡ a
p+1
2 ≡ a

p−1
2 a ≡

(
a

p

)
a ≡ a (mod p).

A bit more complicated case:

14.36 Proposition. Let p be a prime number with p ≡ 5 (mod 8). Let a (with

p ∤ a) be a quadratic residue modulo p. Then for b = a
p+3
8 and c = 2

p−1
4 b we have

b2 ≡ a (mod p) or c2 ≡ a (mod p).

PROOF. Let k = op(a) and let p − 1 = 4t. Then t is odd. We have k | p−1
2 , say

k = 2ik0 with k0 | t and i = 0 or i = 1. Then gcd(k, p−1
4 )(= gcd(k, t)) is odd. So

from proposition 13.33 follows

op(a
p−1
4 ) =

k

gcd(k, t)
=

2ik0
k0

= 2i.

For i = 0 we have
b2 = a

p+3
4 = a

p−1
4 a ≡ a (mod p)

and for i = 1
c2 = 2

p−1
2 a

p−1
4 a ≡ (−1)(−1)a (mod p).

The case p ≡ 1 (mod 8) remains.

14.37 Proposition. Let p be a prime number with p ≡ 1 (mod 8), say p− 1 = 2st
with s ≥ 3 and t odd. Let a (with p ∤ a) be a quadratic residue modulo p. Choose
an integer d such that

(
d
p

)
= −1. Then there is a j with 0 ≤ 2j ≤ 2s such that

b = a
t+1
2 dt(2

s−1−j) satisfies b2 ≡ a (mod p).

PROOF. From op(d) ∤ p−1
2 (= 2s−1t) follows op(d

t) ∤ 2s−1. So op(d
t) = 2s, because

op(d
t) | 2s. We also have op(a

t) | 2s. So at is an even power of d
t
, say at = d

t·2j

with j such that 0 ≤ 2j ≤ 2s, that is 0 ≤ j ≤ 2s−1. Then

at · dt(2
s−2j) ≡ 1 (mod p),
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and so
at+1 · dt(2

s−2j) ≡ a (mod p),

that is (
a

t+1
2 · dt(2

s−1−j)
)2

≡ a (mod p).

This proposition is a special case of a result published in 1891 by the Italian math-
ematician Alberto Tonelli (1850-1920). It inspired the American mathematician
Daniel Shanks (1917-1996) what is now called the Tonelli-Shanks algorithm for
finding square roots.

14.38 Example. From
(
5
89

)
=
(
89
5

)
=
(
4
5

)
= 1 it follows that 5 is a quadratic

residue modulo 89. Now 89 is a small number and the square root of 5 is easily found
by trying. However, we apply proposition 14.37. We have 89 − 1 = 88 = 23 · 11.
First we compute 5

11
:

52 = 25

54 = 625 ≡ 2 (mod 89)

55 ≡ 10 (mod 89)

510 ≡ 100 ≡ 11 (mod 89)

511 ≡ 55 (mod 89).

We look for a d with
(
d
89

)
= −1. From

(
3
89

)
=
(
89
3

)
=
(
2
3

)
= −1 follows that we can

choose d = 3. Next we compute 3
11
:

32 = 9

34 = 81

35 = 243 ≡ 65 (mod 89)

310 ≡ 4225 ≡ 42 (mod 89)

311 ≡ 126 ≡ 37 (mod 89).

We have o89(37) = 8 and also o89(55) | 8. So 55 is a power of 37
2
(= 34):

342 = 1156 ≡ 88 ≡ −1 (mod 89)

343 ≡ −34 ≡ 55 (mod 89)

So 376 ≡ 55 (mod 89). Now we have 511372 ≡ 1 (mod 89). So

5 ≡ 512 · 372 ≡ (56 · 37)2 ≡ (50 · 37)2 ≡ (1850)2 ≡ 702 (mod 89).
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Python

According to the above propositions extraction of square roots is a combination of
exponentiation and finding a nonsquare residue (in case of the last proposition). Ex-
ponentiation for modular arithmetic we already have. Finding a nonsquare residue
is a matter of trying; half of the residue classes modulo p is a nonsquare. We add a
function sqrt(a,p) which returns to a given a with

(
a
p

)
= 1 a b with b2 ≡ a (mod p).

arithmetics.py
import random

def sqrt(a, p):

a = a % p

p8 = p % 8

if p8 == 3 or p8 == 7:

return pow(a, (p + 1) // 4, p)

if p8 == 5:

x = pow(a, (p + 3) // 8, p)

c = pow(x, 2, p)

if c != a: x = modprod(x, pow(2, (p - 1) // 4, p), p)

return x

if p8 == 1:

d = 3

while jacobi(d, p)==1:

d = random.randint(2, p - 1)

t, s = factors2(p - 1)

A = pow(a, t, p)

D = pow(d, t, p)

m = 0

for i in range(s):

if pow(modprod(A, pow(D, m, p), p), 2**(s - 1 - i),

p) + 1 == p:

m = m + 2**i

return modprod(pow(a, (t + 1) // 2, p), pow(D, m // 2, p),

p)

The prime number 345676543456009933 below is found using methods of the next
chapter.

>>> jacobi(345668887987, 345676543456009933)

1

>>> sqrt(345668887987, 345676543456009933)

144398962591515745

>>> pow(144398962591515745, 2, 345676543456009933)

345668887987
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14.8 Representation by Quadratic Forms (2)

In section 14.1 we have seen which natural numbers are representable by the form
x2 + y2. We will use the quadratic reciprocity law for the representability by some
more quadratic forms. First a useful proposition.

14.39 Proposition. Let a, m and n be integers with

a) a is not a square,
b) m or −m is a prime number,
c) mn is representable by the form x2 − ay2,
d) m is representable by the form x2 − ay2.

Then also n is representable by the form x2 − ay2.

PROOF. There are integers s, t, u, v with mn = s2 − at2 and m = u2 − av2. Now
to determine x, y ∈ Z such that n = x2 − ay2. If numbers x and y satisfy this
identity, then by proposition 14.3

mn = (ux+ avy)2 − a(uy + vx)2.

Does the system

ux+ avy = s

vx+ uy = t

of equations have a solution with x, y ∈ Z ? We multiply the first equation by v and
the second by u. Subtraction yields (u2 − av2)y = ut − vs, that is my = ut − vs.
Next we find mx = us − avt. From mn = s2 − at2 and m = u2 − av2 follows
s2 ≡ at2 (mod |m|) and u2 ≡ av2 (mod |m|). Hence

u2t2 ≡ v2s2 (mod |m|) and u2s2 ≡ a2v2t2 (mod |m|),

that is
m | (ut− vs)(ut+ vs) and m | (us− avt)(us+ avt).

Since |m| is a prime number we have

m | ut− vs or m | ut+ vs

and
m | us− avt or m | us+ avt.

Replacing u by −u if necessary, makes that we can assume m | ut− vs.

Suppose m ∤ us− avt. Then m | us+ avt. From us− avt = us+ avt− 2avt
follows m ̸= ±2. Then also m ∤ us and m ∤ avt. So in particular m ∤ s, v.
Furthermore,

(us− avt)(ut+ vs) = (u2 − av2)ts+ (s2 − at2)uv = m(ts+ nuv),

288



14.8 Representation by Quadratic Forms (2)

which implies m | ut + vs and so m | 2vs. Since m ̸= ±2 we have m | vs.
Contradiction.

Hence m | us − avt. So there are x, y ∈ Z with n = x2 − ay2, namely x = us−avt
m

and y = ut−vs
m .

14.40 Representation by x2 + 2y2. The essential prime divisors of the form
x2 + 2y2 are the odd prime numbers p with

(−2
p

)
= 1.(

−2

p

)
=

(
−1

p

)(
2

p

)
= (−1)

p−1
2 (−1)

p2−1
8 = (−1)

(p−1)(p+5)
8 .

So the essential prime divisors are the prime numbers p with p ≡ 1, 3 (mod 8).

Let p be a prime number with p ≡ 1 (mod 8) or p ≡ 3 (mod 8). Then there is an
s ∈ Z with s2 ≡ −2 (mod 8). From lemma 14.7 follows that there are x, y ∈ Z
with (x, y) ̸= (0, 0), x2, y2 < p and p | x2 + 2y2. Then 0 < x2 + 2y2 < 3p and
so x2 + 2y2 = p or x2 + 2y2 = 2p. Since 2 is representable by the form x2 + 2y2,
proposition 14.39 implies that also in the second case p is representable by the form
x2 + 2y2. Analogous to the case a = −1 (theorem 14.9) we now have:

Let n ∈ N+. Then n is representable by the form x2 + 2y2 if and only
if vp(n) is even for all prime numbers p with p ≡ 5, 7 (mod 8).

14.41 Representation by x2 + 3y2. The essential prime divisors of the form
x2 + 3y2 are the prime numbers p with p ̸= 2, 3 and

(−3
p

)
= 1. From

(−3
p

)
=
(
p
3

)
these are the prime numbers p with p ≡ 1 (mod 3).

Let p be a prime number with p ≡ 1 (mod 3). Then there is an s ∈ Z with s2 ≡
−3 (mod p). From lemma 14.7 follows that there are x, y ∈ Z with (x, y) ̸= (0, 0),
x2, y2 < p and p | x2 + 3y2. Then 0 < x2 + 3y2 < 4p and so x2 + 3y2 = p,
x2+3y2 = 2p or x2+3y2 = 3p. Since 3 is representable, in the third case it follows
that p is representable. The second case does not occur, for otherwise 2 would be
a quadratic residue modulo 3. We have:

Let n ∈ N+. Then n is representable by the form x2 + 3y2 if and only
if vp(n) is even for all prime numbers p with p ≡ 2 (mod 3).

14.42 Representation by x2 − 2y2. The essential prime divisors of the form
x2 − 2y2 are the odd prime numbers p with

(
2
p

)
= 1. These are the prime numbers

p with p ≡ 1, 7 (mod 8).

Let p be a prime number with p ≡ 1, 7 (mod 8). Then there is an s ∈ Z with s2 ≡
2 (mod p). From lemma 14.7 it follows that there are x, y ∈ Z with (x, y) ̸= (0, 0),
x2, y2 < p and p | x2− 2y2. Then −2p < x2− 2y2 < p and so x2− 2y2 = −p. Since
−1 is representable, p is representable if −p is. So here we have:

Let n ∈ Z with n ̸= 0. Then n is representable by the form x2 − 2y2 if
and only if vp(n) is even for all prime numbers p with p ≡ 3, 5 (mod 8).
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14.43 Representation by x2 − 3y2. The essential prime divisors of the form
x2 − 3y2 are the prime numbers p with p ̸= 2, 3 and

(
3
p

)
= 1. By example 14.27

these are the prime numbers p with p ≡ 1, 11 (mod 12).

Let p be a prime number with p ≡ 1, 11 (mod 12). Then there is an s ∈ Z
with s2 ≡ 3 (mod p). From lemma 14.7 follows that there are x, y ∈ Z with
(x, y) ̸= (0, 0), x2, y2 < p and p | x2 − 3y2. Then −3p < x2 − 3y2 < p and so
x2 − 3y2 = −p or x2 − 3y2 = −2p. Since −2 is representable, in the second case
it follows that p is representable. In the first case we have p ≡ 2 (mod 3) and so
p ≡ 11 (mod 12). Similarly we get in the first case p ≡ 1 (mod 12). Here we have:

Let n ∈ Z. Then n is representable by the form x2 − 3y2 if and only if
vp(n) is even for all prime numbers p with p ≡ 5, 7 (mod 12) and the
sign of n is equal to (−1)N with

N = v2(n) + v3(n) +
∑

p≡11 (mod 12)

vp(n),

that is n is negative if the number of prime factors 2 plus the number
of prime factors 3 plus the number of prime factors ≡ 11 (mod 12) is
odd and otherwise n is positive.

In Chapter 21 we study the Diophantine equations x2−ay2 = 1 and x2−ay2 = −1
where a > 0 and not a square. See also the exercises 14 and 16.

Exercises

1. Let P be a finite nonempty set of prime numbers and let N be the product of these
prime numbers: N =

∏
p∈P p.

(i) Show that 4N − 1 has a prime divisor p with p ≡ 3 (mod 4).

(ii) Prove that there are infinitely many prime numbers p with p ≡ 3 (mod 4).

(iii) Show that N2 + 1 has a prime divisor p with p ≡ 1 (mod 4).

(iv) Prove that there are infinitely many prime numbers p with p ≡ 1 (mod 4).

2. Write 23 · 34 · 55 · 76 as a sum of two squares.

3. Determine all squares in F17, all fourth powers and also all eighth powers. Show
that the transformation f : F17 → F17, x 7→ x3 is bijective. The inverse of f is of
type x 7→ xm for some m ∈ N. Which m ?

4. Prove that p+1
2

is a square in Fp if and only if 2 is so.

5. For which prime numbers p is 5 a square modulo p ? And 7 ?

6. Which prime numbers are essential prime divisors of the form x2 + 7y2 ?
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Exercises

7. 123457 is a prime number. Verify that 76775 is a quadratic residue modulo 123457.
Do this using Jacobi symbols. Try to do it using Legendre symbols only.

8. Let p be an odd prime number. Let a, b and c be integers with p ∤ a. Show that
the number of solutions in Fp of the quadratic equation ax2 + bx + c = 0 is equal

to
(
b2−4ac

p

)
+ 1.

9. Let p be a prime number with p ≡ 3 (mod 4) and let 2p + 1 be a prime number
also. Verify that

(
2

2p+1

)
= 1. Derive from this that 2p + 1 | 2p − 1. (So 2p − 1 is

not a prime number if p ≡ 3 (mod 4) and p ≥ 7.)

10. Let p be an odd number. Prove that(
2

p

)
=

(
8− p

p

)
=

(
p

p− 8

)
=

(
2

p− 8

)

and derive from this the formula for
(
2
p

)
anew.

11. Let p be an odd prime number. Let g be a primitive root modulo p.

(i) Prove (without using Legendre symbols) that for k ∈ N we have: gk is a
square modulo p if and only if k is even.

(ii) Prove Euler’s Criterion using part (i).

12. Show that 7 is a square modulo the prime numbers 139, 197 and 113. Determine a
square root of 7 modulo each of these prime numbers.

13. Show that 23 · 56 · 175 is representable by the form x2 + 2y2 and also by the form
x2 − 2y2. Find such representations.

14. (i) Prove that the Diophantine equation x2 − 2y2 = 1 has infinitely many solu-
tions. (Hint: use the proof of lemma 14.3.)

(ii) Prove that also the Diophantine equation x2 − 2y2 = −1 has infinitely many
solutions.

(iii) Let n ∈ Z with n ̸= 0 be representable by the form x2 − 2y2. Prove that n is
representable by this form in infinitely many ways.

15. (i) Show that 54 · 19 · 31 is representable by the form x2 + 3y2. Find a represen-
tation. Are there others (with other |x| and |y|)?

(ii) Which of the numbers 23 · 54 · 23 and −23 · 54 · 23 is representable by the form
x2 − 3y2 ? Find a representation.

16. Prove that the Diophantine equation x2 − 3y2 = 1 has infinitely many solutions.
And the Diophantine equation x2 − 3y2 = −1 ?

17. (i) For which prime numbers p is there an x ∈ Z such that p | x2 + x− 2 ?

(ii) For which prime numbers p is there an x ∈ Z such that p | x2 + x+ 2 ?

18. Let p be an odd prime number of type x2 + 2y2 with x, y ∈ N.
(i) Are there then also u, v ∈ N with u2 + 2v2 = 2p ?
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(ii) Show that
(−2

p

)
= 1.

(iii) For which odd prime numbers q is q − 2 a quadratic residue modulo q ?

19. (i) For which prime numbers p is there an x ∈ N such that p | x2 + 7 ?

(ii) For which prime numbers p is there an x ∈ N such that p | x2 − 7 ?
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15 Prime Tests and Factorization

According to the Fundamental Theorem of Arithmetic positive integers have a
unique factorization into primes. Such a factorization contains a lot of information.
To be able to use a factorization, one needs to find it. For large numbers that is
difficult and on this difficulty cryptographic applications are based, see section 15.5.
There do exist fast algorithms for detecting whether a number is composite. Three
of such tests will be treated in section 15.2. The outcome of these tests can also
be that a number is almost certainly a prime number. In section 15.3 we describe
a test which does provide a proof that a given number is prime. Since the 70’s of
the last century better and better algorithms have been found for finding factors.
Because explicit factorization is far more difficult than proving that a number
is composite, it is clear that there are composite numbers with unknown prime
factors. An example of this is 22

20

+1, the 20-th Fermat number. First we describe
some simple techniques which are known already for many centuries.

15.1 Basic Techniques

Numbers are usually given in their decimal representation. The last digit shows
whether it is divisible by 2 or 5. For divisibility by 3 one can look at the sum of the
digits and for divisibility by 11 at their alternate sum, see exercise 7 of chapter 13.
That are useful rules for divisibility by very small primes. In general finding factors
can be difficult.

We will describe two methods which are very basic. The first is a systematic search
for divisors starting at 2. In the second a list of primes is made long enough to
contain a prime divisor if the number is composite.

15.1.1 Searching divisors

The most primitive form of looking for divisors of a number n is to divide repeatedly
by numbers less n until a remainder 0 occurs. It suffices to try only numbers d
with d2 ≤ n: to a divisor d with d2 > n corresponds the divisor n

d < d. If no
divisor is found, then n is a prime number. After trying 2 and 3 only numbers
d with gcd(d, 6) = 1 need to be tried. For such d one has d ≡ 1 (mod 6) or
d ≡ 5 (mod 6). Thus the sequence to try is 5, 7, 11, 13, 17, 19, 23, 25, . . . . This
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15 Prime Tests and Factorization

sequence is constructed by adding alternately 2 and 4. There remain unnecessary
tries (division by 25 being the first).

Factorization of numbers is practically impossible when they have only very large
prime factors. In modern cryptography the fact we are unable to do such factor-
izations is actually used. If p and q are prime numbers in the order of magnitude
of 10100, then pq is a number in the order of magnitude of 10200. The least proper
divisor is p (if p < q). To find it by trying in a systematic way around 10100

divisions have to be made. Even with 1 billion tries a second this will take more
than 1083 years. This number of years is in the order of magnitude of the number
of elementary particles in the universe.

Python

The function trial_factors(n, N) returns the partial prime factorization of n

obtained by trying only numbers less than N as divisors. If the remaining fac-
tor is less than N2, then the full prime factorization is found. The function
trial_factorization(n) returns in principle the prime factorization: it is
trial_factors(n,N) with N large enough.

arithmetics.py
def trial_factors(n, N):

factors = [n]

while factors[-1] % 2 == 0:

factors[-1:] = [2, factors[-1] // 2]

d = 3

while d**2 <= factors[-1] and d < N:

while factors[-1] % d == 0:

factors[-1:] = [d, factors[-1] // d]

d = d + 2

if factors[-1] == 1: return factors[:-1]

return factors

def trial_factorization(n):

return trial_factors(n, n)

>>> trial_factorization(364578654877)

[73, 131, 503, 75793]

15.1.2 Eratosthenes’s sieve

To produce a list of all prime numbers less than a given N proceed as follows: start
with the list 2, 3, . . . , N −1. Delete all multiples of 2, except 2 itself, 4, 6, . . . , go to
the next remaining number p, which must be prime since otherwise it would have
been deleted, delete all multiples 2p, 3p, 4p, . . . , etc. As soon as the next remaining
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Eratosthenes (Cyrene, now Libia 276 BC – Alexandria 194 BC)

Most of Eratosthenes’ work has been lost. However it has
been described by others. Apart from prime numbers he
also studied geometry, in particular straight edge and com-
pass construction problems. He is also known because of his
estimation of the Earth’s diameter.

number p satisfies p2 ≥ N the process can stop. What remains is a list of prime
numbers less than N . This procedure is known as Eratosthenes’s sieve.

Python

Start with a list of 1’s of length N . We will produce a list having a 1 on the p-th
place for prime numbers p and 0 elsewhere. First we put a 0 on the 0-th and 1st
place. Next we apply Eratosthenes’s procedure with the variation that we replace a
1 by a 0 instead of deleting the 1. That is what the function eratosthenes(N) does.
Eratosthenes’s sieve is fast, only addition is used, not multiplication. Obviously,
for large N much memory is needed. The function primes(N) converts the result
of eratosthenes(N) to a list with the prime numbers less than N .

arithmetics.py
def eratosthenes(N):

lst = N * [1]

lst[:2] = [0, 0]

i, j = 2, 4

while i**2 < N:

if lst[i] == 1:

j = i + i

while j < N:

lst[j] = 0

j = j + i

i = i + 1

return lst

def primes(N):

lst = eratosthenes(N)

return list(filter(lambda i: lst[i] == 1, range(N)))
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>>> eratosthenes(100)

[0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,

1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,

0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0]

>>> primes(100)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 6

1, 67, 71, 73, 79, 83, 89, 97]

By a minor variation a list is obtained having the least prime divisors instead of
zeros. This is realized by the function factor_table(N). Such a list can be used to
factorize numbers less than N , as is done by the function table_factorization(n).

arithmetics.py
def factor_table(N):

lst = N * [1]

i, j = 2, 4

while i**2 < N:

if lst[i] == 1:

j = i + i

while j < N:

if lst[j] == 1: lst[j]=i

j = j + i

i = i + 1

return lst

tbl=[]

def table_factorization(n):

if len(tbl) <= n: tbl[:] = factor_table(n + 1)

factors = []

while tbl[n] != 1:

factors.append(tbl[n])

n = n // tbl[n]

factors.append(n)

return factors

>>> factor_table(100)

[1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2,

1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 3, 2, 5, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3,

2, 1, 2, 7, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 3, 2, 5, 2, 1, 2,

3, 2, 1, 2, 1, 2, 3, 2, 7, 2, 1, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 2, 7,

2, 3, 2, 5, 2, 1, 2, 3]

>>> table_factorization(1874521)

[11, 19, 8969]
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15.2 Pseudoprimes

From tables it is clear that the ‘density’ of primes is less for larger numbers. The
following function by definition gives for every natural number n the number of
primes ≤ n.

15.1 Definition. We define the function π : N+ → N by

π(n) = #{ p | p is a prime number and p ≤ n }.

A table of π(n) for some n together with n
π(n) exact up to 0,1:

n π(n)
n

π(n)
10 4 2,5

102 25 4,0

103 168 6,0

104 1229 8,1

105 9592 10,4

106 78498 12,7

107 664579 15,0

108 5761455 17,4

109 50847534 19,7

1010 455052511 22,0

This table suggests an estimate for the fraction n
π(n) . We return to this briefly in

chapter 17 on page 374.

15.2 Pseudoprimes

There are theorems about prime numbers, which for composite numbers do not
hold in general. A not so interesting example is:

p is a prime number =⇒ p = 2 or p is odd,

Such a theorem can be turned into a test: verify whether a given integer n > 1
satisfies n = 2 or n is odd. If n does not pass it is composite. That is for sure. If
n does pass the test, then n could be a prime number, but not necessarily so. In
this example there are many composite numbers which pass the test, for example
all products of two odd prime numbers. In this section we we will use three more
interesting theorems.
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Robert Daniel Carmichael (Goodwater (Alabama) 1879 – Merriam (Kansas)
1967)

The Carmichael numbers are named after the American
mathematician Robert Carmichael. A still unsolved prob-
lem is also named after him: Carmichael’s totient function
conjecture. It states that, for every n ∈ N+ there is at least
one other m ∈ N+ such that φ(m) = φ(n). In 1907 stated
as a theorem, but, after he realized that the proof was false,
he stated it in 1922 as an open problem.

15.2.1 Fermat pseudoprimes

If p is a prime number, then by Fermat’s Little Theorem, see proposition 13.23,
for all a ∈ Z:

ap ≡ a (mod p).

So we have for all a, p ∈ N:

p is a prime number =⇒ ap ≡ a (mod p).

For each a ∈ N we thus have a prime test, that is if p does not pass the test, then
p is not prime. The number a is called the base of the prime test.

15.2 Definition. A composite number n is called a Fermat pseudoprime or also a
pseudoprime for the base a if an ≡ a (mod n). Fermat pseudoprimes for the base
2 are called pseudoprime for short.

Below 1010 there are 455052512 prime numbers and 14884 pseudoprimes. The least
pseudoprime is 341 (= 11 · 31). This number does not pass the test with base 3.
The test can be done for other bases than 2. Annoying is that there are composite
numbers that pass the test for all bases: the Carmichael numbers. The smaller the
probability a composite number passes the test, the better the test.

15.3 Definition. A natural number which is a Fermat pseudoprime for every base
is called a Carmichael number.

Carmichael numbers do exist. The least is 561 (= 3 · 11 · 17). In 1956 Paul Erdős
made it plausible that there are infinitely many Carmichael numbers. A proof was
given by Alford, Granville and Pomerance in 1994.
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Paul Erdős (Budapest 1913 – Warsaw 1996)

The Hungarian mathematician Paul Erdős (Hungarian:
Erdős Pál) is by many seen as the founding father of discrete
mathematics. Solving problems with other mathematicians
was his daily activity. He published around 1500 papers,
mainly together with other mathematicians, in total more
than 500 of them. This resulted in the creation of the Erdős
number, the length of the shortest path between a mathe-
matician and Erdős in the graph of all mathematicians with
co-authorships as the edges.

William Alford (1937-2003) was an American lawyer and a mathematician work-
ing in topology and number theory. Andrew Granville (1962) is a British number
theorist.

15.4 Example. We show that 561 is a Carmichael number. By the Chinese
remainder theorem it suffices to show that for all a ∈ N we have: a561 ≡ a (mod 3),
a561 ≡ a (mod 11) and a561 ≡ a (mod 17). This follows directly from Fermat’s
Little Theorem for the prime numbers 3, 11 and 17.

The following proposition gives necessary and sufficient conditions for a number to
be a Carmichael number.

15.5 Proposition. Let n ∈ N+ be composite. Then the following are equivalent:

(i) n is a Carmichael number.
(ii) an−1 ≡ 1 (mod n) for all a ∈ Z with gcd(a, n) = 1.
(iii) n is squarefree and p− 1 | n− 1 for all prime divisors of n.

PROOF.

(i)⇒(ii): Let n be a Carmichael number and let a ∈ Z with gcd(a, n) = 1. Then

a ∈ (Z/n)∗, so from a
n
= a (in (Z/n)∗) it follows that an−1

= 1.

(ii)⇒(iii): Let g be a primitive root modulo a prime divisor p of n (see theorem 13.39).
By the Chinese Remainder Theorem we can take g such that g ≡ 1 (mod q)
for all prime divisors q of n with q ̸= p. Then gcd(g, n) = 1 and so gn−1 ≡
1 (mod p). Hence p − 1 = op(g) | n − 1. By exercise 19 of chapter 13 the
integer g can be assumed to be a primitive root modulo p2. If p2 | n, then it
would follow that p(p− 1) = op2(g) | n− 1 and so p | n− 1, contradictory to
p | n. It follows that n is squarefree.

(iii)⇒(i): For each prime divisor p of n we have ap ≡ a (mod p) for all a ∈ Z.
From this follows that an = an−pap ≡ an−pa = an−(p−1) ≡ an−2(p−1) ≡
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· · · ≡ a (mod p). By the Chinese Remainder Theorem it follows that an ≡
a (mod n) for all a ∈ Z.

The equivalence (i) ⇐⇒ (iii) is known as Korselt’s criterium after the German
mathematician Alwin Korselt (1864 – 1947). It was a first step in his attempt to
show that numbers now known as Carmichael numbers did not exist.

Python

Using the code of the previous chapter the prime test based on Fermat’s Little
Theorem is easily described.

arithmetics.py
def fermat(p, a):

return pow(a, p, p) == a

>>> fermat(7463, 2)

False

>>> fermat(341, 2)

True

>>> fermat(341, 3)

False

>>> fermat(561, 2)

True

>>> fermat(561, 17)

True

15.2.2 Euler pseudoprimes

Carmichael numbers pass prime tests based on Fermat’s Little Theorem. Now
we consider prime tests based on Euler’s Criterion: for a ∈ Z, p ∈ N+ odd and
gcd(a, p) = 1 we have

p is a prime number =⇒ a
p−1
2 ≡

(
a

p

)
(mod p).

Here
(
a
p

)
is the Jacobi symbol. We will see that there are no composite numbers

which pass the test for all bases a. So in this case there is no analogue of the
Carmichael numbers.

15.6 Definition. An odd composite number n is called a Euler pseudoprime for

the base a if gcd(a, n) = 1 and a
n−1
2 ≡

(
a
n

)
(mod n).

The notion of Euler pseudoprime is a refinement of the notion of Fermat pseudo-
prime:
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15.7 Lemma. Let n be an odd composite number and a ∈ Z with gcd(a, n) = 1. If
n is an Euler pseudoprime for the base a, then n is a Fermat pseudoprime for the
base a.

PROOF. Since gcd(a, n) = 1, and so
(
a
n

)
= ±1, the lemma follows from:

a
n−1
2 ≡

(
a

n

)
(mod n) =⇒ an−1 ≡ 1 (mod n).

15.8 Example. We will show that the Carmichael number 561 is not an Euler
pseudoprime for the base 5. We have 5280 ≡ 58 ≡

(
5
17

)
≡ −1 (mod 17) and

therefore not 5280 ≡ 1 (mod 561), while
(

5
561

)
=
(
5
3

)(
5
11

)(
5
17

)
= (−1) · 1 · (−1) = 1.

In fact 5280 ≡ 67 (mod 561).

15.9 Proposition. Let n be an odd composite number. Then there exists an a with
gcd(a, n) = 1 such that n is not an Euler pseudoprime for the base a.

PROOF.

Suppose n is an Euler pseudoprime for all bases a with gcd(a, n) = 1. Then n
is a Fermat pseudoprime for all these bases (lemma 15.7). By proposition 15.5
the number n is a Carmichael number. In particular n is squarefree and odd
(see exercise 4). Put n = pm with p a prime number. Then gcd(p,m) = 1.
Take a b ∈ Z with

(
b
p

)
= −1. By the Chinese Remainder Theorem there

is a c ∈ Z such that c ≡ b (mod p) and c ≡ 1 (mod m). Then
(
c
n

)
=(

c
p

)(
c
m

)
=
(
b
p

)(
1
m

)
= −1 ·1 = −1. From c

n−1
2 ≡

(
c
n

)
≡ −1 (mod n) follows that

c
n−1
2 ≡ −1 (mod m). However, c

n−1
2 ≡ 1 (mod m), because c ≡ 1 (mod m).

Contradiction.

So there is a base for which n is not an Euler pseudoprime.

If there exists a base for which n is not an Euler pseudoprime, then there are more:

15.10 Proposition. Let n be an odd composite number. Then there are at least
φ(n)
2 residue classes a ∈ (Z/n)∗ such that n is not an Euler pseudoprime for the

base a.

PROOF. Let H be the set of all residue classes b ∈ (Z/n)∗ such that n is an
Euler pseudoprime for the base b. Let n be not an Euler pseudoprime for a base
a. By proposition 15.9 such an a exists. Multiply the elements of H by a. Since
multiplication by a is a permutation of (Z/m)∗, we obtain this way #(H) residue
classes ab having the property that n is not an Euler pseudoprime for the base

ab. So there are at most φ(n)
2 residue classes a ∈ (Z/n)∗ such that n is an Euler

pseudoprime for the base a.
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15.11 The Solovay-Strassen test. For odd n and a with gcd(a, n) = 1 the

remainder of a
n−1
2 after division by n is easily computed: it is exponentiation in

modular arithmetic. Also for the Jacobi symbol
(
a
n

)
the algorithm is fast. It is

easily checked whether n is an Euler pseudoprime for the base a. If n passes this
test for many randomly chosen bases a, then it is almost sure that the number n
is prime. The probability that a composite n passes this test for 100 randomly
chosen bases is less than 1

2100 .

The Solovay–Strassen primality test was developed in 1977 by the American mathe-
matician Robert M. Solovay and the German mathematician Volker Strassen.
Solovay (1938) is working in set theory, Strassen (1936) in the analysis of algorithms.

Python

In the test euler(p, a) the result of pow(a, (p - 1) / 2, p) is compared to that
of jacobi(a, p). By solovay(p, N) the test euler(p, a) is done for N randomly
chosen a with 1 < a < p− 2.

arithmetics.py
def euler(p, a):

j = (jacobi(a, p) % p)

return j != 0 and pow(a, (p - 1) // 2, p) == j

def solovay(p, N):

for i in range(N):

a = random.randint(2, p - 1)

if not euler(p, a): return False

return True

>>> euler(561, 2)

True

>>> euler(561, 3)

False

>>> euler(8719309, 2)

False

>>> euler(8719309, 3)

True

>>> len(list(filter(lambda x: euler(561, x), range(1, 561))))

80

>>> len(list(filter(lambda x: euler(8719309, x), range(1, 8719309))))

985608

The Carmichael number 561 is for 80 of the φ(561) = 320 bases an Euler pseudo-
prime. The Carmichael number 8719309 is for 985608 of the φ(8710309) = 7884864
bases an Euler pseudoprime; that is a ratio of 1 to 8 bases.
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>>> solovay(2347, 20)

True

>>> trial_factorization(2347)

[2347]

>>> trial_factorization(239)

[239]

>>> 2347 * 239

560933

>>> len(list(filter(lambda x: euler(560933, x), range(1, 560933))))

578

>>> 2346 * 238

558348

>>> 558348 // 578

966

The composite number 560933 is not a Carmichael number; for 1 in 966 bases it is
an Euler pseudoprime.

15.2.3 Strong pseudoprimes

We give another refinement of the test based on Fermat’s Little Theorem. The
basic idea for this test is: if for a ∈ Fp it holds that a2 = 1, then for a there are
only two possibilities: a = 1 and a = −1. This is so because Fp is a field.

15.12 Theorem. Let p be an odd prime number. Write p − 1 = 2st with s ∈ N+

and t odd. Then for all a ∈ Z with p ∤ a:

at ≡ 1 (mod p)

or at ≡ −1 (mod p)

or a2t ≡ −1 (mod p)

or a2
2t ≡ −1 (mod p)

...

or a2
s−1t ≡ −1 (mod p).

PROOF. Consider the sequence

at, a2t, a2
2t, . . . , a2

s−1t, a2
st

of elements of F∗
p. By Fermat’s Little Theorem the last element equals 1. So there

is a first element in this sequence which is equal to 1. If that is not the first one,

then it is preceded by an element b with b
2
= 1 and b ̸= 1. Since Fp is a field, we

have b = −1.
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15.13 Definition. Let n be an odd composite number and let n = 2st + 1 with
s, t ∈ N+ and t odd. Then n is called a strong pseudoprime for the base a if
at ≡ 1 (mod n) or a2

jt ≡ −1 (mod n) for some j with 0 ≤ j < s. A strong
pseudoprime for the base 2 is also called a strong pseudoprime for short.

For an odd n ∈ N we write n − 1 = 2st with s ∈ N+ and t odd. For a ∈ N with
1 < a < n−1 we can compute at and if necessary, if not at ≡ ±1, square repeatedly.
If −1 occurs, then n passes the test.

Python

We add code for the test based on theorem 15.12.

arithmetics.py
def strong(p, a):

fact = factors2(p - 1)

b = pow(a, fact[0], p)

if b == 1 or b == p - 1: return True

j = 1

while j < fact[1]:

b = pow(b, 2, p)

if b == p - 1: return True

j = j + 1

return False

>>> strong(561, 2)

False

>>> strong(8719309, 2)

False

>>> strong(8719309, 3)

True

15.14 Proposition. Let n be a strong pseudoprime for the base a. Then n is a
Fermat pseudoprime for the base a.

PROOF. For each of the cases n passes the test we have an−1 ≡ 1 (mod n).

In exercise 10 it is asked to prove that there are infinitely many strong pseudo-
primes. The least strong pseudoprime is 2047. The least number which is a strong
pseudoprime for both the base 2 and the base 3 is 1373653. The least that more-
over passes the test for the base 5 is 25326001. And when also the base 7 is used
it is 3215031751 and below 25 · 109 there are no others.

If n is an composite number, then n passes the test for at most a quarter of the
bases a with 1 ≤ a < n. A proof is given in [7]. It is elementary but a bit too
technical to present it here.
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The question is: ‘With how many bases to perform the test to be sure that a number
is prime?’ The American computer scientistGary Miller has found a bound based
on a conjecture in number theory, the generalized Riemann hypothesis. However,
nowadays there are faster tests which are not based on conjectures. If the test is
performed for k bases, then the probability that a composite number passes the
test is less than 1

4k
. For k = 100 the probability is less than 1060, and this is

extremely small. If the k bases are chosen at random, then the test is known as the
Miller-Rabin probabilistic primality test, named after Gary Miller and the Israeli
mathematician and computer scientist Michael Rabin (1931). If an odd number
passes this Miller-Rabin test, then that number is unlikely to be composite. Such
a number sometimes is called a commercial prime, since for applications as in
cryptography absolute certainty is not really necessary: if such a prime behaves as
expected everybody is satisfied and it is even more likely that the number is prime.

Python

With rabin(p, N) the Miller-Rabin test is applied N times to p, every time with
a randomly chosen base.

arithmetics.py
def rabin(p, N):

for i in range(N):

a = random.randint(2, p - 1)

if not strong(p, a): return False

return True

>>> len(list(filter(lambda x: strong(561, x), range(1, 561))))

10

>>> len(list(filter(lambda x: strong(8719309, x), range(1, 8719309)))

)

246402

>>> len(list(filter(lambda x: strong(560933, x), range(1, 560933))))

578

>>> rabin(43567280831, 1)

False

>>> rabin(43567280837, 1)

True

>>> rabin(43567280837, 100)

True

The test can be used to determine the next prime number with high probability,
and also to distil primes out of a segment of natural numbers. Here this is done by
the functions next_rabin_prime and rabin_prob_primes.
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arithmetics.py
def next_rabin_prime(a, N):

a = a + (a % 2 == 0) + 2 * (a % 2 == 1)

while not rabin(a, N):

a = a + 2

return a

def rabin_prob_primes(a, k, N):

b = a + k

a = a + (a % 2 == 0)

primes = []

while a < b:

if a % 3 == 0 or a % 5 == 0: a = a + 2

else:

if rabin(a, N):

primes.append(a)

a = a + 2

return primes

>>> next_rabin_prime(100000000000000000000000000000000, 20)

100000000000000000000000000000049

>>> rabin(100000000000000000000000000000049, 1000)

True

>>> rabin_prob_primes(444444444444444444, 150, 20)

[444444444444444469, 444444444444444557, 444444444444444593]

>>> rabin_prob_primes(555555555555555555, 150, 20)

[555555555555555559, 555555555555555683, 555555555555555691]

15.3 The n− 1-Test

For ‘small’ n ∈ N+ we can find a prime factorization in a systematic way by search-
ing prime divisors or using a factor table. For ‘large’ numbers we can establish that
they are composite or, if we can not, they are probably prime. We want more:

a) for large numbers a way to prove that they are prime,
b) of large numbers known to be composite find a proper factorization.

In this section a method of Lucas is treated which can be used in some cases to
prove that a number is prime without trying to factorize the number. This method
works best if a prime factorization of the number n − 1 can be found. Even a
partial factorization of n− 1 might be helpful.

If there is an a ∈ Z/n∗ with on(a) = n−1, then n−1 elements in Z/n are invertible
and so only 0 is not. That means that n is a prime number. From lemma 13.41
follows:
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15.15 Theorem (Lucas). Let n ∈ N+ and a ∈ Z with gcd(a, n) = 1. Suppose

that an−1 ≡ 1 (mod n) and a
n−1
q ̸≡ 1 (mod n) for all prime divisors q of n − 1.

Then n is a prime number.

Python

The function primitive(a, n, plist) tests whether the integer a is of order n−1
modulo the integer n. It uses plist, a list of all prime divisors of n − 1. If the
function lucas(p, plist, N) returns True, then an integer of order p− 1 modulo
p has been found, which implies that p is a prime number. The function calls
primitive at most N times.

arithmetics.py
def primitive(a, n, plist):

if pow(a, n - 1, n) != 1: return False

for q in plist:

if pow(a, (n - 1) // q, n) == 1: return False

return True

def lucas(p, plist, N):

for i in range(N):

a = random.randint(2, p - 1)

if primitive(a, p, plist): return True

return False

>>> trial_factorization(6256814489)

[6256814489]

>>> trial_factorization(6256814488)

[2, 2, 2, 4783, 163517]

>>> primitive(2, 6256814489, [2, 4783, 163517])

False

>>> primitive(3, 6256814489, [2, 4783, 163517])

True

>>> next_rabin_prime(842638469359595967887765433,20)

842638469359595967887765513

>>> trial_factorization(842638469359595967887765512)

[2, 2, 2, 199, 3593, 807907, 182339026020661]

>>> lucas(842638469359595967887765513, [2, 199, 3593, 807907, 1823390

26020661], 20)

True

The number 6256814489 is prime and the factorization of 6256814488 is used to
show that 2 is not a primitive root modulo 6256814489, but that 3 is.

The number 842638469359595967887765513 almost certainly is a prime. The func-
tion lucas proves that it is a prime.
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Fermat primes

Extreme examples of numbers n for which the prime factorization of n − 1 is no
problem are the Fermat numbers.

15.16 Definition. The m-th Fermat number Fm is the number 22
m

+ 1. If Fm is
prime, then Fm is called a Fermat prime.

The first five Fermat numbers are 3, 5, 17, 257 and 65537. These are primes indeed.
Fermat conjectured that all Fermat numbers are prime. About one century later
Euler had shown that F5(= 4294967296) is composite: it is divisible by 641. He
had no problem in finding this divisor 641, since he understood that prime divisors
were of type 64k + 1. This follows from:

15.17 Proposition (Euler). Let m ∈ N and let p be a prime divisor of Fm. Then
p ≡ 1 (mod 2m+1).

PROOF. We have: 22
m ≡ −1 (mod p). From this it follows that the order of 2 in

(Fp)∗ equals 2m+1. So: 2m+1 | p− 1.

Lucas sharpened this result somewhat:

15.18 Proposition (Lucas). Let m ∈ N with m ≥ 2 and let p be a prime divisor
of Fm. Then p ≡ 1 (mod 2m+2).

PROOF. From m ≥ 2 it follows that 23 | p − 1, that is p ≡ 1 (mod 8). By
theorem 14.24 we have that 2 is a square modulo p, and so 2m+1 | p−1

2 .

The Fermat numbers Fm with 5 ≤ m ≤ 32 are composite. For not a single m ≥ 12
the prime factorization of Fm is known, though for some of these Fermat numbers
a proper factorization has been found. It is unknown whether there is yet another
Fermat prime. For m equal to 20 and to 24 no prime divisor is known. The largest
Fermat number known to be composite is F18233954: a prime factor 7 · 218233956 +1
was found in 2020.

Pépin’s test is a prime test for Fermat numbers. The test is named after the French
theologist and mathematician Jean François Theophile Pépin (1826–1904).

15.19 Theorem (Pépin). For m ∈ N+:

Fm is prime ⇐⇒ 3
Fm−1

2 ≡ −1 (mod Fm).

PROOF.

⇒: Let Fm be prime. Then by Euler’s Criterion 3
Fm−1

2 ≡
(

3
Fm

)
(mod Fm). We

compute
(

3
Fm

)
using quadratic reciprocity:(
3

Fm

)
=

(
Fm
3

)
=

(
(−1)2

m

+ 1

3

)
=

(
2

3

)
= −1.

308



15.3 The n− 1-Test

⇐: If 3
Fm−1

2 ≡ −1 (mod Fm), then 3Fm−1 ≡ 1 (mod Fm). Since 2 is the unique
prime divisor of Fm − 1, Fm is prime by theorem 15.15.

The greatest Fermat number for which Pépin’s test is used successfully is F24.

Python

The code for Pépin’s test is simple:

arithmetics.py
def pepin(m):

F = (2**(2**m)) + 1

return pow(3, (F - 1) // 2, F) == F - 1

pepin(m) tests the m-th Fermat number for being prime.

>>> pepin(3)

True

>>> pepin(4)

True

>>> pepin(5)

False

>>> pepin(6)

False

>>> pepin(14)

False

>>> trial_factorization(2**(2**5) + 1)

[641, 6700417]

>>> trial_factorization(2**(2**6) + 1)

[274177, 67280421310721]

Using a partial factorization of n− 1

Let n be an odd number which is probably prime. A prime factorization of n− 1
can be used to prove that n is prime. Even a partial factorization of n−1 is useful.

15.20 Theorem (Pocklington). Let n be an odd number and n − 1 = ku with

k, u ∈ N+. Let a ∈ Z with an−1 ≡ 1 (mod n) and gcd(a
n−1
q − 1, n) = 1 for all

prime divisors q of k. Then p ≡ 1 (mod k) for every prime divisor p of n.

PROOF. Let p be a prime divisor of n. Then (au)k = an−1 ≡ 1 (mod p) and

so op(a
u) | k. Moreover, p ∤ a

n−1
q − 1 = (au)

k
q − 1 for all prime divisors q of k

and so by lemma 13.41 we have op(a
u) = k. It follows that k | p − 1, that is

p ≡ 1 (mod k).
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15.21 Corollary. If moreover, in the context of theorem 15.20, k2 ≥ n, then n is
prime.

PROOF. Let p be any prime divisor of n. Then p ≡ 1 (mod k) and so p2 > k2 ≥ n.
So n is prime.

An n− 1-test can be based on Corollary 15.21.

Python

The function pocklington(n, k, K) determines for an odd n with a divisor k of
n − 1, and where K is the list of prime divisors of k, whether prime divisors of n
are congruent 1 modulo k.

arithmetics.py
def pocklington(n, k, plist, N):

for i in range(N):

a = random.randint(2, n - 1)

if primitive(a, n, plist): return True

return False

>>> next_rabin_prime(236455865876488352477, 20)

236455865876488352483

>>> trial_factorization(236455865876488352482)

[2, 101, 2791, 388793, 1078749107]

>>> pocklington(236455865876488352483, 236455865876488352482, [2, 101

, 2791, 388793, 1078749107])

True

The number n = 236455865876488352483 is probably a prime number. A factor-
ization of n−1 was easily found and it was used for showing that indeed n is prime.
In other cases more steps might be necessary:

>>> next_rabin_prime(2364558658764883525050, 20)

2364558658764883525103

>>> trial_factors(2364558658764883525102, 1000000)

[2, 29, 40768252737325578019]

>>> rabin(40768252737325578019, 20)

True

>>> trial_factors(40768252737325578018, 1000000)

[2, 3, 3, 2264902929851421001]

>>> trial_factorization(2264902929851421000)

[2, 2, 2, 3, 5, 5, 5, 59, 12796061750573]

>>> pocklington(2264902929851421001, 12796061750573, [12796061750573]

)

True

>>> pocklington(40768252737325578019, 2264902929851421001, [226490292

9851421001])

True
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>>> pocklington(2364558658764883525103, 40768252737325578019, [407682

52737325578019])

True

15.4 Factorization

If a number is known to be composite, then it is very well possible that a factor-
ization is unknown. When a straightforward search for a divisor is not successful
another method might be used. One of such methods is known as Pollard-rho,
introduced in 1975 by the British mathematician John Pollard (1941). Later
other methods were designed, but here we confine to Pollard-rho.

15.4.1 The Pollard-rho factorization algorithm

We will use a transformation f of Z which satisfies the following property:

x ≡ y (mod m) =⇒ f(x) ≡ f(y) (mod m) for all m ∈ N+ and x, y ∈ Z.

This means that f induces a transformation f of Z/m for all m ∈ N+. For example
any map of type x 7→ x2 + c, where c ∈ Z, satisfies this condition. Let a ∈ Z and
consider the course of a under f :

a, f(a), f2(a), f3(a), . . .

Since Z/m is finite, for every m the course

a, f(a), f2(a), . . .

of a ∈ Z/m under f repeats, say fr(a) = fs(a) for some r > s. Then fk+(r−s)(a) =

fk(a) for all k ≥ s. Draw a picture of this sequence and of the action of f on its
terms and it is clear why ‘rho’ occurs in the algorithm’s name.

Let n be a composite number. For the computation of the numbers gcd(f i(a) −
f j(a), n) only the remainders of f i(a) after division by n are needed. As soon as r
and s are found with 1 < gcd(fr(a)− fs(a), n) < n, one has a proper divisor of n,
namely the number gcd(fr(a)− fs(a), n).

Let p be a prime divisor of n. After how many terms of the sequence can one
expect that p | fr(a)− fs(a) ? How many terms have to be computed to have two
terms which are congruent modulo p ? This is related to the birthday problem, see
also 11.4. The expected number is in the order of magnitude of

√
p.

Any a may be chosen as starting value and also any c (if the transformation is of
type x 7→ x2 + c) may be chosen at random. Since the success of the algorithm
depends on these choices, one calls such a method of computing a Monte-Carlo
method.
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Algorithm

There are tricks to fasten the algorithm by reducing the number of times gcd(f i(a)−
f j(a), n) have to be computed. There are ways not to keep the numbers f i(a), thus
reducing the required memory. A nice way is the Floyd cycle finding method . In
this method only the differences f2j(a) − f j(a) are computed: the difference j of
2j and j will be for a certain j a multiple of the length of the period, while at the
same time f j(a) is in the period.

Python

Pollard-rho using the Floyd cycle finding method is in Python easily described.
The starting value a and the c in the function x 7→ x2 + c are chosen at random,
so equal inputs may have different results.

arithmetics.py
def pollardrho(n):

g = n

while g == n:

c = random.randint(1, n - 3)

a = random.randint(0, n - 1)

u = v = a

def F(x):

return (pow(x, 2, n) + c) % n

g = 1

while g == 1:

u, v = F(u), F(F(v))

g = gcd(u - v, n)

return g

>>> p = next_rabin_prime(2637897656751, 20)

>>> p

2637897656761

>>> q = next_rabin_prime(2675634056751, 20)

>>> q

2675634056807

>>> n = p * q

>>> n

7058048808801113661622127

>>> pollardrho(n)

2675634056807

>>> trial_factorization(53751794982079)

[26539, 32467, 62383]

>>> pollardrho(53751794982079)

32467

>>> pollardrho(53751794982079)

26539
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15.4.2 Prime factorizations

We have:

a) An algorithm for finding prime factors up to a given magnitude.
b) An algorithm for finding a proper divisor of a composite number: Pollard-rho.
c) Algorithms to determine with high probability that an odd number is prime:

the Miller-Rabin and Solovay-Strassen prime tests.
d) An algorithm for proving a number to be prime: the n− 1-test.

In principle the first algorithm suffices for the factorization. The problem is that
it might take far too much time to end. For ‘large’ numbers n we can make use of
the other algorithms. For example:

1. Use algorithm 1 for finding the prime factors less than 109.
2. If a factor greater than 1018 remains, use one of the algorithms 3 to determine

whether this factor is composite or probably prime.
3. If the factor is probably prime, then try with algorithm 4 to prove that it

actually is prime. For this n− 1-test (partial) prime factorization of n− 1 is
needed and for that do this factorization process for n− 1.

4. If the factor is composite, then use algorithm 2 to find a factorization of this
factor. For the factors found do this factorization process.

It can happen that a lot of book keeping is needed. That can be automated, but
here we will not do so. We do by hand using the computer, interactively so to say.

Python

We take an integer n.

>>> n = 21653621534633457354664750454954005477663

>>> trial_factors(n, 10000000)

[21653621534633457354664750454954005477663]

There are no prime divisors less than 10000000.

>>> rabin(n, 20)

False

So n is composite. With pollardrho we find a divisor.

>>> pollardrho(n)

22746427603

>>> a = n // 22746427603

>>> a

951957024309944225340022966021

>>> rabin(a, 20)

True
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A divisor 22746427603 has been found. It is prime, since otherwise there is a
prime divisor < 10000000 and such a divisor would already have been found. The
other factor, the number a, is probably prime. We will prove it is prime using the
n− 1-test.

>>> trial_factors(a - 1, 10000000)

[2, 2, 3, 5, 29, 43, 293, 43424219232412361925277]

>>> b = 43424219232412361925277

>>> rabin(b, 20)

True

The number b is probably prime and again we use the n− 1-test.

>>> trial_factors(b - 1, 10000000)

[2, 2, 3, 189619, 6939103, 2750208289]

>>> pocklington(b, b - 1, [2, 2, 3, 189619, 6939103, 2750208289], 5)

True

>>> pocklington(a, b, [b], 5)

True

The divisors of b−1 which have been found are small enough to conclude that they
are prime. From the n− 1-test follows that b is prime. Another application of the
n− 1-test shows that a is prime. So we have the prime factorization of n:

n = 22746427603 · 951957024309944225340022966021.

In this example we were lucky to find a factor with Pollard-rho. This factor is
relatively small and that makes it so that the algorithm did not take long to find it.
We have already seen that F7, the seventh Fermat number is composite. Again we
find a factor using pollardrho, though it takes some time on an ordinary desktop
computer.

>>> def Fermat(n):

... return 2**(2**n) + 1

...

>>> Fermat(7)

340282366920938463463374607431768211457

>>> pollardrho(Fermat(7))

59649589127497217

>>> d = Fermat(7) // 59649589127497217

>>> d

5704689200685129054721

>>> rabin(d, 20)

True

>>> trial_factorization(d - 1))

[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 12497, 733803839347]

>>> lucas(d, [2, 3, 5, 12497, 733803839347], 20)

True
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The prime factorization of F7, known since 1970:

F7 = 59649589127497217 · 5704689200685129054721.

Next we try F8.

>>> Fermat(8)

115792089237316195423570985008687907853269984665640564039457584007913

129639937

>>> pollardrho(Fermat(8))

1238926361552897

>>> k = Fermat(8) // 1238926361552897

>>> k

93461639715357977769163558199606896584051237541638188580280321

>>> rabin(k, 20)

True

>>> factors = trial_factors(k - 1, 100000000)

>>> factors

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 7,13,334326492800473535403658

56155422567745554042733243971991]

>>> rabin(factors[-1],20)

False

>>> pollardrho(factors[-1])

31618624099079

>>> l = factors[-1] // 31618624099079

>>> l

1057372046781162536274034354686893329625329

>>> rabin(l, 20)

True

>>> lucas(k, [2, 3, 5, 7, 13, 31618624099079, l], 20)

True

The prime factorization of F8, known since 1980:

F8 =1238926361552897·
93461639715357977769163558199606896584051237541638188580280321.
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15.5 RSA Cryptosystems

A simple secret code can be made by taking a permutation of the 26 letters of the
alphabet. Such a code is given by a list of pairs, for example

a b c d e f g h i j k l m · · ·
x c k g h o f u q b y v w · · ·

Coding a text is done by applying the permutation to each of the letters in the text.
The result can be decoded by applying the inverse permutation. If the permutation
is as simple as that, decoding is only a little bit harder than coding the text. For
decoding the letters have to be looked for in the bottom row, where they are not
in the usual order. If the code is not known, decoding is more difficult, but in this
case it is still easy, especially when a coded text of some length is available.

In this section we will describe a code which is practically impossible to break,
even if the code itself is public, that is it is not secret. This is not as strange as it
may seem. For example if one permutes all words of the English language instead
of only permuting the 26 letters of the alphabet. Such a permutation may be given
by a dictionary. Then it is hard to find a given decoded word. But nowadays such
a job is easily done by a computer. We will describe a permutation of something
like 10200 objects. Decoding is then practically impossible unless there is enough
extra information.

All characters we might use in a text can be replaced by numbers in a standard way.
We could use for example ascii-code. In the binary notation 8 digits per character
are used (8 binary digits = 8 bits = 1 byte). Thus a text can be converted in a
standard way into a (large) number by concatenation of all bytes. Coding in this
way will come down to applying a permutation to the set of all numbers less than
a given large number. This number might be in the order of magnitude of 10200.
To put it differently, coding will be a permutation of all possible ‘texts’ of length
comparable to the length of a single line in a book.

First we describe the code. It depends on two large prime numbers p and q, both
in the order of magnitude of 10100. There are plenty of these primes and they are
easily found by computer, more so if you are not after absolute certainty. Rabin’s
test does this job very well. These prime numbers we keep secret, not their product
m. The code is a permutation of Z/m. A system of representatives is Nm, the set of
all natural numbers less thanm. We choose a number e such that gcd(e, φ(m)) = 1.
We know that φ(m) = (p− 1)(q− 1), but others do not, since they are not able to
factorize m. The code is the following permutation of Z/m:

µe : Z/m→ Z/m, x 7→ xe,
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Leonard Adleman (San Francisco 1945)

In 1976 Adleman became assistant pro-
fessor at the MIT (Cambridge, Mas-
sachusetts, USA). His colleague Ronald
Rivest (1947) of Computer Science had
the idea to look for a code with a public
key. Adleman and Rivest’s colleague Adi
Shamir (1952) became interested. Adle-
man’s role mainly was cracking other’s
codes. He succeeded in the first 42 cases,
but not so in the 43rd. That code is now
known as the RSA-code.

Adleman considered his contribution as unimportant and, moreover, less interesting than
his other work. So in his opinion there was no need to name him as one of the authors.
The others thought differently. He agreed to be the last in the list. That explains the order
of the letters RSA. On the photograph from left to right Shamir, Rivest and Adleman.
Later, in the 90’s, Adleman became well-known for his work on DNA computers.

(raising to the power e). This transformation is a permutation because it has an
inverse: since gcd(e, φ(m)) = 1, there exist f, n ∈ Z such that ef +φ(m)n = 1 and
µf (raising to the power f) is the inverse: for x ∈ (Z/m)∗ we have

µfµe(x) = µf (x
e) = (xe)f = xef = xefxφ(m)n = xef+φ(m)n = x,

and using the Chinese Remainder Theorem it is not hard to see that even µfµe(x) =
x for all x ∈ Z/m (and not only in (Z/m)∗). So decoding is raising to the power
f . Knowing p and q, implies knowing φ(m) and then f is easily found using the
extended Euclidean algorithm. If only m and e are known, then coding is possible,
but for decoding the only thing to do is to factorize m, and with the present
state of knowledge and hardware that will probably take thousands of years. The
code described here is the RSA code, named after its inventors: Rivest, Shamir
and Adleman. The success of the code rests on one hand on our knowledge (the
recognition of large primes and the ability to do modular arithmetic fast), and on
the other hand our lack of knowledge (we are not able to factorize large numbers).
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A simple RSA-crypto system with Python

The ascii-code of the characters on a keyboard varies from 32 up to 126. Subtract-
ing 32 each of the characters is represented by a two digits. We will use this for the
translation of strings into lists of digits and backwards.

Strings of length l are translated into lists of digits of length 2l. We determine
random primes p and q of length (= length of the decimal representation) l such
that their product m = pq is (not much) greater then 102l. Next we determine
a random e satisfying gcd(e, (p − 1)(q − 1)) = 1 and by the extended Euclidean
algorithm the f needed for decoding. We add the function makersa(l).

arithmetics.py
def makersa(l):

p = next_rabin_prime(random.randint(10**(l - 1), 9 * \

(10**(l - 1))), 20)

q = next_rabin_prime(random.randint((10**(2 * l)) // p,

(10**(2 * l)) // p + (10**(l - 1))), 20)

m = p * q

e = random.randint(10**(2 * l - 1), 9 * (10**(2 * l - 1)))

while gcd(e, (p - 1) * (q - 1)) > 1:

e = e + 1

f = modinv(e, (p - 1) * (q - 1))

return (l, m, e), (l, m, f), (p, q)

The function makersa(l) returns ((l,m, e), (l,m, f), p, q). The first component
(l,m, e) is a code that can be used for coding strings of length l. The second
component (l,m, f) is for decoding. Or the other way round if so inclined. The
numbers p and q are returned as well, but are not needed for the crypto system.

Here we work with character strings of arbitrary length without carriage return.
They will be chopped into strings of length l. Refinements of the procedure are
possible, but now it is only the principle that matters.

Coding of a string s is as follows:

1. Convert s into a list of characters.
2. Convert this list into a list of numbers: take the ascii-code minus 32.
3. Concatenate the numbers to obtain one large number.
4. Chop this into numbers of length l (with zeros added to the last number if

necessary).
5. Transform each of the numbers using the code (l,m,e).

The result is a list of numbers.
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arithmetics.py
def transform(nrlist, a, n):

return [pow(nr, a, n) for nr in nrlist]

def encode_rsa(s, code):

def number(c): return ord(c) - 32

def str2(n): return str(n).zfill(2)

def codenumber(s):

return int(’’.join(map(str2, map(number, list(s)))))

def codenrs(lst): return [codenumber(s) for s in lst]

return transform(codenrs([s[code[0] * i:code[0] * (i + 1)]

.ljust(code[0]) for i in range(len(s) // code[0] + 1)]),

code[2], code[1])

Decoding of the list of numbers nrlst is done in the opposite order:

1. Transform each of the numbers using the code (l,m,f).
2. Concatenate the numbers to obtain one large number.
3. Chop this number into a list of numbers of 2 digits.
4. Replace each of the numbers in the list by the character having that number

plus 32 as ascii-code.
5. Convert the list of characters into one string.

The result is the original string s (with a number of spaces added at the end as a
result of chopping into words of equal length).

arithmetics.py
def decode_rsa(nrlst, code):

def char(n):

if n > 94: return r’ ’

else: return chr(n + 32)

def phrase(codenr, N):

nrstr = str(codenr).zfill(N)

return ’’.join(map(char, map(int, [nrstr[2 * i:2 * i + 2]

for i in range(len(nrstr) // 2)])))

def phrases(nrlst, N):

return [phrase(nr, N) for nr in nrlst]

return r’’.join(phrases(transform(nrlst, code[2], code[1]),

2*code[0]))

If a code is made using prime numbers of length 15, then it is easily broken, in the
next example in just a few minutes with the use of Pollard-rho. Such primes are
too small.
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>>> rsa = makersa(15)

>>> rsa

((15, 1076793425752016934817534394039, 751537927195162228107676912199

), (15, 1076793425752016934817534394039, 4281706886546593953936994514

87), (847620309727837, 1270372374746147))

>>> pollardrho(1076793425752016934817534394039)

1270372374746147

Let us make a code using prime numbers of length 100.

>>> rsa = makersa(100)

>>> rsa

((100, 10106065487380965708910022486588869680541130468954619460542501

634086822983333019417375093794208909361825326364233954931921999859288

354654507189742908530007775514254875393787880116562860081776766518571

7, 672261815390291936031039708077352333531907391893813365690398639518

760713738509400853618379160845335259813396472529252412454440256284225

97641841791538062214264023281247558748022203252106653479547439411), (

100, 1010606548738096570891002248658886968054113046895461946054250163

408682298333301941737509379420890936182532636423395493192199985928835

46545071897429085300077755142548753937878801165628600817767665185717,

81419591363844748860494932152623479050294745287675211646294327820447

072358877922058625417229005870991822200653261058725027835320428549981

119637185249112698375902398236336972195455083132303649739454563), (10

859354922177937586793157297462832516130976160635234360827968836464547

23316609734902013157899520939, 93063221156364109663570393565845763569

041026068477287304814161645846432075942711493363113755647811103))

It works:

>>> encmesg = encode_rsa(r"Since we are not able to factorize numbers

of 200 digits, the RSA-code made using primes of 100 digits is a saf

e public code", rsa[0])

>>> encmesg

[13553281190459677236091651158840559043483367252510877369153790518119

179012362939852435234190774007444410203354261442783317033797381933376

811255317972159388454454318548193695658758477476529553930230065, 9542

031918797899589743792824016319805800220546684779521443659017147416011

486281928317403064152104209324048983051022893345645650169210422493551

9444167600792423267630798392699503988198192975687395245376]

>>> decode_rsa(encmesg, rsa[1])

’Since we are not able to factorize numbers of 200 digits, the RSA-co

de made using primes of 100 digits is a safe public code

’
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Exercises

Exercises

1. Factorize 11601 by looking for divisors.

2. Make a table of the least prime divisors of the composite numbers < 170. Make
this table in the same way as Eratosthenes’ sieve is made. How can the prime
factorizations of the numbers 91, 97 and 117 be determined using this table?

3. Verify that 561, 6601 and 8719309 (= 19 · 37 · 79 · 157) are Carmichael numbers.

4. Can a Carmichael number be even?

5. (i) Let d and n be natural numbers with d | n. Prove that 2d − 1 | 2n − 1.

(ii) Let n be an odd pseudoprime. Prove that 2n − 1 is such as well.

(iii) Show that there are infinitely many pseudoprimes.

6. Show that 561 is an Euler pseudoprime for the base 2 and that 121 an Euler
pseudoprime for the base 3.

7. Let n be an odd pseudoprime.

(i) Prove that 2n − 1 is an Euler pseudoprime for the base 2.

(ii) Show that there are infinitely many Euler pseudoprimes for the base 2.

8. Let n be odd and a ∈ Z with gcd(a, n) = 1. Prove that the following are equivalent:

n is a Fermat pseudoprime for the base a.

n is a Euler pseudoprime for the base a2.

9. Show that all odd composite numbers are Euler pseudoprimes for the base −1.

10. (i) Let n be an odd pseudoprime. Prove that 2n − 1 is a strong pseudoprime.

(ii) Show that there are infinitely many strong pseudoprimes.

11. (i) Prove that for all m ∈ N+ we have Fm = F0 · · ·Fm−1 + 2.

(ii) Prove that gcd(Fi, Fj) = 1 if i ̸= j.

(iii) Show that from (ii) it follows that there are infinitely many prime numbers.

12. Prove using the n− 1-test that 139309 is a prime number.

13. (i) We have 21150 ≡ 1 (mod 1151) and 2230 ≡ 1060 (mod 1151). Does it follow
with Pocklington’s method that 1151 is a prime number?

(ii) The number 1169 is small and has a small prime divisor. If we apply Pollard-
rho to 1169 using the transformation x 7→ x2 + 1 and start value 1, a proper
divisor is readily found. Which one? How fast?

(iii) Is 34 a square modulo 1151 ?

(iv) Is 34 a square modulo 1169 ?

14. We consider the natural numbers Hm = 32
m

+1
2

, where m ∈ N+.
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(i) Show that Hm is odd for all m ∈ N+.

(ii) Let m ∈ N+. Show that 3 ∈ Z/Hm
∗ and determine the order of 3 modulo

Hm.

(iii) Let m ∈ N+ and let p be a prime divisor ofHm. Prove that p ≡ 1 (mod 2m+1).

(iv) Factorize H3 using part (iii).

15. Prove the Theorem of Proth:
Let n = 2st + 1 with s, t ∈ N+ and 2s > t. If there is an a ∈ Z such that

a
n−1
2 ≡ −1 (mod n), then n is a prime number.

16. Let n = qst + 1 with q a prime number, s, t ∈ N+ and qs > t. Prove: if there is

an a ∈ Z satisfying an−1 ≡ 1 (mod n) and a
n−1
q ̸≡ 1 (mod n), then n is a prime

number.

17. Factorize 8633 using Pollard-rho.

18. Let n = pq with p and q different prime numbers. Prove that aφ(n)+1 ≡ a (mod n)
for all a ∈ Z.

19. Show that each element of Z/341 is a 7th power.

20. 641 is a prime number. Show that the map

F641 → F641, x 7→ x427

is the inverse of the map
F641 → F641, x 7→ x3.

21. Let n a be Carmichael number and let n = pm with p a prime number and m ∈ N+.
The numbers p and n satisfy p ≡ n ≡ 5 (mod 8). Let a ∈ N+ with a ≡ 2 (mod p)
and a ≡ 1 (mod m).

(i) Compute
(
a
n

)
.

(ii) Prove that n is not an Euler pseudoprime for the base a.

(iii) Show that n− 1 = c(p− 1) for an odd c ∈ N+.

(iv) Prove that a
n−1
2 ̸≡ ±1 (mod n).

(v) Prove that n is not a strong pseudo-prime for for the base a. (Example:
n = 8719309 and p = 37.)
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Part IV

Completions

In chapter 9 the field Q of rational numbers has been constructed.
That was a temporary endpoint in the construction of the number
system. There are two reasons to want more. The first is an
algebraic one: not all polynomial equations have solutions. Fields
can be extended in such a way that polynomials do have zeros.
In chapter 20 we will do this in simple cases: we adjoin square
roots. This is also done in chapter 19 in a special, but important,
case: the field C of complex numbers is constructed by adjoining
the square root of −1 is to the field R of real numbers, the field
we will construct in chapter 17. The second reason is an analytic
one: there exist sequences of numbers which seem to tend to a
number, but the number is so far not available. An example of a
number we would like to have is π, the ratio of the circumference
of a circle to its diameter. Here it is not clear whether this ratio is
rational, it is even not made precise what actually is meant by this
ratio. Chapter 16 is about limits, what it means that a sequence
of numbers approaches a number, but also about sequences that
should approach a number though in Q it does not exist.
For defining limits a notion of distance between numbers is needed.
For that purpose absolute values are introduced. An absolute value
tells what the distance to 0 is. On Q we have the ordinary absolute
value. In chapter 17 the field R of real numbers is constructed,
numbers which can be approximated by rational numbers using
this notion of distance.
On Q there are more absolute values. We will have a look at
these as well. They result in another notion of distance and so in
another notion of limit, also limits outside the field Q. In fact for
each prime p we have an absolute value on Q. In chapter 18 we will
for each prime p extend Q to the field Qp of p-adic numbers, which
also consists of limits of sequences in Q. Chapter 20 contains an
example of the use of p-adic numbers in number theory.

For the construction of the field C only the field R is needed, so
for this construction one can skip chapter 18.





16 Limits

In this chapter two types of absolute values are defined: the ordinary absolute value
in section 16.1 and the p-adic absolute value (defined in section 16.6), depending on
a given prime p. The first one everybody is familiar with, but for an understanding
of the second it usually takes some time. Up to the last section only the ordinary
absolute value is considered. In the sections 16.2 and 16.3 limits of sequences or
rational numbers are considered. In section 16.4 the g-adic notation for rational
numbers is studied (for g = 10 it is the familiar decimal notation). Most interesting
are the Cauchy sequences of rational numbers (section 16.5). We use them in the
next chapter for the construction of the field of real numbers. In the last section
it is done all over for the p-adic absolute value.

In this chapter all numbers are rational numbers. So far these are all
the numbers we have!

16.1 The Ordinary Absolute Value on Q

In subsection 7.4.6 the absolute value of integers was introduced. It can easily be
extended to the rational numbers.

16.1 Definition. Let r ∈ Q. The absolute value |r| of r is defined by

|r| =

{
r if r ≥ 0,

−r if r ≤ 0.

Thus we have a map Q → Q≥0, r 7→ |r|. This map is called the (ordinary) absolute
value on Q.

It is called ordinary because it is the absolute value which is used in most of math-
ematics. For the other absolute values see the last section.

The properties of the absolute values of integers proven in proposition 7.34 hold
for the absolute values of rational numbers as well:
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16.2 Proposition. The absolute value Q → Q≥0, r 7→ |r| has the following proper-
ties:

(i) |r| = 0 ⇐⇒ r = 0 (for all a ∈ Q),
(ii) |rs| = |r| · |s| (for all r, s ∈ Q),
(iii) |r + s| ≤ |r|+ |s| (for all r, s ∈ Q).

PROOF. See the proof of proposition 7.34.

The absolute value of a number can be seen as the distance of that number to
number 0. The distance between two numbers should be preserved under addition
of any number to these numbers, or as one might say, the distance is invariant
under translation.

16.3 Definition. Let r and s be rational numbers. The distance d(r, s) of r to s is
the absolute value of the difference of r and s:

d(r, s) = |r − s|.

16.4 Proposition. The distance d : Q×Q → Q≥0 of rational numbers is a metric
on Q, that is for all r, s and t in Q:

(i) d(r, s) = 0 ⇐⇒ r = s,
(ii) d(r, s) = d(s, r),
(iii) d(r, t) ≤ d(r, s) + d(s, t) (the triangle inequality).

PROOF. The triangle inequality follows from Proposition 16.2(iii):
|(r − s)− (s− t)| ≤ |r − s|+ |s− t|.

Approximations with decimal fractions

We are used to expressions like 24.8045. These refer to special rational numbers:
24.8045 = 248045

10000 . Often such a number is intended to be an approximation for the
exact number:

r equals 24.8045 up to 4 decimals

usually means 24.80445 ≤ r < 24.80455, that is 2480445
100000 ≤ r < 2480455

100000 . Then the
distance of r to 248045

10000 is less than 1
20000 . Another way of rounding off is made by

simply deleting all further decimals: then the distance of r to 248045
10000 is less than

1
10000 .

Let r be a rational number and n ∈ N. Then 0 ≤ 10nr − ⌊10nr⌋ < 1 and so

0 ≤ r − ⌊10nr⌋
10n

<
1

10n
.
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16.5 Definition. Rational numbers of type
a

10n
with a ∈ Z and n ∈ N are called

decimal fractions.

Let r be a rational number. By taking n large enough there is a decimal fraction
on a distance of r less than any given positive number ε: there is an N ∈ N with
10N > 1

ε and for every n ≥ N we have

0 ≤ r − ⌊10nr⌋
10n

<
1

10n
≤ 1

10N
< ε.

No matter how small ε, there is a decimal fraction on a distance less than ε.

16.2 Null Sequences

A sequence a0, a1, a2, . . . of numbers we will often denote by (an). The parentheses
are an indication that we are dealing with a sequence. For the numbering the index
n is used. Usually we start with index 0, sometimes with 1 and it could also be
another integer. Since we use sequences for approximating numbers, we are not
really interested in the first terms of the sequence. If we nevertheless want to
indicate what the first index is, then we might use a notation like (an)n≥1.

16.6 Definition. A sequence (an) of rational numbers is called a null sequence if
for every ε > 0 an N ∈ N exists such that

|an| < ε for all n ≥ N .

The definition of null sequence expresses what it means that the terms of a sequence
approach 0, or in the terminology of the next section: 0 is the limit of the sequence.
For centuries mathematicians used sequences for approaching a number while exact
definitions were still lacking. In the nineteenth century Cauchy made all this much
more precise and Weierstraß gave definitions as we use them nowadays.

The definition requires the existence of an N for every ε > 0. Note that if an
N satisfies the requirement for a given ε, every natural number greater than N
satisfies this requirement as well.

The numbers ε in the definition are rational: at this moment all our numbers are
rational. Later we consider more generally sequences of real numbers and then we
also admit real numbers ε, though, as we will see, it will not make any difference
for the notion of null sequence.

16.7 Example. The sequence (an) with an = 1
n is a null sequence. We give a

detailed proof. Let ε be any positive number. Take N = ⌊ 1
ε⌋ + 1. Then N > 1

ε
and so for all n ≥ N :

|an| = | 1n | =
1
n ≤ 1

N < ε.

So for every ε > 0 there is an N with the property that |an| < ε for all n ≥ N .
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Augustin-Louis Cauchy (Paris 1789 – Sceaux 1857)

The French mathematician Cauchy made a start with the
exact formulation of the notion of limit. He worked among
other subjects on complex functions and determinants. His
789 articles are brought together in the 27 volumes of his
collected works. He was a conservative Roman Catholic who
was involved in many disputes and conflicts.

In this example the number N comes out of the blue. Such an N is often found by
reasoning backwards: for which n do we have 1

n
< ε, that is n > 1

ε
? This clearly

holds for all natural numbers greater than the floor of 1
ε
.

The definition of null sequence is quite subtle. The difficulty lies primarily in the
alternation ‘all, there is an, all’ in the definition. This alternation is not unusual for
notions where some kind of approaching is involved. Some consider it instructive
to formulate this as a game. Every sequence (an) determines a (very short) game
for two players. These players make the following moves:

1. Player 1 gives an ε > 0.
2. Player 2 gives an N ∈ N.
3. Player 1 gives an n ≥ N .

If |an| < ε, then player 2 wins. If |an| ≥ ε, then player 1 wins. If there exists a
winning strategy for player 2, then (an) is a null sequence. If there exists a winning
strategy for player 1, then (an) is not a null sequence .

In the example there is a winning strategy for player 2: give an N with N > ⌊ 1
ε
⌋+1.

Another formulation of the definition of null sequence is as follows:

Definition. A sequence is a null sequence if for every ε > 0 the ε-neighborhood of
0 contains almost all terms of the sequence.

Thus ‘there exists an N ∈ N’ and ‘all n ≥ N ’ are hidden in ‘almost all’ and
‘ε-neighborhood’. By almost all we understand: all but a finite number. The
ε-neighborhood of 0 consists of all numbers having absolute value less than ε.

16.8 Definition. Let (an) be a sequence and (i(n)) a sequence in N with i(0) <
i(1) < i(2) < · · · . Then the sequence (ai(n)) is called a subsequence of the sequence
(an).

In particular (i(n)) is a subsequence of (n). From i(0) < i(1) < i(2) < · · · follows
easily (by mathematical induction) that i(n) ≥ n for all n ∈ N.
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Karl Theodor Wilhelm Weierstraß (Ostenfelde 1815 – Berlin 1897)

The notion of limit as we use it today comes from the Ger-
man mathematician Karl Weierstraß. He made important
contributions to mathematical analysis, especially to the
theory of complex functions. Health problems caused him
to lecture sitting down, while a student wrote for him on the
blackboard.

16.9 Lemma. Let the sequence (an) of rational numbers be a null sequence. Then
every subsequence of (an) is a null sequence as well.

PROOF. Let (ai(n)) be a subsequence and let ε > 0. Then there is an N ∈ N
such that |an| < ε for all n ≥ N . For n ≥ N we then have i(n) ≥ n ≥ N and so
|ai(n)| < ε.

16.10 Example. The sequence (an) with an = 1
10n is a subsequence of the

sequence ( 1n ) and so is a null sequence as well. So we have

|an| = | 1
10n | ≤

1
n < ε

for any ε > 0 if n ≥ ⌊ 1
ε⌋ + 1. Here too N = ⌊ 1

ε⌋ + 1 satisfies. Clearly, N could
have been chosen much smaller, but here our only concern is the existence of such
an N .

16.11 Lemma. Let (an) be a sequence of rational numbers. Then

(an) is a null sequence ⇐⇒ (|an|) is a null sequence .

PROOF. This is an immediate consequence of the definition: whether (an) is a
null sequence, only depends on the absolute values |an|.

16.12 Example. The sequence (an) with an = (−1)n

n is a null sequence. The
terms of this sequence are alternately less and greater than 0.

16.13 Lemma. Let (an) and (bn) be sequences of rational numbers. Suppose (bn)
is a null sequence and for all n we have |an| ≤ bn. Then (an) is a null sequence as
well.

Apparently the sequence (bn) has only nonnegative terms. The condition in this
lemma is also phrased as: the sequence (an) is bounded above by the null sequence
(bn).
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PROOF. Let ε > 0. Then there is an N ∈ N such that bn = |bn| < ε for all n ≥ N .
For these n we also have |an| < ε.

The sequence ( 1
10n ) being a null sequence, is a special case of (an) being a null

sequence for any a such that |a| < 1. We will prove this using the Bernoulli
inequality:

16.14 Proposition (Bernoulli inequality). Let x be a rational number with x ≥
−1. Then for all n ∈ N:

(1 + x)n ≥ 1 + nx.

PROOF. We use mathematical induction. For n = 0 it is clear. If it holds for some
n ∈ N, then also for its successor:

(1 + x)n+1 = (1 + x)n(1 + x)

≥ (1 + nx)(1 + x) (because 1 + x ≥ 0)

= 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x

16.15 Proposition. Let a ∈ Q with |a| < 1. Then the sequence (an) is a null
sequence.

PROOF. We assume that a ̸= 0. Then 1
|a| > 1 and so 1

|a| −1 > 0. By the Bernoulli

inequality

1

|a|n
=
(
1 +

1

|a|
− 1
)n

≥ 1 + n
( 1

|a|
− 1
)
> n

( 1

|a|
− 1
)
,

that is

|an| < |a|
1− |a|

· 1
n
.

Since ( |a|
1−|a| ·

1
n ) is a null sequence, also (an) is a null sequence (lemma 16.13).

The sum of two null sequences is a null sequence:

16.16 Proposition. Let (an) and (bn) be null sequences. Then also (an + bn) is a
null sequence.

PROOF. Let ε > 0. There is an M ∈ N such that |an| < ε
2 for all n ≥ M and

there is an N ∈ N such that |bn| < ε
2 for all n ≥ N . For n ≥ max(M,N) we then

have
|an + bn| ≤ |an|+ |bn| < ε

2 + ε
2 = ε.

Also the product of two null sequences is a null sequence, but not necessarily both
sequences are null sequences, we can do with less, see proposition 16.19.

16.17 Definition. A number sequence (an) is called bounded if there exists a num-
ber C such that |an| ≤ C for all n ∈ N.
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Often we will conclude that a sequence is bounded if there exists a C with |an| ≤ C
for all n from a certain N onwards: take the constant max(|a0|, . . . |aN−1|, C).

16.18 Lemma. Null sequences are bounded.

PROOF. Let (an)n≥0 be a null sequence. Take in the definition of null sequence ε =
1: there is an N ∈ N with |an| < 1 for all n ≥ N . So |an| ≤ max(1, |a0|, . . . , |aN−1|)
for all n ∈ N.

16.19 Proposition. Let the sequence (an) be bounded and the sequence (bn) a null
sequence. Then also (anbn) is a null sequence.

PROOF. There is a C such that |an| ≤ C for all n ∈ N. Then |anbn| ≤ C · |bn|.
By the lemmas 16.11 and 16.13 we have that (anbn) is a null sequence.

16.3 Convergent Sequences

In this section all sequences are sequences of rational numbers.

16.20 Definition. Let (an) be a sequence of rational numbers. We say that (an)
converges to a rational number a if the sequence (an − a) is a null sequence. The
number a is called the limit of the sequence (an). Notation: limn an = a. If a
sequence converges to a number, we say that the sequence converges or that it is
convergent. We also express this by saying that limn an exists.

The sequence (an − a) being a null sequence means that for each ε > 0 there exists
an N ∈ N such that |an−a| < ε for all n ≥ N , in other words for each ε > 0 almost
all terms lie in the ε-neighborhood of a. That neighborhood consists of all numbers
at a distance from a less than ε.

A sequence can converge to only one number. That is why we can speak of the
limit of a convergent sequence: if both (an − a) and (an − b) are null sequences,
then is so is their difference, being the constant sequence (b− a), that is b = a.

16.21 Proposition. Let (an) be a sequence converging to a and (bn) a sequence
converging to b. Then the sequence (an + bn) converges to a+ b.

PROOF. The sequence (an + bn − a− b) is a null sequence, since it is the sum of
the null sequences (an − a) and (bn − b), see proposition 16.16.

We also formulate this as the rule

lim
n
(an + bn) = lim

n
an + lim

n
bn.

In this rule the limit of the sum of two sequences is expressed in terms of the limits
of the sequences if these limits do exist. In formulas like this one it is usually
understood that the limits on the right hand side exist.
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16.22 Proposition. Let (an) be a convergent sequence. Then the difference se-
quence (an+1 − an) is a null sequence.

PROOF. The sequence (an+1) is a subsequence of (an). Both have the same limit.
From proposition 16.21 it follows that the difference sequence converges to 0.

Later we will see examples of sequences having a null sequence as difference sequence
and which nevertheless do not converge.

16.23 Lemma. Convergent sequences are bounded.

PROOF. If (an) converges to a, then (an − a) is a null sequence and is therefore
bounded by lemma 16.18: there is a C such that |an − a| ≤ C for all n. Then
|an| ≤ |a|+ |an − a| ≤ |a|+ C for all n and so (an) is bounded as well.

16.24 Proposition. Let (an) be a sequence converging to a and (bn) a sequence
converging to b. Then the sequence (anbn) converges to ab.

PROOF. We prove that the sequence anbn − ab is a null sequence:

anbn − ab = anbn − anb+ anb− ab = an(bn − b) + (an − a)b.

The sequences (bn − b) and (an − a) are null sequences. The sequence (an) is
bounded (lemma 16.23) and so is the constant sequence (b). The proposition now
follows from the propositions 16.19 and 16.21.

So the rule is
lim
n
(anbn) = lim

n
an · lim

n
bn.

16.25 Proposition. Let (an) be a sequence converging to a. Then (|an|) converges
to |a|.

PROOF. This follows from ||an| − |a|| ≤ |an − a|.
We have used: |x− y| ≥ ||x| − |y||. This is a consequence of the triangle inequality:
|x| ≤ |x− y|+ |y| and so |x| − |y| ≤ |x− y|, and similarly |y| − |x| ≤ |x− y|.

The rule is
lim
n

|an| = | lim
n

an|.

16.26 Proposition. Let (an) be a sequence converging to a and suppose that a ̸= 0
and an ̸= 0 for all n. Then the sequence ( 1

an
) converges to 1

a .

PROOF. We prove that ( 1
an

− 1
a ) is a null sequence. We have

1

an
− 1

a
=

1

aan
(a− an).

The sequence ( 1a (a − an)) is a null sequence. Proposition 16.19 can be applied as
soon as we have proved the sequence ( 1

an
) to be bounded. There is an N ∈ N with

|an−a| < |a|
2 for all n ≥ N . Then |a| ≤ |an|+ |a−an| ≤ |an|+ |a|

2 and so |an| ≥ |a|
2

for all n ≥ N . For this n we have 1
|an| ≤

2
|a| . So the sequence ( 1

an
) is bounded.
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We have the rule

lim
n

1

an
=

1

limn an
.

Everything in this formula has to be defined.

From lemma 16.9 follows directly:

16.27 Lemma. Subsequences of a convergent sequence are convergent.

If a subsequence converges, then the sequence itself does not necessarily converge.
It does if the sequence is ascending (or descending). That will be proposition 16.30.

16.28 Definition. A sequence (an) of rational numbers is called ascending (respec-
tively descending) if an+1 ≥ an (respectively an+1 ≤ an) for all indices n.

16.29 Lemma. Let (an) be an ascending convergent sequence of rational numbers.
Then an ≤ limn an for all n.

PROOF. Let a = limn an. Suppose there is an m with am > a. Then for all n ≥ m
we have an ≥ am > a, that is an− a ≥ am− a. It would follow that for ε = am− a
there is no N such that |an − a| < ε for all n ≥ N .

16.30 Proposition. Let (an) be an ascending sequence of rational numbers with a
convergent subsequence (ai(n)). Then (an) converges as well and its limit is equal
to the limit of this subsequence.

PROOF. Let a be the limit of the sequence (ai(n)). Let ε > 0. Then there exists,
see also lemma 16.29, an M with 0 ≤ a−ai(n) < ε for all n ≥M . Take N = i(M).
Let n ≥ N . There is an M ′ > M with i(M ′) > n and so

ai(M) ≤ an ≤ ai(M ′) ≤ a,

that is
0 ≤ a− ai(M ′) ≤ a− an ≤ a− ai(M) < ε.

So (an) converges to a.

Series

16.31 Terminology and notation. The partial sum sequence (sn) of a sequence
(an) is the sequence given by

sn =

n−1∑
k=0

ak.

The sequence (an) is the difference sequence of (sn):

an = sn+1 − sn.
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The sequence sn is often referred to as a series. The an are the terms of the series.
If (sn) converges, then for the limit the following notation is used:

∞∑
n=0

an = lim
n
sn.

The terms in the sequence (an) are indexed by N and for sn the indexing is chosen
in such a way that sn is the sum of the first n terms. Other choices for the relation
between the indices of the sequence and the sequence of its partial sums are possible
and in many cases another choice might even be preferable. It is customary to use
the notation

∞∑
n=m

an

for both the series and the limit of the series.

16.32 Proposition. Suppose the series (sn) with terms an converges. Then the
sequence (an) is a null sequence.

PROOF. This is a reformulation of proposition 16.22: (an) is the difference se-
quence of its partial sum sequence.

16.33 Definition. If the sequence (an) is a geometric sequence, then its partial
sum sequence (sn) is called a geometric series.

A geometric series is given by its first term a and a ratio r. So the terms of the
series are arn. If the geometric series (sn) with sn =

∑n−1
k=0 ar

k converges, then by
proposition 16.32 the sequence (arn) is a null sequence and so |r| < 1 (if a ̸= 0).
For geometric series the converse of proposition 16.32 does hold:

16.34 Proposition. Let a and r be rational numbers with |r| < 1. Then the geo-
metric series with first term a and ratio r converges to

∞∑
n=0

arn =
a

1− r
.

PROOF. By theorem 8.5 we have sn = a(1−rn)
1−r . The sequence (rn) is a null

sequence and so the sequence (sn) converges. The limit is

∞∑
n=0

arn = lim
n

a(1− rn)

1− r
=

a

1− r
.
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16.4 Base g Expansions

As noticed in section 16.1 a rational number r can be approximated by decimal

fractions: the sequence (an) with an = ⌊10nr⌋
10n converges to r:

0 ≤ r − ⌊10nr⌋
10n

=
10nr − ⌊10nr⌋

10n
<

1

10n
.

In the decimal notation every next term improves the approximation of r: an extra
digit is added. We will now focus on that extra digit, so on the difference sequence
of (an). We will do this right away for a g-adic notation instead of just the decimal
one.

We fix a base g ≥ 2. Let r be a rational number with 0 ≤ r < 1. Then the sequence

(an) with an = ⌊gnr⌋
gn converges to r:

0 ≤ r − ⌊gnr⌋
gn

=
gnr − ⌊gnr⌋

gn
<

1

gn
.

Consider the sequence (bn) with bn = gnr − ⌊gnr⌋. We have 0 ≤ bn < 1 for all
n ∈ N and r − an = bn

gn .

For all n ∈ N:

gbn − ⌊gbn⌋ = gn+1r − g⌊gnr⌋ − ⌊gn+1r − g⌊gnr⌋⌋ = gn+1r − ⌊gn+1r⌋
= gn+1 − g⌊gnr⌋ − ⌊gn+1r⌋+ g⌊gnr⌋⌋ = bn+1.

So the sequence (bn) is the course of b0 = r − ⌊r⌋ = r under the transformation

γ : Q → Q, x 7→ gx− ⌊gx⌋,

that is bn = γn(r). From γ(r) = gr − ⌊gr⌋ follows r = ⌊gr⌋
g + γ(r)

g . We now have

r =
⌊gr⌋
g

+
γ(r)

g
=

⌊gr⌋
g

+
⌊gγ(r)⌋
g2

+
γ2(r)

g2

=
⌊gr⌋
g

+
⌊gγ(r)⌋
g2

+
⌊gγ2(r)⌋

g3
+
γ3(r)

g3

...

=
( n∑
k=1

⌊gγk−1(r)⌋
gk

)
+
γn(r)

gn

and so

⌊gnr⌋ =
⌊ n∑
k=1

⌊gγk−1(r)⌋gn−k + γn(r)
⌋
=

n∑
k=1

⌊γk−1(r)⌋gn−k.
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It follows that

r = lim
n
an = lim

n

⌊gn⌋
gn

= lim
n

n∑
k=1

⌊gγk−1(r)⌋
gk

=

∞∑
k=1

⌊gγk−1(r)⌋
gk

.

16.35 Definition. Let r be a rational number with 0 ≤ r < 1 and let γ be the
transformation of Q defined above. Then the sequence (⌊gγn−1(r)⌋)n≥1 is called
the g-adic expansion of r.

In other words: if (cn) is the g-adic expansion of r, then

r =

∞∑
n=1

cn
gn

.

If the base g is equal to ten, then we usually write r = 0.c1c2c3 . . . .

16.36 Example. Computation of the decimal expansion of 1
7 :

10
7 = 1 + 3

7 ,
30
7 = 4 + 2

7 ,
20
7 = 2 + 6

7 ,
60
7 = 8 + 4

7 ,
40
7 = 5 + 5

7 ,
50
7 = 7 + 1

7 .

The course of 1
7 under γ is the repeating sequence ( 17 ,

3
7 ,

2
7 ,

6
7 ,

4
7 ,

5
7 ). The decimal

expansion is the repeating sequence (1, 4, 2, 8, 5, 7) and so 1
7 = 0.142857.

Let’s also compute the binary expansion of 1
7 :

2
7 = 0 + 2

7 ,
4
7 = 0 + 4

7 ,
8
7 = 1 + 1

7 .

So the binary notation for 1
7 is 0.001.

Obviously the g-adic expansion of a rational number repeats.

16.37 Proposition. Let r be a rational number with 0 ≤ r < 1. Then the g-adic
expansion of r repeats. The length of the least period is at most equal to the least
denominator of r.
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PROOF. Write r = a
b with a ∈ Z, b ∈ N+ and gcd(a, b) = 1. Then

γ
(a
b

)
=
ga

b
−
⌊ga
b

⌋
=
rb(ga)

b
,

where rb(ga) is the remainder of ga after division by b. So the course of r under
γ is a sequence in { 0

b ,
1
b , . . . ,

b−1
b }, a set consisting of b elements. It follows that

the course repeats with a period of length ≤ b. The g-adic expansion (⌊gγn−1(r)⌋)
repeats with a period of the same length.

From the proof it is clear that more can be said about the g-adic expansion of
rational numbers.

16.38 Proposition. Let r = a
b with a ∈ Z, b ∈ N+, a < b, gcd(a, b) = 1 and

gcd(g, b) = 1. Then the g-adic expansion of r is purely repeating with a least period
of length ob(g), the least k ∈ N+ such that gk ≡ 1 (mod b) (see definition 13.20).

PROOF. Under the transformation γ a fraction k
b is mapped to rb(gk)

b . For the
numerators this corresponds to the transformation Nb → Nb, k 7→ rb(gk) and also
with the multiplication by g:

σg : Z/b→ Z/b, k 7→ g · k.

Since gcd(a, b) = 1 we have a ∈ Z/b∗ and since gcd(g, b) = 1 the transformation
σg is a permutation. The length of the orbit of a under σg equals the order of g
modulo b.

Since ob(g) divides φ(b), the length of the period is a divisor of the totient of b for
every base g relatively prime to b.

16.39 Example. See example 16.36. We computed the decimal and the binary
expansion of the rational number 1

7 . The order of 10 modulo 7 equals 6, and modulo
2 it equals 3. In both cases the length of the period is a divisor of φ(7) = 6.

So rational numbers have a repeating g-adic expansion. Conversely, if (cn)n≥1 is a
repeating sequence in Ng, then it represents a rational number:

16.40 Proposition. Let g ∈ N with g ≥ 2. Let (cn)n≥1 be a repeating sequence in
Ng. Then the sequence (an)n≥1 with an =

∑n
k=1

ck
gk

converges in Q.

PROOF. There are m,N ∈ N+ such that cn+m = cn for all n ≥ N , that is

(cn)n≥1 = (c1, . . . , cN−1, cN , . . . , cN+m−1).

First we show that the subsequence (dn) with dn = aN−1+nm converges. The
sequence (dn − d0) is a geometric series with ratio 1

gm :

(dn+1 − d0)− (dn − d0) = dn+1 − dn = aN−1+(n+1)m − aN−1+nm
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=

m−1∑
k=0

cN+nm+k

gN+nm+k
=

m−1∑
k=0

cN+k

gN+nm+k
=

1

gnm

m−1∑
k=0

cN+k

gN+k
.

By proposition 16.34 the sequence (dn− d0) converges and so does (dn). Since the
ascending sequence (an) has a convergent subsequence, it converges by proposi-
tion 16.30.

16.41 Example. For the repeating sequence (cn)n≥1 = (2, 7, 5, 0, 7) in N10 we
compute the fraction represented by

∑∞
n=1

cn
10n = 0.27507. First we compute

0.00507. This is the sum of the geometric series with first term 0.00507 and ratio
0.001. So 0.00507 = 0.00507

0,999 = 507
99900 = 169

33300 . And so 0.27507 = 0.27 + 0.00507 =
27
100 + 169

33300 = 458
1665 .

A sequence (cn)n≥1 in Ng with a g − 1-tail repeats and so
∑∞
n=1

cn
gn exists:

∞∑
n=1

cn
gn

=
c1
g

+
c2
g2

+ · · ·+ cN−1

gN−1
+

∞∑
n=N

g − 1

gn

=
c1
g

+
c2
g2

+ · · ·+ cN−1

gN−1
+

g−1
gN

1− 1
g

=
c1
g

+
c2
g2

+ · · ·+ cN−1

gN−1
+

1

gN−1

=
c1
g

+
c2
g2

+ · · ·+ cN−1 + 1

gN−1
.

So the g-adic expansion of this number is (c1, c2, . . . , cN−1+1, 0, 0, 0, . . . ). A g−1-
tail will not occur in a g-adic expansion of a rational number.

If (cn)n≥1 is a sequence in Ng with not all cn equal to g − 1 for which (
∑
k=1

ck
gk
)

converges, say r =
∑∞
n=1

cn
gn , then γ(r) = (cn+1)n≥1 and c1 = ⌊γ(r)⌋. If the

sequence (cn) has no g−1-tail, then (cn) is the g-adic expansion of r. In particular
the sequence (cn) repeats.

Thus we have a correspondence between repeating sequences without a g − 1-tail
in Ng and rational numbers r with 0 ≤ r < 1.

If (cn) is a nonrepeating sequence in N10, for example the sequence

(0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, . . . ),

then the sequence (an) with an =
∑n
k=1

cn
10n is a sequence which does not converge

in Q. In the next chapter we will extend Q to the field R of the real numbers. In
that field this sequence does have a limit.
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Python

The function g_repr(a, b, g) returns the g-adic expansion of the fraction repre-
sented by (a, b), where a, b ∈ N+ and a < b. The expansion is a list of two lists:
the first one is the initial part and the second the shortest period.

arithmetics.py

def g_expand(a, b, g):

nrs = []

exp = []

while a not in nrs:

nrs.append(a)

(c, a) = divmod(g * a, b)

exp.append(c)

i = nrs.index(a)

>>> g_expand(1, 7, 10)

[[], [1, 4, 2, 8, 5, 7]]

>>> g_expand(1, 7, 2)

[[], [0, 0, 1]]

>>> g_expand(121, 725, 5)

[[0, 4], [0, 4, 1, 2, 3, 3, 4, 4, 0, 3, 2, 1, 1, 0]]

Given a repeating sequence, the function rat(nrlist1, nrlist2, g) computes the
rational number it represents, see example 16.41.

arithmetics.py
from functools import reduce

def nat(nrlist, g):

if nrlist == []: return 0

def sumg(a ,b): return (a * g) + b

return reduce(sumg, nrlist)

def rat(nrlist1, nrlist2, g):

a, b = nat(nrlist1, g), nat(nrlist2, g)

k, l = len(nrlist1), len(nrlist2)

return simplify(a * (g**l - 1) + b, (g**l - 1) * g**k)

>>> rat([], [1, 4, 2, 8, 5, 7], 10)

(1, 7)

>>> rat([2], [0], 10)

(1, 5)

>>> rat([2, 7], [5, 0, 7], 10)

(458, 1665)

>>> rat([], [0, 0, 1], 2)

(1, 7)
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16.5 Cauchy Sequences

We want more sequences in Q to converge, that is, we want to extend Q with
new limits. But what is the right criterion for having a limit in the extended
number system? If a sequence converges, its difference sequence is a null sequence.
However, there are sequences with a null sequence as difference sequence, which do
diverge whatever the extension will be. An example of this phenomenon:

16.42 Example. The sequence (hn) with hn =
∑n
k=1

1
k is called the harmonic

series. The number hn is the sum of the first n terms of the sequence ( 1n )n≥1.
This last sequence is a null sequence. We will show that the harmonic sequence
diverges.

Consider the subsequence (dn)n≥0 with dn = h2n . We have d0 = h1 = 1 and

dn+1 = dn +

2n+1∑
k=2n+1

1

k
≥ dn +

2n+1∑
k=2n+1

1

2n+1
= dn + 1

2 .

By induction it follows that dn ≥ 1 + n
2 . So (dn) diverges and so does (hn).

This section is about sequences in Q which should converge: the Cauchy sequences.

16.43 Definition. A sequence (an) of rational numbers is called a Cauchy sequence
if for each ε > 0 there is an N ∈ N such that |am − an| < ε for all m,n ≥ N .

Indeed, converging sequences are Cauchy sequences:

16.44 Proposition. Let (an) be a convergent sequence in Q. Then (an) is a Cauchy
sequence.

PROOF. Let a be the limit of (an) and let ε > 0. Then there is an N ∈ N such
that |an − a| < ε

2 for all n ≥ N . For m,n ≥ N we then have we |an − am| ≤
|an − a|+ |a− am| < ε

2 + ε
2 = ε. So (an) is a Cauchy sequence.

In the definition of Cauchy sequence the notion of limit does not occur. In the next
chapter we will extend Q to the field R. If a sequence in Q converges in R, then
then it is a Cauchy sequence in R and so it is in Q. We will see that in fact in R
all Cauchy sequences converge.

Also Cauchy sequences behave well under the operations of addition, multiplication
and inversion.

16.45 Proposition. Let (an) and (bn) be Cauchy sequences. Then so is (an + bn).
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PROOF. Let ε be any positive number. Since (an) and (bn) are Cauchy sequences,
there is an N ∈ N such that both |an−am| < ε

2 and |bn−bm| < ε
2 for all m,n ≥ N .

Then
|an + bn − am − bm| ≤ |an − am|+ |bn − bm| < ε

2 + ε
2 = ε.

So (an + bn) is a Cauchy sequence.

16.46 Proposition. Cauchy sequences are bounded.

PROOF. Let (an) be a Cauchy sequence. Then there is an N ∈ N such that
|an − am| < 1 for all m,n ≥ N . In particular |an − aN | < 1 and so |an| ≤
|aN |+ |an − aN | < |aN |+ 1 for all n ≥ N . So is (an) bounded.

16.47 Proposition. Let (an) and (bn) be Cauchy sequences. Then so is (anbn).

PROOF. We have

|anbn − ambm| = |anbn − anbm + anbm − ambm| ≤ |an||bn − bm|+ |an − am||bm|.

Let ε be any positive number. Since (an) is a Cauchy sequence, it is bounded: there
is a C such that |an| ≤ C for all n. Also the Cauchy sequence (bn) is bounded: there
is a D such that |bm| ≤ D for all m. There is an M ∈ N such that |an − am| < ε

2D
for all m,n ≥M and there is an N ∈ N such that |bn− bm| < ε

2C for all m,n ≥ N .
We have for all m,n ≥ max(M,N):

|anbn − ambm| < C · ε
2C +D · ε

2D = ε.

16.48 Lemma. Let (an) be a Cauchy sequence which is not a null sequence. Then
there is a C > 0 and an N ∈ N such that |an| > C for all n ≥ N .

PROOF. Because (an) is not a null sequence, there is an ε > 0 such that for every
N ∈ N there is an n ≥ N with |an| > ε. Since (an) is a Cauchy sequence, there is
an N with |am− an| < ε

2 for all m,n ≥ N . It follows that there is an M ≥ N with
|aM | > ε. We have |aM | ≤ |aM−an|+|an| and so |an| ≥ |aM |−|aM−an| > ε− ε

2 = ε
2

for all n ≥M . So take C = ε
2 .

16.49 Proposition. Let (an) be a Cauchy sequence which is not a null sequence
and let an ̸= 0 for all n. Then ( 1

an
) is a Cauchy sequence as well.

PROOF. By lemma 16.48 there exist a C > 0 and an N ∈ N such that |an| > C
for all n ≥ N . Let ε be any positive number. Then there is a K ∈ N such that
|am − an| < C2ε for all m,n ≥ K. For all m,n ≥ max(K,N) we then have∣∣∣∣ 1an − 1

am

∣∣∣∣ = 1

|anam|
· |an − am| < 1

C2
· C2ε = ε.

The fact that addition, multiplication and inversion of Cauchy sequences again
results in Cauchy sequences is of importance in the next chapter: consequences will
be that the operations in R are easily defined and, moreover, the rules of arithmetic
for R are easily verified.
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We can strengthen lemma 16.48 further:

16.50 Proposition. Let (an) be a Cauchy sequence which is not a null sequence.
Then there is a C > 0 and an N ∈ N such that either an > C for all n ≥ N , or
an < −C for all n ≥ N .

PROOF. By lemma 16.48 there is anM ∈ N and a C > 0 such that |an| > C for all
n ≥M . Since (an) is a Cauchy sequence, there is a K ∈ N such that |an−am| < C
for all m,n ≥ K. Take N = max(M,K).

Assume aN > C. For all n ≥ N we have aN−an < C and so an > aN−C > 0.
It follows that an = |an| > C.

Assume aN < −C. For all n ≥ N we have −C < aN − an and so an <
aN + C < 0. It follows that an = −|an| < −C.

The definition of Cauchy sequence might give the impression that it is often difficult
to show that a sequence is a Cauchy sequence. In some situations however, it is
easily done.

16.51 Theorem. Let (an) be an ascending sequence of rational numbers and (bn)
a descending sequence of rational numbers. Let furthermore be given that an ≤ bn
for all n ∈ N and that the sequence (bn − an) is a null sequence. Then (an) and
(bn) are Cauchy sequences.

PROOF. Let ε > 0. Then there is an N ∈ N such that 0 ≤ bn − an < ε for all
n ≥ N . For m,n ≥ N with m ≤ n we then have

aN ≤ am ≤ an ≤ bn ≤ bN

and so 0 ≤ an − am < bN − aN < ε. So (an) is a Cauchy sequence. Similarly, (bn)
is a Cauchy sequence. This also follows from bn = an + (bn − an).

16.52 Corollary. Let (cn)n≥1 be a sequence in Ng. Then (an)n≥1 with an =∑n
k=1

ck
gk

is a Cauchy sequence.

PROOF. The sequence (an) is ascending and the sequence (an+
1
gn ) is descending:

an+1 +
1

gn+1
= an +

cn+1

gn+1
+

1

gn+1
= an +

cn+1 + 1

gn+1
≤ an +

g

gn+1
= an +

1

gn
.

From theorem 16.51 follows that (an) is a Cauchy sequence.

So a sequence like 0.1, 0.17, 0.172, 0.1720, 0.17207, . . . , where an extra digit is
added in each term, is a Cauchy sequence. If the sequence is repeating, then it
converges to a rational number. If not, then it does not converge (in Q), because
the sequence would be the decimal expansion of its limit.
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16.6 p-Adic Approximations

In this section for every prime number p an absolute value on Q is defined. These
absolute values differ strongly from the ordinary absolute value we used so far.

16.53 Definition. Let p be a prime number and r a nonzero rational number. We
define the p-adic absolute value |r|p of r as follows:

|r|p = p−vp(r).

And we define |0|p = 0. Thus we have a map Q → Q≥0, r 7→ |r|p, the p-adic
absolute value on Q.

16.54 Proposition. Let p be a prime number. For all r, s ∈ Q we have:

(i) |r|p = 0 ⇐⇒ r = 0,
(ii) |rs|p = |r|p · |s|p,
(iii) |r + s|p ≤ max(|r|p, |s|p).
(iv) If |r|p ̸= |s|p, then |r + s|p = max(|r|p, |s|p).

PROOF.

(i) This follows immediately from the definition.
(ii) This is a consequence of vp(rs) = vp(r)+ vp(s) if r, s ̸= 0. For r = 0 or s = 0

it is obvious.
(iii) Obvious for r = 0 or s = 0. We assume r, s ̸= 0 and put r = a

c and s = b
c

with c ∈ N+ and a, b ∈ Z. Then (by part (ii)) to prove that |a + b|p ≤
max(|a|p, |b|p), that is, vp(a + b) ≥ min(vp(a), vp(b)). We may assume that
vp(a) ≤ vp(b). Then to prove vp(a + b) ≥ vp(a). Let k = vp(a). Then
pk | a. Also pk | b, because vp(b) ≥ vp(a) = k. So pk | a + b, that is,
vp(a+ b) ≥ k = vp(a).

(iv) We use the notation of the proof of part (iii). Now to prove the equality
vp(a+ b) = min(vp(a), vp(b)). We assume that vp(a) < vp(b). Then to prove
vp(a + b) = vp(a). Write a = pka′ and b = pkb′. Then vp(a

′) = 0 and
vp(b

′) > 0, that is, p ∤ a′ and p | b′. It follows that vp(a
′ + b′) = 0. So

vp(a+ b) = k + vp(a
′ + b′) = k = vp(a).

The third property is even stronger than what was required for absolute values.
It follows that r 7→ |r|p is an absolute value on Q. The ordinary absolute value
satisfies |n| = n for all n ∈ N+. For the p-adic absolute value we have

|n|p = |1 + · · ·+ 1|p ≤ max(|1|p, . . . , |1|p) = 1.

An absolute value with this property is called non-Archimedean, and otherwise it
is called Archimedean. The p-adic absolute value can be used to define the p-adic
distance.
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16.55 Definition. Let r and s be rational numbers. The p-adic distance dp(r, s)
of r to s is the p-adic absolute value of the difference of r and s:

dp(r, s) = |r − s|p.

The p-adic distance is a metric on Q, and by property (iii) even an ultrametric:

16.56 Proposition. For all r, s and t in Q:

(i) dp(r, s) = 0 ⇐⇒ r = s,
(ii) dp(r, s) = dp(s, r),
(iii) dp(r, t) ≤ max(dp(r, s), dp(s, t)).

PROOF. These rules follow directly from proposition 16.54.

In the sections 16.2, 16.3 and 16.5 we introduced notions that are equally well
applicable for any absolute value. Many of the properties we derived were conse-
quences of the defining rules for absolute values only. For some of the properties the
definition of the ordinary absolute value was used. The ordinary absolute value is
closely connected to the ordering of Q. The p-adic absolute value is of importance
for the arithmetic of rational numbers. Again we will study limits of sequences,
now with respect to the p-adic metric. For the proofs it often suffices to refer to
proofs in the preceding sections.

16.6.1 p-adic convergence

16.57 Definition. A sequence (an) of rational numbers is called a p-adic null se-
quence if for every ε > 0 there is an N ∈ N such that

|an|p < ε for all n ≥ N.

Put differently: (an) is a p-adic null sequence if and only if (|an|p) is a null sequence.
(Compare with lemma 16.11. In this section by a null sequence, without ‘p-adic’,
we mean a null sequence with respect to the ordinary absolute value.)

16.58 Example. The sequence (pn) is a p-adic null sequence, since |pn|p = 1
pn

and ( 1
pn ) is a null sequence. The sequence ( 1n ) is not a p-adic null sequence:

| 1n |p = pvp(n) and in particular | 1
pn |p = pn

The numbers a for which the sequence (an) is a p-adic null sequence are easily
determined.

16.59 Proposition. Let a ∈ Q. Then (an) is a p-adic null sequence if and only if
|a|p < 1.

PROOF. If |a|p ≥ 1, then |an|p = |a|np ≥ 1 for all n ∈ N. If |a|p < 1, then the
sequence (|a|np ) is a null sequence by proposition 16.15.
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16.60 Proposition. Let (an) and (bn) be p-adic null sequences. Then so is (an+bn).

PROOF. The sequences (|an|p) and (|bn|p) are null sequences. So by proposi-
tion 16.16 the sequence (|an|p + |bn|p) is a null sequence and, since |an + bn|p ≤
|an|p + |bn|p, so is (|an + bn|p).

16.61 Definition. Let (an) be a sequence of rational numbers. We say that (an)
p-adically converges to a rational number a if the sequence (an−a) is a p-adic null
sequence. Notation: lim(p)

n an = a.

For the p-adic absolute values of a p-adic convergent sequence the following is
stronger then the equivalent of proposition 16.25:

16.62 Proposition. Let (an) be a sequence of rational numbers converging p-adically
to a. Then (|an|p) converges to |a|p. If a ̸= 0, then there is an N ∈ N such that
|an|p = |a|p for all n ≥ N .

PROOF. For a = 0 the first part of the proposition is just the definition of p-adic
null sequence. For a ̸= 0 the first part follows from the second. We prove the second
part. Because (an) converges p-adically there is an N ∈ N with |an − a|p < |a|p
for all n ≥ N . From proposition 16.54(iv) it then follows that for this n we have
|an|p = |a+ (an − a)|p = |a|p.

So: if a sequence converges p-adically and it is not a p-adic null sequence, then the
p-adic absolute values of the terms eventually are equal.

16.63 Proposition. Let (an) be a sequence converging p-adically to a and (bn) be
a sequence converging p-adically to b. Then the sequence (an + bn) converges p-
adically to a+ b.

PROOF. The sequence (an+bn−a−b) is the sum of two p-adic null sequences.

16.64 Proposition. Let (an) be a sequence converging p-adically to a and (bn) a
sequence converging p-adically to b. Then the sequence (anbn) converges p-adically
to ab.

PROOF. The sequence (anbn − ab) is the sum of the sequences (an(bn − b)) and
((an − a)b) and these both are p-adic null sequences.

16.65 Proposition. Let (an) be a sequence converging p-adically to a and let a ̸= 0
and also an ̸= 0 for all n. Then the sequence ( 1

an
) converges p-adically to 1

a .

PROOF. To prove that (| 1
an

− 1
a |p) is a null sequence. We have:∣∣∣ 1

an
− 1

a

∣∣∣
p
=

1

|a|p|an|p
|a− an|p.

The sequence ( 1
|a|p (|a − an)|p) is a null sequence. By proposition 16.62 the terms

of the sequence ( 1
|an|p ) are equal to 1

|a|p for large n.
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16.66 Notation. If the partial sum sequence (sn) of a sequence (an) converges
p-adically, then we use for the p-adic limit the following notation:

∞∑(p)

n=0

an = lim
n

(p)sn.

Also in the p-adic case a geometric series converges if the absolute value of the
ratio is less than 1. The proof is analogous.

16.67 Proposition. Let a and r be rational numbers |r|p < 1. Then the partial sum
sequence of the geometric series with first term a and ratio r converges p-adically
and

∞∑(p)

n=0

arn =
a

1− r
.

16.68 Example. Since |p|p = 1
p < 1, we have

∞∑(p)

n=0

pn =
1

1− p
.

16.6.2 p-Adic expansions

Rational numbers have repeating base g expansions for any base g. Thus the
rational number is obtained as a limit of rational numbers having only powers of
the base g in the denominator. This limit is with respect to the ordinary absolute
value. In the p-adic case it is natural to take p as a base. Natural numbers have a
p-adic notation. For rational numbers r with vp(r) ≥ 0 we have p-adic expansions.
However these expansions are not to the right, but to the left. Division by pn

means for the p-adic notation that the point moves n places to the left.

16.69 Definition. A rational number r is called p-adically integral if |r|p ≤ 1. The
set of p-adic integers we denote by Z(p).

Thus the set Z(p) is a subset of Q containing Z. The elements of Z(p) can be written
as fractions of integers, the denominator not being a multiple of p. This set is closed
under addition and multiplication, that is, if r, s ∈ Z(p), then also r + s, rs ∈ Z(p).
It is easily verified that the set Z(p) with these operations is an integral domain.
The subset Z∗

(p) of invertible elements consists of the rational numbers r satisfying
|r|p = 1. These numbers can be written as a fraction of integers both not being
multiples of p.

16.70 Proposition. Let r ∈ Z(p). Then there is a unique c ∈ Np such that |r−c|p <
1.
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PROOF. Write r = a
b with p ∤ b. Since gcd(b, p) = 1, there are x, y ∈ Z such that

a = xb+ yp. There is a unique pair x, y with x ∈ Np satisfying this equation. We
now have a

b = x+ y
b p. Take c = x. Then r − c = y

b p and so |r − c|p = |yb |p · |p|p ≤
1
p < 1.

16.71 Definition. Let r ∈ Z(p). The unique c ∈ Np with |r − c|p < 1 is called the
remainder of r after division by p. Notation: c = [r]p.

We now have a transformation of Z(p):

γp : Z(p) → Z(p), r 7→
r − [r]p

p
.

16.72 Definition. Let r ∈ Z(p). The sequence (cn)n≥0 with cn = [γnp (r)]p in Np is
called the p-adic expansion of r.

16.73 Proposition. Let (cn) be the p-adic expansion of r ∈ Z(p). Then

r = lim
n

(p)
n∑
k=0

ckp
k =

∞∑(p)

k=0

ckp
k.

PROOF. We have

r = c0 + γp(r)p = c0 + c1p+ γ2p(r)p
2 = · · ·

= c0 + c1p+ c2p
2 + · · ·+ cnp

n + γn+1
p (r)pn+1.

So |r −
∑n
k=0 ckp

k|p = |γn+1
p pn+1|p ≤ 1

pn+1 <
1
pn .

The p-adic expansion of a p-adically integral rational number r repeats. We will
prove this for r with −1 < r ≤ 0. In that case the repetition is pure. The general
case then easily follows.

16.74 Proposition. Let r ∈ Z/(p) with −1 < r ≤ 0. Then the p-adic expansion of
r repeats purely.

PROOF. Write r = −a
b with p ∤ b, a ∈ Nb and gcd(a, b) = 1. Then bγp(r) =

−a−b[r]p
p ∈ Z. From 0 ≤ [r]p ≤ p − 1 follows 0 ≤ b[r]p ≤ bp − b and so also

a ≤ a+ b[r]p ≤ bp− b+ a < bp. So γp(r) = −a′

b with a′ =
a+b[r]p

p ∈ Z and a′ ∈ Np.
Furthermore, pa′ ≡ a (mod b), so in Z/b∗ we have a′ = p−1a. So the expansion
repeats purely with a period of length ob(p).

16.75 Example. We compute the 5-adic expansion of 1
7 . First we compute the

5-adic expansion of 1
7 − 1 = − 6

7 . Following the proof of proposition 16.74, we get
consecutively:

− 6
7 = 2− 4

7 · 5
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− 4
7 = 3− 5

7 · 5
− 5

7 = 0− 1
7 · 5

− 1
7 = 2− 3

7 · 5
− 3

7 = 1− 2
7 · 5

− 2
7 = 4− 6

7 · 5.

Here in each line the second fraction is obtained from the first by multiplying by
3 (the inverse of 5 modulo 7) and taking the remainder after division of the result
by 7. It follows that the 5-adic expansion of − 6

7 is the sequence (2, 3, 0, 2, 1, 4). So
the 5-adic expansion of 1

7 is (3, 3, 0, 2, 1, 4, 2).

The same computation as above, but a different notation:

20
7 = 2 + 6

7
25
7 = 3 + 4

7
5
7 = 0 + 5

7
15
7 = 2 + 1

7
10
7 = 1 + 3

7
30
7 = 4 + 2

7 .

From bottom to top this is exactly the computation used for the base 5 expansion
of 6

7 : it is 0.412032. The bar indicates it is a period repeating to the right. The
5-adic expansion of − 6

7 is 412032, where now the bar indicates a period repeating
to the left.

This is a special case of a general phenomenon for the p-adic expansion of −a
b
,

where b ∈ N+, a ∈ Nb, p ∤ b and gcd(a, b) = 1: if (c1, . . . , cn) is the base p expansion
of a

b
, then (cn, . . . , c1) is the p-adic expansion of −a

b
.

16.76 Proposition. Let (cn)n≥0 be a repeating sequence in Np. Then the sequence
(an) with an =

∑n
k=0 ck converges p-adically to a rational number.

PROOF. The convergence of the sequence an can be reduced to the convergence
of a geometric series with ratio pm, where m is the length of the period.

Python

The function p_adic(a, b, p) returns the p-adic expansion of the rational number
represented by (a, b), where a ∈ Z and b ∈ N+ with p ∤ b.

348



16.6 p-Adic Approximations

arithmetics.py
def p_adic(a, b, p):

u = modinv(b, p)

nrs = []

exp = []

while a not in nrs:

nrs.append(a)

c = (a * u) % p

a = (a - (c * b)) // p

exp.append(c)

i = nrs.index(a)

return [exp[:i], exp[i:]]

>>> p_adic(-6, 7, 5)

[[], [2, 3, 0, 2, 1, 4]]

>>> p_adic(-131, 87, 17)

[[11], [2, 10, 8, 12]]

Given a repeating sequence, the function prat(nrlist1, nrlist2, p) computes
the rational number it represents.

arithmetics.py
def ratp(nrlist1, nrlist2, p):

nrlist1.reverse()

nrlist2.reverse()

a, b = nat(nrlist1, p), nat(nrlist2, p)

k, l = len(nrlist1), len(nrlist2)

return simplify(a * (p**l - 1) - (b * p**k), p**l - 1)

>>> ratp([11], [2,10, 8, 12], 17)

(-131, 87)

>>> ratp([], [2, 3, 0, 2, 1, 4], 5)

(-6, 7)

16.6.3 p-adic Cauchy sequences

We have the notion of Cauchy sequence with respect to the p-adic distance as well.
In this case it can be simplified considerably.

16.77 Definition. A sequence (an) of rational numbers is called a p-adic Cauchy
sequence if for every ε > 0 there is an N ∈ N such that |an − am|p ≤ ε for all
m,n ≥ N .

16.78 Proposition. A sequence in Q is a p-adic Cauchy sequence if and only if its
difference sequence is a p-adic null sequence.
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PROOF. If (an) is a p-adic Cauchy sequence, then clearly the difference sequence
is a p-adic null sequence. Suppose conversely that (an+1 − an) is a p-adic null
sequence. Let ε > 0. Then there is an N ∈ N such that |an+1 − an|p < ε for all
n ≥ N . For m,n ≥ N with m ≤ n we then have

|an − am|p = |(an − an−1) + (an−1 − an−2) + · · ·+ (am+1 − am)|p
≤ max(|an − an−1|p, |an−1 − an−2|p, . . . , |am+1 − am|p) < ε.

So (an) is a p-adic Cauchy sequence.

16.79 Corollary. Let (cn)n≥0 be a sequence in Np. Then the sequence (an)n≥0

with an =
∑n
k=0 cnp

n is a Cauchy sequence.

p-Adically convergent sequences are p-adic Cauchy sequences. One might prove
this as was done in the case of the ordinary absolute value (proposition 16.44), but
since in this case the notion of Cauchy sequence is so simple, there is an easier
proof.

16.80 Proposition. p-Adically convergent sequences of rational numbers are p-adic
Cauchy sequences.

PROOF. The difference sequence of a convergent sequence is a null sequence, so
by proposition 16.78 it is a p-adic Cauchy sequence.

The p-adic absolute values of the terms of a p-adic Cauchy sequences not being a
p-adic null sequence are eventually constant. This generalizes proposition 16.62.

16.81 Lemma. Let (an) be a p-adic Cauchy sequence which is not a p-adic null
sequence. Then there is an N ∈ N such that |an|p = |an+1|p for all n ≥ N .

PROOF. Since (an) is not a p-adic null sequence, there is a ε > 0 such that for
every M ∈ N there is a N ≥ M with |aN |p > ε. The sequence (an+1 − an)
is a p-adic null sequence. So there is a K ∈ N such that |an+1 − an|p < ε for
all n ≥ K. There is an N ≥ K with |aN |p > ε. For all n ≥ N we then have
|an+1|p = |an+1 − an + an|p = |an|p.

The fact that p-adic Cauchy sequences behave well under the operations addition,
multiplication and inversion can be proved as was done in the ordinary case. Be-
low shorter proofs are given based on proposition 16.78 and lemma 16.81. These
properties will be used in chapter 18 where the field Qp of the p-adic numbers is
constructed.

16.82 Proposition. Let (an) and (bn) be p-adic Cauchy sequences. Then so is
(an + bn).

PROOF. The sequence (an+1 + bn+1 − an − bn) is the difference of two p-adic null
sequences, (an+1 − an) and (bn+1 − bn), and so is a null sequence as well.
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16.83 Proposition. Let (an) and (bn) be p-adic Cauchy sequences. Then so is
(anbn).

PROOF. We have

an+1bn+1 − anbn = an+1(bn+1 − bn) + (an+1 − an)bn.

By lemma 16.81 there is an N ∈ N such that |an+1|p = |an|p for all n ≥ N . Since
(bn+1 − bn) is a p-adic null sequence, it follows that (an+1(bn+1 − bn)) is a p-adic
null sequence as well. Similarly, ((an+1 − an)bn) is a p-adic null sequence. So the
sequence (an+1bn+1 − anbn) is a p-adic null sequence.

16.84 Proposition. Let (an) be a p-adic Cauchy sequence which is not a p-adic null
sequence and let an ̸= 0 for all n. Then also ( 1

an
) is a p-adic Cauchy sequence.

PROOF. By lemma 16.81 there is an N ∈ N such that |an|p = |an+1|p for all
n ≥ N . We have ∣∣∣ 1

an+1
− 1

an

∣∣∣
p
=

1

|an|p|an+1|p
|an+1 − an|p.

So for all n ≥ N ∣∣∣ 1

an+1
− 1

an

∣∣∣
p
=

1

|aN |2p
|an+1 − an|p.

So ( 1
an+1

− 1
an

) is a p-adic null sequence.

Exercises

1. (i) Show that the sequence (an) with an = 1
2n

− 1
5n

+ 1
7n

is a null sequence.

(ii) Determine an N ∈ N such that |an| < 1
1000

for all n ≥ N .

2. Prove that the sequence (an) with an = (n!)2

(2n)!
is a null sequence.

3. (i) Prove that 2n ≥ n2 for all n ∈ N with n ≥ 4.

(ii) Prove that the sequence (an) with an = n
2n

is a null sequence.

4. The sequence (an) with an = 2n3+1
3n3+n+1

converges. Prove this and indicate the
propositions used.

5. Determine limn
2n+3n+4n

4n−3n−2n
.
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6. Let (cn)n≥1 be a descending null sequence. The sequence (an)n≥1 is defined by
an =

∑n
k=1(−1)k+1ck.

(i) Let N ∈ N. Prove that a2N ≤ an ≤ a2N+1 for all n > 2N + 1.

(ii) Prove that (an) is a Cauchy sequence.

(iii) Prove that the sequence (an) defined by

an = 1− 1
2
+ 1

3
− 1

4
+ · · ·+ (−1)n+1

n
(for all n ∈ N)

is a Cauchy sequence.

7. Determine the base g expansion of 1
10

for g = 2, 3, 4, 5, 6, 7.

8. Write the rational number 8.046 as a fraction of integers.

9. (i) Determine the base g expansion of the rational number 1
2
for even bases g.

(ii) Determine the base g expansion of the rational number 1
2
for odd bases g.

10. Write the number with hexadecimal notation 2A.23F as a fraction of integers.

11. For a given g is 0.1 the g-adic notation of a rational number. Which number?

12. Let r be a rational number with 0 ≤ r ≤ 1. How can the decimal notation of 1− r
be derived from the decimal notation of r?

13. There are 32 rational numbers with binary notation 0.c1c2c3c4c5 and c1, c2, c3,
c4, c5 ∈ {0, 1}. Which numbers?

14. Show that the map γ described on page 335 restricts to a permutation of the set
{ r ∈ Q | 0 ≤ r < 1 }.

15. Determine the p-adic expansion of 1
5
for p = 2, 3, 7, 11, 13.

16. The 2-adic notation of a rational number is 101101. Write this number as a fraction
of integers.

17. Determine lim
(2)
n 52

n

. (See exercise 16 of chapter 13.)

18. Let p be a prime number. Show that lim
(p)
n n! = 0.

19. Let (an) be a Cauchy sequence having a subsequence converging in Q. Prove that
(an) converges in Q. Verify that this holds in the p-adic situation as well.

20. Determine for all primes p the p-adic expansion of −1.

21. The 7-adic notation of a rational number is . . . 30412. Write this number as a
fraction of integers.

22. Let p be a prime number. Show that the map γp described on page 347 is a
permutation of the set Z(p).
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17 The Real Numbers

A field with an absolute value can be extended to a field in which all Cauchy
sequences converge, the so-called completion of the field. In this chapter we will do
this for the field Q with the ordinary absolute value. The field thus obtained is the
field R of the real numbers. The p-adic absolute values lead to other completions of
Q, for these see the next chapter. Because in R all Cauchy sequences converge we
now have interesting examples of convergent sequences. In particular we consider
infinite continued fractions. These are very well suited for approximation of real
numbers by rationals. An important property of R is that the multiplicative group
R∗ strongly resembles the additive group of R: we have in fact an isomorphism
R ∼→ R+, where the addition of real numbers corresponds with the multiplication
of positive real numbers.

17.1 The Construction of R

We start with the field Q with its ordinary absolute value and want to construct an
extension in which Cauchy sequences converge. The set R will be a set of classes
of Cauchy sequences in Q.

17.1.1 The set R

In the field to be constructed two Cauchy sequences will have the same limit if and
only if their difference is a null sequence. This leads to the following definition.

17.1 Definition. Cauchy sequences (an) and (bn) in Q are called equivalent if the
sequence (an − bn) is a null sequence. Notation: (an) ∼ (bn). We denote the set
of Cauchy sequences in Q by CS(Q). Thus the relation ∼ is a relation in the set
CS(Q).

17.2 Proposition. The relation ∼ in CS(Q) is an equivalence relation.

PROOF. The relation ∼ clearly is reflexive and symmetric. Transitivity follows
easily from proposition 16.16.
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17 The Real Numbers

17.3 Definition. A real number is an equivalence class in CS(Q). Notation: the
class of a Cauchy sequence (an) will be denoted by [(an)]. The set R is the set of
the real numbers.

In this chapter often Greek letters are used to denote real numbers. For example
α = [(an)]: the real number α is represented by the Cauchy sequence (an) of
rational numbers. There are many Cauchy sequences representing the same real
number: other representatives are obtained by adding a null sequence to a given
representative.

17.1.2 The field R

Using the given construction of the set R addition and multiplication in R are
easily defined and it is straightforward to prove that with these operations R is a
field.

17.4 Definition. Let (an) and (bn) be Cauchy sequences in Q. The sum and the
product of the real numbers [(an)] and [(bn)] are defined by

[(an)] + [(bn)] = [(an + bn)]

[(an)] · [(bn)] = [(anbn)].

If (an) and (bn) are Cauchy sequences, then so are (an+ bn) and (anbn), see propo-
sition 16.45 and proposition 16.47. The definitions of sum and product should
not depend on the choice of representatives. For example: if (an) ∼ (a′

n), then
(anbn) ∼ (a′

nbn), that is ((an − a′
n)bn) is a null sequence. This follows from propo-

sition 16.19: (an − a′
n) is a null sequence and (bn) is bounded.

For a ∈ Q the constant sequence (a) is a Cauchy sequence. It represents a real
number: [(a)], the class of all sequences in Q converging to a. For rational numbers
a and b we have:

[(a)] = [(b)] ⇐⇒ (a) ∼ (b)

⇐⇒ (a− b) is a null sequence

⇐⇒ a = b.

So we have an injective map

Q → R, a 7→ [(a)].

Addition and multiplication of [(a)] and [(b)] corresponds to addition and multi-
plication of the rational numbers a and b. So the numbers [(a)] form a copy inside
R of the field of rational numbers. That is why we will denote [(a)] by a and
consider R as an extension of Q. In particular we have the elements 0 and 1 in R.
Moreover, we denote [(−an)] by −[(an)] (which is independent of the choice of the
representative).
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17.1 The Construction of R

17.5 Theorem. R together with the addition and the multiplication is a field.

PROOF. It is straightforward to show that R is a commutative ring. For example
the distributivity: choose for real numbers α, β and γ representatives (an), (bn)
and (cn), then α(β+γ) = [(an)]([(bn)]+[(cn)]) = [(an(bn+cn))] and also αβ+αγ =
[(an)][(bn)] + [(an)][(cn)] = [(anbn + ancn)].

It only remains to prove that real numbers ̸= 0 have inverses. Let α ∈ R with
α ̸= 0. Choose a representative (an) of α. The real number 0 is the class of the
null sequences in Q. So (an) is not a null sequence. By proposition 16.48 there is
a C > 0 and a N ∈ N such that |an| > C for all n ≥ N . So we can assume that
an ̸= 0 (replace in the sequence terms 0 by 1, or take the sequence (aN+n)). From
proposition 16.49 follows that the sequence ( 1

an
) is a Cauchy sequence as well. We

then have [(an)][(
1
an

)] = [(1)] = 1.

17.6 Definition. An α ∈ R is called irrational if α /∈ Q. (Here we consider Q as a
part of R.)

We will show that we have obtained many new numbers. The real numbers can be
seen as limits of sequences of rational numbers. For this to be meaningful we have
to extend the absolute value on Q to an absolute value on R. First we extend the
ordering of Q to R.

17.1.3 The ordering of R

We will use proposition 16.50. For a Cauchy sequence (an) not being a null se-
quence, there are two complementary possibilities:

a) There is a C > 0 and an N ∈ N such that an > C for all n ≥ N .
b) There is a C > 0 and an N ∈ N such that an < −C for all n ≥ N .

17.7 Definition. Let α ∈ R. Then α is called positive if α = [(an)] and for the
Cauchy sequence (an) the first of the possibilities above holds for α. Otherwise, α
is called negative.

Again this does not depend on the choice of the representative. If there are for
the Cauchy sequence (an) in Q a C > 0 and an N ∈ N with an > C for all
n ≥ N and (bn) is a Cauchy sequence in Q with [(an)] = [(bn)], then (an − bn)
is a null sequence and so there is an M ∈ N such that |an − bn| < C

2
. Then

bn = an − (an − bn) > C − C
2
= C

2
for all n ≥ max(M,N).

17.8 Definition. Let α and β be real numbers. We define:

α < β ⇐⇒ β − α is positive,

and

α ≤ β ⇐⇒ α < β or α = β.
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17 The Real Numbers

Instead of α < β we sometimes write β > α. And β ≥ α has the same meaning as
α ≤ β.

The relation ≤ thus defined clearly is an extension of the relation ≤ on Q and is a
ordering of the field R as well:

17.9 Proposition. For all α, β, γ ∈ R:
(i) α ≤ α,
(ii) if α ≤ β and β ≤ α, then α = β,
(iii) if α ≤ β and β ≤ γ, then α ≤ γ,
(iv) if α ≤ β, then α+ γ ≤ β + γ,
(v) if α ≤ β and γ > 0, then αγ ≤ βγ.

PROOF. Part (i) follows directly from the definition. For the other parts there is
nothing to prove if α = β and otherwise they are easily derived using the definition
of <.

The ordering of R is total:

17.10 Proposition. Let α and β be real numbers. Then α ≤ β or β ≤ α.

PROOF. This is a consequence of the remarks made before definition 17.7.

17.11 Corollary. Let (an) be a Cauchy sequence in Q with an ≥ 0 for all n ∈ N.
Then for α = [(an)] we have α ≥ 0.

PROOF. Suppose α < 0. Then there is a C ∈ Q with C > 0 and an n ∈ N such
that an < −C for all n ≥ N . Contradiction. So not α < 0. From proposition 17.10
follows that α ≥ 0.

17.12 Corollary. Let α ∈ R with α > 0. Then there is an a ∈ Q with 0 < a < α.

PROOF. Let (an) be a representative of α. Since α > 0, there is a C ∈ Q and an
N ∈ N with C > 0 and an > C for all n ≥ N . For such an n we have an − C > 0
and so by corollary 17.11 α− C ≥ 0. Take for instance a = C

2 .

17.1.4 The absolute value on R

The absolute value on Q can be extended to an absolute value on R. This is needed
for the notion of limit in R.

17.13 Definition. Let α be a real number. Then we define the absolute value |α|
of α as follows

|α| =

{
α if α ≥ 0

−α if α ≤ 0.

The map R → R≥0 is called the absolute value on R.
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17.2 The Completeness of R

17.14 Proposition. The absolute value R → R≥0, α 7→ |α| satisfies the require-
ments for absolute values: for all α, β ∈ R we have

(i) |α| = 0 ⇐⇒ α = 0,
(ii) |αβ| = |α||β|,
(iii) |α+ β| ≤ |α|+ |β|.

PROOF. See the proof of proposition 7.34.

The absolute values of real numbers are numbers in R≥0. In the previous chapter
absolute values of numbers were elements of Q≥0. The main reason was that R still
had to be constructed. The absolute value of a number is seen as its distance to 0.
Usually distances take values in R≥0. Again the function R× R → R≥0, (α, β) 7→
|α − β| is a metric, a metric on R. In fact it works for every absolute value that
way.

17.15 Proposition. Let α ∈ R be represented by the Cauchy sequence (an) in Q.
Then

|α| = [(|an|)].

(So: |α| is the real number represented by the Cauchy sequence (|an|).

PROOF. If α = 0, then (an) is a null sequence and so is (|an|).

If α > 0, then there is an N ∈ N such that an > 0 for n ≥ N . So |α| = α =
[(an)] = [(|an|)].

If α < 0, then there is an N ∈ N such that an < 0 for n ≥ N . So in this case
|α| = −α = −[(an)] = [(−an)] = [(|an|)].

We could have taken this as a definition of |α| and from that derive the here given
definition as a proposition.

17.2 The Completeness of R

On the field R we have an absolute value which extends the absolute value on
Q. So as for Q we have for R the notions null sequence, convergent sequence and
Cauchy sequence as well. Many Cauchy sequences in Q do not converge in Q. We
will show that Cauchy sequences in Q do converge in R, which in fact was our
objective when constructing R. We will see that even every Cauchy sequence in
R converges. Because of this the field R is called complete with respect to the
absolute value on R.

17.16 Proposition. Let (an) be a Cauchy sequence in Q. Then in R it converges
to the real number [(an)].
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17 The Real Numbers

PROOF. Let α = [(an)] and let ε ∈ R with ε > 0. By Corollary 17.12 there is
an e ∈ Q with 0 < e < ε. The sequence (an) is a Cauchy sequence in Q. So
there is an N ∈ N such that |am − an| < e for all m,n ≥ N . For a fixed m ∈ N
the sequence (am − an) is a Cauchy sequence in Q and [(am − an)] = am − α.
From proposition 17.15 follows that |am − α| = [(|am − an|)]. For m ≥ N we have
|am− an| < e for all n ≥ N and by Corollary 17.11 (applied to (e− |am− an|)) we
then have |am−α| ≤ e. So: |am−α| ≤ e < ε for allm ≥ N , that is limn an = α.

So: if α ∈ R is represented by the Cauchy sequence (an) in Q, that is α = [(an)],
then limn an = α.

In particular near every real number there is a rational number within any pre-
scribed distance:

17.17 Corollary. Let α be a real number and let ε > 0. Then there is a rational
number a with |a− α| < ε.

PROOF. There is a sequence (an) of rational numbers with limn an = α. So there
is an N ∈ N with |an − α| < ε for all n ≥ N . In particular |aN − α| < ε.

Next we prove the completeness of R.

17.18 Theorem. Let (αn) be a Cauchy sequence of real numbers. Then the se-
quence (αn) converges to a real number.

PROOF. For every n ∈ N choose a rational number an with |αn−an| < 1
n+1 . Then

the sequence (an − αn) is a null sequence and so the sequence (an) is a Cauchy
sequence too: an = αn + (an − αn). The sequence (an) converges and so does
(αn).

In this proof we used that the sum of a null sequence and a Cauchy sequence is a
Cauchy sequence. For sequences in Q we showed this in the previous chapter. That
chapter is organized in such a way that for several sections all definitions, lemmas,
propositions, theorems and their proofs can be generalized from the rationals to
the reals without further ado. Some comments on these sections:

16.2 The notion of null sequence in R we already used. Also the notion of bounded
sequence is applicable to sequences in R. All lemmas and propositions do hold
in R. In particular Bernoulli’s Inequality holds for x ∈ R with x ≥ −1.

16.3 The notion of convergence we already used. We do have notions of descen-
dence and ascendence for sequences in R. All lemmas and propositions do
hold for sequences in R.

16.4 We extend the transformation γ of Q to R: γ(α) = gα − ⌊gα⌋ for α ∈ R.
This leads to the base g expansion (⌊γn−1(α)⌋)n≥1 of a real number α with
0 ≤ α < 1. The propositions 16.37, 16.38 and 16.40 are about the repetition
of the base g expansion of rational numbers.
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17.2 The Completeness of R

Simon Stevin (Bruges 1548 – The Hague 1620)

The decimal representation of real numbers and its use in
mathematics is introduced by Simon Stevin. He had an
important role in organizing the struggle of the Northern
Netherlands against the Spanish rule. He wrote books on
many subjects: mechanics, hydrostatics, astronomy, the di-
vision of the octave in twelve intervals, real numbers, tri-
angular geometry, perspective, algebra, politics. He had a
profound understanding of the nature of the real numbers,
but the imaginary numbers he could not accept. The Dutch
word ‘wiskunde’ for mathematics originated from Stevin.

16.5 The notion of Cauchy sequence we already used. Completeness of R means
that the notions of Cauchy sequence and convergent sequence coincide. In
theorem 16.51 the conclusion is about a sequence being a Cauchy sequence.
For the real numbers we thus obtain Cantor’s Theorem as formulated below.

Real numbers have g-adic expansions. Let g ∈ N with g ≥ 2. If (cn)n≥1is
a sequence in Ng, then by Corollary 16.52 the sequence (an)n≥1 with an =∑n
k=1

ck
gk

is a Cauchy sequence of rational numbers. This sequence converges
in R. Thus we have a correspondence between

real numbers α with 0 ≤ α < 1

and

sequences in Ng without g − 1-tail.

Under this correspondence rational numbers correspond to repeating se-
quences in Ng.

17.19 Theorem (Cantor). Let (αn) be an ascending sequence of real numbers
and (βn) a descending sequence of real numbers. Let moreover αn ≤ βn for all
n ∈ N and that the sequence (αn − βn) is a null sequence. Then (αn) and (βn)
converge and for all m ∈ N

αm ≤ lim
n
αn = lim

n
βn ≤ βm.

PROOF. As in the proof of theorem 16.51 it follows that (αn) and (βn) are Cauchy
sequences. By completeness of R they converge and since they differ by a null
sequence their limits are equal. Let m ∈ N. Since (αn) is ascending we have
αn − αm ≥ 0 for all n ≥ m. So by Corollary 17.11 α − αm ≥ 0: the limit of the
sequence (αn) is greater than or equal to each of its terms.
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17 The Real Numbers

Bernard Placidus Johann Nepomuk Bolzano (Prague 1781 – Prague 1848)

Bolzano developed new foundations for analysis. This re-
mained largely unknown till after his death, mainly because
he did not submit several of his manuscripts for publication.
He gave for example a definition of a Cauchy sequence four
years before it appeared in Cauchy’s work. Bolzano was the
first to use the word set. His ideas on infinity in mathematics
anticipated Cantor’s theory of infinite sets.

17.20 Example. The sequence (an) with

an = 1 +
1

22
+

1

32
+

1

42
+ · · ·+ 1

n2

satisfies a1 ≤ a2 ≤ . . . . For the sequence (bn) with bn = an +
1
n we have b1 ≥ b2 ≥

. . . :

bn − bn+1 = an +
1

n
− an+1 −

1

n+ 1
=

1

n
− 1

n+ 1
− 1

(n+ 1)2

=
(n+ 1)2 − n(n+ 1)− n

n(n+ 1)2
=

1

n(n+ 1)2
.

Since bn−an = 1
n Cantor’s Theorem can be applied. Because a4 = 1+ 1

4 +
1
9 +

1
16 =

205
144 and b4 = a4 +

1
4 = 205

144 + 1
4 = 241

144 the limit λ is located in a segment of length
1
4 , namely 205

144 ≤ λ ≤ 241
144 . In fact, as Euler showed in 1735, λ = π2

6 .

A direct consequence of Cantor’s Theorem is the following.

17.21 Theorem (Bolzano-Weierstraß). Every bounded sequence in R has a
convergent subsequence.

PROOF. Let (γn) be a bounded sequence in R. There is a C ∈ R with |γn| ≤ C
for all n ∈ N. We define sequences (αn) and (βn) by

(α0, β0) = (−C,C)

and for all n ∈ N:

(αn+1, βn+1) =



(
αn,

αn + βn
2

)
if there are infinitely many k ∈ N with

αn ≤ γk ≤ αn+βn

2 ,(αn + βn
2

, βn

)
otherwise.
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Note that for every n ∈ N there are infinitely many k ∈ N with αn+βn

2 ≤ γk ≤ βn
if there are only finitely many with αn ≤ γk ≤ αn+βn

2 . Now choose a subsequence
(γi(n)) with αn ≤ γi(n) ≤ βn for every n ∈ N. This subsequence converges by
Cantor’s Theorem.

And a consequence of this is:

17.22 Lemma (Weierstraß). Every bounded ascending sequence in R converges.

PROOF. Let (αn) be a bounded ascending sequence in R . Then by theorem 17.21
(αn) has a convergent subsequence (αi(n)) and as in the proof of proposition 16.30
it follows that (αn) converges.

The Supremum Property

The field R is complete: every Cauchy sequence in R converges. Completeness can
be characterized in other ways as well. One of these ways is by the Supremum
Property. It is often used, though not so in this book.

17.23 Definition. A λ ∈ R is called an upper bound of a set X ⊆ R if x ≤ λ for all
x ∈ X. If X has a upper bound, then it is also said that X is bounded above. If the
set of upper bounds of X has a least element, then this element is called the least
upper bound or the supremum of X. The supremum of X is denoted by sup(X).
The greatest lower bound or the infimum of X is denoted by inf(X) (if it exists).

17.24 Examples. The sets

{x ∈ R | 0 < x < 1 }, {x ∈ R | 0 ≤ x ≤ 1 }, {x ∈ Q | 0 < x < 1 },
and { 1− 1

n | n ∈ N+ }

all four have the supremum 1.

17.25 Theorem (The Supremum Property). Let X be a nonempty subset of R
which is bounded above. Then X has a supremum.

PROOF. Take an α ∈ X and an upper bound λ of X. Then α ≤ λ. We define a
sequence (αn, λn) in R2 by (α0, λ0) = (α, λ) and for all n ∈ N:

(αn+1, λn+1) =


(
αn,

αn + λn
2

)
if
αn + λn

2
is an upper bound,(αn + λn

2
, λn

)
otherwise.

Then (αn) is ascending, (λn) descending, αn ≤ λn for all n and (λn−αn) is a null
sequence, because λn−αn = 1

2n (λ−α). By theorem 17.19 the sequences (αn) and
(βn) converge to a µ ∈ R. We will show that µ is the least upper bound of X.
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17 The Real Numbers

Let x ∈ X. Then x ≤ λn for all n and so x ≤ limn λn = µ.

So µ is an upper bound of X.

Suppose µ′ < µ and µ′ is an upper bound. Since (λn−αn) is a null sequence,
there is an n ∈ N such that λn−αn < µ−µ′. There is an x ∈ X with x ≥ αn.
We then have

αn ≤ x ≤ µ′ < µ ≤ λn.

It follows that µ− µ′ ≤ λn − αn. Contradiction.

So for every upper bound µ′ of X we have µ ≤ µ′. Therefore, µ is the least upper
bound.

We also have that a nonempty set X which bounded below has an infimum: apply
the theorem for the set −X.

In subsection 17.1.1 we constructed the set R of real numbers. In subsection 17.1.2
addition and multiplication were defined, giving R the structure of a field. With
the definition of an ordering in subsection 17.1.3 we have given R the structure
of an ordered field. In this section it has been shown that the ordering has the
Supremum Property. Note that we started in section 4.2 with Peano’s axioms for
N and subsequently constructed Z, Q and R. It can be shown that R is (up to
isomorphism) the unique ordered field for which the Supremum Property holds.
This makes an axiomatic treatment of R possible: start with the axioms for an
ordered field and add the Supremum Property as an axiom. After that define
which numbers are natural, are integral or are rational. This approach is often
taken in textbooks for mathematical analysis: it gives a short route to calculus.

17.3 Convergence of Series

17.26 Theorem. Let
∑∞
n=0 an be a series of real numbers such that the series∑∞

n=0 |an| converges. Then the series
∑∞
n=0 an converges.

PROOF. The series
∑∞
n=0 |an| is a Cauchy sequence and from

∣∣∣n−1∑
k=m

ak

∣∣∣ ≤ n−1∑
k=m

|ak|

follows that
∑∞
n=0 an is also a Cauchy sequence.

17.27 Definition. A series
∑∞
n=0 an is called an absolute convergent series if the

series
∑∞
n=0 |an| converges.

More generally:
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17.28 Theorem. Let
∑∞
n=0 an and

∑∞
n=0 bn be series of real numbers and let |an| ≤

bn for all n ∈ N. Suppose that the series
∑∞
n=0 bn converges. Then the series∑∞

n=0 an is absolutely convergent.

PROOF. This follows from∣∣∣n−1∑
k=m

ak

∣∣∣ ≤ n−1∑
k=m

|ak| ≤
n−1∑
k=m

bk

17.29 Terminology. For
∑∞
n=0 an and

∑∞
n=0 bn as in theorem 17.28 one says that

the series
∑∞
n=0 an is majorized by the convergent series

∑∞
n=0 bn.

17.30 Example. For t ∈ N with m ≥ 2 the series
∑∞
n=1

1
nt converges since it is

majorized by the convergent series
∑∞
n=1

1
n2 (example 17.20).

17.4 Polynomial Equations over R

Let f(x) be a monic polynomial of degree m:

f(x) = xm + α1x
m−1 + · · ·+ αkx

m−k + · · ·+ αm, (17.1)

where α1, . . . , αm ∈ R. (Monic means that the leading coefficient is 1.) We study
the question whether the equation f(x) = 0 has a solution, that is whether the
polynomial function x 7→ f(x) has a zero.

We will use the continuity of polynomial functions. The notion of continuity we
use here was introduced by Heine. The usual definition however is Cauchy’s.

17.31 Definition. Let U ⊆ R. A function g : U → R is called continuous in γ ∈ U
if

lim
n
g(γn) = g(γ)

for all sequences (γn) in U converging to γ. The function g : U → R is called
continuous if it is continuous in all γ ∈ U .

We compare the notions of continuity of Heine and Cauchy. In this book only
Heine’s definition is used.

Definition (Cauchy). Let U ⊆ R. A function g : U → R is called continuous in
γ ∈ U if for every ε > 0 a δ > 0 exists such that |g(x) − g(γ)| < ε for all x ∈ U
with |x− γ| < δ.

Proposition. Let U ⊆ R. A function g : U → R is continuous (in the sense of Heine)
in γ ∈ U if and only if it is so in the sense of Cauchy.
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H. Eduard Heine (Berlin 1821 – Halle 1881)

Heine was a pupil of Dirichlet. He contributed to the un-
derstanding of continuity in mathematics and is especially
known by the Heine Borel Theorem, which is about bounded
subsets of R (or, more generally, Rn), closed under taking
limits.

Proof. Suppose g is continuous in γ in the sense of Cauchy. Let (γn) be a sequence
in U converging to γ. To prove that (g(γn)) converges to g(γ). Let ε > 0. There is
a δ > 0 with |g(x)− g(γ)| < ε for all x ∈ U with |x− u| < δ. Since (γn) converges
to γ, there is an N ∈ N such that |γn − γ| < δ for all n ∈ N with n ≥ N . For this
n we have |g(γn)− g(γ)| < ε. So (g(γn)) converges to g(γ).

Suppose g is not continuous in γ in the sense of Cauchy. To prove that there is in U
a sequence (γn) converging to γ while (g(γn)) does not converge to g(γ). There is an
ε > 0 such that for all δ > 0 there is an x ∈ U with |x−γ| < δ and |g(x)−g(γ)| ≥ ε.
Take for every n ∈ N+ a γn ∈ U with |γn − γ| < 1

n
and |g(γn)− g(γ)| ≥ ε.

17.32 Proposition. Polynomial functions on R are continuous.

PROOF. This is a consequence of the rules for limits: let f(x) be as in (17.1) and
suppose that limn γn = γ, then

lim
n
f(γn) = lim

n

m∑
k=0

αkγ
m−k
n =

m∑
k=0

lim
n
(αkγ

m−k
n ) =

m∑
k=0

αkγ
m−k = f(γ).

The next theorem gives conditions for the existence of a zero of a real function
g(x).

17.33 Theorem. Let α and β be real numbers with α < β. Let g : R → R be
continuous in all γ with α < γ < β. Suppose that g(α) < 0 and g(β) > 0. Then
there is a γ with α < γ < β and g(γ) = 0.

PROOF. We define sequences (αn) and (βn) by (α0, β0) = (α, β) and for all n ∈ N:

(αn+1, βn+1) =


(
αn,

αn + βn
2

)
if g
(αn + βn

2

)
≥ 0,(αn + βn

2
, βn

)
if g
(αn + βn

2

)
< 0.
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17.5 Real Numbers and Geometry

Then by Cantor’s Theorem (αn) and (βn) converge to a real number γ with αn ≤
γ ≤ βn for all n ∈ N. Since g is continuous in γ we have g(γ) = limn g(αn) and so
g(γ) ≤ 0, because g(αn) < 0 for all n ∈ N. Similarly from g(βn) ≥ 0 for all n ∈ N
follows g(γ) ≥ 0. So g(γ) = 0.

Two consequences of this theorem:

17.34 Corollary. Let f(x) be a polynomial over R of odd degree. Then f(x) has
a zero in R.

PROOF. We assume the polynomial to be monic. Let f(x) = xm + α1x
m−1 +

· · · + αkx
m−k + · · · + αm where α1, . . . , αm ∈ R and m odd. From limn

f(n)
nm = 1

follows that there exists an N ∈ N with f(N)
Nm > 0 and so also f(N) > 0. From

limn
f(−n)
(−n)m = 1 follows that there is anM ∈ N with f(−M)

(−M)m > 0 and so f(−M) < 0,

because (−M)m < 0. By proposition 17.32 and theorem 17.33 there is a zero γ of
f(x) with −M < γ < N .

In Q the possibility of extracting roots was very limited. In R this is different.

17.35 Corollary. Let α be a positive real number and let m ∈ N+. Then there is
a positive real number γ with γm = α.

PROOF. Consider the polynomial f(x) = xm − α. There is an N ∈ N such that
f(N) > 0 and we have f(0) = −α < 0. So there is a γ with 0 < γ < N and
f(γ) = 0, that is γm = α.

17.36 Definition. Let α ≥ 0 and let m ∈ N+. The unique real number γ ≥ 0 with
γm = α is called the m-th root of α. Notation: γ = m

√
α.

The γ is unique since the roots of the equation xn − α = 0 are of the form ζγ with
ζ a root of unity in R, that is ζ = 1 or ζ = −1, see the last paragraph of chapter 13
on page 265.

We have seen that for many polynomial equations there are solutions in R. In
particular many equations over Q having solutions in R do not have solutions in
Q.

17.37 Definition. A number which is a solution of a nontrivial polynomial equation
with rational coefficients is called algebraic. If a number is not algebraic, then it is
called transcendental.

We will see that in R there are many many transcendental numbers.

17.5 Real Numbers and Geometry

As is clear from the previous section square roots of positive reals do exist. In
geometry these square roots are needed for the Theorem of Pythagoras.
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17 The Real Numbers

17.5.1 The number π

For approximating π as done by Archimedes square roots are used.

The number π is an example of a transcendental number. Here we will not prove
this. In 1882 it was the German mathematician Lindemann who was the first
to give a proof. A consequence of the transcendence of π is the impossibility
of ‘squaring’ the circle: it is impossible starting from (the radius of) a circle to
construct by ruler and compass a square of the same area. Thus the ‘squaring of
the circle’, a problem that goes back to Greek antiquity, was solved in a negative
sense.

The number π is the ratio of the circumference to the diameter of the circle. The
length of a curve is in some way defined as a limit. The idea is approximating
a curve by straight line segments and if the curve is not too wild, its length is
a limit of sums of lengths of line segments. That is what Archimedes did. He
approximated the circle by inscribed and circumscribed regular polygons. In fact
he took regular 3 · 2n−1-gons: a triangle, a hexagon, a 12-gon and so on, inscribed
and circumscribed. For n ∈ N+ we take an to be equal to half the circumference
of an inscribed regular 3 · 2n−1-gon and bn half the circumference of circumscribed
regular 3 · 2n−1-gon. Using elementary plane geometry it is easily deduced that for
all n ∈ N+ 

an+1 = an

√
2bn

an + bn
,

bn+1 =
2anbn
an + bn

.

These formulas, together with a1 = 3
2

√
3 and b1 = 3

√
3, define the pairs an, bn

inductively. Theorem 17.19 applies. Geometrically this is clear, however, we derive
this from the formulas.

a) an < bn for all n. This follows from

a2n+1

b2n+1

=

2a2nbn
an+bn
4a2nb

2
n

(an+bn)2

=
an + bn
2bn

=
an
bn

+ 1

2
.

b) (bn) is descending:

bn+1

bn
=

2an
an + bn

=
2

1 + bn
an

< 1.

c) (an) is ascending:

a2n+1

a2n
=

2bn
an + bn

=
2

an
bn

+ 1
> 1.
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17.5 Real Numbers and Geometry

Archimedes (Syracuse 287 BC – Syracuse 212 BC)

Using new methods Archimedes of Syracuse had made ad-
vances in Greek geometry. His methods of approximating
numbers were already in the spirit of Newton and Leibniz
in the seventeenth century. His mathematical precision was
not surpassed until in the nineteenth century the notion of
limit obtained a solid basis. Archimedes also was very inven-
tive in designing all kinds of instruments, partly for warfare
in order to keep the Romans out of Sicily.

d) (bn − an) is a null sequence:

b2n+1 − a2n+1 =
4a2nb

2
n

(an + bn)2
− 2a2nbn
an + bn

=
2a2nbn(bn − an)

(an + bn)2

and so

bn+1 − an+1 =
2a2nbn(bn − an)

(an + bn)2(an+1 + bn+1)
=

2 bnan (bn − an)

(1 + bn
an

)2(an+1

an
+ bn+1

an
)

<
2 b1a1
8

(bn − an) =
1

2
(bn − an).

Archimedes computed, using a6 < π < b6, that
223
71 < π < 22

7 . For this he had to
find approximations of the square roots that occur in this computation. Thus the
estimation of Archimedes is obtained using the circumferences of an inscribed and
a circumscribed regular 96-gon.

The use of the letter π for the ratio of the circumference to the diameter of the
circle dates from the seventeenth century. In 1647 Oughtred denoted the ratio of
diameter to circumference as d/π and Gregory used π/r for the ratio of circum-
ference to radius. In 1706 William Jones denoted the ratio of circumference to
diameter, as we do now, as π. Euler adopted this usage in 1737, which contributed
a lot to the general acceptance of the use of π.

17.5.2 Coordinates

Descartes introduced the use of coordinates in geometry and thus the start was
made of the algebraization of geometry. The plane is identified with R2, the set
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17 The Real Numbers

of ordered pairs of real numbers. Geometric notions are translated into algebraic
ones. For example the notion of distance. Using a perpendicular coordinate axis it
follows that the following definition of distance coincides with the geometric notion.

17.38 Definition. The distance d((x1, y1), (x2, y2)) between (x1, y1) and (x2, y2) is
defined by

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

It is geometrically clear that the distance in R2 is a metric. Here we deduce it from
the given definition.

17.39 Proposition. The distance d : R2 × R2 → R≥0 is a metric.

PROOF. Clearly d((x1, y1), (x2, y2)) = 0 ⇐⇒ (x1, y1) = (x2, y2) and also
d((x1, y1), (x2, y2)) = d((x2, y2), (x1, y1)) for all (x1, y1), (x2, y2) ∈ R2.

We prove the triangle inequality

d((x1, y1), (x3, y3)) ≤ d((x1, y1), (x2, y2)) + d((x2, y2), (x3, y3)).

Write a1 = x1 − x2, a2 = x2 − x3, b1 = y1 − y2 and b2 = y2 − y3. Then to prove√
(a1 + a2)2 + (b1 + b2)2 ≤

√
a21 + b21 +

√
a22 + b22.

This is equivalent to consecutively

(a1 + a2)
2 + (b1 + b2)

2 ≤ a21 + b21 + a22 + b22 + 2
√
(a21 + b21)(a

2
2 + b22),

a1a2 + b1b2 ≤
√
(a21 + b21)(a

2
2 + b22),

(a1a2 + b1b2)
2 ≤ (a21 + b21)(a

2
2 + b22),

2a1a2b1b2 ≤ a21b
2
2 + a22b

2
1,

0 ≤ (a1b2 − a2b1)
2.

17.6 The Group R∗

For Q there is a connection between multiplication and addition: by the Fun-
damental Theorem of Arithmetic multiplication in Q+ becomes addition of the
valuations. We will show that multiplication in R+ corresponds to addition in
R: a group isomorphism from the additive group R to the multiplicative group
R+. The isomorphism is given by the exponential function. First we introduce the
exponential function.
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17.6 The Group R∗

The exponential function

17.40 Definition. Let x ∈ R. The sequence (en(x)) in R is defined by:

en(x) =

n∑
k=0

xk

k!
for all n ∈ N.

So (en(x)) is the series having xn

n! as general term. We will show that this series
converges. The limit will be the value of the exponential function in x.

17.41 Lemma. The sequence (en(x)) converges for all x ∈ R.

PROOF. Fix x ∈ R. It suffices to prove that the series
∑∞
n=N

xn

n! converges for
some N ∈ N. Take N = ⌊|x|⌋. For n ≥ N put k = n−N . We have∣∣∣xn

n!

∣∣∣ = |x|N

N !
· |x|k

(N + 1)(N + 2) . . . (N + k)
≤ |x|N

N !

( |x|
N + 1

)k
.

So the series
∑∞
n=N

xn

n! =
∑∞
k=0

xN+k

(N+k)! is majorized by a convergent geometric
series.

17.42 Definition. For every x ∈ R we define

exp(x) =

∞∑
n=0

xn

n!
.

The function exp: R → R is called the exponential function.

17.43 Theorem. For all x, y ∈ R we have exp(x+ y) = exp(x) exp(y).

PROOF.

en(x)en(y) =
( n∑
k=0

xn

k!

)( n∑
k=0

yn

k!

)
=

∑
0≤k,l≤n

xkyl

k!l!

=

n∑
t=0

t∑
k=0

xkyt−k

k!(t− k)!
+

2n∑
t=n+1

n∑
k=0

xkyt−k

k!(t− k)!
.

We have

n∑
t=0

t∑
k=0

xkyt−k

k!(t− k)!
=

n∑
t=0

1

t!

t∑
k=0

(
t

k

)
xkyt−k =

n∑
t=0

(x+ y)t

t!
= en(x+ y).

Let z = max(|x|, |y|). Then

|en(x)en(y)− en(x+ y)| ≤
2n∑

t=n+1

t∑
k=0

zt

k!(t− k)!
=

2n∑
t=n+1

zt

t!

t∑
k=0

(
t

k

)
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x
(0, 0)

exp(x)

Figure 17.1: graph of the function exp: R → R+

=

2n∑
t=n+1

zt

t!
· 2t = e2n(2z)− en(2z)

and limn(e2n(2z)− en(2z)) = 0 since (en(2z)) converges.

17.44 Corollary. For all x ∈ R we have exp(x) > 0.

PROOF. For x ≥ 0 it is clear from the definition that exp(x) ≥ 1. From
exp(−x) exp(x) = exp(0) = 1 it follows that 0 < exp(x) ≤ 1 for x ≤ 0.

17.45 Corollary. Let x1 and x2 be real numbers with x1 < x2. Then exp(x1) <
exp(x2).

PROOF. exp(x2) = exp(x2 − x1 + x1) = exp(x2 − x1) exp(x1) > exp(x1).

The function exp can be seen as a map exp: R → R+. We will show it is a bijection.

17.46 Theorem. The exponential function is continuous.
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17.6 The Group R∗

PROOF. First we prove that exp is continuous in 0. Let (γn) be a null sequence.
To prove that exp(γn) converges to exp(0) = 1, that is (exp(γn) − 1) is a null
sequence. Let N ∈ N be such that |γn| < 1

2 for all n ≥ N . Then for n ≥ N :

| exp(γn)− 1| =

∣∣∣∣∣
∞∑
k=1

γkn
k!

∣∣∣∣∣ ≤
∞∑
k=1

|γn|k =
|γn|

1− |γn|
< 2|γn|.

Since (γn) is a null sequence, (exp(γn)− 1) is a null sequence as well.

Now let (γn) be any convergent sequence, say with limit γ. Then

lim
n

exp(γn) = lim
n

exp(γn − γ) exp(γ) = exp(γ).

17.47 Corollary. Let y ∈ R with y > 0. Then there exists an x ∈ R with
exp(x) = y.

PROOF. Let y ∈ R with y > 1. Since the function exp is continuous in every real
number, so is the function g : x 7→ exp(x) − y. We have g(0) = 1 − y < 0. Take
z > y − 1. Then g(z) = exp(z) − y > 1 + z − y > 0. Because g is continuous in
every number, it follows from theorem 17.31 that there exists an x with 0 < x < z
such that g(x) = 0, that is exp(x) = y. For 0 < y < 1: there is an x such that
exp(x) = 1

y , that is exp(−x) = y.

17.48 Theorem. The map exp: R → R+ is an isomorphism of groups.

PROOF. The map exp is injective by Corollary 17.45. By Corollary 17.47 the map
exp is surjective. So by theorem 17.43 we see that exp is an isomorphism from the
group R (under addition) to the group R+ (under multiplication).

17.49 Corollary. The map

Z/2× R → R∗, (k, x) 7→ (−1)k exp(x)

is an isomorphism of groups.

PROOF. It is a composition of group isomorphisms:

Z/2× R ∼−→ Z/2× R+ ∼−→ R∗,

where the last map is given by (k, x) 7→ (−1)kx.

Thus multiplication in R∗ is translated into addition in Z/2×R. Since exp: R → R+

is bijective it has an inverse:

17.50 Definition. The function log : R+ → R is defined as the inverse of the func-
tion exp. The function log is called the logarithm or also the natural logarithm and
is also denoted by: ln.
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17 The Real Numbers

log(x)

(0, 0) x

Figure 17.2: graph of the function log : R+ → R

We have seen that for every β > 0 and every m ∈ N+ there is a γ > 0 with γm = β.
Another proof is as follows:

(log( 1
m

exp(β)))m = log(exp(β)) = β.

Extraction of the m-th root from β is translated into division of exp(β) by m.

Now we can define βx for all β ≥ 0 and all x ∈ R:

17.51 Definition. Let β and x be real numbers with β > 0. We define β to the
power x:

βx = exp(x log β).

The function R → R, x 7→ βx is called the exponential function with base β.

For x ∈ Z this is not new: exp(x log β) = exp(log(βx)) = βx. For x = 1
m

with

m ∈ N+ we have β
1
m = m

√
β.

17.52 Theorem. Let β, x and y be real numbers with β > 0. Then

(i) βx+y = βxβy,
(ii) (βx)y = βxy.

PROOF.

(i) βxβy = exp(x log β) exp(y log β) = exp((x+ y) log β) = βx+y.
(ii) From βx = exp(x log β) it follows that log βx = x log β for all x ∈ R and so

(βx)y = exp(y log βx) = exp(xy log β) = βxy.
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x
(0, 0)

β = e

β = 1

β = 1
2

β = 3
2

Figure 17.3: graphs of functions x 7→ βx for β = 1
2 , 1,

3
2 , e

17.53 Notation.

Thus the function exp is the exponential function with base e:

ex = exp(x log e) = exp(x).

Interest in issues concerning the number e dates back to the seventeenth century
(Napier, Briggs, Huygens, Mercator). It was mostly about exponential func-
tions and not explicitly about e. Jacob Bernoulli studied the number e as the limit
of the sequence ((1+ 1

n
)n) in relation to compound interest without relating it to the

exponential function. Leibniz was the first to use a special notation for the number
e, namely b. He did so in a letter to Huygens in 1690. The use of the letter e started
with Euler. Possibly he used the letter e because he wanted to use a vowel and the
a was already in use. He computed the approximation 2.718281828459045235. The
first 20 terms of

∑∞
n=0

1
n!

are needed for this. He also proved e to be the limit of
the sequence ((1 + 1

n
)n).
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Charles Jean Gustave Nicola Baron de la Vallée Poussin (Louvain 1866
– Louvain 1962)
Jacques Salomon Hadamard (Versailles 1865 – Paris 1963)

The Belgian Charles de la Vallée Poussin
(left) and the French Jacques Hadamard
(right) independently proved the Prime
Number Theorem. De la Vallée Poussin is
also known for his work Cours d’Analyse
on mathematical analysis. Hadamard
published on differential equations and
stochastics.

Gauß conjectured (in 1791, being fourteen years of age) that a good approximation
of π(n), see definition 15.1, is given by n

logn
, or more precisely

lim
n

π(n) logn

n
= 1.

This conjecture was proved more than a century later, in 1896, by Hadamard and
de la Vallée Poussin. Now this is known as the Prime Number Theorem.

Powers

The exponential function with base β > 0 is a map R → R+, x 7→ βx. If in βx we
fix x and let β vary in R+ we get a transformation of R+.

17.54 Definition. Let α ∈ R. The power function R+ → R+ : x 7→ xα raises
x to the power α. It generalizes the familiar m-th power function x 7→ xm for
m ∈ Z \ {0}. See Figure 17.4.

For m ∈ N+, k ∈ Z and α ∈ R+ we have

((−1)kα)m = (−1)kmαm ∈ R+.

So for m odd all the elements of R∗ are m-th powers, whereas for m even it are
the elements of R+. In particular for m = 2 the group R∗ is the disjoint union of
R+ and −R+; the first set consists of all squares and the second of all nonsquares.

17.7 Infinite Continued Fractions

We have seen how with the use of Euclid’s algorithm a rational number can be
written as ⟨a1, . . . , an⟩, the continued fraction of numbers a1 ∈ Z and a2, . . . , an ∈
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x
(0, 0) (1, 0)

(0, 1)

α = 1

α = 1
4e

α = e

α = 1
5

Figure 17.4: the power function x 7→ xα for α = 1
5 ,

1
4e, 1, e

N+. When applied to a rational number r, this process produces:

r = ⟨a1, r2⟩ = ⟨a1, a2, r3⟩ = · · · = ⟨a1, . . . , an−1, rn⟩,

where (with r1 = r): 
ak = ⌊rk⌋

rk+1 =
1

rk − ak

for k = 1, . . . , n− 1. The process ends as soon as rn ∈ Z.

This can be applied to an irrational number α as well. Thus we obtain:

α = ⟨⌊α⌋, φ(α)⟩ = ⟨⌊α⌋, ⌊φ(α)⌋, φ2(α)⟩ = · · ·
= ⟨⌊α⌋, ⌊φ(α)⌋, . . . , ⌊φn−1(α)⌋, φn(α)⟩,

where φ is the transformation of R \Q mapping an irrational number α to 1
α−⌊α⌋ ,

that is, φ(α) is defined by

α = ⌊α⌋+ 1

φ(α)
.

Infinite continued fractions provide good approximations of irrational numbers by
rational ones. How good such an approximation is, is the subject of the next
section.
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17.55 Example. We take α =
√
2. Then we get:

√
2 = 1 + (

√
2− 1)

φ(
√
2) =

1√
2− 1

=
√
2 + 1 = 2 + (

√
2− 1)

φ2(
√
2) =

1√
2− 1

=
√
2 + 1 = 2 + (

√
2− 1)

...

So:
√
2 = ⟨1,

√
2 + 1⟩ = ⟨1, 2,

√
2 + 1⟩ = ⟨1, 2, 2,

√
2 + 1⟩ = · · ·

= ⟨1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
√
2 + 1⟩.

We are tempted to write
√
2 = ⟨1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . ⟩,

but for that we first have to assign a meaning to the right hand side and then it
still has to be shown that we have here an equality.

17.56 Theorem. Let a1, a2, a3, . . . be a sequence with a1 ∈ Z and a2, a3, . . . ∈ N+.
Then the sequence r1, r2, r3, . . . of rational numbers defined by

rn = ⟨a1, . . . , an⟩ (for all n ∈ N+)

converges.

PROOF. We compute rn+1 − rn:

rn+1 − rn = ⟨a1, . . . , an+1⟩ − ⟨a1, . . . , an⟩ =
pn+1

qn+1
− pn
qn

=
pn+1qn − pnqn+1

qnqn+1
=

(−1)n+1

qnqn+1
.

From the definition of the numbers q1, q2, . . . it easily follows that

1 = q1 ≤ q2 < q3 < q4 < · · · .

The sequence of the differences rn+1 − rn is alternating positive and negative and
the sequence (|rn+1 − rn|) descends with 0 as limit. Hence the sequence (rn)
converges.

17.57 Definition. For numbers a1, a2, a3, . . . with a1 ∈ Z and a2, a3, . . . ∈ N+ we
define the (infinite) continued fraction of a1, a2, a3, . . . by

⟨a1, a2, a3, . . . ⟩ = lim
n
⟨a1, a2, . . . , an⟩.
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17.58 Definition. Let α ∈ R \Q. The sequence ⌊α⌋, ⌊φ(α)⌋, ⌊φ2(α)⌋, . . . is called
the continued fraction expansion of α.

17.59 Example. We have seen that 1, 2, 2, 2, 2, 2, 2, 2, . . . is the continued fraction
expansion of

√
2. The numbers ⟨1, 2, 2, 2, 2, . . . , 2⟩ can be computed as in the

previous section:

i : −1 0 1 2 3 4 5 6 7 8 · · ·
ai : − − 1 2 2 2 2 2 2 2 · · ·
pi : 0 1 1 3 7 17 41 99 239 577 · · ·
qi : 1 0 1 2 5 12 29 70 169 408 · · ·

So we have:

1 < 7
5 <

41
29 < · · · < ⟨1, 2, 2, 2, 2, 2, 2, 2, 2, . . . ⟩ < · · · < 99

70 <
17
12 <

3
2 .

We will show that the continued fraction given by the continued fraction expansion
of an irrational number is again this irrational number, and so in particular

√
2 =

⟨1, 2, 2, 2, 2, 2, . . .⟩.

17.60 Theorem. Let α ∈ R \Q. Then

α = ⟨⌊α⌋, ⌊φ(α)⌋, ⌊φ2(α)⌋, ⌊φ3(α)⌋, . . . ⟩.

PROOF. We write an = ⌊φn−1(α)⌋ for n ∈ N+. To prove

α = lim
n
⟨a1, a2, . . . , an⟩.

This follows from

|α− ⟨a1, . . . , an⟩| = |⟨a1, . . . , an, φn(α)⟩ − ⟨a1, . . . , an⟩|

=
1

|qn(a1, . . . , an)qn+1(a1, . . . , an, φn(α))|
<

1

qn(a1, . . . , an)2

and the fact that the numbers qn(a1, . . . , an) from n = 2 onwards form a strict
ascending sequence.

17.61 Definition. The rational number ⟨⌊α⌋, ⌊φ(α)⌋, ⌊φ2(α)⌋, . . . , ⌊φn−1(α)⌋⟩ is
called the n-th convergent of the irrational number α.

17.62 Lemma. Let α = ⟨a1, a2, a3, . . . ⟩ with a1 ∈ Z and a2, a3, · · · ∈ N+. Then
⌊α⌋ = a1 and φ(α) = ⟨a2, a3, . . . ⟩.

PROOF.

⟨a1, a2, a3, . . . ⟩ = lim
n
⟨a1, . . . , an+1⟩ = lim

n
a1 +

1

⟨a2, a3, . . . , an+1⟩
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17 The Real Numbers

Christiaan Huygens (The Hague 1629 – The Hague 1695)

Christiaan Huygens was the first to use continued fractions
for concrete applications. He used them for the determina-
tion of the number of teeth of gear wheels to be used in a
planetarium. He discovered the moon Titan of Saturn and
also the ring around Saturn using a self-made lens. He was
a friend of Descartes and corresponded with among others
Mersenne, Pascal and Fermat. He wrote a book on proba-
bility calculus. He designed a pendulum clock for accurate
time measurement. Huygens often stayed in Paris and Lon-
don having contacts with among others Leibniz and Newton.
He contributed to the foundations of mechanics and the the-
ory of light.

= a1 +
1

limn⟨a2, a3, . . . , an+1⟩
= a1 +

1

⟨a2, a3, . . . ⟩
.

Since a2, a3, . . . ∈ N+ we have ⟨a2, a3, . . . ⟩ > 1, and so ⌊α⌋ = a1 and φ(α) =
⟨a2, a3, . . . ⟩.

17.63 Theorem. Let α = ⟨a1, a2, a3, . . . ⟩ with a1 ∈ Z and a2, a3, . . . ∈ N+. Then
for all n ∈ N+

an = ⌊φn−1(α)⌋.

(So the sequence a1, a2, a3, . . . is the continued fraction expansion of α.)

PROOF. From lemma 17.62 it follows that for all n ∈ N+

φn−1(α) = ⟨an, an+1, . . . ⟩,

and then by the same lemma an = ⌊φn−1(α)⌋.

From the above it follows that the map from R \ Q to the set of the sequences
a1, a2, a3, . . . with a1 ∈ Z and a2, a3 . . . ∈ N+, which maps an irrational number
to its continued fraction expansion, is bijective. The inverse of this map assigns to
such a sequence its continued fraction.

17.8 Diophantine Approximation

For a given irrational number α there is for every n ∈ N+ a unique p ∈ Z such that∣∣∣α− p

10n

∣∣∣ < 1

2 · 10n
.
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17.8 Diophantine Approximation

Thus α is approximated by the decimal fraction p
10n , or in terms of the decimal

notation, it is approximated up to n digits to the right of the decimal point. Dio-
phantine approximation is about approximation by rationals and not just decimal
approximation in which only fractions having a power of ten as denominator are
used. For a given α some denominators are better suited for approximation than
others. Given a denominator q ∈ N+, there is a unique numerator p ∈ Z such that∣∣∣α− p

q

∣∣∣ < 1

2q
.

The number
|qα− p|

is a good measure for the usefulness of the denominator q. We have

|qα− p| < 1
2 .

We will show that the convergents of the continued fraction expansion do consid-
erably better. Let the sequence a1, a2, a3, . . . be the continued fraction expansion
of α (so an = [φn−1(α)] for n = 1, 2, 3, . . . ). We write pn for pn(a1, . . . , an) and qn
for qn(a1, . . . , an). We will see that the qn are ‘good’ denominators for the approx-
imation of α and that infinitely many of them are even ‘very good’ denominators.

17.64 Proposition. |qnα− pn| < 1
qn

for all n ∈ N+.

PROOF. Let n ∈ N+. We have pn
qn
< α < pn+1

qn+1
or pn+1

qn+1
< α < pn

qn
, and so∣∣∣∣α− pn

qn

∣∣∣∣ < ∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ = 1

qnqn+1
<

1

q2n
.

Hence |qnα− pn| < 1
qn
.

17.65 Proposition. For infinitely many n ∈ N+ we have |qnα− pn| < 1
2qn

.

PROOF. For all n ∈ N+ we have∣∣∣∣α− pn
qn

∣∣∣∣+ ∣∣∣∣α− pn+1

qn+1

∣∣∣∣ = ∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ = 1

qnqn+1
<

1

2q2n
+

1

2q2n+1

.

(Use: ab < 1
2 (a

2+ b2) if a ̸= b.) So not both |α− pn
qn
| ≥ 1

2q2n
and |α− pn+1

qn+1
| ≥ 1

2q2n+1
.

Hence ∣∣∣α− pn
qn

∣∣∣ < 1

2q2n
or

∣∣∣α− pn+1

qn+1

∣∣∣ < 1

2q2n+1

.

17.66 Lemma. Let n ∈ N+. For all q ∈ N+ with q < qn+1 and all p ∈ Z we have

|qα− p| ≥ |qnα− pn|.
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17 The Real Numbers

PROOF. There are u, v ∈ Z such that

p = upn + vpn+1

q = uqn + vqn+1.

Multiply the first equation by qn, the second by pn and subtract. This yields
(−1)nv = qpn − pqn. Similarly, multiplication of the first by qn+1 and the second
by pn+1 leads to (−1)nu = pqn+1 − qpn+1. If u = 0, then q = vqn+1, contradictory
to q < qn+1. So u ̸= 0. From q = uqn + vqn+1 it easily follows that u and
v have different signs (if v ̸= 0), and so (since this also holds for qnα − pn and
qn+1α− pn+1):

|qα− p| = |u(qnα− pn) + v(qn+1α− pn+1)| ≥ |u(qnα− pn)| ≥ |qnα− pn|.

So for the approximation of α among the numbers with denominator < qn+1 there
is no better denominator than qn.

17.67 Theorem. Let q ∈ N+ and let p ∈ Z such that |qα−p| < 1
2q and gcd(p, q) = 1.

Then there is an n ∈ N+ such that p = pn and q = qn.

PROOF. There is a unique n ∈ N+ such that qn ≤ q < qn+1. For this n we have
by lemma 17.66:

|pqn − pnq| ≤ |qqnα− pqn|+ |qqnα− pnq| ≤ (qn + q)|qα− p| < 2q · 1

2q
= 1

Since pqn − pnq is an integer, it must be equal to 0. So pqn − pnq = 0. Because
gcd(p, q) = 1 from this follows q | qn, and since gcd(pn, qn) = 1, also qn | q. Hence
q = qn.

17.68 Example. In example 17.59 we computed the first 8 convergents of
√
2.

The existence of
√
2 we already established using the supremum property. The

convergents of
√
2 form a sequence of rational numbers converging to

√
2. The

distance between
√
2 and the convergent pi

qi
is bounded by 1

qiqi+1
.

i pi qi
pi
qi

p2i
q2i

1
qiqi+1

1 1 1 1 1 0,5

2 3 2 1,5 2,25 0,1

3 7 5 1,4 1,96 0,01 . . .

4 17 12 1,416666 . . . 2,069444 . . . 0,002 . . .

5 41 29 1,413793 . . . 1,998810 . . . 0,0004 . . .

6 99 70 1,414285 . . . 2,000204 . . . 0,00008 . . .

7 239 169 1,414201 . . . 1,999964 . . . 0,00001 . . .

8 577 408 1,414215 . . . 2,000006 . . . 0,000002 . . .
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17.9 Uncountable Sets

For the number π we have

π = ⟨3, 7, 15, 1, 292, . . . ⟩.

And so
i : −1 0 1 2 3 4 5 · · ·

ai : − − 3 7 15 1 292 · · ·
pi : 0 1 3 22 333 355 103993 · · ·
qi : 1 0 1 7 106 113 33102 · · ·

Thus we have very good approximations of π:∣∣∣∣π − 22

7

∣∣∣∣ < 1

7 · 106 =
1

742
.

Since a5 is relatively large, p4
q4

is a particularly good approximation of π:∣∣∣∣π − 355

113

∣∣∣∣ < 1

113 · 33102 < 3 · 10−7.

Nobody has been able to discover some kind of regularity in the continued fraction
expansion of π. The number

√
2 does have such a regularity: the expansion repeats

with a period of length 1. Other kinds of regularity are possible, e.g.

⟨1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . . ⟩.

Remarkably this is the case for the number e, the base of the natural logarithm:

e = ⟨2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, . . . ⟩.

17.9 Uncountable Sets

A set is finite if it is equipotent to n for some natural number n. Sets which
are equipotent to N are called countable. The sets N × N, Z, R0(N) and Q are
countable. See also the exercises 12, 13, 14 of chapter 5, exercise 11 of chapter 7,
exercise 14 of chapter 8 and exercise 2 of chapter 9.

17.69 Definition. An infinite set which is not countable is called uncountable.

We will show the uncountability of some sets by a method of Cantor. By the same
method it can be made clear that uncountable sets are not necessarily equipotent.

We start with the set R({0, 1}), the set of sequences in {0, 1}.

17.70 Theorem. The set R({0, 1}) is uncountable.

381



17 The Real Numbers

PROOF. Let be given a map f : N → R({0, 1}). For every m ∈ N we have a
sequence f(m) = (f(m)n). Consider the sequence (an) in {0, 1} defined by an =
1− f(n)n. Then in particular an ̸= f(n)n for every n ∈ N.

The sequence (an) differs from all sequences f(m): let m ∈ N, then the sequence
(an) differs from the sequence f(m), because the m-th term of (an) is 1− f(m)m,
the m-th term of f(m) being f(m)m.

So there is no surjective map from N to R({0, 1}), let alone a bijective one.

We make it more concrete (and less exact). An expression like

1010001011100100100011110001 . . .

will stand for (the start of) a sequence in {0, 1} and suppose we have such a sequence
for every n ∈ N, say it starts as follows:

1010001011100100100011110001 . . .

0101111001010001111111000101 . . .

1001101010101001010000011111 . . .

0101011010101010000101101011 . . .

0101010100100101010101010100 . . .

1001010101010001010010100001 . . .

1111000000000000000111111111 . . .

1010100000011111111110001010 . . .

0000001100000000110000000100 . . .

1100111001001010111001010011 . . .

...

From this we can extract the diagonal, the sequence having as n-th term the n-th
term of the n-th sequence:

1101011110 . . .

In this sequence we replace every 1 by a 0 and every 0 by a 1:

0010100001 . . .

This sequence does not occur in the sequence of sequences: for every n it differs
from n-th sequence, since their nth terms are different.

This type of reasoning is known as Cantor’s diagonal argument .

17.71 Corollary. The set R is uncountable.

PROOF. The map R({0, 1}) → R, (cn) 7→
∑∞
n=0

cn
10n is injective. So R contains

an uncountable subset and therefore it cannot be countable.
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17.9 Uncountable Sets

We use the notation I(a, b) = {x ∈ R | a < x < b} for a, b ∈ R with a < b. The
proof of Corollary 17.71 shows that for example the subset I(−1, 1) is uncountable.
In fact this set is equipotent to R:

17.72 Proposition. {x ∈ R | −1 < x < 1} ≈ R

PROOF. We write I = {x ∈ R | −1 < x < 1} and define a map f : I → R by

f(x) =
x

1− x2
(for all x ∈ I).

We will show that f is bijective. Let a ∈ R. Is there a unique x ∈ I with
f(x) = a ? Such an x is the solution of the quadratic equation ax2 + x − a = 0.

The discriminant is 1 + 4a2 > 0. The solutions are x = −1±
√
1+4a2

2a . Exactly one
of these is an element of I.

The rational numbers form a countable subset of R. As a consequence the irrational
numbers form an uncountable subset of R: if it was countable, then R, being the
union of two countable sets, would be countable as well. But what about the subset
of algebraic numbers?

17.73 Proposition. The subset of R consisting of algebraic numbers is countable.

PROOF. An algebraic number is a zero of a polynomial ̸= 0 having coefficients
in Q. Multiplication by a multiple of the denominators of the coefficients gives
a polynomial having coefficients in Z. So algebraic numbers are zeros of such
polynomials. These polynomials correspond to elements of R0(Z) and thus form a
countable set. Since each of these polynomials has only a finite number of zeros,
the set of all zeros of these polynomials is countable as well.

17.74 Corollary. The subset of R consisting of the transcendental numbers is
uncountable.

We will order sets by magnitude.

17.75 Definition. Let A and B be sets. We define

A ⪯ B ⇐⇒ there is an injective map from A to B.

and

A ≺ B ⇐⇒ A ⪯ B and there is no surjective map A→ B.

The following theorem of Cantor, Schröder and Bernstein allows us in many cases
to see that sets are equipotent.
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17 The Real Numbers

Friedrich Wilhelm Karl Ernst Schröder (Mannheim 1841 – Karlsruhe
1902)
Felix Bernstein (Halle 1878 – Zürich 1956)

The German mathematicians Ernst
Schröder (left) and Felix Bernstein (right)
proved theorem 17.76, which was first
published by Cantor, however without
giving a proof.

17.76 Theorem (Cantor, Schröder, Bernstein). Let A and B be sets with A ⪯ B
and B ⪯ A. Then A ≈ B.

PROOF. We assume that A ∩ B = ∅. This is allowed because we may replace A
by A × {0} and B by B × {1}. Let f : A → B and g : B → A be injective maps.
We define a transformation F of A ∪B:

F (x) =

{
f(x) if x ∈ A

g(x) if x ∈ B.

This transformation F is injective: if F (x) = F (y), then x, y ∈ A or x, y ∈ B
and so x = y, because f and g are injective. Call x ∈ A ∪ B a successor of y if
F (y) = x. We then also call y a predecessor of x. So for every x ∈ A ∪ B there is
a unique successor and at most one predecessor since F is injective. Let A0 be the
subset of A of elements having no predecessor and B0 the subset of B of elements
having no predecessor. We define a map h : A→ B:

h(a) =

{
the predecessor of a, if a is in the course of an element of B0;

the successor of a, otherwise.

This h is bijective. The inverse is k : B → A defined by:

k(b) =

{
the successor of b, if b is in the course of an element of B0;

the successor of b, otherwise.

17.77 Examples.

a) {x ∈ R | 0 ≤ x ≤ 1 } ≈ I(0, 1). An injective map from {x ∈ R | 0 ≤ x ≤ 1 }
to I is for example x 7→ 1

2x+ 1
4 .
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17.9 Uncountable Sets

b) It is seen directly that N× N ≈ N by giving a bijection. It also follows from
the existence of injections N → N× N and N× N → N:

N → N× N, n 7→ (n, 0) and N× N → N, (m,n) 7→ 2m3n.

c) From corollary 17.71 and proposition 17.72 it follows that

R({0, 1}) ⪯ I(−1, 1) ≈ R.

The map I(0, 1) → R({0, 1}) that assigns to a real number its binary expan-
sion, is injective. Also I(0, 1) ≈ I(−1, 1): map x to 2x− 1. So:

I(−1, 1) ≈ I(0, 1) ⪯ R({0, 1}) ⪯ I(−1, 1) ≈ R.

So these sets all are equipotent.
d) We show that R× R ≈ R. Because R ≈ R({0, 1}), we can show as well that

R({0, 1})×R({0, 1}) ≈ R({0, 1}). The following map is a bijection:

((an), (bn)) 7→ (cn) with cn =

{
an

2
if n even

bn+1
2

if n odd.

We have N ≺ R({0, 1}) and N ≺ R. The set R({0, 1}) = {0, 1}N is equipotent to
P(N), see proposition 5.46. So we have N ≺ P(N). The method of Cantor is easily
generalized to A ≺ P(A):

17.78 Theorem. Let A be a set. Then A ≺ P(A).

PROOF. The map A → P(A), a 7→ {a} is injective. Let f : A → P(A) be a map.
We show that f is not surjective by showing that the set U = {x ∈ A | x /∈ f(x) }
is not an image of an element of A.

Suppose U = f(a) for an a ∈ A. We look at the element a.

Suppose a ∈ U . Then a /∈ f(a) and so a /∈ U , since U = f(a). Contra-
diction.

So a /∈ U . But then not a /∈ f(a), that is a ∈ f(a). So a ∈ U , since f(a) = U .
Contradiction.

Hence there is no a ∈ A with U = f(a). So f is not surjective.

So N ≺ P(N) ≺ P(P(N)) ≺ P(P(P(N))) ≺ · · · . These sets are mutually not
equipotent as follows directly from:

17.79 Lemma. Let A, B and C be sets with A ≺ B ≺ C. Then A ≺ C.

PROOF. Clearly there is an injective map A→ C. Suppose there is also a surjec-
tive one, say f : A → C. Then there is a surjective one from B to C: just extend
f to a map B → C. Contradiction.
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Kurt Gödel (Brünn (now Brno) 1906 – Princeton (New Jersey) 1978)
Paul Cohen (Long Branch (New Jersey) 1934 – Palo Alto (California)
2007)

The Austrian logician Kurt Gödel (left)
proved that in an axiom system for set
theory containing Peano’s axioms there are
true propositions which cannot be proved
nor disproved from the axioms. This is
known as Gödel’s Incompleteness Theorem.
The American mathematician Paul Cohen
(right) developed a way, known as forc-
ing, of constructing mathematical models
to test a hypothesis.

The standard finite sets n are used to indicate the number of elements of a finite
set: #(A) = n if A ≈ n. For the countable sets N can be used as a standard set. It
goes with a new ‘number’: ℵ0. Hence: #(A) = ℵ0 if A ≈ N. (ℵ is aleph, the first
letter of the Hebrew alphabet.)

There are ways in set theory to define the standard sets, but here we will not dwell
on this. These standard sets correspond to so-called cardinal numbers. Cardinal
numbers can be ordered using ⪯: #(A) ≤ #(B) ⇐⇒ A ⪯ B. Reflexivity and
transitivity of ≤ are clear. The antisymmetry follows from the theorem of Cantor,
Schröder and Bernstein. It can be shown using the axiom of choice that A ⪯ B
of B ⪯ A for any pair of sets A,B. It can also be shown that for every cardinal
number there is a least cardinal number which is greater, the successor of the
cardinal number. The successor of ℵ0 is denoted by ℵ1, etc.

Cantor denoted the cardinal number of R by c. Is c = ℵ1 ? That is: is there a
cardinal number greater than ℵ0 and less than c ? The continuum hypothesis says
that such a cardinal number does not exist. In 1940 Kurt Gödel showed that with
the usual axioms for set theory the continuum hypothesis can not be falsified. In
1963 Paul Cohen proved that it can not be derived from axioms either.

For cardinal numbers operations can be defined using operations with sets:

Addition: #(A) + #(B) = #(A ∪ B) if A and B are disjoint. The addition is
associative and commutative. If one of the cardinal numbers is infinite, then
the sum is the greatest of the two.

Multiplication: #(A) · #(B) = #(A × B). The multiplication is associative and
commutative. It also is distributive over addition. If one of the cardinal
numbers is infinite and if both are not 0, then the product is the greatest of
the two.

Exponentiation: #(A)#(B) = #(AB). The usual rules hold here as well: ab+c =
abac, abc = (ab)c, (ab)c = acbc.
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Exercises

Take care with cancellation laws, opposites and inverses. For example we have seen
that:

� ℵ0 · ℵ0 = ℵ0, because N× N ≈ N.

� 2ℵ0 = c, because {0, 1}N ≈ R.

� c · c = c, because R× R ≈ R.

Exercises

1. Let α be a real number > 1. Take a ∈ N such that (a−1)2 < α ≤ a2. The sequence
(an) of real numbers is defined by{

a0 = a

an+1 = 1
2
(an + α

an
) for all n ∈ N

(i) Show that a2
n ≥ α for all n ∈ N.

(ii) Prove that the sequence (an) is descending.

(iii) Show that limn an =
√
α.

(This method for the approximation
√
α rests on Newton’s method for the approx-

imation of a zero of a function, in this case the function x2 − α.)

2. The sequence of rational numbers (an)n≥1 is defined by an =
∑n

k=1
1

k(k+1)
.

(i) Show that an = 1− 1
n+1

for all n ∈ N+.

(ii) Verify that 1
n(n+1)

< 1
n2 < 1

(n−1)n
for n = 2, 3, 4, . . . .

(iii) Show that 3
2
<
∑∞

n=1
1
n2 < 2.

3. Let α ∈ R. Let the sequence (an)n≥1 in Z be defined by

an = ⌊nα⌋ for all n ∈ N.

Show that conversely α is determined by this sequence. (In terms of maps: the
map α 7→ (an) from R to the set of sequences in Z is injective.)

4. Let U ⊆ R and let f, g : U → R be continuous. Show that the functions

U → R, x 7→ f(x) + g(x),

U → R, x 7→ f(x)g(x)

are continuous.

5. Let g : R → R be continuous with g(x) ̸= 0 for all x ∈ R. Given is that g(0) > 0.
Show that g(x) > 0 for all x ∈ R.

6. Let U ⊆ R and let g : U → R be continuous with g(x) ̸= 0 for all x ∈ U . Prove that
the function U → R, x 7→ 1

g(x)
is continuous.
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7. Let U and V be subsets of R and let f : U → R and g : V → R be continuous
functions. Let be given that f∗(U) ⊆ V . Prove that the function

U → R, x 7→ g(f(x))

is continuous.

8. Let f(x) and g(x) be polynomials with g(x) not the 0-polynomial. Prove that the
function

U → R, x 7→ f(x)

g(x)
,

where U = {x ∈ R | g(x) ̸= 0 }, is continuous.

9. Show that the map R → R+, x 7→ 2x is an isomorphism of groups.

10. Let β ∈ R with β > 1. Let x and y be real numbers with x < y. Show that βx < βy.

11. Determine the continued fraction expansions of
√
13 and

√
13+1
2

.

12. The irrational number α = ⟨1, 3, 1, 3, 1, 3, 1, 3, . . . ⟩ satisfies α = ⟨1, 3, α⟩. Deduce

from this that α =
√
21+3
6

.

13. Let m ∈ N+. Determine the continued fraction expansion of
m+

√
m2+4

2
.

14. Let 0,b1b2b3 . . . be the decimal notation of an irrational α ∈ [0, 1). We consider
the continued fraction expansion of α. Suppose that there is an n ∈ N+ such that
qn = 100. Prove that b3 = b4 = 0 or b3 = b4 = 9.

15. Approximate
√
3 as well as possible with a rational number p

q
, where 0 < q < 100.

16. The continued fraction expansion gives a bijective map from the set of irrational
numbers > 1 to R(N+). Verify this.

17. Give a bijective map from R(N) to R({0, 1}).

18. Let A be the set of sequences (an)n≥0 with the property that an ̸= an+1 for all
n ∈ N. Show that A ≈ R.

19. Does it hold for every convergent sequence (an) in R, with an ̸= 0 for all n, that

lim
n→∞

an+1

an
= 1 ?

Give a proof or a counterexample.

20. (i) Give an example of a sequence (an) in R for which the following holds: (an)
converges while the sequence of the floors (⌊an⌋) does not.

(ii) Let (an) be a convergent sequence in R. Show that there are an m ∈ Z and a
N ∈ N+ such that m− 1 < an < m+ 1 for all n ≥ N .

(iii) Let (an) be a Cauchy sequence in Q with a diverging sequence (⌊an⌋) of floors.
Prove that (an) converges to an integer.
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Exercises

21. The real number α is given as an infinite continued fraction:

α = ⟨3⟩ (= ⟨3, 3, 3, . . . ⟩).

(i) Show that α = 3+
√
13

2
.

(ii) Determine natural numbers p and q such that

q < 100 and |α− p
q
| < 1

1000
.

22. Verify for each of the following assertions its truth. Give a proof or a counterex-
ample.

(i) If α is an irrational number with α > 0, then
√
α is an irrational number.

(ii) If α is an irrational number with α > 1, then
√

α+1
α−1

is an irrational number.

(iii) If α is an irrational number, then
√
α2 + 1 is an irrational number.

23. On the set R({0, 1}) (consisting of all infinite sequences of ones and zeros) the
relation ∼ is defined by

(a0, a1, a2, . . . ) ∼ (b0, b1, b2, . . . ) ⇐⇒ an ̸= bn for only finitely many n ∈ N.

(i) Prove that ∼ is an equivalence relation.

(ii) Show that every equivalence class is countable.

(iii) Prove that there are uncountably many equivalence classes.

24. (i) Let B be the set of all sequences a0, a1, a2, . . . in {0, 1, 2} with the property

an+1 ̸= an for all n ∈ N.

Is B finite, is B countable or is B uncountable?

(ii) Let C be the set of all sequences a0, a1, a2, . . . in {0, 1, 2} with the property

#({an, an+1, an+2}) ̸= 2 for all n ∈ N.

Is C finite, is C countable or is C uncountable?

25. (i) Let g : N → N. Prove that

g is injective ⇐⇒ g(n+ 1) /∈ {g(0), g(1), . . . , g(n)} for all n ∈ N.

(ii) Prove that the set { f : N → N | f is injective } is uncountable.

26. For every sequence (a1, a2, a3, . . . ) in {1, 2, 3} we have real numbers

x =
∞∑

n=1

xn

2n
, y =

∞∑
n=1

yn
2n

and z =

∞∑
n=1

zn
2n

,

where

xn =

{
1 if an = 1

0 otherwise,
yn =

{
1 if an = 2

0 otherwise
and zn =

{
1 if an = 3

0 otherwise.
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17 The Real Numbers

(i) Let (a1, a2, a3, . . . ) be a sequence in {1, 2, 3}. Show that x+ y + z = 1.

(ii) Let be given that the sequence (an) repeats. Show that x, y, z ∈ Q.

(iii) Let (an) be a sequence in {1, 2, 3} with x ∈ Q. Does it follow that the sequence
(an) repeats?

(iv) Let (an) be the sequence (1, 2, 3, 1, 2, 3, 1, 2, 3, . . . ) = (1, 2, 3). Compute for
this sequence the numbers x, y and z. Write them as an ordinary fraction.

27. Let A be the set of all arithmetic progressions of real numbers and let B be the set
of all sequences r0, r1, r2, . . . of real numbers with rn+2 = 2rn+1 − rn for all n ∈ N.
Prove that A = B.

28. The sequence (an) in Q is given by

an =

n∑
k=0

(−1)k

2k
(for all n ∈ N).

(i) Show that the sequence (an) converges in Q.

(ii) Give an N ∈ N such that |an − limn→∞ an| < 10−100 for all n ≥ N .

29. Verify for each of the following real numbers whether they are rational:

3
√
189,

3

√
189

56
,

√
3 + 2

√
2,

√
6 + 2

√
5

1 +
√
5

.

30. The sequence a0, a1, a2, . . . of natural numbers is defined by{
a0 = 4,

an+1 = a2
n − 2 for all n ∈ N.

Prove that
an = (2 +

√
3)2

n

+ (2−
√
3)2

n

for all n ∈ N.

31. Let β ∈ R with β ≤ 1.

(i) Show that nβ > n for all n ∈ N+.

(ii) Prove that the series
∑∞

n=1
1
nβ diverges.

32. Let β ∈ R with β > 1. The sequences (an)n≥1 and (bn)n≥1 are given by

an =

n∑
k=1

1

kβ
and bn = an +

1

nβ−1
.

(i) Show that the sequence (bn) is descending.

(ii) Show that the series

∞∑
n=1

1

nβ
converges.
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18 The p-Adic Numbers

In this chapter p is a fixed arbitrary prime number. The examples will be about
concrete prime numbers. In chapter 17 we completedQ with respect to the ordinary
absolute value. Completion with respect to the p-adic absolute value yields the
field Qp of the p-adic numbers. In section 18.1 this construction is made. Also for
this field we will have a close look at the multiplicative group. Via exponential
functions this group too is closely related to the additive group. The field Qp is
not as common as R is. Outside mathematics there are hardly any applications.
Inside mathematics the main applications are in number theory. In chapter 20 an
example of such an application is given.

18.1 Construction of Qp

In this section Q is completed with respect to the p-adic absolute value. Here we
follow the same route as we did in the previous chapter for the ordinary absolute
value and do so with special attention to some remarkable properties.

18.1.1 The set Qp

18.1 Definition. p-Adic Cauchy sequences (an) and (bn) in Q are called p-adically
equivalent if the sequence (an − bn) is a p-adic null sequence. Notation: (an) ∼p
(bn). We denote the set of p-adic Cauchy sequences in Q by CSp(Q).

Also in this case we have:

18.2 Proposition. The relation ∼p in CSp(Q) is an equivalence relation.

18.3 Definition. A p-adic number is an equivalence class in CSp(Q) for the relation
∼p. Notation: the class of a p-adic Cauchy sequence (an) will be denoted by [(an)].
The set Qp is the set of the p-adic numbers.

In this chapter we consider only the p-adic case. If we write α = [(an)], then we
always mean that (an) is a p-adic Cauchy sequence and α is the equivalence class
with respect to the relation ∼p, thus being a p-adic number.
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18 The p-Adic Numbers

18.1.2 The field Qp

The sum and the product of p-adic numbers is obtained by adding and multiplying
representing Cauchy sequences. This is independent of the choice of representa-
tives:

18.4 Definition. Let (an) and (bn) be p-adic Cauchy sequences in Q. The sum and
the product of the p-adic numbers [(an)] and [(bn)] are defined by

[(an)] + [(bn)] = [(an + bn)]

[(an)] · [(bn)] = [(anbn)].

Again we have an injective map

Q → Qp, a 7→ [(a)].

We can see Qp as an extension of Q. The class [(a)] of a constant sequence (a) will
usually be denoted by a. It is the class of sequences in Q converging p-adically to
a.

18.5 Theorem. The set Qp together with the addition and the multiplication is a
field.

PROOF. We only look at the existence of inverses. Let α ∈ Qp with α ̸= 0.
Choose a representative of α. Then (an) is not a p-adic null sequence. From
proposition 16.81 it follows that there is an N ∈ N such that |an|p = |aN |p for
all n ≥ N . So we can assume that an ̸= 0 for all n. From proposition 16.84 it
then follows that the sequence ( 1

an
) is a p-adic Cauchy sequence as well. We have

[(an)][(
1
an

)] = 1.

18.1.3 The absolute value on Qp

We extend the p-adic absolute value on Q to an absolute value on Qp. If α is a
p-adic number ̸= 0, say α = [(an)], then there is an N ∈ N with |an|p = |aN |p for
all n ≥ N .

18.6 Definition. Let α be a p-adic number. Then we define the absolute value |α|p
as follows

|α|p =

{
|aN |p if α ̸= 0 (N being as above),

0 if α = 0.

So we have |α|p = limn |an|p, the limit being the ordinary limit in Q. If α ̸= 0, the
sequence |an| is constant for large n. If α = 0, then the sequence |an|p is a null
sequence. The absolute values of p-adic numbers are numbers in R≥0. The image
of α 7→ |α|p is the set { pn | n ∈ Z } ∪ {0}.
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18.2 The Completeness of Qp

From the definition of the absolute value on Qp immediately follows:

18.7 Proposition. The absolute value Qp → R≥0, α 7→ |α|p is a non-Archimedean
absolute value: for all α, β ∈ Qp we have

(i) |α|p = 0 ⇐⇒ α = 0,
(ii) |αβ|p = |α|p|β|p,
(iii) |α+ β|p ≤ max(|α|p, |β|p).

18.2 The Completeness of Qp

The p-adic absolute value on Q has been extended to Qp. Thus we now have null
sequences, convergent sequences and Cauchy sequences in Qp. We will first show
that every p-adic Cauchy sequence in Q converges in Qp.

18.8 Proposition. Let (an) be a p-adic Cauchy sequence in Q. Then it converges
in Qp to α = [(an)].

PROOF. Let ε ∈ R with ε > 0. Then there is an N ∈ N such that |am − an|p < ε
for all m,n > N . For fixed m the sequence is (am − an) a p-adic Cauchy sequence
and we have [(am− an)] = am−α. For m ≥ N we have that |am− an|p < ε for all
n ≥ N . So |am − α|p = limn |am − an|p ≤ ε for all m ≥ N , that is (an) converges
in Qp to α.

So near every p-adic number there is a rational number within any prescribed
distance:

18.9 Corollary. Let α be a p-adic number and let ε ∈ R with ε > 0. Then there
is a rational number a with |a− α|p < ε.

It follows that Qp is complete:

18.10 Theorem. Let (αn) be a Cauchy sequence of p-adic numbers. Then (αn)
converges in Qp.

PROOF. Analogous to the proof of theorem 17.18.

We have used properties of null sequences, convergent sequences and Cauchy se-
quences in Qp which were already proved for p-adic Cauchy sequences in Q. All
notions and properties of section 16.6 are applicable to the completion Qp. In
particular we have:

18.11 Theorem. A sequence in Qp converges if and only if its difference sequence
is a null sequence.

So for any sequence (cn) ∈ Np the sequence (
∑n
k=0 ckp

k) in Qp converges, see
Corollary 16.79. We will see that conversely every α ∈ Qp with |α|p ≤ 1 has a
p-adic expansion which does not necessarily repeat.
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18 The p-Adic Numbers

18.3 The Ring Zp

18.12 Definition. A p-adic number α is called integral or a p-adic integer if |α|p ≤
1. The set of integral p-adic numbers is denoted by Zp.

In chapter 16 we considered the ring Z(p). Also Zp is a ring and we have Z(p) =
Zp ∩Q. The group Z∗

p consists of the p-adic numbers α with |α|p = 1. Recall that
Np is the set {0, . . . , p− 1} (Notations 5.29).

18.13 Lemma. Let α ∈ Zp. Then there is a unique c ∈ Np with |α− c|p < 1.

PROOF. Take an r ∈ Q with |α − r|p < 1. Then |r|p = |r − α + α|p ≤ max(|r −
α|p, |α|p) ≤ 1. So r ∈ Z(p). By proposition 16.71 there exists a c ∈ Np with |r−c|p <
1. For this c we have |α− c|p = |α− r + r − c|p ≤ max(|α− r|p, |r − c|p) < 1.

18.14 Definition. Let α ∈ Zp. The unique c ∈ Np with |α − c|p < 1 is called the
remainder of α after division by p. Notation: c = [α]p. (Thus we have extended
division with remainder in Z(p) to Zp.)

Also the transformation γp of Z(p) as defined in chapter 16 can be extended to a
transformation of Zp:

γp : Zp → Zp, α 7→ α− [α]p
p

.

It can be used for p-adic expansions of p-adic integers in general:

18.15 Definition. Let α ∈ Zp. The sequence (cn)n≥0 with cn = [γnp (α)]p in Np is
called the p-adic expansion of α.

Now we have a bijection

R(Np) → Zp, (cn) 7→
∞∑
n=0

cnp
n

and its inverse
Zp → R(Np), α 7→ ([γnp (α)]p).

The repeating sequences correspond with the elements of Z(p).

18.3.1 Another description of Zp

As we have seen, p-adic integers have a unique p-adic expansion. Therefore, the ring
Zp could have been constructed differently, namely as the set R(Np), where (cn)
is to be interpreted as

∑∞
n=0 cnp

n. In principle R too could have been constructed
using the decimal notation of real numbers. The big problem in that case is the
definition of addition and multiplication: for performing these operations one works
from right to left, but there is no right end where to start. Moreover, in such an
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18.3 The Ring Zp

Kurt Hensel (Königsberg (now Kaliningrad) 1861 – Marburg 1941)

Hensel was the first to study p-adic numbers. He introduced
them as formal sums

∑∞
n=m cnp

n with m ∈ Z (for m =
0 these represent the p-adic integers). He used them for
representing numbers by rational quadratic forms, e.g. forms
of type x2 − ay2 with a ∈ Z not a square. (Rational means
that one looks for x, y ∈ Q.) In chapter 20 we will see how
that works. Hensel wrote influential books on number theory
elaborating his ideas on p-adic numbers. Helmut Hasse was
a pupil of Hensel.

approach the verification of the rules of arithmetic is complicated. Anyway, it is
a lot of work and it is quite boring. However, for Zp it is different: addition and
multiplication is done from right to left.

18.16 Example. We take p = 3. Suppose we know the first 5 digits of the 3-adic
expansion of the 3-adic numbers α and β, say α = . . . 10211 and β = . . . 11021.
Then we can compute the first 5 digits of the 3-adic expansion of their sum and
product:

. . . 10211

. . . 11021

. . . 22002

. . . 10211

. . . 11021

. . . 10211

. . . 1122

. . . 000

. . . 11

. . . 1

. . . 20201

We have introduced Zp in an analytic way, namely using limits. We will give
another description, an algebraic one, in subsection 18.3.3.

18.3.2 Modular arithmetic in Zp

In Zp one can do arithmetic modulo a power of p. Elements α ∈ Zp can be written
as pnµ with µ ∈ Z∗

p. Arithmetic modulo α then comes down to arithmetic modulo
pn. That is why we do arithmetic modulo powers of p only.

18.17 Definition. Let α, β ∈ Zp and n ∈ N+. Then we define

α ≡ β (mod pn) ⇐⇒ α− β

pn
∈ Zp.
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18 The p-Adic Numbers

We then call α congruent to β modulo pn.

Congruence in Zp is closely connected to the absolute value:

18.18 Lemma. Let α and β be elements of Zp and n ∈ N+. Then:

α ≡ β (mod pn) ⇐⇒ |α− β|p ≤
1

pn
.

PROOF. We have:

α ≡ β (mod pn) ⇐⇒ α− β

pn
∈ Zp ⇐⇒

∣∣∣α− β

pn

∣∣∣
p
≤ 1 ⇐⇒ |α− β|p ≤

1

pn
.

It is easily verified that congruence modulo pn is an equivalence relation and that
the equivalence classes form a ring. As with modular arithmetic in Z addition and
multiplication are done on the level of representatives. The ring thus obtained is
isomorphic to Z/pn. We make this more explicit.

For each α ∈ Zp and each n ∈ N+ there is an an ∈ Z with |α − an|p ≤ 1
pn ,

that is α ≡ an (mod pn). For example an =
∑n−1
k=0 ckp

k, where (cn) is the p-adic
expansion of α. For this an we have that an ∈ Npn . If also an a′n satisfies, then
a′n ≡ an (mod pn). So we have for every n a map θn : Zp → Z/pn with θn(α) = an,
where an ∈ Zp such that |α− an|p ≤ 1

pn .

If (cn) is the p-adic expansion of α ∈ Zp, then θn(α) =
(∑n−1

k=0 ckpk
)
.

18.19 Lemma. For all α, β ∈ Zp

θn(α) = θn(β) ⇐⇒ α ≡ β (mod pn).

PROOF. Choose an, bn ∈ Z with α ≡ an (mod pn) and β ≡ bn (mod pn). Then

θn(α)− θn(β) ≡ (α− an)− (β − bn) ≡ an − bn (mod pn).

18.3.3 Yet another description of Zp

For every n ∈ N+ we have a map πn : Z/pn+1 → Z/pn, defined by πn(a) = a,
where the first a is the residue class of a ∈ Z modulo pn+1 and the second one is
the class modulo pn. Thus we have a sequence of maps

· · · → Z/pn+1 πn→ Z/pn → · · · → Z/p2 π1→ Z/p.

We will construct a ring Z′
p. The set Z′

p consists of all sequences (xn) =
(. . . , xn+1, xn, . . . , x2, x1), with xn ∈ Z/pn and πn(xn+1) = xn for all n ∈ N+.
In a different notation:

· · · 7→ xn+1
πn7→ xn 7→ · · · 7→ x2

π17→ x1.
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18.4 Exponential Functions

Addition and multiplication is done term-wise: (xn) + (yn) = (xn + yn) and
(xn) · (yn) = (xnyn). Thus we use the addition and multiplication in each of the
rings Z/pn.

We will show that the ring Z′
p is isomorphic to Zp. For this we use the maps

θn : Zp → Z/pn from the previous subsection. For every α and every n ∈ N+ we
have θn(α) = an, where an ∈ Z with α ≡ an (mod pn). Since also α ≡ an+1

(mod pn) we have πn(an+1) = an, that is πn(θn+1(α)) = θn(α), for every n ∈ N+.
Thus we have a map

θ : Zp → Z′
p, α 7→ (θn(α)).

18.20 Theorem. The map θ : Zp → Z′
p is an isomorphism of rings.

PROOF. Fist we prove the surjectivity of θ. Let (xn) ∈ Z′
p. Choose for every

n ∈ N+ an an ∈ Z with an = xn. Then pn | an+1 − an and so (an+1 − an) is a p-
adic null sequence. So (an) converges in Zp, say to α. We prove that θ(α) = (xn).
Let n ∈ N. Take an N > n such that |α − aN |p < 1

pn . Then |α − an|p ≤
max(|α− aN |p, |aN − an|p) ≤ 1

pn . From this it follows that θ(α) = (an) = (xn).

Now we prove the injectivity of θ. Let α and β be elements of Zpn with θ(α) = θ(β).
Choose for every n ∈ N+ an an ∈ Z and a bn ∈ Z with α ≡ an (mod pn) and β ≡ bn
(mod pn). Then an = bn ∈ Z/pn for all n ∈ N+. So we could have chosen an = bn.
Now we have that α and β both are the limit of the sequence (an).

The preservation of addition and multiplication by θ is simple: choose numbers an
for α and bn for β, then an + bn can be chosen for α+ β and anbn for αβ.

18.4 Exponential Functions

18.21 Notations. For n ∈ N

pnZp = {α ∈ Zp | α|p ≤ 1
pn } = {α ∈ Zp | α ≡ 0 (mod pn) }

= { pnα | α ∈ Zp } = {α ∈ Zp | θn(α) = 0 }

and for n ∈ N+

Z(n)
p = {α ∈ Zp | |α− 1|p ≤ 1

pn } = { 1 + α | α ∈ pnZp }

= {α ∈ Zp | α ≡ 1 (mod pn) } = { 1 + pnα | α ∈ Zp }
= {α ∈ Zp | θn(α) = 1 }.
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18 The p-Adic Numbers

So if (cn) is the p-adic expansion of α, then

α ∈ pnZp ⇐⇒ c0 = c1 = · · · = cn−1 = 0

and
α ∈ Z(n)

p ⇐⇒ c0 = 1, c1 = c2 = · · · = cn−1 = 0.

The set pnZp is closed under addition and under multiplication by elements of

Zp. The set Z(n)
p is closed under multiplication and inversion. The inverse of

1 + α ∈ Z(n)
p is 1− α+ α2 − α3 + · · · .

For odd p and µ ∈ Z(1)
p we will define an ‘exponential’ function Zp → Zp, x 7→ µx.

Also for p = 2 a function Z2 → Z2, x 7→ µx will be defined, however, with the

restriction that µ ∈ Z(2)
2 .

18.22 Lemma. Let µ ∈ Zp with |µ − 1|p = 1
pk
, where k ≥ 1 if p odd and k ≥ 2 if

p = 2. Then |µp − 1|p = 1
pk+1 .

PROOF. We have µ = 1 + pkα with |α|p = 1. The binomial formula yields

µp =

p∑
l=0

(
p

l

)
pklαl.

Hence

µp − 1− pk+1α =

p∑
l=2

(
p

l

)
pklαl.

For 2 ≤ l ≤ p− 1 we have
(
p
l

)
pklαl ∈ pk+2Zp. Also pkpα ∈ pk+2Zp under the given

conditions for k. From this it follows that |µp − 1|p = 1
pk+1 .

18.23 Lemma. Let µ ∈ Z(1)
p if p is odd and otherwise µ ∈ Z(2)

2 . Let (xn) be a
p-adic null sequence in Z. Then limn µ

xn = 1.

PROOF. Let |µ − 1|p = 1
pk

and n ∈ N. Put xn = pkny with p ∤ y. For y > 0

it follows from µy − 1 = (µ − 1)(µy−1 + · · · + µ + 1) and µ ≡ 1 (mod p) that
|µy − 1|p = 1

pk
. This holds for y < 0 as well: use µy − 1 = µy(1 − µ−y). Then by

lemma 18.22 we have |µxn − 1|p = 1
pk+kn

. Since (xn) is a p-adic null sequence, it

follows that (µxn − 1) is a null sequence in Qp.

18.24 Proposition. Let µ ∈ Z(1)
p if p is odd and otherwise µ ∈ Z(2)

2 . Let x ∈ Zp
and let (xn) be a sequence in Z converging in Qp to x. Then

(i) The sequence (µxn) converges in Qp.
(ii) | limn µ

xn − 1|p = |µ− 1|p|x|p.
(iii) If also (yn) is a sequence in Z converging to x, then the limit of (µyn) is equal

to the limit of (µxn).
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18.4 Exponential Functions

PROOF.

(i) Since (xn+1 − xn) is a p-adic null sequence in Z, it follows from lemma 18.23
that (µxn+1−xn − 1) is a p-adic null sequence. From

|µxn+1 − µxn |p = |µxn |p|µxn+1−xn − 1|p = |µxn+1−xn − 1|p

follows that (µxn+1 − µxn) is a null sequence. So (µxn) converges in Qp.
(ii) This follows from lemma 18.22 for x ̸= 0 and from lemma 18.23 for x = 0.
(iii) Since (xn − yn) is a p-adic null sequence in Z and µxn = µxn−ynµyn the

sequences (µxn) and (µyn) have the same limit.

This proposition implies that we can define µx as follows:

18.25 Definition. Let µ ∈ Z(1)
p if p is odd and otherwise µ ∈ Z(2)

2 and let x ∈ Zp.
Then we define µx as the limit of the sequence (µxn), where (xn) is a sequence in
Z converging to x in Qp.

Thus we have for odd p and every µ ∈ Z(1)
p a map Zp → Z(1)

p , x 7→ µx. And we

have for every µ ∈ Z(2)
2 a map Z2 → Z(2)

2 . These exponential functions satisfy the
rules one expects:

18.26 Proposition. For µ, ν ∈ Z(1)
p and p odd, or µ, ν ∈ Z(2)

2 , and x, y ∈ Zp:

(i) µx+y = µxµy,
(ii) µxνx = (µν)x.
(iii) µxy = (µx)y.

PROOF. Choose sequences (xn) and (yn) in Z converging p-adically to x and y
respectively.

(i) µxµy = limn µ
xn · limn µ

yn = limn µ
xn+yn = µx+y.

(ii) µxνx = limn µ
xn · limn ν

xn = limn(µν)
xn = (µν)x,

(iii) (µx)y = limn(µ
x)yn and µxy = limn µ

xnyn . From lemma 18.23 follows

(µx)y

µxy
= lim

n

(µx)yn

µxnyn
= lim

n
µ(x−xn)yn = 1.

18.27 Proposition. For µ ∈ Z(1)
p and p odd the map Zp → Z(1)

p , x 7→ µx is injective

if µ ̸= 1. For µ ∈ Z(2)
2 the map Z2 → Z(2)

2 , x 7→ µx is injective if µ ̸= 1.

PROOF. Suppose that for x, y ∈ Zp we have µx = µy. Then µx−y = 1 and so by
proposition 18.26(ii): |µ−1|p|x− y|p = |µx−y−1|p = 0. If µ ̸= 1, then |µ−1|p ̸= 0
and so |x− y|p = 0, that is x = y.
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18 The p-Adic Numbers

18.5 The Group Q∗
p

Let α ∈ Q∗
p. Then |α|p = 1

pn for an n ∈ Z and so |p−nα|p = 1, that is p−nα ∈ Z∗
p.

An element of Q∗
p can be uniquely written as pnβ with β ∈ Z∗

p. Thus we have a
group isomorphism Z× Z∗

p → Q∗
p, (n, x) 7→ pnx. The group operation in Z× Z∗

p is
addition in the factor Z and multiplication in Z∗

p. We now focus on Z∗
p.

18.5.1 Roots of unity

See definition 13.44 for the notion of root of unity. We will determine the roots of
unity of Qp. Roots of unity are elements of Z∗

p: if ζn = 1, then |ζ|np = 1 and so
|ζ|p = 1. First we show that certain roots of unity can not exist.

18.28 Lemma. Let m ∈ N with p | m if p odd and 4 | m if p = 2. Then there is
no primitive m-th root of unity in Qp.

PROOF. Let p odd. It suffices to show that Qp has no primitive p-th root of unity.

Suppose ζ ∈ Qp is a primitive p-th root of unity. Then ζ is a zero of xp−1 =
(x− 1)(xp−1 + xp−2 + · · ·+ x+1). The numbers ζ, ζ2, . . . , ζp−1 are the p− 1
different zeros ̸= 1 of xp − 1. So

xp−1 + xp−2 + · · ·+ x+ 1 = (x− ζ)(x− ζ2) · · · (x− ζp−1).

For x = 1 this yields p = (1 − ζ)(1 − ζ2) · · · (1 − ζp−1). Let c ∈ Z with ζ ≡
c (mod p). Then by Fermat’s Little Theorem: c ≡ cp ≡ ζp ≡ 1 (mod p). So
we have 1−ζ ≡ 0 (mod p), that is ζ ≡ 1 (mod p). So also 1−ζk ≡ 0 (mod p)
for k ∈ Np. It follows that p = (1− ζ)(1− ζ2) · · · (1− ζp−1) ≡ 0 (mod pp−1).
However, p ̸≡ 0 (mod pp−1). Contradiction.

We prove that Q2 has no primitive 4-th root of unity.

Suppose ζ ∈ Q2 is a primitive 4-th root of unity. Then ζ and −ζ are different
zeros of x2+1. So x2+1 = (x−ζ)(x+ζ). For x = 1 this gives 2 = (1−ζ)(1+ζ).
Since ζ ∈ Z∗

2, we have ζ ≡ 1 (mod 2). So 2 ≡ 0 (mod 4). Contradiction.

We will show that Qp has a primitive (p− 1)-st root of unity.

18.29 Lemma. Let α ∈ Z∗
p. Then the sequence (αp

n

) converges in Qp to a (p−1)-st
root of unity.

PROOF. For convergence of (αp
n

) it suffices to show that the difference sequence

(αp
n+1 − αp

n

) is a null sequence. We have

|αp
n+1

− αp
n

|p = |αp
n

|p|(αp−1)p
n

− 1|p = |(αp−1)p
n

− 1|p.
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Let α ≡ a (mod p) with a ∈ Z. Then by Fermat’s Little Theorem αp−1 ≡ ap−1 ≡
1 (mod p), that is αp−1 ∈ Z(1)

p . For p odd lemma 18.23 implies that ((αp−1)p
n

)

converges to 1. So (αp
n+1 −αp

n

) is a null sequence. For p = 2 we have (αp−1)p
n

=

α2n = (α2)2
n−1

with α2 ∈ Z(2)
2 . Also in this case lemma 18.23 can be applied.

Let ζ be the limit of the sequence (αp
n

). From αp
n+1

= (αp
n

)p follows that ζ = ζp.
Because αp

n ∈ Z∗
p for all n, also ζ is an element of Z∗

p. In particular ζ is not 0. So
ζp−1 = 1.

18.30 Definition. We define the map ω : Z∗
p → Z∗

p by ω(α) = limn α
pn .

18.31 Lemma. For all α, β ∈ Z∗
p:

(i) ω(αβ) = ω(α)ω(β).
(ii) ω(α) ≡ α (mod p).
(iii) ω(α) = ω(β) ⇐⇒ α ≡ β (mod p).

PROOF.

(i) This follows from (αβ)p
n

= αp
n

βp
n

.
(ii) From |αp − α|p < 1 follows that |αpn − α|p < 1 for all n ∈ N. So

|ω(α)− α|p < 1, that is ω(α) ≡ α (mod p).

(iii) “⇒” follows from (ii). Suppose α ≡ β (mod p). Then α
β ∈ Z(1)

p . For p

odd ((αβ )
pn) converges by lemma 18.23 to 1, because (pn) is a p-adic null

sequence Z. So ω(αβ ) = 1 and using part (i): ω(α) = ω(β). For p = 2 we

have ω(α) = ω(β) = 1.

By lemma 18.31 ω induces an injective map F∗
p → Z∗

p, a 7→ ω(a). If g is a primitive
root modulo p, then is ω(g) a primitive (p− 1)-st root of unity of Q∗

p.

18.32 Notation. The injective map F∗
p → Z∗

p induced by ω we also denote by ω.

For all a, b ∈ F∗
p we have ω(ab) = ω(a)ω(b). Now we have a group isomorphism

F∗
p × Z(1)

p → Z∗
p, (k, x) 7→ ω(k)x. In the next subsection we will focus on Z(1)

p .

18.5.2 The group Z(1)
p

First we consider odd p. By proposition 18.27 the map Zp → Z(1)
p , x 7→ µx

is injective for µ ∈ Z(1)
p . Now we will determine the image of this exponential

function.

18.33 Theorem. Let p be odd and µ ∈ Qp with |µ− 1|p = 1
p . Then the exponential

map
Zp → Z(1)

p , x 7→ µx

is bijective.
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18 The p-Adic Numbers

PROOF. The injectivity of the map has already been shown (proposition 18.27).

Let y ∈ Z(1)
p . To prove that there exists an x ∈ Zp such that µx = y.

Take sequences (an) and (yn) in Z with µ ≡ an (mod pn) and y ≡ yn (mod pn) for
all n ∈ N.

From proposition 18.24(ii) follows that for n ∈ N+ we have

|µp
n

− 1|p = |µ− 1|p|pn|p =
1

pn+1
.

So for n ∈ N+ we have ap
n

n+1 ≡ µp
n ≡ 1 (mod pn+1) and ap

n−1

n+1 ≡ µp
n−1 ̸≡

1 (mod pn+1). It follows that opn+1(an+1) = pn. Hence there are pn different
powers of an+1 in (Z/pn+1)∗ and these must be all the elements a ∈ (Z/pn+1)∗

with a = 1 in Z/p.

Since y ∈ Z(1)
p , we have yn+1 = 1 in Z/p. So for every n ∈ N+ there is an xn ∈ Z

with an+1
xn = yn+1 in Z/pn+1. From an+2

xn+1 = yn+2 in Z/pn+2 follows that
also an+1

xn+1 = yn+1 in Z/pn+1. So since opn+1(an+1) = pn we have xn+1 ≡ xn
(mod pn).

Now take x = limn(xn). From an+1
xn = yn+1 in Z/pn+1 follows |axn

n+1 − yn+1|p ≤
1

pn+1 . Since |µ−an+1|p ≤ 1
pn+1 it follows that |µxn −yn+1|p ≤ 1

pn+1 . The sequences

(µxn) and (yn) differ by a null sequence. So µx = y.

For p = 2 we have:

18.34 Theorem. Let µ ∈ Q2 with |µ− 1|2 = 1
4 . Then the exponential map

Z2 → Z(2)
2 , x 7→ µx

is bijective.

PROOF. The proof is analogous to the one of theorem 18.33. Since |µ−1|2 = 1
4 we

now have |µ2n − 1|2 = 1
2n+2 . Furthermore, we now look at elements of a ∈ Z/2n+2

with a = 1 in Z/4. There are 2n of these.

18.35 Corollary. Let n ∈ N+ and assume that n ≥ 2 if p = 2. Let µ ∈ Z(n)
p . Then

Z(n)
p is the image of the exponential map

Zp → Z(1)
p , x 7→ µx.

PROOF. We have already seen that the image is contained in Z(n)
p . Let y ∈ Z(n)

p .
To prove that there is an x ∈ Zp with µx = y.

If p is odd, then choose a µ1 with |µ1 − 1|p = 1
p . By theorem 18.33 there are

x1, x2 ∈ Zp with µx1
1 = µ and µx2

1 = y. Then µ
x2
x1 = (µx1

1 )
x2
x1 = µx2 = y.

For p = 2 choose a µ ∈ Z(2)
2 . Now use theorem 18.34.
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18.5.3 The structure of Q∗
p

The importance of the theorems 18.33 and 18.34 is that the seemingly complicated

structure of the multiplicative group Z(1)
p is translated into the simple structure of

the additive group Zp. As for R the multiplicative structure of Qp is isomorphic
to an additive one.

18.36 Theorem. Let p be an odd prime number, g ∈ Z a primitive root modulo p
and α ∈ Q∗

p. Then there are unique n ∈ N, k ∈ Z/(p− 1) and x ∈ Zp such that

α = pnω(g)k(1 + p)x.

PROOF. If |α|p = 1
pn , then α0 = p−nα ∈ Z∗

p. There is a unique k ∈ Z/(p−1) with

α0 ≡ gk (mod p). Then α1 = α0ω(g)
−k ∈ Z(1)

p . Since |p|p = 1
p , there finally is a

unique x ∈ Zp with (1 + p)x = α1.

Multiplication now becomes addition of the exponents: if α = pnω(g)k(1+ p)x and
β = pmω(g)l(1 + p)y, then αβ = pn+mω(g)k+l(1 + p)x+y. So multiplication in Q∗

p

can for odd p be translated into component-wise addition in

Z× Z/(p− 1)× Zp.

So we have a group isomorphism

Z× Z/(p− 1)× Zp → Q∗
p, (n, k, x) 7→ pnω(g)k(1 + p)x.

18.37 Theorem. Let α ∈ Q∗
2. Then there are unique n ∈ Z, k ∈ Z/2 and x ∈ Z2

such that

α = 2n(−1)k5x.

PROOF. Again we have α0 = 2−nα ∈ Z∗
2. There is a unique k ∈ Z/2 with

(−1)kα0 ≡ 1 (mod 4). Then α1 = (−1)kα0 ∈ Z(2)
2 . Since |5 − 1|2 = 1

4 there is a
unique x ∈ Z2 with 5x = α1.

Here too multiplication becomes addition of exponents: if α = 2n(−1)k5x and
β = 2m(−1)l5y, then αβ = 2n+m(−1)k+l5x+y. So multiplication can be translated
into component-wise addition

Z× Z/2× Z2.

We have a group isomorphism

Z× Z/2× Z2 → Z∗
2, (n, k, x) 7→ 2n(−1)k5x.
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18.5.4 Powers

Let m ∈ N+ and p an odd prime. What are the m-th powers in Q∗
p ? For this we

use the description of Q∗
p derived in the previous subsection. The m-th power of

α = pnω(g)k(1 + p)x is

αm = pnmω(g)km(1 + p)xm.

So an element β = pNω(g)K(1 + p)X with N ∈ Z, K ∈ Z and X ∈ Zp is an m-th
power if and only if

a) N is a multiple of m,
b) K ≡ km (mod p − 1) for some k ∈ Z, that is, there are k, l ∈ Z with

K = km+ l(p−1), which comes down to K being a multiple of gcd(m, p−1),
c) X

m ∈ Zp, that is, |X|p ≤ |m|p. Put t = vp(m). So the condition is |X|p ≤ 1
pt ,

that is X ∈ ptZp.
If the conditions are satisfied, then the number of α ∈ Q∗

p with αm = β is equal to
gcd(m, p− 1).

Now the case p = 2. Let m ∈ N+. The m-th power of α = 2n(−1)k5x is

αm = 2nm(−1)km5xm.

So an element β = 2N (−1)K5X with N ∈ Z, K ∈ Z and X ∈ Z2 is an m-th power
if and only if

a) N is a multiple of m,
b) K ≡ km (mod 2) for a k ∈ Z, that is, K is even if m is even,
c) X

m ∈ Z2, that is |X|p ≤ |m|2. Put t = v2(m). So the condition is |X|2 ≤ 1
2t ,

that is X ∈ 2tZ2.

If the conditions are satisfied, then the number of α with αm = β is gcd(m, 2).

18.5.5 The multiplicative group modulo squares

We use the notations of the previous subsection. Let’s look at squares, that is
m = 2. They form the set

Q∗2
p = {α2 | α ∈ Q∗

p }.

For p odd we get: β ∈ Q∗
p is a square if and only if

a) N is even,
b) K is even,
c) vp(2) = 0, so any X satisfies.
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So there are four types of elements of Q∗
p:

α2, pα2, ω(a)α2, pω(a)α2,

where α ∈ Q∗
p and a ∈ Z with

(
a
p

)
= −1. Since ω(a)

a ∈ Z(1)
p and therefore a square,

the set Q∗
p is the disjoint union of

Q∗2
p , pQ∗2

p , bQ∗2
p and pbQ∗2

p .

where b ∈ Z, a nonsquare modulo p. It are the equivalence classes of the equivalence
relation ∼ in Q∗

p given by α ∼ β ⇐⇒ α
β ∈ Q∗2

p .

18.38 Example. The integer 3 is a nonsquare modulo 7, so the four classes in Q∗
7

are
Q∗2

7 , 7Q∗2
7 , 3Q∗2

7 and 21Q∗2
7 .

The group Q∗ has infinitely many classes modulo squares, but here we have only

four. Note that 2 is not a square in Q, but is a square in Q∗
7:

2
ω(2) ∈ Z(1)

7 , by

theorem 18.33 all elements of Z(1)
7 are squares and ω(2) is a square (ω(2) = ω(3)2).

For p = 2 the number β ∈ Q∗
2 is a square if and only if

a) N is even,
b) K is even,
c) X ∈ 2Z2 (since v2(2) = 1).

So there are eight types of elements in Q∗
2:

2i(−1)j5kα2,

where α ∈ Q∗
2 and i, j, k ∈ {0, 1}. In this case there are eight classes modulo

squares:

Q∗2
2 , 2Q∗2

2 , −Q∗2
2 , 5Q∗2

2 , −2Q∗2
2 , 10Q∗2

2 , −5Q∗2
2 and − 10Q∗2

2 .

18.39 Example. How to determine the class of a given element of Q∗? Let’s

take the number 7. By theorem 18.34 all elements in the group Z(2)
2 are squares.

Because −7 ∈ Z(2)
2 , we have 7 ∈ −Q∗2

2 .
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Exercises

1. The first 8 digits of the 3-adic expansion of the 3-adic number α are known: α =
. . . 12002112. What are the first 8 digits of the 3-adic expansion of 1− α ?

2. The first 3 digits of the 7-adic expansion of α ∈ Z7 are 2, 2, 1, so: α = . . . 122. The
7-adic number β = limn α7n is a 6th root of unity. Is it a primitive 6th root of
unity?

3. (i) For which prime numbers p is −1 a square in Qp ?

(ii) Compute the first three digits of the 5-adic expansion of
√
−1 ∈ Q5.

4. Let r ∈ Q∗. Prove that r is a square in Q if and only if r is a square in all
completions of Q.

5. Let a, b and c be rational numbers with a ̸= 0. Prove that the quadratic equation
ax2 + bx+ c = 0 is solvable in Q if and only if it is so in all completions of Q.

6. Let p be an odd prime number. The numbers α, β ∈ Z∗
p are not squares in Qp.

Show that αβ is a square in Qp.

7. Let p and q be two different prime numbers. Show that there is an a ∈ Z such that
lim

(p)
n aqn = 0 and lim

(q)
n aqn = 1.

8. From theorem 18.33 it follows that there is a unique x ∈ Z3 such that 4x = 7 in
Q3. Determine the first three digits of the 3-adic expansion of x.

9. Determine the first three digits of the 2-adic expansion of x ∈ Z2 which satisfies
5x = 9 in Q2.

10. Is there a sequence in Q, being a null sequence with respect to the ordinary metric
while converging to 1 with respect to the 3-adic metric?
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Part V

Extensions

This final part is about three topics, all of them related to square
roots of elements in a field:

� The complex numbers are constructed in chapter 19. They
are at the end of the contruction of the number system: they
contain the field R and it is shown that any polynomial equa-
tion of positive degree has a solution.

� For a, b ∈ Q∗ and a not a square the equation

x2 − ay2 = b.

To find solutions (x, y) ∈ Q2. This is completely solved in
chapter 20. It uses the results described in subsection 18.5.5
on classes modulo squares for the field of p-adic numbers.
This topic is the most advanced one in this book.

� For d ∈ N+ and d not a square the Diophantine equation

x2 − dy2 = ±1.

The equation is known as Pell’s equation. It is shown in
chapter 21 that for any d the equation has a solution, in fact
infinitely many of them. An algorithm for the solution is
given.





19 The Complex Numbers

Our starting point was N, the natural numbers. By consecutive extensions of the
number system we have achieved that more and more equations have solutions.
The equation x+7 = 3 is not solvable in N, but it is in Z, the equation 3x+5 = 0
is not solvable in Z, but it is in Q, the equation x2 − 2 = 0 is not solvable in Q,
but it is in R. In extending from Q to R many new numbers emerged, not only
solutions of equations, but also transcendental numbers, such as π and e. Still
there are equations without a solution in R, for example the equations x2 + a = 0
with a > 0.

In section 19.1 we will see that for solving cubic equations square roots of negative
numbers are used, if even the solutions themselves are real. This method for the
solution of cubic equations was found in Italy more than five centuries ago, so
in times one still was struggling with negative numbers. In section 19.2 R will
be extended with the square root of −1, thus obtaining C, the field of complex
numbers. As we will see, many more equations will have solutions, in fact all
equations have; this is the so-called Fundamental Theorem of Algebra. Moreover,
C is complete: Cauchy sequences do converge. Thus the field C is a natural end
point in a succession of extensions of number systems.

19.1 Cubic Equations

Around 1500 in Italy a method was found for the solution of cubic equations. It was
found by Del Ferro, later independently by Fontana (better known as Tartaglia, the
stammerer) and published by Cardano. When applied to a general cubic equation,
a formula is obtained for its solution. This formula is known as Cardan’s Formula.
We describe the method by a worked example.

In general an equation x3 + ax2 + bx+ c = 0 can be transformed into one of type
y3 + py + q = 0 by substituting x = y − a

3 , thus obtaining a cubic equation with
no quadratic term. We will solve the equation x3 − 7x− 6 = 0. In this particular
case it is easy to find a solution just by trying. We will not do so since the idea is
to demonstrate the method in general.

The crucial step is to write x as a sum of two terms

x = u+ v
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Nicolo Fontana (Brescia 1500 – Venice 1557)

He is better known under the nickname Tartaglia. Tartaglia
found a method for solving cubic equations. He did so chal-
lenged by, the not so brilliant, pupil Fior of Scipione del
Ferro (Bologna 1465 – Bologna 1526) who, as became clear
later, had found this method before.

and to substitute this in the equation:

(u+ v)3 − 7(u+ v)− 6 = 0.

Thus we get
u3 + 3uv(u+ v) + v3 − 7(u+ v)− 6 = 0.

We choose u and v such that 3uv = 7. Then the two terms containing the factor
(u+ v) cancel:

u3 + v3 − 6 = 0.

Using 3uv = 7 gives

u6 − 6u3 +
73

33
= 0,

that is
33u6 − 6 · 33u3 + 73 = 0

and this is a quadratic equation in u3. A solution is

u3 =
6 · 33 + 3

√
62 · 34 − 4 · 73 · 3
2 · 33

=
34 + 30

√
−3

33
=

(−3 + 2
√
−3)3

33
.

So we can take u = −3+2
√
−3

3 . We ignored that we do not really have a thing like

the square root of −3. We just calculate with
√
−3 as a number having −3 as its

square. We now have u and since 3uv = 7 we also find v = −3−2
√
−3

3 . So

x = u+ v =
−3 + 2

√
−3

3
+

−3− 2
√
−3

3
= −1− 1 = −2

and we have found a solution. Though the solution is real, during the computation
we have used other ‘nonexisting’ numbers. Whether these numbers do exist or not,
it is a way to find a solution.
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Girolimo Cardano (Pavia 1501 – Rome 1576)

Cardano (or Cardan) published in his book Ars Magna
which was totally devoted to algebra, Tartaglia’s method for
solving cubic equations. Cardano had promised not to do
so, but when he heard of Del Ferro’s earlier work he decided
to publish the method. Tartaglia was publicly challenged
by Cardano’s secretary Ferrari and he lost. That was no
wonder: Ludovico Ferrari (Bologna 1522 – Bologna 1565)
appeared to be very gifted and had, on request of Cardano,
found a method for solving equations of degree four. The
life of Cardano was remarkable. He was well-known as a
medical doctor and as such was invited to come to Scotland
for treating the archbishop. Later he had a conflict with the
pope because of blasphemy, but nevertheless later the pope awarded him a pension.

This method of solving cubic equations shows that it makes sense to extend R
further. The rules of arithmetic have to remain valid in this extension. Thus the
use of nonexisting numbers will disappear.

We have found only one solution. In fact there will be three cubic roots of u
and when using each of them one finds three solutions. We will describe this in
section 19.4. Application of Tartaglia’s method to x3+px+q = 0 leads to Cardan’s
formula:

x =
3

√
− q

2
+

√(p
3

)3
+
( q
2

)2
+

3

√
− q

2
−
√(p

3

)3
+
( q
2

)2
.

19.2 Construction of the Complex Numbers

We want to extend R in such a way that also −1 is a square, say −1 = i2, and more-
over the rules of arithmetic still hold. Possibly we want too much. A construction
of such an extension will show its existence. To conceive such a construction it is
as always instructive first to look at consequences of its existence. Since addition
and multiplication will exist in the extended system it contains numbers a+bi with
a, b ∈ R. The rules of arithmetic imply that addition and multiplication will not
give anything new:

(a+ bi) + (c+ di) = a+ c+ bi+ di = (a+ c) + (b+ d)i

(a+ bi) · (c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

The number a+bi is completely determined by (a, b) ∈ R2. Can numbers a+bi and
c+ di be equal while (a, b) ̸= (c, d)? If a+ bi = c+ di, then (a− c) + (b− d)i = 0.
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If b − d ̸= 0, then it would follow that i ∈ R. Contradiction. So b = d and as
a consequence a = c as well. The numbers we want correspond to elements of
R2 and this observation will be the basis of the construction. Note that inside
the system division is also possible: if a + bi ̸= 0, and so (a, b) ̸= (0, 0), then
(a+ bi)( a

a2+b2 − b
a2+b2 i) = 1.

19.2.1 The construction

We take the set R2 of ordered pairs of real numbers. On this set we define an
addition and a multiplication:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc).

19.1 Definition. We denote the set R2 together with the above defined addition
and multiplication by C. The elements of C are called complex numbers.

As a set R2 and C coincide. The notation C stands for the set together with this
addition and multiplication.

19.2 Theorem. C is a field.

PROOF. It is a matter of straightforward verification that the rules of arithmetic
hold for addition and multiplication. The null element is (0, 0), the unit element
is (1, 0). For example the distributive law:

(a, b) · ((c, d) + (e, f)) = (a, b) · (c+ e, d+ f)

= (a(c+ e)− b(d+ f), a(d+ f) + b(c+ e))

and

(a, b) · (c, d) + (a, b) · (e, f) = (ac− bd, ad+ bc) + (ae− bf, af + be)

= (ac− bd+ ae− bf, ad+ bc+ af + be).

The existence of inverses is, after the preparations made, not difficult either: if
(a, b) ̸= (0, 0), then

(a, b) ·
(

a

a2 + b2
,

−b
a2 + b2

)
= (1, 0).
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19.2.2 C as extension of R

Arithmetic with the elements (a, 0) corresponds to the arithmetic with the reals.
More precisely:

19.3 Proposition. The map R → C, a 7→ (a, 0) is injective and respects the addi-
tion and multiplication: a+ b 7→ (a, 0) + (b, 0) and ab 7→ (a, 0) · (b, 0).

From now on we identify (a, 0) with a and we write i for (0, 1). Then we have

(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0, 1) = a+ bi.

The square of i is −1, as intended:

i2 = (0, 1)2 = (−1, 0) = −1.

For arithmetic with a variable varying over real numbers it is customary to denote
this variable as x. For arithmetic with complex numbers usually a z is used and it
is standard to write z = x + yi. Then the complex variable z corresponds to two
real variables x and y.

19.4 Definition. For z = x + yi a complex number, the x is called the real part
of z and y the imaginary part of z. Notation: ℜ(z) = x and ℑ(z) = y. The
number x − yi is called the (complex) conjugate of z. Notation: x − yi = z. The
transformation z 7→ z of C is called complex conjugation.

0

i

biz = a+ bi

a

z = a− bi −bi

1

Ri

R

Figure 19.1: The complex plane

19.5 Proposition. Complex conjugation is an addition and multiplication preserv-
ing bijection.
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PROOF. This is easy:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i

= (a− bi) + (c− di) = a+ bi+ c+ di

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i = (ac− bd)− (ad+ bc)i

= (a− bi) · (c− di) = a+ bi · c+ di.

It is a bijection: this is a consequence of the fact that conjugating twice yields the
identical transformation.

So complex conjugation is an isomorphism from C to itself. A transformation which
is an isomorphism is usually called an automorphism. Complex conjugation is an
automorphism of C. Precisely the real numbers are fixed under this automorphism.

19.2.3 The completeness of C

The field R is complete: on R we have an absolute value and Cauchy sequences
w.r.t. this absolute value converge. The absolute value on R is an extension of the
ordinary absolute value on Q. It can be extended further to an absolute value on
C.

19.6 Definition. The absolute value |z| (or modulus) of z = x+ yi ∈ C is

|z| =
√
x2 + y2 =

√
z · z.

19.7 Proposition. The absolute value on C satisfies the requirements for an abso-
lute value on a field.

PROOF. The identity |z1z2| = |z1|.|z2| follows directly from the definition:

|z1z2|2 = z1z2 · z1z2 = z1 · z1 · z2z2 = |z1|2 · |z2|2.

The absolute value on C is the same as the standard metric on R2, so the remaining
part of the proposition follows from proposition 17.39

The absolute value on C comes with the notions of ‘converging sequence’ and
‘Cauchy sequence’ in C. We also have the usual rules for limits.

19.8 Theorem. The field C is complete.

PROOF. Let (zn) be a Cauchy sequence in C. We write zn = xn+yni with xn and
yn real. From |xn − xm| ≤ |zn − zm| and |yn − ym| ≤ |zn − zm| follows that (xn)
and (yn) are Cauchy sequences in R. These converge in R, since R is complete.
From the rules for limits follows that (zn) converges as well.

So, if (zn) is a Cauchy sequence in C, then we have

lim
n

zn = lim
n

xn + lim
n

yn · i.
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19.3 The Group C∗

We have seen that for the completions R and Qp the multiplicative groups are
closely connected to the additive groups via exponential functions. For C we have
something similar.

19.3.1 The exponential function

The function exp: R → R, defined in section 17.6, can be extended to C by defining
it in the same way as was done for R.

Let z ∈ C. We start with

en(z) =

n∑
k=0

zk

k!
for all n ∈ N

and we will show that the sequence (en(z)) converges.

19.9 Lemma. The sequence (en(z)) converges for all z ∈ C.

PROOF. For n ≥ m ∈ N we have

|en(z)− em(z)| =
∣∣∣n−m∑
k=1

zm+k

(m+ k)!

∣∣∣ ≤ n−m∑
k=1

|z|m+k

(m+ k)!
= en(|z|)− em(|z|).

Since (en(|z|)) converges (lemma 17.41), the sequence (en(z)) converges as well.

19.10 Definition. Let z ∈ C. We define exp(z) as follows

exp(z) =

∞∑
n=0

zn

n!
.

The function exp: C → C is called the (complex) exponential function.

The proof of theorem 17.43 is easily converted into a proof of the next theorem.

19.11 Theorem. For all z, w ∈ C we have exp(z + w) = exp(z) exp(w).

19.12 Notation. Here too we will use the notation ez for exp(z).

In chapter 17 the notion of continuity for real functions was introduced. This
notion is easily extended to the complex case, we give the Heine type of definition
of continuity:

19.13 Definition. Let U ⊆ C. A function f : U → C is called continuous in a γ ∈ U
if for every sequence (γn) in U converging to γ the sequence (f(γn)) converges to
f(γ). The function f is called continuous if it is continuous in every γ ∈ U .
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S1

−1 1

i

−i

(3 + 4i)/5

(3− 4i)/5

Figure 19.2: The unit circle

As for the real exponential function we have:

19.14 Theorem. The function exp: C → C is continuous.

PROOF. The proof of theorem 17.46 applies here as well.

Clearly ez = ez, so by now we have:

|ez|2 = ez · ez = ez · ez = ez+z = e2ℜ(z).

So:

19.15 Proposition. For all z ∈ C we have |ez| = eℜ(z).

19.3.2 The unit circle

19.16 Definition. The complex numbers having modulus 1 form the unit circle S1.
So:

S1 = { z ∈ C | |z| = 1 }.

If z1, z2 ∈ S1, then also z1z2 ∈ S1, because |z1z2| = |z1| · |z2| = 1 · 1 = 1. We also
have z−1 ∈ S1 for z ∈ S1. Clearly the unit circle is a group under multiplication.
By proposition 19.15 |eφi| = 1 for all φ ∈ R and so eφi ∈ S1.

19.17 Proposition. The map R → S1, φ 7→ eφi is a homomorphism from the
group R (with addition) to the group S1 (with multiplication).
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eφi

e
5φi
6

e
4φi
6

e
3φi
6

e
2φi
6

e
φi
6

1

Figure 19.3: Approximation of the arc from 1 to eφi

PROOF. For φ,ψ ∈ R we have e(φ+ψ)i = eφi+ψi = eφieψi.

We take a closer look at this map. Let φ be a positive real number. Then eφi

lies on the unit circle. Now the question is: where on the unit circle? For every
m ∈ N+ we consider the following m+ 1 points on S1:

1, e
φi
m , e

2φi
m , . . . , e

(m−1)φi
m , eφi.

The distances of all pairs of consecutive points are equal:

|e
(k+1)φi

m − e
kφi
m | = |e

kφi
m | · |e

φi
m − 1| = |e

φi
m − 1|,

see Figure 19.3. The sum of these distances is m · |e
φi
m − 1|. We have

lim
m
m(e

φi
m − 1) = lim

m

∞∑
n=1

(φi)n

mn−1 · n!
= φi+ lim

m

∞∑
n=2

(φi)n

mn−1 · n!

and for m > 2φ: ∣∣∣ ∞∑
n=2

(φi)n

mn−1 · n!

∣∣∣ < φ2

m

∞∑
n=2

1

2n−2
=

2φ2

m
.

Hence limmm(e
φi
m − 1) = φi and thus limmm|e

φi
m − 1| = φ. The number φ can

be interpreted as the length of the arc from 1 to eφi, the angle in radians of the
vector eφi with the positive x-axis. For negative φ, the positive real number −φ is
the length of the arc from 1 to eφi in the opposite direction. For φ = 2π we obtain
e2πi = 1. By now we have:
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19.18 Theorem. The map R → S1, φ 7→ eφi is a surjective homomorphism from
the group R (with addition) to the group S1 (with multiplication). Furthermore,
for all φ,ψ ∈ R we have eφi = eψi if and only if φ−ψ2π ∈ Z.

PROOF. Proposition 19.17 tells us that it is a homomorphism. If the angle of
the vector z ∈ S1 with the positive x-axis equals φ, then z = eφi. So the map is
surjective. For φ,ψ ∈ R the following are equivalent:

eφi = eψi,

e(φ−ψ)i = 1,

φ− ψ is an integral multiple of 2π.

19.19 Sine and cosine. In this book the functions sine and cosine are not used.
Here only their relation to the complex exponential function is described. Let
φ ∈ R. The real part of the complex number eφi is by definition the cosine of φ
and the imaginary part is the sine of φ:

eφi = cosφ+ sinφ · i.

The well-known formulas for the sine and the cosine of a sum are direct conse-
quences:

cos(φ+ ψ) + sin(φ+ ψ)i = e(φ+ψ)i = eφieψi

= (cosφ+ sinφ · i)(cosψ + sinψ · i)
= cosφ cosψ − sinφ sinψ + (sinφ cosψ + cosφ sinψ)i.

We have: cosφ = ℜ(eφi) = 1
2 (e

φi+ e−φi) and sinφ = ℑ(eφi) = 1
2i (e

φi− e−φi). For
arbitrary z ∈ C we define more generally:

cos z = 1
2 (e

iz + e−iz) and sin z = 1
2i (e

iz − e−iz).

Then

cos z =

∞∑
n=0

(in + i−n)zn

2 · n!
=

∞∑
k=0

(−1)kz2k

(2k)!

and

sin z =

∞∑
n=0

(in − i−n)zn

2i · n!
=

∞∑
k=0

(−1)kz2k+1

(2k + 1)!
.

19.3.3 Roots of unity

See definition 13.44 for the terminology of roots of unity. If ζ is an m-th root of
unity of the field C, then |ζ|m = |ζm| = |1| = 1. So roots of unity lie on the unit
circle S1. The field C has as many roots of unity as a field might have.
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1

ζ12

ζ6
i

ζ3

ζ512

−1

ζ712

ζ23 −i ζ56

ζ1112

Figure 19.4: The 12-th roots of unity in C

19.20 Lemma. Let m ∈ N+. The number e
2πi
m is a primitive m-th root of unity of

the field C.

PROOF. For all k ∈ Z we have (e
2πi
m )k = 1 ⇐⇒ k

m ∈ Z ⇐⇒ m | k.

19.21 Notation. Let m ∈ N+. The number e
2πi
m is denoted by ζm.

The number ζm is a kind of standard primitive m-th root of unity. For each m ∈ N
we thus have a primitive m-th root of unity. A ζ ∈ C is an m-th root of unity if
it is a solution of the equation zm − 1 = 0. The number ζm is a solution and so
are all powers of ζm. We have m different solutions: 1, ζm, ζ

2
m, . . . , ζ

m−1
m . Since

zm − 1 = 0 is an equation of degree m, there are not more solutions and so:

zm − 1 = (z − 1)(z − ζm)(z − ζ2m) · · · (z − ζm−1
m ).

It follows that the numbers 1, ζm, ζ
2
m, . . . , ζ

m−1
m are all m-th roots of unity. The

primitive m-th roots of unity are the numbers ζkm with gcd(k,m) = 1.

We have seen:

19.22 Proposition. For every m ∈ N+ the number of mth roots of unity in C equals
m. The m-th roots of unity are the numbers 1, ζm, ζ

2
m, . . . , ζ

m−1
m .

So the roots of unity in C are the images of the numbers 2πr with r ∈ Q under the
map R → S1, φ 7→ eφi.
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e−1+i

e−1−i

e1+i

e1−i

1 e

Figure 19.5: The image under exp of the square having the vertices ±1± i

19.3.4 Complex multiplication

For z ∈ C∗ we have z = |z| z|z| . The number z
|z| lies on the unit circle and so it can

be written as eφi with φ ∈ R. Thus the number z is given by its modulus and the
number φ.

19.23 Definition. Let z ∈ C∗. If z = |z|eφi, then φ is called the argument of z. The
argument is determined up to integral multiples of 2π. If moreover −π < φ ≤ π,
then φ is called the principal value of the argument. Notation: arg(z) = φ.

Let z be a complex number ̸= 0 having modulus r and argument φ, and let w be
a complex number having modulus s and argument ψ. Then

z · w = reφi · seψi = rseφi+ψi = rse(φ+ψ)i.

The modulus of zw is the product of the moduli of z and w (as we knew already) and
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the argument of zw is the sum of the arguments of z and w. So multiplication in C
comes down to the multiplication of the moduli and the addition of the arguments.

By now we have a complete overview of the relation between the additive group
C and the multiplicative group C∗ given by the exponential map z 7→ ez. It is a
surjective group homomorphism C → C∗ and we have ez = ew ⇐⇒ z−w ∈ 2πiZ.
Figure 19.5 shows the image under the exponential function of the square having
the vertices ±1± i.

19.3.5 m-th roots

The properties of the exponential function imply that every complex number α has
an m-th root for any m ∈ N+: let α = ea+bi, then

(e
a+bi
m )m = ea+bi = α.

Or in terms of modulus and argument: if α = reφi with r, φi ∈ R and r ≥ 0, then

( m
√
re

φi
m )m = reφi = α.

So for every α ∈ C there is a β ∈ C such that βm = α. There are, if α ̸= 0, m
different complex numbers having α as their m-th root:

β, ζmβ, . . . , ζ
m−1
m β.

Since zm − α is of degree m, we have:

zm − α = (z − β)(z − ζmβ) · · · (z − ζm−1
m β).

19.24 Example. We factorize z4 − 2:

z4 − 2 = (z − 4
√
2)(z − 4

√
2 · i)(z + 4

√
2)(z +

4
√
2 · i).

19.25 Example. For n = 4 we have z4 − 1 = (z − 1)(z − i)(z + 1)(z + i). This
factorization can also be found as follows:

z4 − 1 = (z2 − 1)(z2 + 1) = (z − 1)(z + 1)(z2 + 1) = (z − 1)(z + 1)(z − i)(z + i).

For n = 3: z3 − 1 = (z − 1)(z − ζ3)(z − ζ23 ) and

z3 − 1 = (z − 1)(z2 + z + 1) = (z − 1)(z − (− 1
2 + 1

2

√
−3)(z − (− 1

2 − 1
2

√
−3).

We have ζ3 = − 1
2 + 1

2

√
−3 and ζ23 = − 1

2 − 1
2

√
−3.

19.26 Example. We factorize z6 − 1:

z6 − 1 = (z3 − 1)(z3 + 1) = (z − 1)(z2 + z + 1)(z + 1)(z2 − z + 1)

= (z − 1)(z − ζ3)(z − ζ23 )(z + 1)(z + ζ23 )(z + ζ3).

Note that ζ6 = −ζ23 .

421
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19.4 Equations

19.4.1 Quadratic equations

The method of completing the square for the solution of quadratic equations re-
duces the problem to the extraction of square roots. We have seen that in C this
can be done. So quadratic equations have two solutions, unless the discriminant is
0, then there is one, or as one sometimes says, the two solutions coincide.

19.4.2 Cubic equations

Cardano’s method for solving cubic equations involves the extraction of square and
cubic roots. If for a given a ∈ C∗ there is an α such that α3 = a, then the other
two cubic roots are ζ3α and ζ23α, see subsection 19.3.5.

19.27 Example. In the example of the equation z3−7z−6 = 0 from section 19.1
one solution was found: z = −2. The two other solutions are obtained by taking

the other two cubic roots. We found u = −3+2
√
−3

3 . Another solution is obtained
by taking:

u = ζ3 ·
−3 + 2

√
−3

3
=

−1 +
√
−3

2
· −3 + 2

√
−3

3
=

−3− 5
√
−3

6
.

To this corresponds v = −3+5
√
−3

6 . Thus the solution z = −1 is found. The third
solution is found by taking

u = ζ23 · −3 + 2
√
−3

3
=

−1−
√
−3

2
· −3 + 2

√
−3

3
=

9 +
√
−3

6

and to this corresponds v = 9−
√
−3

6 . This results in the solution z = 3. Alterna-
tively, use that the sum of the solutions equals 0 ( = minus the coefficient of z2), or
that their product equals 6 ( = minus the constant term). The other two solutions
are also easily found using z3 − 7z − 6 = (z + 2)(z2 − 2z − 3).

We used that 34 + 30
√
−3 equals −3 + 2

√
−3 to the power three. This was found

by a modulus calculation. The square of the modulus of 34 + 30
√
−3 equals

|34 + 30
√
−3|2 = 38 + 3 · 302 = 33(35 + 102) = 33 · 343 = 33 · 73.

So if 34 + 30
√
−3 = (x + y

√
−3)3 with x, y ∈ R, then |x + y

√
−3|2 = 3 · 7 = 21,

that is x2+3y2 = 21. Solving this equation for x, y ∈ Z is easy. A little verification
suffices for determining a solution satisfying 34 + 30

√
−3 = (x + y

√
−3)3. Here

x = −3 and y = 2 were found.
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19.4.3 The Fundamental Theorem of Algebra

We have seen that all quadratic and cubic polynomial equations have solutions in
C. We will show that all polynomial equations of degree ≥ 1 have solutions. One
expresses this by saying that the field C is algebraically closed .

19.28 Fundamental Theorem of Algebra. Every polynomial equation

zm + a1z
m−1 + a2z

m−2 + a3z
m−3 + · · ·+ am = 0

with a1, . . . , am ∈ C and m ∈ N+ has a solution in C.

Gauß was the first to give a complete proof. Partial proofs were found by Laplace,
Lagrange, Argand and Euler. Their proofs rested on algebraic constructions for
which only later a solid base was provided.

The proof given here is as elementary as possible. An important ingredient is:

19.29 Proposition. Polynomial functions on the complex numbers are continuous.

PROOF. As is the case for polynomial functions R → R, this is a direct conse-
quences of the rules for limits.

In the proof of theorem 19.28 we use the notation

f(z) = zm + a1z
m−1 + a2z

m−2 + a3z
m−3 + · · ·+ am.

First some lemmas. In lemma 19.31 it will be shown that |f(z)| reaches a minimal
value. For this the continuity of z 7→ |f(z)| will be used. The proof is completed
by showing that the minimal value can not be greater than 0.

19.30 Lemma. There exists a real number C such that |f(z)| > 1
2 |z|

m for all z ∈ C
with |z| > C.

PROOF. Take C = max(1, 2(|a1|+ · · ·+ |am|)). For z with |z| > C we have

|f(z)− zm| = |a1zm−1 + a2z
m−2 + · · ·+ am|

≤ |a1||z|m−1 + |a2||z|m−2 + · · ·+ |am|
≤ (|a1|+ |a2|+ · · ·+ |am|)|z|m−1 < 1

2 |z|
m.

So |z|m ≤ |f(z)|+ |f(z)− zm| < |f(z)|+ 1
2 |z|

m, that is |f(z)| > 1
2 |z|

m.

19.31 Lemma. There exists a β ∈ C with |f(z)| ≥ |f(β)| for all z ∈ C.

PROOF. Let C be as given by lemma 19.30. Put C ′ = max(C, m
√
2|am|). Then

|f(z)| > 1
2 |z|

m ≥ 1
2 · 2|am| = |am| for all z ∈ C with |z| > C ′. So |f(z)| > |f(0)| for

all z ∈ C with |z| > C ′. Let D be the disc with center 0 and radius C ′:

D = { z ∈ C | |z| ≤ C ′ }.
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For n ∈ N let Dn be the set of numbers in D of type a+bi
2n with a, b ∈ Z. For

every n ∈ N the set Dn is a finite nonempty set: 0 ∈ Dn and there are not more
than (2C ′ + 1)2 · 4n numbers in Dn. Choose for each n an element βn ∈ Dn with
|f(βn)| minimal in { |f(z)| | z ∈ Dn }. Write βn = un + vni with un, vn ∈ R.
The sequence (un) in R is bounded: |un| ≤ |βn| < C ′. By theorem 17.21 there
is a convergent subsequence (ui(n)). The sequence (vi(n)) is bounded and again
by theorem 17.21 it has a convergent subsequence, say (vj(n)). Then (βj(n)) is a
subsequence of (βn) with (uj(n)) and (vj(n)) converging. Then (βj(n)) converges as
well. Put β = limn βj(n). Then |β| = limn |βj(n)| ≤ C ′ and so β ∈ D.

We prove that |f(z)| ≥ |f(β)| for all z ∈ D. Let z ∈ D. Then there is a sequence
(zn) with zn ∈ Dn converging to z. The subsequence (zj(n)) converges to z as well.
For every n we have |f(zj(n))| ≥ |f(βj(n))| and so limn |f(zj(n))| ≥ limn |f(βj(n))|,
that is |f(z)| ≥ |f(β)|, because the function z 7→ |f(z)| is continuous.

It remains to prove that |f(z)| ≥ |f(β)| for all z /∈ D. For such z we have |z| > C ′

and so |f(z)| > |an| = |f(0)| ≥ |f(β)|.

Proof of theorem 19.28. From lemma 19.31 it follows that the function C →
R, z 7→ |f(z)| reaches a minimal value: take β ∈ C such that |f(z)| ≥ |f(β)| for all
z ∈ C. We will prove that |f(β)| = 0. Then f(β) = 0, that is β is a zero of f . We
give a proof by contradiction.

Suppose |f(β)| > 0. The function z 7→ |f(z + β)| takes a minimal value for
z = 0. The minimal value of f(z + β) is reached for z = 0. Dividing by f(β)

results in a polynomial g(z) = f(z+β)
f(β) , which reaches the minimal value 1 for

z = 0. Write g(z) as

b0z
m + b1z

m−1 + · · ·+ bm−1z
1 + 1,

where b0, . . . , bm−1 ∈ C. Let k be such that bm−k+1, . . . , bm−1 = 0 and
bm−k ̸= 0. Then

g(z) = b0z
m + b1z

m−1 + · · ·+ bm−kz
k + 1

with bm−k ̸= 0. For every c ∈ C∗ the function z 7→ |g(cz)| takes the same
values as the function z 7→ |g(z)| and reaches a minimal value 1 for z = 0.
Take c such that ck = −bm−k. The coefficient of zk in g(cz) then equals −1.
Put h(z) = g(cz). Then

h(z) = c0z
m + c1z

c−1 + · · ·+ cm−k−1z
k+1 − zk + 1

where 0 < k ≤ m and c0, . . . , cm−k−1 ∈ C. If k = m, then h(z) = −zm + 1
and h(1) = 0, contradictory to |h(z)| ≥ 1 for all z. So 0 < k < m. We
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consider |h(t)| for real numbers t with 0 < t < 1. If moreover t satisfies
t < 1

|c0|+···+|cm−k−1| , then

|h(t)| ≤ |c0|tm + |c1|tm−1 + · · ·+ |cm−k−1|tk+1 + |1− tk|
≤ (|c0|+ · · ·+ |cm−k−1|)tk+1 + 1− tk < tk + 1− tk = 1.

Contradiction.

19.32 Corollary. Let g(z) be a polynomial of degree n ∈ N+ with coefficients in C
and leading coefficient α. Then there are α1, . . . αn ∈ C with g(z) = a(z − α1)(z −
α2) · · · (z − αn).

PROOF. By the Fundamental Theorem of Algebra there is an α1 ∈ C such that
g(α1) = 0. In the proof of theorem 9.21 we have seen that g(z) = (z − α1)g1(z)
with g1(z) a polynomial of degree n−1. Apply the Fundamental Theorem to g1(z),
etc.

The Fundamental Theorem of Algebra has consequences for the factorization of
polynomials over R. If the polynomial f(z) has coefficients in R, then it is also a
polynomial over C, since real numbers are only special complex numbers. If α ∈ C
is a zero of f(z), then α is a zero of f(z) as well: f(α) = f(α) = 0 = 0. So under
complex conjugation (that is z 7→ z) zeros of f(z) map to zeros of f(z). So we can
group the n factors in the factorization of f(z):

f(z) = (z − α1) · · · (z − αr)(z − β1)(z − β1) · · · (z − βs)(z − βs),

where the zeros α1, . . . , αr are real and the others are not. A product (z − β)(z − β)
has real coefficients:

(z − β)(z − β) = z2 − (β + β)z + ββ.

So we proved:

19.33 Corollary. Every polynomial of degree ≥ 1 with coefficients in R is a
product of polynomials of degree ≤ 2 with coefficients in R.

19.34 Example. We factorize x8 − 1. The zeros are 1, ζ8, ζ
2
8 (= i), ζ38 (= −ζ8),

ζ48 (= −1), ζ58 (= −ζ8), ζ68 (= −i) and ζ78 (= ζ8). We get:

z8 − 1 = (z − 1)(z + 1)(z − i)(z + i)(z − ζ8)(z − ζ8)(z + ζ8)(z + ζ8)

= (z − 1)(z + 1)(z2 + 1)(z2 +
√
2z + 1)(z2 −

√
2z + 1).

Here (ζ8 + ζ8)
2 = i+2+ (−i) = 2 is used. Another approach is by factorizing first

over Q as far as possible:

z8 − 1 = (z4 − 1)(z4 + 1) = (z2 − 1)(z2 + 1)(z4 + 1)
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19 The Complex Numbers

Evariste Galois (Bourg la Reine 1811 – Paris 1832)

It was not until 1827 that Galois had his
first lessons in mathematics. Mathemat-
ics became such an obsession that he ne-
glected other school subjects. He wrote
his first article in 1828. It was about con-
tinued fractions. During his short life he
hardly got any recognition. He was kept
in prison from July 14th 1831 until April
29th 1832 because of an alleged threat of
king Louis-Philippe. In a duel on May
30th 1832 he got seriously injured and died
the next day at the age of twenty. It was the mathematician Liouville who made the pub-
lication of Galois’s work possible. That was in 1846.

= (z − 1)(z + 1)(z2 + 1)(z4 + 1)

= (z − 1)(z + 1)(z − i)(z + i)(z2 − i)(z2 + i)

= (z − 1)(z + 1)(z − i)(z + i)(z − ζ8)(z + ζ8)(z − ζ8)(z + ζ8).

Every equation of degree n has a solution if n ≥ 1. For n = 2 there is a well-known
formula and for n = 3 we have Cardano’s formula. Cardano’s pupil Ludovico
Ferrari found a formula for n = 4. He found a way to reduce an equation of degree 4
to an equation of degree 3. In the beginning of the nineteenth century the Norwegian
mathematician Abel proved that for equations of degree 5 and higher no general
formula (involving only field operations and extraction of roots) can exist. Some
years later the French prodigee Galois showed that there are concrete polynomial
equations having coefficients in Q for which the solutions are not expressible by
roots from rational numbers. An example is the equation x5 − 4x+ 2 = 0.

19.5 The Riemann Hypothesis

Here we give a short description of the Riemann Hypothesis. It is one of the big
unsolved problems in mathematics.

19.35 Definition. The Riemann zeta function is the complex function s 7→ ζ(s)
with

ζ(s) =

∞∑
n=1

1

ns
.

Here s is a complex number. For historic reasons one uses for this kind of functions
the letter s to denote the complex variable instead of the usual z. Moreover, one
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19.5 The Riemann Hypothesis

Georg Friedrich Bernhard Riemann (Breselenz 1826 – Selasca 1866)

Bernhard Riemann studied mathematics in Göttingen and
later in Berlin, where he learned a lot from Eisenstein, Ja-
cobi and especially from Dirichlet. His thesis on complex
functions was remarkable. In it he introduced what are
now called Riemann surfaces. Gauß made him return to
Göttingen, where he worked on his Habilitation: an extra
thesis in Germany which is required for teaching at a uni-
versity. It took him 30 months and the resulting work has
had an enormous impact. He was appointed to professor in
Göttingen and became a member of the Berlin Academy of
Sciences. To be admitted at the Academy he had to write a

report on his recent research. In it he introduced the zeta function as a complex function
and formulated what we now call the Riemann hypothesis.

does not write z = x + yi, but s = σ + ti. The complex number ns is defined
as es logn. By proposition 19.15 we have |es logn| = eℜ(s) logn = nℜ(s), so by
theorem 17.26 and exercise 32 of chapter 17 the series converges absolutely for
ℜ(s) > 1. For s = 1 it is the diverging harmonic series, see example 16.42. It is
possible to extend the function ζ to a neat ( = differentiable) function on C \ {1}.
There is a relation (the functional equation for the Riemann zeta function) between
ζ(s) and ζ(1− s):

2s−1πs

Γ(s)
· ζ(1− s) = cos

πs

2
· ζ(s),

where Γ(s) is an extension of the function n 7→ (n − 1)! defined on N+. Euler
already conjectured this relation. Riemann proved it in 1859. The function value

ζ(2) has been computed by Euler: ζ(2) = π2

6 . Euler was even able to compute
ζ(2n) for all n ∈ N+:

ζ(2n) =
(−1)n−122n−1B2n

(2n!)
π2n,

where B2n is the 2n-th Bernoulli number, see definition 11.33. Moreover, we have
ζ(0) = − 1

2 , ζ(−2n) = 0 and ζ(1− 2n) = −B2n

2n for n ∈ N+. Of ζ(n) for n odd and
≥ 3 not much is known. In 1978 the French mathematician Apéry showed that
ζ(3) is irrational.

The (extended) zeta function has zeros in the even negative integers. Riemann
showed that there are infinitely many zeros s satisfying 0 < σ < 1 and that there
are no others. The famous Riemann Hypothesis is as follows:

σ = 1
2 for all noninteger zeros of the zeta function.
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19 The Complex Numbers

The German mathematician Hans Carl Friedrich von Mangoldt (1854 – 1925)
showed that the Riemann hypothesis is equivalent to the following elementarily
formulated conjecture:

∞∑
n=1

µ(n)

n
= 0,

where µ is the Möbius function, see definitions 10.28.

The zeros of the Riemann zeta function give information on the difference of π(x)
( = number of primes ≤ x ) and li(x) =

∫ x
2

1
log tdt, a refinement found by Gauß of

the approximation x
log x of π(x).

Exercises

1. Compute: 1
1+i

,
√
2i, 3

√
i.

2. Solve the following equations:

z2 = i, z6 = 1, z3 + z2 + z + 1 = 0.

3. Describe the following subsets of C geometrically:

{ 1 + ti | t ∈ R }, { 1
1+ti

| t ∈ R }, { z ∈ C | z + z = 2 }.

4. The 5-th roots of unity form the vertices of a regular pentagon. A side has length
|1− ζ5| and a diagonal |1− ζ25 |. The ratio of these two numbers is the golden ratio.
Verify this with a computation in C.

5. Given are α = 5

√
1−i
1+i

and β = 4

√
1−ζ5
1−ζ−1

5

.

(i) Verify that α and β lie on the unit circle.

(ii) Are α and β roots of unity?

6. Let n ∈ Z. Show that the map S1 → S1, z 7→ zn is a homomorphism from the
group S1 to itself. For which n is this map surjective? For which n injective?

7. Show that the functions z 7→ z and z 7→ |z| are continuous.

8. Show that the functions z 7→ sin z and z 7→ cos z are continuous (see page 418).
Does it follow that the real functions sin and cos are continuous?

9. Given is the polynomial f(z) = z4 + 4z2 + 2.

(i) Determine the zeros of f(z).

(ii) Let α be one of the zeros. Show that α+ 2
α

is a zero also.
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Exercises

(iii) Let Z be the set of the zeros of f(z). Show that

Z → Z, α 7→ α+
2

α

is a 4-cycle.

10. Let m ∈ N+. Show that there are in C exactly φ(m) primitive roots of unity. (φ(m)
is the totient of m.)

11. Factorize z5 − 1 as a product of linear and quadratic polynomials with real coeffi-
cients.

12. Derive from the Fundamental Theorem of Algebra that a polynomial over R of odd
degree has a zero in R.

13. Let m and n be natural numbers ≥ 1 with gcd(m,n) = 1. Show that there are
integers k, l such that ζmn = ζkm · ζln.

14. Give the modulus and the argument of each of the seven complex solutions of the
equation z7 − 5 = 0. The same for the equation z7 + 5i = 0.

15. Solve: z5 + 1
z5

= 1. Are the solutions roots of unity?
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20 Quadratic Extensions of Q

In section 20.1 we consider the problem:

For which a, b ∈ Q∗ are there x, y ∈ Q such that x2 − ay2 = b ?

This problem will be solved completely in terms of the prime factorizations of the
rational numbers a and b. The outcome is that the equation is solvable in Q if and
only if it is solvable in all completions of Q, so in all fields Qp of p-adic numbers
and also in the field R. Especially, knowledge of the squares in the p-adic fields
will be used. For being solvable in Qp we will use Hilbert symbols. These are
closely related to the Legendre symbols. The Law of Quadratic Reciprocity and
its additional laws come here in the form of a product formula for Hilbert symbols.
How all solutions are obtained from just one given solution will be shown first, in
section 20.1. It has a geometrical flavor.

20.1 Representation by Quadratic Forms over Q

In chapter 14 we considered the following representation problem:

Let a ∈ Z be not a square. For which b ∈ Z are there x, y ∈ Z such
that x2 − ay2 = b ?

Now we consider a more simple representation problem:

Let a ∈ Q be not a square. For which b ∈ Q∗ are there x, y ∈ Q such
that x2 − ay2 = b ?

A formulation symmetric in a and b is given by the following proposition.

20.1 Proposition. Let a and b be nonzero elements of a field K. Then the following
are equivalent:

(i) There are x, y ∈ K such that x2 − ay2 = b.
(ii) There are x, y ∈ K such that ax2 + by2 = 1.
(iii) There are x, y ∈ K such that x2 − by2 = a.

PROOF.

(i)⇒(ii): If x ̸= 0, then 1 − a( yx )
2 = b( 1x )

2, that is a( yx )
2 + b( 1x )

2 = 1. If x = 0, then

− b
a is a square, say b = −ac2 where c ∈ K∗. Then a(a+1

2a )2 + b(a−1
2ac )

2 = 1.
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20 Quadratic Extensions of Q

(0, 0)(−1, 0)

t = 1

t = 3
4

t = 1
2

t = 1
4

t = 0

t = − 1
4

t = − 1
2

t = − 3
4

t = −1

Figure 20.1: Parameterization of x2 + y2 = 1

(ii)⇒(i): If y ̸= 0, then ( 1y )
2 − a(xy )

2 = b. If y = 0, then a is a square, say a = c2.

Then ( b+1
2 )2 − a( b−1

2c )2 = b.

(ii)⇔(iii): This follows from (ii)⇔(i).

Geometrical meaning

Let a and b be rational numbers ̸= 0, not both negative. Then the set of points
(x, y) ∈ R2 with ax2 + by2 = 1 is an ellipse or a hyperbola. We will show that, if
there is a solution in Q2, there are infinitely many.

The argument is as follows. Let (u, v) ∈ Q2 be a solution. Consider the line
through (u, v) with slope t ∈ Q. Its equation is

y − v = t(x− u).

This line intersects the curve ax2+ by2 = 1 in two points, one of them being (u, v).
Substitution of y = v+ t(x−u) in ax2 + by2 = 1 results in a quadratic equation in
x:

ax2 + b(v + t(x− u))2 = 1.
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20.1 Representation by Quadratic Forms over Q

(0, 0)

(4, 3)

t = 1

t = 1
2

t = 0

t = − 1
2

t = −1

t = − 3
2

t = −2

t = − 5
2

t = −3

t = − 7
2

t = −4

Figure 20.2: Parameterization of 5x2 + 7y2 = 143

Since x = u is a solution, the other solution is an element of Q as well and the
second coordinate of the intersection point is determined by y = v + t(x − u). It
also has rational coordinates. Thus for every t ∈ Q a point on the curve having
rational coordinates is found. Conversely, given a point on the curve having rational
coordinates, the line through this point and (u, v) has a rational slope, unless the
point is (u,−v), since in that case the line is parallel to the y-axis. It is here
also understood that the line tangent to the curve has two coinciding points of
intersection.

20.2 Example. The point (−1, 0) lies on the circle x2 + y2 = 1. Intersect with
the line y = t(x+ 1). The other point of intersection is:

(1− t2

1 + t2
,

2t

1 + t2

)
,

see Figure 20.1. Thus we obtain a parameterization of the rational points on the
circle, with the exception of the point (−1, 0). With t = a

b where a, b ∈ N+ and
a ≤ b all Pythagorean triples are found.

20.3 Example. The point (4, 3) lies on the ellipse 5x2 + 7y2 = 143. By the
method described above a parameterization of the rational points on the ellipse
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20 Quadratic Extensions of Q

(except the point (4,−3)) is found:(28t2 − 42t− 20

7t2 + 5
,
−21t2 − 40t+ 15

7t2 + 5

)
,

see Figure 20.2.

We have seen:

20.4 Theorem. For a and b nonzero elements of a field K and a not a square: if
an equation ax2+ by2 = 1 has a solution in the field K, then it has more solutions:
except for a single solution they can be parameterized by the elements of K.

It follows that if, moreover, the field is infinite, so is the number of solutions. Of
course the procedure described above leads to a general formula for the solutions.
Still the problem remains whether the equation has a solution. For the field Q this
will be solved in section 20.4.

20.2 Adjunction of Square Roots

If an element a of a field K is not a square, then there are ways to extend the
field K in such a way that in the larger field the element a is a square. This can
be done in a minimal manner, meaning that in the larger field every element is
needed. Possibly we already have a larger field in which a is a square. Then inside
this field there is a field of the type we are looking for. First an example.

The number 2 is not a square in Q, but it is in the larger field R. If you want the
real number

√
2 to be in a larger field, then by addition and multiplication in that

field you also have all the r + s
√
2 with r, s ∈ Q in this field. These numbers form

a subset of R, denoted by Q(
√
2):

Q(
√
2) = { r + s

√
2 | r, s ∈ Q }.

This subset is closed under addition and multiplication:

(r + s
√
2) + (t+ u

√
2) = (r + s) + (s+ u)

√
2

and
(r + s

√
2) · (t+ u

√
2) = (rt+ 2su) + (ru+ st)

√
2.

It is also closed under taking inverses: if r + s
√
2 ̸= 0, then also r − s

√
2 ̸= 0 and

so
1

r + s
√
2
=
r − s

√
2

r2 − 2s2
=

r

r2 − 2s2
+

−s
r2 − 2s2

√
2.

Since in R the rules of arithmetic do hold, they are valid in Q(
√
2) as well. Each of

the elements of Q(
√
2) is determined by an ordered pair (r, s) of rational numbers.
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20.2 Adjunction of Square Roots

Arithmetic in Q(
√
2) can be done using a computer, because the elements of Q(

√
2)

can be represented in the computer. In section 21.2 we will make use of this.

The field Q was extended to R by analytic means. The field Q(
√
2) could have been

constructed in an algebraic way if R was not (yet) available: just start with all pairs
(r, s) ∈ Q2, define addition and multiplication for these pairs by the rules given
above and prove that under these operations the set is a field. We will describe
this construction more generally.

The construction

Let K be a field with an a ∈ K∗ not being a square in K. We assume that K
is not of characteristic 2, which means that 1 + 1 ̸= 0, or 2 ̸= 0 as it is usually
formulated. We will construct a field K(α) with α2 = a. In such a field we do
arithmetic with elements of type x + yα using the identity α2 = a. So we know
what we want. It still has to be constructed.

We describe the set K(α) and the operations of addition and multiplication in
K(α). We put K(α) = K ×K = K2. The addition is

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and the multiplication

(x1, y1)(x2, y2) = (x1x2 + ay1y2, x1y2 + x2y1).

The rules of arithmetic are easily verified. The zero element is (0, 0) and the unit
element is (1, 0). If (x, y) ∈ K2 differs from (0, 0), then

(x, y)(x,−y) = (x2 − ay2, 0).

Since a is not a square, we have x2 − ay2 ̸= 0. So (x2 − ay2, 0) is invertible and
hence (x, y) is invertible as well:

(x, y)
( x

x2 − ay2
,

−y
x2 − ay2

)
= (1, 0).

So each nonzero element has an inverse, meaning that K(α) is a field. We have an
injective map

K → K(α), x 7→ (x, 0)

preserving addition and multiplication. Via this map the field K is isomorphic to
{ (x, 0) | x ∈ K }. We see K(α) as an extension of K: for (x, 0) we write again x
and since (0, 1)2 = (a, 0) we write α for (0, 1). Thus x+ yα becomes the notation
for (x, y). Arithmetic with the elements x + yα comes down to using the rules of
arithmetic together with the identity α2 = a. Often we will denote α by

√
a.
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20 Quadratic Extensions of Q

20.5 Terminology. The field K(
√
a) is said to be obtained by adjunction of

√
a

to the field K.

Not only the element a of K∗ has a square root in K(
√
a):

20.6 Lemma. The nonsquares of K∗ which are squares in K(
√
a) are the elements

x2a with x ∈ K∗.

PROOF. Let b ∈ K∗ be a square in K(
√
a), say b = (x + y

√
a)2. Then b =

x2 + ay2 + 2xy
√
a and so b = x2 + ay2 and 2xy = 0. Since we assumed that K is

not of characteristic 2, it follows that x = 0 or y = 0. If y = 0, then b = x2. If
x = 0, then b = ay2.

A classification of fields of type K(
√
a):

20.7 Theorem. For all nonsquares a, b ∈ K∗ we have

K(
√
a) ∼= K(

√
b) ⇐⇒ there exists an x ∈ K∗ such that a = x2b.

PROOF.

⇒ Let σ : K(
√
a) → K(

√
b) be an isomorphism. Then σ(a) /∈ K, since otherwise

σ would not be surjective. Since a is a square in K(
√
a), σ(a) is a square in

K(
√
b). From lemma 20.6 follows that a = x2b for an x ∈ K∗.

⇐ Suppose a = z2b with z ∈ K∗. Define a map σ : K(
√
a) → K(

√
b) by

σ(x+ y
√
a) = x+ yz

√
b. It is easy to verify that σ is an isomorphism.

20.8 Definition. The element γ′ = x− y
√
a (with x, y ∈ K) is called the conjugate

inK(
√
a) of γ = x+y

√
a. The mapK(

√
a) → K(

√
a), γ → γ′ is called conjugation

in K(
√
a).

20.9 Lemma. Conjugation in K(
√
a) is an automorphism of K(

√
a). For all γ ∈

K(
√
a) we have (γ′)′ = γ.

PROOF. For γ1 = x1 + y1
√
a and γ2 = x2 + y2

√
a we have

(γ1 + γ2)
′ = x1 + x2 − (y1 + y2)

√
a = x1 − y1

√
a+ x2 − y2

√
a = γ′1 + γ′2,

and

(γ1γ2)
′ = (x1x2 + ay1y2 + (x1y2 + y1x2)

√
a)′

= x1x2 + ay1y2 − (x1y2 + y1x2)
√
a = (x1 − y1

√
a)(x2 − y2

√
a) = γ′1γ

′
2.

Clearly (γ′)′ = γ.

20.10 Definition. The map N : K(
√
a) → K, x + y

√
a 7→ x2 − ay2 is called the

norm from K(
√
a) to K. In terms of conjugation: N(γ) = γγ′.
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20.2 Adjunction of Square Roots

20.11 Lemma. The norm from K(
√
a) to K is multiplicative, that is N(γ1γ2) =

N(γ1)N(γ2) for all γ1, γ2 ∈ K(
√
a).

PROOF. N(γ1γ2) = γ1γ2(γ1γ2)
′ = (γ1γ

′
1)(γ2γ

′
2).

The representation problem as given in the previous section can be reformulated
using the norm map:

Let a ∈ Q∗ be not a square. For which b ∈ Q∗ is there a β ∈ Q(
√
a)

such that N(β) = b ?

Otherwise put: what is the image of the map N : Q(
√
a)∗ → Q∗ ? If there are

x, y ∈ Q such that x2 − ay2 = b, then this equation has a solution in every field
containing Q, such as the completions R and Qp of Q. In section 20.3 we will
focus on these completions. After that we will show Hasse’s Principle: if there is a
solution in each of these completions of Q, then there also is one in Q itself.

20.12 Definition. Let K and L be fields such that

� K ⊆ L,
� Addition and multiplication in K is the restriction of addition and multipli-
cation in L.

Then K is called a subfield of L. The field L is called an extension of K.

If there exists an α ∈ L \K such that for each β ∈ L there exist a, b ∈ K such that
β = a+ bα, then L is said to be a quadratic extension of K.

The field obtained by adjunction of a square root to a given field K is a quadratic
extension of K. If K is not of characteristic 2 all quadratic extensions of K are of
this type (exercise 1).

Quadratic extensions of R

In R all positive numbers are squares, whereas the negative ones are not. So in R∗

there are two types of elements:

x2 and − x2

with x ∈ R∗. By theorem 20.7 the construction produces, up to isomorphism,
just one new field, namely R(

√
−1), the field C (which we studied in chapter 19).

We could have started with any nonsquare; the result would have been a field
isomorphic to C. It is customary to denote

√
−1 by i. So C = R(i).
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20 Quadratic Extensions of Q

Quadratic extensions of Fp

In chapter 14 we studied for odd primes p the squares in F∗
p. Half of the elements

are squares. Let u be a nonsquare. The two types of elements in F∗
p:

x2 and ux2

with x ∈ F∗
p. Adjunction of a square root of a nonsquare yields a field, unique up

to isomorphism. It is denoted by Fp2 and is a field with p2 elements. Conjugation
in Fp2 can also be described as raising to the power p, as we will show now.

Let u ∈ Z with p ∤ u and
(
u
p

)
= −1, that is u is not a square. We have Fp2 = Fp(α)

with α2 = u. Since
(
p
k

)
is a multiple of p for all k with 1 ≤ k ≤ p − 1, we have

(γ1 + γ2)
p = γp1 + γp2 . So for a, b ∈ Z we have

(a+ bα)p = ap + bpαp = a+ bαp (Fermat)

= a+ bαp−1α = a+ b u
p−1
2 α

= a− bα (Euler).

The field F2 has no nonsquare. There is a polynomial of degree 2 without zeros
in F2, namely x2 + x + 1. The method of adjunction of a zero of a polynomial
x2 − a can easily be extended to quadratic polynomials having no zeros in the
field. In characteristic ̸= 2 the method of completing the square shows that the
result is the same as for the adjunction of the square root of the discriminant of
the polynomial. The extension of F2 obtained by using the polynomial x2 + x+ 1
is a field containing an α satisfying α2 = α+1. The elements of this field are 0, 1,
α and α + 1. It is a field with four elements and is denoted by F4. It is a field of
characteristic 2, since in this extended field 1 + 1 = 0 still holds.

Quadratic extensions of Qp

In subsection 18.5.5 we determined the squares in Qp. The result is that for odd
primes p three extensions of Qp can be obtained by adjunction of a square root.
Take u ∈ Z such that

(
u
p

)
= −1. The three fields are

Qp(
√
p), Qp(

√
u) and Qp(

√
pu).

On each of these fields a non-Archimedean absolute value is defined by γ 7→√
|N(γ)|p. It is an extension of the absolute value on Qp. These fields are complete

with respect to this absolute value. For the first and the last mentioned fields this
extension of the absolute value takes new values, for example: from (

√
p)2 = p

follows that |√p|p = 1√
p . We will not dwell on this. In section 20.1 we will study

the norm to Qp on these fields.
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20.3 Hilbert Symbols

For p = 2 the situation is somewhat different. There are seven extensions of Q2

which can be obtained by adjunction of a square root:

Q2(
√
2), Q2(

√
−1), Q2(

√
5), Q(

√
−2), Q(

√
10), Q(

√
−5) and Q2(

√
−10).

Quadratic extensions of Q

The field Q is part of the much larger field R. In R every positive element is a
square. The adjunction to Q of the square root of a positive rational number can
be done completely inside R. For the square root of a negative number the larger
field R(

√
−1) = C can be used. For

√
a we take a positive real number if a is

positive and i
√
−a if a is negative. If we mean by

√
a always a complex number,

then Q(
√
a) ∼= Q(

√
b) only if Q(

√
a) = Q(

√
b). In chapter 9 we studied which

elements of Q∗ are squares: an x ∈ Q∗ is a square if and only if x > 0 and vp(x) is
even for all primes p. For each square free a ∈ Z \ {0} with a ̸= 1 we have a field
Q(

√
a). By theorem 20.7 there are infinitely many fields of type Q(

√
a), for every

square free a ̸= 1 there is one.

20.3 Hilbert Symbols

In this section K is one of the completions of Q, that is K = R or K = Qp for
some prime p.

20.13 Definition. For α, β ∈ K∗ we define

(α, β) =

{
1 if there are x, y ∈ K such that αx2 + βy2 = 1,

−1 otherwise.

The number (α, β) is called the Hilbert symbol of α and β. The Hilbert symbol is
a map from K∗ ×K∗ to {±1}.

Note that the Hilbert symbol (α, β) only depends on the classes of α and β modulo
squares. The field R has two classes modulo squares, Qp has four of these for p odd
and Q2 has eight.

20.14 Proposition. For all α, β, γ ∈ K∗

(i) (α, β) = (β, α),
(ii) (α, β2) = 1
(iii) (α,−α) = 1,
(iv) (α, 1− α) = 1 if α ̸= 1,
(v) if (α, β) = 1, then (α, βγ) = (α, γ),
(vi) (α, α) = (α,−1).
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20 Quadratic Extensions of Q

David Hilbert (Königsberg (now Kaliningrad) 1862 – Göttingen 1943)

Hilbert was an all-round mathematician. In 1900 on the
second international congress of mathematicians in Paris he
presented 23 problems which he considered to be a challenge
for the mathematics of the twentieth century. Among these
are the continuum hypothesis (see page 386) and the Rie-
mann hypothesis (see section 19.5). Hilbert made many con-
tributions to number theory, functional analysis (the Hilbert
space) and mathematical physics. He participated in the dis-
cussions on the foundations of mathematics.

PROOF.

(i) By definition the Hilbert symbol is symmetric.
(ii) α · 02 + β2 · ( 1β )

2 = 1.

(iii) 02 − α · 12 = −α and apply proposition 20.1.
(iv) α · 12 + (1− α) · 12 = 1.
(v) If α is a square, then by (i) and (ii): (α, βγ) = 1 = (α, γ). If α is not a square,

then by proposition 20.1 β is the norm of an element of K(
√
α). Then γ is

the norm of an element of K(
√
α) if and only if βγ is such a norm. Then

again apply proposition 20.1.
(vi) This follows from (iii) and (v): (α, α) = (α, (−α)(−1)) = (α,−1).

We will see that (α, βγ) = (α, β)(α, γ) for all α, β, γ ∈ K∗. The parts (ii) and (v)
are special cases. This rule says that the Hilbert symbol is multiplicative in the
second variable. By (i) it is so in the first variable as well. This is expressed by
saying that the Hilbert symbol is bimultiplicative.

For each of the completions of Q we will derive formulas for the Hilbert symbol.
Keep in mind that the Hilbert symbol only depends on the classes of the numbers
modulo squares. For K = R the situation is simple:

20.15 Proposition. For α, β ∈ R∗

(α, β) =

{
−1 if α, β < 0,

1 otherwise.

PROOF. Clearly, (−1,−1) = −1 and (1,±1) = 1.

Next we derive a formula for the Hilbert symbol on Qp for p odd. First a lemma.

20.16 Lemma. There exists a u ∈ Z such that both u and 1 − u are not squares
modulo p.
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20.3 Hilbert Symbols

PROOF. Consider the permutation

Fp \ {0, 1} → Fp \ {0, 1}, x 7→ 1− x.

Not all nonsquares are mapped to a square: in Fp \{0, 1} there are p−1
2 nonsquares

and p−3
2 squares. So there is a nonsquare x such that 1 − x is a nonsquare as

well.

Representatives of the classes modulo squares in Qp are 1, p, u and pu, where u ∈ Z
is a nonsquare modulo p. We take u such that both u and 1 − u are nonsquares
modulo p.

20.17 Theorem. Let p be an odd prime. Let α and β be elements of Q∗
p. Put

α = pmµ and β = pnν with m,n ∈ Z and µ, ν ∈ Z∗
p. Let µ ≡ a (mod p) and ν ≡ b

(mod p) with a, b ∈ Z. Then

(α, β) = (−1)mn
p−1
2

(
anbm

p

)
.

PROOF. For α or β a square the formula is correct. So it suffices to prove the
formula for representatives of the classes modulo squares. In all cases the formula
turns out to be correct.

a) From lemma 20.16 follows (u, u) = (u, 1 − u) and this equals 1 by proposi-
tion 20.14(iv).

b) We will show that (p, u) = −1.

Suppose (p, u) = 1. Then there are x, y ∈ Qp such that px2 + uy2 = 1.
Since |px2|p = 1

pk
with k odd and |uy2|p = 1

pl
with l even, we have

|px2|p ̸= |uy2|p and it follows that max(|px2|p, |uy2|p) = |1|p = 1. Since
k is odd, this implies that |px2|p < 1. So x ∈ Zp and y ∈ Z∗

p. Modulo p
we then have uy2 ≡ 1, that is u is a square modulo p. Contradiction.

So (p, u) = −1.
c) From a) and proposition 20.14(v) follows that (u, pu) = (u, p) and this equals

−1 by b).
d) By b) we have (p, v) = −1 for all v ∈ Z with v not a square modulo p, since

such v lie in the class modulo squares represented by u. If v is a square
modulo p, then v is a square in Qp. So (p, v) =

(
v
p

)
for all v ∈ Z with

p ∤ v. In particular (p,−1) =
(−1
p

)
. From proposition 20.14(vi) then follows

(p, p) = (p,−1) =
(−1
p

)
.

e) Using proposition 20.14(iii) and (v) and also the fact that (p, v) =
(
v
p

)
for all

v ∈ Z with p ∤ v (proven under d)): (p, pu) = (p,−u) =
(−u
p

)
=
(−1
p

)(
u
p

)
=

(−1)
p−1
2

(
u
p

)
.

f) Using proposition 20.14(vi) and a): (pu, pu) = (pu,−1) = (p,−1) =
(−1
p

)
=

(−1)
p−1
2 .
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20 Quadratic Extensions of Q

A formula for the Hilbert symbol on Q2:

20.18 Theorem. Let α and β be elements of Q∗
2. Write α = 2mµ and β = 2nν

with m,n ∈ Z and µ, ν ∈ Z∗
2. Let µ ≡ a (mod 8) and ν ≡ b (mod 8) with a, b ∈ Z.

Then

(α, β) = (−1)
a−1
2

b−1
2 +n a2−1

8 +m b2−1
8 .

PROOF. It suffices to prove the formula for representatives of the classes modulo
squares. We take the following representatives of the seven nontrivial classes:

−1, 2, −2, 5, −5, 10, and − 10.

So we will compute (α, β) in 28 cases. In each of these cases the result will be as
given by the formula.

a) We show that (−1,−1) = −1.

Suppose that (−1,−1) = 1. Then there are x, y ∈ Q2 such that −x2−y2 = 1.
By symmetry we can assume that |x|2 ≥ |y|2. Then 1 ≤ |x2|2 and so |x|2 ≥ 1,
say |x|2 = 2k with k ∈ N. Then 2kx ∈ Z∗

2 and 2ky ∈ Z2. Thus we have:
(2kx)2+(2ky)2+22k = 0. In Z2 squares are congruent to 0 or 1 modulo 4. So
each of the three squares is 0 modulo 4. Contradiction, because (2kx)2 ≡ 1
(mod 4) since 2kx ∈ Z∗

2.

So (−1,−1) = −1.

b) Some useful cases. We use proposition 20.14 and the fact that the Hilbert
symbol depends only on the classes modulo squares.

(−1, 2) = 1,

(−5,−2) = (3,−2) = 1,

(−1, 5) = (−4, 5) = 1.

c) The remaining cases (−1, ∗).

(−1,−2) = (−1, 2)(−1,−1) = (−1,−1) = −1

(−1,−5) = (−1, 5)(−1,−1) = (−1,−1) = −1

(−1, 10) = (−1, 2)(−1, 5) = 1

(−1,−10) = (−1, 2)(−1,−5) = −1.

d) The remaining cases (2, ∗).

(2, 2) = (2,−1)(2,−2) = 1

(2,−2) = 1

(2,−10) = (2, 10) = (2, 5) = (2,−5) = (−1,−5) = −1.
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20.3 Hilbert Symbols

e) The remaining cases (−2, ∗).

(−2,−2) = (−2,−1) = −1

(−2, 5) = (2, 5) = −1

(−2, 10) = (2, 10) = −1

(−2,−10) = (−2,−5) = 1

f) The remaining cases (±5, ∗).

(5, 5) = (5,−1) = 1

(5,−5) = 1

(5,−10) = (5, 10) = (5, 2) = −1

(−5,−5) = (−5,−1) = −1

(−5, 10) = (−5, 2) = −1

(−5,−10) = (−5,−2) = 1

g) The remaining cases (±10, ∗).

(10, 10) = (10,−1) = 1

(10,−10) = 1

(−10,−10) = (−10,−1) = (−5,−1) = −1.

It is easily checked that the right hand sides of the formulas in the theorems 20.17
and 20.18 are multiplicative in both α and β. So for the Hilbert symbols we have:

20.19 Theorem. For all α, α1, α2, β, β1, β2 ∈ K∗

(i) (α1α2, β) = (α1, β)(α2, β),
(ii) (α, β1β2) = (α, β1)(α, β2),
(iii) (α, 1− α) = 1 for α ̸= 1.

Note that the other rules are consequences of the three rules in the theorem:

(α, β2) = (α, β)2 = 1,

(α,−α) =
(
α,

1− α

1− 1
α

)
= (α, 1− α)

(
α, 1− 1

α

)
=
( 1
α
, 1− 1

α

)
= 1,

(α, β) = (α,−αβ) = (β,−αβ) = (β, α).

Norms

Let α ∈ K∗ be a nonsquare. Then by proposition 20.1:

β ∈ K∗ is the norm of an element of K(
√
α)∗ ⇐⇒ (α, β) = 1.
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20 Quadratic Extensions of Q

A class modulo squares of K∗ either consists of norms only or there is not a single
norm in it. The computations of the Hilbert symbols (theorems 20.17 and 20.18)
imply that half of the classes modulo squares consist of norms. The trivial class
(the class represented by 1) consists of norms: for all a ∈ K∗ we have N(a) = a2.

20.20 Example. Let α ∈ R be not a square, that is α < 0. Then R(
√
α) =

R(i) = C. Modulo squares there are two classes. Only the class of squares consist
of norms of elements of C∗.

20.21 Example. The number 2 is not a square in Q5. In Q5 there are four classes
modulo squares. They are represented by 1, 2, 5 and 10. The class of 1 is the class
of squares and these are norms of elements of Q5(

√
2). We have N(

√
2) = −2.

This is an element of the class of 2, and so this class also consists of norms. In
the two other classes there are no norms. In terms of Hilbert symbols: (1, 2) = 1,
(2, 2) = (−2, 2) = 1, (5, 2) =

(
2
5

)
= −1 and (10, 2) = (5, 2)(−1, 2) = −1.

Also 5 is not a square. The norms of elements of Q5(
√
5)∗ lie in the classes of 1

and 5. We can verify this with Hilbert symbols: (1, 5) = 1, (2, 5) =
(
2
5

)
= −1,

(5, 5) = (−1, 5) =
(
1
5

)
= 1 and (10, 5) = (5, 5)(2, 5) = (−1)(−1) = 1.

20.22 Example. By adjunction of a square root of an element of Q2 seven
different fields can be constructed. In the table below for each of the seven cases
it is indicated which of the eight classes modulo squares of Q2 consist of norms.

1 −1 2 −2 5 −5 10 −10

Q2(
√
−1) + − + − + − + −

Q2(
√
2) + + + + − − − −

Q2(
√
−2) + − + − − + − +

Q2(
√
5) + + − − + + − −

Q2(
√
−5) + − − + + − − +

Q2(
√
10) + + − − − − + +

Q2(
√
−10) + − − + − + + −

The Product Formula

Numbers a, b ∈ Q∗ are elements of each of the completions of Q. So for each of
these completions we have a Hilbert symbol (a, b).

20.23 Definition. Let a and b be rational numbers ̸= 0 let p be a prime number.
Then we define (

a, b

p

)
= (a, b),

444



20.3 Hilbert Symbols

where (a, b) is the Hilbert symbol of a, b ∈ Q∗
p. Moreover, we define(

a, b

∞

)
= (a, b),

where (a, b) is the Hilbert symbol of a, b ∈ R∗. Thus for every p (including ∞) we
have a map

Q∗ ×Q∗ → {±1}, (a, b) 7→
(
a, b

p

)
,

the Hilbert symbol on Q with respect to p. In this section both prime numbers and
∞ will be called primes. We do so only for convenience.

Let a ∈ Q∗. By proposition 20.1 the representation problem

For which b ∈ Q∗ are there x, y ∈ Q such that x2 − ay2 = b ?

is equivalent to

For which b ∈ Q∗ are there x, y ∈ Q such that ax2 + by2 = 1?

If for a given b there are such x and y in Q, then trivially they also exist in each
of the completions of Q, and so

(
a,b
p

)
= 1 for all primes p.

20.24 Example. In 14.43 we determined all n ∈ Z representable by the form
x2−3y2. If an element b ∈ Q∗ is representable by the form x2−3y2, then

(
3,b
p

)
= 1

for all primes p. We will determine all b for which all these Hilbert symbols are
trivial. Clearly, b = −2 and b = −3 are representable. We can assume that b is
a square free integer neither divisible by 2 nor by 3, that is b ≡ ±1 (mod 6). We
have:

�

(
3, b

∞

)
= 1,

�

(
3, b

2

)
= (−1)

b−1
2 , so b ≡ 1 (mod 4) and so b ≡ 1 (mod 12),

�

(
3, b

3

)
=

(
b

3

)
, so b ≡ 1 (mod 3) and so b ≡ 1, 7 (mod 12),

� for p | b:
(
3, b

p

)
=

(
3

p

)
, so p ≡ 1, 11 (mod 12).

So we have for square free b with 2, 3 ∤ b that b is a product of prime numbers ≡
±1 (mod 12) and that b ≡ 1 (mod 12). So the sign of b depends on the parity of the
number of prime divisors ≡ 11 (mod 12). If we also take 2 and 3 in consideration,
then we obtain exactly the description given in 14.43. Here we have only shown
these conditions to be necessary, not that they are sufficient.
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20 Quadratic Extensions of Q

In order for given a and b to compute the Hilbert symbols
(
a,b
p

)
, it suffices to

compute all but one. This is a consequence of the product formula for Hilbert
symbols:

20.25 Theorem. Let a and b be rational numbers ̸= 0. Then∏
p

(
a, b

p

)
= 1,

where the product is taken over all primes.

PROOF. Since Hilbert symbols are bimultiplicative, it suffices to verify the product
formula for both a and b being either a prime number or −1.

a) The product for a = b = −1:(
−1,−1

∞

)(
−1,−1

2

)
= (−1)(−1) = 1.

b) For a = 2 and b = −1 each factor equals 1.
c) For a = b = 2 the product is the same as for a = 2 and b = −1.
d) For a = p an odd prime number and b = −1:(

p,−1

2

)(
p,−1

p

)
= (−1)

p−1
2

(
−1

p

)
.

e) For a = p an odd prime number and b = 2:(
p, 2

2

)(
p, 2

p

)
= (−1)

p2−1
8

(
2

p

)
.

f) For a = b = p an odd prime number the product is the same as for a = p and
b = −1.

g) For a = p and b = q two different odd prime numbers:(
p, q

2

)(
p, q

p

)(
p, q

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)(
p

q

)
.

By the Quadratic Reciprocity Law the product equals 1 in all cases.

So, conversely, the Quadratic Reciprocity Law and the Supplementary Laws can be
retrieved from the product formula for Hilbert symbols.

20.4 Hasse’s Principle

In some cases the solvability of equations in Q is equivalent to their solvability
in all completions of Q. In such cases Hasse’s Principle is said to hold. Hasse’s
Principle holds for equations ax2 + by2 = 1:
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20.4 Hasse’s Principle

20.26 Theorem. For all a, b ∈ Q with a, b ̸= 0:

There are x, y ∈ Q such that ax2 + by2 = 1 ⇐⇒
(
a, b

p

)
= 1 for all primes p.

PROOF. We still have to prove that if
(
a,b
p

)
= 1 for all primes p, then there are

x, y ∈ Q such that ax2 + by2 = 1. We can assume that a and b are square free
integers and that |a| ≤ |b|. The proof is by induction on |a|+ |b|.

If |a|+ |b| = 2, then a, b = ±1. Since
(−1,−1

∞
)
= −1 we can assume that a = 1 and

in this case ax2 + by2 = 1 is solvable in Q.

Suppose |a|+ |b| > 2 and
(
a,b
p

)
= 1 for all primes p and suppose that cx2 + dy2 = 1

is solvable in Q for all square free c, d ∈ Z satisfying |c|+ |d| < |a|+ |b| and
(
c,d
p

)
= 1

for all primes p.

Since |a| + |b| > 2 and |a| ≤ |b|, we have |b| ≥ 2. Let p be a prime divisor of b. If
p ∤ a and p ̸= 2, then

(
a,b
p

)
=
(
a
p

)
= 1. So a is a square modulo p, which also is the

case if p | a or p = 2. So a is a square modulo all prime divisors of the square free
number b. By the Chinese Remainder Theorem a is a square modulo |b|. So there

are c, b′ ∈ Z such that a = c2 − bb′ and |c| ≤ |b|
2 . From a = c2 − bb′ follows that(

a,bb′

p

)
= 1 for all primes p and therefore

(
a,b′

p

)
= 1 for all primes p. Furthermore,

we have |bb′| = |c2 − a| ≤ |b|2
4 + |a| ≤ |b|2

4 + |b| and so |b′| ≤ |b|+4
4 < |b| (since

|b| ≥ 2). Let b′′ be the square free part of b′, so b′ = b′′d2 with b′′ square free. Then

|b′′| ≤ |b′| < |b| and
(
a,b′′

p

)
= 1 for all primes p. By the induction hypothesis there

are x, y ∈ Q such that ax2 + b′′y2 = 1 and so there also are x, y ∈ Q such that
ax2+b′y2 = 1. We can assume that a ̸= 1. Then by proposition 20.1 b′ is a norm of
an element of Q(

√
a). Also bb′ is such a norm: bb′ = c2 − a = N(c+

√
a). So b is a

norm of an element of Q(
√
a), that is there are x, y ∈ Q such that ax2+by2 = 1.

Note that by theorem 20.17 for nonzero a, b ∈ Q we have
(
a,b
p

)
̸= 1 for only a finite

number of odd primes p: if p ∤ a, b, then
(
a,b
p

)
= 1. So for proving that ax2+bx2 = 1

is solvable it suffices to check that
(
a,b
p

)
= 1 only for odd primes p dividing ab, for

p = 2 and for p = ∞.

20.27 Example. We determine the numbers b ∈ Q∗ which are representable
by the form x2 + 5y2. It suffices to consider square free integers. Since 5 is
representable, we can assume that 5 ∤ b. Moreover, clearly only positive b might be
representable. We distinguish two cases.

a) b ∈ N+ with 2, 5 ∤ b.
For p a prime divisor of b we have(

−5, b

p

)
=

(
−5

p

)
= (−1)

p−1
2

(
p

5

)
= 1,
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20 Quadratic Extensions of Q

and also (
−5, b

2

)
= (−1)

b−1
2 = 1.

So the number b is a product of prime numbers p of two kinds:

I. p ≡ 1 (mod 4) and p ≡ 1, 4 (mod 5), that is p ≡ 1, 9 (mod 20),

II. p ≡ 3 (mod 4) and p ≡ 2, 3 (mod 5), that is p ≡ 3, 7 (mod 20).

The condition b ≡ 1 (mod 4) means there is an odd number of prime divisors
of b which are of kind II.

b) b ∈ N+ with 5 ∤ b and 2 | b, say b = 2b′.
For p an odd prime divisor of b we have(

−5, b

p

)
=

(
−5

p

)
= (−1)

p−1
2

(
p

5

)
= 1,

and also(
−5, b

2

)
=

(
−5, 2b′

2

)
=

(
−5, 2

2

)(
−5, b′

2

)
= −(−1)

b′−1
2 = 1.

So the number b′ is a product of prime numbers p of kind I and kind II and
the number of prime divisors of kind II is odd.

Because of the product formula there is no need to compute the symbols
(−5,b

5

)
.

So we have:

An element b ∈ Q∗ is representable by the form x2 + 5y2 if b > 0,
vp(b) is even for all prime numbers p ≡ 11, 13, 17, 19 (mod 20) and
moreover,

∑
p∈S vp(b) is even, where S is the set of the prime numbers

p ≡ 3, 7 (mod 20) together with the prime number 2.

Exercises

1. Let K be a field of characteristic ̸= 2 and let L be a quadratic extension of K.
Show that L is obtained by adjunction of a square root to K.

2. Show that
∏

p |a|p = 1 for all a ∈ Q∗. The product is taken over all primes: for p
a prime number |a|p is the p-adic absolute value and |a|∞ is the ordinary absolute
value.

3. Are there rational numbers x and y such that x2 − 3 17
19
y2 = 5

2
?

4. Let K be one of the completions of Q. Let a ∈ K∗, a not a square in K. Let
b, c ∈ K∗ be not norms of elements of K(

√
a). Show that bc is a norm of such an

element.

5. Let p be a prime number and let K = Fp. Let c : K
∗ ×K∗ → {0, 1} satisfy
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Exercises

a) c(a1a2, b) = c(a1, b)c(a2, b) for all a1, a2, b ∈ K∗,

b) c(a, b1b2) = c(a, b1)c(a, b2) for all a, b1, b2 ∈ K∗,

c) c(a, 1− a) = 1 for all a ∈ K∗ with a ̸= 1.

Prove that c(a, b) = 1 for all a, b ∈ F∗
p.
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21 Quadratic Numbers

In chapter 14 we considered the following representation problem:

Let a ∈ Z be not a square. For which b ∈ Z are there x, y ∈ Z such
that x2 − ay2 = b ?

For only a few a we solved this problem: a = −1,±2,±3. In this chapter we
focus on some related problems. For b given it is about the Diophantine equation
x2 − ay2 = b having a solution. Clearly, if a is positive, then the number of solu-
tions is finite. We will see that for a negative there are either no solutions or else
infinitely many. This is a consequence of:

Let a ∈ N be not a square. Then the Diophantine equation x2 − ay2 = 1
has infinitely many solutions.

This will be shown in section 21.3. For a given a we will even give an algorithm
for solving Diophantine equations x2 − ay2 = ±1. This algorithm is based on the
continued fraction expansion of the irrational number

√
a, which is a solution of

a quadratic equation with coefficients in Q. Such numbers are called quadratic.
In section 21.2 we study the continued fraction expansions of quadratic numbers.
An interesting phenomenon is that quadratic numbers are the numbers with a
repeating continued fraction expansion.

21.1 The Discriminant of a Quadratic Number

21.1 Definition. An α ∈ C \Q is called a quadratic number if α is a solution of a
quadratic equation with coefficients in Q.

Let α be a quadratic number, say α is a solution of x2 + px + q = 0, where
p, q ∈ Q. Write p = b

a and q = c
a with a ∈ N+ and b, c ∈ Z. Then α is a zero

of the polynomial ax2 + bx + c, which has coefficients in Z. Divide by gcd(a, b, c)
(=gcd(gcd(a, b), c)). This results in α being a zero of a polynomial ax2 + bx + c,
where a ∈ N+, b, c ∈ Z and gcd(a, b, c) = 1. To every quadratic number there is a
unique such polynomial:

21.2 Proposition. Let α be a quadratic number. Then there are unique a, b, c such
that

a ∈ N+, b, c ∈ Z, gcd(a, b, c) = 1 and aα2 + bα+ c = 0.
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21 Quadratic Numbers

PROOF. We still have to show uniqueness. Assume that we also have a′α2+ b′α+
c′ = 0 with a′ ∈ N+, b′, c′ ∈ Z and gcd(a′, b′, c′) = 1. Then

(a′b− ab′)α+ (a′c− ac′) = 0

and so a′b − ab′ = 0, since otherwise α ∈ Q. So a′b = ab′, and therefore also
a′c = ac′. Hence a′ | gcd(aa′, ab′, ac′) = a · gcd(a′, b′, c′) = a. Similarly a | a′. And
so a′ = a. But then b′ = b and c′ = c as well.

By now we have a correspondence between quadratic numbers and 4-tuples
(a, b, c, t) with a ∈ N+, b, c ∈ Z, t ∈ {−1, 1}, gcd(a, b, c) = 1 and b2 − 4ac not
a square in Z. Such 4-tuple (a, b, c, t) determines the equation and this equation
has two solutions:

α =
−b+

√
b2 − 4ac

2a
and α′ =

−b−
√
b2 − 4ac

2a
,

or for short −b+t
√
b2−4ac

2a with t = ±1. The two solutions are conjugates. Real
quadratic numbers correspond to 4-tuples (a, b, c, t) for which, moreover, b2−4ac >
0.

21.3 Definition. If the quadratic number α corresponds to the 4-tuple (a, b, c, t),
then the number b2 − 4ac is called the discriminant of α, and this number will be
denoted by disc(α). Thus

disc(α) = b2 − 4ac = a2 · (α− α′)2.

21.4 Lemma. Let α be a quadratic number. Then α± 1, −α and 1
α are quadratic

numbers as well and their discriminant is disc(α).

PROOF. If α corresponds to (a, b, c, t), then the number α± 1 corresponds to
(a,∓2a + b, a ∓ b + c, t), −α to (a,−b, c,−t), and 1

α to (±c,±b,±a,∓t). In each
case the discriminant is b2 − 4ac.

21.2 Continued Fraction Expansions of Real
Quadratic Numbers

Here we only consider real quadratic numbers. These numbers have (infinite)
continued fraction expansions. We will see that the real quadratic numbers are
precisely those having a repeating continued fraction expansion. The continued
fraction expansion of an α ∈ R \Q is closely connected to the course of the trans-
formation

φ : R \Q → R \Q, α 7→ 1

α− ⌊α⌋
.
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The transformation φ can be restricted to a transformation of the set of the real
quadratic numbers and even to subsets of real quadratic numbers having a given
discriminant:

21.5 Proposition. Let α ∈ R\Q. Then: α is a quadratic number if and only if φ(α)
is a quadratic number. Moreover, if α is a quadratic number, then disc(φ(α)) =
disc(α).

PROOF. This follows from lemma 21.4 and the definition of the transformation
φ.

Not every d ∈ N+ does occur as a discriminant: from d = b2 − 4ac follows that d ≡
b2 (mod 4) and so d ≡ 0, 1 (mod 4). Moreover, d is not a square. If these conditions
on d are satisfied, then there are real quadratic numbers having discriminant d: if

d ≡ 0 (mod 4), then d = disc( 1
2

√
d), and if d ≡ 1 (mod 4), then d = disc

(
1+

√
d

2

)
.

We will prove that the continued fraction expansion of a real quadratic number
repeats. We start with a special case.

21.6 Proposition. Let α be a real quadratic number satisfying α > 1 and α′ < 0.
Then the continued fraction expansion of α repeats.

PROOF. Let d be the discriminant of α. By proposition 21.5 the number φ(α) is
also a real quadratic number with discriminant d. From

φ(α) =
1

α− ⌊α⌋
,

it follows that

φ(α)′ =
1

α′ − ⌊α⌋
< 0.

So the set of real quadratic numbers β with

disc(β) = d, β > 1 and β′ < 0

is invariant under φ. This set is finite: for such a β (say it corresponds to the
4-tuple (a, b, c, 1)) we have c

a = ββ′ < 0 and so c < 0 and moreover b2 + 4a(−c) =
d. So by proposition 21.5 all terms of the sequence α,φ(α), φ2(α), . . . are el-
ements of a finite set. Hence this sequence repeats, and so does the sequence
⌊α⌋, ⌊φ(α)⌋, ⌊φ2(α)⌋, . . . .

21.7 Example. For α =
√
2 we have α′ = −

√
2 < 0. We already noticed that the

continued fraction expansion of
√
2 repeats:

√
2 = ⟨1, 2⟩.

For a purely repeating continued fraction expansion somewhat stronger conditions
are needed:

21.8 Definition. A real quadratic number α is called reduced if α > 1 and −1 <
α′ < 0.
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21.9 Theorem. A reduced real quadratic number has a purely repeating continued
fraction expansion.

PROOF. Let α be a reduced quadratic number with discriminant d. We have

⌊α⌋ < ⌊α⌋ − α′ < ⌊α⌋+ 1.

Take inverses:
1

⌊α⌋+ 1
<

1

⌊α⌋ − α′ <
1

⌊α⌋
.

So

−1 < − 1

⌊α⌋
< φ(α)′ < − 1

⌊α⌋+ 1
< 0.

Hence φ(α) is reduced as well. It follows that the set of reduced quadratic numbers
with discriminant d is invariant under φ. We will prove that the restriction of φ
to this finite set is injective. Suppose β1 and β2 are quadratic numbers with
discriminant d and φ(β1) = φ(β2). Then

1

β1 − ⌊β1⌋
=

1

β2 − ⌊β2⌋
,

That is

β1 − ⌊β1⌋ = β2 − ⌊β2⌋.

It follows that

β′
1 − ⌊β1⌋ = β′

2 − ⌊β2⌋

and so

⌊β1⌋+ (−β′
1) = ⌊β2⌋+ (−β′

2).

Since 0 < −β′
1,−β′

2 < 1 we have therefore

⌊β1⌋ = ⌊β2⌋.

And so β1 = β2 as well. Since the restriction of φ to the set of reduced quadratic
numbers having discriminant d is a permutation of this set, α,φ(α), φ2(α), . . . is a
purely repeating sequence and so is the continued fraction expansion of α.

21.10 Example. The number
√
2 + 1 satisfies −1 < −

√
2 + 1 < 0 and so

√
2 + 1

is a reduced real quadratic number. It has a purely repeating continued fraction
expansion:

√
2 + 1 = ⟨2⟩.

21.11 Example. We compute the reduced quadratic numbers having discriminant
4 · 34. Such numbers correspond to 3-tuples (a, b, c) where a ∈ N+, b, c ∈ Z,
gcd(a, b, c) = 1, b2 − 4ac = 4 · 34. Clearly, b is even. So we have ( b2 )

2 + a(−c) = 34

with b
2 an integer. From ( b2 )

2 < 34 follows that ( b2 )
2 equals 1, 4, 9, 16 or 25. For
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a given b we determine all possible numbers a: they are the positive divisors of
34− ( b2 )

2. If α corresponds to (a, b, c), then

α =

√
34− b

2

a
.

This number is reduced if and only if

0 < −α′ < 1 < α,

that is

0 <
√
34 +

b

2
< a <

√
34− b

2
,

which is equivalent to

0 < 6 +
b

2
≤ a ≤ 5− b

2
.

In particular b is negative. We find

( b2 )
2 34− ( b2 )

2 a

1 33

4 30 5, 6

9 25 5

16 18 2, 3, 6, 9

25 9 1, 3, 9

The reduced quadratic numbers having discriminant 4 · 34 are:

√
34 + 5 = ⟨10, 1, 4, 1⟩

√
34 + 2

6
= ⟨1, 3, 3, 1, 1, 1⟩

√
34 + 5

9
= ⟨1, 4, 1, 10⟩

√
34 + 4

3
= ⟨3, 3, 1, 1, 1, 1⟩

√
34 + 4

2
= ⟨4, 1, 10, 1⟩

√
34 + 5

3
= ⟨3, 1, 1, 1, 1, 3⟩

√
34 + 4

9
= ⟨1, 10, 1, 4⟩

√
34 + 4

6
= ⟨1, 1, 1, 1, 3, 3⟩

√
34 + 3

5
= ⟨1, 1, 3, 3, 1, 1⟩

√
34 + 2

5
= ⟨1, 1, 1, 3, 3, 1⟩

The transformation φ restricted to this set has two orbits: one with four elements
and one with six. When determining the course of

√
34 under φ (and so its con-

tinued fraction expansion) the orbit with four elements is found. So there are six
more quadratic numbers having discriminant 4 · 34. They form another orbit of φ.

Now the general case:
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21.12 Theorem. Let α be a real quadratic number. Then the continued fraction
expansion of α repeats.

PROOF. We assume that α > 1. (Otherwise replace α by φ(α)). Next we will
show that there is an n ∈ N such that ⌊φn(α)⌋ ̸= ⌊φn(α)′⌋. It is a proof by
contradiction.

Suppose that ⌊φn(α)⌋ = ⌊φn(α)′⌋ for all n ∈ N.

Let n ∈ N. We have

α = ⟨⌊α⌋, . . . , ⌊φn−1(α)⌋, φn(α)⟩,

and so
α′ = ⟨⌊α⌋, . . . , ⌊φn−1(α)⌋, φn(α)′⟩.

We also have

α′ = ⟨⌊α′⌋, . . . , ⌊φn−1(α)′⌋, φn(α′)⟩ = ⟨⌊α⌋, . . . , ⌊φn−1(α)⌋, φn(α′)⟩.

So φn(α)′ = φn(α′), and therefore also ⌊φn(α)′⌋ = ⌊φn(α′)⌋.

Hence α and α′ have equal continued fraction expansions. This implies that
they are equal, which is not the case.

So we may assume that ⌊α⌋ ≠ ⌊α′⌋ and α > 1 (take φn(α) instead of α). From

φ(α)′ =
1

α′ − ⌊α⌋

follows that φ(α)′ < 1. But then φ2(α)′ < 0 and so by proposition 21.6 the
continued fraction expansion of φ2(α) repeats. The quadratic number φ3(α) even
has a purely repeating continued fraction expansion, because it is reduced. (Under
the assumption ⌊α′⌋ ≠ ⌊α⌋ ≥ 1).

The converse holds as well:

21.13 Theorem. Let α be a real number having a repeating continued fraction
expansion. Then α is a quadratic number.

PROOF. Put α = ⟨a1, . . . , am, b1, . . . , bn⟩ and β = ⟨b1, . . . , bn⟩. Then β = φm(α)
and so it suffices to show that β is a quadratic number. We have:

β = ⟨b1, . . . , bn, b1, . . . , bn⟩ = ⟨b1, . . . , bn, β⟩.

So

β =
pnβ + pn−1

qnβ + qn−1
,

where pi = pi(b1 . . . , bi) and qi = qi(b1, . . . , bi). Hence

qnβ
2 + (qn−1 − pn)β − pn−1 = 0.

So the irrational number β is a quadratic number.
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If α is a reduced real quadratic number, then so is− 1
α′ . There is a simple connection

between the continued fraction expansions of these numbers:

21.14 Proposition. Let α = ⟨a1 . . . , an⟩ with a1, . . . , an ∈ N+. Then

− 1

α′ = ⟨an, . . . , a1⟩.

PROOF. Put αi = φi−1(α). Then

α = α1 = a1 +
1

α2
and so − 1

α′
2

= a1 + (−α′
1)

α2 = a2 +
1

α3
− 1

α′
3

= a2 + (−α′
2)

...
...

αn = an +
1

αn+1
= an +

1

α1
− 1

α1
= − 1

αn+1
= an + (−α′

n).

Since 0 < −α′
i < 1, the proposition follows.

Python

It is not possible to represent real numbers in a computer: in general an infinite
number of data is needed, e.g. for the decimal expansion of a number. However,
it is possible to represent quadratic numbers: real quadratic numbers correspond
to 4-tuples (a, b, c, t), where a ∈ N+, b, c ∈ Z, t = ±1, gcd(a, b, c) = 1 and b2 − 4ac
positive and not a square. The functions ent(alpha), inv(alpha) and phi(alpha)

return the floor, the inverse and the φ-image of alpha. The function sub(alpha, n)

returns alpha minus the integer n. The function confract(alpha) returns the
continued fraction expansion of alpha.

arithmetics.py
def ent(alpha):

return int(divmod(- alpha[1] + alpha[3] * (alpha[1]**2 - 4

* alpha[0] * alpha[2])**.5, 2 * alpha[0])[0])

def sub(alpha, n):

return (alpha[0], 2 * alpha[0] * n + alpha[1], alpha[0] * n**2

+ alpha[1] * n + alpha[2], alpha[3])

def inv(alpha):

s=(-1)**(alpha[2] < 0)

return (s * alpha[2], s * alpha[1], s * alpha[0], - s

* alpha[3])
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arithmetics.py
def phi(alpha):

return inv(sub(alpha, ent(alpha)))

def confract(alpha):

nrs = []

exp = []

while alpha not in nrs:

a = ent(alpha)

nrs.append(alpha)

exp.append(a)

alpha = inv(sub(alpha, a))

i = nrs.index(alpha)

return [exp[:i], exp[i:]]

>>> ent((1, 0, -37, 1))

6

>>> sub((1, 0, -37, 1), 6)

(1, 12, -1, 1)

>>> inv((1, 12, -1, 1))

(1, -12, -1, 1)

>>> phi((1, 0, -37, 1))

(1, -12, -1, 1)

>>> confract((1, 0, -34, 1))

[[5], [1, 4, 1, 10]]

>>> confract((1, 0, -1141, 1))

[[33], [1, 3, 1, 1, 12, 1, 21, 1, 1, 2, 5, 4, 3, 7, 5, 16, 1, 2, 3,

1, 1, 1, 2, 1, 2, 1, 4, 1, 8, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1,

16, 5, 7, 3, 4, 5, 2, 1, 1, 21, 1, 12, 1, 1, 3, 1, 66]]

>>> confract((1, -12, -1, 1))

[[], [12]]

21.3 Pell’s Equation

For d ∈ N+, d not a square, we consider Pell’s equation:

x2 − dy2 = ±1.

We will describe a method for obtaining all (infinitely many) solutions (x, y) ∈
N+ × N+ of this equation for any given d. The method is based on the continued
fraction expansion of the real quadratic number

√
d. We write:

αn = φn−1(
√
d) and an = ⌊αn⌋

for n ∈ N+. Then
√
d = ⟨a1, a2, a3, . . . ⟩. For pn(a1, . . . , an) and qn(a1, . . . , an) we

will simply write pn and qn respectively.
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21.15 Proposition. There exists an n ∈ N with n ≥ 2 such that

√
d = ⟨a1, a2, . . . , an⟩ and

{
an = 2a1

an−i = ai+1 for i = 1, . . . , n− 2.

PROOF.
√
d is a quadratic number and (

√
d)′ = −

√
d < −1. So φ(

√
d) = 1√

d−⌊
√
d⌋

is reduced and therefore has a purely repeating continued fraction expansion, say

1√
d− a1

= ⟨a2, . . . , an⟩,

It follows that √
d = ⟨a1, a2, . . . , an⟩,

or equivalently √
d+ a1 = ⟨2a1, a2, . . . , an⟩.

We have − 1

(
√
d+ a1)′

=
1√

d− a1
, hence by proposition 21.14

√
d+ a1 = ⟨an, . . . , a2⟩.

This proves the proposition.

So the proposition says that an = 2a1 and that the (n − 2)-tuple a2, . . . , an−1 is
symmetric: it coincides with the (n− 2)-tuple in reverse order.

21.16 Example.
√
14 = 3 + (

√
14− 3)

1√
14− 3

=

√
14 + 3

5
= 1 +

√
14− 2

5

5√
14− 2

=

√
14 + 2

2
= 2 +

√
14− 2

2

2√
14− 2

=

√
14 + 2

5
= 1 +

√
14− 3

5

5√
14− 3

=
√
14 + 3 = 6 + (

√
14− 3).

So
√
14 = ⟨3, 1, 2, 1, 6⟩. Indeed, the 3-tuple 1, 2, 1 is symmetric.

If Pell’s equation has a solution, then it can be found in the continued fraction
expansion of

√
d:

21.17 Lemma. Let (p, q) be a solution. Then there exists an n ∈ N+ such that
p = pn and q = qn.
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PROOF. From p2 − dq2 = ±1 follows p2

q2 = d± 1
q2 ≥ 1 and so p ≥ q. We then have

|p−
√
d · q| = 1

p+
√
d · q

≤ 1

(1 +
√
d)q

<
1

2q

and so |
√
d− p

q | <
1

2q2 . Now the lemma follows from theorem 17.67.

Let m be the length of the smallest period of the continued fraction expansion
a1, a2, a3, . . . of

√
d: √

d = ⟨a1, a2, . . . , am+1⟩.

We can indicate exactly where in the continued fraction expansion of
√
d solutions

can be found:

21.18 Theorem. Let n ∈ N+. We have:

(pn, qn) is a solution ⇐⇒ m | n.

PROOF. For all n ∈ N+ we have:
√
d = ⟨a1, . . . , an, αn⟩ and so

√
d =

pnαn+1 + pn−1

qnαn+1 + qn−1
. (21.1)

It follows that

pn − qn
√
d =

(−1)n

qnαn+1 + qn−1
.

From p2n − dq2n = (pn − qn
√
d)(pn + qn

√
d) now follows: if (pn, qn) is a solution of

x2 − dy2 = 1, then n is even, and if (pn, qn) is a solution of x2 − dy2 = −1, then n
is odd. Moreover we have (also from (21.1)):

(pn − qn
√
d)αn+1 = qn−1

√
d− pn−1

and so

(p2n − dq2n)αn+1 = (qn−1

√
d− pn−1)(pn + qn

√
d) = (−1)n

√
d+ (integer)

⇒: If (pn, qn) is a solution, then

(−1)nαn+1 = (−1)n
√
d+ (integer)

αn+1 =
√
d+ (integer).

Then

αn+2 =
1

αn+1 − ⌊αn+1⌋
=

1√
d− ⌊

√
d⌋

= α2.

And so m | n.
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⇐: Suppose m | n. Then
√
d = ⟨a1, a2, . . . , an+1⟩ and an+1 = 2a1. It follows

that

√
d = ⟨a1, a2, . . . , an+1, a2, . . . , an+1⟩ = ⟨a1, a2, . . . , an, a1 +

√
d⟩

=
pn(a1 +

√
d) + pn−1

qn(a1 +
√
d) + qn−1

.

So
qn(a1 + qn−1)

√
d+ dqn = pn

√
d+ pna1 + pn−1,

that is {
qna1 + qn−1 − pn = 0

pna1 + pn−1 − dqn = 0.

Multiply by pn and qn respectively:{
pnqna1 + pnqn−1 − p2n = 0

pnqna1 + pn−1qn − dq2n = 0.

Subtraction yields

p2n − dq2n = pnqn−1 − pn−1qn = (−1)n.

So we have found: the solutions of x2 − dy2 = 1 are all (pn, qn) with m | n and
n even; the solutions of x2 − dy2 = −1 are all (pn, qn) with m | n and n odd. In
particular x2 − dy2 = −1 has solutions only when m is odd.

21.19 Example.
√
14 = ⟨3, 1, 2, 1, 6⟩. We compute p4 and q4:

i : −1 0 1 2 3 4

ai : − − 3 1 2 1

pi : 0 1 3 4 11 15

qi : 1 0 1 1 3 4

So 152 − 14 · 42 = 1. The equation x2 − 14y2 = −1 has no solutions. The other
solutions are (p8, q8), (p12, q12), (p16, q16), . . . .

Given a solution a way to find another is as follows: if (x0, y0) is a solution, then

(x0 − y0
√
d)(x0 + y0

√
d) = ±1

and so also

(x0 − y0
√
d)k(x0 + y0

√
d)k = (±1)k

for all k ∈ N+. The number (x0 + y0
√
d)k is of type a + b

√
d with a, b ∈ Z and

(x0 − y0
√
d)k then equals a − b

√
d. Then (a, b) is a solution as well. In fact: the
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solution (x0, y0) with the least x0 is (pm, qm) and the other solutions, so (pkm, qkm)
where k = 2, 3, . . . , can be obtained by expanding (x0 + y0

√
d)k. So from

(15 + 4
√
14)2 = 449 + 120

√
14

it follows that 4492 − 14 · 1202 = 1.

Pell’s equation is also encountered when solving other quadratic equations: if for
example (x0, y0) is a solution of x2−dy2 = 1 and (x1, y1) a solution of x2−dy2 = n,
then the number (x0 + y0

√
d)k(x1 + y1

√
d) is of type a+ b

√
d where a, b ∈ Z. Then

(a, b) is another solution of x2 − dy2 = n.

The equation x2 − dy2 = −1

Whether the equation x2−dy2 = −1 has a solution is not for all d directly decidable,
but there are some special cases in which this is possible.

21.20 Proposition. Suppose the Diophantine equation x2 − dy2 = −1 has a solu-
tion. Then d is a sum of two squares in N+.

PROOF. The period of the continued fraction expansion of
√
d is odd:

√
d = ⟨a1, a2, . . . , ak, ak, . . . , a2, 2a1⟩.

Then for β = φk(
√
d) we have:

β = ⟨ak, . . . , a2, 2a1, a2, . . . , ak⟩.

Furthermore, disc(β) = disc(
√
d) = 4d. Let β belong to the quadruple (a, b, c, 1).

From the symmetry in the continued fraction expansion of β follows

− 1

β′ = β,

that is ββ′ = −1. So c
a = −1, that is c = −a. So 4d = b2 − 4ac = (2a)2 + b2, and

therefore d = a2 + ( b2 )
2, where b

2 ∈ Z since b is even.

21.21 Example.
√
13 = ⟨3, 1, 1, 1, 1, 6⟩, φ3(

√
13) =

√
13+2
3 , and so 13 = 22 + 32.

The converse does not hold: 34 is a sum of two squares

34 = 32 + 52,

but the period of the continued fraction expansion of
√
34 is of even length:

√
34 = ⟨5, 1, 4, 1, 10⟩.

Example 21.11 shows that there are two reduced quadratic numbers having dis-
criminant 4 · 34 which have the symmetry in their continued fraction expansion we
are looking for: ⟨3, 1, 1, 1, 1, 3⟩ and ⟨1, 1, 3, 3, 1, 1⟩. The identity 34 = 32 + 52 can
be rewritten as ( 5

3
)2 − 34( 1

3
)2 = −1. The equation x2 − 34y2 = −1 has no integer

solution, but it has a rational one.
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In special cases the converse does hold:

21.22 Theorem. Let p be a prime number such that p ≡ 1 (mod 4). Then the
Diophantine equation x2 − py2 = −1 has a solution.

PROOF. Let m be the length of the shortest period of the continued fraction
expansion of

√
p.

Suppose m is even. Then (pm, qm) is a solution of x2 − py2 = 1, that is

(pm − 1)(pm + 1) = p2m − 1 = pq2m.

Then pm is odd and qm is even. So

pm − 1

2
· pm + 1

2
= p
(qm

2

)2
,

and pm−1
2 , pm+1

2 , qm2 ∈ N+. Clearly gcd(pm−1
2 , pm+1

2 ) = 1. So:
pm − 1

2
= u2

pm + 1

2
= pv2

or


pm − 1

2
= pv2

pm + 1

2
= u2

for some u, v ∈ N+. Then

u2 − pv2 = ±
(pm + 1

2
− pm − 1

2

)
= ±1,

while u < pm. Contradiction.

So m is odd, that is (pm, qm) is a solution of x2 − py2 = −1.

Again we obtain theorem 14.8:

21.23 Corollary. Let p be a prime number congruent to 1 modulo 4. Then p is a
sum of two squares.

The Indian mathematician Brahmagupta (Ujjain(?) 598 – 670) was the first
to study Pell’s equation systematically. The algorithm for the solution originates
in the works of Bhaskara (Vijayapura 1114 – Ujjain 1185). In the seventeenth
century progression was made by Fermat, the English John Wallis (1616–1703)
and the Irish William Brouncker (1620–1684). Euler gave a full solution. The
formulation in terms of continued fractions goes back to the Italian-born French
mathematician Joseph-Louis Lagrange (1736 – 1813). The naming of the equa-
tion is from Euler, but probably is a result of a misunderstanding, since as far as
known, not a single text by John Pell mentions the equation, it is unlikely that he
contributed to its solution.
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21 Quadratic Numbers

Python

For the computation of the continued fraction expansion of
√
d it is not necessary

to keep track of its course since for repetition it suffices to look at the floor of the
quadratic number: it has to be twice the floor of ⌊

√
d⌋, see also exercise 15. The

function pell(d) returns a triple (x, y, a), where (x, y) is the solution of x2−dy2 =
(−1)a and a the length of the period of the continued fraction expansion of

√
d.

arithmetics.py
def pell(d):

alpha = (1, 0, -d, 1)

e = a = ent(alpha)

p, q, r, s = 0, 1, 1, 0

i = 0

b = 2 * e

while a != b:

alpha = inv(sub(alpha, a))

p, q, r, s = r, s, a * r + p, a * s + q

a = ent(alpha)

i = i + 1

return (r, s, i)

>>> pell(34)

(35, 6, 4)

>>> pell(1141)

(1036782394157223963237125215, 30693385322765657197397208, 58)

>>> pell(94)

(2143295, 221064, 16)

>>> pell(95)

(39, 4, 4)

>>> pell(1234567)

(2037156782588757908796992220393335879349384633281011069741272319169

98110712447355624, 1833441773536251588833840127754089907961760269499

65279326746283914164614149841725, 124)

>>> opl = pell(123456789)

>>> len(str(opl[0])), len(str(opl[1])), opl[2]

(4197, 4193, 8164)

>>> opl = pell(2**41 - 1)

>>> len(str(opl[0])), len(str(opl[1])), opl[2]

(316673, 316667, 615482)

Exercises

1. Let m ∈ N+, m not a square. Determine the discriminant of
√
m and also of 1+

√
m

2
.

2. The numbers
√
2 and

√
3 are quadratic. Is

√
2 +

√
3 quadratic too?
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Exercises

3. Determine all reduced quadratic numbers with discriminant 60. Also give their
continued fraction expansions.

4. Determine all reduced quadratic numbers with discriminant 80. Also give their
continued fraction expansion.

5. Let α = ⟨a1, a2, . . . , an⟩ with a1, . . . , an ∈ N+. Suppose that an = 2a1 and an−i =
ai+1 for i = 1, . . . , n− 2. Prove that α2 ∈ Q.

6. Let d be a multiple of 4 plus 3. Show that the Diophantine equation x2−dy2 = −1
has no solution. Does it have a solution in Q ?

7. Give a solution of the the Diophantine equation x2 − 29y2 = −1 and also of the
Diophantine equation x2 − 29y2 = 1.

8. Is the Diophantine equation x2 − 33y2 = −1 solvable?.

9. Are there rational numbers x and y such that x2 − 34y2 = 15 ? Are there integral
solutions? How many?

10. Let d ∈ N+, d not a square. Suppose that the Diophantine equation x2 − dy2 = 2
is solvable. Is it possible to find solutions using a continued fraction?

11. Take in exercise 1 of chapter 17 α = 2. Then a = 2 and{
a0 = 2

an+1 = 1
2
(an + 2

an
) for all n ∈ N.

The sequence (an) converges to
√
2. Show that

an =
p2n

q2n

for all n ∈ N. Here pm
qm

is the m-th convergent of the continued fraction expansion

of
√
2.

12. (i) Determine the continued fraction expansion of
√
13.

(ii) Determine the least y ∈ N+ for which 13y2 − 1 is a square. Also determine
the least but one y having this property.

(iii) How many reduced quadratic numbers are there in the set

A = {φn(
√
13) | n ∈ N }?

(iv) Are there reduced quadratic numbers α such that disc(α) = disc(
√
13) and

α /∈ A ?

13. (i) Find natural numbers x, y such that x2 − 29y2 = ±1.

(ii) Determine all natural numbers x, y such that x2 − 25y2 = ±1.

14. Let α = ⟨1, 1, 2, 1⟩.
(i) Determine the continued fraction expansion of 3 + α and also of 1

α−1
.
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21 Quadratic Numbers

(ii) Compute α.

15. Prove that for each nonsquare d ∈ N+ there is a unique reduced real quadratic
number γ such that disc(γ) = 4d and ⌊γ⌋ = 2 · ⌊

√
d⌋.
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Number Systems

N

Z

Q

R Qp

C Qp

CpWe have built number systems starting with
Peano’s axioms for the natural numbers and
nothing more than that. In the diagram the
successive extensions are indicated. The field R
is obtained as a completion of Q. By adjoining
a square root of −1 we get the field C in which
all polynomials of positive degree have roots: C
is algebraically closed. The fields Qp are other
completions of Q. To achieve that all polynomi-
als of positive degree have roots infinitely many
roots of polynomials have to be adjoined. We
have not done so in this book. The field one
obtains this way is denoted by Qp. It has in a
natural way an absolute value and is complete
with respect to this absolute value. However,
this field is not algebraically closed. Again one
can adjoin roots of polynomials. This finally re-
sults in a field called Cp which is both complete
and algebraically closed. It is a long way from
N to Cp. In between Q and C, as well as in be-
tween Q and Cp there are infinitely many other
fields, e.g. the quadratic extensions we studied
in Part V.
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Notations

a ∈ A a is an element of the set A 8

a /∈ A a is not an element of the set A 8

A ⊆ B the set A is a subset of the set B 10

{ a ∈ A | P (a) } the set of all a ∈ A such that P (a) 11

∅ the empty set 11

A ∩B the intersection of the sets A and B 11

A ∪B the union of the sets A and B 12

A \B the difference of the sets A and B 12

Bc, B′ the complement of the set B (within a given set A) 12

¬p not p 14

p ∧ q p and q 14

p ∨ q p or q 14

p⇒ q if p, then q 14

p ⇐⇒ q p if and only if q 14

P(A) the power set of the set A 15

A÷B the symmetric difference of the sets A and B 17

N the set of natural numbers 30

N+ the set of natural numbers ̸= 0 30

f : A→ B, A
f→ B the map f from set A to set B 57

f : a 7→ b the map f maps the element a to the element b 57

(a, b) an ordered pair 59

A×B the (Cartesian) product of the sets A and B 59

Γ(f) the graph of the map f 59

f∗(U), f(U) the image under the map f of the subset U of the
domain of f 61

f∗(V ), f−1(V ) the inverse image under the map f of the subset V of the
codomain of f 61

f−1 the inverse of the bijection f 62

1A the identity transformation of the set A 62

τa,b the transposition of the elements a and b 62
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Notations

gf , g ◦ f the composition of the maps f and g 63

A ≈ B the sets A and B are equipotent 66

n for the natural number the set of the natural numbers
1, 2, . . . , n 66

Nn for the natural number n the set of the natural numbers
0, 1, . . . , n− 1 66

#(A) the number of elements of a finite set A 68

BA the set of all maps from the set A to the set B 71

χU the characteristic function of the subset U 72

D(f) the support of the {0, 1}-valued function f 72

(an) the sequence a0, a1, a2, . . . 76

R(A) the set of sequences in the set A 77

F(A) the set of finite sequences in the set A 77

Fn(A) the set of finite sequences of length n in the set A 77

n! n factorial 78

fn the n-th iterate of the transformation f 81

[a]f the f -class of a in the domain of the map f 90

Af the set of f -classes in the domain A of f 90

[a]Φ the class of the partition Φ containing the element a 91

[a]Φ the class of the partition Φ represented by a 91

[a]∼ the equivalence class of the element a with respect to
the equivalence relation ∼ 94

A/∼ the set of equivalence classes with respect to the equivalence
relation ∼ in the set A 94

Z the ring of integers 96

a = min(U) the least element of the ordered set U 106

a = max(U) the greatest element of the ordered set U 106

qb(a) the quotient of the integer a divided by the integer b > 0 116

rb(a) the remainder of the integer a after division by the integer
b > 0 116∑n−1

k=0 ak the sum of the elements a0, a1, . . . and an−1 117∑
i∈I a(i) the sum of the elements a(i) over all i ∈ I 117

[xn−1, . . . , x1, x0]g the number x0g
0 + x1g

1 + · · ·+ xn−1g
n−1 122

Rc(A) the set of sequences in the set A having a c-tail 122

Q the field of rational numbers 136

⌊x⌋ the floor (or entier) of x 142

gcd(a, b) the greatest common divisor of the integers a and b 147

lcm(a, b) the least common multiple of the integers a and b 155
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Notations

⟨x1, . . . , xn⟩ the continued fraction of length n 157

vp(a) the p-adic value of a 174

f ∗ g the Dirichlet product of the arithmetical functions f and g 183

µ the Möbius function 185

φ Eulers’s totient function 188

Inj(A.B) the set of injective maps from the set A to the set B 193

Pk(A) the set of all subsets of A with k elements 195(
n
k

)
the binomial coefficient n over k 195〈

n
k

〉
the number of admitted words in {0, 1} of length n with
exactly k ones 204

cn the n-th Catalan number 204

Bn the n-th Bernoulli number 216

Bn(x) the n-th Bernoulli polynomial 218{
n
k

}
the Stirling number of the second kind 224

[a]σ the orbit of a under the permutation σ 231

(a1 a2 · · · an) the n cycle of a1, . . . , an 232

D(σ) the support of the permutation σ 233[
n
k

]
the Stirling number of the first kind 236

sgn(σ) the sign of the permutation σ 238

a ≡ b (mod m) a is congruent to b modulo m 247

[a]m the residue class of a modulo m 247

om(a) the least k ∈ N+ with ak = 1 ∈ Z/m 256

Z/m the ring of residue classes modulo m 247(
a
p

)
the Legendre symbol (a and b integers) 274(

a
b

)
the Jacobi symbol (a and b rational) 281

π(n) the number of primes ≤ n 297

Fn the n-th Fermat number 308

limn an the limit of the sequence (an) for n→ ∞ 331

lim(p)
n an the p-adic limit of the sequence (an) 345

R the field of the real numbers 354

exp(x) the (real) exponential function 369

log(x) the (natural) logarithm of the real x 371

⟨a1, a2, a3, . . . ⟩ the infinite continued fraction of a1, a2, a3, . . . 376

A ⪯ B there exists an injective map from A to B 383

A ≺ B there exists an injective map from A to B and there is no
surjective map from A to B 383

Qp the field of the p-adic numbers 391
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Notations

Zp from chapter 18 onwards: the ring of p-adic integers 394

Z(n)
p set of all α ∈ Zp with α ≡ 1 (mod p) 397

K(
√
a) the field obtained by adjoining

√
a to the field K 435

(α, β) the Hilbert symbol on K, where K is one of the completions
of Q 439(

a, b

p

)
the Hilbert symbol on Q with respect to the prime p

(including p = ∞) 444

C the field of the complex numbers 412

ℜ(z) the real part of the complex number z 413

ℑ(z) the imaginary part of the complex number z 413

S1 the unit circle in the complex plane 416

ζm the complex root of unity e
2πi
m 419

ζ(s) the Riemann zeta function 426
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Abel, Niels Henrik, 41, 426
abelian group, 98, 104

associative, 104
commutative, 104
neutral element, 104
opposite, 104
zero element, 104

abelian monoid, 40
absolute convergence, 362
absolute value

p-adic, 343
complex numbers, 414
integers, 102
p-adic numbers, 392
rational numbers, 325
real numbers, 356

addition
modular arithmetic, 249
natural numbers, 36
rational numbers, 138

adjunction
of square roots, 434

adjunction of a square root, 436
Adleman, Leonard, 317
Al-Khwarizmi, Abu Ja’far Muhammad

ibn Musa, 143
algebraic number, 365
algebraically closed, 423
antisymmetric relation, 93
Archimedes, 367
argument of a complex number, 420
arithmetic function, 182

multiplicative, 184
strictly multiplicative, 184

ascending sequence, 333
associative

abelian group, 104
addition

integers, 98
natural numbers, 40, 41

composition
maps, 64

group, 104
multiplication

integers, 101
natural numbers, 46, 49

automorphism, 414
axiom, 31

base, 121
Bell number, 226
Bell, Eric Temple, 226
Bernoulli number, 216
Bernoulli polynomial, 218
Bernoulli, Daniel, 217
Bernoulli, Jacob, 217

inequality, 330
number, 216
polynomial, 218

Bernoulli, Johann, 217
Bernstein, Felix, 384
Bhaskara, 463
bijection, 61
bijective, 61
binomial coefficient, 195
binomial formula, 202
birthday paradox, 194
Bolzano, Bernard Placidus Johann Nepo-

muk, 360
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Bolzano-Weierstraß
Theorem of, 360

bounded, 108
bounded sequence, 330
Brahmagupta, 463
Brouncker, William, 463

cancellation law
addition
natural numbers, 40, 44

monoid, 40
multiplication
natural numbers, 46, 49

Cantor, Schröder, Bernstein, Theo-
rem of, 384

Cantor, Georg, 8
Cardan’s formula, 411
Cardano, Girolimo, 411
cardinal number, 386
Carmichael number, 298
Carmichael, Robert Daniel, 298
Cartesian product, 59
Catalan number, 204
Catalan, Eugène Charles, 204
Cauchy sequence, 340

equivalence, 353
p-adic, 349

Cauchy, Augustin-Louis, 328
ceiling, 142
characteristic function, 72
Chinese Remainder Theorem, 258
codomain, 57
Cohen, Paul, 386
Collatz conjecture, 83
commensurable, 162
common divisor, 147
common multiple, 155
commutative

abelian group, 104
addition
integers, 98
natural numbers, 40, 43

multiplication
integers, 101

natural numbers, 46, 47
commutative ring

rational numbers, 138
complement of a set, 12
complete

complex numbers, 414
p-adic numbers, 393
real numbers, 357

complex numbers, 412
absolute value, 414
argument, 420
complete, 414
conjugate, 413
exponential function, 415
field, 412
imaginary part, 413
modulus, 414
product, 412
real part, 413
sum, 412
unit circle, 416

composite number, 171
composition of maps, 63
congruence modulo m, 247
conjecture

3n+ 1-, 83
Collatz, 83

conjugate, 436
conjugate of a complex number, 413
conjugation, 436
connected graph, 21
construction

of C, 411
of Q, 135
of Qp, 391
of R, 353
of Z, 95

continued fraction, 157
finite, 157
infinite, 376
n-th convergent, 377

continued fraction expansion, 377
quadratic number, 452

continuous, 363
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complex, 415
continuum hypothesis, 386
convergent sequence, 331

p-adic, 345
cosine, 418
countable, 70
course, 79
cycle, 232

de la Vallée Poussin, Charles Jean Gus-
tave Nicola Baron, 374

De Moivre, Abraham, 224
decimal fraction, 327
definition, 10

inductive, 37
recursive, 37, 77

degree, 208
del Ferro, Scipione, 410
denominator of a rational number, 148
derangement, 235
Descartes, René, 59
descending sequence, 333
diagonal argument, 382
difference of sets, 12
difference sequence, 209
Diophantine approximation, 378
Diophantine equation

linear, 153
Diophantine equations, 153
Diophantus, 154
directed graph, 109

edge, 109
vertex, 109

Dirichlet product of arithmetic func-
tions, 183

Dirichlet’s principle, 69
Dirichlet, Johann Peter Gustav Leje-

une, 69
discrete dynamical system, 81
discriminant, 452
disjoint permutations, 233
disjoint sets, 12
distance

R2, 368

p-adic, 344
rational numbers, 326

distributive
multiplication over addition

integers, 101
natural numbers, 46, 48

division with remainder, 115
p-adic, 347
dividend, 116
quotient, 116
remainder, 116

divisor, 146
domain, 57
double sum, 120
dynamical system (discrete), 81

edge of a graph, 20
edges, 109
element of a set, 7
empty set, 11
entier, 142
equality, 9
equation, 142, 422, 423

cubic, 409, 422
linear, 142
quadratic, 143, 422
solution, 145

equipotent, 66
equivalence class, 94
equivalence of assertions, 11
equivalence relation, 93
Eratosthenes, 295
Eratosthenes’s sieve, 295
Erdős, Paul, 299
essential prime divisor

quadratic form, 270
Euclid, 32

algorithm, 149
Euclidean algorithm, 149

extended, 156
Euler pseudoprime, 300
Euler’s Criterion, 273, 275
Euler, Leonhard, 186

Theorem, 257
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even permutation, 238
expansion

g-adic, 336
p-adic, 347

exponential function
complex numbers, 415
p-adic numbers, 399
real numbers, 369, 372

exponentiation
integers, 101
modular arithmetic, 251
natural numbers, 39
rational numbers, 140

extension
of a field, 437
quadratic, 437

factorial, 78
Fermat number, 308
Fermat prime, 308
Fermat pseudoprime, 298
Fermat, Pierre de, 181

Last Theorem, 180
Little Theorem, 257

Ferrari, Ludovico, 411
Fibonacci, 79
Fibonacci-number, 79
field, 140
finite sequence, 76
Fior, 410
floor, 142
Floyd cycle finding method, 312
Fontana, Nicolo, 410
form, 269

integral, 269
quadratic, 269
rational, 269

fraction, 136
denominator, 136
numerator, 136
reduced form, 153
simplify, 146, 153

Frobenius, Ferdinand Georg, 280
function, 57

Fundamental Theorem of Algebra, 423
Fundamental Theorem of Arithmetic,

174

g-adic expansion, 336
g-adic notation, 122
Gödel, Kurt, 386
Galois, Evariste, 426
Gauß’s Criterion, 276
Gauß, Carl Friedrich

Criterion, 276
Gauß, Carl Friedrich, 276
geometric progression, 117

ratio, 117
geometric sequence, 117
geometric series, 334
golden ratio, 162
graph, 20

connected, 21
directed, 109
edge, 20
of a map, 59
vertex, 20

greater than
natural numbers, 52

greatest common divisor, 147
group, 104, 256

associative, 104
automorphism, 414
homomorphism, 261
inverse, 105
isomorphism, 261
neutral element, 104

Hadamard, Jacques Salomon, 374
Hasse diagram, 106
Hasse’s Principle, 446
Hasse, Helmut, 107
Heine, H. Eduard, 364
Hensel, Kurt, 395
Hilbert symbol, 439, 444

product formula, 446
Hilbert, David, 440
homomorphism, 261
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Huygens, Christiaan, 378

identity map, 62
identity transformation, 62
image, 57, 61
imaginary part of a complex number,

413
Inclusion-Exclusion Principle, 222
incommensurable, 162
index set, 117
infimum

real numbers, 361
infinite continued fraction, 376
infix notation, 92
initial part of a sequence, 82
injection, 61
injective, 61
integers, 96

absolute value, 102
addition, 96
associative, 98
commutative, 98
opposite, 98
zero element, 98

common divisor, 147
common multiple, 155
divisor, 146
exponentiation, 101
greatest common divisor, 147
least common multiple, 155
multiple, 146
multiplication, 100
associative, 101
commutative, 101
distributive over addition, 101
unity element, 101

ordering, 102
product, 100
relatively prime, 147
sum, 97

integral
p-adic, 346

integral domain, 105
intersection of sets, 11

inverse
group, 105
of a map, 62

inverse image, 61
irrational number, 355
isomorphism, 261
iterate of a transformation, 81
iteration, 75

Jacobi symbol, 281
Jacobi, Carl, 281

Kummer, Ernst Eduard, 219

Lagrange, Joseph-Louis, 463
least common multiple, 155
least element, 106
Legendre symbol, 274
Legendre, Adrien-Marie, 274
Lehmer, D.H., 187
Leibniz, Gottfried, 202, 373
less than, 52
limit, 331
linear Diophantine equation, 153
logarithm

real numbers, 371
lower bound, 108

real numbers, 361
Loyd, Samuel, 242
Lucas, F. Edouard, 4, 187

map, 57
bijective, 61
codomain, 57
composition, 63

associative, 64
domain, 57
graph, 59
identity, 62
image

of a subset, 61
of an element, 57
of the map, 61

injective, 61
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inverse, 62
inverse image, 61
prolongation, 59
restriction, 59
surjective, 61

mathematical induction
principle of, 33

Mersenne prime, 187
Mersenne, Marin, 187
metric, 326
Miller, Gary, 305
Möbius function, 185
Möbius inversion, 185
modular arithmetic

abelian group, 249
addition, 249
commutative ring, 250
exponentiation, 251
order, 256
p-adic, 395
primitive root, 263
product, 250
square, 272
sum, 249

modulus of a complex number, 414
Möbius, August, 185
monoid, 40

abelian, 40
cancellation law, 40

multiple, 146
multiplication

natural numbers, 38
multiplicative arithmetic function, 184

natural number
squarefree, 185

natural numbers, 29–54
Cantor representation, 132
addition, 36
associative, 40, 41
cancellation law, 40, 44
commutative, 40, 43
neutral element, 43
zero element, 40

binary notation, 124
difference, 51
exponentiation, 39
rules, 50

g-adic notation, 122
greater than, 52
hexadecimal notation, 125
less than, 52
m-th power, 53
multiple, 53
multiplication, 38
associative, 46, 49
cancellation law, 46, 49
commutative, 46, 47
distributive over addition, 46,

48
unit element, 47
unity element, 46

octal notation, 124
ordering, 51
power, 39
product, 38
subtraction, 51
successor, 30
sum, 36

negative real number, 355
neutral element

abelian group, 104
addition
integers, 98
natural numbers, 40, 43

group, 104
multiplication
integers, 101
natural numbers, 46, 47

Newton, Isaac, 202
binomial formula, 202

norm
on a quadratic extension, 436

null sequence, 327
p-adic, 344

number of elements, 68
numeral system, 30, 115–133
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odd permutation, 238
opposite

abelian group, 104
addition
integers, 98

order, 256
group, 256
modular arithmetic, 256

ordered pair, 59
ordered set, 93, 106
ordering, 93

bounded, 108
integers, 102
least element, 106
lower bound, 108
natural numbers, 51
rational numbers, 141
real numbers, 355
upper bound, 108

p-adic expansion, 347
p-adic numbers, 391

absolute value, 392
complete, 393
exponential function, 399
field, 392
integral, 394
congruent, 395
division with remainder, 394
expansion, 394

product, 392
sum, 392

Pépin’s test, 308
partition, 91

system of representatives, 91
class, 90, 91
representative, 91

of a codomain, 90
Pascal’s triangle, 196
Pascal, Blaise, 197
Peano axioms, 32
Peano’s axioms, 63, 76
Peano, Giuseppe, 33
Pell’s equation, 458

Pépin, Jean François Theophile, 308
perfect number, 186
period, 82
permutation, 62, 231

disjoint, 233
even, 238
odd, 238
orbit, 231
sign, 238
support, 233

Pocklington, 309
Pollard, J., 311
Pollard-rho, algorithm, 311
polynomial, 142

cubic, 142
degree, 142
leading coefficient, 142
quadratic, 142

polynomial equation, 142
polynomial sequence, 208

degree, 208
Pomerance, Carl, 187
positive real number, 355
postulate, 31
power set, 15
prime, 445
prime divisor, 171
prime factorization, 172, 313
prime number, 171
Prime Number Theorem, 374
primitive notion, 31
primitive Pythagorean triple, 178
primitive root, 263
principle of mathematical induction,

33
progression

geometric, 117
prolongation

of a map, 59
proper divisor, 171
pseudoprime, 297
puzzle, 14-15-, 241
Pythagorean triple, 178

479



Index

quadratic form, 269
essential prime divisor, 270
representation
integral, 269
rational, 431

quadratic number, 451
quadratic numbers

discriminant, 452
reduced, 453

Quadratic Reciprocity Law, 278
quadratic residue, 272

Rabin, M, 305
ratio, 117
rational number

denominator, 148
rational numbers, 136

absolute value, 325
addition, 138
commutative ring, 138
distance, 326
exponentiation, 140
field, 139
ordering, 141

real numbers, 354
absolute value, 356
complete, 357
exponential function, 369, 372
infimum, 361
logarithm, 371
lower bound, 361
negative, 355
ordering, 355
positive, 355
product, 354
sum, 354
supremum, 361
upper bound, 361

real part of a complex number, 413
Recorde, Robert, 9
recursive, 77
reduced quadratic number, 453
reflexive

relation, 92

relation, 92
antisymmetric, 93
reflexive, 92
symmetric, 93
transitive, 92

relatively prime, 147
repeating sequence, 82
representation

quadratic form, 269
representative, 91
residue class modulo m, 247
restriction

of a map, 59
Riemann Hypothesis, 427
Riemann zeta function, 426
Riemann, Georg Friedrich Bernhard,

427
ring, 105

homomorphism, 261
inverse, 139
isomorphism, 261

Rivest, Ronald, 317
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