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The Acoustical Society of America 

On 27 December 1928 a group of scientists and engineers met at Bell Telephone 
Laboratories in New York City to discuss organizing a society dedicated to the field 
of acoustics. Plans developed rapidly, and the Acoustical Society of America (ASA) 
held its first meeting on 10–11 May 1929 with a charter membership of about 450. 
Today, ASA has a worldwide membership of about 7000. 

The scope of this new society incorporated a broad range of technical areas 
that continues to be reflected in ASA’s present-day endeavors. Today, ASA serves 
the interests of its members and the acoustics community in all branches of 
acoustics, both theoretical and applied. To achieve this goal, ASA has established 
Technical Committees charged with keeping abreast of the developments and needs 
of membership in specialized fields, as well as identifying new ones as they develop. 

The Technical Committees include acoustical oceanography, animal bioacous-
tics, architectural acoustics, biomedical acoustics, computational acoustics, engi-
neering acoustics, musical acoustics, noise, physical acoustics, psychological and 
physiological acoustics, signal processing in acoustics, speech communication, 
structural acoustics and vibration, and underwater acoustics. This diversity is one of 
the Society’s unique and strongest assets since it so strongly fosters and encourages 
cross-disciplinary learning, collaboration, and interactions. 

ASA publications and meetings incorporate the diversity of these Technical 
Committees. In particular, publications play a major role in the Society. The Journal 
of the Acoustical Society of America (JASA) includes contributed papers and 
patent reviews. JASA Express Letters (JASA-EL) and Proceedings of Meetings on 
Acoustics (POMA) are online, open-access publications, offering rapid publication. 
Acoustics Today, published quarterly, is a popular open-access magazine. Other key 
features of ASA’s publishing program include books, reprints of classic acoustics 
texts, and videos. ASA’s biannual meetings offer opportunities for attendees to share 
information, with strong support throughout the career continuum, from students 
to retirees. Meetings incorporate many opportunities for professional and social 
interactions, and attendees find the personal contacts a rewarding experience. These 
experiences result in building a robust network of fellow scientists and engineers, 
many of whom become lifelong friends and colleagues.
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viii The Acoustical Society of America

From the Society’s inception, members recognized the importance of developing 
acoustical standards with a focus on terminology, measurement procedures, and 
criteria for determining the effects of noise and vibration. The ASA Standards 
Program serves as the Secretariat for four American National Standards Institute 
Committees and provides administrative support for several international standards 
committees. 

Throughout its history to present day, ASA’s strength resides in attracting the 
interest and commitment of scholars devoted to promoting the knowledge and 
practical applications of acoustics. The unselfish activity of these individuals in the 
development of the Society is largely responsible for ASA’s growth and present 
stature.
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Preface to the Third Edition 

Published originally by Academic Press in 1998, Nonlinear Acoustics continues to 
prove useful both as a resource for established researchers and as a textbook for 
graduate students. Its sustained utility over the past quarter century is due to its 
emphasis on basic theory, and as noted in the Preface to the First Edition, individual 
chapters were written by experts on their respective topics, the notation is largely 
consistent throughout the book, and there is extensive cross-referencing between 
chapters. The level of presentation is oriented toward graduate students, with the first 
eight chapters providing the foundation for a semester course on the fundamentals 
of nonlinear acoustics. 

Apart from minor corrections, the text has remained unaltered in both the 
second edition, published by Acoustical Society of America in 2008, and in the 
present edition, published by Springer. Publication of the second edition by ASA, 
a nonprofit organization, permitted the book to be sold at a substantially reduced 
cost. Thanks to support from Applied Research Laboratories, University of Texas 
at Austin, Springer has made the electronic version of the third edition open access, 
permitting free downloads worldwide. 

As an addendum to the Preface to the First Edition, a list of the currently triennial 
International Symposia on Nonlinear Acoustics (ISNA) covering the first 50 years 
of this series, from 1968 to 2018, may be found in the ASA publication Acoustics 
Today.1 

Austin, TX, USA Mark F. Hamilton 
January, 2024

1 Sapozhnikov, O. A., Khokhlova, V. A., Cleveland, R. O., Blanc-Benon, P., and Hamilton, M. F. 
(2019). Nonlinear acoustics today. Acoustics Today 15, 55–64; see p. 62. At the time of publication, 
the anticipated years of the symposia in Oxford and Nanjing that appear in Fig. 8 were postponed 
by one year because of COVID-19. 
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Preface to the Second Edition 

On this 10th anniversary of the publication of Nonlinear Acoustics by Academic 
Press, we are happy that the book has proven useful not only as a reference but 
also as a graduate level textbook at various universities. As a result of a merger, in 
recent years the book has been distributed by Elsevier. We are indebted to Elsevier 
for its release of the copyright in order for the Acoustical Society of America, as a 
nonprofit organization, to offer the present edition at a fraction of the previous cost 
and thus make it more accessible to students. We are also grateful to the Society for 
providing us with the opportunity to correct errors that were discovered in the first 
edition. Except for these minor corrections, the present edition is identical to the 
first. 

Austin, TX, USA Mark F. Hamilton 
May, 2008 David T. Blackstock
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Preface to the First Edition 

This book is an introductory text on the theory and applications of nonlinear 
acoustics. For nearly 30 years the editors have, between them, taught a graduate 
course on this topic at the University of Texas at Austin. During this period the 
field has grown enormously. Many of the advances in theory have been inspired 
by measurements and applications. Because nonlinear acoustics now encompasses 
so many diverse areas, we decided that the best approach for a new book would 
be for individual chapters to be written by experts on their respective subjects. The 
book is meant to be a useful resource and reference for scientists and engineers 
and at the same time serve as a text for a graduate level course on nonlinear 
acoustics. Each chapter is written at a level and in a style that is oriented toward 
classroom instruction. Moreover, consistent notation, insofar as practicable, and 
extensive cross-referencing between chapters have been used. Although we had 
graduate students in engineering and physics in mind, the material is accessible 
to anyone who is well grounded in the concepts of linear physical acoustics. 

As chronicled in Chap. 1, the seeds of theoretical nonlinear acoustics were 
planted in the eighteenth and nineteenth centuries by the mathematicians and 
physicists who laid the foundations for fluid mechanics and wave motion. The 
principal contributions during this era are summarized in a benchmark article 
published by Lord Rayleigh at the beginning of the twentieth century.1 The current 
era of nonlinear acoustics may be traced to an innovative application referred to as 
the parametric array (Chap. 8), the theory for which was presented in 1960 by P. 
J. Westervelt at the 59th meeting of the Acoustical Society of America (ASA).2 

Experimental confirmation of the parametric array was described by Bellin and 
Beyer in the very next paper.3 Concurrently in the former Soviet Union, substantial 
progress in modeling the propagation of finite amplitude sound by using the

1 Rayleigh, Lord (1910). Aerial plane waves of finite amplitude. Proc. Roy. Soc. A 84, 247–284. 
2 Westervelt, P. J. (1960). Parametric end-fire array. J. Acoust. Soc. Am. 32(A), 934–935. 
3 Bellin, J. L. S., and Beyer, R. T. (1960). Experimental investigation of the parametric end-fire 
array. J. Acoust Soc. Am. 32(A), 935. 
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xvi Preface to the First Edition

Burgers equation was made by R. V. Khokhlov and coworkers.4 These developments 
spawned a surge of related research in the 1960s, in response to which a symposium 
devoted exclusively to nonlinear acoustics was held in 1968 at the Navy Underwater 
Sound Laboratory, New London, Connecticut. The New London meeting has since 
been labeled the 1st International Symposium on Nonlinear Acoustics (ISNA). 
Fourteen symposia in this series have been held, the last five in Japan (1984), the 
former USSR (1987), the US (1990), Norway (1993), and China (1996).5 At the 
same time in the semi-annual ASA gatherings, papers on nonlinear acoustics have 
grown from just a handful at each meeting to enough for one or two full sessions 
per meeting. 

The following guidance is suggested for those who wish to use the book as a 
course text. The first half of the book, Chaps. 1–7, develops the physical concepts, 
mathematical models, and classical methods of solution that form the principal 
theoretical framework of nonlinear acoustics. Benchmark experiments are also 
described. These chapters, or at least portions of them, are appropriate as the core 
for an introductory course. The material is largely self-contained. In the interest of 
brevity, some equations are presented without derivation because they are derived 
in introductory texts on fluid mechanics (e.g., general conservation equations for 
thermoviscous fluids) and physical acoustics (e.g., various linear relations between 
acoustical quantities). For a text on fluid mechanics see the one by Landau and 
Lifshitz.6 For acoustics see Pierce’s book.7 

The second half of the book, Chaps. 8–15, covers special topics and applications, 
both theory and experiment. These chapters may be read in greater or lesser depth 
depending on the time available in a course and the interests of the students and 
instructor. Although independent of each other, they build upon the basic material 
presented in the first half of this book. Because of the complexity or breadth of 
various subjects that are covered, a number of sections in the second half are written 
as reviews. The chapter topics are indicative of current research areas in nonlinear 
acoustics. 

The editors relied upon contributions and efforts from many individuals for 
the successful completion of this book. Allan Pierce is gratefully acknowledged 
for originally inviting the editors to prepare this book as a volume in the now 
discontinued series Physical Acoustics published by Academic Press. The authors 
are thanked for writing their chapters with student readers in mind, and for their

4 Soluyan, S. I., and Khokhlov, R. V. (1961). Propagation of acoustic waves of finite amplitude in a 
dissipative medium. Vestn. Mosk. Univ. (Series III), Fiz. Astron. 3, 52–61. See also Rudenko, O. V., 
and Soluyan, S. I. (1977). Theoretical Foundations of Nonlinear Acoustics (Plenum, New York). 
For earlier work on the Burgers equation, see Sect. 4.5.1 of the present book. 
5 For a listing and description up through the 12th ISNA, see Hamilton, M. F., and Blackstock, D. 
T., eds. (1990). Frontiers of Nonlinear Acoustics: 12th ISNA (Elsevier, London). 
6 Landau, L. D., and Lifshitz, E. M. (1987). Fluid Mechanics, 2nd edition (Pergamon Press, New 
York). 
7 Pierce, A. D. (1989). Acoustics—An Introduction to Its Physical Principles and Applications 
(Acoustical Society of America, New York). 
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patience with editorial changes requested for consistency and completeness. Yurii 
Il’inskii and Christopher Morfey provided invaluable advice on technical content. 
Former and current graduate students of the editors are in many ways responsible 
for the philosophy of this book through their responses to classroom lectures 
and questions associated with their research. Peggy Dickens was instrumental in 
preparing many of the figures. Finally, the tone of the book has certainly been 
influenced by the basic research in nonlinear acoustics performed by the editors 
and their students, most of which was supported by contracts and grants provided 
by the Air Force Office of Scientific Research (DTB), the National Aeronautics and 
Space Administration (DTB), the Office of Naval Research (DTB and MFH), the 
National Science Foundation (MFH), and the David and Lucile Packard Foundation 
(MFH). 

Austin, TX, USA Mark F. Hamilton 
May, 1997 David T. Blackstock 
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(e.g., P is at times used for dimensionless sound pressure rather than total pressure), 
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.D/Dt . ∂/∂t u , material derivative = + ·∇
e . internal energy per unit mass =
f . frequency =
h . e P/ρ, enthalpy per unit mass = +√
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Pr . μcp/κ , Prandtl number =
r .= radial distance in spherical or cylindrical coordinates
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1.1 Introduction 

Although a book on nonlinear acoustics need not begin with the history of the 
subject, the chronology of actual discoveries and advances provides a logical study 
plan. Moreover, seeing the difficulties, mistakes, and triumphs as they actually 
developed offers motivation and appreciation that might otherwise be hard to 
convey. 

A very detailed understanding of linear acoustics has developed from experi-
ments and theories dating back to antiquity. We know the properties of small-signal 
sound waves in great detail: propagation, reflection from and transmission through 
interfaces, standing-wave fields, refraction, diffraction, absorption and dispersion, 
and so on. By comparison, our understanding of nonlinear acoustics is exceedingly 
limited. 

Although nonlinear acoustics has expanded enormously in the last 40 years, 
the field itself is very old. The wave equation for finite-amplitude sound in fluids 
was developed at about the same time as the wave equation for small signals. 
For the first 200 years, however, progress was very slow. Two reasons are offered. 
First, because ordinary linear acoustics does an outstanding job of explaining most 
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acoustical phenomena, the need to understand finite-amplitude waves has not, until 
recently, been great. Second, the nonlinear mathematics necessary to describe finite-
amplitude sound has been a very difficult lock to pick. 

This chapter is about pioneering lock pickers, from Euler, who started it all, to 
Fay and Fubini at the brink of the modern era. Almost all their efforts were devoted 
to unraveling the mysteries of propagation of plane waves of finite amplitude in 
gases. Later work on propagation, described in several subsequent chapters of this 
book, expands our knowledge to cover more complicated geometries, media other 
than gases, and modern applications. The modern era has its own lock pickers. 
Because of the efforts of Burgers, Hopf, Cole, and Lighthill, the once very difficult 
problem of finite-amplitude propagation in dissipative fluids is no longer a mystery. 
And thanks to Westervelt, Khokhlov, and Zabolotskaya, the diffraction door is now 
open. 

1.2 1759–1860: The Classical Era 

The theoretical description of finite-amplitude sound has its origins in Euler’s 
formulation of the equations that bear his name (Euler, 1755), 

.Continuity:
Dρ

Dt
+ ρ∇ ·u = 0, . (1.1) 

Momentum: ρ 
Du 
Dt 

+ ∇P = F, (1.2) 

where . ρ is density, . u is particle velocity, P is (total) pressure, . F is an external 
body force per unit volume, and t is time. The material derivative .D/Dt represents 
the combination .∂/∂t + u · ∇. (If a wave equation is to be obtained, Euler’s 
equations must be supplemented by a pressure–density relation. More about this 
below.) The era ended approximately a century later with the beautiful results 
of Earnshaw (1860) and Riemann (1860). The scope of the work was limited to 
plane waves in lossless gases. Moreover, with the notable exception of Riemann, 
investigators confined their attention to progressive waves. Nevertheless, the era is 
very significant: It produced the basic propagation laws for continuous disturbances 
of finite amplitude. 

1.2.1 Preliminaries: Gas Laws and the Speed of Sound 

Certain gas laws, along with the sound speeds they imply, figure prominently in our 
story. Boyle’s law, 

.P/P0 = ρ/ρ0, (1.3)
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where . P0 and . ρ0 are the ambient pressure and ambient density, respectively, was 
well known in the time of Newton (seventeenth century) and Euler (eighteenth 
century). Its use in connection with sound propagation leads to the following 
formula for sound speed: 

.b = √
P0/ρ0. (1.4) 

We now know this to be the sound speed for an isothermal gas; the symbol b denotes 
its association with Boyle’s law. The conventional symbol c, reserved for sound 
speed in an isentropic fluid, is defined as 

.c2 = (∂P/∂ρ)s, (1.5) 

where s is entropy per unit mass. Thus for a so-called adiabatic gas 

.P/P0 = (ρ/ρ0)
γ , (1.6) 

where . γ is the ratio of specific heats, the sound speed is 

.c = √
γP/ρ, c0 = √

γP0/ρ0. (1.7) 

The first form is for waves of any amplitude; the second form is restricted to small 
signals. Notice that no distinction is necessary for an isothermal gas; Eq. (1.4) gives  
the speed regardless of the strength of the wave. 

The first calculation of the speed of aerial waves was done by Newton (1686), 
who obtained Eq. (1.4).1 Newton’s prediction was about 16% lower than measured 
values, and the discrepancy was one of the mysteries of physics for well over 
a century. Indeed, one motivation for work on finite-amplitude waves was the 
suspicion that the discrepancy might be due to the small-signal assumption. Could 
the measured sound speed perhaps be explained as a finite-amplitude effect? 

The correct explanation for the measured value of the speed of sound was finally 
given more than a century later. Laplace (1816) argued that heat does not flow 
when sound propagates. Instead, the local temperature changes in accordance with 
the compressions and expansions of the air. This makes the “elasticity of the air” 
greater than Newton assumed. As a result, Newton’s formula should be corrected by 
multiplying it by .

√
γ . Laplace thus obtained the second form of Eq. (1.7). Although 

Laplace’s formula is now universally accepted (and interpreted as the adiabatic 
speed of sound), old mysteries die hard. Some investigators in the first half of the 
nineteenth century dismissed Laplace’s argument and continued to look to finite-
amplitude waves for the explanation.

1 Newton is often erroneously criticized for using Boyle’s law and thus assuming that sound 
propagation is isothermal rather than adiabatic. In the first place, Newton did not invoke Boyle’s 
law; he was apparently unaware of the connection between his prediction and Boyle’s law 
(Truesdell, 1956). More important, the concepts of isothermal and adiabatic thermodynamic 
pressure were not even formulated until long after the time of Newton (Hunt, 1978). 



4 D. T. Blackstock

One final preliminary item is introduced here. For an arbitrary (isentropic) 
pressure–density relation, it is convenient to represent the thermodynamic state of 
the fluid by the quantity . λ, defined by2 

.λ =
⎰ ρ

ρ0

(c/ρ) dρ. (1.8) 

Two special cases are as follows: 

.Isothermal gas: λ = b ln(ρ/ρ0), . (1.9) 

Adiabatic gas: λ = 
2 

γ − 1 
(c − c0). (1.10) 

If . λ is introduced in the plane-wave form of Euler’s equations and body forces are 
neglected, the following symmetric pair of equations results: 

.Continuity:
∂λ

∂t
+ u

∂λ

∂x
+ c

∂u

∂x
= 0, . (1.11) 

Momentum: 
∂u 
∂t 

+ u 
∂u 
∂x 

+ c 
∂λ 
∂x 

= 0. (1.12) 

A form of these equations was introduced by Riemann (1860), and a similar 
approach, although in much different notation, can be found in the article by 
Earnshaw (1860). 

1.2.2 From Euler to Poisson 

As advertised, our story begins with Euler. Besides establishing the foundation of 
classical hydrodynamics and contributing much to linear acoustics, Euler (1759) 
also flirted briefly with an equation for finite-amplitude waves. Using material 
coordinates .a, t (today commonly called “Lagrangian” coordinates), he derived 
from first principles the following equation for aerial plane waves: 

.b2 ∂2ξ

∂a2
−

⎛
1 + ∂ξ

∂a

⎞2
∂2ξ

∂t2
= 0, (1.13) 

where . ξ is particle displacement and a is particle rest position. The coefficient . b2

identifies the air as having the properties of Boyle’s law.3 In his 1759 derivation

2 In this chapter, . λ does not represent wavelength. 
3 Euler’s notation for the coefficient of .∂2ξ/∂a2 is 2Gh, where  G is the distance a mass falls in 
1 s (his 2G is thus the acceleration due to gravity g), .h = P0/ρ0g is the height of a uniform
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Euler made a slip and had .1 + (∂ξ/∂a)2 in place of .(1 + ∂ξ/∂a)2 (Truesdell, 
1954). Euler published the correct equation in 1765 (Euler, 1765), in somewhat 
more general form (allowing for a nonuniform ambient density . ρ0), and a year later 
gave the corresponding version in spatial coordinates (Euler, 1766).

Although out of chronological order, the version of Eq. (1.13) that holds for an 
adiabatic gas is given here for reference: 

.c2
0
∂2ξ

∂a2 −
⎛

1 + ∂ξ

∂a

⎞γ+1
∂2ξ

∂t2 = 0. (1.14) 

This equation was obtained by Earnshaw (1860), but Truesdell (1956) points out 
that the form of the equation was also known to Brandes (1805). 

Euler did nothing further with the exact wave equation except to propose 
tentatively that if the nonlinear terms were taken into account, the predicted 
propagation speed would be higher than the Newtonian value b, that is, closer to the 
experimentally measured speed. This kind of argument was to be advanced time and 
again for almost a hundred years as a means of solving the sound speed dilemma. 

Lagrange (1760–1761), after deriving anew another incorrect equation . [(1 +
∂ξ/∂a) in place of .(1 + ∂ξ/∂a)2 in Eq. (1.13)], nevertheless obtained a very 
interesting solution valid to second order, .ξ = ψ(a − bt) + 1

4bt[ψ '(a − bt)]2, 
where . ψ is an arbitrary function and . ψ ' is its derivative. In a clever step, Lagrange 
saw that this is a two-term expansion of 

.ξ = ψ
⎾
a − (b + 1

4u)t
⏋
, (1.15) 

where u is the particle velocity. Lagrange correctly interpreted the factor . b + 1
4u

as the speed of propagation. Having grasped this important fruit, he immediately 
threw it away because “the new formula would destroy the uniformity of the speed 
of sound and would make it depend in some way on the nature of the original 
disturbances, that which is contrary to all experiments.” He concluded that “the 
hypothesis of infinitely small disturbances is the only one acceptable in the theory 
of the propagation of sound.”4 

atmosphere, and . P0 and . ρ0 are sea-level values of the pressure and density, respectively. Equation 
(1.13) may be derived as follows: In material coordinates, the equation of continuity is . ρ0 =
ρ(1 + ∂ξ/∂a) and the momentum equation is .ρ0∂

2ξ/∂t2 + ∂P/∂a = 0, or, for a Boyle’s law gas,  
.ρ0∂

2ξ/∂t2 + b2∂ρ/∂a = 0. Elimination of . ρ between the continuity and momentum equations 
leads to Eq. (1.13).
4 If Lagrange had started with the correct equation, Eq. (1.13), and if he had put his solution in 
terms of u instead of . ξ , he would have obtained .u = g[a − (b + u)t], which closely resembles 
Poisson’s correct result, Eq. (1.17). The two expressions are not quite the same, however, because 
Lagrange used material coordinates while Poisson used spatial coordinates. The exact result for 
material coordinates is .u = g[a − b(ρ/ρ0)t] (Blackstock, 1962). On the other hand, within the 
accuracy of Lagrange’s method, the exact result reduces to .u = g[a − (b + u)t]. 
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Poisson’s (1808) very important contribution was to find an exact solution for 
progressive waves of finite amplitude. He assumed Boyle’s law and used spatial 
coordinates .x, t (today commonly called “Eulerian” coordinates). Although Poisson 
used velocity potential . φ, defined by .u = ∂φ/∂x, his work is presented here in terms 
of particle velocity. The wave equation for this case is (see Euler, 1766)5 

.b2 ∂2u

∂x2 − ∂2u

∂t2 = ∂

∂x

⎛
∂u2

∂t
+ u2 ∂u

∂x

⎞
. (1.16) 

Poisson’s exact solution, the slightly incorrect form of which Lagrange had thrown 
away, is 

.u = g[x − (u + b)t], (1.17) 

where g is an arbitrary function. This solution is valid for outgoing waves (waves 
traveling in the direction of increasing x). Poisson regarded it necessary to couple 
this equation with the auxiliary relation 

.
∂u

∂t
+ b

∂u

∂x
+ u

∂u

∂x
= 0 (1.18) 

in order to complete the solution. Today we look upon Eq. (1.18) as a reduced 
wave equation valid for outgoing disturbances. Poisson also found the solution for 
incoming waves (waves traveling in the direction of decreasing . x), u = G[x − (u−
b)t]. 

Ironically, Poisson failed to comprehend the far-reaching implication of his 
solutions. He focused his attention on a pulse that begins and ends with zero particle 
velocity. Since propagation would apparently not change the length of the pulse, he 
concluded that all “sound, loud or faint, is transmitted with the same speed.” 

Actually, Poisson’s solutions should be interpreted as providing a special form 
of the following law of propagation of plane progressive waves, which we shall call 
the first law: 

.dx/dt |u = u ± b, (1.19) 

where the . + sign is for outgoing waves and the . − sign is for incoming waves.6 

Thus, while it is true that the beginning and end of Poisson’s pulse propagate with 
the small-signal speed b, within the pulse the propagation speed varies.7 This fact

5 To obtain Eq. (1.16), start with Eqs. (1.11) and (1.12), note that .c = b for a Boyle’s law gas, and 
then eliminate . λ between the two equations. 
6 Hereinafter, when multiple signs are used, the upper sign pertains to outgoing waves. 
7 Thus “speed of sound” is an appropriate name only for small signals. For finite-amplitude waves, 
sound speed is not the same as propagation speed. 
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and its far-reaching consequence were not to be recognized until more than 40 years 
later (Stokes, 1848). 

For future reference, the first law is restated here in a more general form 
appropriate for arbitrary lossless fluids (Earnshaw, 1860): 

.dx/dt |u = u ± c, (1.20) 

where c is defined by Eq. (1.5). 

1.2.3 Lossless Theory at Its Zenith 

Although nineteenth century acoustics generally belongs to European scientists, in 
midcentury an American named Eli W. Blake (1848) published a paper that contains 
an important law concerning finite-amplitude sound. Yet another who was still not 
convinced by Laplace’s calculation of the speed of sound, Blake reasoned that the 
propagation speed of a pulse depends on the strength of the pulse. As the pulse 
passes over a group of particles, it compresses them more or less in accordance with 
its amplitude. The more compressed the particles, the more particles are passed over 
by the pulse in a given time. Hence, the propagation speed depends on the density 
. ρ. In our notation, Blake’s formula is .da/dt |u = b(ρ/ρ0). The quantity .da/dt |u is 
the propagation speed in material coordinates, i.e., the number of particles traversed 
per unit time. Indeed, it is the correct material-coordinate version of the first law 
for an isothermal gas, Eq. (1.19) (outgoing waves). To Blake, the significance of his 
result was the opportunity to bring the theoretical value of the speed of sound into 
agreement with the measured value. All one needs to do is assume a large enough 
value of . ρ. Conversely, disturbances associated with smaller values of . ρ are not 
audible to the ear. By modern calculation this implies a threshold of hearing in the 
neighborhood of 180 dB (re 20 . μPa)! Blake’s work went unappreciated and almost 
unnoticed (Helmholtz, 1852). 

The lengthy period of dormancy following Poisson’s definitive, but still uninter-
preted, solution was ended with a burst of activity in 1848. In a squabble with Airy 
over the existence of plane waves of sound, Challis (1848) invoked Poisson’s exact 
solution for a plane wave of initially sinusoidal shape .u = u0 sin k[x − (b + u)t], 
where .k = ω/b is wave number, . ω is angular frequency, and . u0 is amplitude. He 
showed that at time .t = π/2ku0 the wave peak is predicted to be at the same point 
in space as a zero. In Challis’s words, “the points of no velocity are also points 
of maximum velocity. This is manifest absurdity.” He concluded, “Plane waves are 
thus shown to be physically impossible.” 

This set the stage for an extraordinary contribution by Stokes (1848), who 
immediately picked up the “very remarkable difficulty” Challis had pointed out. 
He gave for the first time a clear description of the waveform distortion implied 
by Poisson’s solution. Points on the waveform for which u is positive travel faster 
than points for which u is negative. Stokes’s sketches, reproduced in Fig. 1.1,
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Fig. 1.1 The first sketches showing waveform distortion caused by the dependence of propagation 
speed on particle velocity (Stokes, 1848). The upper trace is the original waveform; the lower after 
some time has elapsed. 

demonstrate the distortion. They are the first illustrations of “waveform steepening” 
now commonly found in textbooks. 

Recognition of the distortion implied by Poisson’s solution opened up a whole 
new vista. First, Stokes calculated the minimum time . ̄t required for a continuous 
wave to develop a vertical slope.8 Thereafter, the wave motion would have to be 
qualitatively different. In a masterpiece of understatement, he muses 

Of course, after the instant at which the [slope] becomes infinite, some motion or other will 
go on, and we might wish to know . . . the nature of that motion. 

For the first time the concept of a shock wave appears, called by Stokes a “surface 
of discontinuity.” He derived two conservation laws, conservation of mass and 
conservation of momentum, that must hold across the discontinuity. Later these 
would come to be known as two of the three Rankine–Hugoniot shock relations 
[see Eqs. (1.34) and (1.35)], but Stokes received no credit for being the first to derive 
them. His analysis suffers from the lack of the necessary tools of thermodynamics, 
which at the time were not yet well developed. In particular, he did not realize 
that shock propagation is accompanied by energy dissipation and that expansion 
shocks are impossible (Rayleigh, 1910).9 Even so, Stokes’s remarks are prescient. 
He concluded that shock formation destroys the progressive wave nature of the 
wave motion: “Apparently, something like reflexion must take place.” He also saw 
that viscosity would limit the formation of shocks and keep true discontinuities 
from forming or “render the motion continuous again if it were for an instant 
discontinuous.” 

Stokes’s paper touched off a torrent of controversy; a total of twelve papers 
by Challis, Stokes, and Airy followed during the next twelve months. Probably 
the most significant of these is one by Airy (1849), who argued by analogy with

8 For the periodic wave considered by Challis, Stokes found that .t̄ = 1/ku0, which is the time 
needed for a point just behind a zero to catch up with the zero. The time .t = π/2ku0 picked by 
Challis is that needed for the peak behind to catch up with the zero. 
9 The error apparently weighed heavily on Stokes. In the version of his 1848 paper contained in 
his collected works (Stokes, 1883), Stokes omitted the last half of the article and replaced it with a 
paragraph explaining his error. From the modern vantage point, however, Stokes had nothing to be 
ashamed of. Not only was his 1848 paper a turning point in the development of nonlinear acoustics, 
it contains observations that were as much as a century ahead of their time. 
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water waves that something like a tidal bore must be formed as a result of the 
cumulative distortion suffered by a sound wave. He scolded Challis, remarking that 
“the expression ‘a plane wave of air is impossible’ stands on precisely the same 
footing as the expression ‘a tide in the Severn is impossible.’ ” Using successive 
approximations, Airy also found that when the wave motion is due to a sinusoidally 
vibrating source, a second-harmonic component develops that grows with distance. 
Indeed, his expression, converted to pressure, shows the now familiar result that the 
relative pressure amplitude of the second harmonic increases linearly with distance, 
source frequency, and source amplitude. 

Perhaps the most important part of Airy’s paper, however, concerns a new partial 
solution of the exact differential equations. Airy credits De Morgan with first 
discovering this relation. For sound waves in an isothermal gas, the relation is 

.u = b ln(ρ/ρ0) (1.21) 

for outgoing waves. The more general form, valid for arbitrary (isentropic) fluids, 
was obtained by Earnshaw (1860) and independently by Riemann (1860): 

.λ = ±u. (1.22) 

We shall call Eq. (1.22) the  second law for plane progressive waves. For an 
isothermal gas [. λ given by Eq. (1.9)], Eq. (1.22) reduces to Airy’s result, Eq. (1.21). 
For an adiabatic gas [. λ given by Eq. (1.10)], one obtains 

.c = c0 ± 1
2 (γ − 1)u. (1.23) 

Perhaps the simplest way to describe this law is to say that it is an antecedent form 
of the characteristic impedance relation. In the case of an adiabatic gas, for example, 
Eqs. (1.6), (1.7), and (1.22) may be combined to yield 

.P/P0 =
⎾
1 + 1

2 (γ − 1)u/c0

⏋2γ /(γ−1)

. (1.24) 

This is the exact pressure–particle velocity relation. It shows that in general the 
characteristic impedance, defined as the ratio .p/u for an outgoing wave, where . p =
P − P0 is the acoustic pressure, varies from point to point along the wave. Only 
when the amplitude is low enough for a first-order expansion of Eq. (1.24) to be  
accurate does the characteristic impedance turn out to be the constant .ρ0c0. 

Earnshaw’s work (1860) represents the high-water mark of the era on the subject 
of progressive waves. It is a fitting valedictory. After rederiving the two laws by a 
new method, Earnshaw applied them to the now-classic problem of the wave motion 
generated by arbitrary movement of a piston in a lossless tube. His treatment was 
exhaustive. He began by considering waves in a gas obeying Boyle’s law, which 
was the equation of state most often used by previous investigators, moved on 
to the case of an adiabatic gas, and finally generalized his analysis to cover an 
arbitrary pressure–density relation .P = P(ρ). We give here his solution of the
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piston problem for an adiabatic gas. If the piston, located initially at .x = 0, has 
displacement .X(t) and velocity .U(t) = dX/dt , the solution is 

.u = U(φ), t > ±x/c0, . (1.25) 

φ = t − 
x − X(φ) 

βU(φ) ± c0 
, (1.26) 

where .β = 1
2 (γ + 1) is today called the coefficient of nonlinearity [see Eqs. (3.16)– 

(3.18)]. It is assumed that the piston starts from rest and that the gas is initially 
quiet. The parameter . φ in Earnshaw’s solution represents the time a given point on 
a waveform—e.g., peak, trough, or zero crossing—left the piston. Once the particle 
velocity is found, Eq. (1.24) is used to obtain the pressure. 

From Eq. (1.26), or from Eqs. (1.20) and (1.23), it can be seen that for an 
adiabatic gas, the propagation speed is 

.dx/dt |u = βu ± c0. (1.27) 

For this case, in place of Eq. (1.18), the reduced wave equation is 

.
∂u

∂t
± c0

∂u

∂x
+ βu

∂u

∂x
= 0, (1.28) 

the “Poisson” solution of which is, for outgoing waves, 

.u = g[x − (βu + c0)t]. (1.29) 

Although the Poisson and Earnshaw solutions appear very different, they are in 
fact equivalent. Observe that Eq. (1.29) applies to an initial-value problem, in which 
.g(x) represents the particle velocity everywhere in space at time .t = 0. Earnshaw, 
on the other hand, found the solution of a source problem, in which the velocity of 
the piston is specified for all time at the piston face. To adapt the Poisson solution 
to the piston problem, consider its equivalent form 

.u = f

⎛
t − x

βu + c0

⎞
. (1.30) 

Now let . φ stand for the argument of f , i.e., .u = f (φ), where .φ = t − x/(βu + c0). 
In this form the Poisson solution closely resembles the Earnshaw solution. The only 
difference is that f represents the source velocity at the origin .x = 0, whereas in 
the Earnshaw solution .U(t) represents the velocity at the moving point . X(t). The  
two solutions may be made to coincide by specifying identical source conditions, as 
shown in Sect. 4.2.1. 

Why physically does the propagation speed deviate from . c0? Earnshaw was the 
first to attempt an explanation. For a gas obeying Boyle’s law, the excess speed
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.(dx/dt |u − b) is simply u. Earnshaw saw that convection is the explanation. In 
his words, “we may consider the velocity u to be a wind velocity in that part of 
the medium . . . with the velocity .[b] imposed upon the wind.” For an adiabatic 
gas, however, he noted that the simple explanation is not sufficient. In this case, 
the excess propagation speed is .βu = 1

2 (γ + 1)u [see Eqs. (1.20) and (1.23), 
outgoing waves], which result he felt “renders the property of [wind superposition] 
inapplicable here.” Actually the excess speed can be expressed as the sum of two 
terms, .βu = u + 1

2 (γ − 1)u, to show that the wind is still at work; the second 
term is due to nonlinearity of the pressure–density relation.10 In this connection, the 
often-used phrase “nonlinearity of the medium” is appropriate. 

Among Earnshaw’s other contributions in this long work are the following: 

1. A discussion of the formation of shocks (he called them bores), including a 
calculation of the time and place at which a shock first occurs. But Earnshaw 
thought rarefaction shocks possible. 

2. A rather fuzzy argument that the shock speed would exceed . c0. 
3. A calculation of the speed at which a piston must be withdrawn to create a 

vacuum, namely .2c0/(γ − 1), today called the escape speed. 
4. A deduction that waves of permanent shape are possible only if the pressure– 

density relation has the form .P = A − B/ρ. This was to become known as 
“Earnshaw’s law” (Rayleigh, 1910). That no distortion occurs in such a fluid 
may be shown by using Eqs. (1.5), (1.8), and (1.22) (outgoing waves) to obtain 
.c = c0 − u, in which case the first law reduces to .dx/dt |u = c0. 

A rather amusing sequence of events is connected with item 2. Earnshaw 
communicated the essential features of his treatise at the 28th Meeting of the 
British Association for the Advancement of Science in 1858. We now quote from 
an account apparently written by someone in the audience (Earnshaw, 1858): 

The velocity with which a sound is transmitted through the atmosphere depends on the 
degree of violence with which it was produced . . . so that sound of every pitch will travel 
at the same rate, if their genesis do not differ much in violence; but a violent sound, as the 
report of the firearms, will travel sensibly faster than a gentle sound, such as the human 
voice. This last property the author stated to have caused him much trouble, in consequence 
of its being directly opposed to the testimony of almost every experimenter. For many 
affirmed, as the direct result of their observations, and others assumed, that all sounds travel 
at the same rate. Fortunately, it transpired at the Meeting, that in Capt. Parry’s Expedition to 
the North [1819–20], whilst making experiments on sound, during which it was necessary 
to fire a cannon at the word of command given by an officer, it was found that the persons 
stationed at the distance of three miles to mark the arrival of the report of the gun, always 
heard the report of the gun before they heard the command to fire, thus proving that the 
sound of the gun’s report had outstripped the sound of the officer’s voice; and confirming in 
a remarkable manner the result of the author’s mathematical investigation, that the velocity 
of sound depends in some degree on its intensity.

10 To see why the second cause of distortion is nonlinearity of the P –. ρ relation, observe that if the 
P –. ρ relation is linear, as for Boyle’s law or for an adiabatic gas for which .γ = 1, the second term 
disappears. 
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So Earnshaw had the courage of his convictions, whereas Lagrange had not.11 

Up to this point, all the results presented are limited to progressive waves, or, as 
they are sometimes called, simple waves. Riemann (1860) found a way to deal with 
compound wave fields, that is, fields in which waves traveling in both directions are 
present, as for example in reflection. He obtained an important exact generalization 
of the first propagation law. In compound wave fields, propagation speeds . u ± c

are still appropriate, but in a more general sense. Form the following two linear 
combinations of u and . λ: 

.J+ = 1
2 (λ + u), J− = 1

2 (λ − u), (1.31) 

which are now called Riemann invariants (Riemann used the symbols r and s instead 
of . J+ and . J−, respectively). The generalization of the first law, Eq. (1.20), is 

.dx/dt |J+ = u + c, dx/dt |J− = u − c, (1.32) 

which means that the Riemann invariants . J+ and . J−, not u or . λ by themselves, are 
propagated with speeds .u + c and .u − c, respectively. Of course, progressive wave 
motion is included in Eq. (1.32) as a special case. 

For compound wave fields, no general counterpart of the second law exists; 
instead, u and . λ are related in a way that depends on the wave motion. Superposition 
does not work; the outgoing and incoming waves interact nonlinearly with each 
other. Nor is any easy solution analogous to that of Poisson or Earnshaw available. 
In the abstract, solutions are possible. The method, given by Riemann, is to invert 
the differential equations so that x and t become the dependent variables and . J+
and . J− the independent variables. A single, second-order linear(!) partial differential 
equation is obtained, but in this system the source or initial conditions are so tangled 
up that the solutions are extremely complicated. Few analytical examples have been 
worked out. 

The great unanswered question at the end of the classical era was, “What happens 
after shocks form?” See Stokes’s “masterpiece of understatement,” quoted previ-
ously. A theory had been developed that was quite successful. But its very success 
also proved its undoing. Inherent in the lossless equations of motion, which form 
the sole basis of the theory, is the assumption of continuous functions. Yet, except

11 The account above is somewhat misleading. Parry’s journal (Anon., 1825) indeed contains a 
description of experiments with a cannon to measure the speed of sound. However, only on one 
particular evening (9 February 1822, propagation distance 5645 ft, not 3 mi) did listeners several 
times hear the command “Fire” after the gunshot. The delay was about 3/8 s. Making use of modern 
knowledge of shock propagation speed and the interaction of weak signals with shocks, the present 
author analyzed the experiments and concluded that it was very unlikely that the reverse order of 
reception of the two sounds was due to finite-amplitude effects (Blackstock, 1983). Even though 
the 1858 interpretation of the 1822 experiment was probably spurious, however, the support it 
gave to Earnshaw was significant. No other experimental evidence was available at the time to 
corroborate the dependence of propagation speed on wave strength. 
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in the case of a wave of pure expansion, the prediction is that discontinuities always 
form. Furthermore, although it might be possible to modify the theory to account 
for the discontinuities, an additional complication loomed. When discontinuities 
form, reflected waves are generated (Stokes, 1848). Therefore, even if the wave 
field is progressive to begin with, so that the relatively simple theory of Poisson or 
Earnshaw may be used, once shocks form, it is necessary, in principle, to treat the 
flow as compound. The challenge after 1860 was to find ways to deal with shocks 
that develop in the waveform. 

At bottom, the trouble lay in the neglect of dissipation (Stokes, 1848). Dissipation 
prevents the formation of true discontinuities. Put another way, shock propagation 
is always accompanied by energy loss. From here on, success generally depended 
on an investigator’s ability to account in some way for dissipation. 

1.3 1870–1910: Shock Waves 

During the half century after Earnshaw and Riemann, the only substantial progress 
made was on shock waves. The theory of shock waves was given a firm foundation 
by the establishment of what are now called the Rankine–Hugoniot shock relations 
(Rankine, 1870; Hugoniot, 1887, 1889). At the same time, the problem of the profile 
of the steady shock wave in a viscous, heat-conducting gas was found to be soluble 
(Rankine, 1870; Rayleigh, 1910; Taylor, 1910). 

Rankine and Hugoniot arrived at the shock relations independently and from 
quite different starting points. Rankine wanted to find the heat transfer within 
the gas necessary for a waveform not to change—that is, for Earnshaw’s law to 
be fulfilled. He ended up with not only the shock relations but also the profile 
of a steady shock in a heat-conducting, but inviscid, gas. Hugoniot, on the other 
hand, simply sought the relations necessary for steady discontinuities to exist. Not 
realizing that dissipation is essential to shock propagation, Hugoniot assumed an 
inviscid, thermally nonconducting gas at the outset. 

We pause here to report a side issue because of its relation to work done 
during the 1930s. Besides his work on the shock relations, Hugoniot (1889) also 
considered the problem of lossless propagation of the plane wave generated by a 
piston vibrating in a tube with velocity .u0 sin ωt , where . u0 is the velocity amplitude 
and . ω is angular frequency. By using a solution similar to Eq. (1.29) (but in material 
coordinates), Hugoniot constructed Fig. 1.2, which is the spatial waveform of the 
field in front of the piston (Hugoniot’s v is particle velocity). The figure illustrates 
the cumulative nature of the distortion, which is least near the piston and greatest at 
the head of the wave. He also calculated the distance to the point at which a shock 
first forms, or shock formation distance: 

.x̄ = c2
0

βu0ω
= 1

βεk
, (1.33)
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Fig. 1.2 Spatial waveform of particle velocity in front of a sinusoidally vibrating piston (Hugo-
niot, 1889). The dotted waveform represents linear theory. 

which corresponds to Stokes’s shock formation time . ̄t (recall that Stokes’s calcu-
lation was for an isothermal gas, for which .β = 1). Here .ε = u0/c0 is the peak 
particle velocity Mach number and .k = ω/c0 is the wave number. Now back to the 
main course. 

The Rankine–Hugoniot relations are conservation equations that connect the flow 
field behind a shock .(Pb, ρb, Tb, ub, where T is absolute temperature) with that 
ahead of it .(Pa, ρa, Ta, ua). Let the shock be moving with constant velocity . Ush. 
The conservation equations are most simply expressed in a reference frame in which 
the shock is at rest, since then the flow is steady. In this frame the particle velocity 
behind the shock is .vb = ub − Ush and that ahead is .va = ua − Ush. Conservation 
of mass and momentum for this case are 

.Mass: ρava = ρbvb = m, . (1.34) 

Momentum: Pa + ρav
2 
a = Pb + ρbv

2 
b, (1.35) 

where m is the mass flow (per unit area) through the shock. As already noted, Stokes 
(1848) was the first to obtain a form of these equations. The trap into which he 
fell, as did Riemann (1860) after him, was to close the system by adding a lossless 
pressure–density relation, such as Boyle’s law. Kelvin and later Rayleigh (Truesdell, 
1966) pointed out to Stokes that the ensuing result violates conservation of energy. 
If a lossless energy equation is used, .

⎰
dP/ρ = (v2

a − v2
b)/2 (Bernoulli’s equation 

for a compressible fluid), and Boyle’s law [Eq. (1.3)] is adopted as the equation 
of state, the combination of these expressions with Eqs. (1.34) and (1.35) has no 
solution other than the trivial one .ρb = ρa (Stokes, 1883). Therefore, no shock or 
waveform of permanent shape is possible if the flow is lossless. 

The key, found by both Rankine (1870) (for perfect gases) and Hugoniot (1887, 
1889), is to use an energy equation in which losses may be included. For the general 
case (not limited to perfect gases), the third Rankine–Hugoniot relation is 

.Energy:
v2
a

2
+ ea + Pa

ρa

= v2
b

2
+ eb + Pb

ρb

, (1.36)
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where e is the internal energy per unit mass. If the fluid is a perfect gas, the following 
relations hold: .P = RρT and .eb − ea = cv(Tb − Ta) = (Pb/ρb − Pa/ρa)/(γ − 1), 
where the specific heat at constant volume . cv and the gas constant R are related by 
.R/cv = γ − 1. In this case, the energy equation becomes 

.Energy: v2
b − v2

a = 2γ

γ − 1

⎛
Pa

ρa

− Pb

ρb

⎞
. (1.37) 

Although presented here for steady shocks, the Rankine–Hugoniot relations hold 
for unsteady shocks as well. 

A glimpse of how the Rankine–Hugoniot relations are used in modern nonlinear 
acoustics is worthwhile at this point. If Eqs. (1.34), (1.35), and (1.37) are combined 
to eliminate the pressure and density, and if for simplicity we take .ua = 0 (the shock 
propagates into a quiet fluid), the following relation for the shock speed may be 
obtained: .U2

sh −βubUsh −c2
0 = 0. The solution, .Ush = [c2

0 + (βub/2)2]1/2 +βub/2, 
shows that shocks propagate faster than small-signal sound waves, a result Rankine 
(1870) found by a different but equivalent equation. An important special case is 
that of weak shocks .(ub/c0 ⪡ 1), for which a two-term expansion of the expression 
for .Ush yields .Ush = c0 + βub/2. The more general expression, valid when .ua /= 0, 
is 

.Ush = c0 + β
(ua + ub)

2
, (1.38) 

where again terms of order .u2
a,b have been dropped. Equation (1.38) shows that 

weak shocks travel with a speed that is the mean of the ordinary finite-amplitude 
speeds [see Eq. (1.27)] just ahead of and just behind the shock. This relation is one 
of the foundations of weak shock theory (Sects. 4.3.2 and 4.4.1). 

Now for the profile of a plane steady shock wave. The key words are “plane” and 
“steady.” Although the general conservation equations [see Eqs. (3.1)–(3.3)12 ] are  
very complicated, they simplify greatly when applied to a steady shock, for which 
the flow is planar and time-independent. A set of ordinary differential equations is 
obtained. These equations have been solved, in some cases analytically, for a variety 
of different cases. The first to tackle the shock profile problem was Rankine (1870), 
who considered a thermally conducting but inviscid gas. For this case, he obtained 
an exact expression for the profile. Rayleigh (1910) later pointed out, however, that 
Rankine’s result is limited to shocks for which the pressure ratio .Pb/Pa does not 
exceed .(γ + 1)/(3 − γ ) (.= 1.5 for air). Heat conduction is therefore incapable of 
providing enough dissipation to keep strong shocks single-valued. Rayleigh (1910) 
was the first to include viscosity.13 Of the third-order differential equation he derived

12 If desired, the relation .T Ds/Dt = De/Dt + PD(ρ−1)/Dt may be used to turn the entropy  
equation, Eq. (3.3), into an energy equation. 
13 Besides being an excellent review and critique of finite-amplitude sound, Rayleigh’s 1910 article 
also contains many gems. One is Rayleigh’s disposal of the erroneous notion, which had been held
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for the shock profile in a thermoviscous gas, he remarked ruefully, “I suppose a 
complete analytical solution . . . is not to be expected.” However, by numerical 
means he did demonstrate that a single-valued solution does exist even for the 
strongest of shocks. For one example, .Pb/Pa = 5.67 in air, he calculated the 
shock thickness to be of order 30 . μm, which he reckoned to be “well below the 
microscopic limit.”

Less than 100 pages later in the 1910 volume of the Proceedings of the Royal 
Society is Taylor’s article on the shock profile for a viscous, heat-conducting gas. By 
limiting consideration to weak shocks, Taylor was able to find an analytical solution 
of the profile equation and from it calculated the shock thickness. Ever since, the 
thickness of a weak shock in a thermoviscous gas has been called the “Taylor shock 
thickness.” A modern expression for the profile, for a shock traveling into a quiet 
gas .(ua = 0), is given by 

.u = ub

2

⎛
1 − tanh

βubχ

2δ

⎞
. (1.39) 

Here .χ = x − Usht is the moving coordinate in which the shock appears at rest (the 
center of the shock, .u = 1

2ub, is at the origin . χ = 0), δ = (μ/ρ0)[4/3 + μB/μ +
(γ − 1)/Pr] is the sound diffusivity (representing the thermoviscous dissipation of 
the fluid), . μ is the shear viscosity, .μB is the bulk viscosity, and Pr is the Prandtl 
number. If the shock thickness h is taken to be the distance for the particle velocity 
to rise from 10% to 90% of its final value . ub (Taylor’s criterion), we find14 

.h = 2δ ln 9

βub

. (1.40) 

Thus very weak shocks (low amplitude or strong dissipation) are thick, whereas 
robust ones (high amplitude or low dissipation) are thin. As Lighthill (1956) 
pointed out, Eq. (1.40) is one of the clearest demonstrations of the battle between 
nonlinearity and dissipation. Nonlinearity, represented by the excess propagation 
speed .βub, tends to steepen the compression, while dissipation, represented by 
. δ, tends to spread it out. In a nutshell, nonlinearity makes a wave interesting, 
dissipation keeps it honest. Now more than ever we can appreciate the work of 
the earlier investigators like Poisson, Stokes, and Earnshaw. They made progress on 
finite-amplitude waves even though they had only half the deck (lossless theory) to 
work with. 

by many, that expansion shocks are possible in air. Rayleigh showed that they are not because 
they violate the second law of thermodynamics. A simpler argument, made by Kelvin to Rankine 
(Rankine, 1870), is that expansion shocks are inherently unstable. If an expansion shock were ever 
to exist, it would immediately “unshock” because the top of the shock would run away from the 
bottom [see Eq. (1.27)].
14 The corresponding shock rise time, the quantity of interest when the waveform is measured with 
a microphone, is .trise = h/c0, since for weak shocks, .Ush ≃ c0. 
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1.4 1930s: Precursors of the Modern Era 

In the words of Beyer (1984), “a long pause” followed the papers of Rayleigh and 
Taylor. Shock-wave theory had been launched, but still no one knew how to solve the 
conservation equations with dissipation included, except for the very special case of 
a step shock. Lossless theory was still stuck at about the place where Earnshaw 
and Riemann had left it. The long pause was ended in the 1930s by important 
contributions that set the stage for the groundswell of interest in nonlinear acoustics 
that developed after World War II. Reviewed here are the theoretical papers of Fay 
(1931) and Fubini (1935), the experimental work of Thuras, Jenkins, and O’Neil 
(1935), and the combined theoretical and experimental work of Langevin reported 
by Biquard (1936). Each paper is about the traditional acoustical problem of the 
plane wave generated by a sinusoidally vibrating source. Although Airy (1849) and 
later Hugoniot (1889) had made a start on this problem [see Eq. (1.33)], much 
more extensive work was done by the 1930s investigators. Their results may be 
expressed generically as a Fourier series composed of fundamental and higher 
harmonic components: 

.u(x, τ ) = u0

∞⎲

n=1

Bn(x) sin nωτ, (1.41) 

where . u0 is a reference amplitude (often the amplitude of the fundamental at the 
source), . Bn is the relative amplitude of the harmonic components, . ω is the source 
angular frequency, and .τ = t − x/c0 is the retarded time. The problem was to find 
an expression for the amplitudes . Bn. 

Before presenting the results of the three investigations, we note the difference 
between cumulative and local nonlinear effects (see Sects. 3.6 and 4.2.3). Cumu-
lative effects are those due to variation of propagation speed over the waveform 
[see Eq. (1.27)], which causes distortion that accumulates with distance. Other 
effects leading to deviation from small-signal behavior, such as the difference 
between spatial and material coordinates, the finite displacement of a vibrating 
source, and nonlinearity of the pressure–particle velocity (impedance) relation, are 
termed local because the distortion they produce does not increase with propagation 
distance. Since it is small compared with cumulative distortion (except close to the 
source), local distortion may often be neglected (Blackstock, 1962). This fact was 
not appreciated in the 1930s, and solutions of that time frequently appear more 
complicated than is necessary in practice. It has therefore become traditional to 
report only the cumulative part of their solutions. For example, although material 
coordinates were used in all four investigations described here, we report solutions 
in spatial coordinates, which are appropriate for most laboratory experiments, 
because the difference is usually insignificant. As another example, Fubini (1935) 
criticized Fay (1931) for stating a momentum equation in material coordinates but 
using spatial coordinates to describe the viscous force. While Fubini was correct, 
we now recognize that the error committed by Fay was insignificant.
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Fay’s remarkable solution (1931) was developed without regard for the source 
other than that it be periodic. He sought the most nearly stable waveform in a viscous 
gas. Since distortion generally tends to enrich the higher harmonic components 
at the expense of the lower ones (energy transfer effect), while viscosity damps 
out the higher components more rapidly than the lower ones, he reasoned that a 
balance should be reached in which a given component loses as much energy by 
absorption as it gains from nonlinear distortion. He recognized, however, that since 
the conditions for stability depend on the amplitude of the wave, which slowly 
decreases with propagation distance, the wave can never be completely stable, only 
relatively so. Over the years the Fay solution has been generalized to apply to 
thermoviscous fluids of arbitrary equation of state, a correction to a numeric has 
been made, and an interpretation of an unspecified coefficient has been given (see, 
for example, Blackstock, 1964). The harmonic amplitudes for what is now called 
the Fay solution are as follows: 

.Bn = 2

𝚪 sinh[n(1 + σ)/𝚪] . (1.42) 

Here .𝚪 = βεk/α is the Gol’dberg number (a measure of the strength of nonlinearity 
relative to that of dissipation), .α = δω2/2c3

0 is the small-signal absorption 
coefficient for the fundamental, and .σ = x/x̄ is the distance relative to the shock 
formation distance [see Eq. (1.33)]. 

Of several interesting properties of the Fay solution, two are noted here. First, 
for strong waves at points not greatly distant .[𝚪 ⪢ n(1 + σ)], the hyperbolic 
sine function may be replaced by its argument. The resulting harmonic amplitudes 
.Bn = 2/n(1 + σ) are those for a sawtooth waveform (see Sect. 4.4.3.2). Moreover, 
the amplitude of the sawtooth decays inversely with distance, not exponentially. 
Although Fay did not present the limiting expression shown here, he did recognize 
the near-sawtooth character of his solution, and also the fact that absorption is much 
increased by the energy transfer effect. Second, although Fay did not mention it, 
his solution shows that when strongly affected by nonlinearity, the wave forgets 
its origin. The dimensional amplitude of the fundamental component is . u1 ≡
u0B1 = 2αc0/βk sinh[(1 + σ)/𝚪]. At great distance .(σ ⪢ 1), this reduces to 
.u1 = (4αc0/βk)e−αx , a value that is independent of the source amplitude . u0. 
Saturation, as it is now called, is discussed in Sect. 4.4.3.4. 

The solution derived by Fubini for the vibrating piston problem is explicit, that is, 
it is of the form .u = u(x, t). By contrast, the solution given previously by Hugoniot 
(1889) is implicit, i.e., it is in the Poisson form .u = u(x, t, u) (but in material 
coordinates). Fubini’s solution is one of those for which history has filtered out all 
but the most important part.15 The harmonic amplitudes are

15 Because Fubini’s article was in Italian and published in a journal not widely known, it went 
unappreciated for many years. Indeed, several investigators in the 1950s unknowingly repeated 
Fubini’s ingenious derivation. The parts of Fubini’s solution that are not usually reported are 
associated with local effects. 
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.Bn = 2

nσ
Jn(nσ), (1.43) 

where . Jn is the ordinary Bessel function. Since the solution is for a lossless gas, it 
is valid only up to the shock formation point, that is, for values of . σ up to unity. If 
the expression for the second-harmonic amplitude is expanded, the leading term is 
.B2 = σ/2 = βεkx/2, which agrees with the successive approximations solution 
found by Airy (1849). Note that the Fay solution does not reduce to the Fubini 
solution in the limit of vanishing viscosity. Fubini found this puzzling. We now 
know that the reason the two solutions do not agree in the limit is that the Fubini 
solution is valid for the region near the source, .σ ≤ 1, whereas the Fay solution is 
valid in the sawtooth region, .σ ≥ 3, approximately (Blackstock, 1966). 

The first known experiment on airborne finite-amplitude waves generated by 
a sinusoidally vibrating piston was done by Thuras, Jenkins, and O’Neil (1935). 
The measurements were done in a plane-wave tube, terminated at the far end to 
prevent reflections. The ratio of the second-harmonic amplitude (pressure) to the 
amplitude of the fundamental .B2/B1 was measured for various (audio) frequencies, 
distances, and source amplitudes; in terms of . σ , the range was .0.01 < σ < 0.4. 
Their theoretical model was a second-order solution of Eq. (1.14), but modified to 
include the small effect of tube wall losses. Although the measurements confirmed 
the linear growth of .B2/B1 with distance, frequency, and source amplitude, as 
predicted by Airy and Fubini, the measured values were consistently .∼3 dB lower 
than the predicted values. The puzzling discrepancy (Blackstock, 1962) was put to 
rest after World War II when experiments by several other investigators showed 
good agreement between theory and experiment. Also included in the paper by 
Thuras, Jenkins, and O’Neil are measurements of (1) sum and difference frequency 
components generated when the source emits a two-frequency wave, and (2) second-
harmonic distortion in an exponential horn. 

Finally we come to the work of Langevin, which has long been overlooked. 
Langevin’s theoretical and experimental efforts are reported in Chap. 5 of a long 
article by Biquard (1936) on ultrasonic absorption. Biquard attributes Chap. 5 to 
Rayleigh (1945) and to lectures presented by Langevin in a course at the College of 
France in 1923. Since Rayleigh’s work is well known, it is easy to identify the 
very remarkable results of Langevin, several of which were to be rediscovered 
in the 1940s, 1950s, and 1960s. For liquids, an expression for the coefficient of 
nonlinearity . β was derived that is equivalent to the one currently used . (β =
1 + B/2A, where A and B are coefficients in a series expansion of the isentropic 
pressure–density relation; see Sects. 2.2 and 2.3). Measurements were made of the 
values of . β for water, benzene, chloroform, and ether.16 An expression for the profile 
of a steady shock wave in a liquid was found. This profile was used to substitute for 
the discontinuities in an ideal sawtooth waveform to obtain a realistic sawtooth, 
which appears to be the same as the stable waveform of Fay. Moreover, it was

16 For water, Langevin found .β = 3, a value reasonably close to 3.5, the value accepted today. 
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observed that amplitude decay, accompanied by thickening of the shocks, would 
eventually restore the wave to sinusoidal form. Finally, the amplitude decay formula, 
equivalent to the asymptotic result pointed out above for the Fay solution, was found 
for the ideal sawtooth. 

Langevin’s work is a good note on which to end this historical review. It built on 
all the work of previous investigators. At the same time, it foreshadowed some of 
the most significant topics on which research would be done after World War II. 

References 

Airy, G. B. (1849). On a difficulty in the problem of sound. Phil. Mag. (Series 3)  34, 401–405, or 
Beyer (1984), 37–41. 

Anon. (1825). Abstract of experiments to determine the velocity of sound at low temperature. 
Appendix to Captain Parry’s Journal of a Second Voyage for the Discovery of a North-West 
Passage from the Atlantic to the Pacific; Performed in the Years 1821-22-23, in His Majesty’s 
Ships Fury and Hecla (John Murray, London), 237–239. 

Beyer, R. T. (1984). Nonlinear Acoustics in Fluids (Van Nostrand Reinhold, New York), p. 63. 
Biquard, P. (1936). Sur l’absorption des ondes ultra-sonores par les liquides. Ann. Physique (Ser. 

11) 6, 195–304. 
Blackstock, D. T. (1962). Propagation of plane sound waves of finite amplitude in nondissipative 

fluids. J. Acoust. Soc. Am. 34, 9–30. 
Blackstock, D. T. (1964). Thermoviscous attenuation of plane, periodic, finite-amplitude sound 

waves. J. Acoust. Soc. Am. 36, 534–542. 
Blackstock, D. T. (1966). Connection between the Fay and Fubini solutions for plane sound waves 

of finite amplitude. J. Acoust. Soc. Am. 39, 1019–1026. 
Blackstock, D. T. (1983). Propagation of a weak shock followed by a tail of arbitrary waveform. 

Proceedings, 11th Int. Cong. Acoustics, Paris, France, I, 305–308. 
Blake, E. W. (1848). A determination of the general law according to which pulses differing in 

intensity are propagated in elastic media, with remarks on the received theory of the velocity 
of sound. Silliman’s Amer. J. (now  Amer. J. Sci.) 5, 372–377. 

Brandes, H. W. (1805). Die Gesetze des Gleichgewichts und der Bewegung flüssiger Körper. 
Dargestellt von Leonhard Euler, German translation of Euler’s  Treatise on Fluid Mechanics 
(Leipzig). 

Challis, J. (1848). On the velocity of sound, in reply to the remarks of the Astronomer Royal. Phil. 
Mag. (Series 3)  32, 494–499. 

Earnshaw, S. (1858). On the mathematical theory of sound. Brit. Assn. Adv. Sci., Report of the 28th 
Meeting, Notices and Abstracts Sec., 34–35. 

Earnshaw, S. (1860). On the mathematical theory of sound. Trans. Roy. Soc. (London) 150, 133– 
148. 

Euler, L. (1755). Principes généraux du mouvement des fluides. Mém. acad. sci. Berlin 11 (1755), 
274–315 (1757),17 or Euleri Opera Omnia II, 12, 54–91. For English translation of, and helpful 
commentary on, pertinent parts, see Truesdell (1954), pp. LXXXIV–LXXXV. 

Euler, L. (1759). De la propagation du son. Mém. acad. sci. Berlin 15 (1759), 185–209 (1766), or 
Euleri Opera Omnia II, Series III, 1, 428–451. See Truesdell (1954), p. CXXI.

17 In the convention followed here, the first date given (in this case 1755) refers to the first 
disclosure of the material, the second date (in this case 1757) to the printed publication. 



1 History of Nonlinear Acoustics: 1750s–1930s 21

Euler, L. (1765). Eclaircissements plus détailés sur la génération et la propagation du son, et sur 
la formation de l’écho. Mém. acad. sci. Berlin 21 (1765), 335–363 (1767), or Euleri Opera 
Omnia II, Series III, 1, 540–567. See Truesdell (1956), pp. LIX–LX. 

Euler, L. (1766). Sectio quarta de motu aëris in tubis. Novi comm. acad. sci. Petrop. 16 (1771), 
281–425 (1772) (Euler’s Treatise on Fluid Mechanics, Fourth Section, Chap. I, Arts. 1–5). See 
Truesdell (1956), p. LXIII. 

Fay, R. D. (1931). Plane sound waves of finite amplitude. J. Acoust. Soc. Am. 3, 222–241. 
Fubini, E. (1935). Anomalie nella propagazione di ande acustiche de grande ampiezza. Alta 

Frequenza 4, 530–581. English translation: Beyer (1984), 118–177. 
Helmholtz, H. (1852). 1. Theoretische Akustik. Fortschritte der Physik im Jahre 1848 4, 101–118. 
Hugoniot, H. (1887, 1889). Mémoire sur la propagation du mouvement dans les corps et 

spécialement dans les gaz parfaits. J. l’école polytech. (Paris)  57, 3–97, and J. l’école polytech. 
(Paris) 58, 1–125. English translation of Sections 90–92, 110–112, 123–127 of 1889 article: 
Beyer (1984), 77–89. 

Hunt, F. V. (1978). Origins in Acoustics (Yale University Press, New Haven), 148–161. 
Lagrange, J. L. (1760–1761). Sec. 42 in Nouvelles recherches sur la nature et la propagation du 

son. Miscellanea Taurinensis II, 11–172, or Oeuvres de Lagrange I (Gauthier-Villars, Paris, 
1867), 151–316. 

Laplace, P. S. (1816). On the velocity of sound through air and through water. Ann. Chim. Phys. 
(2) 3, 338–241. English translation: Lindsay (1972), 180–182. 

Lighthill, M. J. (1956). Viscosity effects in sound waves of finite amplitude. In Surveys in 
Mechanics, G. K. Batchelor and R. M. Davies, eds. (Cambridge University Press, Cambridge, 
England), 250–351. 

Lindsay, R. B. (1972). Acoustics: Historical and Philosophical Development (Dowden, Hutchin-
son & Ross, Stroudsburg, Pa.). 

Lindsay, R. B. (1974). Physical Acoustics (Hutchinson & Ross, Stroudsburg, Pa.). 
Newton, I. (1686). Principia Mathematica, Sec. VIII. Of motion propagated through fluids. English 

translation by Andrew Motte (1729), first American edition (1848) (D. Adee, New York), 356– 
357. Reprint: Lindsay (1972), 75–86. See Pierce, A. D. (1989), Acoustics (Acoustical Society 
of America, New York), 4–5 for other references. 

Poisson, S. D. (1808). Mémoire sur la théorie du son. J. l’école polytech. (Paris)  7, 319–392. See 
Secs. 24–25, pp. 365–370. English translation of Sections 23–25: Beyer (1984), 23–28. 

Rankine, W. J. M. (1870). On the thermodynamic theory of waves of finite longitudinal distur-
bance. Phil. Trans. Roy. Soc. 160, 277–288, or Beyer (1984), 65–76. 

Rayleigh, Lord (1910). Aerial plane waves of finite amplitude. Proc. Roy. Soc. A 84, 247–284, or 
Scientific Papers of Lord Rayleigh V (Dover, New York, 1964), or Lindsay (1974), 135–173. 

Rayleigh, Lord (1945). Theory of Sound (Dover, New York). 
Riemann, B. (1860). Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. 

Abhandl. Ges. Wiss. Göttingen, Math.-physik. 8, 43–65 (1858–1859), reprinted in The Collected 
Works of Bernard Riemann (Dover, New York, 1953), 156–175. English translation of Sections 
1–10; Beyer (1984), 42–60. 

Stokes, G. G. (1848). On a difficulty in the theory of sound. Phil. Mag. (Series 3) 33, 349–356, or 
Beyer (1984), 29–36. 

Stokes, G. G. (1883). Mathematical and Physical Papers II (Cambridge University Press, 
Cambridge, England), 51–55. 

Taylor, G. I. (1910). The conditions necessary for discontinuous motion in gases. Proc. Roy. Soc. 
A 84, 371–377. 

Thuras, A. L., Jenkins, R. T., and O’Neil, H. T. (1935). Extraneous frequencies generated in air 
carrying intense sound waves. J. Acoust. Soc. Am. 6, 173–180. 

Truesdell, C. (1954). Rational Fluid Mechanics 1687–1765, Editor’s Introduction to Vol. II 12 of 
Euler’s Works (Orell Füssli, Zürich).



22 D. T. Blackstock

Truesdell, C. (1956). I. The First Three Sections of Euler’s Treatise of Fluid Mechanics 1766. II. 
The Theory of Aerial Sound 1687–1788. III. Rational Fluid Mechanics 1765–1788, Editor’s 
Introduction to Vol. II 13 of Euler’s Works (Orell Füssli, Zürich). 

Truesdell, C. (1966). Mathematical and Physical Papers, Editor’s Preface to Vol. I of Stokes’s 
collected works (Johnson reprint, New York). 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 2 
The Parameter . B/A

Robert T. Beyer 

Contents 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 
2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
2.3 Physical Interpretation of B/A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
2.4 Determination of B/A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

2.4.1 Thermodynamic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
2.4.2 Finite-Amplitude Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
2.4.3 Phase Comparison Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 
2.4.4 Method for Aqueous Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 
2.4.5 Method for Immiscible Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

2.5 Nonlinearity in Isotropic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
2.6 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

2.1 Introduction 

The ratio .B/A, which has become a common term in the field of nonlinear acoustics, 
has its origin in the Taylor series expansion of the variations of the pressure in a 
medium in terms of variations of the density. The changes are carried out reversibly, 
adiabatically, and at constant chemical composition. In nonlinear acoustics, the 
current notation was perhaps first employed by Fox and Wallace (1954).1 These 

1 Earlier, Biquard (1936) reported an equivalent ratio, attributed to lectures given in 1923 by 
Langevin, involving coefficients in the Taylor series expansion of density in terms of pressure, 
and alternatively coefficients in the expansion of pressure as a function of particle velocity. Using 
these coefficients, Langevin obtained an expression for the coefficient of nonlinearity . β that is the 
same as the one used today (see the end of Sect. 1.4). Prior to this period, the emphasis in nonlinear 
acoustics was on propagation in perfect gases, for which explicit equations of state were known 
and therefore Taylor series expansions were unnecessary. 
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authors also pointed out the fact, not always noted, that the expansion should be 
carried out under adiabatic conditions. The quantity .B/A is proportional to the ratio 
of coefficients of the quadratic and linear terms in the Taylor series. Consequently, 
it characterizes the dominant finite-amplitude contribution to the sound speed for 
an arbitrary fluid. Its effect on the propagation speed of a progressive plane wave is 
manifest through the coefficient of nonlinearity .β = 1 + B/2A. 

2.2 Definitions 

Taylor series expansion of the equation of state .P = P(ρ, s) along the isentrope 
.s = s0 yields 

.P − P0 =
(

∂P

∂ρ

)
s,0

(ρ − ρ0) + 1

2!
(

∂2P

∂ρ2

)
s,0

(ρ − ρ0)
2 + · · · , (2.1) 

where P and . ρ are pressure and density, respectively, . P0 and . ρ0 are their 
unperturbed or ambient values, and s is specific entropy. The partial derivatives 
.(∂P/∂ρ)s, (∂

2P/∂ρ2)s , etc., in Eq. (2.1) are all evaluated at the unperturbed 
state .(ρ0, s0); this is indicated by the subscript 0, and the same notation is used 
throughout this chapter for ambient values of partial derivatives. Equation (2.1) can 
be expressed more succinctly in the form 

.p = A

(
ρ'

ρ0

)
+ B

2!
(

ρ'

ρ0

)2
+ C

3!
(

ρ'

ρ0

)3
+ · · · , (2.2) 

where .p = P − P0 is the sound pressure, .ρ' = ρ − ρ0 is the excess density, and 

.A = ρ0

(
∂P

∂ρ

)
s,0

≡ ρ0c
2
0, . (2.3) 

B = ρ2 
0 

(
∂2P 
∂ρ2 

) 

s,0 
, . (2.4) 

C = ρ3 
0 

(
∂3P 
∂ρ3 

) 

s,0 
. (2.5) 

The isentropic small-signal sound speed . c0 is defined via Eq. (2.3). Entropy 
variations due to heat conduction are taken into account in Eq. (3.3). 

Measurement of the ratio .B/A according to the definitions in Eqs. (2.3) and (2.4), 

.
B

A
= ρ0

c20

(
∂2P

∂ρ2

)
s,0

, (2.6)
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requires varying the density adiabatically in order to measure the change in pressure, 
a difficult task with liquids owing to their low compressibilities. Alternative 
definitions of .B/A are therefore desirable (Beyer, 1960, 1997). The following are 
expressed in terms of variations in the sound speed c, defined by .c2 = (∂P/∂ρ)s . 
One alternative is obtained by writing .(∂2P/∂ρ2)s = (∂c2/∂ρ)s = 2c3(∂c/∂P )s , 
which after substitution in Eq. (2.6) yields 

.
B

A
= 2ρ0c0

(
∂c

∂P

)
s,0

. (2.7) 

The pressure must be varied sufficiently smoothly and rapidly that isentropic 
conditions are maintained, which may be accomplished with sound waves. Another 
alternative follows from expanding the derivative in Eq. (2.7) as  . (∂c/∂P )s =
(∂c/∂P )T + (∂T /∂P )s(∂c/∂T )P , where T is temperature, writing . (∂T /∂P )s =
(∂ρ−1/∂s)P = (∂ρ−1/∂T )P /(∂s/∂T )P , where .1/ρ is specific volume, and 
introducing standard definitions of thermodynamic quantities to obtain 

. 
B

A
= 2ρ0c0

(
∂c

∂P

)
T ,0

+ 2αT c0T0

cp

(
∂c

∂T

)
P,0

≡ (B/A)1 + (B/A)2, (2.8) 

where .αT = ρ0(∂ρ
−1/∂T )P,0 is the volume coefficient of thermal expansion and 

. cp is the specific heat at constant pressure. An alternative form of the expression for 

.C/A is also available (Coppens et al., 1965): 

.
C

A
= 3

2

(
B

A

)2
+ 2ρ2

0c
3
0

(
∂2c

∂P 2

)
s,0

. (2.9) 

Values of .C/A are seldom needed in nonlinear acoustics, and very few have been 
reported. 

It is instructive to compare the above results with the expansion of the equation 
of state along an isentrope for a perfect gas, for which each coefficient is known 
explicitly: 

. P/P0 = (ρ/ρ0)
γ = (1 + ρ'/ρ0)γ

= 1 + γ

(
ρ'

ρ0

)
+ γ

2! (γ − 1)

(
ρ'

ρ0

)2

+ γ

3! (γ − 1)(γ − 2)

(
ρ'

ρ0

)3
+ · · · , (2.10) 

where . γ is the ratio of specific heats. Term-by-term comparison of Eqs. (2.2) and 
(2.10) yields .c20 = γP0/ρ0,
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.B/A = γ − 1, (2.11) 

.C/A = (γ − 1)(γ − 2), and so on. Whenever the lossless fluid equations are 
used to describe finite-amplitude sound propagation (as in Sect. 3.3) and higher-
order nonlinear terms are discarded throughout (leaving only quadratic terms to 
account for finite-amplitude phenomena), a simple rule can be used to convert 
between perfect-gas and arbitrary-fluid results: Everywhere it appears, . γ is replaced 
with .(1 + B/A), in accordance with Eq. (2.11). However, caution is advised when 
following this procedure, because Eq. (2.10) itself cannot be thus transformed as it 
stands without first eliminating the ambient pressure . P0. 

The perfect gas is in fact a special case of a more general class of fluids whose 
isentropes are described by the Tait–Kirkwood equation (Sullivan, 1981): 

.
P + Π

P0 + Π
=

(
ρ

ρ0

)ν

, (2.12) 

where .(Π, ν) are constants along any particular isentrope.2 All such fluids have 
.B/A = ν − 1, .C/A = (ν − 1)(ν − 2), and so on. However, there is no connection 
in general between the index . ν and the specific heat ratio of the fluid. 

Insight into expected values of .B/A for liquids may be gained from an analysis 
performed by Nomoto (1966) on the basis of Rao’s (1940) rule for liquids that are 
not highly associated, .Mc1/3/ρ = const, where M is molecular weight. Nomoto 
thus derived the relations .(1/c0)(∂c/∂T )P,0 = −3αT and . (1/c0)(∂c/∂P )T,0 =
3κT , where . κT is the isothermal compressibility. These relations yield . (B/A)1 =
6γ, (B/A)2 = 6(1 − γ ), and therefore .B/A = 6, where . γ is again the ratio 
of specific heats. Although .B/A is not in fact a constant, the values for it for 
liquids and biological tissues reported in the tables below lie mainly in the range 
5–10, in nominal agreement with Nomoto’s prediction. Moreover, one obtains 
.(B/A)2/(B/A)1 = γ −1 − 1, indicating that since . γ is only slightly greater than 
unity for most liquids, .(B/A)2 (due to isobaric temperature changes) is a small 
negative correction to .(B/A)1 (due to isothermal pressure changes) in terms of 
its contribution to .B/A, which is often the case. Finally, the value .γ = 1.4 for a 
diatomic gas leads from Eq. (2.11) to .B/A = 0.4, indicating that nonlinearity in the 
equation of state is considerably more important for liquids than for gases. 

Ballou (1965) noticed a correlation between the value of .B/A and the reciprocal 
of the sound velocity in many liquids. A best fit of data available at that time took 
the form .B/A = 1.2×104c−1

0 −0.5, where the sound velocity . c0 has units of meters 
per second. Further studies cast doubt on Ballou’s rule (Sehgal et al., 1990), even 
though it was given some theoretical justification in the work by Hartmann (1979).

2 An equivalent equation appears in Rayleigh’s (1910) survey of finite-amplitude acoustic wave 
solutions, as his Eq. (19). 
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2.3 Physical Interpretation of B/A 

The significance of .B/A in acoustics is its effect on the sound speed. Using the 
relation .c2 = (∂P/∂ρ)s , one obtains from Eq. (2.2) 

.
c2

c20

= 1 + B

A

(
ρ'

ρ0

)
+ C

2A

(
ρ'

ρ0

)2
+ · · · . (2.13) 

Taking the square root and performing a binomial expansion yields 

.
c

c0
= 1 + B

2A

(
ρ'

ρ0

)
+ 1

4

⎾
C

A
− 1

2

(
B

A

)2⏋(
ρ'

ρ0

)2
+ · · · . (2.14) 

The parameter .B/A thus determines the relative importance of the leading order 
finite-amplitude correction to the small-signal sound speed . c0. For a progressive 
plane wave the linear relation .ρ'/ρ0 = u/c0, where u is the particle velocity, may 
be substituted into the second term on the right-hand side of Eq. (2.14) to obtain, 
with higher-order terms discarded, 

.c = c0 + (B/2A)u, (2.15) 

which agrees with Eq. (1.23) when the relation in Eq. (2.11) is used. Furthermore, 
the propagation speed of a progressive plane wave becomes, from Eq. (1.27), 

.dx/dt |u = c0 + βu, β = 1 + B/2A, (2.16) 

where . β is referred to as the coefficient of nonlinearity. The shock formation 
distance for a plane wave that is sinusoidal at the source is .x̄ = 1/βεk, where . ε =
u0/c0, u0 is the peak particle velocity at the source, and k is the corresponding wave 
number [Eq. (4.22)]. Thus, . β is the significant measure of the acoustic nonlinearity 
of the medium [see also Eqs. (3.15)–(3.17)]. 

2.4 Determination of B/A 

Here we review briefly several methods that have been used to determine .B/A. In  
all measurements that have been reported by the various methods, accuracies are 
rarely better than 5%. This should be kept in mind when using data from the tables 
in Sect. 2.6.
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2.4.1 Thermodynamic Method 

The commonest way of measuring .B/A, and probably the most accurate, has been 
via measurement of the sound velocity as a function of the hydrostatic pressure 
and of the temperature, and the use of Eq. (2.8). The quantities in Eq. (2.8) (other 
than the two partial derivatives) are available in the thermodynamics literature for 
many liquids. The problem therefore reduces to measuring the dependence of the 
sound velocity on temperature and pressure. There is a large amount of data on the 
temperature variation of the sound velocity at constant pressure, but values of the 
pressure dependence of the sound velocity at constant temperature are hard to come 
by.3 Nevertheless, values of .B/A based on the thermodynamic method appear to be 
the most reliable of all data on the parameter and are often used as the standard for 
comparison with values obtained by other methods. 

2.4.2 Finite-Amplitude Method 

When a plane wave of finite amplitude travels through a medium, it becomes 
distorted, leading to generation of higher harmonics. Sufficiently close to a source of 
a sinusoidal plane wave at .x = 0, in the region where the second harmonic pressure 
amplitude . p2 is still considerably larger than the pressure amplitude of all higher-
order spectral components, the solution is [Thuras et al., 1935; see also Eq. (4.270), 
where .α2 = 4α1] 

.p2 =
(
1 + B

2A

)
p2
0ω

2ρ0c30
f (x), f (x) = e−2α1x − e−α2x

α2 − 2α1
, (2.17) 

where . p0 is the peak sound pressure, . ω is the angular frequency at the source, and 
. α1 and . α2 are the attenuation coefficients at the fundamental and second-harmonic 
frequencies, respectively. Inversion of the first of Eqs. (2.17) yields 

.
B

A
=

(
p2

p0

)
4ρ0c30

p0ωf (x)
− 2. (2.18) 

The difficulty here is that an independent measurement of . p0, the source amplitude, 
is required. This method was used frequently by Hiedemann and his students 
(Adler and Hiedemann, 1962), and has later been used, with greater accuracy, by 
Dunn and his group (Law et al., 1981). In both of these works, attenuation was 
ignored, in which case .f (x) = x. The effect of absorption on this measurement

3 Articles in which measurements of the isothermal variation of sound speed with pressure are 
reported for several organic liquids, not listed in Table 2.1 below, include those by Richardson and 
Tait (1957), Eden and Richardson (1960), Belinskii and Ergopulo (1968), and Hawley et al. (1970). 
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was taken into account by Dunn et al. (1981), who introduced the approximation 
.f (x) ≃ x exp[−(α1 + α2/2)x] on the basis of the assumption .|α1 − α2/2|x ⪡ 1. 
This approximation is normally appropriate for tissue, because the attenuation 
coefficients are often nearly proportional to frequency, and therefore .α2 ≃ 2α1. 
A good review of related developments is contained in the paper by Bjørnø (1986). 

2.4.3 Phase Comparison Method 

Zhu et al. (1983) developed a phase comparison method for determination of B/A 
on the basis of Eq. (2.7). Measurements were made of the travel time of ultrasonic 
tone bursts under adiabatic variation of the hydrostatic pressure. These times were 
measured by comparison of the phase φ, in radians, of the tone burst and the phase 
of a reference signal. The resultant formula is 

.
B

A
= −2ρ0c30

ωx

(
∂φ

∂P

)
s,0

, (2.19) 

where x is the travel distance of the tone burst. 

2.4.4 Method for Aqueous Solutions 

Sarvazyan et al. (1990) developed a differential method for measuring the effect of 
small concentrations on the value of B/A for aqueous solutions of proteins and 
amino acids [see also Chalikian et al. (1992)]. By differentiating Eq. (2.8) they  
obtained 

. 
Δ(B/A)

2ρ0c0χ
= 1

χ
Δ

(
∂c

∂P

)
T ,0

+ ([c] + [ρ])
(

∂c

∂P

)
T ,0

+ αT 0T0

ρ0cp0

⎾
1

χ
Δ

(
∂c

∂T

)
P,0

+ ([c] + [αT ] − [cp])
(

∂c

∂T

)
P,0

⏋
,

(2.20) 

where χ is the concentration of the solution. Coefficients with subscript 0 cor-
respond to ambient values for the solvent, and Δ indicates that the following 
quantity represents the difference between the value for the solution and that for 
the solvent. The bracketed quantities are the relative specific increments of the 
sound velocity, density, thermal expansion coefficient, and heat capacity at constant 
pressure, defined as
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. [c] = Δc

χc0
, [ρ] = Δρ

χρ0
, [αT ] = ΔαT

χαT 0
, [cp] = Δcp

χcp0
.

This group also succeeded in working with a much smaller chamber in making 
sound velocity measurements, so that less than 1 cc of the liquid was necessary. 

2.4.5 Method for Immiscible Mixtures 

Everbach et al. (1991) described a method for calculating an effective value of B/A 
for a mixture consisting of an arbitrary number of immiscible fluids. Here we let ρ 
be the density of the mixture and v = 1/ρ be the corresponding specific volume. 
The ith component of the mixture has mass fraction Mi = mi/m, where mi is the 
mass of that component and m = 

Σn 
i=1 mi is the total mass of an n-component 

mixture. If the components are neither interactive nor mutually soluble the volumes 
must sum as follows: 

.v =
n⎲

i=1

Mivi, (2.21) 

where vi is the specific volume of the ith component. Since the mass fractions are 
independent of pressure we have 

.

(
∂v

∂P

)
s

=
n⎲

i=1

Mi

(
∂vi

∂P

)
s

,

(
∂2v

∂P 2

)
s

=
n⎲

i=1

Mi

(
∂2vi

∂P 2

)
s

. (2.22) 

Now employ the fundamental relations 

.

(
∂v

∂P

)
s

= − 1

ρ2c2
,

(
∂2v

∂P 2

)
s

= 2

ρ3c4

⎾
1 + ρ

2c2

(
∂2P

∂ρ2

)
s

⏋
, (2.23) 

which apply to the mixture as a whole and to each of the n components individually 
[see Eq. (3.18) for interpretation of the second of Eqs. (2.23)]. Substitution of 
Eqs. (2.23) into Eqs. (2.22), combining the latter at equilibrium conditions, and 
using the definition of B/A in Eq. (2.6) yields 

.β =
⎛

n⎲
i=1

Vi

ρic
2
i

⎞−2 n⎲
i=1

Viβi

ρ2
i c4i

, (2.24) 

where β = 1 + B/2A is the effective coefficient of nonlinearity of the mixture and 
βi = 1 + (B/2A)i the coefficient of the ith component, for which Vi = (ρ/ρi)Mi 
is the corresponding volume fraction, ρi and ci the ambient density and small-
signal sound speed, respectively. Equation (2.24) has been applied to biological
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materials and to bubbly liquids (Everbach, 1989). In the latter case, the presence 
of gas bubbles greatly increases nonlinearity and hence the value of B/A [see Eq. 
(5.66) and Fig. 5.8]. 

2.5 Nonlinearity in Isotropic Solids 

A coefficient of nonlinearity can also be derived for longitudinal waves in isotropic 
solids. When coupling with shear wave modes of propagation can be ignored (i.e., 
for compressional waves that are nearly planar, such as in directional beams), model 
equations can be derived having the same form as those for sound waves in fluids, 
but with the coefficient of nonlinearity replaced by [Gol’dberg (1961); see also 
Eq. (9.23)] 

.β = −
⎛
3

2
+ A + 3B + C

ρ0c
2
l

⎞
, (2.25) 

where . cl is the small-signal longitudinal wave speed, and . A, . B, and . C are the third-
order elastic (TOE) constants defined by Landau and Lifshitz (1986). For a fluid, 
these coefficients become .A = 0, B = −A, and .C = (A − B)/2, where .A = ρ0c

2
l , 

and Eq. (2.25) reduces to .β = 1+B/2A, as required (Kostek et al., 1993). Equation 
(2.25) may be rewritten in terms of a variety of other notations for the TOE constants 
using the relations provided in Table 9.1. Experimental methods used to measure the 
TOE constants are reviewed by Breazeale and Philip (1984). 

2.6 Tables 

In summary, the coefficient of nonlinearity defined by 

.β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(γ + 1)/2 gas
1 + B/2A liquid

−
⎛
3

2
+ A + 3B + C

ρ0c
2
l

⎞
solid

(2.26) 

is the principal measure of finite-amplitude effects associated with the propagation 
of progressive sound waves, and the value of this coefficient is determined in part 
by the nonlinearity in the equation of state for a given medium. For diatomic gases 
such as air one has .γ = 1.4 and therefore .β = 1.2, and for distilled water one has 
.B/A = 5.0 and therefore .β = 3.5 at temperature . 20 ◦C. The tables given here list 
values of .B/A for selected fluids (Table 2.1), liquefied gases (Table 2.2), biological 
tissues (Table 2.3), and aqueous solutions of proteins and amino acids (Table 2.4).
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Table 2.1 Values of .B/A for fluids. Unless otherwise indicated, values are for atmospheric 
pressure. The data for water–glycol mixtures are from Table II by Swamy et al. (1975b), and 
all other data are from Table 3-1 by Beyer (1997). 

Substance . T , ◦C . B/A

Distilled water 0 4.2 

20 5.0 

40 5.4 

60 5.7 

80 6.1 

100 6.1 

Pressure dependence 

1 atm. 30 5.2 

200 kg/cm.2 30 6.2 

4000 kg/cm.2 30 6.2 

8000 kg/cm.2 30 5.9 

Sea water (salinity 3.5%) 20 5.25 

Alcohols 

Methanol 20 9.6 

Ethanol 0 10.4 

20 10.5 

40 10.6 

n-propanol 20 10.7 

n-butanol 20 10.7 

Organic liquids 

Acetone 20 9.2 

Benzene 20 9.0 

Benzyl alcohol 30 10.2 

Chlorobenzene 30 9.3 

Cyclohexane 30 10.1 

1,2-dichlorohexafluorocyclopentene (DHCP) 30 11.8 

Diethylamine 30 10.3 

Ethylene glycol 30 9.7 

Ethyl formate 30 9.8 

Glycerol (4% H. 2O) 30 9.0 

Heptane 30 10.0 

Hexane 30 9.9 

Methyl acetate 30 9.7 

Methyl iodide 30 8.2 

Nitrobenzene 30 9.9 

Liquid metals 

Bismuth 318 7.1 

Indium 160 4.6 

Mercury 30 7.8 

Potassium 100 2.9 

Sodium 110 2.7 

Tin 240 4.4

(continued)
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Table 2.1 (continued) 

Substance . T , ◦C . B/A

Other substances 

Sulfur 121 9.5 

Monatomic gas 20 0.67 

Diatomic gas 20 0.40 

Mixtures 

Water–glycol % glycol 

0 30 5.2 

20 30 5.2 

33 30 5.1 

Table 2.2 .B/A for liquefied gases. 

Argon P , atm  

.T ,K 1 10 60 200 500 

86 .(B/A)1 11.71 11.20 9.89 

.(B/A)2 −6.70 −4.76 −3.98 

.B/A 5.01 6.44 5.91 

90 .(B/A)1 12.43 12.20 11.50 

.(B/A)2 −6.76 −5.00 −4.40 

.B/A 5.67 7.20 7.10 

120 .(B/A)1 15.28 11.71 9.68 

.(B/A)2 −5.60 −4.00 −2.56 

.B/A 9.68 7.71 7.12 

150 .(B/A)1 33.67 12.60 8.82 

.(B/A)2 −11.13 −5.03 −3.15 

.B/A 22.54 7.57 5.67 

At atmospheric pressure: 

Nitrogen Hydrogen Methane 

.T ,K .B/A .T ,K .B/A .T ,K . B/A

70 7.70 14 5.59 110 17.95 

80 8.03 16 6.87 120 10.31 

90 9.00 18 7.64 130 6.54 

20 7.79 135 5.41 

After Tables I–IV by Swamy et al. (1975a)
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Table 2.3 .B/A for various biological tissues. 

.B/A Ref. 

Biological material (and state) Methoda (and uncertainty) 

1. Bovine serum albumin (BSA) (20 g/100 cm. 3, 25 . ◦C) Therm. 6.23 (. ±0.25) 1 

BSA (22 g/100 cm. 3, 30 . ◦C) F.A. 6.45 (. ±0.30) 2 

BSA (38.9 g/100 cm. 3, 30 . ◦C) F.A. 6.64 3 

BSA (38.9 g/100 cm. 3, 30 . ◦C) Therm. 6.68 (. ±0.2) 3 

2. Haemoglobin (50%, 30 . ◦C) F.A. 7.6 4 

3. Whole porcine blood F.A. 6.2 (. ±0.25) 4 

(12% haemoglobin, 7% plasma proteins, 30 . ◦C) 
4. Beef liver (Whole, 23 . ◦C) F.A. 7.75 (. ±0.4) 4 

Beef liver (Homogenized, 23 . ◦C) F.A. 6.8 (. ±0.4) 4 

Beef liver (Whole, 30 . ◦C) F.A. 6.42 3 

Beef liver (Whole, 30 . ◦C) Therm. 6.88 3 

Beef liver (Whole, 30 . ◦C) Therm. 6.54 (. ±0.2) 5 

Dog liver (30 . ◦C) F.A. 7.6–7.9 (. ±0.8) 6 

Pig liver (25 . ◦C) F.A. 6.7 (. ±1.5) 7 

Human liver (Normal, 30 . ◦C) F.A. 7.6 (. ±0.8) 6 

Human liver (Congested, 30 . ◦C) F.A. 7.2 (. ±0.7) 6 

5. Pig fat Therm. 10.9 8 

Pig fat F.A. 11.0–11.3 8 

Human breast fat (22 . ◦C) Therm. 9.21 5 

Human breast fat (30 . ◦C) Therm. 9.91 5 

Human breast fat (37 . ◦C) Therm. 9.63 5 

6. Canine spleen F.A. 6.8 9 

Dog spleen F.A. 6.8 (. ±0.7) 6 

Human spleen (Congested) F.A. 7.8 9 

Human spleen (Normal, 30 . ◦C) F.A. 7.8 (. ±0.8) 6 

7. Beef brain (30 . ◦C) F.A. 7.6 8 

8. Beef heart (30 . ◦C) F.A. 6.8–7.4 8 

9. Pig muscle (30 . ◦C) F.A. 7.5–8.1 8 

Pig muscle (25 . ◦C) F.A. 6.5 (. ±1.5) 7 

10. Dog kidney (Normal, 30 . ◦C) F.A. 7.2 (. ±0.7) 6 

Canine kidney (30 . ◦C) F.A. 7.2 9 

11. Human multiple myeloma (22 . ◦C) F.A. 5.6 5 

Human multiple myeloma (30 . ◦C) F.A. 5.8 5 

Human multiple myeloma (37 . ◦C) F.A. 6.2 5 

[After Table 2.1 by Bjørnø (1986)] 
a Therm. . = thermodynamic method; F.A. . = finite-amplitude method 
Reference key: 1. Zhu et al. (1983); 2. Law et al. (1981); 3. Law et al. (1983); 4. Dunn et al. 
(1981); 5. Sehgal et al. (1984); 6. Cobb (1982); 7. Lewin and Bjørnø (1983); 8. Law et al. (1985); 
9. Dunn et al. (1984)
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Table 2.4 Specific increments of the nonlinearity parameter .B/A of proteins (a) and amino acids 
(b) in aqueous solution at 25 . ◦C. 

(a) 

Specific Molecular 

.Δ(B/A)/χ concentration weight 

Proteins cm. 3/g mg/cm.3 kD 

Collagen .4.3 ± 1.0 4 130 

Rabbit serum albumin .4.1 ± 0.3 25–70 64a 

Ribonuclease .3.7 ± 0.3 30 14 

Hemoglobin .3.6 ± 0.3 25–50 64b 

Lysozyme .3.3 ± 0.3 35 14 

Myoglobin .2.8 ± 0.3 35 17 
aHuman. b16/subunit 

(b) 

Specific 

.Δ(B/A)/χ concentration 

Amino acids cm. 3/g mg/cm. 3

Glycine .6.4 ± 0.3 10–50 

Glutamine .5.0 ± 0.4 25 

Histidine .4.6 ± 0.4 10–25 

Alanine .3.0 ± 0.3 50 

Phenylalanine .2.4 ± 0.6 10–15 

Valine .2.0 ± 0.2 50 

Proline .1.6 ± 0.2 50 

Norvaline .1.5 ± 0.2 50 

Isoleucine .1.4 ± 0.3 15–35 

Leucine .0.4 ± 0.2 20 

After Tables I and II by Sarvazyan et al. (1990) 

Measured values of the TOE constants for a variety of isotropic solids have been 
compiled by Hearmon (1979) and, particularly for rocks and synthetic materials, by 
Winkler and Liu (1996). The resulting values of . β for homogeneous isotropic solids 
have magnitudes similar to those for liquids. However, whereas . β is positive for 
fluids except under extraordinary conditions, e.g., in the neighborhood of a critical 
point (Thompson, 1984), it is negative for some solids, such as fused quartz and 
Pyrex glass [in which materials, in accordance with the first of Eqs. (2.16), the direc-
tion of waveform steepening is opposite that in fluids]. The microinhomogeneous 
features of rock can increase the magnitude of . β by several orders. 
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3.1 Introduction 

To identify limitations and domains of applicability associated with model equations 
of nonlinear acoustics, it is important to understand the assumptions and ordering 
procedures on which the equations are based. In this chapter, the more widely used 
model equations for homogeneous fluids are derived directly from the fundamental 
equations of fluid mechanics given in Sect. 3.2. Exact relations for lossless fluids are 
developed in Sect. 3.3, including characteristic equations and implicit solutions for 
plane waves, as well as the nonplanar-wave equation for a perfect gas. Section 3.4 
describes the ordering procedure and approximations used in Sects. 3.5–3.9 to 
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derive model equations for sound fields in thermoviscous fluids, outside boundary-
layer regions. In Sect. 3.5 we obtain the complete second-order equation for 
arbitrary three-dimensional waves. Model equations developed in all subsequent 
sections pertain to progressive waves: quasiplane waves in Sect. 3.6; pure plane 
waves in Sect. 3.7; general one-dimensional waves in Sect. 3.8 (plane, spherical, 
and cylindrical waves, and waves in ducts with variable cross section); directional 
sound beams in Sect. 3.9. 

Elsewhere in this book, the reader will encounter several complementary discus-
sions that amplify and extend the present chapter. Chapter 1 reviews the history 
of theoretical developments leading up to the Burgers equation. The Rankine– 
Hugoniot and weak shock relations are derived in Chap. 4. Chapter 5 reviews 
the combined effects of dispersion and nonlinearity on wave propagation, e.g., in 
relaxing fluids and bubbly liquids. Radiation pressure is covered in Chap. 6, and 
acoustic streaming in Chap. 7. Model equations for nonlinear elastic waves in 
solids are obtained in Chap. 9. Nonlinear ray theory for inhomogeneous media is 
developed in Chap. 12. 

3.2 Basic Equations 

Four equations are required to describe the general motion of a viscous, heat-
conducting fluid: (1) mass conservation, (2) momentum conservation, (3) entropy 
balance, and (4) thermodynamic state. We assume that the fluid is homogeneous 
in composition, that its unperturbed density and pressure are uniform, and that the 
dependence of the viscosity and heat conduction coefficients on the disturbance 
due to the sound wave may be neglected. This last assumption anticipates the 
perturbation ordering scheme introduced in Sect. 3.4, where dissipation terms are 
retained to lowest order only; by adopting it now, we avoid introducing unnecessary 
complication into the basic equations. The reader is referred to the text by Landau 
and Lifshitz (1987) for detailed derivation and discussion of the equations which 
follow. 

The mass conservation, or continuity, equation is 

.
Dρ

Dt
+ ρ∇ ·u = 0, (3.1) 

where . ρ is the mass density, . u is the fluid velocity vector, and . D/Dt = ∂/∂t +u ·∇
is the total, or material, time derivative. The momentum equation may be written as 

.ρ
Du
Dt

+ ∇P = μ∇2u + (μB + 1
3μ)∇(∇ ·u), (3.2) 

where P is the thermodynamic pressure appearing in Eq. (3.4), . μ is the shear 
viscosity, and .μB is the bulk viscosity. Shear viscosity accounts for diffusion of
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momentum between adjacent fluid elements having different velocities. Bulk viscos-
ity provides an approximate description, valid at low frequency, of nonequilibrium 
deviations between the actual local pressure and the thermodynamic pressure; the 
latter is given by the fluid equation of state .P = P(ρ, T ), where T is the absolute 
temperature. 

A more general description, covering a wide frequency range, would need to rec-
ognize that nonequilibrium deviations involve relaxation. Examples are vibrational 
relaxation of diatomic molecules (as in air) and chemical relaxation in seawater. 
The former occurs whenever the energy associated with molecular vibration fails to 
keep in step with the molecular translational energy associated with the fluctuating 
temperature in the gas. In air, vibrational relaxation is the dominant attenuation 
mechanism at audible frequencies, while chemical relaxation is the main cause 
of sound attenuation in seawater below 500 kHz. A general discussion is given in 
Sect. 81 of the book by Landau and Lifshitz (1987); the use of . μB in the present 
chapter to account for nonequilibrium departures of the actual pressure from the 
thermodynamic pressure is valid provided the time scale of the disturbance is long 
compared with the relaxation times involved (Pierce, 1989). The effect of relaxation 
on the propagation of finite-amplitude sound at higher frequencies is discussed in 
Sect. 5.2.1. 

For the present chapter, we assume for simplicity that all relaxation times are 
much shorter than the time scale of the acoustic disturbance. Equation (3.2) is then 
a valid approximate statement of momentum conservation, and the appropriate form 
of the entropy equation is 

.ρT
Ds

Dt
= κ∇2T + μB(∇ ·u)2 + 1

2μ

⎛
∂ui

∂xj

+ ∂uj

∂xi

− 2
3δij

∂uk

∂xk

⎞2

, (3.3) 

where s is the specific entropy (per unit mass) and . κ is the thermal conductivity. 
The final term in Eq. (3.3) is written in Cartesian tensor notation: . ui denotes the 
component of . u in direction . xi , and . δij is the Kronecker delta, equal to unity for 
.i = j and zero otherwise. 

Finally, for convenience in the analysis that follows, we choose to write the state 
equation in .(P, ρ, s) variables, rather than .(P, ρ, T ): 

.P = P(ρ, s). (3.4) 

A commonly used explicit form of Eq. (3.4) is that for a perfect gas, i.e., a gas for 
which both .P/ρT and the specific-heat ratio are constants: 

.P/P0 = (ρ/ρ0)
γ exp[(s − s0)/cv]. (3.5) 

Here .P0, ρ0, and . s0 are reference (hereafter taken to be ambient) values of the 
pressure, density, and specific entropy, respectively, and .γ = cp/cv is the ratio 
of the specific heats at constant pressure .(cp) and constant volume . (cv). However,
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the assumption of perfect-gas behavior is unnecessarily restrictive, and in order to 
obtain model equations that are valid in an arbitrary fluid, in later sections we shall 
expand Eq. (3.4) in a Taylor series about .(ρ0, s0). 

3.3 Lossless Theory 

In this section we consider lossless fluids. We thus set . μ, . μB , and . κ to zero. 
Equation (3.3) leads to the trivial conclusion .s = s0 (because the fluid is initially 
uniform with .s = s0 everywhere), and Eq. (3.4) reduces to .P = P(ρ). 

3.3.1 Plane Waves 

Exact solutions of the equations in Sect. 3.2 are available for plane waves in a 
uniform lossless fluid (Riemann, 1860; see also Sect. 104 of Landau and Lifshitz, 
1987; Blackstock, 1962; and Sects. 8.2–8.4 of Thompson, 1984). Starting from the 
equation of state, we define 

.c2 =
⎛

∂P

∂ρ

⎞
s

, λ =
⎰ ρ

ρ0

c

ρ
dρ =

⎰ P

P0

dP

ρc
, (3.6) 

where c is the sound speed. Although the lower limits on the integrals are arbitrary, 
they are conveniently identified with the uniform undisturbed state (density . ρ0, 
pressure . P0). Equations (3.6) may be used to write .ρt = (ρ/c)λt , ρx = (ρ/c)λx , 
and .Px = ρcλx , where the subscripts indicate partial derivatives, and propagation 
along the x axis is assumed. The one-dimensional forms of Eqs. (3.1) and (3.2) 
reduce, respectively, to Eqs. (1.11) and (1.12): 

.
∂λ

∂t
+ u

∂λ

∂x
+ c

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ c

∂λ

∂x
= 0. (3.7) 

Addition and subtraction of Eqs. (3.7) yield 

.
∂J+
∂t

+ (u + c)
∂J+
∂x

= 0,
∂J−
∂t

+ (u − c)
∂J−
∂x

= 0. (3.8) 

The quantities 

.J+ = 1
2 (λ + u), J− = 1

2 (λ − u) (3.9) 

are called Riemann invariants (Riemann, 1860). These wavelike quantities propa-
gate unchanged in the x direction at speeds .u + c, .u − c, respectively [Eqs. (1.32)].
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The forward invariant . J+ is propagated unchanged along the forward characteristic 
.dx/dt = u + c in the xt plane, and the backward invariant . J− along the backward 
characteristic .dx/dt = u − c. However, because quantities such as u, c, and P 
generally depend on both . J+ and . J−, the wavelike property is limited in the general 
case to the Riemann invariants themselves. 

The exception is the important case of progressive-wave propagation, where one 
of the Riemann invariants is a constant. For example, if the fluid in the region . x > x0
is free of disturbances for all times .t < t0, there can be no incoming waves in view 
of Eqs. (3.8); i.e., .J− = 0 everywhere. It follows that .J+ = λ = u, and therefore 

.u =
⎰ ρ

ρ0

c

ρ
dρ (3.10) 

from Eqs. (3.6), which means that a one-to-one relation exists between the fluid 
velocity disturbance and the density (or pressure) disturbance. Such progressive 
waves in a compressible fluid are called simple waves, as distinct from the general 
case of compound waves, which involve both . J+ and . J−. 

For simple, forward-propagating waves, Eqs. (3.8) reduce to 

.
∂q

∂t
+ (c + u)

∂q

∂x
= 0, i.e.,

dx

dt

||||
q

= c + u. (3.11) 

Here q stands for any of the quantities u, .P − P0, .ρ − ρ0; it can also be any 
combination of these, since they are one-to-one-related. Like Eqs. (3.8), the result is 
exact under the conditions assumed, namely, progressive plane waves traveling into 
a uniform region of lossless fluid. Historically, Eqs. (3.11) were derived first for an 
isothermal gas, a special case for which c is a constant independent of u or . ρ − ρ0
[see Eqs. (1.18) and (1.19)]. 

For the sake of definiteness, we put .q = u in Eqs. (3.11). . A general implicit 
solution—remembering that c is not actually a constant, but is related to u by 
Eq. (3.10)—is an extension of Poisson’s (1808) solution for an isothermal gas, 
Eq. (1.17): 

.u = g[x − (c + u)t]. (3.12) 

Equation (3.12) is the solution of the initial-value problem .u = g(x) at .t = 0. 
An alternative version, appropriate for boundary-value problems [e.g., a source 
waveform .u = f (t) is prescribed at .x = 0 and a solution is sought for .x > 0], 
follows from rewriting Eqs. (3.11) as  

.
∂q

∂x
+ 1

c + u

∂q

∂t
= 0, i.e.,

dt

dx

||||
q

= 1

c + u
. (3.13) 

Here the roles of t and x are interchanged, and the general implicit solution—again 
with .q = u for definiteness—is
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.u = f

⎛
t − x

c + u

⎞
. (3.14) 

For a further detailed discussion and history of these solutions, see Chap. 1. 
Equations (3.11)–(3.14) are elegant in their simplicity, particularly when applied 

to a perfect gas. In this case, putting .s = s0 in Eq. (3.5) and combining with the first 
of Eqs. (3.6) yields 

.P/P0 = (ρ/ρ0)
γ = (c/c0)

2γ /(γ−1), c2 = γP/ρ, (3.15) 

where . c0 is the small-signal sound speed . (c evaluated at the equilibrium state). 
Substitution into the differential relation .du = (c/ρ) dρ = c d(ln ρ) from Eq. (3.10) 
produces .du = 2c d(ln c)/(γ −1), and it follows that .dc = 1

2 (γ −1) du, which can 
be integrated to give, without approximation, 

.c = c0 + 1
2 (γ − 1)u, c + u = c0 + βu, β = 1

2 (γ + 1), (3.16) 

where . β is the coefficient of nonlinearity. A further consequence is . u = λ = 2(c −
c0)/(γ−1). Equations (1.27)–(1.29) thus follow from Eqs. (3.11), (3.12), and (3.16). 
For an arbitrary fluid, the second of Eqs. (3.16) may be written as the Taylor series 
expansion 

.c + u = c0 + β̃(0)u + 1
2 β̃

'(0)u2 + · · · , (3.17) 

where .β̃(u) denotes the derivative .d(c + u)/du for simple, forward-propagating 
waves. Since .u = λ for such waves, . β̃ is actually a thermodynamic quantity, 
which happens to be a constant for perfect gases. We shall not require the third or 
subsequent terms in expansion (3.17). The constant equilibrium value . β̃0 ≡ β̃(0)
is identified as the coefficient of nonlinearity . β even when arbitrary fluids are 
discussed. 

The quantity .β̃(λ) corresponds to a fundamental thermodynamic property 
encountered in gas dynamics (Landau and Lifshitz, 1987; Thompson, 1984): 

.β̃ = c4

2v3

⎛
∂2v

∂P 2

⎞
s

= 1 + ρ

2c2

⎛
∂2P

∂ρ2

⎞
s

, (3.18) 

where .v = 1/ρ is specific volume. The second of Eqs. (3.18) yields . β̃0 = 1 +
B/2A ≡ β, where .B/A = (ρ0/c

2
0)(∂

2P/∂ρ2)s,0, and the definition in Eqs. (2.16) 
is thus recovered. From the first of Eqs. (3.18) we see that if the isentrope . v(P )

for .s = s0 is a straight line—the isentropes being the contours of s in the Pv  
plane—then plane-wave propagation is linear for all amplitudes, since . β̃ is zero and 
no cumulative waveform distortion occurs (in the absence of losses).1 For a perfect

1 Rayleigh called this Earnshaw’s law; see item 4 on page 11. As discussed by Thompson (1984), 
. β̃ may be negative near critical points. 
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gas, evaluation of . β̃ on the basis of Eqs. (3.15) and substitution into Eq. (3.17) yields 
Eqs. (3.16) exactly. Although the result .β̃ = β is obtained for a perfect gas, this is a 
special case, and in general . β̃ is not a constant. 

Finally, in situations where quadratic nonlinearity is sufficient to describe the 
dominant finite-amplitude effects, we can substitute first-order approximations into 
the nonlinear terms (such a substitution procedure is used extensively in Sect. 3.5). 
In particular, let .q = u in Eqs. (3.13) and write .c + u ≃ c0 + βu. Then binomial 
expansion of the coefficient .(c0 + βu)−1 to first order in u leads to the following 
differential equation for u, written here with its corresponding solution (Blackstock, 
1962): 

.
∂u

∂x
+ 1

c0

∂u

∂t
= β

c20

u
∂u

∂t
, u = f (t − x/c0 + βxu/c20). (3.19) 

To assess the error introduced by these approximations, write the second of 
Eqs. (3.19) in the form .û = f (t̂), noting that .t̂ = t − x/c0 + βxu/c20 is the 
approximation of the exact argument in Eq. (3.14). Taylor series expansion of the 
exact solution (3.14), following binomial expansion of its argument, yields for a 
perfect gas .u = f (t̂) − (β2x/c30)f

2(t̂)f '(t̂) + · · · , where .f ' = df/dt̂ . For plane 
waves in air .(β = 1.2) with source condition .f (t) = u0 sinωt , the relative error 
.|û − u|/u0 at the point of shock formation is proportional to . u0 and less than 0.5% 
for .u0/c0 = 10−2 (154 dB re 20 . μPa). Within this order of approximation—that is, 
with terms of relative order .(u0/c0)2 neglected—it is consistent for arbitrary fluids 
to replace the quantity . β̃ by its unperturbed value .β = 1 + B/2A. 

3.3.2 Nonplanar Waves 

We end this discussion of nonlinear waves in a lossless fluid by considering three-
dimensional disturbances in which the flow remains irrotational. This last restriction 
requires not only that the fluid be inviscid, but also that the pressure and density 
be one-to-one related. Both these conditions are met in a lossless fluid whose 
undisturbed state is uniform, since Eq. (3.3) yields .Ds/Dt = 0 when . κ , . μ, and 
. μB are all zero. The practical application of such a restrictive model depends on 
recognizing that although all fluids have finite viscosity, and therefore vorticity 
generated at solid boundaries will diffuse into the body of the fluid, the diffusion 
length scale can be quite small at acoustic frequencies. Accordingly, setting the 
vorticity equal to zero and neglecting viscous stresses may prove to be appropriate 
over most of the flow field, provided that regions close to any solid boundaries are 
excluded. The same applies to thermal diffusion, which is likewise neglected in 
setting the material derivative of s equal to zero. See Sect. 3.4 for further discussion 
of boundary-layer effects.
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Consider a lossless, homentropic, irrotational flow that extends to infinity, with 
.u = ∇φ and .Ds/Dt = 0. Here . φ is the velocity potential. Equations (3.1) and (3.2), 
written in terms of . φ, are  

.
∂ρ

∂t
+ ∇ρ ·∇φ + ρ∇2φ = 0, . (3.20) 

∇
⎛

∂φ 
∂t 

+ 1 2 |∇φ|2
⎞

+ 
∇P 
ρ 

= 0, (3.21) 

where .|∇φ|2 = ∇φ ·∇φ. Now introduce the function 

.q =
⎰ P

P0

dP

ρ
=

⎰ ρ

ρ0

c2

ρ
dρ, (3.22) 

where the integrals are evaluated along .s = s0. Then .∇P = ρ∇q, and Eq. (3.21) 
can be integrated with respect to spatial coordinates to obtain 

.
∂φ

∂t
+ 1

2 |∇φ|2 + q = 0. (3.23) 

The integration constant (actually, function of time) is zero, since the flow field 
extends to infinity and all acoustical disturbances vanish in this limit. Since q is 
defined by Eq. (3.22) and the equation of state, Eqs. (3.20) and (3.23) can be solved 
as a system of two equations in the two unknowns . φ and . ρ. 

For a perfect gas, a wave equation in . φ alone can be derived on the basis of 
Eqs. (3.15), as follows. Equation (3.22) gives .q = (c2−c20)/(γ −1), the substitution 
of which into Eq. (3.23) yields 

.c2 = c20 − (γ − 1)

⎛
∂φ

∂t
+ 1

2 |∇φ|2
⎞

. (3.24) 

The differential relation .dc2/dρ = (γ − 1)c2/ρ also follows from Eqs. (3.15), and 
permits Eq. (3.20) to be rewritten as 

.
∂c2

∂t
+ ∇c2 ·∇φ + (γ − 1)c2∇2φ = 0. (3.25) 

Substitution of Eq. (3.24) in Eq.  (3.25) leads to the following wave equation in . φ: 

. c20∇2φ − ∂2φ

∂t2
=

⎛
2∇ ∂φ

∂t
+ 1

2∇|∇φ|2
⎞

·∇φ

+ (γ − 1)

⎛
∂φ

∂t
+ 1

2 |∇φ|2
⎞

∇2φ. (3.26)
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Equation (3.26) is exact for a lossless perfect gas, but no analytical solutions 
are available for unsteady flow apart from those in Sect. 3.3.1 for plane waves. 
Equation (3.26) is often used in aeroelasticity, and it frequently serves as a starting 
point for perturbation analyses in nonlinear acoustics (see Sect. 10.1). When 
dissipation must be taken into account, approximations are normally introduced 
to obtain simplified wave equations that are more amenable to analysis. These 
approximations, and the resulting model equations, are introduced next. 

3.4 Approximations for Thermoviscous Fluids 

In order to describe nonlinear sound propagation in dissipative fluids, we abandon 
the search for exact solutions and turn instead to an approximation scheme based on 
the original full equations (3.1)–(3.4). Our limited aim is a set of model equations 
that describe three-dimensional finite-amplitude sound fields to second order in 
the acoustic Mach number .ε = u0/c0 (where . u0 is a typical acoustic velocity 
magnitude). The suitability of . ε as a small ordering parameter is indicated by its 
value .ε = 10−2 for 154 dB (re 20 . μPa) in air and for 264 dB (re 1 . μPa) in water. 

However, even this limited objective produces unwieldy results if all .O(ε2) terms 
are retained. Instead, we shall exploit the existence—in most situations of practical 
interest—of a second small parameter .η = μω/ρ0c

2
0, where . ω is a characteristic 

angular frequency. Physically, . η is a measure of the importance of viscous stresses 
in a plane progressive sound wave, relative to the fluctuating pressure. At standard 
conditions one obtains .η ∼ 10−6 for both 1 kHz in air and 1MHz in water. The 
corresponding small parameter associated with heat conduction is . κω/ρ0c

2
0cp =

η/Pr, in which the Prandtl number .Pr = μcp/κ is .O(1) in terms of . ε and . η. With 
the expansion of Eqs. (3.1)–(3.4) limited to first order in . η, and with only those 
.O(ε2) terms that are zero order in . η retained, a consistent nonlinear wave equation 
is derived in Sect. 3.5. 

3.4.1 Small-Signal Modes and Ordering Scheme 

The following discussion is based on Sects. 10-3 and 10-4 of Pierce’s book (1989), 
to which the reader is referred for supporting details. In a viscous heat-conducting 
fluid, the variables .p = P − P0, .ρ' = ρ − ρ0, .T ' = T − T0, .s' = s − s0, 
and . u describe small disturbances relative to a uniform state of rest. Based on the 
linearized versions of Eqs. (3.1)–(3.4), dispersion relations can be obtained for three 
independent “modes” of small-signal disturbances in an unbounded fluid, called the 
acoustic, vorticity, and thermal (or entropy) modes. In general, each of the field 
variables contains contributions from each of the three modes; for example,
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.u = uac + uvor + uent. (3.27) 

Coupling between the modes occurs through imposition of boundary conditions. For 
example, at a fixed solid boundary .uac+uvor+uent = 0, and an incident disturbance 
in one mode (e.g., acoustic) is scattered by the boundary to produce reflected fields 
in all three modes. 

The significance of these linearized modes in the present context is that in the 
weakly thermoviscous limit .η ⪡ 1 (Pr is assumed of order one), the nonacoustic 
modes are governed by diffusion equations, with length scales of order .η1/2 times 
the acoustic wavelength. Specifically, it can be shown that near a boundary on which 
acoustic waves are incident, the magnitudes of the terms on the right-hand side of 
Eq. (3.27) are related as 

.|uvor/uac| ≃ e−x/lvor , |uent/uac| ≃ [(γ − 1)/Pr1/2]η1/2e−x/lent , (3.28) 

where x denotes distance from the boundary, the boundary-layer thicknesses . lvor
and . lent are defined by 

.klvor = (2η)1/2, klent = (2η/Pr)1/2, (3.29) 

and .k = ω/c0 is the acoustic wave number. For small . η, the boundary-layer 
thicknesses are thus very small fractions of an acoustic wavelength. Outside the 
thermoviscous boundary layer, the vorticity and entropy modes are effectively 
absent because of the exponential decay factors in Eqs. (3.28), and the variables 
p, . ρ', . T ', and . u may be identified with their acoustic-mode values . pac, etc.  

Following Lighthill (1956), we choose to treat . ε and . η as of comparable 
smallness, and we shall discard .O(η2ε) and .O(ηε2) terms along with .O(ε3) terms 
in the expansions of Eqs. (3.1)–(3.4). The resulting model, with terms of order 
. ε, . ηε, and . ε2 retained, describes small-signal sound to leading order in . η, and, 
more important, it is expected to account for the combined effects of nonlinearity 
and dissipation on weakly nonlinear three-dimensional sound waves. To facilitate 
implementation and discussion of this ordering scheme, we introduce a generic 
small parameter . ̃ε that characterizes the smallness of both . ε and . η. Our primary 
objective in the remainder of this chapter is to derive model equations valid at order 
. ̃ε2 outside thermoviscous boundary layers. 

3.4.2 Second-Order Approximations 

Begin by substituting .ρ = ρ0+ρ' in Eq. (3.1) and collecting .O(ε̃) terms on the left, 
.O(ε̃2) terms on the right: 

.
∂ρ'

∂t
+ ρ0∇ ·u = −ρ'∇ ·u − u ·∇ρ'. (3.30)
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Equation (3.30) remains exact. In Eq. (3.2), introduce the vector identities 

. ∇(∇ ·u) = ∇2u + ∇ × ∇ × u

and, in .Du/Dt , 

. (u ·∇)u = 1
2∇u2 − u × ∇ × u,

where .u2 = u · u. Let  .P = P0 + p, discard .O(ε̃3) terms, and again collect . O(ε̃)

and .O(ε̃2) terms on the left and right, respectively, to obtain 

. ρ0
∂u
∂t

+ ∇p = (μB + 4
3μ)∇2u − 1

2ρ0∇u2 − ρ' ∂u
∂t

+ (μB + 1
3μ)∇ × ∇ × u + ρ0u × ∇ × u. (3.31) 

Consider now the fourth and fifth terms on the right-hand side. Use of linear theory 
to approximate the vorticity field in these two terms2 leads, via Eq. (3.27), to 
.∇ ×u ≃ ∇ ×uvor. The first of Eqs. (3.28) then shows that the fourth and fifth terms 
on the right-hand side of Eq. (3.31) decay exponentially away from boundaries and 
eventually become small in comparison with the corresponding first and second 
terms, which are dominated by acoustic-mode contributions. To determine where 
this occurs, let .lvor and .k−1 characterize the length scales of the vorticity and 
acoustic modes, respectively, with .klvor ⪡ 1, and define .E = e−x/lvor . Taking 
Eqs. (3.28) and (3.29) into account, one finds that the magnitude of the fourth term 
relative to the first is .|∇ ×∇ ×uvor|/|∇2uac| ∼ E/η, and the magnitude of the fifth 
relative to the second is .|uac × ∇ × uvor|/|∇u2ac| ∼ E/η1/2. Both the fourth and 
fifth terms may therefore be discarded for .E/η ⪡ 1—for example, for . x/lvor ≳ 20
with .η ∼ 10−6. We shall henceforth assume that .E/η ⪡ 1, which allows us to write 
Eq. (3.31) as  

.ρ0
∂u
∂t

+ ∇p = (μB + 4
3μ)∇2u − 1

2ρ0∇u2 − ρ' ∂u
∂t

. (3.32) 

Note, however, that the vorticity terms that were discarded in order to arrive at 
this version of the momentum equation are essential to the analysis of acoustic 
streaming, a second-order phenomenon not considered here. For further details, see 
Chap. 7 and the discussion by Naze Tjøtta and Tjøtta (1990). 

We next consider approximations of the entropy equation, Eq. (3.3). The presence 
of the coefficients . κ , . μB , and . μ on the right side of Eq. (3.3) suggests that entropy 
perturbations . s' generated as a by-product of a sound field are .O(ε̃2). Closer  
investigation reveals this to be true only well away from solid boundaries, because

2 For acoustic streaming calculations, this would not be valid—see the comment following Eq. 
(3.32). 
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at such boundaries, linear theory gives .|Tent| ≃ |Tac| (Pierce, 1989), and thus . s' is 
.O(ε). Following steps similar to those leading to Eq. (3.32), one can show that 
for .E/η ⪡ 1 (where now .E = e−x/l , and .l ∼ lvor ∼ lent characterizes the 
thermoviscous boundary-layer thickness), the right side of Eq. (3.3) is dominated 
by the linear acoustic-mode term .κ∇2T '

ac. We therefore obtain 

.ρ0T0
∂s'

∂t
= κ∇2T ' (3.33) 

as the appropriate entropy equation, up to terms of second order in . ̃ε, for sound fields 
away from solid boundaries. Finally, expanding the equation of state, Eq. (3.4), in a 
Taylor series about the equilibrium state .(ρ0, s0) and neglecting .O(ε̃3) terms yields 

.p = c20ρ
' + c20

ρ0

B

2A
ρ'2 +

⎛
∂P

∂s

⎞
ρ,0

s', (3.34) 

where .B/A = (ρ0/c
2
0)(∂

2P/∂ρ2)s,0 is the parameter of nonlinearity [Eq. (2.6)]. 
Equations (3.30) and (3.32)–(3.34) are the main results of this section. They 

represent consistent .O(ε̃2) approximations of the full equations of motion and 
equation of state, Eqs. (3.1)–(3.4). More specifically, they permit the development 
of consistent second-order corrections to the linear acoustic wave equation for 
a nonreacting, weakly thermoviscous fluid .(η ⪡ 1). Their domain of validity, 
.E/η ⪡ 1, excludes thermoviscous boundary layers near solid surfaces. 

3.5 Second-Order Wave Equation 

Further manipulation of Eqs. (3.30) and (3.32)–(3.34) in order to combine them 
into a single wave equation requires repeated application of the following corollary 
to our ordering scheme: .O(ε̃) acoustic-mode relations may be substituted into any 
.O(ε̃2) terms, since the resulting errors are .O(ε̃3). For example, the first term on the 
right-hand side of Eq. (3.30) may be rewritten as follows: 

. − ρ'∇ ·u = −
⎛

p

c20

⎞⎛
− 1

ρ0

∂ρ'

∂t

⎞
= p

ρ0c
4
0

∂p

∂t
, (3.35) 

where the equal signs signify equality at .O(ε̃2). For  Eqs.  (3.30) and (3.32), 
respectively, this procedure yields (Aanonsen et al., 1984) 

.
∂ρ'

∂t
+ ρ0∇ ·u = 1

ρ0c
4
0

∂p2

∂t
+ 1

c20

∂L
∂t

, . (3.36)
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ρ0 
∂u 
∂t 

+ ∇p = −  
1 

ρ0c
2 
0 

(μB + 4 3μ)∇ ∂p 
∂t 

− ∇L, (3.37) 

where 

.L = 1
2ρ0u

2 − p2

2ρ0c20
(3.38) 

is the second-order Lagrangian density. It is interesting to note that .L = 0 for plane 
progressive waves (since at first order, .p = ρ0c0u), in which case the momentum 
equation, Eq. (3.37), is linear and therefore does not contribute at .O(ε̃2) to finite-
amplitude effects in such fields (Hamilton and Blackstock, 1990). 

Now combine Eqs. (3.33) and (3.34) as follows: Use the .O(ε̃) relation . ∇2T ' =
c−2
0 ∂2T '/∂t2 (i.e., the lossless, linear wave equation) to permit integration of 
Eq. (3.33) with respect to time, and thus eliminate . s' in favor of . T ' in Eq. (3.34). 
To eliminate temperature, write .T = T (ρ, s) and use the .O(ε̃) expansion . T ' =
(∂T /∂ρ)s,0ρ

' to obtain, following further .O(ε̃) substitutions, 

.ρ' = p

c20

− 1

ρ0c
4
0

B

2A
p2 − κ

ρ0c
6
0T0

⎛
∂T

∂ρ

⎞
s,0

⎛
∂P

∂s

⎞
ρ,0

∂p

∂t
. (3.39) 

The thermodynamic relations .(∂P/∂s)ρ = ρ2(∂T /∂ρ)s and . (∂T /∂ρ)2s =
RT c2/cvcpρ2, where .R = cp − cv , may be used to rewrite the third term in 
Eq. (3.39) (see, e.g., Fetter and Walecka, 1980) to obtain 

.ρ' = p

c20

− 1

ρ0c
4
0

B

2A
p2 − κ

ρ0c
4
0

⎛
1

cv

− 1

cp

⎞
∂p

∂t
. (3.40) 

For a perfect gas, one may use Eq. (3.5), together with .P = RρT , to show that 
.(∂T /∂ρ)s,0 = RT0/cvρ0 and .(∂P/∂s)ρ,0 = ρ0c

2
0/cp, the substitution of which into 

Eq. (3.39) also yields Eq. (3.40). 
To obtain the desired second-order wave equation, subtract the time derivative 

of Eq. (3.36) from the divergence of Eq. (3.37), use Eq. (3.40) to eliminate . ρ', and 
substitute the .O(ε̃) relation .∇2p = c−2

0 ∂2p/∂t2 into the viscosity term to give 
(Aanonsen et al., 1984) 

.□2p + δ

c40

∂3p

∂t3
= − β

ρ0c
4
0

∂2p2

∂t2
−

⎛
∇2 + 1

c20

∂2

∂t2

⎞
L, (3.41) 

where .□2 = ∇2 − c−2
0 (∂2/∂t2) is the d’Alembertian operator, .β = 1+B/2A is the 

coefficient of nonlinearity, and . δ is the diffusivity of sound (Lighthill, 1978):
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.δ = 1

ρ0

⎛
4

3
μ + μB

⎞
+ κ

ρ0

⎛
1

cv

− 1

cp

⎞
= ν

⎛
4

3
+ μB

μ
+ γ − 1

Pr

⎞
, (3.42) 

where .ν = μ/ρ0 is the kinematic viscosity. Typical values for .μB/μ are 0.6 for 
air at ambient temperature (reflecting rotational relaxation), and 3.0–2.7 for water 
at 0–. 60 ◦C (Pierce, 1989). The heat conduction term .(γ − 1)/Pr is generally more 
significant for gases than for liquids.3 

Equation (3.41) is a consistent .O(ε̃2) wave equation for the sound pressure 
in a weakly thermoviscous fluid .(η ⪡ 1), valid outside any thin thermoviscous 
boundary layers that may be present. It accounts for the mutual interaction of 
nonlinear and dissipative processes in modifying the propagation of sound in three 
dimensions. The wave field need not be progressive. Alternative, but lossless, forms 
of Eq. (3.41) were derived by Eckart (1948) and Westervelt (1957). Note that the 
small-signal attenuation coefficient .α(ω) = −Imχ follows from Eq. (3.41) if plane-
wave solutions of the form .exp[j (ωt −χx)] are postulated. The characteristic wave 
number . χ is found to be .k(1−jδω/c20)

1/2, where .k = ω/c0, and binomial expansion 
yields .α ≃ δω2/2c30 for .α ⪡ k. 

3.6 Westervelt Equation 

The Westervelt (1963) equation is obtained from Eq. (3.41) by discarding the term 
containing . L. We noted above that .L = 0 at .O(ε̃2) for progressive plane waves. In 
general, however, justification for omitting the Lagrangian density is based on the 
distinction between cumulative and local nonlinear effects (Aanonsen et al., 1984). 
Begin by noting that at .O(ε̃2), Eq.  (3.38) can be rewritten in terms of the velocity 
potential as .L = 1

4ρ0□2φ2, where use has been made of the first-order relation 
.p = −ρ0∂φ/∂t from Eq. (3.21). Equation (3.41) can therefore be rewritten as 

.□2

⎾
p + ρ0

4

⎛
∇2 + 1

c20

∂2

∂t2

⎞
φ2

⏋
+ δ

c40

∂3p

∂t3
= − β

ρ0c
4
0

∂2p2

∂t2
. (3.43) 

Now introduce an auxiliary variable . p̃ defined by 

.p̃ = p + ρ0

4

⎛
∇2 + 1

c20

∂2

∂t2

⎞
φ2, (3.44) 

and eliminate p from Eq. (3.43) to obtain, ignoring .O(ε̃3) terms,

3 For a mixture of different fluids, . δ contains a contribution due to molecular diffusion of species, 
which may be absorbed into . μB in Eq. (3.42). In air, diffusion accounts for about 0.5% of the total 
value of . δ. 
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.□2p̃ + δ

c40

∂3p̃

∂t3
= − β

ρ0c
4
0

∂2p̃2

∂t2
. (3.45) 

The system defined by Eqs. (3.44) and (3.45) is consistent, at .O(ε̃2), with  Eq. (3.41). 
The Westervelt equation thus corresponds to assuming that .p̃ ≃ p: 

.□2p + δ

c40

∂3p

∂t3
= − β

ρ0c
4
0

∂2p2

∂t2
. (3.46) 

The validity of the Westervelt equation, Eq. (3.46), depends on the extent to which 
the approximation .p̃ ≃ p is valid.4 

To evaluate this approximation, note that at .O(ε̃2), the solution of Eq. (3.41) for  
the pressure p can be obtained by solving Eq. (3.45) for  . p̃ and then recovering the 
solution for p from Eq. (3.44) (Naze Tjøtta and Tjøtta, 1987). The desired solution 
p thus differs from the auxiliary solution . p̃ (i.e., the solution of the Westervelt 
equation) by a function of . φ2 that depends only on the local properties of the 
sound field at the point of interest. Any and all cumulative nonlinear effects must 
therefore be associated with the term on the right-hand side of Eq. (3.45). The 
right-hand side may be regarded as a forcing function corresponding to a spatial 
distribution of virtual sources created by the sound wave itself. The integrated 
effect of these virtual sources on the sound wave accumulates with distance in 
the direction of propagation. Cumulative nonlinear effects produce the waveform 
steepening illustrated in Fig. 4.1, and the resonant harmonic interactions described 
in Sect. 4.2.4. 

The Westervelt equation is thus an appropriate approximation of the full second-
order wave equation, Eq. (3.41), when cumulative nonlinear effects dominate local 
nonlinear effects. The difficulty is knowing when local effects can be ignored. Errors 
due to ignoring the distinction between Lagrangian and Eulerian coordinates (e.g., 
linearizing a vibrating source condition by prescribing the velocity on a stationary 
surface) or due to using linear theory to transform the solution or model equation 
from one acoustical field variable to another (e.g., using the impedance relation . p =
ρ0c0u for progressive plane waves) are noncumulative (Blackstock, 1962; see also 
Sect. 4.2.3). They become insignificant in comparison with the cumulative effects 
of waveform distortion once the propagation distance becomes much greater than 
a wavelength. The same applies to ignoring the distinction between the boundary 
conditions on p and . p̃. As a general rule, except within one wavelength away from 
the source, local effects can be ignored for problems involving progressive quasi-
plane waves, such as directional sound beams. Where local effects can be important 
are in compound wave fields, such as standing waves, guided waves in nonplanar

4 The equation obtained by Westervelt (1963) is actually the lossless form of Eq. (3.46). We 
also note that a lossless form of Eqs. (3.44) and  (3.45) was obtained independently by Morse 
and Ingard (1968), who used the equivalent .O(ε2) relation . p̃ = p + 1

2ρ0u
2 + p2/2ρ0c20 +

(ρ0c
2
0)

−1(∂p/∂t)
⎰

p dt in place of Eq. (3.44). 
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modes (Sect. 5.3.1), and scattering of sound by sound from intersecting sound beams 
(Naze Tjøtta and Tjøtta, 1988). Radiation pressure, the subject of Chap. 6, is another 
example of local effects. 

3.7 Burgers Equation 

The Burgers equation is the simplest model that describes the combined effects 
of nonlinearity and losses on the propagation of plane progressive waves. Our 
derivation begins with the one-dimensional form of the Westervelt equation, 
Eq. (3.46): 

.

⎛
∂2

∂x2 − 1

c20

∂2

∂t2

⎞
p + δ

c40

∂3p

∂t3
= − β

ρ0c
4
0

∂2p2

∂t2
. (3.47) 

A method for simplifying Eq. (3.47) can be deduced from examination of approx-
imate solutions for plane progressive waves in two limiting cases, the first without 
dissipation and the second without nonlinearity. For the first case, we use the 
boundary-value solution for u presented in Sect. 3.3.1. An expression in terms of the 
sound pressure follows from substituting .u = p/ρ0c0 into the second of Eqs. (3.19): 

.p = f [τ + (βp/ρ0c
3
0)x], (3.48) 

where the retarded time .τ = t − x/c0 has been introduced. For the second case, we 
repeat here the linear solution obtained at the end of Sect. 3.5: 

.p = p0 exp[jωτ − (δω2/2c30)x]. (3.49) 

In both Eqs. (3.48) and (3.49) the coefficient of x is .O(ε̃). Each solution thus 
exhibits the functional form 

.p = p(x1, τ ), x1 = ε̃x, τ = t − x/c0. (3.50) 

The meaning of Eqs. (3.50) is that in the retarded time frame (i.e., for an observer 
in a reference frame that moves at speed . c0), nonlinearity and absorption separately 
produce only slow variations as functions of distance. Moreover, the relative order 
of the variations due to each effect is the same, i.e., it is .O(ε̃). We thus anticipate 
that the combined effects of nonlinearity and absorption will introduce variations of 
the same order. The coordinate . x1 is referred to as the slow scale corresponding to 
the retarded time frame . τ . 

To derive a simplified progressive-wave equation that accounts for both absorp-
tion and nonlinearity, we first rewrite Eq. (3.47) in the new coordinate system 
.(x1, τ ). Transformation of the partial derivatives yields
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.

⎛
∂

∂x

⎞
t

= ε̃

⎛
∂

∂x1

⎞
τ

− 1

c0

⎛
∂

∂τ

⎞
x1

,

⎛
∂

∂t

⎞
x

=
⎛

∂

∂τ

⎞
x1

, (3.51) 

substitution of which into Eq. (3.47) gives  

.ε̃2
∂2p

∂x2
1

− ε̃
2

c0

∂2p

∂x1∂τ
+ δ

c40

∂3p

∂τ 3
= − β

ρ0c
4
0

∂2p2

∂τ 2
. (3.52) 

The first term in Eq. (3.52) is  .O(ε̃3) and is therefore discarded. Integration of the 
remaining terms with respect to . τ (recognizing that the function of position that 
results from integration must vanish in the absence of sound, and must therefore be 
zero everywhere) and multiplication of the resulting equation by .− 1

2c0 leads to 

.ε̃
∂p

∂x1
− δ

2c30

∂2p

∂τ 2
= β

2ρ0c30

∂p2

∂τ
. (3.53) 

All three terms in Eq. (3.53)—the loss term, the nonlinear term, and the resulting 
rate of change with distance—are of the same order. Equation (3.53) is the desired 
.O(ε̃2) equation in the coordinate system .(x1, τ ). 

Note that . ̃ε is simply an ordering parameter, which we now remove from 
Eq. (3.53) by reinstating the physical coordinate x in place of . x1. This is accom-
plished by replacing .ε̃(∂/∂x1) with .∂/∂x (but retaining . τ ): 

.
∂p

∂x
− δ

2c30

∂2p

∂τ 2
= βp

ρ0c
3
0

∂p

∂τ
. (3.54) 

Equation (3.54) is the Burgers equation,5 and it is the most widely used model 
equation for studying the combined effects of dissipation and nonlinearity on 
progressive plane waves. Note that Eq. (3.48) is a solution of Eq. (3.54) for  .δ = 0, 
and Eq. (3.49) is a solution for .β = 0. The history of the Burgers equation in the 
field of acoustics is reviewed in Sect. 4.5.1. We call attention here only to landmark 
derivations of the Burgers equation by Mendousse (1953) for viscous fluids and by 
Lighthill (1956) for thermoviscous gases.

5 The equation obtained by Burgers (1948) is  .vt + 2vvy = νvyy (subscripts denote partial 
derivatives), in which . ν is a viscosity coefficient and v is a velocity associated with turbulent 
flow in a channel with cross-sectional coordinate y. 
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3.8 Generalized Burgers Equation 

The generalized Burgers equation is an extension of Eq. (3.54) that takes into 
account the divergence (or convergence) of progressive spherical or cylindrical 
waves, and that reduces to Eq. (3.54) for plane waves. We begin the derivation by 
writing the Westervelt equation, Eq. (3.46), as follows: 

.

⎛
∂2

∂r2
+ 2

m

r

∂

∂r
− 1

c20

∂2

∂t2

⎞
p + δ

c40

∂3p

∂t3
= − β

ρ0c
4
0

∂2p2

∂t2
, (3.55) 

where the Laplacian is expressed in terms of the radial coordinate r for the wave 
field, with .m = 0, . 12 , or 1 for plane, cylindrical, or spherical waves, respectively. 
The field is assumed to depend only on r and t . For plane waves, replace r by x and 
thus recover Eq. (3.47). 

Recall that local nonlinear effects, which are taken into account by . L in 
Eq. (3.41), are not included in Eq. (3.55). We also note again that at .O(ε̃2), 
.L = 0 for progressive plane waves, for which .p = ±ρ0c0u at .O(ε̃) (the . ± signs 
account for both outgoing and incoming waves). From linear theory, we know that 
to the same order the pressure and particle velocity in time-harmonic spherical 
and cylindrical waves are also related by .p = ±ρ0c0u for .kr ⪢ 1. Equation 
(3.55) is thus an appropriate model for lowest-order nonlinear effects in spherical 
and cylindrical waves with weak attenuation .(α ⪡ k) provided .kr0 ⪢ 1, where 
. r0 is the source (or starting) radius and k is the wave number corresponding to 
the lowest significant frequency component in the wave. Note that the restriction 
.kr0 ⪢ 1 on Eq. (3.55) can be replaced by .r0 > λ, that is, the source radius 
must exceed the maximum wavelength of the radiated sound. Such a restriction 
is normally weak in practice for diverging waves, because sources smaller than 
one wavelength are relatively inefficient and thus unlikely to radiate sound of finite 
amplitude. Conversely, Eq. (3.55) cannot be used closer than distances on the order 
of one wavelength away from the focus in a converging wave field. 

On the basis of the preceding discussion, it is reasonable to seek a solution having 
a functional form similar to Eqs. (3.50) for plane waves: 

.p = p(r1, τ ), r1 = ε̃r, τ = t ∓ (r − r0)/c0. (3.56) 

Our sign convention when a choice exists, as in the retarded time, is to take the upper 
sign for diverging (outgoing) waves and the lower sign for converging (incoming) 
waves. The constant .r0/c0 is introduced for convenience, in order to obtain .τ = t at 
the source, .r = r0. The coordinate transformation from .(r, t) to .(r1, τ ) is similar 
to that for the plane-wave case, and Eq. (3.55) becomes, after .O(ε̃3) terms are 
discarded and only .O(ε̃2) terms remain,
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. ∓ ε̃
2

c0

∂2p

∂r1∂τ
∓ ε̃

2m

c0r1

∂p

∂τ
+ δ

c40

∂3p

∂τ 3
= − β

ρ0c
4
0

∂2p2

∂τ 2
. (3.57) 

Integration with respect to . τ , multiplication by .∓ 1
2c0, and transformation from the 

coordinates .(r1, τ ) to .(r, τ ) yield 

.
∂p

∂r
+ m

r
p ∓ δ

2c30

∂2p

∂τ 2
= ± βp

ρ0c
3
0

∂p

∂τ
. (3.58) 

Equation (3.58) is the generalized Burgers equation, and it reduces to Eq. (3.54) 
for .m = 0 (in which case one sets .r = x and .r0 = 0). Equation (3.58) was  
derived first by Khokhlov and coworkers (Naugol’nykh et al., 1963; Khokhlov et al., 
1964), while a general form of Eq. (3.58) for lossless fluids was developed by 
Blackstock (1964). The relation .p = ±ρ0c0u may be used to rewrite  Eq. (3.58) 
in terms of particle velocity, because in the .(r1, τ ) coordinate system one obtains 
.p = ±ρ0c0u + O(ε̃2) from Eq. (3.37), and the higher-order terms would appear at 
third order in Eq. (3.57). 

We conclude by noting that Eq. (3.58) may be further generalized to accom-
modate progressive-wave propagation in narrow ducts with variable cross-sectional 
area .A(x), where x is distance along the duct. It is assumed that the duct diameter 
D is small enough .(kD < 1), and that the area varies sufficiently slowly on the 
scale of a wavelength .(k−1|A'/A| ⪡ 1, where .A' = dA/dx), to justify a one-
dimensional propagation model. We also ignore dissipation. The continuity equation 
then becomes (Landau and Lifshitz, 1987) 

.
∂ρ

∂t
+ ∂(ρu)

∂x
+ A'

A
ρu = 0, (3.59) 

whereas the momentum and state equations are unaltered. The assumption of 
lossless propagation requires .l/D to be of smaller order than . ε, where l represents 
the thermoviscous boundary-layer thicknesses defined in Eqs. (3.29). Taking now 
.k−1A'/A = O(ε) and introducing a slow scale as above, with .τ = t ∓ (x − x0)/c0, 
one may obtain the following progressive-wave equation: 

.
∂p

∂x
+ A'

2A
p = ± βp

ρ0c
3
0

∂p

∂τ
. (3.60) 

Here .A'/2A generalizes the factor .m/r in Eq. (3.58), with x replacing the radial 
coordinate r .(A'/2A = m/x for .A ∝ x2m). Equation (3.60) exhibits similarities 
with Eq. (12.58), which describes nonlinear propagation along rays. Moreover, it 
may be rewritten as (Blackstock, 1972) 

.
∂q

∂z
= βq

ρ0c
3
0

∂q

∂τ
, q = (A/A0)

1/2p, z = ±
⎰ x

x0

(A0/A)1/2 dx, (3.61)
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and .A0 = A(x0). Comparing the first of Eqs. (3.61) with the original Burgers 
equation, Eq. (3.54), we see that solutions of the latter for lossless plane waves may 
be transformed for application to ducts with variable cross section (see Sect. 4.6.1). 

3.9 KZK Equation 

The KZK (Khokhlov–Zabolotskaya–Kuznetsov) equation is an augmentation of the 
Burgers equation that accounts for the combined effects of diffraction, absorption, 
and nonlinearity in directional sound beams. Insight into how to choose an 
appropriate slow scale is provided by the derivation of Eq. (3.58). Let z designate 
the nominal axis of the beam pointing in the propagation direction, and let . (x, y)

be the coordinates perpendicular to that axis. The following assumptions are made 
regarding the source: It is defined in the plane .z = 0, it has a characteristic 
radius a, and it radiates at frequencies that satisfy the relation .ka ⪢ 1. The  last  
assumption ensures that the beam is reasonably directional. Because of the assumed 
directionality of the beam, the sound is localized in the vicinity of the z axis, and 
the wavefronts are quasi-planar. 

Linear theory for directional beams reveals the existence of near-field and far-
field regions, with the latter beginning roughly at the Rayleigh distance . 12ka2, 
measured from the source along the beam axis (see Sect. 8.3). The near field 
is characterized by wavefronts that are approximately planar, and the far field is 
characterized by wavefronts that are spherical [note that the relation .kz ⪢ 1 is 
satisfied in the far field, where we have .z > 1

2ka2 and therefore .kz > 1
2 (ka)2 ⪢ 1]. 

Consistent with the derivation of Eq. (3.58), a reasonable choice for the slow scale 
in the direction of propagation is therefore .(z1, τ ), where .z1 = ε̃z and .τ = t − z/c0. 

The appropriate scale for the coordinates perpendicular to the z axis is less appar-
ent. We impose the stipulation that, like the effects of absorption and nonlinearity, 
the effect of diffraction must appear at .O(ε̃2) so that all three effects contribute at 
the same order. We shall demonstrate by substitution that the following relations 
define the slow scale that accommodates this stipulation: 

. p = p(x1, y1, z1, τ ), (x1, y1, z1) = (ε̃1/2x, ε̃1/2y, ε̃z), τ = t − z/c0.

(3.62) 

The postulated slow scale suggests that to an observer moving at speed . c0 in the 
z direction (.τ = const), spatial variations are perceived to occur more slowly, by 
.O(ε̃1/2), along the axis of the beam than across the beam. Indeed, in the near 
field, the length scale for variations along the axis of the beam that are caused 
by diffraction is the Rayleigh distance . 12ka2 = 1

2 (ka)a, which is greater than the 
length scale a across the beam (because .ka ⪢ 1). An additional consequence of 
this reasoning is that ka is .O(ε̃−1/2). 

We now write Eq. (3.46) at  .O(ε̃2) on the slow scale defined in Eqs. (3.62). 
Transformation of the Laplacian yields
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.∇2 = ε̃

⎛
∂2

∂x2
1

+ ∂2

∂y2
1

⎞
+ ε̃2

∂2

∂z21

− ε̃
2

c0

∂2

∂z1∂τ
+ 1

c20

∂2

∂τ 2
, (3.63) 

and Eq. (3.46) becomes, after the .O(ε̃3) term is discarded, 

.ε̃

⎛
∂2

∂x2
1

+ ∂2

∂y2
1

⎞
p − ε̃

2

c0

∂2p

∂z1∂τ
+ δ

c40

∂3p

∂τ 3
= − β

ρ0c
4
0

∂2p2

∂τ 2
. (3.64) 

Equation (3.64) thus confirms that the slow scale introduced in Eqs. (3.62) accounts 
for diffraction at the same order as dissipation and nonlinearity, i.e., at .O(ε̃2). 
Transformation of Eq. (3.64) from the slow scale .(x1, y1, z1) back to .(x, y, z) yields 

.
∂2p

∂z∂τ
− c0

2
∇2⊥p − δ

2c30

∂3p

∂τ 3
= β

2ρ0c30

∂2p2

∂τ 2
, (3.65) 

where .∇2⊥ = ∂2/∂x2+∂2/∂y2 is a Laplacian that operates in the plane perpendicular 
to the axis of the beam. Equation (3.65) is the KZK equation, and it is the most 
widely used model equation for describing the combined effects of diffraction, non-
linearity, and absorption in directional sound beams (see Chap. 8). Equation (3.65) 
was derived first for .δ = 0 by Zabolotskaya and Khokhlov (1969), and the loss 
term was included subsequently by Kuznetsov (1971). A later derivation, based on 
the method of multiple scales, is provided by Naze Tjøtta and Tjøtta (1981). In 
the absence of diffraction .(∇2⊥p = 0), Eq.  (3.65) reduces to the Burgers equation, 
Eq. (3.54). 

The impedance relation that is consistent with use of the KZK equation is 
obtained from Eq. (3.37). First write the particle velocity vector in component 
form: .u = (u⊥, uz), where .u⊥ = (ux, uy). On the slow scale in Eqs. (3.62), the z 
component of Eq. (3.37) yields the relation .p = ρ0c0uz + O(ε̃2). In analyses based 
on the KZK equation, it is thus consistent to use the linear plane-progressive-wave 
impedance relation .p = ρ0c0uz to convert between pressure and the z component 
of the particle velocity. Equation (3.37) also reveals that . u⊥ is .O(ε̃3/2) on the slow 
scale, which indicates that the particle motion is mainly in the z direction, because 
. uz is .O(ε̃). These conclusions are consistent with the notion of directional beams 
composed of quasi-plane waves. 

Finally, we note that ignoring the second term on the right-hand side of Eq. (3.63) 
is often referred to as the parabolic approximation, owing to the fact that the hyber-
bolic wave equation (two derivatives in the propagation direction z) is approximated 
by a parabolic equation (having one derivative in z). The parabolic approximation is 
a high-frequency limit, as may be shown by considering the .O(ε) equation . □2p =
0. Assume radiation at angular frequency . ω in predominantly the z direction and let 
.p = q(x, y, z)ejωτ , where .ωτ = ωt−kz. The parabolic approximation corresponds 
to the assumption .|∂2q/∂z2| ⪡ 2k|∂q/∂z|, i.e., that q is a slowly varying function 
of z at high frequency. One then obtains .□2p ≃ [−j2k(∂q/∂z)+∇2⊥q]ejωτ , which
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following multiplication by .− 1
2c0 is the frequency-domain form of the first two 

terms in Eq. (3.65). 
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4.1 Introduction 

The subject of this chapter is progressive-wave motion. For most of the chapter, for 
simplicity, plane waves are assumed. Both lossless and lossy fluids are considered. 
Section 4.2 is devoted to progressive plane-wave motion in lossless fluids. After 
exact, implicit solutions—those of Poisson and Earnshaw—are discussed, a second-
order approximation of the theory is given. Explicit solutions for periodic waves 
are then obtained, including the Fubini solution for a monofrequency source and 
the Fenlon solution for a bifrequency source. Since the waveform steepening 
described by all these solutions inevitably leads to formation of shock waves, which 
invalidates the lossless fluid assumption, the next step, Sect. 4.3, is to discuss 
the Rankine–Hugoniot shock relations. Of particular interest for acoustics are the 
results for weak shocks. The next two Sects. 4.4 and 4.5, are about propagation 
with dissipation taken into account. In weak shock theory, the subject of Sect. 4.4, 
dissipation is assumed to be concentrated at whatever shocks are present in the 
waveform. Section 4.5 presents the history and solutions of the Burgers equation. 
This equation takes explicit account of dissipation everywhere in the wave, not just 
at the shocks. Section 4.6 takes up two special topics, generalization of the theory 
to cover nonplanar waves (spherical and cylindrical waves and waves in horns), and 
calculation of intensity and absorption of finite-amplitude waves. 

As noted in Sects. 1.2.3 and 3.3.1, two viewpoints of progressive-wave motion 
are common. The wave may have been generated by an initial disturbance, known 
everywhere in space, at time .t = 0. Or the wave may have been generated by a 
source, specified by the time variation of a disturbance at a known point, usually 
.x = 0. The former is called an initial-value problem, the latter a source problem. 
Since most practical acoustics problems are of the source variety, in this chapter we 
concentrate on waves generated by sources. 

4.2 Lossless Progressive Waves 

For an introduction to the problem of plane progressive waves in a lossless fluid, 
the reader may wish to review Sects. 1.2.2, 1.2.3, and 3.3.1. Throughout the present 
chapter, propagation in the positive x direction (outgoing waves) is assumed. For 
this case, the reduced wave equation is [see Eq. (1.28), or Eqs. (3.11) and (3.16)] 

.
∂u

∂t
+ (c0 + βu)

∂u

∂x
= 0, (4.1) 

where u is particle velocity, . c0 is small-signal sound speed, . β is the coefficient of 
nonlinearity [see Eq. (2.16) or (3.18)], x is the (Cartesian) spatial variable, and t 
is time. This equation is exact for perfect gases and a very good approximation for 
liquids.
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Fig. 4.1 Progressive distortion of a finite-amplitude wave (after Blackstock, 1972). The upper 
sketch is a spatial plot of the initial waveform .(t = 0). The lower sketches are time waveforms of 
the traveling wave at various distances x. 

Equation (4.1) may be used to calculate the propagation speed of a given phase 
point, identified by its value of u, on the waveform of a traveling disturbance. Start 
with the relation .du = (∂u/∂x) dx + (∂u/∂t) dt . Because .du = 0 for the phase 
point, we have .dx/dt |u = −(∂u/∂t)/(∂u/∂x), or, in view of Eq. (4.1), 

.dx/dt |u = c0 + βu. (4.2) 

Equation (4.2) shows that the propagation speed varies from point to point on the 
waveform. 

Figure 4.1 illustrates the effect of the varying propagation speed. The upper 
sketch is the spatial waveform of a given signal at time .t = 0. Arrows indicate 
the propagation speed of various points on the waveform. At .t = 0, the front end 
of the wave is at .x = 0. A receiver at that point records the time waveform as the 
wave passes by; see sketch a in the lower set. Succeeding sketches in the lower set, 
b to d, show the time waveform recorded by receivers at progressively more distant 
locations. Because waveform peaks travel faster than troughs, compression sections 
of the waveform (negative .∂u/∂x, or positive .∂u/∂t ; see sketch b) become more 
steep, while expansion sections (positive . ∂u/∂x, or negative .∂u/∂t) become less 
steep. Unchecked, waveform steepening would produce a triple-valued waveform,
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as shown in sketch  d. Of course, no waveform ever reaches the triple-valued 
stage. Instead, shocks form (at .x = x̄, shown in sketch c) and grow, as faster-
traveling phase points behind the shock overtake it. Shock growth is the check that 
prevents the wave from folding over on itself. As shown in Sect. 4.3.5, shocks are 
accompanied by dissipation. Since dissipation is not accounted for in Eq. (4.1), 
strictly speaking the lossless model fails after shocks form. However, many aspects 
of lossless theory are incorporated in a more comprehensive model called weak 
shock theory; see Sect. 4.4.1. 

It is important to recognize that the distortion produced by the varying propaga-
tion speed is cumulative. Even a relatively weak wave can steepen into a shock 
if it travels far enough (provided losses are not significant). The two physical 
mechanisms that cause the propagation speed to vary, convection and nonlinearity 
of the pressure-density relation, are discussed in the paragraph following Eq. (1.30). 

4.2.1 Poisson and Earnshaw Solutions 

Presented in this section are analytical solutions of Eq. (4.1) that satisfy a given 
source condition. One wishes to know the sound field produced by a specified 
excitation .u = f (t) at a source. Often the source condition is taken to be specified 
at a fixed point, usually the origin .x = 0: 

.u(0, t) = f (t). (4.3) 

An implicit solution of Eq. (4.1) that satisfies Eq. (4.3) is [see Eq. (1.30), or 
Eqs. (3.14) and (3.16)] 

.u = f

⎛
t − x

c0 + βu

⎞
. (4.4) 

It is traditional to call this the “Poisson solution” even though Poisson (1808) 
derived it only for an isothermal gas .(β = 1); see Sect. 1.2.2. Notice that the form 
of the solution is implicit in that u is given as .u(x, t, u), not .u(x, t). 

For reference, we give here the “initial-value” version of the Poisson solution 
(this is the form Poisson himself presented): 

.u = g[x − (c0 + βu)t]. (4.5) 

Another implicit solution is the one found by Earnshaw (1860). In this case, 
specific account is taken of what is often called the finite displacement of the source. 
A typical source, such as a moving piston, produces a given velocity signal not at a 
fixed point, such as the origin, but at a moving point, such as the face of the piston. 
If the piston displacement is designated .X(t), the exact source condition is
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.u = Ẋ(t) at x = X(t), (4.6) 

where .Ẋ(t) means .dX/dt . At time . φ the piston is at the place .x = X(φ) and has 
the velocity .Ẋ(φ). This velocity is imparted to the fluid as a disturbance, namely 
the point on the waveform where the particle velocity is .u = Ẋ(φ). During time 
.Δt = t − φ, the disturbance travels a distance .Δx = x − X(φ). Since by Eq. (4.2) 
the propagation speed for the travel has the constant value .c0 + βẊ(φ), we have  

.
x − X(φ)

t − φ
= c0 + βẊ(φ), (4.7) 

or, rearranged and combined with Eq. (4.6), 

.u = Ẋ(φ), φ = t − x − X(φ)

c0 + βẊ(φ)
. (4.8) 

This is the Earnshaw solution. In order to obtain an explicit expression .u(x, t), one 
must eliminate the Earnshaw phase variable . φ between the two parts of Eq. (4.8). 
The extra factor .X(φ) in the expression for . φ is due to finite displacement of the 
source. 

Despite appearances, the Earnshaw and Poisson solutions are equivalent. To 
show this, apply the Poisson solution to the moving piston problem. First use 
Eq. (4.6) to evaluate Eq. (4.4) at the piston face: 

.Ẋ(t) = f

⎛
t − X

c0 + βẊ

⎞
. (4.9) 

In order to solve for .f (t), replace t by .t + X/(c0 + βẊ): 

.f (t) = Ẋ

⎛
t + X

c0 + βẊ

⎞
. (4.10) 

Notice that f turns out to be the piston velocity . Ẋ, but with a peculiar argument. 
Now replace t by .t − x/(c0 + βu) in Eq. (4.10). When the result is combined with 
Eq. (4.4), the Poisson solution becomes 

.u = Ẋ

⎛
t − x − X

c0 + βẊ

⎞
. (4.11) 

Letting . φ stand for the argument of . Ẋ, we recapture the Earnshaw solution. That the 
argument is indeed . φ is shown by the fact that .φ = t when .x = X. As advertised, 
the Earnshaw phase variable . φ represents the time the signal leaves the piston. 

As an example, let the source excitation be sinusoidal, that is, .usource = u0 sin ωt , 
where . u0 is the amplitude and . ω is the angular frequency. If a sinusoidal excitation
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is imposed at the origin, 

.u(0, t) = u0 sin ωt, (4.12) 

the Poisson solution is 

.u = u0 sin ω

⎛
t − x

c0 + βu

⎞
. (4.13) 

If, however, the source is a vibrating piston, for which the boundary condition is 

.u = u0 sin ωt at x = u0

ω
(1 − cos ωt), (4.14) 

the solution by the Earnshaw formula is 

.u = u0 sin ωφ, φ = t − x − (u0/ω)(1 − cos ωφ)

c0 + βu0 sin ωφ
. (4.15) 

It is clear that including the finite displacement of the source greatly complicates 
the solution. 

Once the particle velocity has been found, how does one calculate the acoustic 
pressure .p = P −P0, where P and . P0 are total and ambient pressure, respectively? 
Since the wave motion is progressive, a characteristic impedance relation may 
be anticipated. Start with Eq. (3.10). Given .dρ = dP/c2, that equation may be 
rewritten as 

.
dP

du
= dp

du
= ρc. (4.16) 

This is the general characteristic impedance relation. For small-signal waves, the 
right-hand side has the constant value .ρ0c0, and the familiar expression . p = ρ0c0u

is obtained. When the waves have finite amplitude, however, the relation is not so 
simple. For an adiabatic gas, Eq. (4.16) may be integrated to yield Eq. (1.24). A 
series expansion of that equation is 

.p = ρ0c
2
0

⎾
u

c0
+ β

2

⎛
u

c0

⎞2

+ β

6

⎛
u

c0

⎞3

+ · · ·
⏋

. (4.17) 

For other fluids .(β = 1 + B/2A), one may use Eq. (2.14) to put . ρ in terms of c, 
and then Eq. (2.15) to put c in terms of u, in order to express . ρc in terms of u. 
Integration of Eq. (4.16) then leads to a pressure–particle velocity relation that is 
the same as Eq. (4.17) through second order (see also Blackstock, 1962). For both 
liquids and gases, therefore, pressure is linearly proportional to the particle velocity 
via the small-signal characteristic impedance relation, but the exact relation contains 
quadratic and higher-order terms.
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4.2.2 Shock Formation 

The tendency for waveform steepening to cause discontinuities or shocks to develop 
in the waveform has been noted and illustrated in Fig. 4.1. Shocks imply dissipation 
(see Sect. 4.3.5), which is not included in the lossless wave equation, Eq. (4.1). 
Moreover, the sudden change in fluid properties across a shock can cause reflections 
(Stokes, 1848; see also Sect. 4.3.3). The assumption of progressive-wave motion 
must then be dropped. On at least two accounts, therefore, shock formation limits the 
validity of the Poisson and Earnshaw solutions. In this section we develop formulas 
to estimate the spatial point .x = x̄ at which a shock first forms. Lossless theory is 
then known to be limited to the region .x ≤ x̄. 

To calculate . x̄, we find the distance at which the waveform first develops a 
vertical tangent, that is, .∂u/∂t = ∞. If the source condition is given by Eq. (4.3), 
.∂u/∂t is found from Eq. (4.4): 

.
∂u

∂t
=

⎾
1 + βx(∂u/∂t)

(c0 + βu)2

⏋
f ', (4.18) 

where . f ' means the derivative of f with respect to its argument. Solve for .∂u/∂t : 

.
∂u

∂t
= f '

1 − βxf '/(c0 + βu)2 . (4.19) 

A vertical tangent .∂u/∂t = ∞ occurs when the denominator vanishes. The distance 
.x = xvt at which this happens is 

.xvt = (c0 + βu)2

βf ' , (4.20) 

which is seen to depend on the slope . f ' of the source function (the slope of the 
velocity waveform at the source) and also on the value of u [given by Eq. (4.4)] 
itself. The smallest value of . xvt is the distance . x̄ that we seek. A general solution 
of this problem has been given (Blackstock, 1962), but for most cases the following 
approximate treatment is sufficient. If .β|u| ⪡ c0 is assumed, a condition widely met 
in nonlinear acoustics, the explicit dependence on u in Eq. (4.20) may be ignored. 
The smallest value of . xvt is then associated with the maximum positive slope of the 
source time waveform, whence 

.x̄ = c2
0

βf '
max

. (4.21) 

As an example, consider sinusoidal source excitation. If Eq. (4.12) is the source 
condition, the maximum positive slope at the source occurs at the zero crossings 
.ωt = 2nπ .(n = 0,±1,±2, . . .) and has the value .f '

max = u0ω. Equation (4.21)
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gives 

.x̄ = 1

βεk
, (4.22) 

where .ε = u0/c0 is the acoustic Mach number at the source and .k = ω/c0 is 
the wave number. The higher the amplitude and/or the frequency, the more quickly 
shocks form. The reason is that when the waveform at the zero crossings is steep 
to begin with, the wave does not have to travel very far before the slope becomes 
infinite. 

For source signals that are periodic, the combination of quantities 

.σ = βεkx (4.23) 

turns out to be a convenient dimensionless distance with which to gauge distortion. 
Here . ω (in the wave number k) and . u0 (in the factor . ε) are the characteristic angular 
frequency and amplitude, respectively, of the source signal. Even when the source 
signal is not strictly periodic but has an oscillatory character—for example, a tone 
burst—. σ is often the natural choice for organizing the variables. In the special case 
of a pure sinusoid, Eqs. (4.22) and (4.23) show that . σ is the convenient ratio .x/x̄. 
Thus .σ = 1 signifies shock formation. In the general case, however, .σ = 1 does not 
necessarily signify shock formation. See, for example, Sect. 4.2.4. 

4.2.3 Second-Order Approximation Theory 

A simplification of the theory is developed in this section. An approximation 
procedure is given in Sects. 3.4–3.9, by which the full-fledged conservation equa-
tions are simplified to obtain more manageable models for various problems. Here 
the problem of interest is lossless plane-progressive-wave motion. An expanded 
discussion is given of that part of the approximation procedure that applies to 
progressive waves. Throughout, the focus is on source problems, not initial-value 
problems. Moreover, in keeping with modern practice, we adopt pressure p as the 
main field variable, not particle velocity u. Although only plane waves in lossless 
fluids are treated here, the approach has broader application. See Sect. 4.6.1 for 
a generalization that covers other one-dimensional waves, namely spherical and 
cylindrical waves and waves in horns. Moreover, much of what is said here continues 
to apply when losses are included (Sects. 4.4 and 4.5, and Sects. 3.7 and 3.8), and 
even when the propagation is three-dimensional, as in the case of sound beams 
(Sect. 3.9). 

As noted in Sects. 1.4 and 3.6, finite-amplitude sound is subject to two different 
kinds of nonlinear effects, cumulative and local. In the case of progressive waves, 
cumulative effects generally dominate. Convection and nonlinearity of the pressure– 
density relation are classified as cumulative nonlinear effects because they cause
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waveform steepening, which accumulates with propagation distance. Distortion 
occurring at one location builds on all previous distortion and extends it. Local 
nonlinear effects, on the other hand, produce distortion that does not grow with 
propagation distance. An example of the latter is nonlinearity of the characteristic 
impedance relation. If the particle velocity waveform has been calculated, Eq. (4.17) 
is used to find the pressure waveform. The linear term in that equation yields a 
pressure waveform that has the same cumulative distortion as the particle velocity 
waveform. Since the remaining terms in Eq. (4.17) are smaller than the linear term 
by at least .O(ε), the added distortion that they introduce is small. Furthermore, 
because the added distortion depends only on the local waveform (hence the term 
local effect), it tends to remain constant, not grow, with propagation distance. 
Thus the only place where local distortion is dominant is near the source, where 
cumulative distortion is still very small. 

Local effects greatly complicate the analysis of progressive-wave propagation, 
and they contribute little to the solution because the distortion they cause is usually 
minor compared to that caused by cumulative effects. Much simplification, at small 
cost, may therefore be achieved by ignoring local effects. 

Two assumptions underlie second-order approximation theory. First, the waves 
are not exceedingly strong; i.e., .|u| ⪡ c0 (or .ε ⪡ 1)—a restriction rarely violated 
even in nonlinear acoustics. On this basis, although .O(ε2) terms must be retained, 
.O(ε3) terms may safely be dropped. Second, distortion is dominated by cumulative 
effects; i.e., the observation point is not close to the source.1 The immediate 
consequences of these two assumptions are as follows: 

1. The linear characteristic impedance relation (or the comparable relation between 
excess density .ρ' = ρ − ρ0 and u) may be used. 

2. Finite displacement of a source from its rest position may be ignored—i.e., 
Eq. (4.6) need not be used; Eq. (4.3) is sufficient. 

3. The difference between material (Lagrangian) and spatial (Eulerian) representa-
tions may be ignored (Blackstock, 1962). 

4. In .O(ε2) terms (relating to cumulative distortion), any .O(ε) factor may be 
replaced by its progressive-wave .O(ε) equivalent. The justification is that the 
error introduced is .O(ε3). This principle is introduced at the end of Sect. 3.3.1 
and beginning of Sect. 3.5. 

Use of Item 4 leads to an approximate wave equation for progressive signals 
and to corresponding approximate Poisson and Earnshaw solutions. The latter are 
particularly convenient and easy to use for source problems. The approximate wave 
equation may be obtained from Eq. (4.1) by using the .O(ε) progressive-wave 
relation .∂u/∂x = −c−1

0 (∂u/∂t) in the nonlinear term .βu(∂u/∂x). The result is 
the wave equation shown as the first of Eqs. (3.19). The second of Eqs. (3.19) gives

1 For periodic waves, “not close to the source” means .x ⪢ λ/2πβ, where . λ is the wavelength of 
the fundamental frequency component (Blackstock, 1962). For most fluids, this means x greater 
than about a wavelength. 
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the exact solution, as may be verified by direct substitution or by using the same 
approximations in Eq. (4.4).2 Immediately following Eqs. (3.19) is a numerical 
example to demonstrate how precise the approximate theory is even for a very 
intense wave. Similar steps applied to Eqs. (4.8) produce the approximate Earnshaw 
solution: 

.u = Ẋ(φ), φ = t − x

c0
+ βxẊ(φ)

c2
0

. (4.24) 

Thus, in place of Eqs. (4.1), (4.4), and (4.8), one uses Eqs. (3.19) and (4.24) when 
the second-order approximation model is used. The advantage of the approximate 
expressions is that analytical solutions for specific source problems are more easily 
obtained from them than from the exact expressions. 

Finally, pressure p often replaces particle velocity u as the field variable of choice 
in second-order approximation theory. One reason is that pressure is the variable 
measured in almost all acoustical experiments. Pressure is used for much of the 
rest of this chapter, and indeed for many succeeding chapters of the book. We 
therefore end this section by converting the main results to expressions in terms 
of p. Although several of these are given in Chap. 3, they are gathered together here 
for convenience. 

To obtain the exact wave equation for pressure, start with Eq. (4.1), con-
vert the derivatives of u to derivatives of p by the transformation . ∂u/∂(·) =
(du/dp)∂p/∂(·), and cancel the common factor .du/dp. The exact wave equation 
in p has the same form as Eq. (4.1) [see Eqs. (3.11) and (3.16)]. Next, in accordance 
with Item 4, replace the nonlinear term .βu(∂p/∂x) with .−(β/ρ0c

2
0)p(∂p/∂t). The  

result is the approximate wave equation in p, equivalent to the first of Eqs. (3.19), 

.
∂p

∂t
+ c0

∂p

∂x
= βp

ρ0c
2
0

∂p

∂t
, (4.25) 

and its exact solution (Earnshaw form), equivalent to the second of Eqs. (3.19), 

.p = f (φ), φ = t − x

c0
+ βxp

ρ0c
3
0

. (4.26) 

The reader is warned that it is common practice to use the same symbol f in 
expressions for both pressure and particle velocity. Here, since f stands for pressure, 
it is .ρ0c0 times the same symbol used for particle velocity, for example, in the second 
of Eqs. (3.19). For reference, the shock formation distance in terms of pressure is

2 The argument of f is expanded as .t − (x/c0)[1 − (βu/c0) + (βu/c0)
2 + · · · ]. The expansion 

is terminated after the second term because subsequent terms have an .O(ε3) effect. To show this, 
expand f in a Taylor series: . f = f (t − x/c0) − [(βu/c0) − (βu/c0)

2 + · · · ]f '(t − x/c0) +
· · · . Because f itself is .O(ε), retaining the .(βu/c0)

2 term would amount to keeping an . O(ε3)

correction. 
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.x̄ = ρ0c
3
0

βf '
max

. (4.27) 

If the retarded time .τ = t − x/c0 is introduced, Eqs. (4.25) and (4.26) take  
on a simpler form, which is useful for further developments in this chapter and 
throughout the book. In the .x, τ coordinate system, the first derivatives become 
.∂p/∂t = ∂p/∂τ and .∂p/∂x = −(1/c0)∂p/∂τ + ∂p/∂x, and Eq. (4.25) becomes 

.
∂p

∂x
= βp

ρ0c
3
0

∂p

∂τ
. (4.28) 

This equation is the lossless form of the Burgers equation, Eqs. (3.54) and (4.189). 
The solution, Eq. (4.26), becomes 

.p = f (φ), φ = τ + βxp

ρ0c
3
0

, (4.29) 

which is the same as Eq. (3.48). 
Finally, consider the slowness of the wave, defined as the inverse of the 

propagation speed. If u on the right-hand side of Eq. (4.2) is replaced by .p/ρ0c0, 
the slowness becomes 

.
dt

dx

||||
p

= 1

c0 + βp/ρ0c0
= 1

c0
− βp

ρ0c
3
0

(4.30) 

within the limits of second-order theory. Put this expression in terms of retarded 
time by noting that .dt/dx|p − 1/c0 = dτ/dx|p: 

.
dτ

dx

||||
p

= − βp

ρ0c
3
0

, (4.31) 

which shows how the retarded time decreases with distance for any phase point on 
the waveform. In particular, points of high pressure arrive in a shorter time than 
points of low pressure. We return to this formula in Sect. 4.4.1. 

4.2.4 Periodic Waves 

For periodic waves, the Poisson and Earnshaw solutions may be turned into explicit 
functions of x and t by expanding u or p as a Fourier series. Pressure is taken 
as the field variable here. The explicit solutions display clearly the growth of 
harmonics and intermodulation distortion that characterize propagation of periodic 
waves. The first to use this approach was Fubini (1935), who was interested
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in the monofrequency source problem. The approach followed here, which is a 
generalization for multiple-frequency sources, is due to Fenlon (1973). 

We begin by considering the source condition 

.p(0, t) = p0F(ωt), (4.32) 

where . p0 is a characteristic pressure amplitude, and the dimensionless function F 
is periodic in time with fundamental angular frequency . ω and zero mean value. The 
corresponding Earnshaw form of the solution is Eq. (4.29): 

.p(σ, τ) = p0F(Ф), Ф = ωτ + σF, (4.33) 

where .σ = βεkx, as defined in Eq. (4.23), is the nonlinear distortion scale with 
.ε = p0/ρ0c

2
0 and .k = ω/c0. An expansion of Eq. (4.33) is sought in the form 

.p(σ, τ) = p0

∞⎲
n=−∞

Cn(σ)ejnωτ
. (4.34) 

= p0 

∞⎲
n=1 

[An(σ) cos nωτ + Bn(σ) sin nωτ ], (4.35) 

where .An = Cn + C∗
n and .Bn = j (Cn − C∗

n). Note that dc pressure generation 
.(n = 0), which is not taken into account by Eq. (4.33), is expressly ignored in 
Eq. (4.35) and in the following analysis. 

The complex Fourier coefficients . Cn are given by 

.Cn = 1

2π

⎰ π

−π

F (Ф)e−jnωτ d(ωτ). (4.36) 

Let .u = F/2π and .dv = e−jnωτ d(ωτ), and integrate .u dv by parts to obtain 

.Cn = 1

j2πn

⎛
−Fe−jnωτ

||||
ωτ=π

ωτ=−π

+
⎰ ωτ=π

ωτ=−π

e−jnωτ dF

⎞
. (4.37) 

= 
1 

j2πn

⎰ ωτ=π 

ωτ=−π 
e−jnωτ  dF, (4.38) 

noting that the first term in Eq. (4.37) vanishes because of periodicity. From 
Eq. (4.33) we have .dF = σ−1[dФ − d(ωτ)] for . σ fixed, and Eq. (4.38) becomes 

.Cn = 1

j2πnσ

⎛⎰ π

−π

e−jn(Ф−σF)dФ −
⎰ π

−π

e−jnωτ d(ωτ)

⎞
, (4.39)
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where the integration limits pertain to the corresponding variable of integration. The 
second integral yields zero (except for the dc term .n = 0, which is ignored), and the 
final result is 

.Cn(σ) = 1

j2πnσ

⎰ π

−π

ejn[σF(Ф)−Ф]dФ. (4.40) 

Thus, given the source function .F(ωt), replace . ωt by . Ф and evaluate the integral in 
Eq. (4.40) to obtain expressions for the coefficients in Eqs. (4.34) and (4.35). The 
resulting solution is valid only in the preshock region, where Eq. (4.33) remains 
single-valued. This region is defined by .σ ≤ σ̄ , where 

.σ̄ = βεkx̄ (4.41) 

is a dimensionless shock formation distance, and . x̄ is given by Eq. (4.27). In the 
notation used here, we have 

.σ̄ = 1

(dF/dФ)max
. (4.42) 

For a monofrequency source with amplitude . p0, Eq. (4.42) yields .σ̄ = 1, and 
therefore .σ = x/x̄, but in general .σ /= x/x̄. 

When F is an odd function of time, the coefficients . An in Eq. (4.35) vanish, and 
only the sine terms remain: 

.p(σ, τ) = p0

∞⎲
n=1

Bn(σ) sin nωτ, (4.43) 

where 

.Bn(σ) = 2

nπσ

⎰ π

0
cos[nФ − nσF(Ф)] dФ. (4.44) 

In the special case where the source condition is such that none of the .Bn(0) is 
negative, Eq. (4.42) yields, in dimensionless and dimensional forms, respectively, 

.σ̄ =
⎛ ∞⎲

n=1

nBn(0)

⎞−1

, x̄ =
⎛

β

∞⎲
n=1

εnkn

⎞−1

, (4.45) 

where .εn = p0n/ρ0c
2
0, p0n is the pressure amplitude of the nth-harmonic 

component at the source, and .kn = nω/c0. 
In the following subsections we perform the calculations for two important 

specific sources, monofrequency and bifrequency.
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4.2.4.1 Monofrequency Source (Fubini Solution) 

The source condition considered here is 

.p(0, t) = p0 sin ωt, (4.46) 

for which .F(Ф) = sin Ф and .σ̄ = 1. Since F is an odd function, Eq. (4.44) applies: 

.Bn = 2

nπσ

⎰ π

0
cos(nФ − nσ sin Ф) dФ, (4.47) 

which is .2/nσ times Bessel’s integral. Equation (4.47) may therefore be rewritten 

.Bn = 2

nσ
Jn(nσ), (4.48) 

where . Jn is the Bessel function of order n. Substitution into Eq. (4.43) yields 

.p(σ, τ) = p0

∞⎲
n=1

2

nσ
Jn(nσ) sin nωτ, (4.49) 

which is the Fubini (1935) solution, valid only in the preshock region .σ ≤ 1. 
Equation (4.49) predicts that the amplitude of the fundamental component . (n =

1) will decrease continuously from .σ = 0 to .σ = 1 as energy is transferred to the 
nonlinearly generated higher-harmonic components. The latter grow monotonically 
in amplitude over the same region, with .Bn+1 < Bn for all n. Further insight into 
the Fubini solution may be gained by investigating its asymptotic properties in the 
region near the source. The leading terms in expansions of the Bessel functions in 
Eq. (4.48) yield 

.B1 = 1 − 1
8σ 2 + O(σ 4), . (4.50) 

B2 = 1 
2σ + O(σ 3), . (4.51) 

B3 = 3 
8σ 2 + O(σ 4), . (4.52) 

Bn = 
(nσ)n−1 

2n−1n! + O(σn+1). (4.53) 

These asymptotic expressions for .Bn are identical to those obtained by regular 
perturbation techniques (Sect. 10.2), and they are reasonably accurate over much of 
the preshock region. For example, at .σ = 1

2 the expressions for . n = 1, 2, and 3 differ  
from Eq. (4.48), respectively, by 0.03%, 9%, and 15%. Substitution of Eq. (4.51) 
into Eq. (4.43) gives the following approximate solution for the second-harmonic 
signal . p2:
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.p2(x, τ ) = βp2
0ω

2ρ0c
3
0

x sin 2ωτ. (4.54) 

The experiments conducted by Thuras, Jenkins, and O’Neil (1935) in an air-filled 
plane-wave tube were the first to confirm the linear dependence of . p2 on distance 
and source frequency, and the quadratic dependence on source amplitude (see 
Sect. 1.4 for a discussion of their experiment). Graphical representation of .Bn(σ) is 
postponed to Sect. 4.4.3.3, where weak shock theory is used to extend the solution 
beyond .σ = 1. See also Blackstock (1962) for further discussion. 

4.2.4.2 Bifrequency Source (Fenlon Solution) 

Here we consider the bifrequency source condition 

.p(0, t) = p0a sin ωat + p0b sin ωbt. (4.55) 

To maintain periodicity, we take .ωa/ωb to be the ratio of two integers . na and . nb, 
i.e., .ωa = naω and .ωb = nbω, where . ω remains the fundamental angular frequency 
of the signal. Now let .Pa = p0a/p0 and .Pb = p0b/p0 to obtain 

.F(Ф) = Pa sin naФ + Pb sin nbФ. (4.56) 

Although F is an odd function of time, it is more convenient in this case to begin 
with Eq. (4.40), not Eq. (4.44), to evaluate the Fourier coefficients: 

.Cn = 1

j2πnσ

⎰ π

−π

exp[jn(σPa sin naФ + σPb sin nbФ − Ф)] dФ. (4.57) 

Use of the identity 

.ejz sin θ =
∞⎲

n=−∞
Jn(z)e

jnθ (4.58) 

yields 

. Cn = 1

j2πnσ

∞⎲
l=−∞

∞⎲
m=−∞

Jl(nPaσ)Jm(nPbσ)

⎰ π

−π

ej (lna+mnb−n)Ф dФ.

(4.59) 

The quantity .(lna + mnb − n) is an integer, and therefore the integral equals . 2π for 
.lna + mnb = n but zero otherwise. 

Noting that .An = 0, we may express the solution in the form of Eq. (4.43), where
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.Bn = 2

nσ

⎲
lna+mnb=n

Jl(nPaσ)Jm(nPbσ). (4.60) 

The solution may be manipulated, with .ωa > ωb assumed, to obtain (Fenlon, 1972) 

. p(σ, τ) = p0

∞⎲
l=1

2

lnaσ
Jl(lnaPaσ )J0(lnaPbσ ) sin lωaT

+ p0

∞⎲
m=1

2

mnbσ
J0(mnbPaσ)Jm(mnbPbσ) sin mωbT

+ p0

∞⎲
l=1

∞⎲
m=1

2

N+
lmσ

Jl(N
+
lmPaσ )Jm(N+

lmPbσ ) sin N+
lmωτ

+ p0

∞⎲
l=1

∞⎲
m=1

(−1)m
2

N−
lmσ

Jl(N
−
lmPaσ )Jm(N−

lmPbσ ) sin N−
lmωτ,

(4.61) 

where .N±
lm = lna±mnb. Although the first two summations are expressed explicitly 

in terms of harmonics of the primary waves, contributions to these same frequency 
components are also contained in the last two summations. With .na = 1, Pa = 1, 
and .Pb = 0, the source condition in Eq. (4.46) is recovered, the last three 
summations in Eq. (4.61) vanish, and the first summation reduces to Eq. (4.49). 
Equation (4.61) is valid for .σ ≤ σ̄ , where . σ̄ is given by Eq. (4.42). For . Pa and . Pb

each positive, Eq. (4.45) yields .σ̄ = (naPa + nbPb)
−1. 

Arbitrary phase shifts in the frequency components at the source are easily 
included in the solution (Fenlon, 1972), and a generalization to N -frequency sources 
is also available (Fenlon, 1973). 

Difference-Frequency Generation Often of interest is the solution for the 
difference-frequency pressure alone. To examine this case, for convenience take 
.ω− = ωa − ωb ≡ ω, i.e., choose .ω− to be the fundamental frequency, .n = 1. 
Thus .na = nb + 1, and the condition on the indices in Eq. (4.60) becomes 
.l(nb + 1)+mnb = 1, which is satisfied for .l = 1 + qnb and .m = −[1 + q(nb + 1)], 
where q is any integer. Equation (4.60) then gives, with .B− ≡ B1, 

.B− = 2

σ

∞⎲
q=−∞

J1+qnb
(Paσ )J−(1+qna)(Pbσ ), na = nb + 1. (4.62) 

The degenerate case .ωb = ω− (.nb = 1) is included in this result. For . ω− ⪡ ωa, ωb

.(na, nb ⪢ 1) and .σ ≤ σ̄ , all terms in the summation for which .q /= 0 contain 
products of high-order Bessel functions that are small in comparison with the term 
for which .q = 0, and in this case we may write
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.B− ≃ − 2

σ
J1(Paσ )J1(Pbσ ). (4.63) 

This expression corresponds to the term for which .(l,m) = (1, 1) in the fourth 
summation of Eq. (4.61). For .nb > 1, the Bessel functions in Eq. (4.62) may be 
expanded as in Eqs. (4.50)–(4.53) to obtain .B− = − 1

2PaPbσ +O(σ 3), substitution 
of which into Eq. (4.43) yields the following expression for the difference-frequency 
pressure near the source: 

.p−(x, τ ) = −βp0ap0bω−
2ρ0c

3
0

x sin ω−τ. (4.64) 

The amplitude thus increases linearly with distance, just as the second harmonic 
does for the monofrequency source [recall Eq. (4.54)]. However, the growth rate for 
. p− is not as strong, particularly for primary frequencies close together. Thuras et al. 
(1935) provided experimental confirmation of the properties of Eq. (4.64), as well 
as those of Eq. (4.54). 

Parametric Amplification In the degenerate case .(nb, na) = (1, 2), the lower  
primary wave is also the difference-frequency component. This choice offers the 
possibility that the difference signal can add to the lower primary and thus amplify 
the latter. Here . ωb is the fundamental frequency, and .ωa = 2ωb its second harmonic. 
Equation (4.62) yields, with .Bb ≡ B−, 

.Bb = − 2

σ

∞⎲
q=−∞

J1+q(Paσ )J1+2q(Pbσ ), (nb, na) = (1, 2). (4.65) 

For .Pa = 0 (i.e., for a monofrequency source), all terms vanish except for .q = −1, 
and the Fubini solution for the fundamental, .Bb = (2/σ)J1(Pbσ ), is recovered. 
We now assume .|Pb| ⪡ |Pa| and investigate the influence of a strong second-
harmonic component on a weak fundamental. The shock formation distance is then 
.σ̄ ≃ |2Pa|−1, where the argument of the second Bessel function has magnitude 
.|Pb/2Pa| ⪡ 1. In this case, the dominant terms are those for which the second 
Bessel function in Eq. (4.65) is of order .±1 (i.e., .q = −1, 0), and the second Bessel 
function may also be approximated by the first term in its Taylor series expansion 
to obtain 

.Bb ≃ Pb[J0(Paσ ) − J1(Paσ )], |Pb| ⪡ |Pa|. (4.66) 

We examine this solution as a function of . Pa . In small-signal theory, the weak 
fundamental propagates unchanged in amplitude, and we have .Bb = Pb, as obtained 
from Eq. (4.66) for .Pa = 0 (the condition .|Pb| ⪡ |Pa| notwithstanding). For 
.Pa > 0, the amplitude of the fundamental decreases continuously as its energy is 
pumped by the second harmonic into other spectral components, with . Bb = 0.70Pb

at .σ = σ̄ . However, for .Pa < 0 (i.e., when the phase of the second harmonic
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is shifted by 180. ◦), the fundamental receives energy from the second harmonic 
and experiences continuous growth out to the shock formation distance, where 
.Bb = 1.18Pb. This last case is referred to as parametric amplification. For all other 
relative phase shifts between the fundamental and the second harmonic, the values 
of . Bb lie between those given above (Blackstock, 1982). The condition .Pa < 0 is 
thus optimal for parametric amplification of a weak signal by another with twice 
its frequency, although the gain in amplitude is at most 18% in the preshock region 
(Novikov and Rudenko, 1976). 

The distinctly different behavior of .Bb as a function of the sign of .Pa is 
associated with changes in the source waveform. This principle may also be used to 
“predistort” the source waveform in such a way as to postpone shock formation. In 
particular, the introduction of a second-harmonic component in antiphase with the 
fundamental predistorts the source waveform in a direction opposite that associated 
with subsequent finite-amplitude effects. For example, with .(nb, na) = (1, 2), 
.Pb = 1, and .Pa = 0, 1

4 , − 1
4 , Eqs. (4.42) and (4.56) yield the corresponding shock 

formation distances .σ̄ = 1, 2
3 , 4

3 . For .Pa = 1
4 , the shock formation distance is 

reduced by 33% (in comparison with .Pa = 0) because the second harmonic is in 
phase with the fundamental and thus increases the maximum positive slope in the 
source waveform. The signal need not travel as far before waveform steepening 
causes a shock to form. With .Pa = − 1

4 , the shock formation distance is increased 
by 33%, even though the signal has slightly greater energy than for .Pa = 0, because 
the maximum positive slope in the source waveform has been reduced. Notice that 
for both .Pa = 0 and .Pa = 1

4 (and for any .Pa > 0), shock formation occurs at the 
zero crossing in the waveform, defined by .Ф = 0 in Eq. (4.56), whereas it occurs at 
.Ф = π/3 for .Pa = − 1

4 . 

Suppression of Sound by Sound Equations (4.60) and (4.61) can also be used to 
investigate the modulation of one primary wave by another of lower frequency. One 
application is known as suppression of sound by sound (Schaffer, 1975; Moffett  
et al., 1978). Consider the solution for the primary wave at frequency . ωa , which 
is designated by .n = na . For convenience, take . ωb = ω, for which .nb = 1, and 
Eq. (4.60) yields 

.Ba = 2

naσ

∞⎲
l=−∞

Jl(naPaσ )J(1−l)na
(naPbσ ), nb = 1. (4.67) 

An interesting special case arises when the low-frequency wave is much stronger 
than the high-frequency wave, and much lower in frequency. We shall refer to these 
as the “strong” and “weak” waves, respectively. First, for .ωa ⪢ ωb .(na ⪢ 1), the  
second Bessel function in Eq. (4.67) is of very high order, and therefore very small 
in value, for all .l /= 1. The series is then well approximated by the term for which 
.l = 1: 

.Ba ≃ 2

naσ
J1(naPaσ )J0(naPbσ ). (4.68)



4 Progressive Waves in Lossless and Lossy Fluids 81

Equation (4.68) is the spectral amplitude given by the term for which .l = 1 in the 
first summation in Eq. (4.61). Now take .p0a ⪡ p0b (here each assumed positive), in 
which case . J1 is a more slowly oscillating function of . σ than . J0. For .naPaσ ⪡ 1, we  
may approximate the value of . J1 by the leading term in its Taylor series expansion 
to obtain 

.Ba ≃ PaJ0(naPbσ ). (4.69) 

Substitution into Eq. (4.43) yields the following approximate expression for the 
pressure . pa of the weak primary wave at the high frequency . ωa : 

.pa(x, τ ) ≃ p0aJ0

⎛
βp0bωax

ρ0c
3
0

⎞
sin ωaτ. (4.70) 

Note that the argument of . J0 depends on . p0b, the source amplitude of the strong 
primary wave, and . ωa , the frequency of the weak wave. 

The form of Eq. (4.70) suggests a suppression phenomenon. That is, at distances 
for which .J0 = 0, the high-frequency primary wave vanishes. These distances . xn

.(n = 1, 2, · · · ) correspond to the zeros defined by .J0(j0n) = 0, where .j01 = 2.4, 

.j02 = 5.5, etc., and therefore 

.xn = j0nρ0c
3
0

βp0bωa

. (4.71) 

An additional restriction on the use of Eq. (4.70) to predict suppression at location 
. xn thus arises, .xn ≤ x̄, where .x̄ = [β(εaka + εbkb)]−1 is the shock formation 
distance (.εi = p0i/ρ0c

2
0, .ki = niω/c0, .i = a, b). This inequality may be rewritten 

as .(ωb/ωa + p0a/p0b)j0n ≤ 1, which is satisfied for the first few values of . xn

under the conditions assumed, namely, .ωb ⪡ ωa and .p0a ⪡ p0b [which also 
assure that the restriction .naPaσ ⪡ 1 leading to Eq. (4.69) is satisfied]. Subject 
to these restrictions, the amplitude of the weak, high-frequency signal . pa at a fixed 
location x decreases monotonically according to Eq. (4.70) as the source amplitude 
.p0b of the low-frequency signal is increased from zero, ultimately leading to the 
suppression of . pa . Further increase in .p0b causes the signal . pa to reappear and 
grow in amplitude before eventually being suppressed once again. 

Examination of other terms in the Fenlon solution reveals that the energy pumped 
out of the high-frequency wave by the low-frequency wave ends up mainly in the 
sidebands at frequencies .ωq = ωa + qωb, where .q = ±1,±2, · · · . The amplitudes 
of these sidebands, including that of the “center frequency” .ωa for . q = 0, are  
obtained by setting .n = na+q in Eq. (4.60), with .nb = 1 as before. Making the same 
assumptions that lead to Eq. (4.69), here with the frequency restriction .ωq ⪢ ωb for 
all q of interest, one readily arrives at the result .Bna+q ≃ PaJq [(na + q)Pbσ ], from  
which Eq. (4.69) is recovered for .q = 0. Substitution into Eq. (4.43) and summation 
over the sidebands yields
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.pw(σ, τ ) ≃ p0a

N⎲
q=−N

Jq [(na + q)Pbσ ] sin(ωa + qωb)τ, (4.72) 

where N is chosen not too large, such that .na − N ⪢ 1 is satisfied. Here .pw is 
taken to mean the weak primary wave together with its sidebands, with the term 
.q = 0 corresponding to Eq. (4.70). If q did not appear in the argument of the 
Bessel function, Eq. (4.72) would resemble the solution for frequency modulation 
of a carrier wave of frequency . ωa by a signal of frequency . ωb, with modulation index 
.naPbσ . In contrast with .FM theory, the presence of q in the argument produces a 
nonsymmetric sideband structure; i.e., .|Bna+q | /= |Bna−q |. Nevertheless, the actual 
nonlinear distortion process described by Eq. (4.72) does indeed correspond to 
frequency modulation. The weak, high-frequency signal rides atop the strong, low-
frequency signal. As the latter distorts, the high-frequency cycles are compressed 
together where waveform steepening occurs, i.e., in regions of positive slope on the 
low-frequency waveform, and they are stretched apart in regions of negative slope. 

4.3 Shock Waves 

In Sect. 1.3, the theory of shock waves is mentioned, and the role this theory played 
in the history of nonlinear acoustics is discussed. Basic equations in this theory 
include the Rankine–Hugoniot equations, which appear as Eqs. (1.34)–(1.36). In the 
present section a careful derivation of these equations for circumstances of general 
interest in nonlinear acoustics is given. 

In typical presentations of fluid-dynamic equations, such as in the books by 
Landau and Lifshitz (1987) and by Pierce (1989), the basic equations are first given 
in an integral form. Partial differential equations such as Eqs. (3.1)–(3.3) are then 
derived by invoking various seemingly plausible mathematical arguments (including 
the use of Gauss’s theorem to convert surface integrals to volume integrals), along 
with the arbitrariness of the integration volume. Such arguments ideally require, 
however, that the resulting integrands be everywhere finite. If dissipation terms 
are explicitly taken into account in the original formulation, this requirement is 
invariably met. 

In many situations, one can achieve a very good approximation, and even an 
excellent approximation, by neglecting the dissipation terms completely, both in the 
integral equation versions of the governing equations and in the partial differential 
equation versions. There are also other situations in which such neglect still gives 
a good approximation, with the exception of small spatial regions. The situations 
of interest here are where those regions are thin, generally moving, sheets of space 
known as shocks (see Fig. 4.2). The principal feature of a fluid-dynamic field within 
such a sheet is that the gradients of certain fluid-dynamic variables are inordinately 
high. In the limit when the parameters characterizing the strength of the dissipation 
become smaller and smaller, the sheets can be regarded as thinner and thinner,
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Fig. 4.2 Shock wave depicted as a discontinuity. 

but the gradients within them become larger and larger. Thus, one can conceive 
of a mathematical model in which the idealized partial differential equations hold 
separately on each side of a sheet, but not within the sheet. With such a model, one 
has the possibility that fluid-dynamic variables may have values on one side of a 
sheet that are substantially different from those on the other side. The question then 
naturally arises as to what, if anything, should turn out to be continuous across the 
sheet in the limit when the dissipation parameters go to zero and the sheet becomes 
infinitesimally thin. 

4.3.1 Rankine–Hugoniot Shock Relations 

The Rankine–Hugoniot relations are a collective statement of what is continuous 
across a shock. Their formulation and understanding evolved slowly in the history 
of fluid mechanics, and several authors besides Rankine (1870) and Hugoniot (1887, 
1889) contributed to this. Discussions of the difficulties that impeded the progress 
can be found in the articles by G. I. Taylor (1910) and by Rayleigh (1910). A 
typical, and common, pitfall is to adopt the notion that, for an ideal gas, the adiabatic 
relation .P = Kργ should hold on both sides of a shock, with the same choice for 
the constant K . When one examines the old classic papers, the key word that is 
invariably absent from the writing is entropy. Even as late as 1910, the vocabulary 
of modern thermodynamics, which is now standard in virtually every undergraduate 
curriculum in physics and engineering, was used by only relatively few of the
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prominent researchers. What would be said today is that K has to depend on the 
entropy, and the entropy changes at a shock.3 

The derivations given by Rankine (1870) and Taylor (1910), as well as in almost 
all fluid dynamics textbooks, assume that the flow is steady in a reference frame 
in which the shock appears to be nonmoving. With this steady flow assumption, 
the derivation is relatively simple, but even though the results turn out to be of 
more general applicability, the manner of derivation can be disquieting to anyone 
dealing with more general problems, such as the propagation of pulses, in nonlinear 
acoustics. Consequently, the discussion here begins at the outset with a situation 
in which the speed of the shock and the magnitudes of the discontinuities may be 
changing with time. The discussion is also concerned with a general fluid rather 
than with the special case of an ideal gas. To discover what is continuous, one 
backs up to the original integral equations. Because shocks are such that the fluid 
velocity tangential to a shock is continuous, it is sufficient to limit oneself to a one-
dimensional model, where a shock can be idealized as a plane normal to the x axis 
and the flow is only in the x direction. In a given inertial frame, one considers a 
fixed control volume (Fig. 4.3) of unit cross section and with fixed endpoints . x1 and 
. x2.4 The integral equation corresponding to conservation of mass or continuity can 
be written in this one-dimensional case and for the stated control volume as 

.
d

dt

⎰ x2

x1

ρ dx = (ρu)x1 − (ρu)x2 . (4.73) 

This is just the statement that the time rate of change of mass in the volume is the 
difference of the rate at which the mass is flowing in at . x1 minus that at which it 
is flowing out at . x2. (Here the subscript denotes the point at which the indicated 
quantity is evaluated.) 

The analogous integral equation accounting for changes in momentum states that 
the time rate of change of momentum in the volume is equal to the rate (per unit area) 
.(ρu)x1(u)x1 at which momentum is flowing in minus the rate .(ρu)x2(u)x2 at which 
it is flowing out plus the net force (per unit area) exerted on the control volume. For 
our present purposes this force can be expressed in the limit of vanishing viscosity, 
so that it is simply .Px1 − Px2 . Thus one has

3 One can easily see how one might fall into the trap of thinking of K as continuous at a shock, if 
one begins with Eq. (1.6), which implies that .K = P0ρ

−γ

0 , where . P0 and . ρ0 are ambient pressure 
and density. An illusion that K can be taken as constant comes about because of an imprecise 
definition of these ambient variables. After the shock sweeps by, the gas is slightly heated, and 
the ambient variables do actually change. They may change only slightly, and in many acoustic 
relations it is an appropriate approximation to use the same values for . P0 and . ρ0 on both sides of 
the shock, but it is not appropriate to do so in any derivations that make use of the adherence of 
the pressure and the density to the adiabatic law. The escalation from linear acoustics to nonlinear 
acoustics requires that one take special care in dealing with seemingly small effects. 
4 An alternative approach (Courant and Friedrichs, 1948), leading to the same results, is to consider 
time-dependent endpoints moving with the fluid. It seems to be an even trade-off as to which 
approach is more easily grasped. 
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Fig. 4.3 Sketch of a fixed control volume containing a shock. 

.
d

dt

⎰ x2

x1

ρu dx = (ρu2 + P)x1 − (ρu2 + P)x2 . (4.74) 

The third integral equation is one that accounts for changes of energy. The energy 
density within the fluid is equal to . 12ρu2 plus . ρe, where . 12ρu2 represents kinetic 
energy per unit volume and e represents internal energy per unit mass. The time 
rate of change of energy within the control volume, when dissipation is neglected, 
should equal the rate .( 1

2ρu2 +ρe)x1ux1 at which energy is being convected in by the 
flow minus the rate at which it is being convected out, plus the rate . (Pu)x1 − (Pu)x2

at which work is being done on the control volume by external pressures, or 

. 
d

dt

⎰ x2

x1

ρ( 1
2u2 + e) dx = [( 1

2ρu2 + ρe + P)u]x1 − [( 1
2ρu2 + ρe + P)u]x2 .

(4.75) 

Before the above integral equations are used to derive the Rankine–Hugoniot 
equations, the reader should be assured that these are indeed consistent with 
Eqs. (3.1)–(3.3). If one considers . x1 and . x2 as arbitrary and all quantities as 
continuous and differentiable, the above displayed equations are readily seen to lead 
to 

.
∂ρ

∂t
+ ∂

∂x
(ρu) = 0, . (4.76) 

∂ 
∂t 

(ρu) + 
∂ 
∂x 

(ρu2 + P)  = 0, . (4.77)
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∂ 
∂t 

( 1 
2ρu2 + ρe) + 

∂ 
∂x 

( 1 
2ρu3 + ρeu + Pu)  = 0. (4.78) 

The first of these is readily seen to be mathematically equivalent to the one-
dimensional version of Eq. (3.1). The one-dimensional version (albeit in the absence 
of viscosity) of Eq. (3.2) is obtained if Eq. (4.76) is multiplied by u and the result 
subsequently subtracted from Eq. (4.77), which yields 

.ρ

⎛
∂u

∂t
+ u

∂u

∂x

⎞
+ ∂P

∂x
= 0. (4.79) 

To derive the one-dimensional counterpart of Eq. (3.3), one first multiplies 
Eq. (4.76) by .e + (P/ρ) − 1

2u2 and Eq. (4.77) by  u, adds the two resulting 
equations, then subtracts the sum from Eq. (4.78), to obtain 

.ρ

⎛
∂e

∂t
+ u

∂e

∂x

⎞
− P

ρ

⎛
∂ρ

∂t
+ u

∂ρ

∂x

⎞
= 0. (4.80) 

One subsequently uses the second law of thermodynamics in the form 

.T ds = de + P dρ−1 (4.81) 

(with .ρ−1 being recognized as the specific volume), which is readily interpreted to 
imply 

.T
Ds

Dt
= De

Dt
+ P

Dρ−1

Dt
, (4.82) 

where .D/Dt is the time derivative following a material point. Thus Eq. (4.80) 
reduces to 

.ρT
Ds

Dt
= 0, (4.83) 

which is the same as Eq. (3.3) in the absence of viscosity and thermal conductivity. 
It is important to note, however, that the steps as described above, which led from 
Eqs. (4.73), (4.74), and (4.75) to Eqs. (4.76), (4.79), and (4.83), cannot be carried 
through should there be a surface of discontinuity in the control volume. In actuality, 
the so-derived differential equations can yield results that, even with a generalized 
interpretation of a derivative or even after integration over a finite volume, are 
incorrect. For example, Eq. (4.83) implies that the entropy of a fixed mass of fluid 
stays constant, even if that mass is swept over by a shock. This turns out not to be 
the case. 

To see what results when a discontinuity is present, one postulates a moving 
point .xsh(t) (eventually identified as the location of a shock) between . x1 and . x2 at
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which .P, u, ρ, and e are discontinuous. Each of the integrals over x in Eqs. (4.73)– 
(4.75) can be split into integrals from . x1 to .xsh and from .xsh to . x2. Then, standard 
rules for differentiation (especially those that allow for an upper or lower limit that 
depends on the parameter with respect to which one is taking the derivative) yield, 
for example, 

.
d

dt

⎰ x2

x1

ρ dx = (ρb − ρa)Ush +
⎰ xsh−

x1

∂ρ

∂t
dx +

⎰ x2

xsh+

∂ρ

∂t
dx, (4.84) 

where .ρb and .ρa represent the values of . ρ on the .−x and .+x sides of the 
discontinuity, and .Ush = dxsh/dt is the velocity of the discontinuity surface. (The 
letters a and b can here be regarded as abbreviations for ahead of and behind, as  
much of the ensuing discussion is concerned with a shock advancing in the direction 
of positive x.) In the limit in which . x1 and . x2 are arbitrarily close to . xsh, the  
integrals on the right become negligible and .(ρu)x1 → (ρu)b, (ρu)x2 → (ρu)a , so  
Eq. (4.73) yields 

.[ρ(u − Ush)]a = [ρ(u − Ush)]b. (4.85) 

In a similar manner, Eqs. (4.74) and (4.75) imply  

.[ρu(u − Ush) + P ]a = [ρu(u − Ush) + P ]b, . (4.86) 

[ρ( 1 
2u2 + e)(u − Ush) + Pu]a = [ρ( 1 

2u2 + e)(u − Ush) + Pu]b. (4.87) 

Equations (4.85)–(4.87) are the Rankine–Hugoniot relations in their most primitive 
form. The three-dimensional version is the same, except that the velocities u and 
.Ush should be regarded as components that are normal to the shock surface. One 
should note that the three quantities that emerge as being continuous across a shock 
actually involve the speed of the shock. Since there are only three equations, but 
four quantities .(ρ, u, P , and e) are suspected of possibly being discontinuous, one 
has little hope that these equations can lead to a rigorous conclusion that, say, P is 
automatically continuous. 

Since the formulation of fluid dynamics should be insensitive to shifts from one 
inertial frame to another (Galilean invariance), one expects the total information 
content of the above three equations to be unchanged if u and .Ush are simultaneously 
everywhere replaced by .u−K and .Ush −K , where K is any constant. In retrospect, 
one can also argue that K can be a quantity not necessarily independent of time, 
since the relations as stated do not involve time differentiation. In particular, one can 
take .K = Ush. Such a substitution would then yield the equivalent set of equations 

.[ρv]a = [ρv]b, . (4.88) 

[ρv2 + P ]a = [ρv2 + P ]b, . (4.89) 

[ 1 
2ρv3 + ρev + Pv]a = [ 1 

2ρv3 + ρev + Pv]b, (4.90)
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with the abbreviation 

.v = u − Ush. (4.91) 

To confirm that Galilean invariance really does apply and that this set of equations 
is indeed equivalent in total information content to Eqs. (4.85)–(4.87), one can 
obtain Eq. (4.89) by subtracting .Ush times Eq. (4.85) from Eq. (4.86). Similarly, one 
can obtain Eq. (4.90) by subtracting .Ush times Eq. (4.86) and adding . 12U2

sh times 
Eq. (4.85) to Eq. (4.87). 

One further simplification results from factoring out .ρv on each side of 
Eq. (4.90). Since . ρv, according to Eq. (4.88), is continuous across a shock, one 
can divide both sides by this common factor, with the result 

.[ 1
2v2 + h]a = [ 1

2v2 + h]b, (4.92) 

where 

.h = e + ρ−1P (4.93) 

is identified as the enthalpy per unit mass. Carrying out the division of course 
requires that . ρv not be zero, so one automatically rules out consideration of contact 
discontinuities, at which the density is discontinuous, but the discontinuity surface 
moves with the flow. 

One may note that, apart from slight changes in notation, Eqs. (4.88), (4.89), and 
(4.92) are identical with Eqs. (1.34)–(1.36). [This is not, strictly speaking, the full 
set of conditions that apply at a shock. There is also an inequality condition, given 
further below in Eq. (4.105).] 

In the applications of the Rankine–Hugoniot relations, it is generally useful to 
reexpress them in terms of the values of the discontinuities that occur at a shock, as 
is done, for example, by Hayes (1958). With the abbreviations . Δv = vb−va, Δh =
hb − ha, vav = 1

2 (va + vb), etc., Eqs. (4.88), (4.89), and (4.92) can be rewritten 

.ρavΔv + vavΔρ = 0, . (4.94) 

v2 
avΔρ + 2vavρavΔv + ΔP + 1 

4 (Δv)2Δρ = 0, . (4.95) 

vavΔv + Δh = 0. (4.96) 

Alternatively, one can use instead .(1/ρ)av, whereby 

.
1

(1/ρ)avρav
= 1 − 1

4

⎛
Δρ

ρav

⎞2

. (4.97) 

This enables Eq. (4.94) to yield the substitutions
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.
1

(1/ρ)avρav
= 1 − 1

4

⎛
Δv

vav

⎞2

, . (4.98) 

v2 
avΔρ + 2vavρavΔv + 1 

4 (Δv)2Δρ = vav[(1/ρ)av]−1Δv, (4.99) 

and the latter of these allows Eq. (4.95) to be reexpressed as 

.vavΔv + (1/ρ)avΔP = 0. (4.100) 

With Eqs. (4.94), (4.96), and (4.100), one has three equations that are formally 
linear in the four discontinuities .ΔP, Δρ, Δh, and . Δv. Among the algebraic 
rearrangements of these equations, the set that is of especial use in the discussion of 
nonlinear acoustics is 

.Δh − (1/ρ)avΔP = 0, . (4.101) 

(Ush − uav)Δu = (1/ρ)avΔP, . (4.102) 

(Ush − uav)
2 = (1/ρ)avρav

ΔP

Δρ 
. (4.103) 

Here we have replaced the auxiliary variable v by its explicit definition .u − Ush, 
as given in Eq. (4.91). It follows from the above equations that .ΔP, Δρ, Δh, and 
.Δu/(Ush − uav) must all have the same sign. 

Equation (4.101) yields what is frequently referred to as the Hugoniot equation. It  
is expected to apply even if the equation of state of the fluid is changed by passage of 
the shock. If the equation of state of the fluid ahead of the shock is used to express . ha

in terms of . Pa and .(1/ρ)a , and if the equation of state of the fluid behind the shock 
is used to express . hb in terms of . Pb and .(1/ρ)b, then Eq. (4.101) can be regarded as 
a relation of the general form 

.F [Pa, (1/ρ)a, Pb, (1/ρ)b] = 0, (4.104) 

where .ρ−1 is recognized as specific volume. The relation is independent of flow 
velocities and shock speeds and is consequently a purely thermodynamic relation. 
As discussed by Hayes (1958), this relation is of great importance in considerations 
of detonations and deflagrations. For fixed pressure . Pa and specific volume . (1/ρ)a
ahead of the shock, the relation allows one to conceive of a plot of pressure . Pb versus 
specific volume .(1/ρ)b. Such a plot is referred to as a Hugoniot diagram; lines 
corresponding to different choices of . Pa and .(1/ρ)a are referred to as Hugoniots. 
If the equation of state is the same on both sides of the shock, then the point 
.[Pa, (1/ρ)a] lies on the corresponding Hugoniot. 

One further restriction comes from the inequality version of the second law of 
thermodynamics. If a shock is advancing in the .+x direction relative to the fluid, 
and therefore .Ush − uav > 0, then .sb ≥ sa ; a fluid particle’s entropy cannot be 
decreased by passage of the shock. This yields the inequality
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.
Δs

Ush − uav
≥ 0. (4.105) 

It should be evident from a comparison of Eq. (4.101) with the thermodynamic 
differential relation .dh = T ds + (1/ρ) dP that the entropy jump in a shock should 
be relatively small. It is, nevertheless, not identically zero. The quantification of the 
relation of .Δs to .ΔP is derived further below. 

4.3.2 Weak Shocks 

The consequences of the Rankine–Hugoniot equations for weak shocks, where 
.|Δρ|/ρav ⪡ 1, can be explored by expanding .h(P, s) in a Taylor series in 
.δP = P − Pav and .δs = s − sav, the various coefficients being denoted by 
.h0, h0

P , h0
s , h0

PP , h0
Ps , etc., such that, for example, .h0

Ps is .∂2h/∂P∂s evaluated at 
.Pav and . sav. It follows that  

. h = h0 + h0
P δP + h0

s δs + 1
2 [h0

PP (δp)2 + 2h0
Ps(δp)(δs) + h0

ss(δs)
2]

+ 1
6 [h0

PPP (δP )3 + 3h0
PPs(δP )2δs + 3h0

ssP δP (δs)2 + h0
sss(δs)

3]
+ 1

24 [h0
PPPP (δP )4 + 4h0

PPPs(δP )3δs + 6h0
PPss(δP )2(δs)2

+ 4h0
Psss(δP )(δs)3 + h0

ssss(δs)
4] + · · · . (4.106) 

To obtain . ha , one sets .δP = − 1
2ΔP, δs = − 1

2Δs in this expansion; to obtain . hb, 
one sets .δP = 1

2ΔP , .δs = 1
2Δs. Consequently, one has 

. Δh = h0
P ΔP + h0

sΔs + 1
24 [h0

PPP (ΔP )3 + 3h0
PPs(ΔP )2Δs

+ 3h0
ssP ΔP (Δs)2 + h0

sss(Δs)3] + · · · . (4.107) 

Expansions for the specific volume .ρ−1 and the absolute temperature T follow 
from Eqs. (4.81) and (4.93): 

.dh = de + P dρ−1 + (1/ρ) dP = T ds + (1/ρ) dP. (4.108) 

Thus, one has 

.
1

ρ
= ∂h

∂P
= h0

P + 1
2 [2h0

PP (δp) + 2h0
Ps(δs)]

+ 1
6 [3h0

PPP (δP )2 + 6h0
PPs(δP )(δs) + 3h0

ssP (δs)2]
+ 1

24 [4h0
PPPP (δP )3 + 12h0

PPPs(δP )2δs + 12h0
PPss(δP )(δs)2
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+ 4h0 
Psss(δs)

3] + · · ·  , . (4.109) 

(1/ρ)av = h0 
P + 1 

24 [3h0 
PPP  (ΔP )2 + 6h0 

PPs(ΔP )(Δs) + 3h0 
ssP (Δs)2] + · · ·  , . 

(4.110)

Δ(1/ρ) = 1 
2 [2h0 

PP  (ΔP ) + 2h0 
Ps(Δs)] 

+ 1 
96 [4h0 

PPPP  (ΔP )3 + 12h0 
PPPs(ΔP )2Δs + 12h0 

PPss(ΔP )(Δs)2 

+ 4h0 
Psss(Δs)3] + · · ·  . (4.111) 

The expansions derived above for .Δh and .(1/ρ)av lead in turn to 

. Δh − (1/ρ)avΔP = h0
sΔs − 1

12h0
PPP (ΔP )3 − 1

8h0
PPs(ΔP )2Δs − · · · .

(4.112) 

The left side of Eq. (4.112) is zero, according to the Rankine–Hugoniot relation 
Eq. (4.101); the resulting equation, when solved by iteration for . Δs in terms of . ΔP

yields, to lowest nonvanishing order, 

.Δs = h0
PPP

12h0
s

(ΔP )3. (4.113) 

The entropy change, being of third order in the pressure change, is consequently 
very small for a weak shock, but nevertheless not identically zero, in contrast to what 
would be inferred from the partial differential equation appearing in Eq. (4.83). 

The derivation here of Eq. (4.113) is essentially the same as that given in the 
text by Landau and Lifshitz (1987). It is also along lines similar to the derivation 
of Hayes (1958), who in turn states that his “derivation is essentially the same as 
that of Bethe,” the citation being to a report written during World War II by Bethe 
(1942). The result may have been known to other researchers before 1942, as Landau 
(1945) has the parenthetical comment, “in carrying out the calculation it must be 
kept in mind that the change of entropy in the discontinuity is a quantity of the third 
order, while in the Riemann solution the entropy is constant,” without any citing 
of references. [Bethe’s report would not ordinarily have been available to Landau 
before 1945, although there is a possibility that it had been conveyed to the (then) 
Soviet Union via Fuchs.] 

The most pertinent implication of Eq. (4.113), insofar as weak shock theory is 
concerned, is that the entropy discontinuity can be neglected in any approximate 
relation that is taken as being of second order or less in the pressure discontinuity 
.ΔP . In this regard, one notes from Eq. (4.110) that 

.(1/ρ)av = h0
P + O{(ΔP )2}, (4.114) 

while Eq. (4.111) yields
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.Δ(1/ρ) = h0
PP ΔP + O{(ΔP )3}. (4.115) 

Consequently, it follows that 

.ρav = 1

h0
P

+ O{(ΔP )2}, . (4.116)

Δρ = −  
h0 

PP  
(h0 

P )
2
ΔP + O{(ΔP )3}. (4.117) 

Thus, the Rankine–Hugoniot relation of Eq. (4.103) leads to 

.(Ush − uav)
2 = − (h0

P )2

h0
PP

+ O{(ΔP )2}. (4.118) 

Alternatively, if one returns to the differential expression of Eq. (4.108) for the  
enthalpy, it is seen that Eq. (4.118) can be rewritten 

.(Ush − uav)
2 =

⎛
∂P

∂ρ

⎞
eval at av

+ O{(ΔP )2}, (4.119) 

where the indicated derivative is intended to be carried out at constant entropy and 
at the state that corresponds to entropy . sav and pressure . Pav, the averages of values 
ahead of and behind the shock. This derivative is the square of a sound speed, but 
it differs in first order from the square of the sound speed ahead of the shock and 
in first order from the square of the sound speed behind the shock. However, it 
differs by only second order from the average of these two quantities, or by second 
order from the square of the average of the two sound speeds. This convenient fact, 
that averaging consistently accounts correctly for first-order corrections, follows in 
general from the observation that, for any function .f (δP ), one has 

.f (0) = 1
2 [f ( 1

2ΔP) + f (− 1
2ΔP)] + O{(ΔP )2}. (4.120) 

This holds, in addition, for any function of f , including its square, square root, and 
reciprocal. Thus, Eq. (4.119) can be rewritten 

.Ush − uav = ±cav + O{(ΔP )2}, (4.121) 

while Eq. (4.102) can be rewritten 

.Δu = ± ΔP

ρavcav
+ O{(ΔP )3}, (4.122) 

where the . + signs correspond to a shock advancing in the .+x direction relative to 
the fluid.
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Alternative versions of Eq. (4.121) that are consistent with Eq. (4.120) are  

.Ush = dxsh

dt
= (±c + u)av + O{(ΔP )2}, . (4.123) 

1 

Ush 
= 

dtsh 

dx 
=

⎛
1 

±c + u

⎞
av 

+ O{(ΔP )2}, (4.124) 

where .tsh(x) is the time the shock arrives at point x. Use of the latter equation 
requires, of course, that . ua and . ub be regarded as first order in .ΔP , while . ca and . cb

are regarded as zeroth order. 
Similar reasoning, with the aid of the differential thermodynamic relation of 

Eq. (4.108), allows one to reexpress Eq. (4.113) as  

.Δs =
⎛

∂2ρ−1/∂P 2

12T

⎞
av

(ΔP )3, (4.125) 

in which the indicated derivative is 

.
∂2ρ−1

∂P 2 = 2

ρ3c4

⎛
1 + ρc

∂c

∂P

⎞
. (4.126) 

Now define 

.β̃ = 1 + ρc
∂c

∂P
, (4.127) 

where . β̃ is the coefficient of nonlinearity evaluated at the considered thermodynamic 
state [see Eq. (3.18)]. Thus Eq. (4.125) can be rewritten in terms of familiar symbols 
as 

.Δs =
⎛

β̃

6ρ3c4T

⎞
av

(ΔP )3 = β

6ρ3
0c4

0T0
(ΔP )3. (4.128) 

To leading order in .ΔP , it is consistent to evaluate the coefficient here at any 
convenient thermodynamic state—in particular, the ambient state; the zero subscript 
is therefore used in the second version of this relation. 

For most occasions of interest, the parameter . β is greater than 0, and so the 
discontinuities .Δs and .ΔP must have the same sign. Thus, the second law of 
thermodynamics would ordinarily require .pb > pa (or .Δp > 0 for a shock 
advancing in the .+x direction). The pressure behind the shock front is higher 
because the specific entropy must be higher. For exceptions to this (rarefaction 
shocks), see the discussions and experimental results of Borisov et al. (1983), 
Cramer (1989), Lambrakis and Thompson (1972), Thompson (1971), Thompson 
and Lambrakis (1973), and Thompson et al. (1986).
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4.3.3 Reflection of Waves by Shocks 

A principle tenet on which the weak shock propagation theory of nonlinear acoustics 
is based is that the formation of a shock will not change the unidirectional character 
of a wave that is originally propagating in one direction. The Rankine–Hugoniot 
relation .Ush = (c + u)av predicts that, given .(c + u)b > (c + u)a , the shock will 
be moving more slowly than the waveform behind the shock, so any fragment of 
the waveform immediately behind the shock must eventually overtake the shock. 
The question naturally arises as to what happens to such fragments. Do they simply 
“disappear” into the shock, or do they cause backward-propagating waves to be 
generated? As might be expected, neither answer is totally correct, but it turns out 
that assuming the former yields an extremely good approximation. 

To confirm that such is the case, we consider the simple example shown in 
Fig. 4.4. Before time .t = 0, two shocks are propagating in the .+x direction through 
an unbounded fluid. Ahead of the shock that is farthest to the right, the fluid-dynamic 
variables are constant, and have values labeled by the subscript a; in the middle 
region, between the two shocks, they are also constant, and have values labeled 
by the subscript m; then, in the region behind the shock farthest to the left, they are 
also constant, and have values labeled by the subscript b. According to the Rankine– 
Hugoniot relations and the fluid-dynamic equations, one expects the values of the 
variables in each of the regions to remain the same up until such time as the second 
shock catches up to the first. The instant when this happens is truly a defining 
moment, and is consequently the instant we here choose to take as . t = 0. Also,  
the coordinate origin .(x = 0) is chosen to be the point where the catch-up occurs. 

Just before .t = 0, the Rankine–Hugoniot relation Eq. (4.101), applied to each of 
the two shocks individually, requires 

Fig. 4.4 Sketch of two shocks, one of which will overtake the other.
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.hm − ha = 1
2 (ρ−1

a + ρ−1
m )(Pm − Pa), . (4.129) 

hb − hm = 1 
2 (ρ−1 

b + ρ−1 
m )(Pb − Pm). (4.130) 

It is important to notice, however, that 

.hb − ha /= 1
2 (ρ−1

b + ρ−1
a )(Pb − Pa) (4.131) 

for .t > 0; i.e., the two shocks do not lock together and propagate on indefinitely 
without some other secondary disturbance being generated. 

Just at .t = 0, the history of the disturbance before .t = 0, and even the prior 
existence of the two shocks, is for the most part irrelevant. The fluid dynamics 
presents itself instead as an initial-value problem: Given the thermodynamic states 
and the fluid velocities for .x < 0 and .x > 0 at .t = 0, one seeks to determine the 
disturbance for .t > 0. 

Since the initial-value problem just posed has no characteristic length scale and 
no characteristic time scale, whatever disturbances are to be generated must depend 
on x and t only in terms of their ratio, and the edges of any disturbances must 
propagate out from the point .x = 0 with a constant speed. There are only two 
possibilities that can be considered (Landau and Lifshiftz, 1987). One is that the 
pressure in the intermediate region is everywhere larger than both . Pb and . Pa , and 
therefore the two speeds at the left and right edges correspond to shock velocities. 
The other possibility (Fig. 4.5) takes the pressure to be bigger than . Pa but less than 
. Pb, so the moving right edge corresponds to a shock, but the moving left edge does 
not. (Here, for simplicity, we consider the coefficient of nonlinearity to be positive, 
and we also consider . Pb to be larger than . Pa .) It turns out that the correct choice, at 

Fig. 4.5 Waveform showing features that occur shortly after one shock overtakes another.
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least in the weak shock limit and for fluids of common interest, is the second case, 
and therefore the analysis here is restricted to that case. 

The regime just behind the shock is at some constant pressure . Pi and constant 
entropy . si , and the fluid velocity has constant value . ui , but one allows for the 
possibility of a moving point at the left edge of this regime at which the density 
and entropy are discontinuous. The similitude principle allows one to pinpoint the 
constant-flow regime as consisting of points and times for which .ui < (x/t) < Ush. 

Although one does not know the fluid-dynamic variables in this intermediate 
constant-flow regime at the outset of the analysis, the Rankine–Hugoniot relations 
derived in Sect. 4.3.1 are applicable, and one can write 

.hi − ha = 1
2 (ρ−1

a + ρ−1
i )(Pi − Pa), . (4.132) 

ui − ua = (ρ−1 
a − ρ−1 

i )1/2(Pi − Pa)
1/2, (4.133) 

where the second equation is derived from Eqs. (4.102) and (4.103). 
The flow regime farthest to the left is a rarefaction wave, the leftmost edge of 

which moves in the .−x direction with the sound speed relative to the fluid. The 
regime is thus defined by the inequality .−cb + ub < (x/t) < ui , where . cb is 
the sound speed in the region behind the overall disturbance. This rarefaction wave 
is the same as one would predict were a wall, originally at .x = 0 and facing an 
unbounded fluid on its left .(x < 0), suddenly at .t = 0 to be moved to the right 
with constant speed . ui . The entropy in this wave is constant and equal to . sb, and the 
actual wave disturbance is governed by the nonlinear equation for a unidirectional 
wave propagating to the left, whereby points of given amplitude move with speed 
.−c(u) + u. Also,  u is related to the thermodynamic state by 

.
dP

du
= −ρc,

dc

du
= −ρc

dc

dP
. (4.134) 

The entropy is constant and has the value . sb throughout the rarefaction-wave regime. 
Also, by the similitude principle mentioned above, within the rarefaction wave, the 
fluid-dynamic variables depend on x and t only through the ratio . x/t , and therefore 
.x/t is .−c(u) + u, which in the weakly nonlinear limit yields 

.u = ub + 1

β
[cb − ub + (x/t)]. (4.135) 

The corresponding pressure variation within the wave, to the same order of 
approximation and in accordance with Eq. (4.134), is given by 

.P = Pb − ρbcb

β
[cb − ub + (x/t)]. (4.136) 

Note that both of these expressions have a linear dependence on x for fixed t .
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The claim can now be made that the equations as described above, given a 
knowledge of . ub and . ua along with the thermodynamic variables in states a and b, 
should be sufficient to determine the thermodynamic variables and fluid velocities in 
each of the two intermediate regions. To see that such is indeed the case, and also to 
reduce our consideration to weak shocks, we once again use the enthalpy expansion 
given by Eq. (4.106), with the reference state taken as that where the entropy and 
pressure are the averages of what exists in states a and b. Thus, in the previously 
derived expressions, Eqs. (4.106) and (4.109), one sets . δP = Pa − 1

2 (Pa + Pb)

and .δs = sa − 1
2 (sa + sb) to determine . ha and .1/ρa , etc. For simplicity, we denote 

these differences as .(δP )a, (δs)a , etc. The Rankine–Hugoniot relation Eq. (4.132) 
subsequently yields 

.(δs)i − (δs)a ≃ h0
PPP

12h0
s

[(δP )i − (δP )a]3, (4.137) 

and similar equations hold for the entropy discontinuities .(δs)m − (δs)a and . (δs)b −
(δs)m. In addition, Eq. (4.133) yields 

. ui − ua ≃ [(δP )i − (δP )a]1/2{−h0
PP [(δP )i − (δP )a] − h0

Ps[(δs)j − (δs)a]
− 1

2h0
PPP [(δP )2

i − (δP )2
a] − 1

6h0
PPPP [(δP )3

i − (δP )3
a]}1/2,

(4.138) 

and analogous equations hold for .um − ua and .ub − um. Here the intent has been to 
consistently keep all terms of up to third order in the pressure differences, it being 
recognized that the entropy differences are of third order. (It is also recognized that 
.h0

PP is negative.) The final equation of the set comes from Eq. (4.134), which to the 
same order of approximation yields 

.ub − ui ≃ − 1

ρbCb

(Pb − Pi) ≃ −(−h0
PP )1/2[(δP )b − (δP )i], (4.139) 

where it is anticipated that .[(δP )b − (δP )i] is of third order. 
The desire at this point is to “solve” the set of equations as described above for 

.(δP )i in terms of the original pressure increments .(δP )a, (δP )b, and . (δP )m. To  
do this, it is sufficient to use other equations for the fluid velocity differences in the 
combination 

.(ub − ui) + (ui − ua) = (ub − um) + (um − ua) (4.140) 

and to use Eq. (4.137) and its counterparts to make substitutions into the terms 
involving entropies. 

To quantify the magnitude of the difference .(δP )b−(δP )i to lowest nonvanishing 
order, it is sufficient to replace .(δP )i everywhere it occurs in the term .ui − ua . This  
term can be subsequently expanded to third order in the pressure increments, with
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the result 

. (ub − ui) + (ui − ua) ≃ −(−h0
PP )1/2[(δP )b − (δP )i]

+ (−h0
PP )1/2

⎧
[(δP )b − (δP )a

+ 1

4

h0
PPP

h0
PP

[(δP )2
b − (δP )2

a]

+ 1

12

h0
PPPP

h0
PP

[(δP )3
b − (δP )3

a]

+ 1

24

h0
PPP hPs

h0
s h

0
PP

[(δP )b − (δP )a]3

− 1

32

(h0
PPP )2

(h0
PP )2

[(δP )2
b − (δP )2

a][(δP )b + (δP )a]
⎫
.

(4.141) 

Similarly, an analogous expansion of the right side of Eq. (4.140) yields 

. (ub − um) + (um − ua)

≃ (−h0
PP )1/2

⎧
[(δP )b − (δP )a] + 1

4

h0
PPP

h0
PP

[(δP )2
b − (δP )2

a]

+ 1

12

h0
PPPP

h0
PP

[(δP )3
b − (δP )3

a]

+ 1

24

h0
PPP h0

Ps

h0
s h

0
PP

([(δP )b − (δP )m]3 + [(δP )m − (δP )a]3)

− 1

32

(h0
PPP )2

(h0
PP )2

([(δP )2
b − (δP )2

m][(δP )b + (δP )m]

+ [(δP )2
m − (δP )2

a][(δP )m + (δP )a])
⎫

. (4.142) 

When these two expressions for .ub−ua are equated and solved to obtain . (δP )b−
(δP )i , the first- and second-order terms cancel identically. After some algebra, the 
result to lowest nonvanishing order is 

.(δP )b − (δP )i ≃ 1

8

⎛
1

4

(h0
PPP )2

(h0
PP )2

+ h0
PPP h0

Ps

h0
s h

0
PP

⎞
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× [(δP )b − (δP )a][(δP )b − (δP )m][(δP )m − (δP )a]. 
(4.143) 

The coefficient here can be expressed in terms of familiar symbols by thermody-
namic identities. One notes that .hs = 1/T , hPs = βvolT/cp, hPP = −1/ρ2c2, 
and .hPPP = 2β̃/ρ3c4, where .βvol = ρ(∂ρ−1/∂T )p is the coefficient of thermal 
expansion and . cp is the specific heat at constant pressure. To the same order 
of approximation, it is sufficient to evaluate these quantities at the ambient state 
(subscript 0). Thus the desired result takes the form 

.Pb − Pi ≃ β

8ρ2
0c4

0

[β − 2(βvolc
2
0/cp)](Pm − Pa)(Pb − Pm)(Pb − Pa). (4.144) 

The factors .Pm − Pa and .Pb − Pm correspond to the pressure jumps in the first and 
second shocks, respectively; .Pb −Pa is the nominal pressure jump in the subsequent 
coalesced shock. 

The thermodynamic coefficient is invariably positive. For an ideal gas, . β is . 12 (γ +
1) and .βvolc

2
0/cp is .γ − 1. The indicated difference is positive for air, where .γ = 7

5 , 
but it does vanish for .γ = 5

3 , which would correspond to a monatomic gas. For 
liquids, such as water, the quantity .βvolc

2
0/cp is typically much less than unity. The 

most important conclusion here, for the purposes of nonlinear acoustics, is that the 
“reflected wave” is extremely small, so one can proceed with an approximate theory 
of weak shock propagation in which such reflections are neglected at the outset. [For 
related discussions on this subject, the reader is referred to the books by Courant and 
Friedrichs (1948) and Landau and Lifshitz (1987), to Lighthill (1950), and to recent 
articles by Morfey and Sparrow (1993) and Morfey (1993).] 

4.3.4 The Equal-Area Rule 

A chief implication of the foregoing analysis is revealed by the approximate 
Rankine–Hugoniot relations of Eqs. (4.123) and (4.124). If a disturbance is moving 
in the .+x direction, then, once a discontinuity is formed, it moves with the average 
of the wave speeds behind and ahead of the shock. Suppose that both ahead of and 
behind the shock the disturbance is described by Eq. (4.24), which corresponds to 
the parametric equations 

.u = f (φ), . (4.145) 

t (φ,  x)  = φ +
⎛

1 

c0 
− 

βu 
c2 

0

⎞
x. (4.146)
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Alternatively, one can use a description given by Eq. (4.5), which we here rewrite in 
the parametric form 

.u = g(ψ), . (4.147) 

x(ψ, t) = ψ + [c0 + βg(ψ)]t. (4.148) 

It is acknowledged that, for fixed x, the so-generated “waveform” plot in the 
.(u, t) plane, as . φ ranges over a continuum of values, can lead to multivalued 
waveforms, but that the waveform at any point and any instant corresponds to a 
definite value of . φ. There may be some values of . φ that do not correspond at all to 
the actual waveform at, say, a given value of x. Similarly, it is acknowledged that, 
for fixed t , the so-generated “waveform” plot in the .(u, x) plane, as . ψ ranges over a 
continuum of values, can lead to multivalued waveforms, but that the waveform at 
any point and any instant corresponds to a definite value of . ψ . There may be some 
values of . ψ that do not correspond at all to the actual waveform at, say, a given value 
of t . 

If .g(ψb) = f (φb) is the flow velocity behind the shock (or that just after the 
shock has passed by) and .g(ψa) = f (φa) that in front of the shock (or just before 
the shock has arrived), then the intrinsic pressure dependence of the sound speed 
requires 

.ca = c0 + (β − 1)g(ψa), cb = c0 + (β − 1)g(ψb), (4.149) 

or equivalently, 

.
1

ca + ua

= 1

c0
− β

c2
0

f (φa),
1

cb + ub

= 1

c0
− β

c2
0

f (φb). (4.150) 

The approximate Rankine–Hugoniot relation .Ush = cav + uav yields a shock speed 
equal to 

.
dxsh

dt
= Ush = c0 + 1

2β[g(ψa) + g(ψb)], (4.151) 

and its counterpart in Eq. (4.124) yields a shock slowness equal to 

.
dtsh

dx
= 1

c0
− β

2c2
0

[f (φa) + f (φb)]. (4.152) 

(The quantities .ψb, ψa , etc., are here regarded as functions of time t .) The location 
. xsh of the shock is given by Eq. (4.148) with . ψ set to either . ψa or . ψb: 

.xsh = ψa + [c0 + βg(ψa)]t = ψb + [c0 + βg(ψb)]t. (4.153) 

Similarly, the time of arrival . tsh is given by Eq. (4.146) with . φ set to either . φa or . φb:
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Fig. 4.6 Triple-valued wave: (a) Spatial waveform and (b) time waveform.  

.tsh = φa +
⎾

1

c0
− β

c2
0

f (φa)

⏋
x = φb +

⎾
1

c0
− β

c2
0

f (φb)

⏋
x. (4.154) 

As the shock moves, . ψb decreases and . ψa increases; the portion .g(ψ) for . ψb(t) <

ψ < ψa(t) of the initial waveform does not contribute to the actual waveform 
at time t . The waveform, u versus x, so constructed is single-valued although 
discontinuous. Similarly, .φb increases and .φa decreases; the portion .f (φ) for 
.φa(x) < φ < φb(x) of the initial waveform (original value of x) does not contribute 
to the actual waveform at the point x. The waveform, u versus t , so constructed is 
single-valued although discontinuous. 

Determination of the location of a shock at any instant (or of its arrival time at 
any point) is facilitated by the following theorem, which was stated first by Landau 
(1945) and derived independently by Whitham (1952). Suppose that one constructs 
the curve of u versus x from Eqs. (4.148) and (4.149) and that over the interval . xb to 
. xa the function u is triple-valued, the plot resembling a backward S (see Fig. 4.6a). 
The shock location . xsh is denoted by a vertical line connecting the upper and lower 
portions of the S, crossing the curve at some point .gint and thereby delimiting two 
areas, a lower area extending to the left of the line .x = xsh and an upper area to 
the right of this line. The assertion is that . xsh must be such that these two areas are 
the same; the waveform with shock is then as sketched in Fig. 4.6a, with the vertical 
line replacing the two arcs of the S.
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An alternative version of the theorem, applicable for the .(u, φ) description given 
by Eqs. (4.145) and (4.146), is stated similarly. Suppose that one constructs the 
curve of u versus t from Eqs. (4.145) and (4.146) and that over the interval . ta to 
. tb the function u is triple-valued, the plot resembling a letter S (see Fig. 4.6b). The 
shock arrival time . tsh is denoted by a vertical line connecting the upper and lower 
portions of the S, crossing the curve at some point .fint and thereby delimiting two 
areas, a lower area extending to the right of the line .t = tsh and an upper area to 
the left of this line. The assertion is that . tsh must be such that these two areas are 
the same; the waveform with shock is then as sketched in Fig. 4.6b, with the vertical 
line replacing the two arcs of the S. 

The proof here proceeds for the latter version of the theorem. [The proof for the 
former version, corresponding to Fig. 4.6a, is similar, and can be found in the texts 
by Landau and Lifshitz (1987) and by Pierce (1989).] The total area, with due regard 
to sign, is given by 

.A(x) = −
⎰ φb(x)

φa(x)

[t (φ, x) − tsh(x)]df (φ)

dφ
dφ. (4.155) 

Since .t (φb, x) and .t (φa, x) are both .tsh(x), the integrand vanishes at the upper 
and lower limits. The derivative .dA(x)/dx is consequently given by an analogous 
expression; note that .t (φ, x) is replaced by .∂t (φ, x)/∂x, or by . c−1

0 − βc−2
0 f (φ)

from Eq. (4.146). The resulting integration is readily performed, yielding 

.
dA(x)

dx
= −[f (φb) − f (φa)]

⎧
1

c0
− dtsh

dx
− β

2c2
0

[f (φa) + f (φb)]
⎫

. (4.156) 

The factor in braces here, however, is zero because of the approximate Rankine– 
Hugoniot relation for the shock slowness, as rewritten in Eq. (4.152), so one 
concludes that .dA(x)/dx is zero. But .A(x) = 0 at the position where the shock 
was first formed, so .A(x) is always zero and the equal-area rule is verified. 

4.3.5 Energy Dissipation at a Shock 

In the absence of shocks, nonlinear effects do not change the net acoustic energy 
associated with a pulse; they merely rearrange the frequency distribution of the 
energy. The energy density for a traveling wave can be expressed as either . ρ0u

2

or .p2/ρ0c
2
0 because .u = p/ρ0c0. The net energy per unit area transverse to 

propagation direction for a pulse of finite duration is then 

.E(t) = ρ0

⎰ ∞

−∞
u2 dx. (4.157)
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If Eqs. (4.147) and (4.148) are valid for a single-valued description of the pulse, 
Eq. (4.157) can alternatively be written 

.E(t) = ρ0

⎰ ∞

−∞
g2(ψ)

∂x

∂ψ
dψ = ρ0

⎰ ∞

−∞
g2(ψ)[1 + βg'(ψ)t] dψ, (4.158) 

where .g'(ψ) = dg/dψ . The quantity .g2(ψ)g'(ψ), however, integrates to zero, since 
.g3(ψ) → 0 as .ψ → ±∞. Consequently, .E(t) is independent of time. 

On the other hand, if a shock is present, the integral must be broken into integrals 
from .−∞ to .ψb(t) and from .ψa(t) to . ∞. The time derivative of .E(t) consequently 
yields, with some algebraic manipulation, the relation 

. 
1

ρ0

dE(t)

dt
= g2(ψb)

d

dt
[ψb + βg(ψb)t]

− g2(ψa)
d

dt
[ψa + βg(ψa)t] − 2

3β[g3(ψb) − g3(ψa)]. (4.159) 

The first two quantities in brackets here [see Eq. (4.153)] are .xsh − c0t , so their time 
derivatives [see Eq. (4.151)] are both . 12β[g(ψa) + g(ψb)]. Then, with additional 
manipulations, Eq. (4.159) yields 

.
dE

dt
= − 1

6βρ0[g(ψb) − g(ψa)]3 = − 1
6βρ0(Δu)3, (4.160) 

where .Δu is the jump in particle velocity at the shock. Alternatively, this is related 
to the pressure discontinuity by Eq. (4.122), which in turn is related to the entropy 
discontinuity by Eq. (4.128), and one has 

.
dE

dt
= − β

6ρ2
0c3

0

(ΔP )3 = −ρ0c0T0Δs. (4.161) 

The physical interpretation of the latter version is that, as a shock (moving with 
a speed close to the ambient sound speed) sweeps through the fluid, it passes over 
a mass .ρ0c0 per unit time and per unit area of wavefront. This mass receives a heat 
increment .T0Δs per unit mass, and therefore heat of the magnitude of .ρ0c0T0Δs is 
being generated per unit area of wavefront and per unit time. This heat is generated 
at the expense of the energy in the waveform, and conservation of energy implies 
that the rate of energy loss in the waveform per unit area of waveform is as 
given above. The presence of the shock causes the energy in the wave to decrease 
with time. Because this is third order in .ΔP , the loss is seemingly small in any 
given short time instant. However, over large propagation distances, these small 
losses accumulate, and their effect should be apparent. [The result here derived was 
discovered in the context of sawtooth waves by Rudnick (1953).]
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4.4 Weak Shock Theory 

The aim of this section, and of Sect. 4.5, is to describe propagation over the entire 
history of the wave motion. Achieving this goal requires that dissipation be taken 
into consideration. Two quite different methods for including dissipation are well 
known. The method based on the Burgers equation, which takes explicit account of 
dissipation, is presented in Sect. 4.5. The present section is devoted to a less general 
but simpler method called weak shock theory. The basis for weak shock theory 
was laid in Sect. 4.3, particularly Sects. 4.3.2–4.3.5. Here we develop the specific 
method. 

4.4.1 General Method 

Weak shock theory is based on the following somewhat interrelated assumptions: 

1. Shocks present in the waveform are weak. 
2. Dissipation is concentrated at the shocks. Dissipation associated with the rest 

of the waveform—i.e., the continuous segments between shocks—may be 
neglected. 

3. Shocks are discontinuities; i.e., shock rise time is zero. Because real shocks, 
particularly weak ones, are not actually discontinuous, a more practical statement 
is as follows: Shock rise time is negligible compared with the wave’s larger 
time scale, for example, the period for periodic signals or the wave duration for 
transients. 

These assumptions are first used to develop a calculation procedure, which is then 
applied to predict the propagation of an N wave and a periodic wave. Finally, a 
restriction on the applicability of weak shock theory is developed. 

The three assumptions lead to the calculation procedure as follows: Once shocks 
form in a waveform, in general they cause reflections and thus end the progressive-
wave nature of the propagation (Stokes, 1848). For weak shocks (assumption 
1), however, the reflections are so tiny, .O(ε3) [see Eq. (4.144)], that they may 
be neglected within the bounds of second-order approximation theory. This fact, 
coupled with assumption 2, allows one to continue using lossless progressive-
wave theory (second-order approximation) to describe distortion of the continuous 
segments of the waveform. Each continuous segment ends at a shock, where jump 
conditions provide the connection to the continuous segment on the other side. 
Assumption 3 then makes it possible to sketch the wave or find its spectrum. 

To keep track of the location of the shocks in the waveform, we make use of 
results developed in Sect. 4.3.4. Shocks propagate at a speed different from that of 
continuous waves. The speed of a continuous wave is given by Eq. (4.2). For weak 
shocks, the speed is the mean of the finite-amplitude speeds just ahead of the shock, 
.c0 + βua , and just behind it, .c0 + βub. See Eq. (4.151) combined with Eq. (4.147),
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Fig. 4.7 Progressive distortion and shock-induced decay of a traveling wave (after Blackstock, 
1966b). Numbers identify particular phase points on the waveform. Each phase point is known by 
its value of p or, the equivalent, the Earnshaw phase variable . φ. 

or Eq. (1.38). In terms of pressure, the shock speed is given by 

.Ush = c0 + β
pa + pb

2ρ0c0
. (4.162) 

The corresponding slowness of the shock, .dtsh/dx = U−1
sh , is given by Eq. (4.152). 

In terms of retarded time for the shock, .dτsh/dx = dtsh/dx − c−1
0 , we have  

.
dτsh

dx
= −β(pa + pb)

2ρ0c
3
0

. (4.163) 

Compare this with Eq. (4.31). The two equations show that a point on the continuous 
segment of the waveform behind a shock tends to catch up with the shock, whereas 
a point ahead of the shock tends to be overtaken by the shock. 

Figure 4.7 illustrates shock growth and decay in a waveform. Sketch a shows 
the source signal .(x = 0), which was intentionally chosen for this example to be 
continuous but not symmetric. Typical points on the waveform, each tagged by its 
particular value of the Earnshaw phase variable . φ, are identified by the numbers 
1 through 7; note that points 1, 3, and 7 are zero crossings. Sketch b shows the 
early distortion of the wave, at a location .x < x̄. Since no shocks have formed 
yet, the entire waveform is well described by the approximate Earnshaw solution, 
Eqs. (4.29). The situation changes, however, when a shock forms, sketch c. The  
shock starts to grow as points behind, such as point 4, begin to catch up and join the 
shock, while at the same time the shock overtakes points ahead, such as point 2 [see 
Eq. (4.162)]. In sketch d, point 2 has disappeared because after it was overtaken, 
subsequent points overtaken were lower in “amplitude.” By sketch e, a similar fate 
has befallen point 5 and its neighbors. Even more points on the initial waveform are 
missing in sketch f . In sketch  g, the entire negative part of the wave has been “eaten
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up” by the shock. Of the original waveform shown in sketch a, all that is left are two 
small segments: (1) The left end of the section between points 3 and 4 survives as 
the shock, the foot of which is at point 3 in sketch g, and (2) a very small part of 
the tail end of the waveform between points 6 and 7 now stretches from the top of 
the shock to point 7. The attenuation of the wave is due to dissipation at the shock. 
The loss of most of the original waveform represents energy fed into the shock from 
behind or dropping into the shock from ahead. 

Before Eq. (4.163) can be used to locate (and follow) the position of the shock 
in the waveform, the pressures . pa and . pb must be known. They are found from the 
Earnshaw solution, Eqs. (4.29). For the continuous segment ahead of the shock, the 
solution evaluated at point a is 

.pa = f (φa), φa = τ + βxf (φa)

ρ0c
3
0

. (4.164) 

Similarly the solution for the segment behind the shock, evaluated at point b, yields 

.pb = f (φb), φb = τ + βxf (φb)

ρ0c
3
0

. (4.165) 

Equations (4.163)–(4.165) are a coupled set that must be solved simultaneously. A 
method of solution is illustrated in the next two sections. 

Another way to place the shock in the waveform is to apply the equal-area rule 
(see Sect. 4.3.4). 

4.4.2 N Waves and Other Pulses 

A particularly simple yet practical application of weak shock theory is to the 
propagation of N waves (see, for example, Blackstock, 1972). The N-shaped 
waveform is typical of disturbances produced by supersonic projectiles, supersonic 
aircraft (sonic booms, far away from the aircraft), bursting (spherical) balloons, and 
electric sparks in air. The pressure waveform is made up of a head shock, a tail 
shock, and a linear pressure decrease in between. At the source .x = 0 (left-hand 
sketch in Fig. 4.8), we have 

.p(0, t) = −p0t/T0, |t | < T0, . (4.166) 

= 0, |t | > T0, (4.167) 

where . p0 and .2T0 are the head shock pressure and the duration, respectively, at the 
source.5 To describe the pressure field between the two shocks, use the Earnshaw

5 Note that T does not stand for temperature in this discussion. 
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Fig. 4.8 N wave (after Blackstock, 1972). 

solution, Eqs. (4.29): .p = f (φ) = −p0φ/T0 and .φ = τ − βxp0φ/ρ0c
3
0T0. Solve 

the last relation for . φ and substitute in .f (φ) to give 

.p = −p0τ/T0

1 + bx
, |τ | < T, . (4.168) 

= 0, |τ | > T, (4.169) 

where .b = βp0/ρ0c
3
0T0 is a constant and T is a variable endpoint that must be 

determined from Eq. (4.163). 
Next find the location .τsh = −T of the head shock (and thus evaluate T ). The 

pressure just ahead of the head shock is .pa = 0, and that just behind is . pb =
−(p0τsh/T0)/(1 + bx) [from Eq. (4.168) evaluated at .τ = −T ]. Equation (4.163), 
converted into a differential equation in . τsh, is thus 

.
dτsh

dx
= bτsh

2(1 + bx)
. (4.170) 

The solution satisfying the source condition .τsh = −T0 at .x = 0 is 

.τsh = −T = −T0
√

1 + bx. (4.171) 

The head shock pressure .psh (.= pb) is found by evaluating Eq. (4.168) at . τ =
τsh: 

.psh = pb = p0√
1 + bx

. (4.172) 

By symmetry, the pressure at the tail shock has the same magnitude but is negative. 
Equations (4.172) and (4.171) show that besides decaying asymptotically as .x−1/2, 
the N wave spreads out as it travels (see Fig. 4.8, right-hand sketch). The spreading 
is due to the supersonic velocity of the head shock and the subsonic velocity of the 
tail shock [see Eq. (4.162)].
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Another transient of practical interest is a shock followed by a decay tail that 
starts out as an exponential. This pulse is a simple model for the disturbance 
produced by explosions, both underwater and in the atmosphere. Weak shock theory 
may also be used to solve this problem. Here we give only the results; for details, 
see, for example, Rogers (1977) or Blackstock (1983). Let the source signal be 
defined by .p = p0e

−t/t0 for .t > 0 and by .p = 0 for .t < 0, where . t0 is the initial 
.e−1 decay time of the tail. The shock amplitude is found to be 

.psh = p0

√
1 + 2bx − 1

bx
, (4.173) 

where in this case .b = βp0/ρ0c
3
0t0. A measure of the increasing duration of the 

wave is the .e−1 decay time .tdecay of the waveform: 

.tdecay = t0[1 + (1 − e−1)(
√

1 + 2bx − 1)]. (4.174) 

Comparison of Eqs. (4.172) and (4.173) shows that both the N wave and the 
exponential pulse decay asymptotically as .x−1/2. In the next section, we find that a 
sawtooth (infinite train of N waves) decays more rapidly. 

4.4.3 Periodic Waves 

Here we revisit the problem of radiation from a monofrequency source, previously 
solved only for the shock-free region (Fubini solution). See Sect. 4.2.4.1. Again the 
source condition is Eq. (4.46); the source waveform is shown as the .σ = 0 sketch 
in the inset of Fig. 4.9. Shock formation occurs when the distortion range variable 
.σ = βεkx attains the value .σ = 1. See the sketch for that value of . σ in the inset 
of Fig. 4.9. By using weak shock theory, we may extend the solution into the region 
.σ > 1 (Blackstock, 1966b). 

How is waveform distortion described when shocks are present? Consider 
first the continuous segments of the waveform. In dimensionless quantities, the 
Earnshaw solution is 

.P(σ, ωτ) = sin Ф, Ф = ωτ + σ sin Ф, (4.175) 

where .P = p/p0 and .Ф = ωφ [. φ is the Earnshaw phase variable; see Eq. (4.29)].6 

As for the shocks, they first appear in the waveform at the positive-slope zero 
crossings .ωτ = 2nπ , where .n = 0, ±1, ±2, . . . (see Sect. 4.2.2). Because the 
wave is periodic, only a single cycle need be considered, say the one centered about

6 Note that here and in Sects. 4.5.4 and 4.6.2, P is the acoustic pressure amplitude normalized to 
the source amplitude. It does not stand for total fluid pressure. 



4 Progressive Waves in Lossless and Lossy Fluids 109

Fig. 4.9 Shock amplitude as a function of . σ for a wave generated by a monofrequency source 
(after Blackstock, 1966b). Inset shows the time waveform at various distances from the source. 

the origin, .−π < ωτ < π . For this cycle, the shock forms at the midpoint, .ωτ = 0. 
Its future track is determined by Eq. (4.163), restated here in dimensionless form: 

.d(ωτsh)/dσ = − 1
2 (Pa + Pb). (4.176) 

Because of the symmetry of this particular wave, the pressure just ahead of the 
shock is equal to but opposite that just behind the shock; that is, .Pa = −Pb. 
Equation (4.176) thus reduces to .d(ωτsh)/dσ = 0. The shock therefore remains 
at its birthplace .ωτ = 0. 

4.4.3.1 Shock Growth and Decay 

Although the position of the shock in the cycle does not change, its amplitude . Psh =
Pb does.7 Equations (4.175) evaluated just behind the shock, where . Ф = Фb, P =
Pb, and .ωτ = ωτsh = 0, may be combined to yield 

.Psh = sin σPsh or Фsh = σ sin Фsh. (4.177) 

The only solution for .σ ≤ 1 is .Psh = 0, but .Psh begins to take on finite values as . σ
increases beyond the value 1. Physically, what happens is that the shock overtakes 
points ahead of it .(Ф < 0) while points behind it .(Ф > 0) catch up. The shock thus 
begins to grow. The growth stage ends when the shock simultaneously overtakes

7 Note that the total pressure jump at the shock is .2Psh. 
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the trough ahead of it .(Фa = −π/2) and is overtaken by the peak behind it . (Фb =
π/2). Inspection of the second of Eqs. (4.177) shows that the distance at which 
this occurs is .σ = π/2; see the third sketch in the inset of Fig. 4.9. Observe that 
at this point, half the original waveform—values of . Ф from .−π/2 to .+π/2—has 
been consumed by the shock. As propagation continues past this point, the shock 
amplitude decreases, since successive values of . Pb (and .−Pa) now trend downward. 
See, for example, the .σ = 4 sketch in the inset of Fig. 4.9 [numerical evaluation of 
Eqs. (4.177) for .σ = 4 yields .Фsh = 0.788π and .Psh = 0.619]. 

The description above leads to a very useful asymptotic expression for the shock 
amplitude. It is clear that .Фsh → π as . σ becomes large. To get a solution of 
Eqs. (4.177) for this case, let .Фsh = π − δ, where . δ is small. We have . Psh =
sin(π − δ) = sin δ ≃ δ, or, since .δ = π − Фsh = π − σPsh, 

.Psh = π

1 + σ
. (4.178) 

This expression combined with numerical solution of Eqs. (4.177) yields the curve 
shown in Fig. 4.9. 

4.4.3.2 Sawtooth Wave 

It is clear from the shape of the waveform in the .σ = 4 inset of Fig. 4.9 that the 
wave has become a sawtooth. The close resemblance to a sawtooth actually sets in 
a little earlier. For . σ = 3, the value of .Psh given by Eq. (4.178) differs by only 3.4% 
from the exact value found by numerical solution of Eqs. (4.177). It has become 
traditional to use .σ > 3 to define the “sawtooth region.” The sound field from a 
monofrequency source is thus characterized by three regions: the shock-free region 
.σ < 1, the transition region .1 < σ < 3, and the sawtooth region . σ > 3. In the  
sawtooth region, where the amplitude is given by Eq. (4.178), the waveform may be 
represented by the following Fourier series: 

.p = 2p0

1 + σ

∞⎲
n=1

1

n
sin nωτ, σ > 3; (4.179) 

i.e., the harmonic amplitudes are .Bn = 2/n(1 + σ) (rigorous justification is 
presented in the next section). As shown in Sect. 4.5.4.2, the sawtooth solution is 
a limiting form of the Fay solution; see Eq. (4.275). The time-domain version of 
Eq. (4.179) is also of interest. If for ease of representation we change the limits of 
the cycle from .(−π, π) to .(0, 2π), the expression is 

.p = p0
π − ωτ

1 + σ
, 0 < ωτ < 2π. (4.180)
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Both Eqs. (4.179) and (4.180) show the steady monotonic deterioration of the 
sawtooth wave. Notice that the sawtooth decays more rapidly than the N wave. The 
explanation is that the head shock of an N wave is free to move forward, the tail 
shock backward, whereas shock position in a sawtooth wave is fixed. Points behind 
the head shock of an N wave thus take longer to catch up to the shock than do 
equivalent points behind a sawtooth shock (similar remarks apply to the tail shock). 
As a result, the N-wave shocks are not “eaten away” so rapidly. 

4.4.3.3 Transition Solution 

How are two such disparate solutions, the Fubini series and the sawtooth function, 
to be patched together, and over such a short distance, .1 < σ < 3? The key is to  
return to the analysis in Sect. 4.2.4 and modify the steps when shocks arise. The 
approach is like that leading from Eqs. (4.38) to (4.40) to find an integral expression 
for the Fourier coefficients. Since for the monofrequency source .F = sin ωt , we  
begin with the Fourier sine series, Eq. (4.43). The coefficients . Bn are given by 

.Bn = 2

π

⎰ π

0
P sin nωτ d(ωτ) = 2

π

⎰ π

0
sin Ф sin nωτ d(ωτ). (4.181) 

Integration by parts, in preparation for shifting from integration over .ωτ to 
integration over the (dimensionless) Earnshaw phase variable . Ф, yields 

.Bn = − 2

nπ
sin Ф cos nωτ

||||
ωτ=π

ωτ=0
+ 2

nπ

⎰ ωτ=π

ωτ=0
cos nωτ cos ФdФ. (4.182) 

The second part of Eq. (4.175) shows that for the region .σ < 1, the variables . Ф and 
.ωτ have a one-to-one correspondence. In particular, .0 ≤ ωτ ≤ π has a one-to-one 
correspondence with .0 ≤ Ф ≤ π . However, as the discussion in Sect. 4.4.3.1 shows, 
after shocks form, .0 ≤ ωτ ≤ π corresponds to .Фsh ≤ Ф ≤ π . The first term in 
Eq. (4.182) thus becomes .(2/nπ)Psh, which vanishes in the shock-free region and 
takes on the value .2/n(1 + σ) in the sawtooth region [see Eq. (4.178)]. To evaluate 
the second term in Eq. (4.182), differentiate the second part of Eq. (4.175) to replace 
.cos ФdФ with .σ−1[dФ − d(ωτ)]. Equation (4.182) becomes 

.Bn = 2

nπ
Psh + 2

nπσ

⎰ π

Фsh

cos n(Ф − σ sin Ф) dФ (4.183) 

as the general expression for the harmonic amplitudes. 
The interpretation is quite simple. As already argued, the first term is associated 

with the sawtooth solution. The second term reduces to the Fubini form . Bn =
(2/nσ)Jn(nσ) [Eq. (4.48)] in the shock-free region .(Фsh = 0) and falls to zero 
in the sawtooth region as the lower limit of the integral approaches the upper limit 
.(Фsh → π). For the fundamental amplitude . B1, Fig. 4.10 shows how the two terms
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Fig. 4.10 Amplitude of the fundamental component . B1 as a function of . σ for a wave generated 
by a monofrequency source (after Blackstock, 1966b). 

contribute to the whole. The dotted curve represents the second term. It is identified 
on the figure as .B(Fubini)

1 because it is the only contributor in the shock-free region. 

The first term, represented by the dashed curve, is labeled .B(Sawtooth)
1 because it is 

the survivor in the sawtooth region. It is interesting to note how rapidly one curve 
decays while the other grows in the transition region. Figure 4.11 shows curves for 
.B1, . B2, and . B3, found by using the two limiting solutions for their respective regions 
and numerical evaluation of Eq. (4.183) for the transition region. 

4.4.3.4 Acoustical Saturation 

For . σ large enough that .(1 + σ) may be replaced by . σ in the denominator 
of Eq. (4.179), a remarkable result is obtained. Recalling that .P = p/p0 and 
.σ = βp0kx/ρ0c

2
0, we obtain for Eq. (4.179), at distances well beyond the point 

of shock formation, 

.p = 2ρ0c
2
0

βkx

∞⎲
n=1

1

n
sin nωτ, σ ⪢ 1. (4.184) 

The same limit applied to Eq. (4.180) yields 

.p = ρ0c
2
0(π − ωτ)

βkx
, 0 < ωτ < 2π, σ ⪢ 1. (4.185)
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Fig. 4.11 Spectral amplitudes . B1, B2, and .B3 as functions of . σ for a wave generated by a 
monofrequency source (after Blackstock, 1966b). 

Both results show the wave amplitude .|p| = πρ0c
2
0/βkx to be independent of the 

source amplitude . p0. The wave has forgotten its origins. The irreversible energy 
loss at the shock fronts thus imposes an upper bound on how much sound can 
be transmitted to a given distance. All additional acoustical energy pumped into 
the wave by the source is lost at the shock fronts, which form ever closer to the 
source. Acoustical saturation is said to have set in. The first to observe and correctly 
interpret acoustical saturation was Allen (1950). Webster and Blackstock (1977) 
report experiments that demonstrate the saturation of plane sound waves in air, 
and Shooter, Muir, and Blackstock (1974) report experiments on the saturation of 
directional sound beams in water. 

Not all waves saturate. The N wave is a case in point. The amplitude of an N 
wave is given by Eq. (4.172), which at distances far from the source reduces to 

.psh =
/

p0ρ0c
3
0T0/βx, bx ⪢ 1, (4.186) 

where .b = βp0/ρ0c
3
0T0. Although saturation (in the sense of no dependence on 

source amplitude) does not occur, the amplitude of the N wave increases only in 
proportion to the square root of the source amplitude. A 6-dB increase in source 
level therefore introduces only a 3-dB increase in the amplitude of the N wave.
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One caveat must be noted before this discussion is closed. The saturation 
amplitude derived here is based on weak shock theory, which generally becomes 
inaccurate at very great distances (see Sect. 4.4.4). At such distances the saturation 
amplitude becomes a function of the absorption coefficient . α. For plane waves in a 
thermoviscous fluid, see Sect. 4.5.4.2, in particular Eq. (4.277). 

4.4.4 Limitations on Weak Shock Theory 

Despite its name, weak shock theory does not work well for waves containing 
exceedingly weak shocks. Assume that the wave is strong enough to begin with 
for the assumptions of weak shock theory to be realized. Eventually, however, 
when the wave decays to the point at which the pressure jumps become very small, 
assumptions 2 and 3 on which the theory is based (Sect. 4.4.1) are generally violated. 
First consider assumption 3, which is that the shock is very thin. An expression for 
the rise time .trise of a weak step shock is given in Sect. 4.5.3; see Eq. (4.250). If . tc
stands for the characteristic time of the large-scale variation of the waveform, for 
instance the period of a periodic wave or the duration of a transient, assumption 3 
may be stated as  

.trise ⪡ tc. (4.187) 

Assumption 2, that dissipation is concentrated at the shocks, provides an 
alternative but equivalent test. Because energy dissipation at a shock varies as the 
cube of the pressure jump [see Eq. (4.161)], loss over the rest of the waveform 
cannot be neglected when the jump becomes tiny. For a periodic wave, the length 
scale associated with ordinary absorption is .𝓁a = 1/α (see Sect. 4.5.4), where . α
is the small-signal absorption coefficient at a characteristic frequency, usually the 
fundamental, of the wave. When .x ∼ 𝓁a , the rate of decay due to ordinary absorption 
equals that due to shock loss (Blackstock, 1966b). Weak shock theory may therefore 
be used for distances 

.x < 𝓁a. (4.188) 

Equations (4.187) and (4.188) are obviously not independent. The latter may be 
more useful for periodic waves, the former for transients. 

One related restriction should be noted. In order for weak shock theory to 
be applicable in the first place, nonlinearity must be strong enough, relative to 
absorption, that real shocks form. In quantitative terms, the requirement is .x̄ ⪡ 𝓁a . 
An analysis for thermoviscous fluids for the case .x̄ ∼ 𝓁a is given in Sect. 4.5.4.1.
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4.5 The Burgers Equation 

What has come to be known as the Burgers equation was derived earlier in this book 
as Eq. (3.54), and is repeated here for convenience: 

.
∂p

∂x
− δ

2c3
0

∂2p

∂τ 2
= βp

ρ0c
3
0

∂p

∂τ
, (4.189) 

where 

.δ = ρ−1
0 [ 4

3μ + μB + κ(c−1
v − c−1

p )] (4.190) 

is referred to as the diffusivity of sound (Lighthill, 1956), . μ is shear viscosity, 
.μB is bulk viscosity, . κ is thermal conductivity, and . cv and . cp are the specific 
heats at constant volume and constant pressure, respectively. Equation (4.189) 
accounts explicitly for the effect of thermoviscous dissipation on the propagation of 
finite-amplitude sound. The present section discusses the properties of the Burgers 
equation and some of its solutions. Also, since the historical introduction in Chap. 1 
stops with the beginning of World War II, the discussion here begins with a historical 
sketch of the origins of the Burgers equation, with an attempt to explain why this 
partial differential equation, which has played a central role in nonlinear acoustics 
over the second half of the twentieth century, happened to be called the Burgers 
equation. 

4.5.1 History 

Workers in applied mathematics and fields related to fluid mechanics loosely refer 
to any partial differential equation of the form 

.a
∂θ

∂ξ2
+ b

∂θ

∂ξ1
+ cθ

∂θ

∂ξ1
+ d

∂2θ

∂ξ2
1

= 0 (4.191) 

(generally with the coefficient b set to zero) as the Burgers equation. Here the 
dependent variable .θ(ξ1, ξ2) is a function of two independent coordinates, one 
usually identified as a time and the other as a distance variable. The partial 
differential equation is quasilinear, because the nonlinear term involves only a first 
derivative, but the highest-order derivative, appearing in a linear term, is linear 
and second order. The earmarks of the Burgers equation are these two features, 
plus the feature that the equation has an intrinsic parabolic nature, analogous to 
the partial differential equation governing time-dependent heat conduction in one 
dimension. This parabolic nature is embodied in the fact that the second-derivative 
term involves differentiation with respect to only one of the two coordinates. The
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quantities .a, b, c, and d are often taken as constants, but in some discussions, one 
or more are taken as functions of one or both of the independent coordinates. 

The first appearance of such an equation in the archival literature, at least in a 
fluid-dynamic context, is generally considered to be in a 1915 paper published by 
Bateman in a meteorological journal not normally read by research workers in fluid 
dynamics. (The authors have been told that such an equation may have appeared in a 
purely mathematical context in one of Forsyth’s books or papers, written sometime 
between 1895 and 1910, but they have not yet checked to confirm this.) Bateman’s 
paper was largely review and cited an impressive list of fundamental research papers 
by his contemporaries and predecessors. The emphasis was on the question of the 
existence of discontinuous motion in fluids, primarily in the context of wakes behind 
moving bodies, for which one model is discontinuous potential flow (with the fluid 
taken as incompressible), and where the discontinuity was one of tangential fluid 
velocity, and not what we call a shock. It was understood that this discontinuity 
would not be abrupt were the viscosity taken into account, and to show a relatively 
simple example of an equation having some resemblance to the equations of fluid 
mechanics and where the limit of zero viscosity led to a discontinuity, Bateman 
wrote down the partial differential equation 

.
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (4.192) 

This can be viewed as a one-dimensional version of the Navier–Stokes equation, 
which appears as Eq. (3.2), with the pressure term set to zero, with . ρ taken as 
constant, and with .ν = ρ−1( 4

3μ+μB). Bateman then proceeded to find a particular 
solution of this equation by a method similar to that discussed further in Sect. 4.5.3, 
and showed that his solution did indeed yield a discontinuity in the limit of vanishing 
. ν. It appears, however, that no further attention was given to this partial differential 
equation in subsequent literature. 

The contribution by Burgers to this history begins with a series of papers 
concerned with turbulence, which were published in the Netherlands during the 
early years of World War II, and of which the most frequently cited is Burgers 
(1940). Following the end of the war, von Kármán and von Mises established a set of 
review volumes to report advances in applied mechanics; for the inaugural volume 
of this series, Burgers was invited to write an expository paper (Burgers, 1948), 
intended to fully describe and extend the theoretical ideas that he had developed 
in the earlier papers. Burgers’s 1948 article was apparently widely noticed and 
continues to have an influence on turbulence research to the present day. (The term 
“Burgerlence” to describe phenomena governed by Burgers’s mathematical model 
has become part of the vocabulary of workers in turbulence.) At the outset of the 
paper, Burgers set down two coupled equations (without much of a motivational 
preamble), which he then proceeded to discuss in considerable detail with the 
objective of demonstrating that their solutions had many features analogous to what 
is commonly associated with turbulence. The second of these equations was
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.
∂v

∂t
= U

b
v + ν

∂2v

∂y2
− 2v

∂v

∂y
, (4.193) 

where v and U were his two dependent variables, and b and . ν were constants, it 
being understood that U depended only on t , while v depended on both t and y. 
Burgers’s discussion is somewhat murky on the relation of the variables that appear 
here to actual physical variables; he states that U is the analog of “mean motion in 
the case of a liquid flowing through a channel,” while v, when different from zero, 
corresponds to “turbulence in the channel,” y corresponds to the coordinate “in the 
direction of the cross dimension of the channel,” b corresponds to the width of the 
channel, and . ν is a coefficient associated with “frictional effects.” Farther on in the 
paper, he considers the case in which U is a constant and gives arguments to the 
effect that, even though U may be nonzero, there may be some domains in y where 
it may be an appropriate approximation to neglect the term .(U/b)v in the above 
equation, in which case the considered partial differential equation becomes 

.
∂v

∂t
+ 2v

∂v

∂y
− ν

∂2v

∂y2
= 0. (4.194) 

Still farther on in the paper, Burgers develops an explicit solution of this partial 
differential equation that corresponds to a discontinuity in v in the limit as .ν → 0. 
The solution is similar to that given by Bateman (1915) and to what is presented 
further below in Sect. 4.5.3. Burgers gives no reference to Bateman (1915), but in 
all fairness there is no reason to have expected him to have done so. 

In the concluding section of his paper, Burgers (1948) states that “the group of 
terms 

.
∂v

∂t
+ 2v

∂v

∂y
− ν

∂2v

∂y2
(4.195) 

will find its closest analogy (in fluid-dynamic contexts other than turbulence) in the 
terms 

.

⎛
∂u

∂t
+ u

∂u

∂x

⎞
− ν

∂2u

∂x2
(4.196) 

which are decisive in determining the appearance of shock waves in the supersonic 
motion of a gas.” This is the only place in the paper where there is any hint that 
there might be an analogous partial differential equation of the same general form 
that would govern nonlinear sound propagation. 

The first appearance of an equation that is of the form of Eq. (4.191) and that 
also had a tangible connection with nonlinear acoustics can arguably be attributed 
to Julian Cole (1951). Lagerstrom, Cole, and Trilling (1949) (LCT) issued a report, 
which they stated was intended to be in the nature of a progress report rather 
than a report on finished research. The report was almost entirely concerned with
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the linearized equations of viscous compressible flow, but Appendix B dealt with 
“nonlinear longitudinal waves.” A principal result, derived in the context of an ideal 
gas, in that appendix was their Eq. (B24), which had the form 

.φt + 1
4 (γ + 1)(φ2

x − w2−∞) = 2
3ν∗φxx, (4.197) 

where the subscripts imply partial derivatives and . φ is a velocity potential, . ν∗ is a 
kinematic viscosity, .γ = cp/cv is the specific heat ratio, and .w−∞ is the value of 
.u = ∂φ/∂x in the limit of .x → −∞. The velocity u is the flow velocity relative 
to a reference sound speed, here denoted by . c∗ (and denoted by . c0 in the following 
discussion). If one takes the x derivative of the above equation and reexpresses it in 
the notation of the present text, the result takes the form 

.ut + βuux = (δ/2)uxx, (4.198) 

where .β = 1
2 (γ + 1) is the coefficient of nonlinearity for an ideal gas and . δ is the 

diffusivity of sound, given by Eq. (4.190), in the limit where the bulk viscosity . μB

and the thermal conductivity . κ are both set to zero. Although Eq. (4.198) does not 
appear explicitly in the report, it was set down (without any derivation but with a 
citation to the 1949 report) in a paper submitted in April 1950 by Cole (1951). 

Because Eq. (4.198) is not invariant under a Galilean transformation, it is 
incomplete unless it is accompanied by a specification of the coordinate system in 
which it applies. The authors were concerned at that time with transonic flow, with 
the flow velocity taken as .c0+u(x, t). If one instead adopts a coordinate system with 
its origin moving to the right with speed . c0 relative to the LCT coordinate origin, 
and denotes the x, t , and u that appear in the above two equations by .xLCT, tLCT, 
and .uLCT, then the transformed position and time coordinates are given by 

.xtrans = xLCT − c0tLCT, ttrans = tLCT, (4.199) 

and the total flow velocity in the transformed coordinate system, relative to a flow 
at rest, is simply 

.utrans(xtrans, ttrans) = uLCT(xLCT, tLCT) (4.200) 

since the original .uLCT was flow velocity relative to the sound speed. It also follows 
from the above relations that 

.
∂uLCT

∂tLCT
= ∂utrans

∂ttrans
+ c0

∂utrans

∂xtrans
,

∂uLCT

∂xLCT
= ∂utrans

∂xtrans
. (4.201) 

Consequently, Eq. (4.198) transforms to 

.ut + (c0 + βu)ux = (δ/2)uxx. (4.202)
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Here, for brevity, the subscript “trans” has been omitted on .x, t , and u, but it should 
be understood that these denote quantities that are different from what appears in 
Eq. (4.198). 

Apart from the restriction of its derivation to ideal gases without thermal 
conductivity, Eq. (4.202) applies to the same circumstances as Eq. (4.189), which 
is what is referred to as the Burgers equation in this book. To show that the two 
equations are actually equivalent to the order of approximations with which either 
was derived, one first divides through by .c0+βu and, since .β|u| ⪡ c0, approximates 
the reciprocal by .1/c0 − (β/c2

0)u, with the intermediate result 

.ux + 1

c0
ut − β

c2
0

uut = 1

c0

δ

2
uxx − δβ

2c2
0

uuxx. (4.203) 

The two dominant terms are the first two on the left, although the others can have 
major accumulative effects over large propagation distances or large propagation 
times. Both . δ and u are regarded as small in a relative sense, so the last term on the 
right can be discarded. Furthermore, in the first term on the right, it is consistent, 
given the approximate balancing out of the first two terms on the left, to make the 
substitution .∂/∂x → −c−1

0 ∂/∂t . This then yields 

.ux + 1

c0
ut − β

c2
0

uut = δ

2c3
0

utt . (4.204) 

Finally, if one introduces the retarded time .τ = t − x/c0, Eq. (4.204) reduces to 

.ux − β

c2
0

uuτ = δ

2c3
0

uττ . (4.205) 

The substitution of the plane-wave relation .u = p/ρ0c0 then yields Eq. (4.189). 
Although the above shows that the Cole equation, appearing here as Eq. (4.198), 

is trivially related to an equation governing nonlinear sound propagation through 
a medium nominally at rest, this was not explicitly pointed out in either the 
1949 report or the closely associated journal article by Cole (1951). The first 
author to derive a partial differential equation specifically for plane-wave sound 
propagation was apparently Mendousse (1953). Mendousse refers to Cole (1951) 
only tangentially and does not refer to the Lagerstrom, Cole, and Trilling (1949) 
report at all; he apparently did not perceive the connection of Eq. (4.198) with sound 
propagation in the sense discussed above. His derivation begins with a Lagrangian 
description of one-dimensional flow in an ideal gas with viscosity. Rewritten in 
terms of the symbols used in Sect. 3.2, his starting point was a “Navier–Stokes 
equation,” which would ordinarily have the correct form 

.ρ0
∂2ξ

∂t2
− (4/3)μ

∂

∂a

⎾⎛
1 + ∂ξ

∂a

⎞
∂2ξ

∂a∂t

⏋
+ ∂P

∂a
= 0, (4.206)
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where . ξ is particle displacement relative to a reference x position of a, in which 
case the actual x coordinate of the considered fluid particle is 

.x = a + ξ(a, t). (4.207) 

Mendousse omitted the factor .1+(∂ξ/∂a) in the viscous term, but including it would 
have been of no consequence, given the further approximations discussed below. 
Also, with the neglect of the thermal conductivity and with the implicit neglect of 
second-order terms multiplied by the viscosity, it is consistent [see Eq. (3.3)] to take 
the pressure as a function of only density, and independent of entropy. Moreover, 
conservation of mass requires that 

.ρ0 =
⎛

1 + ∂ξ

∂a

⎞
ρ, (4.208) 

and therefore expansion of the pressure to second order in .∂ξ/∂a yields 

.P = P0 − ρ0c
2
0

⎾
∂ξ

∂a
− β

⎛
∂ξ

∂a

⎞2
⏋

, (4.209) 

where . β is the coefficient of nonlinearity. Thus, with the approximations as 
described, Eq. (4.206) takes the form 

.ρ0
∂2ξ

∂t2 − ρ0δ
∂3ξ

∂a2∂t
− ρ0c

2
0
∂2ξ

∂a2 + 2ρ0c
2
0β

∂ξ

∂a

∂2ξ

∂a2 = 0, (4.210) 

which is comparable in form to, but not quite the same as, the one-dimensional 
version of the Westervelt equation, given by Eq. (3.47). [Mendousse does not 
number his equations, but the above equation appears, albeit in a different notation, 
at the end of page 53 in Mendousse (1953).] 

Mendousse subsequently considered two transformations of Eq. (4.210) above. 
The first resulted from the change of coordinates to .χ = a − c0t and t , in terms of 
which .∂/∂a → ∂/∂ξ and .∂/∂t → ∂/∂t −c0∂/∂χ . In the accompanying discussion, 
Mendousse gives quantitative arguments for expecting that, for a wave propagating 
in the .+x direction, derivatives with respect to t should be much smaller than . c0
times derivatives with respect to . χ , and he thus neglected the terms . ρ0∂

2ξ/∂t2

and .−ρ0δ∂
3ξ/∂χ2∂t in the resulting transformed expression. The remaining terms 

yielded the result 

. − 2ρ0c0
∂θ

∂t
+ ρ0c0δ

∂2θ

∂χ2 + 2ρ0c
2
0βθ

∂θ

∂χ
= 0, (4.211) 

where . θ here abbreviates .∂ξ/∂χ . (Mendousse gives this in a dimensionless form in 
the middle of the first column of p. 54 as .θ '' = θ̇ − 2θθ '.)
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The second considered transformation resulted from the change of coordinates to 
a and .τ = t −a/c0, in terms of which .∂/∂a → ∂/∂a+c−1

0 ∂/∂τ and .∂/∂t → ∂/∂τ . 
Although Mendousse omits the details, it appears that his intent was that one neglect 
derivatives with respect to a when compared to .c−1

0 times derivatives with respect 
to . τ . Doing so would have yielded 

. − 2ρ0c0
∂φ

∂a
+ ρ0c

−2
0 δ

∂2φ

∂τ 2 + 2ρ0c
−1
0 βφ

∂φ

∂τ
= 0, (4.212) 

where . φ here abbreviates .∂ξ/∂τ . (Mendousse gives this in a dimensionless form in 
the middle of the first column of p. 54 as .θ̈ = θ ' + 2θθ ', his . θ corresponding to a 
negative constant times the . φ that appears above.) 

In regard to the equivalence of Mendousse’s two equations to other equations 
written in terms of Eulerian variables, one should realize that, in accordance with 
the statements following Eq. (3.53), all three terms in either of the two equations are 
of the same order. Consequently, the order of approximation of the two equations 
will be unchanged if a is replaced by x, so that . τ can be regarded as .t − x/c0 and 
. χ can be regarded as .x − c0t . Also, the linear acoustic relations connecting field 
variables in a plane wave propagating in the .+x direction can be used in choosing 
replacements for either . θ or . φ without changing the extent of the validity of either 
equation. Thus, one can set 

.
∂ξ

∂χ
= ∂ξ

∂a
≃ ρ0 − ρ

ρ0
≃ − p

ρ0c
2
0

≃ − u

c0
, . (4.213) 

∂ξ 
∂τ 

= 
∂ξ 
∂t 

= u, (4.214) 

in which case Eqs. (4.211) and (4.212) reduce to 

.
∂u

∂t
+ u

∂u

∂χ
= δ

2

∂2u

∂χ2 , . (4.215) 

∂u 
∂x 

− 
β 
c2 

0 

u 
∂u 
∂τ 

= 
δ 

2c3 
0 

∂2u 
∂τ 2 . (4.216) 

Equation (4.215) is the same as Cole’s result, which appears above as Eq. (4.198), 
provided one interprets Cole’s x as the . χ that appears here. Equation (4.216) is the  
same as Eq. (4.205), which in turn is equivalent to Eq. (4.189). 

The most influential article in this history was undoubtedly one published by 
Lighthill (1956) in a special volume commemorating the seventieth birthday of 
G. I. Taylor. This was a long article (152 pages), partly review, but conveying 
some new results and adding considerable fresh insight to the subject of dissipative 
propagation of nonlinear waves. Early in the article, Lighthill gives the disclaimer 
that although “the paper seeks to be a self-contained account of its subject, 
. . . no attempt has been made to compile a bibliography, or even to give full
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references, especially when describing the classical parts of the paper.” The cited 
references include Burgers (1948), Cole (1951), and Taylor (1910), but not Bateman 
(1915), Lagerstrom, Cole, and Trilling (1949), or Mendousse (1953). Section 7.1 
of Lighthill’s article has the title “Equation of progressive sound waves with 
convection and diffusion allowed for to first approximation (‘Burgers’s equation’).” 
The principal result in that section is Lighthill’s Eq. (121), which is the same 
as Eq. (4.215) above. Lighthill’s . δ, however, given by his Eq. (19) earlier in the 
article, includes bulk viscosity and thermal conduction [as in Eq. (4.190) above], 
which were not included in the considerations of either Cole [Lagerstrom, Cole, and 
Trilling (1949)] or Mendousse (1953). The derivation is in the context of an ideal 
gas. Lighthill appreciated that this equation might have been derived earlier, and 
made the subsequent statement, in relation to the papers giving a general solution 
of that equation by Hopf (1950) and Cole (1951), that “Cole and co-workers have 
followed up the implications of the solution for sound waves of finite amplitude, 
although they do not appear to have given an explicit derivation of [Eq. (4.215) 
above], and regard the equation more as an analogy than as an approximation of a 
definite order in a successive approximation scheme.” 

It is probably because of Lighthill’s article that any one-dimensional partial 
differential equation governing nonlinear unidirectional sound propagation in a 
dissipative medium, such as those discussed in the present section, is now ubiq-
uitously referred to as the Burgers equation. Lighthill may not have intended that 
the appellation be permanent, as he placed the term “Burgers’s equation” within 
quotation marks. He did, however, perceive a stronger analogy between nonlinear 
sound propagation and the physical phenomena that Burgers (1948) was seeking 
to portray with his model than might have been apparent to a casual reader of 
Burgers’s work, as he refers to Burgers’s proffering of this equation as “the simplest 
equation embodying together the convective and diffusive effects whose conflict is 
the subject of [Lighthill’s] article. [Burgers] has used it principally to throw light 
on turbulence, where also these two effects are fundamental, although the balance 
struck between them there is more complicated, being both three-dimensional and 
statistically random.” 

This short history concludes with the article, also of considerable subsequent 
influence and also a part of a survey volume, by Hayes (1958) in which the 
Burgers equation was derived, apparently for the first time, for a fluid with an 
arbitrary equation of state, rather than specifically for an ideal gas. His derivation 
also included thermal conductivity, as well as shear and bulk viscosity. Hayes 
cites Burgers (1948), Hopf (1950), and Lighthill (1956), but not Bateman (1915), 
Lagerstrom, Cole, and Trilling (1949), or Mendousse (1953). Apart from some 
minor differences in notation, Hayes’s Eq. (5-42) is identical in form to Cole’s result, 
which is written above, also with some minor changes in notation, as Eq. (4.198). 
Hayes (1958) uses the symbol . 𝚪 for the coefficient of nonlinearity . β and . ν'' for 
the diffusivity of sound . δ. Like Cole’s, Hayes’s coordinate system is one in which 
the flow appears to be slightly transonic. His u is the total fluid velocity as seen in 
such a coordinate system, so the quantity .u − c0 is regarded as small. Alternatively, 
Hayes’s result can be regarded as being the same as Eq. (4.215), with his x being
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the .χ = x − c0t and his .u − c0 being the u that appear in Eq. (4.215). That the 
labeling of this partial differential equation in the context of nonlinear acoustics as 
the Burgers equation had taken hold is evident in Hayes’s remarks: “It should be 
evident that [Hayes’s] Eq. (5-42) is essentially the same as the equation extensively 
treated by Burgers [(1948)]. Burgers’ equation was first obtained for the case of a 
perfect gas (with viscosity and heat conduction) by Lighthill [(1956)].” 

4.5.2 General Solution 

One of the most appealing features of the Burgers equation is that, when the coeffi-
cients are constants, it has an exact solution expressible in terms of definite integrals. 
An abbreviated form of the derivation of this solution appeared in Appendix B of 
the Lagerstrom, Cole, and Trilling (1949) report, and more comprehensive accounts 
were subsequently published by Hopf (1950) and Cole (1951). These two papers 
were apparently completely independent, as neither references any of the other’s 
work. Also, Hopf (1950) states in a footnote that “[the solution] was known to me 
since the end of 1946. However, it was not until 1949 that [Hopf] became sufficiently 
acquainted with the recent development of fluid dynamics to be convinced that a 
theory of [the Burgers equation] could serve as an instructive introduction into some 
of the mathematical problems involved.” (Hopf, incidentally, is the Hopf whose 
1931 paper published with Norbert Wiener introduced the well-known Wiener– 
Hopf technique.) 

The discussion here is in the context of the version of the Burgers equation given 
by Eq. (4.189). Let us suppose that one has an initial-value problem in which p is 
given at .x = 0 as a function .F(t), this function being denoted by 

.p(0, t) = p0F(t), (4.217) 

where . p0 is a pressure amplitude, and one seeks to determine p as a function of t for 
any value of x that is greater than or equal to zero. It is evident that p should vanish 
as .t → −∞ for any positive value of x, given that .F(t) has this same property, and 
we expect the rate of vanishing to be sufficiently fast that it is meaningful to deal 
with the integral over . τ of .p(x, τ ) from .−∞ up to any given value of . τ . If this is  
so, then another function that should exist for any positive x is 

.ζ(x, τ ) = exp

⎧
1

ρ0c0L

⎰ τ

−∞
p(x, τ ') dτ '

⎫
, (4.218) 

where L is any positive constant having the units of length, this definition being 
such that 

.p(x, τ ) = ρ0c0L
∂

∂τ
ln ζ. (4.219)
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The method of solution is to determine some function .ζ(x, τ ) and some choice 
of length L that will guarantee that the p determined subsequently from Eq. (4.219) 
does indeed satisfy the original partial differential equation (the Burgers equation) 
and the specified initial condition at .x = 0. To discover what . ζ and L should be, 
one inserts Eq. (4.219) into Eq. (4.189), with the result 

. ζ 2(ζτx − 1
2δc−3

0 ζτττ ) − ζ ζτ [ζx − ( 3
2δc−3

0 − βLc−2
0 )ζ ζττ ]

+ (ζτ )
3(βLc−2

0 − δc−3
0 ) = 0. (4.220) 

Given the latitude one has in choosing L, the most propitious choice is .L = δ/βc0, 
which yields 

.p = ρ0δ

β

∂

∂τ
ln ζ = ρ0δ

β

ζτ

ζ
. (4.221) 

This choice of L has the effect of reducing Eq. (4.220) to  

.
∂

∂τ

⎧
1

ζ

⎛
ζx − δ

2c3
0

ζττ

⎞⎫
= 0, (4.222) 

which in turn will certainly be satisfied if one takes . ζ to satisfy 

.
∂ζ

∂x
− δ

2c3
0

∂2ζ

∂τ 2
= K(x)ζ, (4.223) 

where .K(x) is an arbitrary function of x. 
The arbitrariness of . ζ associated with the arbitrariness of .K(x) is illusory 

because one can always make the substitution 

.ζ(x, τ ) = ζ̃ (x, τ ) exp

⎾⎰ x

0
K(x') dx'

⏋
(4.224) 

and find that .ζ̃ (x, τ ) satisfies the equation 

.
∂ζ̃

∂x
− δ

2c3
0

∂2ζ̃

∂τ 2 = 0, (4.225) 

which is of the same form as Eq. (4.223), only with .K(x) set to zero. Also, 
were Eq. (4.224) to be inserted into Eq. (4.221), the result would be independent 
of .K(x). Moreover, the initial .(x = 0) values of . ζ and . ̃ζ would be identical. 
Consequently, it is sufficient to proceed as if . ζ satisfied Eq. (4.225) or, equivalently, 
Eq. (4.223) with .K(x) set identically to zero. With a relabeling of the variables,
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Eq. (4.225) is recognized as the linear diffusion equation, which governs one-
dimensional unsteady heat conduction and a variety of other phenomena that are 
studied in mathematical physics. The transformation Eq. (4.221) that leads from the 
(nonlinear) Burgers equation to the linear diffusion equation is often referred to as 
the Hopf–Cole transformation. 

Solution of the initial-value problem for the linear diffusion equation, 
Eq. (4.225), proceeds with the writing of the solution as a convolution integral 
over the initial values in the form 

.ζ(x, τ ) =
⎰ ∞

−∞
ζ(0, τ ')G(x, τ − τ ') dτ ', (4.226) 

where .G(x, τ − τ ') is a “Green’s function” that satisfies the homogeneous partial 
differential equation 

.
∂G

∂x
− δ

2c3
0

∂2G

∂τ 2
= 0, (4.227) 

and that reduces to the Dirac delta function .δ(τ − τ ') in the limit as .x → 0, so that 

. lim
x→0

G(x, τ − τ ') = 0, τ − τ ' /= 0, . (4.228) 

lim 
x→0

⎰ ∞ 

−∞ 
G(x, τ − τ ') dτ ' = 1. (4.229) 

This Green’s function is derived in many texts on mathematical physics and heat 
transfer, so the derivation is omitted here; the reader can independently verify that 
the equations above are satisfied by 

.G(x, τ − τ ') = (c3
0/2πxδ)1/2e−EG, EG = c3

0(τ − τ ')2

2xδ
. (4.230) 

As a consequence, Eq. (4.226) yields 

.ζ(x, τ ) = (c3
0/2πxδ)1/2

⎰ ∞

−∞
ζ(0, τ ')e−EGdτ ' (4.231) 

as the general solution of the initial-value problem for the auxiliary function . ζ . 
The solution to the Burgers equation now results from substitution of Eq. (4.231) 

into Eq. (4.221) to obtain 

.p = ρ0c
3
0

βx

⎰ ∞
−∞ ζ(0, τ ')(τ − τ ')e−EG dτ '⎰ ∞

−∞ ζ(0, τ ')e−EG dτ ' , (4.232) 

where
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.ζ(0, τ ') = eEζ , Eζ (τ
') = βp0

ρ0δ

⎰ τ '

−∞
F(τ '') dτ ''. (4.233) 

An alternative expression for the solution results after an integration by parts in 
the integral in the numerator: 

.p = p0

⎰ ∞
−∞ F(τ ')eEζ e−EGdτ '⎰ ∞

−∞ eEζ e−EGdτ ' . (4.234) 

This form makes it manifestly evident that the solution so obtained reduces to the 
initial condition in the limit as .x → 0. Note also that the intrinsic nonlinear nature 
of the Burgers equation is exemplified by the appearance of the integral over the 
time history of F in the exponent . Eζ . If . β is set to zero, but . δ remains finite, the 
result reduces to the linear-acoustics prediction for the attenuation and distortion 
of a transient pulse, each of whose frequency components is being attenuated as 
.exp(−ω2xδ/2c3

0) after propagation over a distance x. That such is so is confirmed 
by the computation 

.

⎰ ∞
−∞ sin(ωτ ')e−EGdτ '⎰ ∞

−∞ e−EGdτ
= e−ω2xδ/2c3

0 sin ωτ. (4.235) 

4.5.3 Rise Time and Thickness of Weak Shocks 

The weak shock model discussed in Sect. 4.4 leads to abrupt discontinuities, but 
when the model incorporates dissipation processes, such discontinuities become 
instead transition regions over which the pressure and fluid velocity change rapidly. 
Insight into the nature of the transition results from consideration of the idealized 
model of a wave that moves without change of form in the x direction with speed 
U , and that is distinguished by the fact that the most rapid variations of the fluid-
dynamic variables occur in the vicinity of points and times at which .x − Ut is 
relatively small. (The quantity U will subsequently be identified as the shock speed 
. Ush.) For .x ⪢ Ut, p and u should be zero, while for .x ⪡ Ut, p and . ρ0c0u

approach the shock overpressure .ΔP = Δp = ρ0c0Δu. 
The discussion here is based on the retarded-time version of the Burgers 

equation, as given by Eq. (4.189). In accordance with the notion of a frozen profile, 
we begin with the assumption of a profile moving with some speed U , but without 
change of form, i.e., 

.p = p(t − x/U) = ρ0c0u(t '), (4.236) 

where
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.t ' = t − x/U = τ + (c−1
0 − U−1)x. (4.237) 

This, when inserted into Eq. (4.189), yields the ordinary differential equation 

.c2
0(U − c0)ut ' − (δ/2)Uut 't ' = βc0uUut ', (4.238) 

which integrates, with the (causality) boundary condition .u → 0 as .t ' → −∞, to  

.c2
0(U − c0)u − (δ/2)Uut ' = 1

2βc0u
2U. (4.239) 

The second boundary condition, that .u → Δu as .t ' → ∞, requires that . ut ' → 0
as .u → Δu, which yields 

.c0(c0 − U) = − 1
2βUΔu, (4.240) 

or 

.U = c2
0

c0 − 1
2βΔu

. (4.241) 

Since .Δu ⪡ c0, this can be replaced, to the same order of approximation, by 

.U = c0 + 1
2βΔu. (4.242) 

One should note that Eq. (4.242) is consistent with the approximate Rankine– 
Hugoniot relation 

.Ush = cav + uav (4.243) 

in Eq. (4.123). Ahead of the shock, one has .ca = c0 and .ua = 0, while far behind 
the shock, one has .cb = c0 + (β − 1)Δu and .ub = Δu. The identification of 
.Ush = U, cav = c0 + 1

2 (β − 1)Δu, and .uav = 1
2Δu results in Eq. (4.242). 

In a spirit similar to that by which Eq. (4.241) is replaced by Eq. (4.242), one can 
further approximate Eq. (4.239) by replacing .U − c0 in the first term by . 12βΔu and 
by replacing U by . c0 in the remaining terms, to obtain 

.
δ

c0

du

dt '
= βu(Δu − u). (4.244) 

This first-order ordinary differential equation is readily integrated by rewriting it as 

.dt ' = δ/βc0

u(Δu − u)
du = δ

βc0Δu

⎛
du

u
+ du

Δu − u

⎞
(4.245) 

and carrying out the indefinite integral, the result being
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Fig. 4.12 Profile of a shock as a function of time for fixed position. 

.u = 1
2Δu{1 + tanh[(βc0Δu/2δ)(t ' − t '0)]}, (4.246) 

or, in terms of pressure 

.p = 1
2Δp{1 + tanh[(βΔp/2ρ0δ)(t

' − t '0)]}, (4.247) 

where . t '0 is a constant of integration, which is readily interpreted (Fig. 4.12) as  
corresponding to that value of .t − x/U at which the transition from .p = 0 to 
.p = Δp passes through the halfway point, at which .p = 1

2Δp. 
The nominal time of arrival . tarr of the shock is when u has reached its half-height, 

and this corresponds to .t ' = t '0, whereby 

.tarr = x

Ush
+ t '0. (4.248) 

Equation (4.247) can consequently be reexpressed as 

.p = 1
2Δp{1 + tanh[(2/trise)(t − tarr)]}, (4.249) 

where the rise time is identified as 

.trise = 4ρ0δ

βΔp
= 4

βΔp
[ 4

3μ + μB + (γ − 1)κ/cp]. (4.250) 

In this last version, an explicit substitution has been made using Eq. (4.190) for the  
diffusivity . δ of sound.
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This particular definition of the rise time is based on the slope of the waveform 
at the half-peak point, i.e., 

.trise = Δp

(∂p/∂t)t=tarr

. (4.251) 

A straight line tangent (Fig. 4.12) to the waveform at its half-peak point reaches 
from the line .p = 0 to the line .p = Δp over a time interval . trise. 

Alternatively, if one plots the solution in Eq. (4.249) as a function of x rather 
than of t , it takes the form 

.p = 1
2Δp{1 − tanh[(2/𝓁sh)(x − xarr)]}, (4.252) 

where .xarr = (t − t '0)Ush is the nominal point at which the shock is located and 
where 

.𝓁sh = c0trise (4.253) 

is identified as the shock thickness. 
The form of the shock profile expressed in terms of the hyperbolic tangent with 

the above identifications for shock thickness and shock rise time dates back to Taylor 
(1910), although the recognition of the above results from Taylor’s paper is not 
trivial. That the Burgers equation allows solutions of the above form was recognized 
in the pioneering works of Bateman (1915), Burgers (1948), and Lagerstrom, Cole, 
and Trilling (1949). 

4.5.4 Radiation from a Monofrequency Source 

We shall investigate an explicit solution of the Burgers equation for a wave that 
is sinusoidal in time at .x = 0, the source condition for which is Eq. (4.46) [or  
Eq. (4.217) with .F(t) = sin ωt], repeated here for convenience: 

.p(0, t) = p0 sin ωt. (4.254) 

As in Sect. 4.2.4, it is helpful to perform the analysis in dimensionless variables: 

.P = p/p0, σ = x/x̄, θ = ωτ, 𝚪 = 𝓁a/x̄, (4.255) 

where .x̄ = 1/βεk is the plane-wave shock formation distance in the absence of 
dissipation, .ε = p0/ρ0c

2
0 is the acoustic Mach number at the source, .k = ω/c0 is the 

corresponding wave number, and .𝓁a = 1/α is the absorption length associated with 
the thermoviscous attenuation coefficient .α = δω2/2c3

0 for small-signal propagation
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at the source frequency. In the present section, P is not to be confused with the total 
pressure. In terms of this notation, the Burgers equation, Eq. (4.189), becomes 

.
∂P

∂σ
− 1

𝚪

∂2P

∂θ2 = P
∂P

∂θ
. (4.256) 

The parameter . 𝚪, often referred to as the Gol’dberg (1956, 1957b) number, is 
thus anticipated to influence strongly the properties of the obtained solution. For 
.𝚪 ⪢ 1 (.x̄ ⪡ 𝓁a , for which dissipation is negligible at distances on the order of 
the shock formation distance), we should expect to recover the solutions presented 
in Sect. 4.2.4.1. For .𝚪 ∼ 1 (.x̄ ∼ 𝓁a), effects of nonlinearity and dissipation are 
expected to be of comparable order. 

In dimensionless form, the general solution given by Eq. (4.221) is  

.P(σ, θ) = 2

𝚪

ζθ

ζ
, (4.257) 

where, from Eqs. (4.231) and (4.233), respectively, 

.ζ(σ, θ) =
⎛

𝚪

4πσ

⎞1/2⎰ ∞

−∞
ζ(0, θ ') exp

⎾
−𝚪(θ − θ ')2

4σ

⏋
dθ ', . (4.258) 

ζ(0, θ ') = exp

⎾
𝚪

2

⎰ θ '

−∞ 
P(0, θ '') dθ ''

⏋
. (4.259) 

We now substitute .P(0, θ) = sin θ from Eq. (4.254) into Eq. (4.259) to obtain 
.ζ(0, θ) = exp(− 1

2𝚪 cos θ ), and Eq. (4.258) becomes 

.ζ =
⎛

𝚪

4πσ

⎞1/2⎰ ∞

−∞
exp

⎾
− 1

2𝚪 cos θ ' − 𝚪(θ − θ ')2

4σ

⏋
dθ '. (4.260) 

By ignoring the contribution due to the lower integration limit in Eq. (4.259), . θ '' =
−∞, we assume that dissipation has caused any initial transient effects to vanish; 
see Blackstock (1964b) for the terms that describe the transients. Making use of the 
identity 

. exp(− 1
2𝚪 cos θ) =

∞⎲
n=−∞

(−1)nIn(
1
2𝚪)ejnθ , (4.261) 

where . In are modified Bessel functions, yields 

.ζ =
⎛

𝚪

4πσ

⎞1/2 ∞⎲
n=−∞

(−1)nIn(
1
2𝚪)

⎰ ∞

−∞
exp

⎾
jnθ ' − 𝚪(θ − θ ')2

4σ

⏋
dθ '. (4.262)



4 Progressive Waves in Lossless and Lossy Fluids 131

The integral can be solved, and the summation rearranged on the basis of the relation 
.I−n = In, to obtain 

.ζ = I0(
1
2𝚪) + 2

∞⎲
n=1

(−1)nIn(
1
2𝚪)e−n2σ/𝚪 cos nθ. (4.263) 

Substitution into Eq. (4.257) gives the final form of the solution: 

.p = p0
4𝚪−1 ∑∞

n=1(−1)n+1nIn(
1
2𝚪)e−n2αx sin nωτ

I0(
1
2𝚪) + 2

∑∞
n=1(−1)nIn(

1
2𝚪)e−n2αx cos nωτ

, (4.264) 

where we have replaced .σ/𝚪 by .αx in the exponentials, and . θ by .ωτ in the 
trigonometric functions. This solution was obtained first by Cole (1951) for the  
corresponding initial-value problem, while the above source-problem form of the 
solution was obtained by Mendousse (1953). 

Because Eq. (4.264) is an odd function of time, it can be rewritten formally as 

.p(x,τ ) = p0

∞⎲
n=1

Bn(x) sin nωτ. (4.265) 

Exact expressions for the spectral amplitudes .Bn are not available [although one 
should expect to recover the Fubini solution, Eq. (4.49), in the preshock region when 
there is no dissipation]. Here we use Eq. (4.264) to obtain approximate expressions 
for . Bn in two limiting cases, weak waves .(𝚪 < 1) and strong waves .(𝚪 ⪢ 1). A  
time-domain solution that permits calculation of shock rise times in strong waves is 
also presented. 

4.5.4.1 Weak Waves (Keck–Beyer Solution) 

In this case . (𝚪 < 1, or .x̄ > 𝓁a), Eq. (4.264) may be expanded directly in powers 
of the small quantity . 𝚪, beginning with the following Taylor series expansion of the 
modified Bessel function: 

.In(
1
2𝚪) ∼ 𝚪n

22nn!
⎛

1 + 𝚪2

8(2n + 1)
+ 𝚪4

64(5n + 1)
+ · · ·

⎞
. (4.266) 

Substitution into Eq. (4.264) and binomial expansion of the denominator [or, alter-
natively, using the formal algebraic procedure developed by Blackstock (1966a)] 
yields for the first three Fourier coefficients in Eq. (4.265) 

.B1 = e−αx − 1
32𝚪2e−αx(1 − e−2αx)2 + O(𝚪4), . (4.267) 

B2 = 1 
4𝚪(e−2αx − e−4αx ) + O(𝚪3), . (4.268)
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B3 = 1 
32𝚪2(2e−3αx − 3e−5αx + e−9αx ) + O(𝚪4). (4.269) 

Keck and Beyer (1960) derived these solutions using perturbation to solve the 
nonlinear wave equation directly. In the limit .αx → 0, Eqs. (4.267)–(4.269) reduce 
to the asymptotic expressions obtained for the spectral coefficients in the Fubini 
solution, Eqs. (4.50)–(4.52). 

Substitution of Eq. (4.268) into Eq. (4.265) yields for the dominant contribution 
to the second-harmonic component 

.p2(x, τ ) = βp2
0ω

4ρ0c
3
0α

(e−2αx − e−4αx) sin 2ωτ, (4.270) 

a result first obtained by Gol’dberg (1957a) by ordinary perturbation. The amplitude 
increases with x to a maximum value of .βp2

0ω/16ρ0c
3
0α = 1

16𝚪p0 at distance 

.x = 𝓁a ln
√

2, beyond which it decays monotonically, ultimately as .e−2αx . 
Equation (4.270) is a valid perturbation solution as long as .B2/B1 ⪡ 1 is satisfied. 
From the leading terms in Eqs. (4.267) and (4.268), one finds that .B2/B1 achieves 
a maximum value of .𝚪/6

√
3 at .x = 𝓁a ln

√
3. Therefore, the amplitude of the 

second harmonic is everywhere less than 10% of that of the fundamental for .𝚪 < 1, 
in which case Eq. (4.270) is a uniformly valid solution. Stated another way, for 
monofrequency radiation, an appropriate criterion for weak nonlinearity—i.e., one 
whereby linear theory accurately describes the primary wave—is .𝚪 < 1. 

Note that for .x ⪢ 𝓁a , the harmonic amplitudes . Bn vary in proportion to .e−nαx , 
not in proportion to the small-signal result for a thermoviscous fluid, .e−n2αx (recall 
that small-signal attenuation increases in proportion to . ω2 in a thermoviscous fluid). 
This apparent contradiction may be explained by introducing the concept of virtual 
sources. Consider second-harmonic generation as an example. By virtual source 
in this case we mean the effective physical source that would correspond to the 
forcing function produced by substituting the linear solution . p1 for the primary 
wave in the right-hand side of Eq. (4.256). This interpretation was introduced by 
Berktay (1965) to explain the behavior of the parametric array on the basis of 
calculations corresponding to a Green’s function approach (Sect. 8.3). We begin 
here by recognizing that the primary wave field (whose amplitude varies as . e−αx)

creates a distribution of virtual sources radiating second-harmonic sound with 
local source amplitudes .Ae−2αx (because the primary wave is squared). Consider 
now two distinct virtual sources, one at . x1 and a second a distance d farther 
away, at .x2 = x1 + d, both of which radiate second-harmonic sound waves that 
propagate as small signals, decaying as .e−4αx , out to location .x > x2. The signals 
received at x have amplitudes .Ai = Ae−2αxi e−4α(x−xi ) (.i = 1, 2). The ratio 
.A2/A1 = e2αd thus obtained reveals that for large values of .αd (well-separated 
virtual sources), the received signal is dominated by the contribution from the nearer 
(second) virtual source. As a result, the decay law for the second harmonic matches 
asymptotically the decay law for the neighboring virtual sources themselves, .e−2αx , 
because radiation from virtual sources far behind has been filtered out by the higher
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attenuation. Similar arguments apply to higher-harmonic signals. Their decay is 
determined asymptotically by the attenuation law for the most slowly decaying 
virtual sources that contribute to the given harmonic. As discussed in Chap. 8, the  
effect described above has a pronounced effect on harmonic directivity patterns in 
sound beams. A similar analysis has been applied to spherical waves by Webster and 
Blackstock (1978), and to sum- and difference-frequency generation by Darvennes 
et al. (1991). 

4.5.4.2 Strong Waves (Fay Solution) 

Here, for .𝚪 ⪢ 1 and .σ > 3 (.x̄ ⪡ 𝓁a and .x > 3x̄), the following asymptotic relation 
is employed (Blackstock, 1964b): 

.In(
1
2𝚪) ∼ I0(

1
2𝚪)e−n2/𝚪. (4.271) 

In this case, it is expedient to return to Eq. (4.263) and note that following 
substitution of Eq. (4.271), the former becomes 

.ζ = I0(
1
2𝚪)θ4(

1
2ωτ, e−(1+σ)/𝚪), (4.272) 

where 

.θ4(z, q) = 1 + 2
∞⎲

n=1

(−1)nqn2
cos 2nz (4.273) 

is the theta function of the fourth type (Abramowitz and Stegun, 1970), a property 
of which is 

.
θ '

4

θ4
= 4

∞⎲
n=1

sin 2nz

q−n − qn
, (4.274) 

where .θ '
4 = dθ4/dz. Substitution of Eq. (4.272) in Eq. (4.257) yields 

.p = p0
2

𝚪

∞⎲
n=1

sin nωτ

sinh[n(1 + σ)/𝚪] , σ > 3. (4.275) 

This is known as the Fay (1931) solution, after the person who first derived it, 
in slightly different form, by entirely different means (see Sect. 1.4 for further 
discussion). The Fourier coefficients in Eq. (4.265) are thus identified as 

.Bn = 2/𝚪

sinh[n(1 + σ)/𝚪] . (4.276)
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The domain of validity for Eq. (4.275) was established by Blackstock (1964b), who 
compared . B1 with numerical solution of the Burgers equation, which for . 𝚪 = 50
reveals an error less than 1% for .σ > 3.3. In the limit .𝚪 → ∞, Eq. (4.276) reduces 
to .Bn = 2/n(1 + σ), and the sawtooth solution obtained from weak shock theory, 
Eq. (4.179), is recovered. 

We consider now the asymptotic form of Eq. (4.275) for .σ ⪢ 𝚪 ⪢ 1 (. x ⪢ 𝓁a ⪢
x̄), referred to as the “old age” region. In this case, we have . sinh[n(1 + σ)/𝚪] ≃
1
2 (enσ/𝚪 − e−nσ/𝚪) ≃ 1

2enαx , and Eq. (4.275) becomes 

.p = 4ρ0c
3
0α

βω

∞⎲
n=1

e−nαx sin nωτ, x ⪢ 𝓁a ⪢ x̄. (4.277) 

Two notable properties may be observed. First, acoustical saturation is evident— 
the solution is independent of the source pressure . p0. The harmonic amplitudes are 
different from those predicted for saturation in the sawtooth region by Eq. (4.184) 
because the observation point is well beyond the absorption length, where small-
signal attenuation, not taken into account by weak shock theory, plays an important 
role. Second, note that, as in Eqs. (4.267)–(4.269), the harmonic amplitudes decay 
asymptotically as .e−nαx , rather than according to the small-signal rate .e−n2αx . Thus, 
even though the wave seems to be a small signal, it carries with it forever telltale 
remnants from its nonlinear past. 

We now have in hand a complete analytical model, in terms of explicit Fourier 
series solutions, for the entire history of a strong sound wave that starts out 
sinusoidal in a thermoviscous fluid, develops a sawtooth profile, and ultimately falls 
victim to effects of dissipation and reverts to a waveform resembling the signal 
at the source, although much reduced in amplitude. Just such a case history (i.e., 
with .x̄ ⪡ 𝓁a assumed) is depicted schematically with time waveforms in Fig. 4.13, 
where the signal at the source .(x = 0) is presented as sketch a. In the preshock 
region .(0 < x < x̄), characterized by sketch b, the waveform is described by the 
Fubini solution, Eq. (4.49). The signal at the shock formation distance . (x = x̄)

is illustrated in sketch c, and that at the location of maximum shock amplitude 
in sketch d [.x = (π/2)x̄; see discussion of Eqs. (4.177)]. The transition region 
covered by sketches c to e, from shock formation to full sawtooth .(x̄ < x ≲ 3x̄), is  
described by the harmonic amplitudes given by Eq. (4.183). Sketches e and f show 
propagation in the sawtooth region .(3x̄ < x ⪡ 𝓁a), where the wave is described 
by Eqs. (4.179) and (4.180) [as well as by the Fay solution, Eq. (4.275)]. This 
region is characterized by harmonic amplitudes that vary in relation to each other as 
.Bn ∝ n−1, and by an overall decrease in wave amplitude due to dissipation at the 
shock that, for .x̄ ⪡ x ⪡ 𝓁a , is proportional to .x−1. Eventually, for .x ∼ 𝓁a (sketch 
g), dissipation reduces the wave amplitude to such an extent that finite-amplitude 
effects no longer sustain a shock with thickness negligible in comparison to the 
fundamental wavelength. The waveform in this region is described by Eq. (4.275) 
[or, alternatively, by the Khokhlov solution, Eq. (4.278) below]. Finally, as depicted 
in sketch h, for .x ⪢ 𝓁a , the old age region described by Eq. (4.277) is reached.
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Fig. 4.13 Case history of a strong wave (after Shooter, Muir, and Blackstock, 1974). 

4.5.4.3 Shock Profile (Khokhlov Solution) 

We conclude by presenting without formal derivation a time-domain solution that is 
particularly useful for calculating shock rise times: 

.p = p0

1 + σ

⎾
−ωτ + π tanh

π𝚪ωτ

2(1 + σ)

⏋
, 3 < σ < 𝚪, (4.278) 

which describes a full cycle of the waveform in the interval .−π ≤ ωτ ≤ π . 
Equation (4.278) was derived by Soluyan and Khokhlov (1961) [see also Rudenko 
and Soluyan, 1977] by using the saddle-point method to approximate the integral in 
Eq. (4.260). It can also be obtained as a limiting form of Eq. (4.275) (Blackstock, 
1964b). Both derivations are somewhat too lengthy for our purposes here. We 
note only the remarkable fact, as verified by direct substitution in Eq. (4.256), 
that Eq. (4.278) is an exact solution of the Burgers equation, notwithstanding the 
approximations introduced in the derivations. Equation (4.278) does not match 
our monofrequency source condition, Eq. (4.254); it is nevertheless a very good 
approximation of the desired solution for radiation from a monofrequency source 
in the stated parameter range .3 < σ < 𝚪, i.e., for strong waves beginning in the 
sawtooth region up to distances on the order of the absorption length . 𝓁a . Indeed, the 
sawtooth solution obtained using weak shock theory, Eq. (4.180), is recovered from 
Eq. (4.278) in the limit .𝚪 → ∞. 

To characterize the shock, we define a dimensionless rise time .Trise (based on the 
fundamental periodicity . 2π ) to be the interval between the peak and the trough in 
the waveform described by Eq. (4.278). From symmetry we have .∂p/∂(ωτ) = 0 at 
.ωτ = 1

2Trise, which may be solved to give (Blackstock, 1964b)
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.Trise = [4(1 + σ)/π𝚪] cosh−1
/

π2𝚪/2(1 + σ). (4.279) 

The corresponding dimensional rise time is thus .trise = Trise/ω. As . σ (distance) 
increases, so does .Trise, until the “sawtoothlike” wave profile disappears and the 
definition of rise time becomes meaningless. If we take “sawtoothlike” to mean a 
rise time less than 20% of the fundamental period of the waveform .(Trise < 2π/5), 
then from Eq. (4.279) we conclude that the sawtooth region is restricted to distances 
.σ < 0.6𝚪 − 1. For .𝚪 ⪢ 1, this region is defined by .σ < 0.6𝚪 (.x < 0.6𝓁a). The 
absorption length . 𝓁a thus provides a reasonable estimate of the distance at which a 
wave ceases to be “strong” in the sense of maintaining substantial finite-amplitude 
distortion in the presence of dissipation. Note that setting .σ = 𝚪 ⪢ 1 (.x = 𝓁a ⪢ x̄) 
in Eq. (4.276) yields .B2/B1 = 0.32, whereas for a sawtooth wave, .B2/B1 = 0.50. 

4.6 Special Topics 

4.6.1 Nonplanar One-Dimensional Waves 

Here we describe a method for transforming plane-wave solutions derived in 
previous sections to account for spreading (e.g., spherical or cylindrical) when 
small-signal absorption may be ignored. The transformations may be used for waves 
without shocks in ideal fluids, and beyond the shock formation distance when 
weak shock theory is valid, i.e., when energy loss may be attributed to dissipation 
just at the shocks (Blackstock, 1964a, 1972). Applications of the transformation 
when ordinary absorption is taken into account—for example, predictions of shock 
thicknesses in diverging and converging waves—are discussed by Naugol’nykh 
et al. (1963) and Khokhlov et al. (1964). 

We begin with the generalized Burgers equation, Eq. (3.58), for an ideal fluid 
.(δ = 0): 

.
∂p

∂r
+ m

r
p = ± βp

ρ0c
3
0

∂p

∂τ
, (4.280) 

where .m = 1 for spherical waves, .m = 1
2 for cylindrical waves, r is the radial 

coordinate (defined positive outward), and we let .τ = t ∓ (r − r0)/c0 to account for 
both diverging and converging waves. As in Sect. 3.8, the following convention is 
adopted: Whenever there is a choice of sign, the upper one corresponds to diverging 
(or outgoing) waves, the lower to converging (or incoming) waves. The radius . r0 is 
normally selected to be the source radius or other distance where the waveform is 
known. Equation (4.280) is valid for .kr ⪢ 1, where k is a relevant characteristic 
wave number. Now introduce the appropriate change of variables:
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Spherical waves: 

.q = (r/r0)p, z = ±r0 ln(r/r0), (4.281) 

Cylindrical waves: 

.q = (r/r0)
1/2p, z = ±2(

√
r − √

r0)
√

r0, (4.282) 

in terms of which Eq. (4.280) becomes, with .dz/dr = ±(r0/r)m, 

.
∂q

∂z
= βq

ρ0c
3
0

∂q

∂τ
. (4.283) 

Comparison with Eq. (4.28) reveals that the solutions of that equation (for plane 
waves) are also solutions of Eq. (4.283) (for spherical and cylindrical waves) if in 
the former we replace p by the scaled dependent variable q, and x by the stretched 
coordinate z, and interpret the retarded time according to its definition following 
Eq. (4.280). Note that the transformation yields .z > 0 for both diverging . (r > r0)

and converging .(r < r0) waves. 
Consider, for example, use of the transformation in Eq. (4.281) to describe 

spherical waves in the preshock region. For a plane wave with source condition 
.p = f (t) at .x = 0, the general solution is Eq. (4.29). The corresponding solution 
for a spherical wave with source condition .p = f (t) at .r = r0 is given by Eq. (4.29) 
with p replaced by q and x by z: 

.p(r, τ ) = r0

r
f

⎛
τ ± βpr

ρ0c
3
0

ln
r

r0

⎞
. (4.284) 

The quasilinear solution for second-harmonic generation, corresponding to 
Eq. (4.54), is 

.p2(r, τ ) = ±βp2
0ωr2

0

2ρ0c
3
0

ln(r/r0)

r
sin 2ωτ. (4.285) 

For the diverging wave, a maximum amplitude of .βp2
0ωr0/2eρ0c

3
0 is achieved at 

.r/r0 = e. 
The shock formation distance is calculated in a similar way. If the source 

waveform is .f (t) = p0 sin ωt , the shock formation distance for the plane wave 
is given by Eq. (4.22), .x̄ = (βεk)−1. The shock formation distance for a spherical 
wave is defined in terms of the stretched coordinate z by .z̄ = (βεk)−1. Via the 
transformation in Eq. (4.281), the radial distance .r = r̄ where shock formation 
occurs is 

.r̄ = r0 exp(±1/βεkr0). (4.286)
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For the diverging wave, the shock formation distance can be considerably farther 
than the corresponding distance for a plane wave [although note that for . βεkr0 ⪢ 1
(.x̄ ⪡ r0), expansion of Eq. (4.286) yields .r̄ ≃ r0 ± x̄, and the plane-wave 
result is recovered]. Despite spreading losses, however, the result implies that shock 
formation is inevitable in the absence of dissipation. For the converging wave, it 
must be kept in mind that the model is valid only for .kr ⪢ 1. In the same manner, 
the shock formation distance for a cylindrical wave that is sinusoidal at .r = r0 is 
found to be 

.r̄ = r0

⎛
1 ± 1

2βεkr0

⎞2

. (4.287) 

After shocks are formed, plane-wave solutions obtained on the basis of weak 
shock theory [e.g., Eqs. (4.172), (4.173), and (4.179)] may also be transformed 
for application to spherical and cylindrical waves via Eqs. (4.281) and (4.282). 
For a specific illustration of this technique, consider the N-wave solution given by 
Eq. (4.172). For the peak amplitude . psh, we find 

.Spherical N wave: psh = r0

r

p0√
1 ± br0 ln(r/r0)

, . (4.288) 

Cylindrical N wave: psh =
/

r0 

r 
p0/

1 ± 2b(
√

r − √
r0)

√
r0 

. (4.289) 

For spherical spreading, an outgoing N wave decays at large distance as 
.r−1(ln r)−1/2, whereas the cylindrical N wave decays as .r−3/4 (Landau, 1945; 
Landau and Lifshiftz, 1987). 

Similar transformations are available for more general types of spreading. For 
example, Eq. (3.60) describes the propagation of quasi-plane waves in a duct having 
a slowly varying cross-sectional area .A(x): 

.
∂p

∂x
+ A'

2A
p = ± βp

ρ0c
3
0

∂p

∂τ
, (4.290) 

where .A' = dA/dx and .τ = t∓(x−x0)/c0. [Notice the similarity to Eq. (12.58) for  
nonlinear propagation along ray tubes in inhomogeneous media.] The appropriate 
transformation is 

.q = (A/A0)
1/2p, z = ±

⎰ x

x0

(A0/A)1/2 dx, (4.291) 

where .A0 = A(x0). Substitution into Eq. (4.290) again yields Eq. (4.283). Note 
that for .A ∝ x2m, Eqs. (4.290) and (4.291) reduce to Eqs. (4.280)–(4.282) with r 
replaced by x.
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We conclude with the example of propagation in an exponential horn. The horn 
cross-sectional area is given by 

.A = A0e
2(x−x0)/h, (4.292) 

where h is the distance over which the diameter changes by the factor e. The  
stretched coordinate z in this case is, from Eq. (4.291), 

.z = ±h(1 − e−(x−x0)/h), (4.293) 

and the corresponding shock formation distance, for .p = p0 sin ωt at . x = x0, is  

.x̄ = x0 + h ln

⎛
βεkh

βεkh ∓ 1

⎞
. (4.294) 

Note that for propagation in the .+x direction (for which A increases with x), . x̄
increases toward infinity as the value of .βεkh decreases toward unity, and therefore 
no shock formation is predicted for .βεkh < 1. The absence of shock formation is 
due to a flare rate so rapid (small h) that waveform steepening, which is proportional 
to the amplitude of the signal, cannot keep pace with the decrease in amplitude 
due to spreading. In contrast, note that Eq. (4.286) predicts that shock formation in 
a diverging spherical wave is inevitable (in the absence of dissipation). Although 
the shock-free limit for an exponential horn may violate the assumption of slowly 
varying .A(x), analogous phenomena are encountered in nonlinear ray theory (due 
mainly to variations in the ambient properties of the medium) and are referred to as 
waveform freezing (see Sects. 12.2.2 and 12.2.4). 

When thermoviscous dissipation is included in model equations that account for 
spreading, no variable transformation is available that recovers the corresponding 
form of the equation for plane waves. For example, including thermoviscous 
dissipation in Eq. (4.280) produces the generalized Burgers equation given by 
Eq. (3.58). When Eqs. (4.281) and (4.282) are used to transform the generalized 
Burgers equation, the dissipation term acquires a coefficient that depends on 
distance [see Eq. (11.28)], and numerical techniques are normally required to obtain 
uniformly valid solutions. 

4.6.2 Intensity and Absorption 

Sections 4.3–4.5 have demonstrated that nonlinear distortion can markedly increase 
the absorption of sound by the fluid. One way to quantify the enhanced absorption 
is to define a finite-amplitude absorption coefficient . αf in terms of the intensity I 
of the wave [see, for example, Naugol’nykh (1958) and Rudnick (1958)]:
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.αf = − 1

2I

dI

dx
, (4.295) 

where plane waves have been assumed. For small signals, the intensity decays as 
.I = I0e

−2αx , where . I0 is the intensity at the source and . α is the ordinary (amplitude) 
absorption coefficient; in this case, . αf reduces to . α. To utilize Eq. (4.295) for finite-
amplitude waves, we must first find a way to calculate their intensity. 

The assumption of plane progressive waves is continued throughout the analysis 
that follows. The transformations discussed in Sect. 4.6.1 may be used to extend  
the results to other one-dimensional waves. For nonplanar waves, replace .dI/dx in 
Eq. (4.295) with .∇ · I. 

Intensity as defined here is the time average of the energy flux pu: 

.I = 1

tav

⎰ tav

0
pu dt, (4.296) 

where . tav is a suitable averaging time, for example, the period for a periodic wave 
or the duration for a transient. Since the wave motion is assumed to be progressive, 
particle velocity in the integrand may be replaced by .p/ρ0c0, and we obtain . I =
p2

rms/ρ0c0, where .prms is the root-mean-square pressure. Finding the intensity thus 
reduces to finding .p2

rms. The calculation is made first for lossless waves and then 
extended to waves for which weak shock theory is valid. 

For illustration, we again revisit the monofrequency source problem. Equa-
tion (4.46) gives the source signal, and Eqs. (4.175) the solution. Because of the 
symmetry of this particular wave, the averaging time need be only half a period, 
that is, .0 ≤ ωτ ≤ π . Equation (4.296) thus becomes 

.I = 2I0

π

⎰ π

0
P 2d(ωτ). (4.297) 

First restrict attention to the shock-free region .σ ≤ 1. Because for this case the 
relation between . ωτ and . Ф is one-to-one [the limits .ωτ = (0, π) correspond to the 
limits .Ф = (0, π)], substitution from the second of Eqs. (4.175) into Eq. (4.297) 
yields 

.I = 2I0

π

⎰ π

0
sin2Ф(1 − σ cos Ф) dФ. (4.298) 

Integration produces .π/2 for the first term in the integrand, zero for the second term. 
The result is 

.I = I0 = p2
0

2ρ0c0
. (4.299)
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The interpretation of this simple result is that no energy is lost during the transfer 
of energy from the fundamental to the higher-harmonic components (Rudenko and 
Soluyan, 1977), as long as shocks have not yet formed. Substitution of Eq. (4.299) 
in Eq. (4.295) of course confirms that .αf = 0 in the shock-free region. 

A frequency-domain calculation of the intensity is also of interest. If the 
Fubini solution, Eq. (4.49), is substituted in Eq. (4.297), and note is taken of the 
orthogonality of the series elements .sin nωτ , one finds 

.I = I0

∞⎲
n=1

B2
n(σ ), (4.300) 

where the harmonic amplitudes are given by .Bn = (2/nσ)Jn(nσ). The series sums 
to unity (Watson, 1944), and Eq. (4.299) is recovered, as indeed is required by 
Parseval’s theorem. Although of theoretical interest, Eq. (4.300) is also of practical 
use as a test for computational models. 

Next extend the analysis to the region where shocks are present, .σ > 1 (Black-
stock, 1990). As shown in Sect. 4.4.3, the range .ωτ = (0, π) now corresponds to 
.Ф = (Фsh, π).8 Equation (4.298) thus becomes 

.I = 2I0

π

⎰ π

Фsh

sin2Ф(1 − σ cos Ф) dФ, (4.301) 

where .Фsh is given by the second of Eqs. (4.177). The integral is easily evaluated: 

.I = I0

π
(π − Фsh + sin Фsh cos Фsh + 2

3σ sin3 Фsh). (4.302) 

An alternative expression, found by using the relations .Фsh = σPsh and . sin Фsh =
Psh [see Eqs. (4.177)], is 

.
I

I0
= 1 − Psh

π
(σ − cos σPsh − 2

3σP 2
sh). (4.303) 

In the preshock region, where .Psh = 0, Eq. (4.303) reduces to .I = I0, in agree-
ment with Eq. (4.299). After shocks form, the intensity decreases monotonically 
with distance. Two approaches may be used to find the intensity in the sawtooth 
region .(σ > 3). First, the asymptotic expression .Psh = π/(1 + σ) [Eq. (4.178)] 
may be substituted in Eq. (4.303). The cosine term becomes . cos[πσ/(1 + σ)] =
cos[π −π/(1 + σ)] = − cos Psh = −1 + 1

2P 2
sh · · · . Several terms on the right-hand 

side of Eq. (4.303) then cancel, and the leading remaining term is

8 The integration range .ωτ = (0, π) may be broken into the segments .ωτ = (0, ωτsh) and . ωτ =
(ωτsh, π). Integration of . P 2 over the first segment (i.e., the shock) yields nothing because in weak 
shock theory the shock rise time is zero .(ωτsh = 0+). However, if the model were to include finite 
rise time, integration over the shock would yield a finite contribution. 
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.
I

I0
= 2π2

3(1 + σ)2
, σ > 3. (4.304) 

The same result may be obtained by substituting the expression for the sawtooth 
waveform, Eq. (4.180), in Eq. (4.297) and integrating directly. Deep in the sawtooth 
region .(σ ⪢ 1), Eq. (4.304) reduces to 

.I = π2ρ0c
3
0

3β2k2x2 , σ ⪢ 1. (4.305) 

Acoustical saturation is indicated, since I has become independent of the source 
intensity . I0. 

Next, to find the absorption . αf , use Eq. (4.302) or (4.303) in Eq. (4.295). The 
calculation is tedious, but the final result is simple: 

.αf x̄ =
2
3P 3

sh

π − σPsh + Psh cos σPsh + 2
3σP 3

sh

. (4.306) 

A simpler-appearing alternative expression, found by recognizing that the denomi-
nator of Eq. (4.306) is .πI/I0 [see Eq. (4.302)], is 

.αf x̄ = 2P 3
shI0

3πI
. (4.307) 

Equations (4.303) and (4.306) are simple, exact algebraic relations, which, with 
the help of the first of Eqs. (4.177), are easily graphed. Curves of .I/I0 and .αf x̄ are 
shown on the top in Fig. 4.14. On the bottom is a plot of .αf x; the same result was 
found by Dalecki et al. (1991), who made their calculation in the frequency domain 
(see also Fig. 15.3). The physical explanation is as follows: Since no dissipation 
takes place unless shocks are present, the region .σ < 1 is one in which the 
intensity is constant and . αf is zero. The rapid growth of the shocks in the region 
.1 < σ < π/2 (see Fig. 4.9) initiates the decay of the intensity and concurrent 
rise of the absorption. Beyond .σ = π/2, the shocks lose amplitude. The intensity 
continues to drop, but at an ever-decreasing rate (the weaker the shock, the less the 
dissipation). After reaching a peak at .σ = 1.933 (.αf x̄ = 0.2734), the absorption 
begins to decline, in step with the decreasing rate of intensity decline. 

For values of .σ ⪢ 1, an asymptotic expression for the absorption is 

.αf = [σ/(1 + σ)]x−1 ∼ x−1, (4.308) 

a result also found by Carstensen et al. (1982). 
Finally, recall that weak shock theory is limited to shocks that are not too weak. In 

line with comments in Sect. 4.4.4, we note that the limit of validity of our calculation 
is reached when . αf becomes of order . α.
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Fig. 4.14 Intensity and 
absorption of a plane wave 
(Blackstock, 1990). 

The absorption coefficient defined by Eq. (4.295) is of particular interest in 
biomedical applications of ultrasound, because the rate at which the temperature 
T increases as a result of dissipation of the acoustic energy in a plane wave is 

.
dT

dt
= − 1

ρ0cm

dI

dx
, (4.309) 

where .cm is the heat capacity of the medium (e.g., tissue) per unit mass. See 
Sect. 15.3.3. Elimination of .dI/dx between Eqs. (4.295) and (4.309) yields 

.
dT

dt
= 2αf I

ρ0cm

. (4.310) 

For the case of an initially sinusoidal wave, substitution of Eq. (4.307) into  
Eq. (4.310) gives  

.
dT

dt
= 4I0P

3
sh

3πρ0cmx̄
. (4.311) 

The rate at which the temperature increases is thus proportional to the cube of the 
shock amplitude. This result is similar to that given by Eq. (4.161).
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5.1 Introduction 

The dependence of phase speed on frequency is called dispersion. Dispersion 
in unbounded, homogeneous acoustical media is a weak effect that can often 
be neglected, in contrast to the strong dispersion of light waves in most optical 
media. For example, although dispersion accompanies the attenuation of sound 
due to viscosity and heat conduction [dispersion and attenuation are connected by 
the Kramers–Kronig relations; see, for example, Temkin (1990)], the dispersion 
is negligible and can normally be ignored. The propagation of finite amplitude 
sound in thermoviscous fluids is then described accurately by the Burgers equation. 
Dispersion due to molecular relaxation in air and seawater, however, alters wave 
profiles and postpones shock formation, but the effect is sufficiently weak that it can 
be taken into account by models similar to the Burgers equation. 

Section 5.2 is devoted to weak dispersion, which is analyzed with techniques 
similar to those described in Chap. 4 for finite amplitude sound in nondispersive 
media. Two examples of weak dispersion mechanisms are considered, relaxation 
in unbounded media and boundary layers in ducts. Section 5.3 focuses on two 
examples of acoustical media with strong dispersion, waveguides and bubbly 
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liquids, the analyses of which require special methods. Propagation in horns, 
which is strongly dispersive at frequencies near cutoff and weakly dispersive at 
high frequencies, is not considered in this chapter. For more general discussion 
of nonlinear waves in dispersive media, the reader is referred to the textbook by 
Whitham (1974). 

5.2 Weak Dispersion 

When dispersion is sufficiently weak that the variation in phase speed as a function 
of frequency is a small percentage correction to a reference sound speed (say . c0), 
variations in the waveform, as a function of distance, are slow on the scale of a 
wavelength. It is then appropriate to consider the evolution of the waveform, due to 
both dispersion and nonlinearity, in a retarded time frame .τ = t − x/c0. The same  
approach is followed when the combined effects of absorption and nonlinearity are 
taken into account by the Burgers equation [Eq. (3.54)]. We thus begin with the 
following generalized Burgers equation for plane waves (Blackstock, 1985): 

.
∂p

∂x
+ Lτ (p) = βp

ρ0c
3
0

∂p

∂τ
, (5.1) 

where .p(x, τ ) is the sound pressure, . ρ0 is the ambient density, . c0 is the small-
signal sound speed in some reference state, and . β is the coefficient of nonlinearity 
[Eqs. (2.26)]. The linear, retarded time operator .Lτ (p) describes the attenuation 
and dispersion properties of the medium. Analytic expressions for .Lτ are known 
for several cases, for example, for attenuation and dispersion due to propagation 
in relaxing media or due to boundary-layer effects in ducts. These two examples 
are considered in Sects. 5.2.1 and 5.2.2, respectively. Geometrical effects due to 
spherical or cylindrical spreading, or due to diffraction in directional beams, can be 
taken into account by including the appropriate linear terms in Eq. (5.1) (Sects. 3.8 
and 3.9; see also Cleveland et al., 1996). In the present section, attention is devoted 
only to plane-wave propagation. 

It is often convenient to express the operator .Lτ (p) in the frequency domain. 
First expand the pressure in the Fourier series 

.p(x, τ ) = 1

2

∞⎲

n=1

pn(x)ejωnτ + c.c., (5.2) 

where .ωn = nω0, ω0 is a reference frequency, and c.c. designates complex 
conjugates of the preceding terms. Since . Lτ is a retarded time operator, its effect 
in Eq. (5.2) is to introduce complex multiplicative constants in the summation. 
We label these constants .α̃n and define them through the following operation 
(Blackstock, 1985):
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.Lτ (e
jωnτ ) = α̃ne

jωnτ . (5.3) 

Substitution of Eq. (5.2) into Eq. (5.1) thus yields the following coupled equations 
for the complex spectral amplitudes .pn (see, for example, Korpel, 1980; also,  
Sect. 11.2.1): 

.
dpn

dx
+ α̃npn = jωnβ

4ρ0c
3
0

⎛
n−1⎲

m=1

pmpn−m + 2
∞⎲

m=n+1

pmp∗
m−n

⎞
, (5.4) 

where . p∗
n is the complex conjugate of . pn. The real part of the complex coefficient 

. ̃αn is associated with attenuation, the imaginary part with variation in phase speed: 

.α̃n = αn + jωn(c
−1
n − c−1

0 ), (5.5) 

where . αn is the attenuation coefficient and . cn the phase speed at frequency . ωn. 
This interpretation follows from recognition that Eqs. (5.2) and (5.4) yield linear 
solutions of the form .exp(−α̃nx + jωnτ) = exp[−αnx + jωn(t − x/cn)]. 

The first summation in Eq. (5.4) accounts for sum-frequency generation, the 
second for difference-frequency generation. The coupled equations can be solved 
either analytically by successive approximations or perturbation methods (e.g., to 
investigate second-harmonic generation; see Sect. 10.2), or numerically by finite-
difference methods (e.g., to study waveform distortion and shock formation; see 
Sect. 11.2.1). For numerical integration with a finite number of harmonics . (1 ≤ n ≤
N), replace . ∞ by N in Eqs. (5.2) and (5.4). 

5.2.1 Relaxation 

Relaxation refers to the finite time required for a medium to establish equilibrium 
in a new thermodynamic state produced by a change in one or more of the state 
variables (Landau and Lifshitz, 1987). Several internal processes may contribute to 
the time required to establish equilibrium—for example, chemical reaction, phase 
transition, and molecular vibration. In air it is mainly the vibration of oxygen 
and nitrogen molecules, and in seawater it is the dissociation of boric acid and 
magnesium sulfate molecules. Relaxation is accompanied by energy dissipation, 
and because the behavior of a given internal process depends on the relation of 
its relaxation time to the frequency of an acoustical disturbance, relaxation also 
introduces dispersion. 

The operator for attenuation and dispersion in a thermoviscous fluid with 
multiple independent relaxation mechanisms is obtained by combining Eqs. (11-
6.3b) and (11-6.5) of Pierce (1989):
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.Lτ (p) = − δ

2c3
0

∂2p

∂τ 2
−

⎲

i

c'
i

c2
0

⎰ τ

−∞
∂2p

∂τ '2 e−(τ−τ ')/ti dτ ', (5.6) 

where . δ is the sound diffusivity for the thermoviscous fluid [Eq. (3.42)], . ti is the 
relaxation time for the ith relaxation process .(1/2πti is the relaxation frequency), 
and . c'

i is the corresponding net increase in phase speed as frequency varies from 
zero to infinity. Equation (5.6) is valid to lowest order in the diffusivity . δ and the 
phase speed increments . c'

i . 
Interpretation of . Lτ is best revealed by combining Eqs. (5.3) and (5.6) to obtain 

.α̃n = δω2
n

2c3
0

+ ω2
n

c2
0

⎲

i

c'
i ti

1 + jωnti
. (5.7) 

Substitution of Eq. (5.7) into Eq. (5.5) yields, to first order in . c'
i , 

.αn = δω2
n

2c3
0

+ ωn

c2
0

⎲

i

c'
iωnti

1 + (ωnti)2 , cn = c0 +
⎲

i

c'
i (ωnti)

2

1 + (ωnti)2 . (5.8) 

The phase speed . cn increases monotonically with frequency from the equilibrium 
sound speed . c0 at .ωn = 0 to the frozen sound speed .c∞ = c0 + ∑

c'
i at .ωn = ∞. 

At acoustical frequencies that are low in comparison with each of the relaxation 
frequencies (.ω2

n ⪡ 1/t2
i for all i), the attenuation coefficient reduces to . αn = (δ +

2c0
∑

c'
i ti )ω

2
n/2c3

0, which exhibits the properties of thermoviscous attenuation with 
a diffusivity that is increased by .δ' = 2c0

∑
c'
i ti . At high frequencies, viscosity 

and heat conduction are the dominant dissipation mechanisms, and the attenuation 
coefficient reduces in the limit .ωn → ∞ to the classical thermoviscous attenuation 
coefficient .αtv

n = δω2
n/2c3

0. 
To investigate the combined effects of relaxation and nonlinearity, it is helpful 

to ignore thermoviscous dissipation and to consider only one relaxation process, 
.i = r . Thus, let .δ = 0, ti = tr , and .c'

i = c' = c∞ − c0. It is common  
practice to characterize the dispersion of a monorelaxing fluid by the parameter 
.m = (c2∞ − c2

0)/c
2
0, which may be expressed as .m = 2c'/c0 to lowest order in . c'. 

These modifications of Eqs. (5.7) and (5.8) yield 

. ̃αn = mω2
ntr

2c0(1 + jωntr )
, αn = mω2

ntr

2c0(1 + ω2
nt

2
r )

, cn = c0 + mc0ω
2
nt

2
r

2(1 + ω2
nt

2
r )

.

(5.9) 

The frequency dependences of . α1 and . c1 are shown in Fig. 5.1. 
Beginning with a more common form of the evolution equation for propagation 

in a monorelaxing fluid, rather than Eqs. (5.1) and (5.6), we shall derive a solution 
for stationary waves (Polyakova et al., 1962; see also Rudenko and Soluyan, 1977). 
The alternative form is obtained by substituting . ̃αn from Eq. (5.9) into Eq. (5.4),
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Fig. 5.1 Frequency dependence of the (a) attenuation coefficient and (b) phase speed for a 
monorelaxing fluid. 

multiplying the resulting equation by .(1 + jωntr ), and transforming the result into 
the time domain: 

.

⎛
1 + tr

∂

∂τ

⎞⎛
∂p

∂x
− βp

ρ0c
3
0

∂p

∂τ

⎞
= mtr

2c0

∂2p

∂τ 2 . (5.10) 

A stationary wave is one for which .∂p/∂x = 0 in the retarded time frame . τ , i.e., the 
waveform propagates without change in shape. With .∂p/∂x = 0 and following one 
integration with respect to . τ , Eq. (5.10) becomes 

.

⎛
p + mρ0c

2
0

2β

⎞
dp

dτ
+ p2

2tr
= const. (5.11) 

Evaluation of the integration constant requires additional information about the 
waveform. We consider a pressure jump .2p0, from .−p0 ahead of the wave front 
to . p0 behind. If the fluid is quiet both far ahead of and far behind the wavefront, the 
boundary conditions become .p = −p0 and .dp/dτ = 0 at .τ = −∞, and . p = p0
and .dp/dτ = 0 at .τ = ∞. These conditions combine to yield .p2

0/2tr for the 
integration constant. Applying these conditions to Eq. (5.11), separating variables, 
and integrating (with the remaining integration constant determined by requiring 
.p = 0 at .τ = 0) yield 

.τ = tr ln
(1 + p/p0)

D−1

(1 − p/p0)D+1 , (5.12) 

where .D = mρ0c
2
0/2βp0 measures the ratio of relaxation effects to nonlinear 

effects. In the limit of weak nonlinearity, Eq. (5.12) can be inverted to obtain an 
explicit dependence of pressure on time: 

.p = p0 tanh(τ/2Dtr), D ⪢ 1. (5.13)
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The characteristic rise time of the pressure jump in this limit is given by . 2Dtr =
mρ0c

2
0tr/βp0, which is the same result that is obtained if the diffusivity . δ in 

the corresponding stationary wave solution for thermoviscous fluids [Eq. (4.247)] 
is replaced by .δ' = mc2

0tr . In general, however, Eq. (5.12) cannot be inverted 
analytically. 

Equation (5.12) describes a multivalued waveform for .D < 1, and weak shock 
theory is needed to correct the solution (Sect. 4.4.1). The small-signal sound speed 
immediately behind and ahead of the shock, modeled as an instantaneous pressure 
jump, is the frozen sound speed .c∞ = (1+m/2)c0. Thus, the shock must propagate 
at speed .dxsh/dt = (1 + m/2)c0 + β(psh − p0)/2ρ0c0, where .xsh(t) is the location 
of the shock, .psh is the peak shock pressure, i.e., the value of p immediately behind 
the shock, and .−p0 is the value immediately ahead of the disturbance. For the 
waveform to be stationary in the retarded time frame .τ = t − x/c0, we must also  
have .dxsh/dt = c0. Equating the two expressions for the shock speed yields (Pierce, 
1989) 

.psh = (1 − 2D)p0, 0 ≤ D ≤ 1. (5.14) 

To obtain the retarded arrival time of the shock, . τsh, set .p = psh in Eq. (5.12): 

.τsh = −tr ln[4D1+D(1 − D)1−D], 0 ≤ D ≤ 1. (5.15) 

The wave profile is thus constructed for .0 ≤ D ≤ 1 by setting .p = −p0 for .τ ≤ τsh, 
and 

.τ = τsh, −p0 ≤ p ≤ psh, . (5.16) 

= tr ln 
(1 + p/p0)

D−1 

(1 − p/p0)D+1 
, psh ≤ p ≤ p0. (5.17) 

Calculated waveforms are shown in Fig. 5.2 for three values of D. For .D = 2, there 
is no shock in the waveform, and the solution shown, based on Eq. (5.12), is similar 

Fig. 5.2 Waveforms predicted for a stationary wave in a monorelaxing fluid.
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Fig. 5.3 Initially sinusoidal waveforms computed at increasing distances in a monorelaxing, 
thermoviscous fluid (solid curves), compared with waveforms in a purely thermoviscous fluid (no 
relaxation, dashed curves). 

to the asymptotic result given by Eq. (5.13). For .D = 1, the shock threshold, the 
solution is obtained from Eqs. (5.14)–(5.17), and the waveform has a discontinuity 
in slope at .τsh/tr = − ln 4, but not in amplitude .(psh/p0 = −1). A multivalued 
waveform is predicted by Eq. (5.12) for .D = 0.5 (dashed curve); the corrected 
solution based on Eqs. (5.14)–(5.17) is given by the solid curve .(τsh = psh = 0). 

The evolution of an initially sinusoidal waveform, .p = p0 sin ω0t at .x = 0, can 
be calculated numerically with Eq. (5.4) (see Sect. 11.2.1). Results are presented 
in Fig. 5.3 at various distances in a monorelaxing, thermoviscous fluid with . D =
0.5, ω0tr = 1, and .αtv

1 x̄ = 10−3, where .x̄ = ρ0c
3
0/βω0p0 is the plane-wave 

shock formation distance in an ideal fluid. Thermoviscous absorption is required 
for numerical stability when shock formation occurs. For comparison, results for 
.D = 0 (no relaxation) are shown as dashed curves. The waveforms at .x = x̄ reveal 
that relaxation postpones shock formation, introduces asymmetry and attenuation, 
and causes the waveform to propagate faster than phase speed . c0. A shock exists in 
the waveform at .x = 2x̄, and the asymmetry is more pronounced. The rounded wave 
profiles immediately following the shocks at .x = 2x̄ and .x = 3x̄ are characteristic 
of the effect of relaxation. 

Our analysis concludes with an asymptotic model for high-frequency (. ω0ti ⪢ 1
for all i) propagation in a multirelaxing fluid, which generalizes the results obtained 
by Soluyan and Khokhlov (1962) for a monorelaxing fluid (see also Rudenko and 
Soluyan, 1977). To construct the evolution equation for this case, expand . ̃αn in 
powers of the small quantities .(ωnti)

−1 to obtain at leading order, with .δ = 0, 

.α̃n ≃ 1

c2
0

⎲

i

⎛
1

ti
− jωn

⎞
c'
i , ω0ti ⪢ 1. (5.18) 

Substitution into Eq. (5.4) and transformation back into the time domain yields
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.
∂p

∂x
+ p

c2
0

⎲

i

c'
i

ti
− 1

c2
0

∂p

∂τ

⎲

i

c'
i = βp

ρ0c
3
0

∂p

∂τ
. (5.19) 

The third term on the left-hand side accounts for the increase in phase speed 
from . c0 to . c∞. This term can be eliminated by introducing the new retarded time 
.τ ' = t − x/c∞, which to lowest order in . c'

i becomes .τ ' = τ + (
∑

c'
i )x/c2

0. Next,  
introducing the quantities .q = p exp(x/ lr ) and .z = lr [1 − exp(−x/lr )], where 
.lr = c2

0(
∑

c'
i t

−1
i )−1 is a relaxation length scale, permits Eq. (5.19) to be rewritten 

as 

.
∂q

∂z
= βq

ρ0c
3
0

∂q

∂τ ' . (5.20) 

Equation (5.20) is in the familiar form associated with the propagation of finite-
amplitude sound in an ideal fluid [recall Eq. (5.1)], and it can be solved using the 
methods described in Chap. 4. For . x ⪡ lr , we have .q ≃ p and .z ≃ x, in which case 
the effect of relaxation is negligible. 

Note that .z → lr in the limit .x → ∞, and therefore waveform distortion is 
frozen at the stage corresponding to the distortion of sound at distance .x = lr in an 
ideal fluid. The shock formation distance for a wave with amplitude . p0 and angular 
frequency . ω0 at the source is thus .x = x̄r , where .z(x ≡ x̄r ) = x̄: 

.x̄r = lr ln

⎛
1

1 − R

⎞
. (5.21) 

Here .R = x̄/ lr = (ρ0c0/βp0ω0)
∑

c'
i t

−1
i measures the ratio of relaxation effects 

to nonlinear effects, and for a monorelaxing fluid, with .lr = 2c0tr/m, we have  
.R = D/ω0tr . Shock formation occurs only for .R < 1, and for .R ⪡ 1 Eq. (5.21) 
reduces to .x̄r = (1 + R/2)x̄. 

5.2.2 Boundary Layers 

A plane wave that propagates in a duct with rigid walls experiences dispersion and 
attenuation as a result of the thermoviscous boundary layer along the walls. Provided 
that the boundary layer is thin in comparison with the transverse dimension of the 
duct, the dispersion operator is (Blackstock, 1985) 

.Lτ (p) = − δ

2c3
0

∂2p

∂τ 2 + b

/
2

π

⎰ ∞

0

∂p(x, τ − τ ')
∂τ

dτ '
√

τ ' , (5.22)
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where the first term accounts for free-stream thermoviscous losses, the boundary-

layer parameter is .b = (C/4A)

/
2ν/c2

0[1 + (γ − 1)/
√

Pr], C is the perimeter of 
the duct and A its cross sectional area, . ν is the kinematic viscosity, . γ the ratio of 
specific heats, and Pr the Prandtl number. Combining Eqs. (5.3), (5.5), and (5.22) 
yields 

.α̃n = δω2
n

2c3
0

+ (1 + j)b
√

ωn, αn = δω2
n

2c3
0

+ b
√

ωn, cn = c0 − bc2
0√

ωn

. (5.23) 

The restriction that the boundary layer be thin corresponds to the frequency 
restriction .

√
ωn ⪢ bc0, which was used to obtain the above relation for the phase 

speed. Note that in contrast to relaxation dispersion, tube wall dispersion produces 
phase speeds that are lower than the free-space phase speed . c0. For both tube wall 
and relaxation dispersion, however, the phase speed increases with frequency, and 
the classical thermoviscous attenuation coefficient .αtv

n = δω2
n/2c3

0 is recovered at 
high frequencies. 

Analytic solutions of Eq. (5.1) with .Lτ given by Eq. (5.22), even without the 
free-stream losses, are not available. We therefore resort to numerical solutions 
of Eq. (5.4) (Sect. 11.2.1). The parameter . ̃αn in Eqs. (5.23) was substituted into 
Eq. (5.4), with .(b

√
ω0)x̄ = 0.5 and .αtv

1 x̄ = 10−3, to produce the waveforms in 
Fig. 5.4 (at the same distances as in Fig. 5.3) for the source condition . p = p0 sin ω0t

at .x = 0. As with relaxation, thermoviscous absorption is required for numerical 
stability. Boundary-layer dispersion causes rounding of the positive portions and 
cusping of the negative portions of the waveforms (Coppens, 1971). The waveforms 
in Fig. 5.4 are typical of those reported in the literature for experiments performed 
with high-intensity sound in ducts (Webster and Blackstock, 1977). 

Fig. 5.4 Initially sinusoidal waveforms computed at increasing distances in a tube containing a 
thermoviscous fluid (solid curves), compared with waveforms in the absence of boundary-layer 
effects (dashed curves).
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5.3 Strong Dispersion 

When dispersion is strong in relation to nonlinearity, the large variations in 
phase speeds prevent efficient energy transfer among the interacting harmonic 
components. Shock formation is unlikely, and most of the energy tends to remain 
in the frequency components radiated by the source. Dispersion is often strong in 
waveguides and bubbly liquids, which are the subjects of Sects. 5.3.1 and 5.3.2, 
respectively. 

5.3.1 Waveguides 

Waveguides are formed in many ways. Perhaps the most common in acoustics are 
air-filled ducts with rigid walls, which are often used in laboratory experiments. 
Natural waveguides are formed by layered media consisting of fluids with different 
acoustical properties (e.g., shallow water channels bounded above by air and below 
by sediment). Waveguides are also formed by continuous variations in the properties 
of inhomogeneous media (e.g., underwater sound channels created by local sound 
speed minima). 

We begin with the following second-order wave equation for a lossless, homoge-
neous fluid [Eq. (3.41) with .δ = 0]: 

.∇2p − 1

c2
0

∂2p

∂t2 = − β

ρ0c
4
0

∂2p2

∂t2 −
⎛

∇2 + 1

c2
0

∂2

∂t2

⎞
L, (5.24) 

where .L = ρ0u
2/2 − p2/2ρ0c

2
0 is the Lagrangian density, and u is the particle 

velocity. Equation (5.24) does not, by itself, account for dispersion. The dispersion 
relations are established by solving the eigenvalue problem for the normal modes, 
as discussed below. 

Each waveguide mode can be decomposed into an angular spectrum of plane 
waves that propagate in different directions. Insight into the effect of waveguide 
dispersion on harmonic generation therefore follows from an understanding of 
harmonic generation due to the noncollinear interaction of just two of these plane 
waves (Naze Tjøtta and Tjøtta, 1987; Hamilton and Blackstock, 1988). Thus, 
consider the following primary wave field: 

.p1 = pa sin(ωat − ka · r) + pb sin(ωbt − kb · r), (5.25) 

where . ka and . kb are wave vectors associated with plane waves at frequencies . ωa

and . ωb, respectively, and .r = (x, y, z). The angle . θ between the directions of 
propagation is defined by .cos θ = (ka · kb)/kakb, where .ki = |ki | = ωi/c0 (. i =
a, b). Substitution of Eq. (5.25) into the right-hand side of Eq. (5.24), and making 
use of first-order relations to simplify second-order terms, yields the following
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inhomogeneous wave equation for the sum- or difference-frequency pressure . p±: 

.∇2p± − 1

c2
0

∂2p±
∂t2

= ∓β±(θ)
ω2±papb

ρ0c
4
0

cos[ω±t − (ka ± kb) · r], (5.26) 

where .β±(θ) = β − 2 sin2(θ/2) ± 4(ωaωb/ω
2±) sin4(θ/2) is a modified coefficient 

of nonlinearity that depends on the interaction angle . θ, β = 1 + B/2A, B/A

is the ratio of coefficients in the equation of state (Chap. 2), and . ω± = ωa ± ωb

(.ωa > ωb is assumed). For .ωa ⪢ ωb, the coefficient of nonlinearity reduces to 
.β±(θ) = cos θ + B/2A, a form that lends itself to simple physical interpretation. 
The term .B/2A is a scalar effect due to nonlinearity in the pressure–density relation, 
whereas .cos θ is a vector effect that accounts for convection of one primary wave by 
the other. 

The general behavior of the solution .p± becomes evident following two obser-
vations. First, for .θ /= 0, the particular solution of Eq. (5.26) (i.e., the forced wave) 
is proportional to the term on the right-hand side. The forced wave propagates 
with phase speed .ω±/|ka ± kb| in the direction .ka ± kb, where . |ka ± kb| =
[k2± ∓ 4kakb sin2(θ/2)]1/2 and .k± = ka ± kb. To the particular solution must be 
added a homogeneous solution (a free wave) to satisfy the source condition. For a 
planar source at which .p± = 0, the free wave propagates in the same direction as 
the forced wave, but with wave number . k± and therefore phase speed .ω±/k±. When 
.θ /= 0, the propagation speeds of the two waves differ, which causes the amplitude of 
. p± to beat with spatial period .2π/||ka ±kb|−k±|. The mechanical analogue of this 
phenomenon is the response of a mass-spring oscillator, which beats in time when 
driven at a frequency that does not coincide with its natural frequency. Increasing the 
interaction angle . θ decreases the spatial periodicity, and the combination frequency 
generation becomes less efficient. For collinear interaction .(θ = 0 and thus 
.|ka ± kb| = k±), there is synchronism between the forced and free waves, and 
the amplitude of the sum- and difference-frequency sound increases linearly with 
distance from the source. The beating of forced and free waves is a hallmark of 
dispersive nonlinear interactions in waveguides. 

The second observation is that the amplitude of .p± depends also on interaction 
angle in proportion to .β±(θ). However, the difference between .β±(θ) and . β is 
significant only for large . θ , in which case the interaction is very inefficient because 
of the phase mismatch discussed above. If we ignore the term containing . L in 
Eq. (5.24), the corresponding form of Eq. (5.26) is identical except that .β±(θ) is 
replaced by . β. Consequently, if the mode structure in a waveguide is such that 
significant harmonic interactions occur at small angles, the dominant nonlinear 
effects are characterized adequately by the Westervelt equation [Eq. (3.46) with 
.δ = 0]: 

.∇2p − 1

c2
0

∂2p

∂t2 = − β

ρ0c
4
0

∂2p2

∂t2 . (5.27)
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A sufficient condition for the validity of Eq. (5.27) is radiation from a source at 
frequencies well above cutoff for the modes excited by the source. Equation (5.27) 
is the starting point for the following analysis. 

We begin the analysis of nonlinear interactions in waveguides by first reviewing 
briefly the linear solution of Eq. (5.27), i.e., with the right-hand side set to zero [see 
Morse and Ingard (1986) for a thorough discussion of linear waveguide theory]. The 
linear solution for a wave of frequency . ω that propagates in a single mode may be 
written 

.p = 1
2pmφm(y, z, ω)ej (ωt−kmx) + c.c., (5.28) 

where .pm is the corresponding pressure amplitude, m is the mode number, and 
x is distance along the axis of the waveguide. The eigenfunctions .φm(y, z, ω) are 
solutions of 

.

⎛
∂2

∂y2 + ∂2

∂z2 + ω2

c2
0

⎞
φm = k2

mφm, (5.29) 

where the axial wave numbers .km are eigenvalues determined by the boundary 
conditions along the walls of the waveguide. We assume that the walls are locally 
reacting, so that the boundary condition along the perimeter of the waveguide can 
be expressed in the form 

. − jωρ0φm

∂φm/∂n
= Rn(ω) + jXn(ω), (5.30) 

where .Rn is the real and .Xn the imaginary part of the specific acoustic wall 
impedance, and n is the normal coordinate directed into the wall. For .Rn > 0, 
the walls introduce losses, and the wave numbers . km are complex. The phase speed 
.cm(ω) and attenuation coefficient .αm(ω) are obtained from the real and imaginary 
parts of the axial wave number, respectively: .km = ω/cm − jαm. For . Rn = 0
the values of . k2

m are real and decrease as m increases; wave propagation is lossless 
above the cutoff frequency defined by .km = 0, and there is no wave propagation 
below cutoff. Eigenfunctions that satisfy Eqs. (5.29) and (5.30) are orthogonal: 

.

⎰ ⎰

S

φm(y, z, ω)φn(y, z, ω) dydz = δmnNm(ω), (5.31) 

where .Nm is a normalization factor and .δmn is the Kronecker delta. 
It is convenient to examine the nonlinearly generated harmonic components in 

terms of normal-mode solutions (Ostrovskii and Papilova, 1973; Zabolotskaya and 
Shvartsburg, 1988). We begin by considering a bifrequency primary wave field: 

.p1 = 1
2 [paφa(y, z, ωa)e

j (ωat−kax) + pbφb(y, z, ωb)e
j (ωbt−kbx)] + c.c., (5.32)
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where . pa and . pb are real pressure amplitudes of the waves in modes a and b, 
respectively. Substitution of Eq. (5.32) into the right-hand side of Eq. (5.27) yields 
the following inhomogeneous wave equation for the sum- and difference-frequency 
pressures: 

. 

⎛
∇2 + ω2±

c2
0

⎞
p± = βpapbω

2±
2ρ0c

4
0

φa(y, z, ωa)φ
(∗)
b (y, z, ωb)e

j [ω±t−(ka±k
(∗)
b )x] + c.c.,

(5.33) 

where the notation .(∗) indicates that the complex conjugate is to be taken only 
when performing calculations for the difference-frequency component. Making use 
of the orthogonality of the eigenfunctions, we may express the product .φaφ

(∗)
b as an 

expansion of normal modes at the sum and difference frequencies: 

.φa(y, z, ωa)φ
(∗)
b (y, z, ωb) =

⎲

m

amφm(y, z, ω±), (5.34) 

where 

.am = 1

Nm(ω±)

⎰ ⎰

S

φa(y, z, ωa)φ
(∗)
b (y, z, ωb)φm(y, z, ω±) dydz. (5.35) 

Substitution of Eq. (5.34) into Eq. (5.33) yields for the particular solution 

.(p±)p = βpapbω
2±

2ρ0c
4
0

⎲

m

amφm(y, z, ω±)

k2
m − (ka ± k

(∗)
b )2

ej [ω±t−(ka±k
(∗)
b )x] + c.c., (5.36) 

where . km is evaluated at .ω = ω±. Equation (5.36) is the solution for the forced 
wave, the phase speed of which is .ω±/Re(ka ± kb). 

The complete solution is .p± = (p±)p+(p±)h, where .(p±)h is the homogeneous 
solution for the free wave that is needed to satisfy the source condition. Let the 
source be located at .x = 0, and assume that no sum- or difference-frequency 
sound is radiated directly by the source. The related boundary condition is . (p±)h =
−(p±)p at .x = 0, and therefore .(p±)h equals the negative of Eq. (5.36), except 

with .ka ± k
(∗)
b replaced by . km in the exponential. The free waves thus propagate in 

different modes with different phase speeds .ω±/Re km. The complete solution is 

.p± = 1

2

⎲

m

Pm(x)φm(y, z, ω±)ejω±t + c.c., (5.37) 

where 

.Pm(x) = jβpapbω
2±am

2ρ0c
4
0(km + Δm)

sin(Δmx)

Δm

e−j (km+Δm)x, (5.38)
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and .Δm = (ka ± k
(∗)
b − km)/2 is a complex parameter that vanishes in the absence 

of both attenuation and dispersion. 
We note that the normal-mode solution for the second-order pressure .p± is 

constructed with eigenfunctions that satisfy only a first-order relation for the 
boundary condition at the walls, Eq. (5.30). For the case of second-harmonic 
generation in a waveguide formed by two parallel planar surfaces, one rigid and 
the other pressure release, it has been shown that the second-order correction 
to the linear pressure-release boundary condition is negligible except for source 
frequencies very near cutoff (Hamilton and Zabolotskaya, 1991). Use of first-order 
boundary conditions is therefore consistent with use of Eq. (5.27), i.e., for source 
radiation at frequencies well above cutoff. 

The beating phenomenon discussed above in relation to the noncollinear interac-
tion of two plane waves is revealed clearly by the dependence of .Pm on .sin(Δmx). 
Specifically, the distance between consecutive local minima along the axis of 
the waveguide is the dispersion length .π/|Re Δm|. The extent to which efficient 
generation of sum- or difference-frequency sound is possible depends on whether 
.Re Δm ≃ 0 is obtained for any given mode that is excited, i.e., for which free waves 
propagate at phase speeds close to that of the forced wave. Resonance thus occurs 
when the real part of the relation .km = ka ± kb is satisfied, in which case there 
is no beating in that mode, and .|Pm| increases linearly with x when attenuation is 
negligible. 

Consider, for example, sum- and difference-frequency generation in a rectangular 
duct with rigid walls. If the dimensions of the cross section are . a × b, the  
eigenfunctions may be written as .φm = cos(m1πy/a) cos(m2πz/b), where m 
corresponds to the pair of mode indices .(m1,m2), and the axial wave numbers 
are defined by .k2

m = (ω/c0)
2 − (m1π/a)2 − (m2π/b)2. The simplest case that 

demonstrates the beating phenomenon is with .φa = cos(πy/a) and .φb = 1 for 
the primary waves (the latter is simply the plane-wave mode). The summation in 
Eq. (5.37) then reduces to the single term .(m1,m2) = (1, 0), and the sum- and 
difference-frequency sound is produced entirely in mode .φ1,0 = cos(πy/a), with 
.a1,0 = 1 and .k2

1,0 = (ω±/c0)
2 − (π/a)2. Measurements obtained in an experiment 

corresponding to this case, with an air-filled duct, are shown in Fig. 5.5 (Hamilton 
and TenCate, 1987). The dashed curve is the prediction based on Eq. (5.38), and 
the solid curve is the result obtained when the contribution due to the Lagrangian 
density . L is retained [recall the discussion preceding Eq. (5.27)]. Because of the 
simple structure of the primary wave field, a single interaction angle can be defined 
for this experiment: .θ = arcsin(πc0/aωa) = 58◦. Increasing . ωa decreases . θ , and 
the dashed and solid curves in Fig. 5.5 come closer together. 

Second-harmonic generation is a special case of the above analysis. To obtain 
the solution for the second-harmonic component at frequency .2ωa , replace .ω± by 
.2ωa, papb by .p2

a/2, φaφ
(∗)
b by .φ2

a, ka ± k
(∗)
b by . 2ka , and evaluate . km at . ω = 2ωa

in all results for . p±. Equation (5.38) becomes
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Fig. 5.5 Measurements of (a) sum- and (b) difference-frequency sound generated in an air-filled 
rectangular duct with dimensions .a = 7 cm and .b = 3.8 cm. The source levels were 120 dB (re 
20 . μPa) at .fa = 2900 Hz and 130 dB at .fb = 165 Hz .(f1 ≡ fa and .f2 ≡ fb). The theoretical 
predictions (dashed and solid curves) are described in the text (Hamilton and TenCate, 1987). 

.Pm(x) = jβp2
aω

2
aam

ρ0c
4
0(ka + km/2)

sin[(ka − km/2)x]
ka − km/2

e−j (ka+km/2)x . (5.39) 

Examination of second-harmonic generation in a rectangular duct with rigid walls 
reveals that a primary wave in an arbitrary mode .(m1,m2) interacts resonantly 
with the second-harmonic component that it generates in mode .(2m1, 2m2). More  
generally, the phase speed of the nth harmonic component (frequency .nωa) that 
is generated in mode .(nm1, nm2) is the same for any n. Although nonresonant 
interactions also take place, entire families of harmonic components are thus 
in synchronism in rectangular ducts with rigid walls, and shock formation can 
occur (Hamilton and TenCate, 1988). However, this degeneracy is a special case. 
For example, replacing one of the walls with a pressure release surface destroys 
the synchronism (Hamilton and Zabolotskaya, 1991), although special choices 
of source frequencies and duct dimensions permit parametric amplification of
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selected spectral components (Ostrovskii and Papilova, 1973). In rigid circular 
ducts, resonance occurs only in the plane-wave mode. 

The normal mode analysis described above can be extended in a straight-forward 
way to account for both higher-order spectral interactions and sources that excite 
arbitrary numbers of modes. A coupled first-order system similar to Eq. (5.4) can 
be derived, in which additional summations on the right-hand side account for the 
modal decomposition of the sound field (Van Doren, 1993). 

The analysis can also be generalized to include waveguides created by inhomo-
geneous media. For example, the following modified form of Eq. (5.27) may be 
used to model the propagation of finite-amplitude sound in a stratified medium with 
ambient properties that vary in the z direction: 

.∇2p − 1

c2(z)

∂2p

∂t2 = − β

ρ0c
4
0

∂2p2

∂t2 . (5.40) 

The linear form of Eq. (5.40) is a common model for the propagation of sound 
in the ocean. Equation (5.40) is based on the assumption that the inhomogeneity 
of the medium is weak (i.e., that maximum variations in the ambient properties— 
sound speed, density, and coefficient of nonlinearity—are small perturbations about 
a reference state), and that spatial variations are gradual in relation to a characteristic 
wavelength . λ (i.e., .λ/Lz ⪡ 1, where . Lz characterizes the length scale associated 
with the inhomogeneity). Subject to these conditions, the inhomogeneity is manifest 
explicitly only through the sound speed on the left-hand side, which may be 
expressed as .c(z) = c0 + c1(z), with .|c1|/c0 ⪡ 1. The values of .ρ0, c0, and . β
are evaluated at a reference state in the fluid. For wave propagation in a direction 
perpendicular to the z axis, the analysis outlined by Eqs. (5.28) to (5.39) remains 
formally the same. 

Finally, normal mode theory can be used to derive a nonlinear Schrödinger 
equation for the lossless .(Rn = 0) propagation of a narrowband pulse (Zabolotskaya 
and Shvartsburg, 1988). The nonlinear Schrödinger equation is 

.j
∂A

∂x
+ k''

m

2

∂2A

∂τ 2
g

+ Λ|A|2A = 0, (5.41) 

where .A(x, τg) is a slowly varying amplitude modulation of a carrier wave that 
propagates in mode m at frequency .ω, τg = t −x/cg is a retarded time based on the 
group velocity .cg = dω/dkm, and .k''

m = d2km/dω2. The nonlinearity coefficient . Λ
depends on integrals over modes in which the carrier wave and its second harmonic 
propagate. For certain amplitude modulations, the effects of dispersion [taken into 
account by the second term in Eq. (5.41)] and nonlinearity are in balance, and 
the pulse envelope propagates without change in shape. Pulses of this type are 
referred to as envelope solitons, and they are well-known stationary wave solutions 
of Eq. (5.41) (Whitham, 1974; Ablowitz and Segur, 1981).
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5.3.2 Bubbly Liquids 

Common bubbly liquids of interest in acoustics include the near-surface layers in 
the ocean and flow in pipes. Of recent interest is sonoluminescence, the radiation 
of light from a collapsing bubble in a sound field. The presence of even small 
concentrations of bubbles in a liquid dramatically increases the compressibility and 
thus reduces the sound speed, and the resonant oscillations of the bubbles give rise 
to dispersion. In addition, nonlinearity due to the bubbles can exceed, by orders 
of magnitude, the nonlinearity due to the liquid alone. Analysis of finite-amplitude 
sound in bubbly liquids is quite complicated, and a variety of theoretical models 
have been proposed in this area. In this section we adopt the approach developed by 
Zabolotskaya and Soluyan (1973), which is based on the assumption that bubbles 
provide the dominant source of nonlinearity. The nonlinearity is taken into account 
by the Rayleigh–Plesset equation for a single bubble in an incompressible liquid. 

We begin by deriving the linear wave equation for the propagation of sound 
through a bubbly liquid. Let the liquid contain a spatially uniform distribution of 
identical bubbles that are small compared with a wavelength. Define .ρ = ρ0 +ρ' to 
be the density of the mixture, .ρl = ρl0 +ρ'

l the density of the liquid, . ρg = ρg0 +ρ'
g

the density of the gas, and .V = V0 + v the bubble volume, where the subscript 0 
designates the equilibrium value. If N is the number of bubbles per unit volume in 
the equilibrium state, the corresponding volume fraction of liquid displaced by the 
bubbles is .NV0, and therefore 

.ρ0 = NV0ρg0 + (1 − NV0)ρl0. (5.42) 

Away from equilibrium, the density of the mixture is given by 

.ρ0/ρ = NV + (1 − NV0)ρl0/ρl. (5.43) 

When the volume fraction occupied by the gas is small .(NV ⪡ 1), we have . ρ0 ≃
ρl0 ⪢ ρg0, which permits the linear approximation of Eq. (5.43) to be written 

.
ρ'

ρ0
= p

ρ0c
2
0

− Nv, (5.44) 

where p is the sound pressure and . c0 is the small-signal sound speed in the liquid 
(i.e., .p = c2

0ρ
'
l for .N = 0). It is straightforward to combine Eq. (5.44) with the 

linearized continuity and momentum equations for a fluid with ambient density . ρ0
to obtain the inhomogeneous wave equation 

.∇2p − 1

c2
0

∂2p

∂t2
= −ρ0N

∂2v

∂t2
. (5.45)
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Solution of Eq. (5.45) requires an additional relation between the sound pressure 
and the bubble volume. Although Eq. (5.45) was derived by retaining only terms that 
are linear in p and v, it is hereafter assumed that the dominant contribution to finite-
amplitude effects on the propagation of sound is due to nonlinearity in the relation 
.v = v(p) governing the bubble dynamics. To simplify the analysis, we assume that 
the bubbles are spherical, that their motions do not influence each other (i.e., that 
they are well separated), that they pulsate in their lowest (i.e., radially symmetric) 
mode, and that they are surrounded by an incompressible liquid (i.e., they do not 
radiate sound themselves). The pulsation of each bubble is then described by the 
Rayleigh-Plesset equation (Young, 1989): 

.RR̈ + 3
2 Ṙ2 + 4ν

Ṙ

R
= Pg − P

ρ0
, (5.46) 

where R is the bubble radius, the dots indicate differentiation with respect to time, 
. ν is the kinematic viscosity, . Pg is the gas pressure in the bubble, and P is the total 
pressure in the mixture. Use of the adiabatic gas law .Pg/P0 = (V0/V )γ , where . γ
is the ratio of specific heats and . P0 is the ambient pressure in the mixture . (P =
P0 +p), together with the relation .V = (4π/3)R3, permits the following expansion 
of Eq. (5.46) to be obtained to quadratic order in v (but to first order in loss terms): 

.v̈ + δω0v̇ + ω2
0v + ηp = av2 + b(2vv̈ + v̇2), (5.47) 

where .δ = 4ν/ω0R
2
0 is the viscous damping coefficient, .ω2

0 = 3γP0/ρ0R
2
0, . R0

is the bubble radius at the equilibrium volume .V0 = (4π/3)R3
0, .η = 4πR0/ρ0, 

.a = (γ + 1)ω2
0/2V0, and .b = 1/6V0. 

The first nonlinear term, .av2, is associated with the adiabatic gas law, and the 
second, .b(2vv̈ + v̇2), is associated with the dynamic response of the bubble. In 
the absence of nonlinearity, Eq. (5.47) describes the forced response of a harmonic 
oscillator with undamped natural frequency . ω0. The quality factor for the bubble 
resonance is .Q = 1/δ. To include damping due to acoustic radiation by the bubble, 
compressibility of the liquid must be taken into account (Prosperetti, 1987), which 
introduces the additional loss factor .−R0

...
v/c0 on the left-hand side of Eq. (5.47) 

(Il’inskii and Zabolotskaya, 1992). 
Equations (5.45) and (5.47) are solved simultaneously for the sound pressure 

in the mixture. The most straightforward way to accomplish this task is via the 
method of successive approximations. We illustrate this approach by considering 
the problem of second-harmonic generation (Zabolotskaya, 1976). Thus, let 

.p = 1
2 (p1e

jωt + p2e
j2ωt ) + c.c., v = 1

2 (v1e
jωt + v2e

j2ωt ) + c.c., (5.48) 

where . pn and . vn are of order . εn in terms of the acoustic Mach number. At order . ε, 
substitution of Eqs. (5.48) into Eqs. (5.45) and (5.47) gives
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.

⎛
∇2 + ω2

c2
0

⎞
p1 = ρ0Nω2v1, . (5.49) 

(ω2 
0 − ω2 + jδω0ω)v1 = −ηp1. (5.50) 

Combining these two equations to eliminate . v1 yields 

.

⎛
∇2 + ω2

c̃2
1

⎞
p1 = 0, (5.51) 

in which . ̃c1 is defined by setting .n = 1 in the following: 

.
c2

0

c̃2
n

= 1 + μC

1 − n2ω2/ω2
0 + jδnω/ω0

. (5.52) 

Here .μ = NV0 is the volumetric void fraction in the equilibrium state, and . C =
ρ0c

2
0/γP0 is the ratio of the compressibility of the adiabatic gas .(1/γP0) to that 

of the liquid .(1/ρ0c
2
0). This ratio is .C = 1.54 × 104 for air bubbles in water at 

atmospheric pressure. 
Noting that a plane wave solution of Eq. (5.51) is .exp[−j (ω/c̃1)x], we can obtain 

the phase speed . cn and attenuation coefficient . αn from Eq. (5.52): 

.cn(ω) = 1/ Re c̃−1
n , αn(ω) = −nω Im c̃−1

n . (5.53) 

In Fig. 5.6 are shown the (dimensionless) phase speed . c1 and attenuation coefficient 
. α1 as functions of frequency for .μC = 1, both with .(δ = 0.1, solid curves) 
and without .(δ = 0, dashed curves) damping. Well below the bubble resonance 
frequency .(ω2 ⪡ ω2

0), the phase speed reduces to .c1 = c0/
√

1 + μC, which is 
independent of frequency. The low frequency phase speed corresponds to the sound 
speed in a liquid where the compressibility has been increased by the presence 

Fig. 5.6 (a) Phase speed and (b) attenuation coefficient for sound in a bubbly liquid, with . (δ =
0.1, solid curves) and without .(δ = 0, dashed curves) viscous damping.
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of bubbles that pulsate in phase with the pressure. In the high frequency limit 
.(ω → ∞), the response time of the bubbles is substantially longer than the period 
of the acoustic oscillation. The bubble motion is effectively “frozen,” and the phase 
speed approaches the small-signal sound speed in the liquid alone .(c1 → c0). 
The region of large variations in the phase speed, in the neighborhood of the 
bubble resonance frequency, is characterized by high attenuation. In the absence 
of viscous damping, the model predicts only evanescent waves (no propagation) in 
the frequency range .1 < ω/ω0 <

√
1 + μC, with .α1 = 0 outside this range. 

For a distribution of equilibrium bubble radii, with .N (R0) dR0 bubbles per unit 
volume having radii between . R0 and .R0 + dR0, the void fraction . μ is replaced by 
.(4π/3)N (R0)R

3
0 dR0, and integration yields in place of Eq. (5.52) 

.
c2

0

c̃2
n

= 1 + 4π

3
C

⎰ ∞

0

N (R0)R
3
0 dR0

1 − n2ω2κ2R2
0 + jδnωκR0

, (5.54) 

where .κ = (C/3)1/2/c0. A distribution of bubble sizes broadens the resonances in 
Fig. 5.6 (see Commander and Prosperetti, 1989). 

We now develop the equations for second-harmonic generation. Substitution of 
Eqs. (5.48) into Eqs. (5.45) and (5.47) yields at order . ε2

.

⎛
∇2 + 4ω2

c2
0

⎞
p2 = 4ρ0Nω2v2, . (5.55) 

(ω2 
0 − 4ω2 + j2δω0ω)v2 = −ηp2 + 1 

2 (a − 3bω2)v2 
1 . (5.56) 

Equation (5.50) is used to express . v2
1 in terms of . p2

1, after which Eqs. (5.55) and 
(5.56) can be combined into a single inhomogeneous wave equation for the second-
harmonic pressure: 

.

⎛
∇2 + 4ω2

c̃2
2

⎞
p2 = β2(ω)

2ω2

ρ0c
4
0

p2
1, (5.57) 

where . ̃c2 is given by Eq. (5.52) with .n = 2. The reason for introducing the notation 
.β2(ω) is to provide a basis for comparison with second-harmonic generation in a 
liquid without bubbles. In the absence of bubbles, and when nonlinearities in the 
equations of motion and state are taken into account, second-harmonic generation is 
governed (in the quasilinear approximation) by Eq. (5.57) with .β2 ≡ 1+B/2A (and 
.c̃2 ≡ c0). Here, however, we have ignored nonlinearity in the liquid and considered 
only the nonlinearity due to bubble pulsation. 

The coefficient of nonlinearity for second-harmonic generation is given by 

.β2(ω) = μC2(γ + 1 − ω2/ω2
0)

2(1 − 4ω2/ω2
0 + j2δω0ω)(1 − ω2/ω2

0 + jδω0ω)2
, (5.58)
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Fig. 5.7 Second-harmonic 
coefficient of nonlinearity for 
a mixture of air bubbles in 
water, with .(δ = 0.1, solid  
curve) and without .(δ = 0, 
dashed curve) viscous 
damping. 

where .ω is the frequency of the primary wave. The magnitude of Eq. (5.58) as a  
function of frequency is shown in Fig. 5.7, for .γ = 1.4, both with and without 
viscous damping. There are two resonances and one antiresonance associated with 
second-harmonic generation. At the higher resonance .(ω/ω0 = 1), the frequency 
of the primary wave matches the bubble resonance frequency, and at the lower 
resonance .(ω/ω0 = 0.5), the second-harmonic frequency coincides with the bubble 
resonance. The antiresonance at .ω/ω0 

√= γ + 1 occurs when the nonlinearity 
in the Rayleigh-Plesset equation offsets the nonlinearity in the adiabatic gas law. 
Note that the low-frequency limit, .β2(0) = 2(γ + 1)μC /2, can itself be very 
large. For example, a void fraction of only 0.001% .(μ = 10−5) yields .β2(0) ∼ 
2.8 × 103 for air bubbles in water, which is several orders of magnitude greater 
than the coefficient of nonlinearity for the water alone (i.e., .β 
. γ < ω/ω  < . β .β 

=√ 3.5). However, for 
+ 1 0 3 in this example, | 2| is comparable to . For a distribution of 

bubble sizes, the right-hand side of Eq. (5.58) becomes an integral with .μ replaced 
by .(4 3π/3)N (R0)R dR0 0, as in Eq. (5.54). 

To complete the analysis of second-harmonic generation, boundary conditions 
must be imposed on Eqs. (5.51) and (5.57). We assume plane wave propagation in 
the .+x direction and require that .p1 = p0 and .p2 = 0 at .x = 0. For simplicity, we 
also ignore viscous damping .(δ = 0) and assume that neither the primary nor the 
secondary wave is evanescent. Equation (5.51) yields .p1 = p0e

−jk1x (.kn = nω/cn, 
.n = 1, 2), and substitution into Eq. (5.57) leads to the second-harmonic solution 

.p2 = jp2
0[(γ + 1)ω2

0/ω
2 − 1]

6γP0(1 − ω2/ω2
0)

sin[(k2 − 2k1)x/2]e−j (k2+2k1)x/2. (5.59) 

Although . β2 is proportional to the void fraction . μ [recall Eq. (5.58)], the maximum 
amplitude of . p2 is not. The reason is that the effect of nonlinearity is offset by 
dispersion. To illustrate this point we consider the leading term in an expansion of 
the wave number mismatch for small . μ: 

.k2 − 2k1 = 3μCω3

c0ω
2
0(1 − 4ω2/ω2

0)(1 − ω2/ω2
0)

+ O(μ2). (5.60)
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At distances much shorter than the dispersion length .2π/|k2 − 2k1| and for . μ
sufficiently small, Eq. (5.59) yields .|p2| = |β2|p2

0ωx/2ρ0c
3
0, which corresponds 

to the solution of Eq. (5.57) with .c̃1 = c̃2 = c0, i.e., in the absence of dispersion. 
Thus, whereas the initial rate of second-harmonic generation increases with . μ, the  
dispersion length is reduced and the region of growth is terminated ever closer 
to the source. It must be kept in mind that Eq. (5.59) is valid only if the relation 
.|p2| ⪡ |p1| holds throughout the nonlinear interaction region. When this condition 
is violated, not only must higher-order spectral interactions be taken into account, 
but consideration should be given to including higher-order terms in Eqs. (5.45) and 
(5.47). 

In addition to second-harmonic generation, a variety of phenomena with ana-
logues in nonlinear optics have been investigated on the basis of Eqs. (5.45) and 
(5.47), such as parametric amplification, phase conjugation, stimulated Raman 
scattering, and active spectroscopy (Bunkin et al., 1986). 

We conclude by deriving an evolution equation for low-frequency waves whose 
dominant frequency components satisfy the relation .ω2 ⪡ ω2

0. Noting that the first 
nonlinear term in Eq. (5.47) dominates the second at low frequencies, we may write 

.v = − η

ω2
0

p − δ

ω0
v̇ − 1

ω2
0

v̈ + a

ω2
0

v2, ω2 ⪡ ω2
0. (5.61) 

The second and third terms on the right-hand side of Eq. (5.61) are small in  
comparison with the first at low frequencies [e.g., see Eq. (5.50)], and therefore 
the approximate relation .v = −ηp/ω2

0 may be substituted into the second through 
fourth terms (which are all small relative to the first) to obtain 

.v = − η

ω2
0

p + δη

ω3
0

ṗ + η

ω4
0

p̈ + aη2

ω6
0

p2. (5.62) 

Substitution of Eq. (5.62) into Eq. (5.45) gives  

.∇2p − 1

c2
00

∂2p

∂t2 = −μηρ0

ω4
0V0

⎛
aη

ω2
0

∂2p2

∂t2 + δω0
∂3p

∂t3 + ∂4p

∂t4

⎞
, (5.63) 

where .c2
00 = c2

0/(1 + μC) is recognized as the low-frequency limit of Eq. (5.52). 
Finally, for progressive plane waves we may introduce the slow scales (Sect. 3.7) 
.τ = t − x/c00 and .x1 = εx in Eq. (5.63) to obtain, at leading order, 

.
∂p

∂x
= β0p

ρ0c
3
00

∂p

∂τ
+ a' ∂3p

∂τ 3 + b' ∂2p

∂τ 2 , (5.64) 

where .β0 = (γ + 1)μC2/2(1 + μC)2, .a' = μC2R2
0/6c3

00(1 + μC)2, and 
.b' = 4νa'/R2

0. The second term on the right accounts for dispersion, and the third
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Fig. 5.8 .B/A for a mixture 
of air bubbles in water, taking 
only bubble nonlinearity into 
account (dashed curve), and 
including liquid and gas 
nonlinearities (solid curve). 

accounts for attenuation. Equation (5.64) is in the form of Eq. (5.1), and it is known 
as the Korteweg–deVries–Burgers equation. 

Solutions for steady shock waves have been derived from equations in the form of 
Eq. (5.64), and the predictions have been verified experimentally in bubbly liquids 
(Kuznetsov et al., 1978). Without attenuation .(b' = 0), Eq. (5.64) reduces to the 
KdV (Korteweg–deVries) equation, which admits solutions for solitons (Ablowitz 
and Segur, 1981). Alternatively, in the absence of dispersion .(a' = 0), Eq. (5.64) 
reduces to the Burgers equation. See van Wijngaarden (1972) for further discussion. 

Finally, via comparison of Eqs. (5.1) and (5.64), we identify . β0 as the low-
frequency coefficient of nonlinearity. As noted above, nonlinearity in our model 
derives solely from the pressure–density relation for the mixture, Eq. (5.44), where 
the nonlinearity enters through Eq. (5.47). We may therefore write .β0 = B/2A, 
because for plane waves the “1” that appears in the expression .β = 1 + B/2A is 
due to the nonlinearity in the continuity equation (Hamilton and Blackstock, 1988), 
which we have ignored. We thus identify 

.
B

A
= (γ + 1)μC2

(1 + μC)2 (5.65) 

as the effective nonlinearity parameter, which yields a maximum value of . (γ +
1)C/4 at .μC = 1, and .B/A ∝ μ for .μC ⪡ 1, B/A ∝ μ−1 for .μC ⪢ 1. The  
dashed curve in Fig. 5.8 is Eq. (5.65) evaluated for air bubbles in water. 

Equation (5.65) does not yield the proper limiting values for .μ = 0 (pure liquid, 
with .B/A = 5.0 for water) or .μ = 1 (pure gas, with .B/A = 0.4 for air) because 
we have not taken the nonlinearity of the liquid alone into account, and the volume 
fraction of gas was assumed to be small. These additional nonlinearities can be 
included by using Eq. (2.24) to obtain 

.
B

A
= (γ + 1)μC2 + (1 − μ)[2 + (B/A)l]

[1 + μ(C − 1)]2 − 2, (5.66) 

where .(B/A)l is the nonlinearity parameter for the liquid. Equation (5.66), which is 
graphed as the solid curve in Fig. 5.8 (see also Everbach, 1989), reduces to . (B/A)l
for .μ = 0 and .(γ − 1) for .μ = 1 [Eq. (2.11)], as required. Comparison of the
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two curves in Fig. 5.8 reveals that the approximate Eq. (5.65) is valid in the range 
.10−7 ≲ μ ≲ 10−1. Equation (5.65) is recovered in general for .(B/A)l = 0, C ⪢ 1, 
and .μ ⪡ 1. 

We conclude by noting that for .μ ⪡ 1, the analysis in the present section can 
be generalized to include all quadratic nonlinearities associated with propagation 
through the liquid phase of the mixture by adding the right-hand side of Eq. (5.24) 
to the right-hand side of Eq. (5.45). 
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6.1 Introduction 

Acoustic radiation pressure was first studied by Lord Rayleigh (1902, 1905) as an  
acoustic counterpart of the pressure induced by an electromagnetic wave. Since 
then this subject has been studied by many researchers, with differing results (see 
a review by Beyer, 1978). The confusion arises mainly because the phenomenon is 
such a subtle nonlinear effect that sometimes the question must be very carefully 
posed in order to obtain a unique answer. In this chapter we shall present the 
subject starting from first principles (Lee and Wang, 1993). We shall use Eulerian 
coordinates, which will turn out to be much more straightforward than the more 
traditional use of Lagrangian coordinates. 

When acoustic radiation pressure acts on the surface of a small object, it 
imposes a net force on the object called the acoustic radiation force. In practice, 
this force is very weak in comparison to gravity. However, with the accessibility 
of a microgravity environment provided by Space flights in recent years, intense 
interest has arisen in processing of materials without possible contamination by 
a crucible, i.e., “containerless processing.” Acoustic radiation force is best suited 
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for this purpose. The containerless handling of materials using this force is called 
“acoustic levitation.” 

6.2 Radiation Pressure 

6.2.1 General 

6.2.1.1 Equation of State 

We start by introducing a model for the adiabatic equation of state of the fluid: 

.P − P0 = Q0

⎾⎛
ρ

ρ0

⎞γ

− 1

⏋
, (6.1) 

where . P0 is the ambient pressure, .P = P0 +p is the total pressure, p is the acoustic 
pressure, . ρ0 is the ambient density, .ρ = ρ0 +ρ', where . ρ' is the excess density, . γ is 
a constant, and .Q0 = ρ0c

2
0/γ , in which . c0 is the small-signal speed of sound. For an 

ideal gas, . γ is just the ratio of specific heats, in which case .c20 = γP0/ρ0, Q0 = P0, 
and Eq. (6.1) reduces to .P/P0 = (ρ/ρ0)

γ . For liquids, . γ is an empirical parameter, 
and Eq. (6.1) is known as the Tait equation [see Eq. (2.12)]. For water, .γ ≈ 7, and 
.Q0 ≈ 3000 bars (Beyer, 1974). 

6.2.1.2 Acoustic Radiation Stress Tensor 

The equations of motion for an ideal fluid are the momentum equation 

.ρ

⎛
∂ui

∂t
+ uj

∂ui

∂xj

⎞
= − ∂P

∂xi

, (6.2) 

and the continuity equation 

.
∂ρ

∂t
+ ∂(ρuj )

∂xj

= 0, (6.3) 

where . ui is the ith component of the particle velocity field vector, and . xi is a 
component of the position vector. Equations (6.2) and (6.3) combine to give 

.
∂(ρui)

∂t
+ ∂(ρuiuj )

∂xj

= − ∂P

∂xi

. (6.4) 

For acoustic oscillations, we can define the time average over one cycle, denoted by 
. 〈 〉. On averaging Eq. (6.4), the first term on the left side vanishes in steady state,
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such that 

.
∂Sij

∂xj

= 0, (6.5) 

where 

.Sij = −〈P 〉δij − 〈ρuiuj 〉 (6.6) 

is called the acoustic radiation stress tensor, which was first derived by Brillouin 
(1938, 1964), and . δij is the Kronecker delta. It does not make any difference in 
Eq. (6.5) if we replace P by .P − P0 in Eq. (6.6). Since . ui is first order, with . ρ =
ρ0 + ρ', Eq.  (6.6) becomes, at second order, 

.Sij = −〈P − P0〉δij − ρ0〈uiuj 〉. (6.7) 

6.2.1.3 Mean Eulerian Excess Pressure 

The quantity .〈P − P0〉 in Eq. (6.7) is a “mean excess pressure,” and in general it is 
nonzero at finite amplitudes. It is Eulerian because it is evaluated at a fixed point in 
space, as opposed to the Lagrangian pressure. Since a sound field in an inviscid fluid 
is irrotational, we may write .u = ∇φ, where . φ is the velocity potential. Equation 
(6.2) then becomes 

.∇
⎾
∂φ

∂t
+ 1

2 |∇φ|2
⏋

= −∇P

ρ
. (6.8) 

If T is the temperature, and s and w are the entropy per unit mass and the enthalpy 
per unit mass of the fluid, respectively, then .dw = T ds + dP/ρ. For an adiabatic 
process, .∇w = ∇P/ρ, and Eq. (6.8) becomes 

.w = −∂φ

∂t
− 1

2 |∇φ|2 + C' (6.9) 

after being integrated in space, where . C' is constant in space but can depend on 
time. The pressure P can be expanded in a Taylor series in w as follows: 

.P = P0 +
⎛

∂P

∂w

⎞
s,0

w + 1

2

⎛
∂2P

∂w2

⎞
s,0

w2 + · · · , (6.10) 

where the subscript .s, 0 means “evaluated at constant entropy and at equilibrium.” 
Since .(∂w/∂P )s = 1/ρ, we have .(∂P/∂w)s = ρ, and . (∂2P/∂w2)s = (∂ρ/∂w)s =
(∂ρ/∂P )s(∂P/∂w)s = ρ/c2, where the fundamental relation .(∂P/∂ρ)s = c2 was 
used. We now let each of these quantities take its equilibrium value, and Eq. (6.10)
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becomes 

. P = P0 + ρ0

⎛
−∂φ

∂t
− 1

2 |∇φ|2 + C'
⎞

+ 1

2

ρ0

c20

⎛
−∂φ

∂t
− 1

2 |∇φ|2 + C'
⎞2

+ · · · . (6.11) 

In linear acoustics, .C' = 0 and Eq. (6.9) reduces to .w = p/ρ0 = −∂φ/∂t . At  
second order, a finite value of . C' is sometimes needed for the solution to satisfy a 
constraint. We therefore take . C' to be a second-order quantity. By time-averaging 
Eq. (6.11), at second order we find 

.〈P − P0〉 = 1

2

ρ0

c20

/⎛
∂φ

∂t

⎞2\
− 1

2ρ0〈|∇φ|2〉 + C, (6.12) 

where .C = ρ0〈C'〉 is a constant in both space and time. At second order, . φ in 
the quadratic terms on the right-hand side can be replaced with linear relations. 
Substituting .u = ∇φ and .∂φ/∂t = −p/ρ0 into Eq. (6.12), we obtain for the mean 
Eulerian excess pressure 

. 〈P − P0〉 = 〈P E − P0〉 = 1

2ρ0c20
〈p2〉 − 1

2ρ0〈u ·u〉 + C = 〈V 〉 − 〈K〉 + C,

(6.13) 

where .〈V 〉 = 〈p2〉/2ρ0c20 and .〈K〉 = ρ0〈u·u〉/2 are the time-averaged potential and 
kinetic energy densities, respectively, and P has been equated to . P E to emphasize 
that the pressure is Eulerian. 

6.2.1.4 Mean Lagrangian Excess Pressure 

In contrast to its Eulerian counterpart, the mean Lagrangian excess pressure is what 
a fluid particle experiences during acoustic vibration. The superscript L shall be 
used to denote Lagrangian. Let . ξ be the displacement of a fluid particle from 
its equilibrium position . a. As we shall see, we require only a first-order relation 
between . ξ and the fluid particle velocity, at which order there is no difference 
between the Lagrangian velocity and the Eulerian velocity. We therefore write 
.u = ∂ξ/∂t . An arbitrary Lagrangian quantity .qL(a, t) is related to the corresponding 
Eulerian quantity .qE(x, t), at second order, by . qL(a, t) = [qE(x, t)]x=a + ξ ·
[∇qE(x, t)]x=a. We thus obtain .P L = P E + ξ ·∇P E, or  

.〈P L − P0〉 = 〈P E − P0〉 + 〈ξ ·∇P E〉. (6.14)
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The last term on the right can be evaluated using first-order relations. The linearized 
form of Eq. (6.2) is .ρ0∂u/∂t = −∇P , or .ρ0∂2ξ/∂t2 = −∇P E. Integration by parts 
yields .〈ξ · ∇P E〉 = −ρ0〈ξ · ∂2ξ/∂t2〉 = ρ0〈∂ξ/∂t · ∂ξ/∂t〉 = ρ0〈u · u〉, and thus 
.〈ξ ·∇P E〉 = 2〈K〉. Substituting both the last relation and Eq. (6.13) into Eq. (6.14), 
we obtain for the mean Lagrangian excess pressure 

.〈P L − P0〉 = 〈V 〉 + 〈K) + C = 〈E〉 + C, (6.15) 

where .〈E〉 = 〈V 〉 + 〈K〉 is the total mean energy density of the wave. Equations 
(6.15) and (6.13) are referred to as Langevin’s first and second relations, respectively 
(Beissner, 1986). 

To understand the significance of .〈P L − P0〉, consider the x component of the 
stress defined in Eq. (6.7): 

.Sxx = −〈P − P0〉 − ρ0〈u2〉, (6.16) 

where .〈P − P0〉 is the mean Eulerian excess pressure, and u is the acoustic particle 
velocity in the x direction. Using Eq. (6.13) and letting .〈Kx〉 = ρ0〈u2〉/2, . 〈Ky〉 =
ρ0〈v2〉/2, and .〈Kz〉 = ρ0〈w2〉/2 for the velocity components u, v, and w in the x, 
y, and z directions, respectively, we may rewrite Eq. (6.16) as  

. − Sxx = 〈V 〉 − 〈Ky〉 − 〈Kz〉 + 〈Kx) + C. (6.17) 

If  the motion is only in the  x direction, then .〈Ky〉 = 〈Kz〉 = 0, and after letting 
.〈Kx〉 = 〈K〉, comparison with Eq. (6.15) yields .−Sxx = 〈P L − P0〉 for Eq. (6.17). 
From the 1-D form of Eq. (6.5), .∂Sxx/∂x = 0, it follows that .∂〈P L − P0〉/∂x = 0, 
such that 

.〈P L − P0〉 = constant. (6.18) 

Equation (6.18) is not generally true in a 2- or 3-D case. The 1-D case is interesting 
historically, since it has been studied most because of its simplicity. In practice, 
however, 1-D motion is a severe restriction, and the inadequacy of this approach 
has been pointed out by Beissner (1985, 1986). For example, oblique reflection of 
a plane wave, and even normal reflection of a diffracting sound beam, cannot be 
analyzed with 1-D equations. Therefore, the usefulness of Eq. (6.18) is somewhat 
limited in practice. 

6.2.1.5 Rayleigh and Langevin Radiation Pressures 

In electromagnetism, the radiation pressure is the pressure experienced by a material 
surface when it is illuminated by a light wave. An acoustic radiation pressure is 
therefore the mean excess pressure experienced by a material surface in a sound 
field. A mean pressure is defined throughout the fluid, but an acoustic radiation
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pressure is defined on a material surface only. The mean Eulerian and Lagrangian 
excess pressures are different expressions of the same physical entity. In contrast, 
the Rayleigh and Langevin radiation pressures are defined for different physical 
situations. 

Beyer (1950, 1974, 1978) defined the Rayleigh radiation pressure as the differ-
ence between the mean pressure at a reflecting or absorbing wall in the presence of 
a sound wave and the pressure that would have existed if the fluid were at rest at 
the same mean density. He defined the Langevin radiation pressure as the difference 
between the mean pressure at a reflecting or absorbing wall and the pressure in 
the unperturbed fluid behind the wall, with the fluid being in contact with the two 
sides of the wall. The first definition identifies the Rayleigh radiation pressure as 
.〈P L − P0〉 on a wall in a fluid with a fixed mean volume. The second definition 
identifies the Langevin radiation pressure as .〈P L − P0〉 on a wall in a fluid that is in 
contact with the ambient unperturbed fluid. Gol’dberg (1971) defined the Rayleigh 
radiation pressure as the mean excess pressure on the wall which depends on the 
elasticity of the fluid and therefore on . γ , and the Langevin radiation pressure as that 
which has no such dependence. For the first definition, there is no contact between 
the sound field and the unperturbed medium. For the second definition, contact is 
permitted such that C is set to zero to ensure “zero perturbation at infinity.” 

In most cases the definitions of Beyer and Gol’dberg are equivalent. However, 
the radiation pressure can depend on . γ , whereas the mean volume of a confined 
fluid is not necessarily fixed (Sect. 6.2.2.2). Gol’dberg’s definitions are therefore 
simpler. As we shall see, even if .C = 0, the radiation pressure can depend implicitly 
on . γ through its dependence on . c0, in which case Gol’dberg’s definitions become 
somewhat vague (Sect. 6.2.2.3). Also, as long as there is a constraint, contact 
between the sound wave and the unperturbed medium does not always lead to 
the result expected by Gol’dberg, which is .C = 0 (Lee and Wang, 1993). If 
the constraint is not related to conservation of mass or volume, then C need not 
be related to . γ . Consequently, we modify Gol’dberg’s definitions as follows: The 
radiation pressure is Langevin if it depends only on the sound waves, and it is 
Rayleigh if it depends on the sound waves plus a constraint. It takes a finite value 
of C to satisfy the constraint. Therefore equivalently, the radiation pressure is of 
Rayleigh type for .C /= 0 and of Langevin type for .C = 0. 

For the general 3-D case, we should consider the acoustic radiation stress tensor 
instead of the radiation pressure. If the surface is rigid, however, we can retain the 
notion of a radiation pressure. If the surface is absorbing, then in the region where 
the particle velocity is nearly normal to the surface, it is still convenient to speak of 
the radiation pressure.
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6.2.2 Some Classical Problems 

6.2.2.1 Plane Wave Incident on a Perfectly Reflecting Wall 

This is the original problem posed by Rayleigh (1902, 1905). Consider a plane wave 
traveling in the x direction and being reflected at .x = 0 by a rigid plane wall. The 
incident and reflected waves combine to produce a standing wave with acoustic 
pressure 

.p = A cos kx sinωt (6.19) 

and particle velocity 

.u = − A

ρ0c0
sin kx cosωt, (6.20) 

where A is the pressure amplitude, . ω is the angular frequency, and .k = ω/c0. 
Substituting Eqs. (6.19) and (6.20) into Eq. (6.13), we find . 〈V 〉 = A2 cos2 kx/4ρ0c20
and .〈K〉 = A2 sin2 kx/4ρ0c20, and thus 

. 〈P E − P0〉 = A2

4ρ0c20
cos 2kx + C = 〈E〉 cos 2kx + C = 2〈Ei〉 cos 2kx + C,

(6.21) 

where .〈E〉 = 〈V 〉 + 〈K〉 = A2/4ρ0c20 is the energy density of the standing wave, 
and .〈Ei〉 = 〈E〉/2 is that of either the incident or the reflected wave. Conservation 
of mass requires that the mean excess density per wavelength be zero. The Eulerian 
excess density is given by 

.〈ρE − ρ0〉 =
⎛

∂ρ

∂P

⎞
s,0

〈P E − P0〉 + 1

2

⎛
∂2ρ

∂P 2

⎞
s,0

〈(P E − P0)
2〉 + · · · , (6.22) 

where .(∂ρ/∂P )s,0 = 1/c20 and .(∂2ρ/∂P 2)s,0 = −(γ − 1)/ρ0c40 follow from 
Eq. (6.1), .〈P E − P0〉 is given by Eq. (6.21), and . 〈(P E − P0)

2〉 = 〈p2〉 =
(1/2)A2 cos2 kx from Eq. (6.19). Integrating Eq. (6.22) in  x over .2π/k and setting 
the left-hand side equal to zero, we have .C = (γ − 1)〈E〉/2. Equation (6.21) 
becomes 

.〈P E − P0〉 =
⎛

γ − 1

2
+ cos 2kx

⎞
〈E〉 = (γ − 1 + 2 cos 2kx)〈Ei〉. (6.23) 

After substituting the value of C in Eq. (6.15) we find
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.〈P L − P0) =
⎛

γ + 1

2

⎞
〈E〉 = (γ + 1)〈Ei〉. (6.24) 

Note that .〈P E − P0〉 in Eq. (6.23) depends on x, whereas .〈P L − P0〉 in Eq. (6.24) is  
constant. At .x = 0, however, Eqs. (6.23) and (6.24) agree, as they should because 
the two representations must coincide at locations where there is no motion. The 
common value is the radiation pressure .〈ΔP 〉 experienced by the wall, and it agrees 
with Rayleigh’s result (1905): 

.〈ΔP 〉 =
⎛

γ + 1

2

⎞
〈E〉 = (γ + 1)〈Ei〉. (6.25) 

Because C is nonzero, Eq. (6.25) describes the Rayleigh radiation pressure. From 
Eq. (6.22), we also find that 

.
〈ρE − ρ0〉

ρ0
= −

⎛
γ − 3

8

⎞⎛
A

ρ0c
2
0

⎞2
cos 2kx, (6.26) 

which is sinusoidal in x and has a spatial average of zero. The Lagrangian 
counterpart is .〈ρL〉 = 〈ρE〉 + 〈ξ ∂ρE/∂x〉, where .u = ∂ξ/∂t [see Eq. (6.14)]. On 
the right-hand side, .〈ρE〉 is  given by Eq.  (6.26), .ξ = −(A/ρ0c0ω) sin kx sinωt from 
Eq. (6.20), and .∂ρE/∂x = c−2

0 ∂p/∂x = −(kA/c20) sin kx sinωt from Eq. (6.19), 
such that .〈ξ ∂ρE/∂x〉 = (A2/2ρ0c40) sin

2 kx. The result is 

.
〈ρL − ρ0〉

ρ0
= 1

4

⎛
A

ρ0c
2
0

⎞2
−
⎛

γ − 1

8

⎞⎛
A

ρ0c
2
0

⎞2
cos 2kx. (6.27) 

It is noted that, unlike .〈ρE − ρ0〉/ρ0, 〈ρL − ρ0〉/ρ0 has a nonzero spatial average, 
equal to .(A/2ρ0c20)

2. The spatial average can be nonzero because the time average 
is taken by following an oscillating particle, and therefore the procedure is biased by 
the oscillation velocity, which controls the distribution of time spent by the particle 
along the path it travels during one period of oscillation. Again, Eqs. (6.26) and 
(6.27) agree at .x = 0, where there is no particle motion. 

6.2.2.2 Plane Wave Incident on a Perfectly Absorbing Wall 

This problem is a controversial one. It differs from Rayleigh’s original problem 
in that the wall is perfectly absorbing. The system consists of a closed tube with 
a transducer at one end that generates a plane wave traveling down the tube to the 
other end, which is an absorbing wall. Let the acoustic pressure and particle velocity 
be
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.p = A sin(kx − ωt) (6.28) 

and 

.u = A

ρ0c0
sin(kx − ωt). (6.29) 

Substituting Eqs. (6.28) and (6.29) into Eqs. (6.13) and (6.15), we find 

.〈P E − P0〉 = C (6.30) 

and 

.〈P L − P0〉 = 〈Ei〉 + C, (6.31) 

since .〈V 〉 = 〈K〉 = A2/4ρ0c20 = 〈Ei〉/2. A perfectly absorbing wall offers no 
reaction to the acoustic particle velocity on its surface. One can further consider the 
wall being pushed back a little by the radiation pressure and held at an equilibrium 
position by an opposing spring force. This is how Chu and Apfel (1984) defined 
a “perfectly absorbing” wall, in response to the comments of Nyborg and Rooney 
(1984) concerning an earlier paper by Chu and Apfel (1982). In Eq. (6.22), the 
right-hand side is evaluated using Eq. (6.30) for the first term and Eq. (6.28) for  the  
second. On the left-hand side, conservation of mass is still applicable, but we must 
allow the fluid volume to change. Let the length of the tube be L in the absence 
of sound, and in the presence of sound, let the wall be displaced by . ΔL. For  a  
pure progressive wave there is no preferred spatial reference point, and the Eulerian 
density .〈ρE〉 should be independent of x. Conservation of mass requires . ρ0L =
〈ρE〉(L + ΔL), or  

.〈ρE − ρ0〉 = −ρ0

⎛
ΔL/L

1 + ΔL/L

⎞
. (6.32) 

Substitution into Eq. (6.22) yields, following some rearrangement, an expression for 
C: 

.C =
⎛

γ − 1

2

⎞
〈Ei〉 − ρ0c

2
0

⎛
ΔL/L

1 + ΔL/L

⎞
. (6.33) 

Now let the absorbing wall be supported from behind by a force due to a spring 
with constant . κ . Then .ΔL/L is determined by the balance between .〈P L −P0〉 from 
Eq. (6.31) and the spring force: 

.κΔL = 〈P L − P0〉S = [C + 〈Ei〉]S, (6.34)
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where S is the cross-sectional area of the tube. Combining Eqs. (6.33) and (6.34) to  
eliminate . ΔL, keeping only terms up to second order, we find 

.C =
⎾

γ + 1

2(1 + κ0/κ)
− 1

⏋
〈Ei〉, (6.35) 

where .κ0 = ρ0c
2
0S/L is the effective spring constant associated with adiabatic 

compression of the fluid in the tube. Substituting Eq. (6.35) into Eqs. (6.30) and 
(6.31), we have 

.〈P E − P0〉 =
⎾

γ + 1

2(1 + κ0/κ)
− 1

⏋
〈Ei〉 (6.36) 

and 

.〈P L − P0〉 =
⎾

γ + 1

2(1 + κ0/κ)

⏋
〈Ei〉. (6.37) 

Since .〈P L − P0〉 in Eq. (6.37) is independent of x and .C /= 0, it is the Rayleigh 
radiation pressure experienced by the absorbing surface: 

.〈ΔP 〉 =
⎾

γ + 1

2(1 + κ0/κ)

⏋
〈Ei〉. (6.38) 

Substituting Eq. (6.35) into Eq. (6.34) and using the definition of . κ0 yields 

.
ΔL

L
= 1

2 (γ + 1)

⎛
κ0/κ

1 + κ0/κ

⎞ 〈Ei〉
ρ0c

2
0

. (6.39) 

Equations (6.38) and (6.39) were obtained by Chu and Apfel (1984). Even if there is 
a mean density change in the fluid, the radiation pressure can still be of the Rayleigh 
type. 

Two limiting cases of Eqs. (6.36) and (6.37) are now considered. For .κ0/κ ⪡ 1, 
which corresponds to an immovable absorbing wall, the equations become 

.〈P E − P0〉 = 1
2 (γ − 1)〈Ei〉 (6.40) 

and 

.〈ΔP 〉 = 〈P L − P0〉 = 1
2 (γ + 1)〈Ei〉 (6.41) 

(Rooney and Nyborg, 1972). For .κ0/κ = 1, which defines a truly perfectly 
absorbing wall because even the spring constants on the two sides match, we have 

.〈P E − P0〉 = 1
4 (γ − 3)〈Ei〉 (6.42)
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and 

.〈ΔP 〉 = 〈P L − P0〉 = 1
4 (γ + 1)〈Ei〉 (6.43) 

(Westervelt, 1950). The differences between Eqs. (6.40) and (6.41) and Eqs. (6.42) 
and (6.43) demonstrate the sensitivity of radiation pressure to small variations in the 
boundary conditions. Both sets of results are thus correct if properly interpreted. 

Let us consider a variation of the problem. The above results remain the same 
if the wave exists in a tube. If a hole is opened on the side wall, however, then 
.〈P E − P0〉 = 0 is obtained near the hole. From Eq. (6.30) we thus have .C = 0, and 
it follows that for all x 

.〈P E − P0〉 = 0, (6.44) 

and from Eq. (6.31) 

.〈ΔP 〉 = 〈P L − P0〉 = 〈Ei〉, (6.45) 

which is a Langevin radiation pressure. Instead of a hole, one can insert instead a 
freely moving side piston that allows the inner and outer pressures to equalize, and 
the same results are obtained (Beyer, 1950, 1974, 1978). 

6.2.2.3 Sound Beam Incident on a Partially Reflecting Interface 

Consider a flat interface at .z = 0 between fluids 1 and 2, which occupy the regions 
.z < 0 and .z > 0, respectively, have corresponding densities . ρ1 and . ρ2, and 
sound speeds . c1 and . c2. Let a sound beam propagate through medium 1 toward 
the interface at normal incidence, and for simplicity let it be described by a single 
term in its Fourier–Bessel series representation: 

.pi = AJ0(krr) exp[i(K1z − ωt)], (6.46) 

where .k1 = ω/c1, kr is the reciprocal of the characteristic width of the beam, and 
.K1 = (k21 − k2r )

1/2 is the effective wave number in the z direction, with .K1 ⪢ kr . 
In general, the beam is partially reflected and partially transmitted. Let the reflected 
beam be described by 

.pr = BJ0(krr) exp[−i(K1z + ωt)], (6.47) 

and the transmitted beam by 

.pt = DJ0(krr) exp[i(K2z − ωt)], (6.48)
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where .k2 = ω/c2, and .K2 = (k22 − k2r )
1/2 is the effective wave number in the z 

direction, with .K2 ⪢ kr . The corresponding z components of the acoustic particle 
velocities are 

.wi = K1A

ωρ1
J0(krr) exp[i(K1z − ωt)], . (6.49) 

wr = −K1B 
ωρ1 

J0(krr) exp[−i(K1z + ωt)], (6.50) 

and 

.wt = K2D

ωρ2
J0(krr) exp[i(K2z − ωt)], (6.51) 

and the r components are 

.ui = krA

iωρ1
J '
0(krr) exp[i(K1z − ωt)], . (6.52) 

ur = 
krB 
iωρ1 

J '
0(krr) exp[−i(K1z + ωt)], (6.53) 

and 

.ut = krD

iωρ2
J '
0(krr) exp[i(K2z − ωt)]. (6.54) 

Imposing the boundary condition that the acoustic pressures on the two sides of the 
interface be continuous, i.e., .pi + pr = pt , we find that .A + B = D. Imposing 
another boundary condition, that the z components of the particle velocities on the 
two sides be continuous, i.e., .wi + wr = wt , we find that .A − B = ZD, where 
.Z = ρ1c1/ρ2c2 is the ratio of the impedances of media 1 and 2, with terms of order 
.(kr/k1)

2 or .(kr/k2)
2 neglected. Thus 

.B =
⎛
1 − Z

1 + Z

⎞
A (6.55) 

and 

.D =
⎛

2

1 + Z

⎞
A. (6.56) 

In medium 1, the total acoustic pressure is .p1 = pi + pr , and the total particle 
velocity is given by .w1 = wi + wr and .u1 = ui + ur . Similarly, in medium 2, 
.p2 = pt , w2 = wt and .u2 = ut . Substituting these expressions, using the real 
parts of Eqs. (6.46)–(6.54), into Eqs. (6.13) and (6.15), and setting .C = 0 since



6 Radiation Pressure and Acoustic Levitation 187

this must be true for the unperturbed interface far from the beam, we obtain in a 
straightforward way for medium 1 

. 〈P E
1 − P0〉 = AB cos 2K1z

ρ1c
2
1

[J0(krr)]2

+ 1

4ρ1c21

⎛
kr

k1

⎞2 ⎾
(A2 + B2){[J0(krr)]2 − [J '

0(krr)]2}

− 2AB cos 2K1z{[J0(krr)]2 + [J '
0(krr)]2}

⏋
(6.57) 

and 

. 〈P L
1 − P0〉 = A2 + B2

2ρ1c21
[J0(krr)]2

+ 1

4ρ1c21

⎛
kr

k1

⎞2 ⎾− (A2 + B2){[J0(krr)]2 + [J '
0(krr)]2}

+ 2AB cos 2K1z{[J0(krr)]2 − [J '
0(krr)]2}

⏋
, (6.58) 

and for medium 2 

.〈P E
2 − P0〉 = D2

4ρ2c22

⎛
kr

k2

⎞2

{[J0(krr)]2 − [J '
0(krr)]2} (6.59) 

and 

. 〈P L
2 − P0〉 = D2

4ρ2c22

⎛
[J0(krr)]2 − 1

2

⎛
kr

k2

⎞2

{[J0(krr)]2 + [J '
0(krr)]2}

⎞
.

(6.60) 

Equations (6.57)–(6.60) vanish for large . krr , as expected for a beam. 
We now consider the limiting forms of Eqs. (6.57)–(6.60) for  . (kr/k1)

2 ⪡
1, (kr/k2)

2 ⪡ 1. In the region .krr ⪡ 1, the disturbance is a plane wave. In the 
region .krr ⪢ 1, the sound field vanishes. The solutions therefore approximate 
those for the idealized case of a collimated plane-wave beam. Using Eqs. (6.55) 
and (6.56), we obtain the following simplified results: for medium 1, 

.〈P E
1 − P0〉 = 2〈Ei〉

⎛
1 − Z

1 + Z

⎞
cos 2K1z (6.61) 

and
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.〈P L
1 − P0〉 = 2〈Ei〉

⎛
1 + Z2

(1 + Z)2

⎞
, (6.62) 

and for medium 2, 

.〈P E
2 − P0〉 = 0 (6.63) 

and 

.〈P L
2 − P0〉 = 4Zn

(1 + Z)2
〈Ei〉, (6.64) 

where .〈Ei〉 = A2/2ρ1c21 is the energy density of the incident wave, and .n = c1/c2. 
From Eqs. (6.62) and (6.64), the difference in mean Lagrangian excess pressures at 
the interface between media 1 and 2, .〈ΔP L〉 = 〈P L

1 − P L
2 〉, is  

.〈ΔP L〉 = 2〈Ei〉
(1 + Z)2

(1 + Z2 − 2nZ). (6.65) 

Beyer (1974) and Landau and Lifshitz (1987; Sect. 66) obtained the same result. 
Equation (6.65) explains the “acoustic fountain,” in which the radiation pressure 
of a sound beam propagating from one fluid into another displaces the interface, 
leading to the formation of a jet (Hertz and Mende, 1939; see also Beyer, 1974). 
The direction in which the interface is displaced, i.e., into medium 1 or medium 2, 
depends on the combination of Z and n. 

6.3 Acoustic Levitation 

6.3.1 Acoustic Radiation Force on a Small Sphere 

In a sound field, the radiation stress acting on the surface of a sphere leads to an 
acoustic radiation force. Consider the long-wavelength limit .kR ⪡ 1, where R is 
the radius of the sphere. In practice, we typically have .R ⪢ δ = (ν/ω)1/2, where 
. δ is the viscous boundary-layer thickness of the sound field, and . ν is the kinematic 
viscosity of the host medium. We may thus neglect viscosity. To calculate the force, 
one usually specifies, for example, whether the sphere is rigid or compressible. We 
shall consider the following practical cases: (1) a solid or liquid sphere in a gaseous 
medium, (2) a liquid sphere in a liquid medium, and (3) a gas bubble in a liquid 
medium.
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6.3.1.1 Rigid Sphere in a Gaseous Medium 

Since liquid or solid is approximately 1000 times more dense than gas, we may 
consider the sphere as an immovable mass. Moreover, since the acoustic impedances 
of the sphere material and the gas are so mismatched, and acoustic resonance in 
the sphere is not possible in the limit .kR ⪡ 1, we may consider the sphere to be 
rigid. King (1934) considered arbitrary densities for the sphere and the host medium. 
Since he did not also consider the compressibility of the sphere, his theory is valid 
only for a heavy rigid sphere in a gaseous medium. 

Let the incident wave be described by .pi = pi0 exp(−iωt), where 

.pi0 = A sin kz, (6.66) 

and therefore .z = 0 is the location of a pressure node. Let the sphere be located on 
the z axis, at .z = Z. Introduce a spherical coordinate system .(r, θ) with its origin 
at the center of the sphere, and with the direction .θ = 0 aligned with the positive z 
axis. For a point .(r, θ), we have  .z = Z + r cos θ . Substitution into Eq. (6.66), and 
using the identity 

. exp(ikr cos θ) =
∞⎲

n=0

(2n + 1)injn(kr)Pn(cos θ) (6.67) 

(Abramowitz and Stegun, 1965), we have 

.pi0 =
∞⎲

n=0

(2n + 1)Anjn(kr)Pn(cos θ), (6.68) 

where 

.An = A

2i
in[eikZ − (−1)ne−ikZ], (6.69) 

. jn is the spherical Bessel function, and . Pn is the Legendre polynomial. Let the wave 
scattered from the sphere’s surface S be described by .pr = pr0 exp(−iωt), where 
. pr0 can be expanded as 

.pr0 =
∞⎲

n=0

Bnh
(1)
n (kr)Pn(cos θ), (6.70) 

in which .h(1)
n is the spherical Hankel function of the first kind, which for large kr , 

together with the factor .exp(−iωt), describes a spherical wave propagating outward 
from the center. The total sound pressure .p = p0 exp(−iωt), where .p0 = pi0+pr0, 
has a zero normal derivative on S, and thus the normal component of the particle
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velocity at the rigid surface is zero. We therefore have 

.

⎛
∂pi0

∂r

⎞
r=R

= −
⎛

∂pr0

∂r

⎞
r=R

. (6.71) 

Substituting Eqs. (6.68) and (6.70) into Eq. (6.71) and equating terms with the same 
n, we find 

.Bn = − (2n + 1)j '
n(kR)

h
(1)'
n (kR)

An. (6.72) 

From Eqs. (6.68)–(6.70) and (6.72), we thus obtain for the total sound pressure at 
. r = R

.p0 =
∞⎲

n=0

(2n + 1)

⎾
jn(kR) − j '

n(kR)h
(1)
n (kR)

h
(1)'
n (kR)

⏋
AnPn(cos θ). (6.73) 

In the limit of small kR, Eq.  (6.73) reduces to 

. p0 =
⎾
1 − (kR)2

2

⏋
A sin kZ + 3

2 (kR)A cos kZ P1(cos θ)

− 5
9 (kR)2A sin kZ P2(cos θ) (6.74) 

at order .(kR)2. The tangential component of the particle velocity at .r = R is . uθ =
uθ0 exp(−iωt), where .uθ0 = (iωρ0R)−1(∂p0/∂θ). Equation (6.74) yields 

.uθ0 = 3i

2

A

ρ0c0
cos kZ sin θ − 5i

3

(kR)A

ρ0c0
sin kZ cos θ sin θ. (6.75) 

At the rigid surface, the normal component of the velocity vanishes. The sound 
field given by Eqs. (6.74) and (6.75) can be substituted into Eq. (6.13) to evaluate 
.〈P E − P0〉 at .r = R: 

. 〈P E − P0〉 = A2

4ρ0c20
[sin2 kZ + 3

2 (kR) sin 2kZ cos θ

− 9
4 cos

2 kZ sin2 θ + 5
2 (kR) sin 2kZ sin2 θ cos θ ]. (6.76) 

In deriving Eq. (6.76) we have set .C = 0 in Eq. (6.13), because the system is open, 
with a sphere scattering an infinite plane wave into an unbounded space. As far as 
the radiation pressure is concerned, there is no constraint on the system such as 
conservation of volume or mass, and consequently there is no need for a nonzero 
value of C.
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The integral over S of the normal component of the stress in Eq. (6.7) leads 
to the acoustic radiation force. Since the normal component of the velocity is 
zero, the stress in Eq. (6.7) becomes .Sijnj = −〈P E − P0〉ni , where .n = −er . 
By axisymmetry, the force acting on the sphere has only a z component. With 
.n · ez = − cos θ , the force is given by 

.Fz = −
⎰

S

〈P E − P0〉 cos θ dS. (6.77) 

Substituting Eq. (6.76) and the relation .dS = 2πR2 sin θ dθ , and integrating from 
.θ = 0 to .θ = π , we find 

.Fz = −5π

6

A2kR3

ρ0c
2
0

sin 2kZ (6.78) 

(King, 1934). The force thus pushes the sphere toward the pressure node at .Z = 0. 
For small kZ, such that .sin 2kZ ≈ 2kZ, the force acts like a spring that keeps the 
sphere at the pressure node. The potential well U defined by .Fz = −dU/dZ is 

.U = −5π

12

A2R3

ρ0c
2
0

cos 2kZ. (6.79) 

For a progressive wave .pi = pi0 exp(−iωt), where .pi0 = A exp(ikz), the  
corresponding force is 

.Fz = 11π

18

A2k4R6

ρ0c
2
0

(6.80) 

(King, 1934), which is of order .(kR)3 times the force produced by the standing 
wave, given by Eq. (6.78). For a progressive plane wave, the force is due to the 
deflection of incident-wave momentum. Measurements of the acoustic radiation 
force on a sphere, reported by Rudnick (1977) and by Leung et al. (1981), are 
consistent with King’s theory for a standing wave [Eq. (6.78); see Fig. 6.1]. 

For the purpose of levitation, two standing waves are sometimes needed. If the 
frequencies are different, the total force is the vector sum of the forces due to the 
two waves acting independently, because time averaging eliminates any coupling 
between them. If the frequencies are the same, however, then the coupling is finite, 
and the force is affected. Consider two pressure waves . pix = pix0 exp(−iωt)

and .piy = piy0 exp(−iωt) that produce corresponding vibrations in the x and 
y directions, where .pix0 = Ax sin kx, piy0 = Ay exp(iψ) sin ky, Ax and . Ay

are pressure amplitudes, and . ψ is the phase difference. The origin is located at a 
pressure node. Let .α = Ay/Ax .(0 < α ≤ 1), and let the sphere be centered at 
.(X, Y ). With the sphere expected to remain near .X = Y = 0, the potential well
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Fig. 6.1 Force/weight of a sphere vs. sphere position for a plane standing wave at three sound 
pressure levels, compared with King’s theory. The sound pressure levels were measured using a 
microphone attached on an end wall, where the pressure antinode was located. Second and higher 
harmonics of the fundamental mode were generated by nonlinearity and observed on a spectrum 
analyzer, giving the microphone output signal a sawtooth appearance. In an attempt to restore the 
wave to a sinusoidal form, a second harmonic was introduced by the speaker into the chamber to 
cancel the second harmonic generated in the fluid (from Leung et al., 1981, Fig. 4, p. 1764). 

U , related to the force F by .F = −∇U , is given approximately by Lee and Wang 
(1988a): 

.U = 5π

6

A2
xk

2R3

ρ0c
2
0

(X2 + α2Y 2 + 4
5αXY cosψ). (6.81) 

If .ψ = π/2, the potential well is just the sum of the contributions from the two 
waves. Otherwise, the two waves are coupled. The contours of the well are in general 
elliptical, oriented at an angle depending on . α and . ψ . If the sphere is instead a liquid 
drop, it will be flattened along its major axis. Only for the special case . ψ = π/2
and .α = 1 are the contours circular.
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6.3.1.2 Liquid Sphere in an Immiscible Liquid Medium 

Yosioka and Kawasima (1955) considered the general case of a compressible fluid 
sphere in a compressible fluid medium. For a drop in a liquid, the compressibility 
and density of the drop are comparable with those of the medium, so that the 
vibration of the drop must be taken into account. Therefore, the normal velocity 
on the surface S is not required to be zero. The force is obtained by integrating the 
normal component of the radiation stress tensor in Eq. (6.7) over S. Alternatively, we 
shall derive the results using the integral momentum equation (Westervelt, 1957). By 
integrating Eq. (6.5) over the space between S and a much larger spherical surface S0 
concentric with the sphere, and using Gauss’s theorem, we obtain a surface integral 
of Sijnj over S' = S + S0, equated to zero, where nj is the normal unit vector on 
the surface S' pointing away from the enclosed space. Since the integral of −Sijnj 
over S is the force Fi acting on the sphere, we have, using Eq. (6.7), 

. Fi =
⎰

S

(〈P E − P0〉δij + ρ0〈uiuj 〉)nj dS

= −
⎰

S0

(〈P E − P0〉δij + ρ0〈uiuj 〉)nj dS, (6.82) 

where n = −er on S and n = er on S0. We now calculate the force in terms of 
far-field relations. Let φi = φi0 exp(−iωt) be the velocity potential of the incident 
wave, and φ = φ0 exp(−iωt) be that of the total wave. At large kr , the velocity 
potential approaches the form 

.φ0 = φi0 + f (θ)

r
exp(ikr), (6.83) 

where f (θ)  is determined by the boundary conditions on S. Using  Eq. (6.83), and 
setting C = 0 in Eq.  (6.12) [for the same reason given just after Eq. (6.76)], we can 
evaluate 〈P E − P0〉. Substituting 〈P E − P0〉 and u = ∇φ into Eq. (6.82), we obtain 

. Fz = −πρ0k
2
⎰ 1

−1
|f (θ)|2 cos θ d(cos θ)

− πρ0r
2
⎰ 1

−1
Re

⎛
∂φi0

∂r

∂φ∗
i0

∂z

⎞
d(cos θ)

− πρ0r
2

2

⎰ 1

−1
(k2|φi0|2 − |∇φi0|2) cos θ d(cos θ)

− πρ0r
2k2

⎰ 1

−1
Re

⎛
φ∗

i0
f (θ)

r
exp(ikr)

⎞
cos θ d(cos θ)

+ πρ0r
2k

⎰ 1

−1
Im

⎛
∂φ∗

i0

∂z

f (θ)

r
exp(ikr)

⎞
d(cos θ), (6.84)
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where Re and Im denote real and imaginary parts. The incident wave is given by 
Eq. (6.66) and expanded as in Eqs. (6.68) and (6.69). The scattered wave is given 
by Eq. (6.70). The sound wave inside the sphere is given by pt = pt0 exp(−iωt), 
where 

.pt0 =
∞⎲

n=0

Dnjn(kr)Pn(cos θ). (6.85) 

The boundary condition that the acoustic pressures be continuous at r = R gives 

.An(2n + 1)jn(kR) + Bnh
(1)
n (kR) = Dnjn(k1R), (6.86) 

where k1 = ω/c1, in which c1 is the speed of sound in the fluid sphere. The 
condition that the velocities be continuous at r = R leads to 

.λσ [An(2n + 1)j '
n(kR) + Bnh

(1)'
n (kR)] = Dnj

'
n(k1R), (6.87) 

where λ = ρ1/ρ0, σ  = c1/c0, and ρ1 is the density of the sphere. When both the 
sphere and the medium are liquids, we expect that λ ∼ 1 and σ ∼ 1. We thus have 
kR ∼ k1R ⪡ 1. Using Eqs. (6.86) and (6.87) to solve  for  Bn leads to 

.Bn = −An(2n + 1)[jn(kR)j '
n(k1R) − λσj '

n(kR)jn(k1R)]
h

(1)
n (kR)j '

n(k1R) − λσh
(1)'
n (kR)jn(k1R)

. (6.88) 

Substituting Eq. (6.88) into Eq. (6.86) to solve  for  Dn gives 

.Dn = − iλσAn(2n + 1)

(kR)2[h(1)
n (kR)j '

n(k1R) − λσh
(1)'
n (kR)jn(k1R)]

, (6.89) 

where we have made use of the Wronskian relation (jnh
'
n − j '

nhn)(x) = i/x2. The  
force can be evaluated from the radiation stress tensor on S, making use of the 
expression for the field on the inside surface with Dn given by Eq. (6.89). 

In our case, the far field is given by the incident wave represented by Eq. (6.68), 
and the asymptotic form of the scattered wave represented by Eq. (6.70). Using the 
scattered potential φr0 = pr0/iωρ0 for the second term on the right-hand side of 
Eq. (6.83), with the scattered acoustic pressure pr0 given by Eq. (6.70), we obtain 
for large kr 

.f (θ) = 1

iωρ0k

∞⎲
n=0

(−i)n+1BnPn(cos θ). (6.90) 

Expanding Bn in Eq. (6.88) to lowest order in kR, using  λ ∼ 1, σ  ∼ 1, and 
kR ∼ k1R ⪡ 1, we find that B0 and B1 are of order (kR)3A, and for n >  1, Bn ∼
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(kR)2n+1A. We then have 

.f (θ) = AkR3

ρ0c0

⎾⎛
1 − λ

1 + 2λ

⎞
cos kZ cos θ + i

3

⎛
1 − 1

λσ 2

⎞
sin kZ

⏋
. (6.91) 

Substituting Eq. (6.91), and Eq. (6.66) with z = Z + r cos θ , into Eq. (6.84), using 
φi0 = pi0/iωρ0, and the radiation condition to eliminate the dependence on r , we  
find 

.Fz = −πA2kR3

ρ0c
2
0

⎧⎾
λ + 2

3 (λ − 1)

1 + 2λ

⏋
− 1

3λσ 2

⎫
sin 2kZ, (6.92) 

where the first term inside the curly braces comes from the interaction of the incident 
wave with the dipole scattered field, and the second term from the interaction with 
the monopole scattered field. The latter effect depends on the compressibility of the 
sphere. In the limit λ → ∞, Eq.  (6.92) reduces to King’s formula, Eq. (6.78). In 
the σλ  plane, the curve σ(λ)  decreases monotonically from infinity at λ = 0 to zero  
at λ = ∞, passing through the point (1,1) in between. Unlike the case with King’s 
formula, the force predicted by Eq. (6.92) can point toward either a pressure node or 
an antinode, depending on whether the point (λ, σ) lies above or below this curve, 
respectively (Yosioka and Kawasima, 1955). Crum (1971) measured the acoustic 
pressure required to hold different small droplets in an immiscible liquid medium 
at different positions, and found good agreement with Eq. (6.92) (Fig. 6.2). For a 
progressive plane wave pi = pi0 exp(−iωt), where pi0 = A exp(ikz), the force is 
evaluated in a similar fashion after Eq. (6.84) is simplified by conservation of energy 
(Lee and Wang, 1984): 

.Fz = 2πA2k4R6

ρ0c
2
0(1 + 2λ)2

⎧⎛
λ − 1 + 2λ

3λσ 2

⎞2
+ 2

9 (1 − λ)2

⎫
, (6.93) 

which agrees with the result obtained by Yosioka and Kawasima, and which reduces 
to King’s result, Eq. (6.80), in the limit λ → ∞. Equation (6.93) is of order  (kR)3 

times its counterpart for the standing wave, Eq. (6.92). The force always points in 
the direction of the wave propagation, as expected because it is due to the deflection 
of wave momentum. 

Gor’kov (1962) calculated the force in terms of the local incident wave. His 
formula is valid for any wave except a progressive plane wave. His separate result 
for the latter agrees with Eq. (6.93). For any other wave, let 

.f1 = 1 − 1

λσ 2 (6.94) 

and
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Fig. 6.2 Acoustic pressure amplitude vs. droplet position for paraldehyde droplets in water. The 
solid line is the theoretical prediction [Crum (1971) derived Eq. (6.92) differently] for λ = ρ1/ρ0 = 
0.994, σ  = c1/c0 = 0.776, and k = 0.81 cm−1. The droplet position is the displacement from 
the pressure antinode at the left. MTP stands for minimum trapping pressure (from Crum, 1971, 
Fig. 3, p. 161). 

.f2 = 2(λ − 1)

2λ + 1
. (6.95) 

The force is given by F = −∇U , where 

.U = 2πR3

⎛
f1

3ρ0c20
〈p2

i 〉 − f2ρ0

2
〈ui ·ui〉

⎞
, (6.96) 

and where pi and ui are, respectively, the incident acoustic pressure and particle 
velocity at the position of the center of the sphere. For a plane standing wave, 
Eq. (6.96) agrees with Eq. (6.92). Marston (1980) showed that a drop can be 
levitated, deformed, and excited into oscillations in an immiscible liquid host using 
an amplitude-modulated wave. 

6.3.1.3 Bubble in a Liquid Medium 

The possible resonance between the wave and the monopole oscillation of the 
bubble is even more important than the bubble compressibility (Yosioka and
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Kawasima, 1955; Eller, 1968). The density of gas is much less than that of liquid, 
but the speed of sound in gas is only a few times less, and thus .λ ⪡ 1 but 
.σ ∼ 1. The incident wave is given by Eq. (6.66). The analysis begins with 
Eqs. (6.82)–(6.90). Let us expand . Bn in Eq. (6.88) to lowest order in kR. The  
condition .(kR)2 = 3λσ 2 in the denominator . {−kR + i[1 − 3λσ 2/(kR)2]}/3σ
for . B0 in Eq. (6.88) is associated with the monopole oscillation resonance. Thus 
.B0 = −[σ(kR/σ)3A sin kZ]/{σ(kR/σ)3 + i[3λ − (kR/σ)2]} ∼ O(A), but  for  
.n > 1 we have .Bn ∼ (kR)2n+1A, and . Bn can be ignored. We then have 

.f (θ) = kR3A

ρ0c0

⎧⎨
⎩cos kZ cos θ + sin kZ

σ 2
{
σ
(

kR
σ

)3 + i
⎾
3λ − (

kR
σ

)2⏋}
⎫⎬
⎭ . (6.97) 

Equations (6.97) and (6.66) are substituted into Eq. (6.84) to obtain the force: 

.Fz = πA2kR3

ρ0c
2
0

⎧⎪⎨
⎪⎩

1
σ 2

⎾
3λ − (

kR
σ

)2⏋

σ 2
(

kR
σ

)6 +
⎾
3λ − (

kR
σ

)2⏋2
⎫⎪⎬
⎪⎭ sin 2kZ (6.98) 

(Wu and Du, 1990; Löfstedt and Putterman, 1991). The corresponding result of 
Yosioka and Kawasima (1955) differs by a factor of .σ 2/(kR)2 because of an 
algebraic error. Equation (6.98) agrees with the more simple theory of Eller (1968), 
except that the latter is singular at the monopole resonance. Using .ρ1c21 = 3αP0, 
where here .α = γ or .α = 1 for an adiabatic or isothermal bubble, respectively, 
the condition .(kR)2 = 3λσ 2 yields the monopole frequency . ω0 = (3αP0/ρ0R

2)1/2

[see Eq. (5.47)]. For a given bubble, the force points toward the pressure antinode 
for .ω < ω0, and toward the node for .ω > ω0. Alternatively, for a given frequency 
. ω, the bubble travels toward the pressure antinode for .R < R0, and toward the 
node for .R > R0, where .R0 = (3aP0/ρ0ω

2)1/2. The bubble oscillates in phase 
with the sound if excited below resonance (Prosperetti, 1986). When the pressure 
rises, the bubble is pushed toward the pressure node while it is compressed, and vice 
versa when the pressure falls. The second half-cycle is more important because for 
the same force per unit volume, the bubble has a larger volume. On average, the 
bubble is thus pushed toward the pressure antinode. The bubble oscillates .180◦ out 
of phase with the sound if excited above resonance, and the opposite happens. For a 
progressive plane wave .pi = pi0 exp(−iωt), where .pi0 = A exp(ikz), the force is 

.Fz = 2πA2k4R6

ρ0c
2
0σ

4

⎧
σ 2
(

kR
σ

)6 +
⎾
3λ − (

kR
σ

)2⏋2⎫ , (6.99) 

which is always positive and does not vanish at the monopole resonance.
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6.3.1.4 Sphere in a Gaseous Medium with a Temperature Profile 

Investigations involving nonuniform temperature are motivated by the need to heat 
and cool samples in containerless processing. For this purpose, a chamber with a 
nonuniform temperature can be used (Trinh et al., 1986; Robey et al., 1987; Collas 
and Barmatz, 1987). An intense focused light beam can also be used to heat a sample 
in a chamber at room temperature. For the latter scheme, the force is perturbed by 
the thermal profile around the sphere (Lee and Wang, 1984, 1988b). Without the 
profile, the sphere prevents the air in its volume from oscillating, and at the same 
time the sphere experiences a force. The obstruction can be considered correlated 
to the force. If the air around the sphere is heated, the lighter hot air vibrates more 
than the ambient air, reducing the obstruction and therefore the force. Heating can 
even reverse the force, sending the sphere to the wall. The heated air near the poles 
.(θ = 0, π) is at the stagnation points of the vibration and cannot move. Only the 
air around the equator .(θ = π/2) can affect the force. However, acoustic streaming 
(Nyborg, 1965; Lee and Wang, 1990; see also Chap. 7) tends to drive the heated air 
from the equator toward the poles (Oran et al., 1979; Leung and Wang, 1985). If 
the streaming is strong enough to clear the heated air from the equator, the thermal 
effect on the force is negligible (Lee and Wang, 1988b). Another effect of strong 
acoustic streaming is the enhancement of heat transfer from the sample (Lee and 
Wang, 1988b; Gopinath and Mills, 1993). 

It was observed by Leung and Wang (1985) that for such a sphere, the percentage 
change in the force is negligible at high sound pressure levels. From the observed 
profile in Fig. 6.3, most of the heated air was pushed from the equator toward the 
poles by the streaming. If hot air suddenly appears around the sphere—for example, 
due to release of latent heat when the sample is cooled to its freezing point—then 
streaming cannot immediately clear the heated air from the equator, and the force 
can be weakened or even reversed in direction. 

6.3.2 Acoustic Viscous Torque 

The Rayleigh torque is the moment of the radiation stress on an asymmetric 
object (Rayleigh, 1882). Two sound waves of the same frequency, vibrating in 
perpendicular directions, can produce a different kind of torque on an axisymmetric 
object. A fluid particle moves in a circular orbit in the compound wave field. A 
simple model is based on the assumption that if the fluid particle moves in the 
counterclockwise direction, the object will be induced to rotate in the clockwise 
direction, like a cogwheel (Wang et al., 1977; Wang and Kanber, 1978). Consider 
two waves of equal pressure amplitudes A, causing a circular but irrotational particle 
velocity of amplitude .ua ∼ A/ρ0c0. Inside the viscous boundary layer of thickness 
.δ = (ν/ω)1/2 lining the sphere’s surface, the velocity field is subjected to the no-
slip boundary condition and becomes rotational. The gyration of a fluid particle 
inside the viscous boundary layer, around an approximately closed loop, produces



6 Radiation Pressure and Acoustic Levitation 199

Fig. 6.3 Holograms of a heated sphere at equilibrium at the pressure node in a horizontal acoustic 
vibration at various sound pressure levels (from Leung and Wang, 1985, Fig. 9, p. 1689). 

a tangential stress of order .ρνua/δ on the side of the loop near the surface. It also 
produces an opposite stress times a factor of order .R/(R + a), where . a ∼ ua/ω

is the radius of the gyration, on the side of the loop far from the surface. The two 
effects add up to produce a net stress of order .μu2a/δωR. There is thus a torque 
of order .πR2δA2/ρ0c

2
0 on the object, which agrees with the prediction of a more 

thorough analysis by Busse and Wang (1981): 

.T = 3
√
2πR2δ

AxAy

ρ0c
2
0

sinψ. (6.100) 

The torque vanishes when .ψ = 0, and it is maximized when .ψ = π/2. This  
simplified model thus provides a shortcut to the answer. However, the sphere 
actually rotates in the same direction as a fluid particle, according to the more 
rigorous theory and also experimental observation, and in contradiction to the 
cogwheel model, because the acoustic streaming inside the boundary layer is 
opposite to that outside (Lee and Wang, 1989). The more general theory was tested 
for the case of a circular disc, and it agrees quite well with experiment (Figs. 6.4 
and 6.5).
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Fig. 6.4 Acoustic torque on a circular disc vs. acoustic energy. The points are the experimental 
data, the solid line represents the model .T = 21/2δS(AxAy/2ρ0c20) sinωt after normalization, 
with S the surface area of the disc, and the dashed line the rigorous theory (from Busse and Wang, 
1981, Fig. 1, p. 1634). 

Fig. 6.5 Acoustic torque on a circular disc vs. phase difference between the x and y components 
of the sound field. The points are experimental data. The curves are normalized values from the 
model .T = 21/2δS(AxAy/2ρ0c20) sinωt (from Busse and Wang, 1981, Fig. 2, p. 1635).
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6.3.3 Resonance Frequency Shift 

The introduction of even a small sample into a resonant chamber causes the 
resonance frequency to shift (Leung et al., 1982; Barmatz et al., 1983). A decrease 
in the sound power and a corresponding decrease in the force, when coupled with 
the finite response time of the wave field, can lead to positional instabilities and 
consequently loss of the sample from the potential well (Rudnick and Barmatz, 
1990). The shift is a linear effect. The sample reduces the volume of the chamber, 
which corresponds to an increase in the resonance frequency. It also forces the sound 
to travel a greater distance, corresponding to a reduction in the resonance frequency. 
For a chamber of volume V and length L in the z direction, let the incident sound 
wave be .pi = A sin(nπz/L) exp(−iωt). With a sphere at .z = Z, the resonance 
frequency shift is (Leung et al., 1982) 

.
δω

ωn

= 4πR3/3

V
{[ 54 − 229

360 (knR)2] cos 2knZ − [ 14 + 67
360 (knR)2]}, (6.101) 

where .kn = nπ/L, and .ωn = knc0 is the resonance frequency for the empty cham-
ber. Measurements of the resonance-frequency shift are compared with Eq. (6.101) 
in Fig. 6.6. 

Fig. 6.6 Resonance-frequency shift vs. position for a sphere of radius 0.5 in. Circles represent 
measurement, and curves represent theory (from Leung et al., 1982, Fig. 3, p. 618).
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7.1 Introduction 

In a region of fluid where a sound field exists, the pressure and velocity vary with 
time, but, in general, the temporal averages of these quantities are not zero. The 
average over time of the velocity is called acoustic streaming, and is the subject 
of this chapter. It was probably in studies of plates vibrating in air that the first 
observations of this acoustical phenomenon were made. Faraday (1831) found 
currents of air to rise at points of maximum vibration amplitude on such plates, and 
to descend at displacement nodes. Since then, the circulatory motions characteristic 
of acoustic streaming have been observed and investigated in many situations. Some 
of these involve vibrating objects or the interaction of sound fields with boundaries, 
while others involve beams of sound (especially ultrasound) propagating in a large 
space, or in other situations where boundaries are less important. 
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The subject was reviewed in detail by the author (Nyborg, 1965) in an earlier 
publication. In the present chapter, the intent is to discuss basic aspects of the theory, 
and to recognize developments during the past few decades. It has not been possible 
to be all-inclusive. For a more comprehensive treatment of the older literature, the 
interested reader is referred to the 1965 review cited above. For discussions of other 
or more recent findings, the reviews by Riley (1965), by Rudenko and Soluyan 
(1977), and by Lighthill (1978a, 1978b) are highly recommended. 

In Sect. 7.2, the general theory is taken up, including the significance of effective 
force density and Reynolds stresses in driving the streaming. In Sect. 7.3, solutions 
of the streaming equations are discussed, both for streaming arising from ultrasound 
beams propagating in homogeneous media under free-field conditions and for 
streaming arising from boundary layers set up at the surfaces of walls or other solid 
objects. Applications of acoustic streaming are described briefly in Sect. 7.4. 

7.2 General Considerations 

7.2.1 Basic Equations 

We assume a homogeneous isotropic fluid in which the pressure, density, and 
velocity at any point are given instantaneously by .P(x, y, z, t), .ρ(x, y, z, t), and 
.u(x, y, z, t), respectively. Considering a small element dv of fluid, we suppose that 
the only forces acting on dv are surface stresses due to the elasticity and viscosity 
of the fluid. The dynamic equation for the fluid element is then 

.f = ρ

⎾
∂u
∂t

+ (u ·∇)u
⏋

, (7.1) 

where . f is the net force per unit volume due to stresses. For a Newtonian viscous 
fluid, . f is given by 

.f = −∇P + [μB + (4/3)μ]∇∇ ·u − μ∇ × ∇ × u, (7.2) 

where . μ and . μB are, respectively, the coefficients of shear and bulk viscosity for 
the fluid. Both . μ and . μB are assumed here to be independent of space and time, 
although it is known that . μB , especially, can be very much a function of frequency. 
By using the continuity equation 

.
∂ρ

∂t
+ ∇ ·ρu = 0, (7.3) 

together with Eqs. (7.1) and (7.2) one obtains
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.
∂(ρu)

∂t
− F' = −∇P + [μB + (4/3)μ]∇∇ ·u − μ∇ × ∇ × u, (7.4a) 

where 

. − F' = ρ(u ·∇)u + u∇ ·ρu. (7.4b) 

It has been noted by Lighthill (1978a, 1978b) that . F' is equal to the negative 
divergence of a momentum flux tensor, i.e., the ith component may be written, in 
index notation, as .F '

i = −∂(ρuiuj )/∂xj . 

7.2.2 Flow Produced by an External Force Field 

An equation analogous to Eq. (7.4a) applies to the flow produced in a viscous fluid 
by an external force field, in the absence of sound; for this application, it is necessary 
only to replace . F' in Eq. (7.4a) by  . Fe, the latter representing the external force per 
unit volume. If the terms in Eq. (7.4a) involving .∂/∂t and .∇ ·u are set equal to zero, 
the resulting equation is 

.Fe = ∇P + μ∇ × ∇ × u = ∇P − μ∇2u, (7.5) 

and becomes a governing equation for steady flow of an incompressible viscous fluid 
produced by an external force field. Solutions of Eq. (7.5) can be readily applied to 
textbook examples (Nyborg, 1975) of laminar flow in tubes and channels. 

A general solution of Eq. (7.5) gives the steady velocity . u at any observation 
point .(x, y, z) in an unbounded fluid in terms of a volume integral: 

.u = 1

8πμ

⎰ ⎧
Fe

r
+ (Fe · r)r

r3

⎫
dv. (7.6) 

Here . Fe is the external force per unit volume at the location .(x', y', z') of any volume 
element dv, and . r is the vector position of the observation point relative to the 
volume element (Lighthill, 1978a, 1978b). Equation (7.6) is a generalization of an 
expression given by Lamb (1945) for the velocity resulting from a “point-force” 
(see also Happel and Brenner, 1991); if the only component of the external force is 
. Fex , in the  x direction, and if it exists only in a single volume element centered at 
the origin, the velocity . u at any position . r is given by 

.u = 1

8πμ

⎧
iFex

r
+ (Fe · r)r

r3

⎫
dv, (7.7)
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where . i is the unit vector along x. Along the x axis, the corresponding component u 
is given by 

.u = Fexdv/4πμ|x|, (7.8) 

where . |x| denotes the (unsigned) magnitude of x. Equation (7.8) shows that on the 
axis, u is always positive, is infinite at the point where the force is applied, and 
decreases monotonically with distance from that point. 

The singularity (at .x = 0) in Eq.  (7.8) can be avoided by considering the force to 
be distributed over a finite volume. For example, suppose . Fe is uniform and equal 
to .iFex everywhere in a thin disc of radius a and thickness . ε centered at the origin, 
its axis being along x. Then the velocity component u on the axis is found to be 

.u = εFexa
2

4μr ' , r ' = (a2 + x2)1/2. (7.9) 

7.2.3 Interpretation of Terms in Eqs. (7.4) 

We return now to the general equations of motion, Eqs. (7.4). From Eq. (7.2), the 
right-hand side of Eq. (7.4a) is equal to the net force applied to the element, per unit 
volume. This force is entirely a result of stresses at the surface of the element applied 
by the surrounding fluid; the term .−∇P gives the surface force exerted by elastic 
stresses, and the other terms give the corresponding force from viscous stresses. 

7.2.4 Time-Averaging 

To obtain . 〈u〉, the steady part of the flow, terms in Eqs. (7.4) are averaged with 
respect to time. Since the average over time of .∂(ρu)/∂t must be zero, the temporal 
average of the left-hand side of Eq. (7.4a) becomes .〈−F'〉. For convenience, . F is 
defined as .〈F'〉 and we have from Eq. (7.4b) that 

.F = −〈ρ(u ·∇)u + u∇ ·ρu〉. (7.10) 

Thus . F is the negative of the time-averaged rate of increase of momentum per unit 
volume in an element of fluid. It also follows from an earlier comment that the 
component form of Eq. (7.10) is  .Fi = −∂〈ρuiuj 〉/∂xj , where .〈ρuiuj 〉 is referred 
to as the Reynolds stress (Lighthill, 1978a, 1978b). 

It is often appropriate to consider the time-averaged velocity . 〈u〉 as flow of an 
incompressible fluid, so that, approximately, 

.∇ · 〈u〉 = 0. (7.11)
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When this condition is assumed, the equation that results from time-averaging 
Eq. (7.4a) can be written in a form analogous to Eq. (7.5), with .〈P 〉 and . 〈u〉 replacing 
P and . u: 

.F = ∇〈P 〉 + μ∇ × ∇ × 〈u〉 = ∇〈P 〉 − μ∇2〈u〉. (7.12) 

The vector field . F (a time-averaged quantity) corresponds to . Fe in Eq. (7.5) and is 
therefore analogous to an external field of steady force in its relation to the fields of 
time-averaged pressure and velocity. 

In the above discussion, the operator . 〈·〉 represents an average with respect to 
time at a fixed point in space, i.e., an Eulerian average. Defined operationally, the 
symbol . 〈u〉 denotes the average at a point Q of velocity measurements . ui on a series 
of infinitesimal “particles” (volume elements of fluid) passing through Q. Later, 
reference will be made to the Lagrangian average U of the velocity; this quantity is 
defined at Q as the time-averaged velocity of a particle during a short time interval 
immediately after passing through Q. An approximate expression for transforming 
. 〈u〉 to U is discussed in Sect. 7.3.1. Rudenko and Soluyan (1977) define the force 
quantity . ρF, with units of force per unit mass, and derive an equation analogous to 
Eq. (7.12), but in which the fluid velocity on the right-hand side is . U rather than . 〈u〉. 

7.2.5 Other Forms of the General Equations 

Equation (7.12), with . F given by Eq. (7.10), is a governing equation for determining 
the quantities .〈P 〉 and . 〈u〉. An alternative form of the equation is obtained by 
operating on all terms in Eq. (7.12) with the curl operator .(∇×); the term involving 
.∇〈P 〉 then vanishes. Setting . R equal to the vorticity .∇ × u, one obtains 

.μ∇2〈R〉 = −∇ × F. (7.13) 

Equation (7.13) has the form of the well-known equation of Poisson, and the 
quantity .∇×F has been called the “vorticity source strength” (Medwin and Rudnick, 
1953). It has been shown (Nyborg, 1965) that the time-averaged torque about the 
center of a spherical fluid element is .−(I/2ρ)∇ × F, where I is the moment of 
inertia of the element about its center. Since the flow . 〈u〉 is essentially that of an 
incompressible fluid, for which .∇ · 〈u〉 is zero, it is possible in some situations to 
express . 〈u〉 in terms of the Stokes stream function. Streamlines of the flow . 〈u〉 then 
correspond to paths along which the stream function is constant.
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7.3 Solutions 

7.3.1 Method of Successive Approximations 

We now make approximations to the pressure, density, and velocity appropriate for 
a steady-state “sound field” on which is superposed a steady flow, the latter being 
absent when there is no sound. For this purpose, we represent the excess pressure 
.P − P0, excess density .ρ − ρ0 and fluid velocity . u at any point in series form as 

.

P − P0 = p1 + p2 + · · · ,

ρ − ρ0 = ρ1 + ρ2 + · · · ,

u = u1 + u2 + · · · .

(7.14) 

Here . p1, . ρ1, and . u1 are first-order approximations to the steady-state values 
of pressure, density, and velocity; they vary sinusoidally in time with angular 
frequency . ω, and thus represent the “sound field.” Second-order approximations to 
the solutions yield correction terms to be added to . p1, . ρ1, and . u1. These corrections 
include time-independent quantities as well as terms with frequency . 2ω; of these, it 
is only the former, the time-independent terms, that are treated here. In the remainder 
of this chapter, the symbols . p2, . ρ2, and . u2 will be used to represent only the time-
independent parts of the corresponding second-order acoustic quantities, i.e., the 
second-order approximations to . 〈P 〉, . 〈ρ〉 and . 〈u〉, respectively. In particular, . u2 is 
the second-order approximation to the velocity of acoustic streaming, the subject of 
this chapter. (Although . p2, . ρ2, and . u2 are time-averaged quantities, the enclosing 
bracket, . 〈·〉, is omitted for convenience.) 

In the method of successive approximations under discussion, one substitutes the 
series expressions for pressure, density, and velocity from Eqs. (7.14) into Eq. (7.12) 
[with . F given by Eq.  (7.10)], then forms equations by selecting terms of like order 
(see also Sect. 10.2). Terms of the type .∇pn are of order n, while terms of the type 
.ρl(um ·∇)un are of order .(l + m + n). Beginning with terms of zero order, we find 
that there is only one in Eq. (7.12), namely, .∇P0. The equation formed by selecting 
all zero-order terms is simply a statement that .∇P0 = 0, i.e., that . P0 is constant; 
this is a reasonable result, since external forces, such as gravity, have been assumed 
absent. 

One obtains no equation from first-order terms in Eq. (7.12), since the time-
average (over many cycles) of a quantity varying sinusoidally with time is zero. It is 
from second-order terms in Eq. (7.12) that we obtain an equation that is of special 
relevance to the topic of this chapter. This equation [which involves the desired 
approximation .(u2) to the streaming velocity .〈u〉] can be written as 

.F2 = ∇p2 − μ∇2u2, (7.15a) 

where



7 Acoustic Streaming 211

.F2 = −ρ0〈(u1 ·∇)u1 + u1(∇ ·u1)〉. (7.15b) 

Equation (7.15a) is of exactly the same form as Eq. (7.12), but here . 〈F〉, .〈P 〉 and . 〈u〉
are replaced by second-order approximations to them, . F2, . p2 and . u2. It is seen in 
Eq. (7.15b) that the vector . F2, the “effective force density,” can be calculated when 
. u1 is known. 

As explained in Sect. 7.2.4, the notation .〈q〉 represents the Eulerian average 
of any field quantity . q. That is, . 〈q〉 is the average over a suitable time interval of 
.q(Q, t), where the latter is the instantaneous value of . q at a fixed point Q. When 
movement occurs, as in a sound field, a continuous series of particles (i.e., volume 
elements of the fluid) passes through Q, .q(Q, t) is the value of . q for that particle that 
happens to be at Q at time t , and . 〈q〉 is the average of . q for this series of particles. 

For a selected particle whose location .Q'(t) varies with time but is in the vicinity 
of Q, the temporal average should be of .q(Q', t), where the latter gives . q at time t 
for the selected particle wherever it may be. From the Taylor series, we may write, 
approximately, 

.q[Q'(t)] = q(Q, t) + [(ξ ·∇)q]Q,t , (7.16) 

where . ξ is the instantaneous vector distance from Q to . Q'. We now  let  . q be the 
velocity . u, average each term in the equation with respect to time, and evaluate the 
terms to second order, obtaining 

.U = u2 +
/⎛⎰

u1 dt

⎞
·∇u1

\
; (7.17) 

here . ξ1 has been equated to .
⎰
u1 dt . The second term on the right-hand side of 

Eq. (7.17) is referred to as the velocity transform, or the  Stokes drift, and has been 
discussed extensively by Westervelt (1953a, 1953b). In experimental studies of 
acoustic streaming, . u2 would seem to be relevant to measurements with hot-wire 
anemometry (Starritt et al., 1989) and . U to observed motions of small indicator 
particles that follow the fluid motion. The quantity . U is also approximately equal 
to the mass transport velocity, a quantity whose integral .

⎰
U · dS over a surface is 

equal to .M/ρ0, where M is the time-averaged rate at which mass flows across the 
surface (Nyborg, 1965). Finally, we note that . p2 is the Eulerian radiation pressure, 
labeled . P E in Chap. 6. To calculate the Lagrangian radiation pressure, labeled . P L

in Chap. 6, replace . U by . P L, . u2 by . p2, and .∇u1 by .∇p1 in Eq. (7.17). 
Much of the older published theoretical work on acoustic streaming is based on 

the second-order approximation described in this section. In this approximation, 
the flow pattern is independent of the first-order velocity amplitude A, and the 
streaming speed is proportional to . A2. It was recognized by early investigators that 
these features apply only when the amplitude and the associated streaming speeds 
are relatively low. At higher values of these quantities, the flow pattern sometimes 
changes considerably (Ingard and Labate, 1950; Andres and Ingard, 1953; Raney
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et al., 1954; Skavlem and Tjøtta, 1955). In Sect. 7.3.2.2, experiments are described 
for which theory capable of dealing with higher streaming speeds is required. 

7.3.2 Forces and Flows Produced by a Beam of Ultrasound 

7.3.2.1 Linear Propagation in a Large Space 

Experimental results have been reported by Starritt et al. (1989, 1991) for acoustic 
streaming arising from a focused beam of ultrasound propagating through a tank of 
water. In such a situation, the dimensions of the tank are typically large compared 
to those of the region where the intensity is highest, that is, the focal zone. Hence 
the flow in that region is probably not very dependent on the boundaries; it is thus 
instructive to model the situation as one involving flow in an unbounded medium. 

For simplicity, the focal region is considered to be cylindrical (Fig. 7.1), and 
the sound field in that region is initially assumed to be an attenuated plane wave 
traveling in the positive x direction. The first-order velocity can be written as (the 
real part of) the vector . iu1, where . u1 is given by 

.u1 = ua exp(jωt), ua = ua0 exp[−(α + jk)x]. (7.18) 

Here . ua0 is the velocity amplitude at .x = 0, α is the attenuation coefficient, and k 
is the (real) propagation constant, equal to .ω/c0, where . c0 is the small-signal speed 
of sound. Replacing . u1 by . iu1 in Eq. (7.15b), one finds that . F2 can be expressed 
as .iF2x , where .F2x is equal to .−2ρ0〈u1∂u1/∂x〉. Evaluating the expression,1 one 

Fig. 7.1 Focal zone (region R) of ultrasound beam, propagating in water away from boundaries. 
Under conditions of nonlinear propagation, the wave distortion and energy dissipation are assumed 
to occur primarily in this zone. 

1 In evaluating the time average, it is necessary, in principle, to use the real parts of . u1 and .∂u1/∂x. 
However, the step of extracting real parts can be avoided by using a property of complex quantities: 
Consider two functions given by the real parts of 

. G1 = g1 exp(jωt), G2 = g2 exp(jωt〉,
where . g1 and . g2 are functions of space and may be complex; the time-averaged product of the 
functions is given by 

. 〈(ReG1)(ReG2)〉 = (1/2)Re[g1g∗
2 ],

where . g∗
2 is the complex conjugate of . g2.
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obtains 

.F2x = αρ0u
2
a0e

−2αx. (7.19) 

For a beam with circular cross section of radius a, the time-averaged transmitted 
acoustic power W is the product of .πa2ρ0c0/2 and .u2a0e

−2αx ; hence, for such a 
beam, an alternative for Eq. (7.19) is  

.F2x(x) = 2αW(x)

πa2c0
. (7.20) 

In seeking an expression for . u2 we recall the analogy between Eqs. (7.5) 
and (7.15a), and use the result in Eqs. (7.9). Replacing .Fex by .F2x from Eq. (7.20), 
we can obtain an expression for the axial velocity at a given distance from an 
elemental disc in the beam, resulting from the “effective force” produced by 
ultrasound in the disc. For this purpose, the position of a given elemental “force 
disc” is designated as . x1, its thickness as .dx1 (replacing . ε), and the distance from 
the disc as .|x − x1|. The axial streaming velocity at x is then 

.u2(x, x1) = GW(x1)
dx1

r1
, (7.21a) 

where G and . r1 are given by 

.G = α

2πμc0
, r1 = [a2 + (x − x1)

2]1/2. (7.21b) 

In Eq. (7.21a), the product .GWdx1 can be written as .−ΔW/4πμc0, where the 
quantity .−ΔW , equal to .2αW(x1) dx1, is the loss in acoustic power that results 
from absorption in the disc. Hence Eq. (7.21a) can be written as 

.u2(x) = − ΔW

4πμc0r1
. (7.22) 

At points (on the axis) within the disc, where .x1 = x and .r1 = a, the velocity 
reduces to . ud , given by 

.ud = GW(x)
dx1

a
= | − ΔW |

4πμc0a
. (7.23) 

It is worth noting that the expression on the right of Eq. (7.23) resembles that for the 
limiting speed of an object moving through a viscous fluid in response to a steady 
force. Thus .ΔW/c0 is the acoustic radiation force on a nonreflecting object that 
absorbs acoustic power in the amount .ΔW , while .4πμa is comparable to the drag 
coefficient for a solid or fluid sphere of radius a.
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For applications to medical diagnostic ultrasound, we calculate G and . ud

for water and a frequency of 3.5MHz. From Herzfeld and Litovitz (1959), the 
absorption coefficient . α for water at . 20 ◦C is 0.31Np/m at 3.5MHz. Choosing . μ
as .10−3 Pa. ·s and . c0 as 1500m/s leads to 0.033N. −1 for G. If  a is 1mm, .dx' is 
0.1mm, and W is 0.1W, the velocity . ud is 0.33mm/s. 

To estimate the streaming velocity on the axis of an ultrasound beam, one can 
suppose the beam to be divided into a large number of thin discs and superpose their 
contributions at points of interest. At the center of a focal region, we assume further, 
for simplicity, that the contributions come primarily from a cylindrical region of 
radius a and length l. The axial velocity at the center of such a “force cylinder” can 
be calculated by carrying out an integration, with the right-hand side of Eq. (7.21a) 
as the integrand. Choosing .x = 0, one obtains 

.u2x(0) =
⎰ l/2

−l/2
GW(x1)(a

2 + x2
1)

−1/2 dx1. (7.24) 

If the attenuation in the region is small and independent of x, the product GW can 
be assumed constant for purposes of the integration, and the total power loss . ΔWc

equated to .2αlW ; one then obtains 

.

u2x(0) = u2cФ, u2c = ΔW

4πμac0
,

Ф = a

l
ln

⎛
χ + 1

χ − 1

⎞
, χ =

/
1 + (2a/l)2.

(7.25) 

When l is small .(l ⪡ a), the nondimensional factor . Ф in Eqs. (7.25) reduces to 
unity and the velocity .u2x(0) to . u2c, in agreement with Eq. (7.23). As l increases, . Ф
decreases, though rather slowly. Specifically, when a, W , and other parameters have 
the values assumed above and . l/a is equated to 2, 4, 6, 8, and 10, one obtains for . Ф

the values 0.82, 0.72, 0.61, 0.52, and 0.46, respectively. Hence, for a force cylinder 
of length up to ten times the diameter, the streaming velocity at its center can be 
estimated as . u2c, within a factor of about 2. When l is large .(l ⪢ a), . Ф approaches 
.(2a/l) ln(l/a). 

As explained earlier (Sects. 7.2.4 and 7.3.1), the quantity .u2x is an Eulerian 
average of the velocity. To obtain the corresponding Lagrangian average . Ux , one 
utilizes Eq. (7.17); under the conditions considered above, the velocity transform is 
0.014mm/s, and hence . Ux is essentially equal to . u2x . 

If the streaming speed near the source transducer (or near any other solid 
boundary) were to be considered, it would be necessary to take into account the 
(usually nonslip) boundary condition there. Blake (1971) and Lighthill (1978a, 
1978b) have shown how this can be done with image techniques. 

Examining the expression for G in Eq. (7.21b), one finds that it is proportional 
to the ratio .α/μ. From classical theory of linear acoustics (Rayleigh, 1945), if the 
attenuation . αc is entirely a result of absorption arising from shear viscosity of the 
fluid, the ratio is independent of . μ and is given by



7 Acoustic Streaming 215

.
αc

μ
= 8π2f 2

3ρ0c30
= 2k2

3ρ0c0
. (7.26) 

When attenuation arises from other causes, such as volume relaxation or scattering, 
the ratio .α/μ is increased over the value given in Eq. (7.26). For example, the ratio 
.α/μ for water is more than three times that expected from Eq. (7.26) (Hall, 1948), 
and that for biological suspensions can be much greater (Carstensen and Schwan, 
1959; Dunn et al., 1969; Duck, 1990; NCRP, 1992). 

7.3.2.2 Nonlinear Propagation in a Large Space 

It was shown by Starritt et al. (1989, 1991) that when conditions are such that a 
propagating wave undergoes nonlinear distortion, the speed of acoustic streaming 
can be greatly increased. Figure 7.2 shows streaming velocity along the axis of 
a focused ultrasound beam, as measured with a hot-wire anemometer in water. A 
3.5-MHz transducer, with 19mm diameter and 9.5 cm focal length, was used to 
generate the beam in a .50 × 20 × 15-cm water bath containing distilled water. The 
two upper curves are for pulsed modes, and the lower one is for a continuous mode 
of operation. For all of these, the total acoustic power was 100mW, but the (spatial 
and temporal) peak positive pressure .(p+) varied from one mode of operation to 
another. For curve .c, p+ was 0.2 MPa, for curve b, it was 1.4 MPa, and for curve 
a, it was 3.4 MPa. 

It is seen in Fig. 7.2 that the streaming velocity is small near the transducer 
and rises to a rather broad maximum a little beyond the focal distance. According 
to Eqs. (7.21) to (7.25), the streaming velocity should depend only on the time-
averaged power and hence should be the same for all three curves. Instead, there is 
a considerable increase in streaming speed when the pulsed mode is used, and the 
peak positive pressure is increased. From curves b and c, an increase of . p+ by a 
factor of 7 (1.4 MPa/0.2 MPa) causes, approximately, a doubling of velocity; from 
curves a and b, an increase of . p+ by only a factor of 2.4 (3.4 MPa/1.4 MPa) causes 
nearly a tripling of the velocity. 

Fig. 7.2 Variation of 
measured streaming velocity 
with distance from 
transducer. Frequency, 3.5 
MHz; total acoustic power, 
100 mW. Curve a: pulsed, 
.p+ = 3.4 MPa. Curve b: 
pulsed, .p+ = 1.4 MPa. Curve 
c: continuous, . p+ = 0.2
MPa. (Adapted from Starritt 
et al., 1989).
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As shown by the investigators, the observed enhancement of streaming can be 
understood by considering the increased absorption associated with wave distortion 
that occurs at the higher values of . p+. In water and similar media, a distorted 
wave, whose spectrum contains not only a fundamental frequency but also a 
series of harmonics, is absorbed more strongly than a monofrequency wave at the 
fundamental frequency, since the absorption coefficient increases with frequency. 
The effect is qualitatively as if the attenuation coefficient . α were increased without 
any change in the shear viscosity coefficient . μ; hence, according to Eqs. (7.21)– 
(7.25), there should be an increase in the acoustic streaming speed . u2. 

As a method for taking nonlinearity into account, Starritt et al. (1991) calculated 
the equivalent of .F2x in Eq. (7.20) (expressed by them as a pressure gradient) 
by summing energy losses in the components of a waveform that had acquired a 
sawtooth spectral distribution. [Their procedure was equivalent to replacing . αW(x)

in Eq. (7.20) by a sum of terms of the type .αnWn, one for each of the harmonics.] 
Among their results was an estimate, for a device of relatively high acoustic output 
used in medical diagnostic ultrasound, that in water, .F2x is 175 times greater than 
it would have been in the absence of harmonic generation. This enhanced value of 
.F2x occurs, especially, in and near the focal region. 

If one knew the components of . F2 everywhere, one might calculate the streaming 
velocity by evaluating an integral analogous to that in Eq. (7.6). The simplified 
treatment in Sect. 7.3.2.1, in which Eq. (7.24) is used, enables one to make 
estimates under conditions where the acoustic amplitudes are relatively low. At 
higher amplitudes, use of Eq. (7.24) is made difficult by the need to know G and 
W as functions of x under nonlinear conditions. . A special limiting situation applies 
if the region of energy dissipation and of .F2x is very localized, as in the region R 
of Fig. 7.1. The streaming velocity in that region will then be given approximately 
by the simple expression in Eqs. (7.25), where . Ф is of the order of unity and . ΔWc

is the total loss of acoustic power from the beam during transit through the lossy 
region. 

Rudenko and Soluyan (1977) and Lighthill (1978a, 1978b) have pointed out the 
inadequacy of solutions based on the second-order approximation in dealing with 
flows where the Reynolds number is high and . u2 is not small compared to . u1. For  
example, in such flows, the term .(u2 ·∇)u2, or .(U ·∇)U should be included, as well 
as .(u1 · ∇)u1. When this is done, a solution such as that for the axial flow from a 
“force disc” [Eq. (7.22)] is no longer symmetric about the origin; the velocity for 
positive x is larger than that for negative x at the same distance from the origin. 
Also, when the Reynolds number is high, the flow may become turbulent. Parabolic 
approximations of nonlinear streaming equations for flows produced by directional 
sound beams are given by Gusev and Rudenko (1979). Others who have dealt with 
theory for acoustic streaming at higher speeds, especially in applications to focused 
ultrasound beams, include Wu and Du (1993), Mitome (1993a, 1993b), Tjøtta and 
Naze Tjøtta (1993), Kamakura et al. (1995), and Hamilton et al. (1995).
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7.3.2.3 Propagation in a Bounded Space 

When an ultrasound beam travels in a tube (or in any bounded space), the presence 
of the boundaries may significantly affect the acoustic streaming velocity, even at 
points near the axis. This time-independent flow must be circulatory when it occurs 
in a bounded region containing a fixed mass of fluid. When the dimensions of the 
tube (or, more generally, those of the bounded region) are large compared to the 
effective dimensions of the beam, the return flow is distributed over a volume that 
is large compared to that occupied by the beam and has little effect on flow near the 
axis. If, however, the ratio of tube dimensions to beam dimensions is not large, the 
axial streaming velocity is dependent on all of these dimensions. 

A number of special cases involving beam propagation in a channel have been 
treated (neglecting effects of nonlinear propagation), and are discussed in the earlier 
review by Nyborg (1965). These include the acoustic streaming produced by an 
attenuated beam traveling between parallel walls, in a circular tube (Eckart, 1948), 
and in a conical tube (Johnsen and Tjötta, 1957). Solutions are given there for a 
beam traveling in a tube with open ends (in which case the region is not simply 
connected) and with closed ends; it is commonly assumed that the beam does not 
extend laterally to the wall(s) of the tube or channel in which it travels and, hence, 
that the beam does not interact tangentially with boundaries. 

Eckart’s theory for a beam traveling in a fluid inside a tube with closed ends 
(“quartz wind”) generated considerable interest, especially because of its finding 
that measurements of acoustic streaming can be used to determine the bulk viscosity 
. μB of the fluid. This is suggested by the expressions for . u2 in Eqs. (7.21) (although 
the latter are for a beam traveling in unbounded space) when it is noted that the 
constant G is proportional to .α/μ and that theory for absorption in a viscous fluid 
(Herzfeld and Litovitz, 1959) relates . α to the linear combination .(μB + 4μ/3). By  
measurements of streaming, determinations of . α, and hence of . μB , were made for a 
series of liquids by Liebermann (1949) and for a series of gases by Medwin (1954). 
Piercy and Lamb (1954) made further measurements on liquids using a modified 
arrangement in which flow was produced and measured in a capillary “side-arm” 
attached to a larger vessel containing a fluid of interest through which the ultrasound 
was caused to propagate. 

7.3.3 Forces and Flows Caused by Boundary Layers 

7.3.3.1 General Considerations 

In the applications described in Sect. 7.3.2, the effective force . F2 was produced 
primarily in the interior of a homogeneous fluid, well away from boundaries. In an 
equally important set of applications, the distributions of . F2 (or of .∇×F2) produced 
near boundaries are significant and, in fact, may control the streaming. This is true
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of streaming produced by sound waves that graze solid surfaces, as well as those 
produced near vibrating objects.2 

7.3.3.2 Force Density for Plane Traveling Wave that Grazes Wall 

We consider an attenuated plane wave as in Eq. (7.18), except that a rigid boundary 
exists in the plane .z = 0, which presents a nonslip condition so that both 
components of the velocity are zero there. To derive an expression for the first-
order velocity that matches this condition, we return to Eqs. (7.3) and (7.4) and 
approximate them to first order. The resulting equations are then combined with a 
first-order approximation to the equation of state, .p1 = c20ρ1, to obtain an equation 
in which . u1 is the only dependent variable. When (as is commonly true) . α is much 
less than k, this equation can be written as 

.
2∇∇ ·u1
(k − jα)2

+ 2u1 = j∇ × ∇ × u1
κ2 , (7.27) 

where the constants k, . κ , . α, and b are defined by 

.k = ω

c0
, κ2 = ωρ0

2μ
, α = bk3

4κ2 , μb = μB + 4
3μ. (7.28) 

lt can be seen that Eq. (7.27) is satisfied by either an irrotational vector function . ua

that is a solution of 

.∇∇ ·ua = ∇2u2 = −(k − jα)2ua (7.29) 

or a divergence-free vector function . ub that is a solution of 

. − ∇ × ∇ × ub = 2jκ2ub = m2ub, (7.30) 

where .m = (1+ j)κ . For .κ ⪢ k ⪢ α, an approximate solution . us for the traveling-
wave situation, formed from the sum of . ua and . ub, has x and z components given 
(omitting the time factor), respectively, by 

.us = ua0e
−(α+jk)x(1 − e−mz), ws = −

⎛
α + j̇ k

m

⎞
us. (7.31)

2 In Sect. 7.3.3 the analysis is simplified in that effects of thermal diffusivity and of nonlinear 
propagation are ignored. Qi (1993) and Qi et al. (1995) present a much more detailed analysis of 
the acoustic boundary layer, and show corrections to be made for thermal diffusivity when these 
are significant. 
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Examining Eqs. (7.31), we see that, as required, . us and . ws are both zero at .z = 0. 
Also, at distances from the wall equal to a few multiples of . κ−1, . us approaches the 
value given as . u1 in Eqs. (7.18). The distance .κ−1 has been called the ac boundary-
layer thickness, and a sheetlike region of this thickness just inside the wall has been 
called the ac boundary layer. 

Substituting . us for . u1 in Eq. (7.15b), and making much use of indicated 
approximations, one finds that the x component .F2x of . F2 is much larger than the z 
component . F2z and that 

.F2x = F2xa + F2xb, (7.32a) 

where 

. F2xa = αρ0u
2
a0e

−2αx, F2xb = 1
2F2xa

⎾
k

α
f1(n) + f2(n)

⏋
,

f1(n) = C + S − e−2n, f2(n) = e−2n − 3C + S, (7.32b) 

C = e−n cos n, S = e−n sin n, n = κz. 

The force density field .F2xa is the same as for an unbounded plane traveling wave, 
Eq. (7.19). It is independent of z and, if .2αx is small, not very dependent on x. 

In contrast, .F2xb is very z-dependent, as is evident from the plots in Fig. 7.3. It is  
concentrated in a region near the boundary at .z = 0, being negligible for n greater 
than, say, 5. When k is much larger than . α, as is commonly true, the term .f2(n) can 
be neglected in the expression for .F2xb. Then, since the maximum value of .f1(n) is 
0.46, the ratio of the maximum of .F2xb to .F2xa is 0.23. k/α. In water at . 20◦C for  a  

Fig. 7.3 Plots of .f1(n), 
.f2(n), and .f3(n) vs. the 
nondimensional quantity 
.n = κz, based on Eqs. (7.32) 
and (7.34); these apply when 
a plane traveling wave grazes 
a boundary. The force density 
component .F2xb is 
proportional to a linear 
combination of .f1(n) and 
.f2(n), while the streaming 
velocity component . u2b is 
proportional to .f3(n).
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frequency of 1 MHz, the ratio .k/α is .1.66 × 105; it is evident that in the boundary 
layer, the force density .F2x comes almost entirely from .F2xb. 

7.3.3.3 Flow from Plane Traveling Wave in Channel with Open Ends 

We now use the results obtained for .F2x in Eqs. (7.32) to treat the situation where 
a plane wave travels along the x direction in a channel between two parallel walls, 
one at .z = 0 and the other at .z = h. Near the wall at .z = 0, the force distribution 
is given by Eqs. (7.32); near the wall at .z = h, from symmetry, a similar boundary 
layer exists. On the basis of Eqs. (7.15), the vector . F2 is considered to have only an x 
component, given by . F2x . If the channel has open ends, we can take .∇p2 to be zero; 
then .∇2u2 has only one nonzero component, .∇2u2. Also, if . αx is small in a region 
of interest, the factor .e−2αx differs little from unity there, and . F2x , being nearly 
independent of x, is essentially a function of z alone. With the flow considered to 
be along x, and having speed depending only on z, .∇2u2 becomes .∂2u2/∂z2, and 
Eq. (7.15a) reduces to 

. − μ
∂2u2

∂z2
= F2x = F2xa + F2xb, (7.33) 

where .F2xa and .F2xb are given in Eqs. (7.32) for the region .0 < z < h/2, and are 
given by similar expressions [in which .(h − z) replaces z] for the region . h/2 < z <

h. It is instructive to determine the flow resulting from .F2xa and .F2xb separately. 
Because of symmetry, it is sufficient to find results for the flow in the region . 0 <

z < h/2. 
The streaming velocity .u2b associated with the force density generated in the 

boundary layer is obtained from a solution of Eq. (7.33) in which .F2xa is set equal 
to zero and the expression from Eqs. (7.32) is substituted for .F2xb. Assuming that 
.k ⪢ α, that .e−2αx ≃ 1, and that the channel is sufficiently wide, one obtains for the 
solution 

.u2b(z) = (u2a0/4c0)f3(n), f3(n) = 1 + 2(S − C) + e−2n, n = κz, (7.34) 

where C and S are defined in Eqs. (7.32). A plot of .f3(n) is shown in Fig. 7.3. 
Since .u2b(z) is proportional to .f3(n), it is seen from this plot that .u2b(0) is zero, 
and thus the nonslip condition is satisfied at the walls. At large values of . κz, f3
approaches unity asymptotically. According to Eqs. (7.34), the asymptotic value of 
. u2b is simply .u2a0/4c0, independent of viscosity coefficients and other properties of 
the fluid or the sound field, including the channel width h. According to the analysis 
of Qi et al. (1995), this asymptotic value is valid in a fluid with thermal properties 
similar to those of water (if the boundary-layer thickness is small compared to the 
channel width), but in general must be multiplied by a factor; for air, the factor is 
given as about 1.7.
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Similarly, to obtain the streaming velocity .u2a associated with the force density 
generated in a free-traveling wave, the expression for .F2xa from Eqs. (7.32) is  
substituted into Eq. (7.33). As before, the attenuation is considered small in the 
region of interest, so that .e−2αx ≃ 1 and .Fxa is essentially constant. If it is assumed 
that a nonslip condition exists on the streaming velocity at .z = 0 and at .z = h, the  
solution of Eq. (7.33) is  

.u2a(z) = C1n1(1 − n1), n1 = z

h
, C1 = αρ0u

2
a0h

2

2μ
. (7.35) 

It is seen that the flow pattern .u2a(z) is parabolic, with maximum speed . C/4
occurring at .z = h/2. The total streaming velocity . u2 in the half-channel . (0 < z <

h/2) is a superposition of (1) the velocity .u2b(z) given by Eqs. (7.34), associated 
with the boundary layer at .z = 0, and (2) a parabolic velocity distribution . u2a(z)
given by Eqs. (7.35), associated with the free-traveling wave. We have, then, for the 
total streaming velocity in this half-channel, 

.u2 = (u2a0/4c0)f3(n) + C1n1(1 − n1), (7.36) 

where . C1 is given in Eqs. (7.35). Because of symmetry, Eq. (7.36) applies with z 
measured from either wall. 

As before, . u2 is the Eulerian average of the velocity; it gives the average at a 
point as it would be measured with a small hot-wire anemometer, for example. To 
proceed from . u2 to the Lagrangian average U , the velocity components . us and . ws

from Eq. (7.31) are used for . u1 in Eq. (7.17), with the result 

. U = 3u2a0
4c0

⎾
f4(n) +

⎛
4φk2h2

9

⎞
n1(1 − n1)

⏋
, f4(n) = 1 − 2C + e−2n,

(7.37) 

in which .k ⪢ α is assumed. In Eqs. (7.37), the absorption coefficient . α, which 
appears in the expression for . C1 in Eqs. (7.35), is taken to be . φαc, where . αc [given 
by . α in Eqs. (7.28) when .μB = 0, b = 4/3] is the classical result that applies if 
the absorption is from shear viscosity alone. (The factor . φ is 3 or more for water, is 
much larger for some liquids and suspensions, and is somewhat greater than unity 
for air in the megahertz frequency range.) 

7.3.3.4 Flow from Plane Traveling Wave in Channel with Closed Ends 

In the preceding discussion, the time-averaged pressure gradient .∂p2/∂x is consid-
ered to be zero. This corresponds to an assumption that the ends of the channel 
are open; no restraints to the flow exist there, the time-averaged pressure being the
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same at the two ends. In contrast, if the ends are closed3 a pressure gradient is set up. 
Under the assumptions made here, the traveling wave extends laterally throughout 
the channel (unlike the situations discussed in Sect. 7.3.2.3). The pressure gradient 
has only an x component .∂p2/∂x, and Eq. (7.15a) can now be written in the form 

.K − Fxb = μ
∂2u2x

∂z2
; (7.38) 

here the force density .Fxb is given in Eqs. (7.32b), and K , equal to the difference 
.(∂p2/∂x − Fxa), is essentially constant in a region of interest (if .e−2αx ≃ 1 in 
that region). A solution of Eq. (7.38) is obtained and the constant K is determined 
by imposing the condition that the net flow across any cross section is zero. This 
condition is 

.

⎰ h/2

0
Ux(z) dz = 0. (7.39) 

7.3.3.5 Other Examples of Flow from Boundary Layers 

Boundary-layer acoustic streaming occurs in situations where there is relative 
oscillatory motion between a fluid and a boundary, with a component tangential 
to the boundary. Theory for the regularly spaced vortices produced by a standing 
wave in a channel between parallel walls was derived by Rayleigh (1883, 1945) in  
what appears to have been the first successful analysis of acoustic streaming. Further 
development of the theory, including a correction, has been described by Raney et al. 
(1954). 

Considerable attention has been given to the streaming produced near a solid 
cylinder in oscillation relative to a surrounding fluid (Ingard and Labate, 1950; 
Andres and Ingard, 1953; Skavlem and Tjøtta, 1955; Holtsmark et al., 1954; 
Raney et al., 1954; Westervelt, 1955). In its simplest form, which applies at low 
amplitudes, the flow pattern is independent of amplitude and consists of four 
symmetric circulations. More generally, the pattern depends on the amplitude of 
oscillation, as well as on the cylinder radius and the boundary-layer thickness . κ−1. 
At the higher amplitudes, a jetlike fluid motion occurs, outward from the cylinder 
along the axis of oscillation (Riley, 1965; Stuart, 1966; Davidson and Riley, 1972; 
Bertelsen et al., 1973). 

Streaming near a solid sphere in the field of a point source of sound was treated 
theoretically by Wang (1982), who showed that the pattern changes markedly with 
distance between sphere and source; it reduces to that near a sphere in a uniform

3 Here it is supposed that the ends of the channel are closed with acoustical absorbing materials 
or other terminations that are barriers to the acoustic streaming but do not significantly perturb the 
first-order field. 
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field when the distance is large. The streaming near a sphere at higher Reynolds 
numbers was taken up by Amin and Riley (1990). An explanation was offered by 
Nyborg (1994) of differences that had appeared in the literature on theory for the 
streaming near a sphere. 

Other aspects of the streaming near a solid sphere in oscillating fields have been 
treated by Lee and Wang (1989, 1990; see also Sect. 6.3.1.4). For example, they 
developed theory for the streaming around a small solid sphere in the field of two 
orthogonal standing waves, including an expression for the steady torque exerted 
on the sphere. The streaming near an oscillating elliptic cylinder was treated by 
Davidson and Riley (1972). 

As shown by an example in Sect. 7.3.3.3, the velocity parallel to a boundary often 
increases quickly from its boundary value to a “limiting” value, then rises much 
more slowly. Simplified methods can sometimes be used to calculate the limiting 
velocity. It was shown by Longuet-Higgins (1953) that for two-dimensional fields 
satisfying required conditions, the limiting velocity . UL is given by 

.UL = − 3

8ω

∂u2a0

∂x
, (7.40) 

where x is a coordinate (which may be curvilinear) that is tangent to the boundary 
in the region of interest, and .ua0 is the amplitude of the first-order velocity 
component along x, as it would be in the absence of viscosity. For example, on 
an oscillating cylinder of radius a, when x measures arc length along the periphery 
(in a plane perpendicular to the axis), .ua0 can be written as .A sin(x/a) and . UL is 
.(3A2/2ωa) sin(2x/a), as given by Schlichting (1932, 1955). 

The Longuet-Higgins result in Eq. (7.40) was generalized by Nyborg (1958, 
1965) and further generalized by Lee and Wang (1989). One application is to 
the streaming produced by a small hemispherical sound source on a solid plane 
boundary (which can represent a vibrating gas bubble resting on a boundary); for 
this, an estimate of the limiting velocity was found to be 

.UL = Q2

4πωr5
, (7.41) 

where Q is the maximum during a cycle of volume flow through the hemispherical 
surface of the source and r is distance from the source. 

7.3.3.6 Acoustic Streaming in Special Situations 

Special features of acoustic streaming theory were explored by Powell (1982) 
as they occur in a medium characterized by nonlinear viscoelasticity, and by 
Whitworth (1990) as they occur in a rotating fluid.
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7.4 Applications 

Numerous investigations have shown that applications of sound, including ultra-
sound, can bring about changes in structures or in processes if acoustic streaming is 
brought to bear on them. In this brief account, the emphasis is on applications that 
have been reported since an earlier review (Nyborg, 1965). 

Applications of ultrasound in liquids often depend on phenomena occurring at 
gas-liquid interfaces, and on the activity of vibrating and/or cavitating gas bubbles. 
Since Elder’s basic investigation of the microstreaming produced by a vibrating 
bubble resting on a solid boundary (Elder, 1959), studies have been made on the 
consequences of such motion. Gould (1966) demonstrated enhancement of heat 
transfer into liquid from a solid surface by the presence of a vibrating bubble. In later 
work, he showed (Gould, 1974) that the rate of gas transport between a vibrating 
bubble and the surrounding liquid was altered considerably when surface waves 
were present on the bubble, evidently because of the associated acoustic streaming. 

The acoustic streaming near a gas bubble in a sound field has been studied 
theoretically by Statnikov (1968) and by Davidson and Riley (1971). Theories for its 
influence on mass transport have been advanced by Kapustina and Statnikov (1968), 
Davidson (1971), and Church (1988). 

Using a frequency of about 20 kHz, Rooney (1970, 1972) demonstrated that 
the viscous shear associated with microstreaming near a single resonant bubble 
caused hemolysis of red cells in saline suspension. Williams et al. (1970) showed  
that hemolysis was produced in a similar way by microstreaming generated by a 
vibrating wire whose tip was of the same curvature as the bubble surface. Further 
studies on cellular effects produced by microstreaming, especially in the lower 
ultrasonic frequency range, have been reviewed by Williams (1983). 

Miller (1987) has reviewed findings from related studies at higher frequencies, 
extending into the 1–10MHz frequency range. Included are numerous investigations 
of plant leaves or other plant tissues in which gas-filled channels exist intracellu-
larly. In other studies, hydrophobic Nuclepore. ® membranes are used; when these 
membranes are immersed in an aqueous liquid, air is trapped in the pores, providing 
approximately cylindrical gas bodies of fairly uniform dimensions, a few microns in 
diameter and depth. When a strip of this membrane is immersed in a suspension of 
particles, such as biological cells, and exposed to ultrasound while viewed through a 
microscope, microstreaming is observed near each gas-filled pore. Biological effects 
of the motion have included cell destruction, aggregation of platelets, and release of 
ATP from red cells. 

Shiran et al. (1990) cite studies that show the influence of bubble-associated 
microstreaming on reactions that occur at a solid surface. They also give evidence 
that the pattern that appears in the Sarvazyan method of mapping ultrasound 
fields results from enhancement of the reaction rate by microstreaming from small 
bubbles. 

Dunn (1985) observed inactivation of Chinese hamster V79 cells irradiated with 
a beam of 3-MHz ultrasound at elevated temperature, and attributed the biological
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change to viscous shear associated with acoustic streaming. Pohl et al. (1995) found 
increased agglutination of human red cells subjected to an ultrasound beam of 2-
MHz or 10-MHz frequency, and proposed acoustic streaming as a cause. While 
the above experiments by Dunn and by Pohl et al. were done in vitro with cell 
suspensions in laboratory containers, Frizzell et al. (1986) made observations on 
blood vessels in tissue of living mice during exposure to 1-MHz ultrasound. In these 
in vivo exposures, vigorous small-scale streaming was observed in a vessel near 
an “obstacle” deliberately formed by indenting the vessel wall with a small rod 
applied externally. Under some conditions, continuation of the acoustic exposure 
led to thrombus formation near the obstacle. 

Experimental and theoretical studies of heat transport from a cylinder or sphere 
serving as heat source, and of the increased heat transport resulting from acoustic 
streaming generated by vibrating the object, have been made by Davidson (1973) 
and by Lee and Wang (1990). Boraker et al. (1992) obtained significant improve-
ments in the sensitivity and reaction time of the well known ELISA techniques used 
in immunology by applying low-frequency microstreaming to the surfaces at which 
the biochemical reactions occur. 

Applications to the transporting of materials in small-scale devices led Moroney 
et al. (1990) to study acoustic streaming produced in fluids by traveling flexural 
waves in thin membranes. In a summary of research activities in Japan, Mitome 
(1993a) describes applications of acoustic streaming to ultrasonic motors and to 
ultrasonic cleaning. Qi and Brereton (1995) discuss mechanisms for removal of 
small impurities from a surface by using focused ultrasound to produce streaming 
at the surface. 

Lee and Wang (1989) have used orthogonal standing waves to exert torque on 
a small sphere via the acoustic streaming generated at its surface. An application 
of this technique is to the manipulation of objects in gravity-free environments 
(Sect. 6.3). 

In studies on hearing, Békésy (1960) observed that eddies are produced in 
the cochlea when sound is being received. Lighthill (1992) has pointed out that 
boundary layers are established at the surface of the basilar membrane. As a result, 
acoustic streaming is expected in the cochlea, resembling in some ways the channel 
flow discussed in Sect. 7.3, but with novel features because of the nature of basilar 
membrane motion. 

Several recent publications describe roles for acoustic streaming in medical 
applications. Wu et al. (1994) showed that when ultrasound passes through a liquid 
immediately before impinging on bone tissue, the heating produced in the bone 
is reduced by acoustic streaming in the liquid. Stavros and Dennis (1993) and 
Nightingale et al. (1995) have investigated a technique for distinguishing cysts 
from solid masses during use of ultrasound breast imaging to evaluate lesions; the 
technique depends on findings that streaming motions produced by the ultrasound 
can be observed during ultrasonic examination of liquid-filled cysts.
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8.1 Introduction 

Medical ultrasound, sonar, acoustic microscopy, and nondestructive testing are 
some of the areas in which intense directional sound beams are encountered. 
At high acoustic intensities, and for propagation in real fluids, a proper model 
of directional acoustic radiation must take into account the combined effects of 
diffraction, absorption, and nonlinearity. The Khokhlov–Zabolotskaya–Kuznetsov 
(KZK) equation (Zabolotskaya and Khokhlov, 1969; Kuznetsov, 1971), presented 
in Sect. 8.2, accounts consistently for all three effects, and it provides the theoretical 
foundation for the present chapter. In Sect. 8.3, general integral expressions are 
derived for second-harmonic, sum-frequency, and difference-frequency generation 
in weakly nonlinear, axisymmetric sound beams. Solutions of these integrals 
are obtained for radiation from sources with Gaussian amplitude shading, both 
unfocused and focused. Asymptotic expressions are developed for the parametric 
array and for self-demodulation produced by radiation from a circular piston. In 
Sect. 8.4, numerical results are presented for strongly nonlinear piston radiation, 
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both unfocused and focused, illustrating shock formation and other effects not taken 
into account by the quasilinear analysis in Sect. 8.3. 

8.2 Parabolic Wave Equation 

For consistency, all analyses in the present chapter are based on the KZK parabolic 
wave equation (Bakhvalov et al., 1987), Eq. (3.65), which accounts for nonlinearity, 
absorption due to viscosity and heat conduction, and diffraction in directional sound 
beams: 

.
∂2p

∂z∂τ
= c0

2
∇2⊥p + δ

2c30

∂3p

∂τ 3
+ β

2ρ0c30

∂2p2

∂τ 2
. (8.1) 

Here p is the sound pressure, z is the coordinate along the axis of the beam (which 
is assumed to propagate in the .+z direction), .τ = t − z/c0 is retarded time, 
. c0 is the small-signal sound speed, . δ is the diffusivity of sound corresponding to 
thermoviscous absorption, . β is the coefficient of nonlinearity, and . ρ0 is the ambient 
density. The operator . ∇2⊥ is the Laplacian in the .(x, y) plane, perpendicular to the 
axis of the beam. We shall consider only axisymmetric sound beams, for which 
.∇2⊥ = ∂2/∂r2 + r−1(∂/∂r), where .r2 = x2 + y2. For plane waves .∇2⊥p = 0, 
and Eq. (8.1) reduces to the Burgers equation, Eq. (3.54). The effect of the parabolic 
approximation on the accuracy with which Eq. (8.1) models diffraction is discussed 
in Sect. 8.3.2 in connection with radiation from a circular piston. Although Eq. (8.1) 
is written in terms of sound pressure, it is consistent to use the linear plane-wave 
impedance relation .p = ρ0c0uz to express the KZK equation and its solutions in 
terms of . uz, the  z component of the particle velocity vector. See Sect. 3.9 for further 
discussion of Eq. (8.1). 

8.3 Quasilinear Theory 

General integral expressions are derived below for second-harmonic, sum-frequency 
and difference-frequency generation due to weak finite-amplitude radiation from 
axisymmetric sources. The expressions are obtained using the method of successive 
approximations. We begin by restricting our attention to second-harmonic genera-
tion by a sound beam radiated at a single angular frequency . ω. A quasilinear solution 
of the form 

.p = p1 + p2 (8.2) 

is assumed, where . p1 is the linear solution (first approximation) of Eq. (8.1) for  
the pressure at frequency . ω, and . p2 is a small correction to . p1 (the second
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approximation, for .|p2| ⪡ |p1| throughout the nonlinear interaction region) at the 
second-harmonic frequency . 2ω. Now write 

.pn(r, z, τ ) = 1

2j
qn(r, z)e

jnωτ + c.c., n = 1, 2, (8.3) 

where . q1 and . q2 are complex pressure amplitudes, and c.c. denotes the complex 
conjugate of preceding terms. Equation (8.3) reduces to .pn = qn sin nωτ when 
. qn is real. Substitution of Eqs. (8.2) and (8.3) into Eq. (8.1) yields the following 
quasilinear system of equations for . q1 and . q2 (see, e.g., Sect. 10.2): 

.
∂q1

∂z
+ j

2k
∇2⊥q1 + α1q1 = 0,

∂q2

∂z
+ j

4k
∇2⊥q2 + α2q2 =

⎛
βk

2ρ0c20

⎞
q2
1 , (8.4) 

where .αn = δn2ω2/2c30 is the thermoviscous attenuation coefficient at frequency 
. nω, and .k = ω/c0. Arbitrary absorption laws may be used hereafter to define . α1
and . α2 in Eqs. (8.4) (see Sect. 5.2, where dispersion is also taken into account). For 
the source condition, we take 

.p(r, 0, t) = 1

2j
q1(r, 0)e

jωt + c.c., (8.5) 

where .q1(r, 0) is an arbitrary distribution that takes into account both amplitude and 
phase shading. It is thus assumed that the source does not radiate at the second-
harmonic frequency, i.e., .q2(r, 0) = 0. 

Both of Eqs. (8.4) are linear, the second because . q2
1 is determined independently 

by the first. Integral forms of these equations that are more convenient for analysis 
can therefore be constructed with Green’s functions (see, e.g., Morse and Ingard, 
1968, pp. 319–322, for a discussion of Green’s functions of the Helmholtz equation). 
We define the Green’s function .Gn(r, z|r ', z') here, at frequency . nω, to be the  
solution of the inhomogeneous equation 

.
∂Gn

∂z
+ j

2nk
∇2⊥Gn + αnGn = 1

2πr
δ(r − r ')δ(z − z'), (8.6) 

where the right-hand side is the three-dimensional Dirac delta function in cylindrical 
coordinates, for axial symmetry. Primed coordinates correspond to locations of 
source points. To solve Eq. (8.6), we employ the Hankel transform pair 

.f̃ (κ) =
⎰ ∞

0
f (r)J0(κr)r dr, f (r) =

⎰ ∞

0
f̃ (κ)J0(κr)κ dκ, (8.7) 

where . J0 is the zeroth-order Bessel function. Transformation of Eq. (8.6) yields
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.
∂G̃n

∂z
−

⎛
jκ2

2nk
− αn

⎞
G̃n = J0(κr ')

2π
δ(z − z'), (8.8) 

the solution of which is 

.G̃n(κ, z|r ', z') = exp

⎾⎛
jκ2

2nk
− αn

⎞
(z − z')

⏋
J0(κr ')
2π

H(z − z'), (8.9) 

where .H(x) is the Heaviside unit step function .(H = 0 for .x < 0 and . H = 1
for .x > 0). The physical significance of the step function is that only nonlinear 
interactions between the source plane and a given field point (i.e., for .z' < z and 
therefore .H = 1) contribute significantly to the field at that point. Mathematically, 
this is a consequence of the parabolic approximation, which leads to Eq. (8.1) as a  
first-order differential equation in z that describes only forward propagating waves. 
Inversion of Eq. (8.9) using the second of Eqs. (8.7) gives  

. Gn(r, z|r ', z') = jnk

2π(z − z')
J0

⎛
nkrr '

z − z'

⎞

× exp

⎾
−αn(z − z') − jnk(r2 + r '2)

2(z − z')

⏋
, (8.10) 

where the dependence on .H(z − z') is now suppressed. 
Solutions of Eqs. (8.4) are obtained by integrating over the product of the Green’s 

function and the appropriate source function to sum up the contributions from 
all source points. For . q1, the source function is .q1(r ', 0), and the integration is 
performed over the surface elements .dS' = 2πr ' dr ' in the plane .z' = 0. The  
source function for . q2 is the right-hand side of the second of Eqs. (8.4), which is 
proportional to the volume distribution .q2

1 (r
', z'), and the integration is performed 

over the volume elements .dV ' = 2πr ' dr 'dz'. We thus obtain 

.q1(r, z) = 2π
⎰ ∞

0
q1(r

', 0)G1(r, z|r ', 0)r ' dr ', . (8.11) 

q2(r, z) = 
πβk 
ρ0c

2 
0

⎰ z 

0

⎰ ∞ 

0 
q2 
1 (r

', z')G2(r, z|r ', z')r ' dr 'dz'. (8.12) 

The source condition .q2(r, 0) = 0 establishes the lower integration limit .z' = 0 in 
Eq. (8.12), and the (suppressed) step function .H(z − z') establishes the upper limit 
.z' = z. On the basis of Eq. (8.12), second-harmonic generation in the quasilinear 
approximation is interpreted as a sound field radiated by a volume distribution of 
virtual sources whose strengths are proportional to .q2

1 (r, z). 
The same procedure may be followed to obtain integral expressions for sum- and 

difference-frequency generation. Begin by replacing Eqs. (8.3) with
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.p1(r, z, τ ) = 1

2j
[q1a(r, z)ejωaτ + q1b(r, z)e

jωbτ ] + c.c., . (8.13) 

p2(r, z, τ )  = 
1 

2j 
[q2a(r, z)ej2ωaτ + q2b(r, z)ej2ωbτ 

+ q+(r, z)ejω+τ + q−(r, z)ejω−τ ] +  c.c., (8.14) 

which describe a sound beam radiated at the two primary frequencies . ωa and . ωb

(with .q2a = q2b = q+ = q− = 0 at .z = 0), leading to the nonlinear generation of 
sum and difference frequencies .ω± = ωa ±ωb (with .ωa > ωb assumed) in addition 
to the second harmonics .2ωa and . 2ωb. The solutions . q1a and . q1b for the primary 
beams are given by Eq. (8.11), . q2a and . q2b by Eq. (8.12), and 

. q±(r, z) = ±πβk±
ρ0c

2
0

⎰ z

0

⎰ ∞

0
q1a(r

', z')q(∗)
1b (r ', z')G±(r, z|r ', z')r ' dr 'dz',

(8.15) 

where .G± is given by Eq. (8.10) with nk replaced by .k± = ω±/c0 and . αn replaced 
by . α±. The superscript . (∗) signifies that the complex conjugate of . q1b is taken only 
for calculation of the difference-frequency component. 

At this point, one may substitute Eq. (8.11) into Eqs. (8.12) and (8.15) to express 
. q2 and . q± as quadruple integrals that depend directly on the source functions. 
This is the approach taken by Berntsen et al. (1984), who use these forms of the 
solutions for numerical calculations and to obtain general asymptotic expressions 
for the far field. The asymptotic form of . q2 is presented below only for specific 
source functions, Gaussian (Sect. 8.3.1) and uniform piston (Sect. 8.3.2). Here, we 
conclude by deriving the general asymptotic form assumed by . q1 in the far field. 

Let the source have nominal radius a, in which case .q1(r ', 0) ≃ 0 for .r ' > a. 
Also let the location of the field point satisfy .z ⪢ z0, where the quantity . z0 =
1
2ka2 is referred to as the Rayleigh distance, which marks the transition between 
the near- and far-field regions of the primary beam. Following the substitution of 
Eq. (8.10) into Eq. (8.11), the resulting phase term .−jkr '2/2z is at most . z0/z ⪡ 1
in magnitude at source points .r ' ∼ a, and it can thus be ignored. Comparison of the 
remaining integral with the first of Eqs. (8.7) yields 

.q1(θ, z) ≃ jkz−1e−α1zq̃1(k tan θ, 0) exp(− 1
2jkz tan2 θ), (8.16) 

where . θ is the angle with respect to the axis of the beam, defined by .tan θ = r/z. 
The value of . q1 in the far field is therefore determined by the Hankel transform 
of the source distribution [with .κ = k tan θ in Eqs. (8.7)]. A similar result is 
obtained from the solution of the Helmholtz equation (Morse and Ingard, 1968, 
p. 377). Equation (8.16) reveals that the amplitude of the primary beam decays as 
.z−1e−α1z in the far field because of spherical spreading and absorption. The phase 
term .− 1

2jkz tan2 θ accounts for the spherical curvature of the wavefronts, within the
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framework of the parabolic approximation (see footnote in Sect. 8.3.3). We define a 
corresponding far-field directivity function by 

.D1(θ) = q̃1(k tan θ, 0)

q̃1(0, 0)
, (8.17) 

which is normalized such that .D1(0) = 1. 

8.3.1 Gaussian Sources 

Sources with Gaussian amplitude shading are frequently used in models of finite-
amplitude sound beams because solutions in closed form can often be obtained 
in the quasilinear approximation. Owing to their simplicity, the solutions provide 
insight into the main features of the combined effects of diffraction, absorption, and 
nonlinearity. 

We begin by considering second-harmonic generation and let the source function 
be defined by 

.q1(r, 0) = p0 exp[−(r/a)2], (8.18) 

where . p0 is the peak source pressure, and a is the effective source radius. 
Substitution of Eq. (8.18) into Eq. (8.11) yields for the linear solution 

.q1(r, z) = p0e
−α1z

1 − jz/z0
exp

⎾
− (r/a)2

1 − jz/z0

⏋
, (8.19) 

where .z0 = 1
2ka2. For  .z ⪡ z0, Eq.  (8.19) reduces to . q1 ≃ p0 exp[−α1z −

(r/a)2], which describes a collimated beam of planar wavefronts having the same 
transverse amplitude distribution as at the source. The far-field solution is found 
from Eq. (8.16), with the directivity function given by Eq. (8.17): 

.D1(θ) = exp[− 1
4 (ka)2 tan2 θ ]. (8.20) 

Larger values of ka—i.e., larger ratios of source dimension to radiated wavelength— 
produce narrower beams. The axial amplitude predicted by Eq. (8.19) with .α1 = 0 is 
shown in Fig. 8.1, which displays a monotonically decreasing function of distance. 
The axial phase of . q1 approaches .90◦ for .z/z0 ⪢ 1. 

The quasilinear solution for the second-harmonic pressure is obtained by substi-
tuting Eq. (8.19) into Eq. (8.12): 

. q2(r, z) = jP2e
−α2z+j (2α1−α2)z0

1 − jz/z0
exp

⎾
− 2(r/a)2

1 − jz/z0

⏋

× {E1[j (2α1 − α2)z0] − E1[j (2α1 − α2)(z0 − jz)]}, (8.21)
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Fig. 8.1 Predicted propagation curves for the axial amplitudes (solid curves) and phases (dashed 
curves) for the fundamental .(n = 1) and second-harmonic .(n = 2) components in a Gaussian 
beam, with no absorption. 

where .P2 = βp2
0k

2a2/4ρ0c20. The function .E1(ξ) = ⎰ ∞
ξ

u−1e−u du is the 
exponential integral, which arises frequently in quasilinear solutions for diffracting 
sound beams. Two useful asymptotic properties of the exponential integral are 
.E1(ξ) ≃ ξ−1e−ξ for .|ξ | ⪢ 1, and .E1(ξ) ≃ −(C + ln ξ) for .|ξ | ⪡ 1, where 
.C = 0.577 is Euler’s constant. Comparison of Eqs. (8.19) and (8.21) reveals 
.q2(r) ∝ q2

1 (r), which indicates that the second-harmonic beamwidth is narrower 
at all ranges z than the width of the primary beam by a factor of .1/

√
2. Harmonic 

generation is most efficient along the z axis, where the primary beam is most intense. 
Consider now the case for which absorption is negligible and set .α1 = α2 = 0, 

whereby Eq. (8.21) reduces to 

.q2(r, z) = jP2 ln(1 − jz/z0)

1 − jz/z0
exp

⎾
− 2(r/a)2

1 − jz/z0

⏋
. (8.22) 

In the collimated near field of the primary beam .(z ⪡ z0), expansion of Eq. (8.22) 
yields .q2 ≃ (p2

0βkz/2ρ0c20) exp[−2(r/a)2], which describes the same linear growth 
rate as for second-harmonic generation in plane wave fields close to the source [see 
Eq. (4.54)]. For .z ⪢ z0, Eq. (8.22) becomes 

.q2(θ, z) ≃ −P2
ln(z/z0) − jπ/2

z/z0
D2

1(θ) exp(−jkz tan2 θ). (8.23) 

The directivity of the second-harmonic component is equal to the square of 
the directivity of the primary beam. The eventual decay rate associated with 
the second-harmonic component is .(z0/z) ln(z/z0), which is the dependence for 
second-harmonic generation by a spherical primary wave [see Eq. (4.285)], and 
which is not attained until distances for which .ln(z/z0) ⪢ 1. Whereas the far field
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in linear acoustics is at distances .z/z0 ⪢ 1, the far field of the second-harmonic 
component, in the absence of absorption, is determined by .ln(z/z0) ⪢ 1 (Garrett 
et al., 1984; Berntsen et al., 1984). The axial amplitude and phase predicted by 
Eq. (8.22) are  shown in Fig. 8.1. In the absence of absorption, the second-harmonic 
component is generated mainly within the near field of the primary beam .(z < z0), 
beyond which spherical spreading reduces the strength of the interaction. The phase 
advance of . q2 approaches 180. ◦ for .ln(z/z0) ⪢ 1. 

When absorption is taken into account, a distinction must be made regarding 
the frequency dependence of the attenuation coefficients (Darvennes et al., 1991). 
Note that in Eq. (8.21) the second exponential integral becomes .E1[(2α1−α2)z] for 
.z ⪢ z0, and whether this function grows or decays exponentially with increasing 
z depends on the sign of .(2α1 − α2). The most common case is .2α1 < α2, which 
applies to any fluid for which . α is proportional to . ωm with .m > 1 (e.g., classical 
thermoviscous fluids, for which .m = 2). The relation .2α1 > α2 is obtained for 
.m < 1. 

First let .2α1 < α2, in which case the second exponential integral in Eq. (8.21) 
increases exponentially for large z and dominates the first, to give 

.q2(θ, z) ≃ − P2z0

(α2 − 2α1)

e−2α1z

z2
D2

1(θ) exp(−jkz tan2 θ). (8.24) 

We thus obtain .q2(θ, z) ∝ q2
1 (θ, z) in the far field [recall Eqs. (8.16) and (8.17)]; 

i.e., the second-harmonic component depends only on the local properties of the 
primary beam. The reason for this dependence is that the amplitude of the virtual 
source distribution for second-harmonic generation is asymptotically proportional to 
.z−2e−2α1z (because it is proportional to . q2

1 ). In contrast, the second-harmonic sound 
that is radiated by these virtual sources decays asymptotically as .z−1e−α2z, i.e., as 
a freely propagating spherical wave. For .2α1 < α2, the virtual sources are thus 
attenuated less rapidly than the sound they radiate, and therefore the behavior of the 
second-harmonic field is determined in the far field by the behavior of neighboring 
virtual sources—i.e., by . q2

1 . 
Now take .2α1 > α2, in which case for z sufficiently large the second 

exponential integral in Eq. (8.21) can be ignored in comparison with the first. 
It is seen by inspection that the amplitude of the second-harmonic component is 
asymptotically proportional to .z−1e−α2zD2

1(θ). The  z dependence of the second-
harmonic component is the same as that of a freely propagating spherical wave at 
frequency . 2ω, because in this case the virtual source distribution is attenuated more 
rapidly than the sound it radiates. 

To conclude, we consider sum- and difference-frequency generation due to 
radiation from a bifrequency Gaussian source defined by 

.q1a(r, 0) = p0a exp[−(r/a)2], q1b(r, 0) = p0b exp[−(r/b)2], (8.25)
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where the pressure amplitudes .p0a and . p0b, and the corresponding source radii a 
and b, may differ. For brevity here we ignore absorption, in which case Eq. (8.15) 
yields 

. q±(r, z) = (jP±/f±) exp(−k2±r2/2f±)

×
⎾
E1

⎛
kakb(z0a ∓ z0b)

2k2±r2

2f±(g± ∓ jf±k±z)

⎞
− E1

⎛
kakb(z0a ∓ z0b)

2k2±r2

2f±g±

⎞⏋
,

(8.26) 

where . P± = βk2±z0az0bp0ap0b/2ρ0c20, f±(z) = kaz0a + kbz0b − jk±z, g±(z) =
k2±z0az0b − j (kbz0a + kaz0b)k±z, z0a = 1

2kaa
2, z0b = 1

2kbb
2, ka = ωa/c0, and 

.kb = ωb/c0. Equation (8.26) reduces on axis to 

.q±(0, z) = (jP±/f±) ln (1 ∓ jk±zf±/g±), (8.27) 

and the far-field directivity is given by the product of the primary beam directivities, 
.D1a(θ)D1b(θ). Further discussion of far-field properties, in relation to difference-
frequency radiation from a parametric array, may be found in Sect. 8.3.4. A  
generalization of Eq. (8.26) is available for sources that are also displaced and 
steered (Darvennes and Hamilton, 1990), which permits the analysis of nonlinear 
effects produced by sound beams whose axes intersect at nonzero angles. Radiation 
of sum- and difference-frequency sound from the nonlinear interaction region 
formed by the intersection of two noncollinear primary beams is referred to as 
scattering of sound by sound. See Berntsen et al. (1989) for a general analysis of 
this problem, and for a review of earlier related theories and experiments. 

8.3.2 Piston Sources 

Here the amplitude distribution for the source is taken to be 

.q1(r, 0) = p0H(a − r). (8.28) 

Equation (8.28) is used to model the vibration of a circular piston having velocity 
amplitude .u0 = p0/ρ0c0. Radiation from pistons, linear as well as nonlinear, 
is more difficult to investigate analytically than radiation from Gaussian sources. 
Specifically, closed-form solutions of Eq. (8.11) are available only on axis and in the 
far field, and only asymptotic approximations of Eqs. (8.12) and (8.15) are available 
in closed form. 

Following substitution of Eq. (8.28) into Eq. (8.11), the latter may be rewritten 
in the following form (Naze Tjøtta and Tjøtta, 1980):
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. q1(r, z) = p0e
−α1z

⎾
1 − e−jz0/z + 2e−jz0/z

⎰ rz0/az

0
e−jzξ2/z0J1(2ξ) dξ

⏋
,

(8.29) 

where .z0 = 1
2ka2, and . J1 is the first-order Bessel function. Equation (8.29) is  

particularly convenient for numerical calculations because r appears only in the 
upper integration limit. Note that a singularity exists at .z = 0, in the neighborhood 
of which the solution is invalid, and the source condition (8.28) is not recovered. 
[In contrast, the Gaussian source condition (8.18) is recovered from Eq. (8.19).] 
The effect of the singularity is more easily understood from analysis of the axial 
solution, for which the integral in Eq. (8.29) vanishes and the remaining terms may 
be combined as 

.q1(0, z) = j2p0 sin(z0/2z) exp(−α1z − jz0/2z). (8.30) 

It can be shown by expanding the corresponding solution of the Helmholtz equation 
for radiation from a baffled circular piston that Eq. (8.30) is in agreement for 
.z/a ≳ (ka)1/3 (Kunitsyn and Rudenko, 1978), i.e., at distances typically beyond just 
a few source radii. As z increases, the magnitude of Eq. (8.30) oscillates between 
0 and .2p0e

−α1z, passing through zeros at .z = z0/2mπ .(m = 1, 2, . . .). Near-field 
oscillations are associated with rapid phase variations, which create poor conditions 
for efficient harmonic generation prior to the last axial null .(m = 1). The  last  
maximum is at .z ≃ z0/π , and for .z ⪢ z0 the amplitude decays as .z−1e−α1z. 
Propagation in the far field is described by Eq. (8.16), with the directivity function 
given by 

.D1(θ) = 2J1(ka tan θ)

ka tan θ
. (8.31) 

The exact, more familiar directivity function for small-signal radiation from a 
circular piston in a rigid baffle is obtained by replacing .tan θ with .sin θ in Eq. (8.31). 
The extent to which .tan θ ≃ sin θ—e.g., for .θ ≲ 20◦—is indicative of the maximum 
angle at which the parabolic approximation is valid. See Naze Tjøtta and Tjøtta 
(1980) for more detailed comparison of the lossless, linear solution of Eq. (8.1) 
with the corresponding solution of the Helmholtz equation. 

The quasilinear solution for the second-harmonic component involves, in gen-
eral, a quadruple integral that must be evaluated numerically. Therefore, direct 
numerical integration of the second of Eqs. (8.4), or even Eq. (8.1), is normally 
the method used to model second-harmonic generation in the field of a piston. 
This is the procedure followed in Sect. 8.4, where axial propagation curves and 
beam patterns are presented for both unfocused and focused circular pistons. 
Here we restrict our attention to far-field asymptotic solutions for the second-
harmonic component (Garrett et al., 1984; Berntsen et al., 1984), which shall assist 
interpretation of the numerical and experimental results in Sect. 8.4. 

For .α2 > 2α1 one obtains
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.q2(θ, z) ≃ − βp2
0k

3a4

8ρ0c20(α2 − 2α1)

e−2α1z

z2
D2

1(θ) exp(−jkz tan2 θ), (8.32) 

which is observed to be identical in form to Eq. (8.24), and the discussion of the 
latter in Sect. 8.3.1 applies directly to the present case as well. For .z0 ⪡ z ⪡ La , 
where .La = min( 12α

−1
1 , α−1

2 ) is an absorption length, the field point is beyond the 
near field of the primary beam but prior to where absorption becomes important, 
and the following far-field result for .α1 = α2 = 0 is applicable: 

. q2(θ, z) ≃ −βp2
0k

3a4

8ρ0c20
exp(−jkz tan2 θ)

× 1

z

⎧⎾
ln

⎛
2z

νz0

⎞
− j

π

2

⏋
D2

1(θ) + D2f (θ)

⎫
. (8.33) 

Here .ν = eC = 1.78, and .D2f (θ) is an integral that must be evaluated numerically, 
and that is independent of z and is of the same order as .D2

1(θ) in magnitude. 
Therefore, the product directivity .D2

1(θ) does not accurately represent the beam 
pattern until distances for which .ln(z/z0) ⪢ 1, where the contribution due to 
.D2f (θ) may be ignored. The most striking contribution due to .D2f (θ) is the 
appearance of side lobes where nulls are predicted by .D2

1(θ), the effect of which is 
that twice as many side lobes appear in the second-harmonic field as in the primary 
beam. The additional side lobes associated with .D2f (θ) are sometimes referred to 
as fingers; they become less significant as z increases, but this relative decay rate is 
logarithmic and therefore extremely slow. The earliest clear observations of fingers 
were reported by Lockwood et al. (1973) and by Moffett (1979), prior to when the 
theoretical explanation of this phenomenon became available (Berntsen et al., 1984). 
The influence of .D2f (θ) is discussed further in Sect. 8.4 in relation to Figs. 8.5b 
and 8.6. 

8.3.3 Focused Sources 

Focused sound beams can be produced in several ways—for example, by using a 
curved source, by placing a lens in front of a planar source, or by using a phased 
array. In each case, the intent is to generate wavefronts that are approximately 
spherical. The radius of curvature d of these wavefronts is called the focal length of 
the source. 

We consider first the phase distribution that is required in the source plane 
.z = 0 to produce a spherical wave that, in the limit of geometrical acoustics 
(very high frequencies), converges at the axial point .z = d. Begin by writing 
the small-signal pressure of the converging spherical wave in the form . p =
(d/R)p0f [t + (R − d)/c0], where .f (t) is the time dependence of the signal at
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the source, .R = √
r2 + (d − z)2 is distance from the focal point, and we have 

.p = p0f (t) at .(r, z) = (0, 0). The appropriate source distribution in the plane 

.z = 0 is thus obtained with .R = √
r2 + d2. When the source radius a is small in 

comparison with the focal length .(a ⪡ d), and the source is therefore excited only 
at points .r ⪡ d, we may retain only the leading terms in the binomial expansion 
of the expression for R to obtain .R ≃ d + r2/2d. The effect of the term . r2/2d
is greater on the phase than on the amplitude of p, and it is consistent within the 
parabolic approximation to replace the amplitude coefficient .d/R by unity, and the 
phase term .(R − d)/c0 by .r2/2c0d (Lucas and Muir, 1982). These approximations 
account to dominant order for the spherical curvature of wavefronts in the source 
plane .z = 0. 

To convert an unfocused source condition to one with focal length d, thus replace 
t according to the transformation1 

.t → t + r2/2c0d. (8.34) 

A simple transformation rule can be developed for the special case of Gaussian 
beams, as follows (Novikov et al., 1987). Noting that the unfocused Gaussian source 
condition is obtained by combining Eq. (8.18) with the time factor .ejωt in Eq. (8.5), 
introduce the phase term .jωr2/2c0d to obtain 

.q1(r, 0) = p0 exp(−r2/a2 + jkr2/2d). (8.35) 

Now rewrite Eq. (8.35) as  

.q1(r, 0) = p0 exp(−r2/ã2), ã2 = a2

1 − jG
, (8.36) 

where .G = z0/d = ka2/2d. Comparison with Eq. (8.18) reveals that the Gaussian 
beam solutions presented in Sect. 8.3.1 for radiation from monofrequency sources 
can be modified for application to focused Gaussian beams merely by replacing a 
everywhere by . ̃a (including the factors of a in the definitions of . z0 and . P2). To 
account for focusing in Gaussian beam solutions for sum- and difference-frequency 
generation [for example, Eq. (8.26)], define the two focusing gains . Ga = kaa

2/2da

and .Gb = kbb
2/2db to form expressions similar to the second of Eqs. (8.36), and 

replace a by . ̃a, but replace b by . b̃ for the sum frequency and b by . b̃∗ for the 
difference frequency because of the complex conjugate that appears in Eq. (8.15). 

For example, consider transformation of the lossless solutions associated with 
second-harmonic generation in a Gaussian beam. Equation (8.19) with .α1 = 0 and

1 Defocused sources are modeled by using instead the transformation .t → t − r2/2c0d, i.e., by 
replacing d with . −d. Note that in Eq. (8.16) we have .− 1

2 jkz tan2 θ = −jωr2/2c0z, and the phase 
term thus describes a diverging spherical wavefront with radius of curvature z, centered at the 
source. 
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Eq. (8.22) thus become 

.q1(r, z) = p0

1 − (1 + jG−1)z/d
exp

⎾
− (1 − jG)(r/a)2

1 − (1 + jG−1)z/d

⏋
, . (8.37) 

q2(r, z) = jP2 

(1 − jG)  
ln[1 − (1 + jG−1)z/d] 
1 − (1 + jG−1)z/d 

exp

⎾
− 

2(1 − jG)(r/a)2 

1 − (1 + jG−1)z/d

⏋
. 

(8.38) 

In the focal plane .(z = d), the solutions reduce to 

.q1(r, d) = jGp0 exp[−(Gr/a)2 − jG(r/a)2], . (8.39) 

q2(r, d) = j

⎛
ln G + jπ/2 

1 + jG−1

⎞
P2 exp[−2(Gr/a)2 − j2G(r/a)2]. (8.40) 

The relation .|q1(0, d)| = Gp0 is obtained for the primary beam at the geometric 
focus, and therefore G is referred to as the focusing gain. The transverse distribution 
of . q1 in the focal plane is characterized by a radius .a/G, in comparison with the 
radius a at the source. The width of the primary beam in the focal plane is thus 
reduced by a factor of G. As with unfocused Gaussian sources, the second-harmonic 
beam is everywhere narrower than the primary beam by a factor of . 

√
2. 

Axial amplitudes and phases described by Eqs. (8.37) and (8.38) for  . G = 10
are displayed in Fig. 8.2. The primary beam experiences a 180. ◦ phase shift during 
passage through the focus, and the second-harmonic component experiences more 
nearly a 270. ◦ phase shift. As G increases and the limit of geometrical acoustics is 
approached, the phase shift in the primary beam tends toward a 180. ◦ step function 

Fig. 8.2 Predicted propagation curves for the axial amplitudes (solid curves) and phases (dashed 
curves) for the fundamental .(n = 1) and second-harmonic .(n = 2) components in a focused 
Gaussian beam, with no absorption.
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at the focus, whereas the phase advance of the second-harmonic component varies 
more slowly. 

The corresponding quasilinear theory for focused pistons, with comparison to 
experiment, is provided by Lucas and Muir (1983) for second-harmonic generation 
and by Lucas et al. (1983) for difference-frequency generation. 

8.3.4 Parametric Array 

A common model of difference-frequency generation referred to as the parametric 
array is analyzed in the present section. The primary and secondary waves are 
described in general by Eqs. (8.13) and (8.14). We consider neighboring primary 
frequencies .ωa ≃ ωb and sufficiently strong absorption that the nonlinear inter-
action is limited to the near field of the bifrequency source (Westervelt, 1963). 
To ensure the latter condition we require .α0z0 ≳ 1, where . α0 and . z0 are the 
attenuation coefficient and Rayleigh distance, respectively, evaluated at the mean 
primary frequency .ω0 = 1

2 (ωa + ωb). Only far-field properties of the difference-
frequency field shall be considered here, so for simplicity the primary beam is 
approximated by collimated plane waves radiated by a circular piston of radius a: 

.q1a(r, z) = p0aH(a − r)e−αaz, q1b(r, z) = p0bH(a − r)e−αbz. (8.41) 

Substitute Eqs. (8.41) into Eq. (8.15) and make the following approximations. 
Since the nonlinear interaction is confined by absorption to the near field of the 
primary beam (i.e., the main contribution to the integral is in the region .z' < z0) and 
we are interested only in the far field of the difference-frequency radiation, replace 
the term .(z − z')−1J0[k−rr '/(z − z')] in the Green’s function by .z−1J0(k−rr '/z). 
Next, since contributions to the integral in Eq. (8.15) are negligible for large . z', the  
upper limit on the integral over . z' may be replaced by . ∞ to obtain, with .r = z tan θ , 

. q−(θ, z) ≃ −jp0ap0bβk2−
2ρ0c20

e−α−z

z

⎰ ∞

0

⎰ a

0
J0(k−r ' tan θ)

× exp

⎛
−αT z' − jk−z2 tan2 θ

2(z − z')
− jk−r '2

2(z − z')

⎞
r ' dr 'dz', (8.42) 

where .αT = αa + αb − α− is a combined (and presumed positive) attenuation 
coefficient that determines the extent of the nonlinear interaction region. To 
approximate the phase terms, it is convenient to identify .La = α−1

T as the effective 
length (often referred to as the absorption length) of the parametric array. Since the 
integration across the beam is restricted to the domain .r ' < a, the term containing 
. r '2 may be ignored for .z−La ⪢ 1

2k−a2. Binomial expansion is used to approximate 
the term containing .tan2 θ , for small . z'/z, by  .− 1

2jk−(z + z') tan2 θ . The resulting 
integrals over . z' and . r ' are now independent and yield
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.q−(θ, z) ≃ −jp0ap0bβk2−a2

4ρ0c20αT

e−α−z

z
DW(θ)DA(θ) exp(− 1

2jk−z tan2 θ), (8.43) 

where the Westervelt directivity .DW (Westervelt, 1963), which results from the 
integral over . z', and the aperture factor .DA (Naze and Tjøtta, 1965), which results 
from the integral over . r ', are  given by2 

.DW(θ) = 1

1 + j (k−/2αT ) tan2 θ
, DA(θ) = 2J1(k−a tan θ)

k−a tan θ
. (8.44) 

In terms of . La , we restate the main restrictions on Eq. (8.43) as follows: strong 
absorption (nominally .La < z0) and field points far from the nonlinear interaction 
region .(z ⪢ La). Note that the axial amplitude of the difference-frequency pressure 
is proportional to the array length . La and varies with distance as .z−1e−α−z. 

We now consider the angular dependence. For small values of . k−a, as is  
frequently the case for .ωa ≃ ωb, DA is a relatively weak function of . θ compared 
with . DW , and the directivity of the difference-frequency field is determined mainly 
by the latter. Observe that .|DW | is a monotonically decreasing function of . θ , with a 
maximum at .θ = 0 and no side lobes. This radiation pattern is created by the end-
fire character of the array. As they propagate along the z axis at speed . c0, the primary 
waves constitute a phased line array of virtual sources that pump energy resonantly 
and therefore most efficiently into difference-frequency sound that propagates in the 
same direction. The absence of side lobes results from the continuous, exponential 
amplitude taper due to the factor .e−αT z'

in Eq. (8.42). 
The half-power angle related to .DW is defined by .(k−/2αT ) tan2 θHP = 1. To  

within the accuracy of the parabolic approximation (i.e., for narrow beams), we 
may let .tan θHP ≃ θHP to obtain 

.θHP = √
2αT /k− = √

2/k−La. (8.45) 

Whereas the beamwidths of the primary waves are determined by .kaa and . kba

via Eq. (8.31), the beamwidth of the difference-frequency sound depends mainly 
on .k−La . The difference-frequency beamwidth is essentially independent of the 
source radius a provided that absorption restricts the nonlinear interaction to the 
near field of the primary beam, and the aperture factor can be ignored. Parametric 
radiation thus provides a means for producing a more directional sound beam, 
at a lower frequency and with much lower side lobes, than is possible by direct, 
small-signal radiation from the same source of radius a (the latter situation would 
produce a beam pattern given by .DA). In addition, for .ωa ≃ ωb, a small percentage

2 Westervelt (1963) actually obtained .DW with .(2k−/αT ) sin2(θ/2) in place of .(k−/2αT ) tan2 θ , 
while Naze and Tjøtta (1965) obtained . DA with .k−a sin θ in place of .k−a tan θ . These differences 
from Eqs. (8.44), because of the parabolic approximation associated with Eq. (8.1), are negligible 
for small . θ . 
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change in either primary frequency corresponds to a large percentage change in the 
difference frequency, which makes wideband radiation (at the difference frequency) 
possible using a narrowband transducer (at the primary frequencies). The trade-off 
in comparison with the use of conventional acoustic sources is the lower efficiency 
associated with parametric generation of sound. Bellin and Beyer (1962) reported 
the first experiment on the parametric array, which verified the main features of 
Westervelt’s theory. 

Measurements obtained by Muir and Willette (1972) are presented in Fig. 8.3. 
A circular piston of radius .a = 3.8 cm radiated a bifrequency primary beam in 
water at .ωa/2π = 482 kHz and .ωb/2π = 418 kHz. For these parameters, the 
Rayleigh distance is .z0 = 1.4 m and the absorption length is .La ∼ 100 m. We 
thus have .La ⪢ z0, and therefore difference-frequency generation is dominated 
by nonlinear interaction in the far field of the primary beam, which is not taken 
into account by the Westervelt model. Nevertheless, even though .ωa/ω− = 7.5, the  
beamwidths at . ωa (Fig. 8.3a) and at . ω− (Fig. 8.3b) are similar. Note also the absence 
of side lobes at the difference frequency. The beam pattern at .ω+ (Fig. 8.3c) is 
narrower than at the primary frequencies and is given approximately by the product 
.D1a(θ)D1b(θ). The corresponding axial propagation curves are shown in the right 
half of Fig. 8.3. Absorption ultimately takes a greater toll on the primary, second-
harmonic, and sum-frequency waves, leaving the difference-frequency component 
as the lone survivor far from the source. Muir and Willette’s numerical results, 
shown with the measurements as solid curves, account for nonlinear interaction 
only in the far field, and correspond to using Eq. (8.16) in place of Eqs. (8.41) 

Fig. 8.3 Measurements of beam patterns produced by a parametric array in water at the (a) upper 
primary, (b) difference, and (c) sum frequencies, with corresponding propagation curves on the 
right (Muir and Willette, 1972; the solid curves are from their theoretical model).
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for the primary beam. See also the article by Garrett et al. (1983) for comparison of 
experiment with theory based on direct numerical evaluation of Eq. (8.15). 

We conclude by describing briefly the parametric receiving array, which employs 
an intense, collimated “pump” beam of frequency . ωa to determine the direction of 
propagation of a second signal with much lower frequency .ωb ⪡ ωa . A receiver 
placed at distance L away from the source of the pump beam, along its axis, is used 
to detect the sum or difference frequency .ω± .(≃ ωa) produced by the noncollinear 
interaction of the two primary waves. It can be shown that the amplitude of 
. q± at the receiver is approximately proportional to .Db(θ) = (sinΘ)/Θ, where 
.Θ = kbL sin2(θ/2), and . θ is the angle between the axis of the pump beam and 
the direction in which the low-frequency signal propagates (Berktay and Al-Temini, 
1969; Zverev and Kalachev, 1970). Note that .Db(θ) is the directivity function at 
frequency . ωb for a continuous end-fire array of length L. The nonlinear interaction 
along the axis of the pump beam thus synthesizes the differential elements of 
the end-fire array. The main advantage is that the directivity is determined by the 
separation distance L between the source of the pump beam and the receiver, and 
therefore large effective apertures can in principle be constructed with only two 
relatively small transducers. An extensive theoretical and experimental investigation 
of parametric receiving arrays was performed by Truchard (1975a, 1975b). 

The reader is referred also to a book by Novikov et al. (1987) that is devoted 
almost entirely to parametric arrays. 

8.3.5 Self-demodulation 

Here we consider the following transient source condition for a piston: 

.p(r, 0, t) = p0f (t)H(a − r), f (t) = E(t) sin[ω0t + φ(t)], (8.46) 

where the amplitude modulation .E(t) and phase modulation .φ(t) are slowly varying 
functions of time (in comparison with .sinω0t). The instantaneous angular frequency 
of the carrier wave is .Ω(t) = ω0 + dφ/dt . As in Sect. 8.3.4, we take the attenuation 
coefficient . α0 at frequency . ω0 to be sufficiently large .(α0z0 ≳ 1, where . z0 =
1
2k0a

2, k0 = ω0/c0) that the nonlinear interaction is confined to the near field 
of the beam. Under these conditions, an asymptotic result can be obtained for the 
axial waveform as follows (Averkiou et al., 1993). 

Following the model of the parametric array, we approximate the primary beam 
as a collimated plane wave, and further assume that the exponential attenuation acts 
locally according to the instantaneous angular frequency .Ω(τ): 

.p1(r, z, τ ) ≃ p0e
−α(τ)zE(τ) sin[ω0τ + φ(τ)]H(a − r), (8.47)
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where, for a thermoviscous fluid, we have .α(τ) = [Ω(τ)/ω0]2α0 for the time 
dependent attenuation coefficient. The frequency content of the secondary pres-
sure . p2 is determined by . p2

1, which contains high frequencies associated with 
.E2(τ ) cos[2ω0τ + 2φ(τ)] and low frequencies associated with .E2(τ ). The high-
frequency spectrum is absorbed more rapidly than the low-frequency spectrum, 
leaving only the contribution due to the latter in the far field. Concentrating on the 
latter, we write 

.p2
1(r, z, τ ) ≃ 1

2p
2
0e

−2α(τ)zE2(τ )H(a − r) (8.48) 

and ignore the generation of higher frequencies. We now let . La = (2α0)
−1

characterize the length of the nonlinear interaction region, assume .La < z0, and 
seek a solution for .z ⪢ La . 

The next assumption is that absorption of the nonlinearly generated low-
frequency components is a relatively weak effect, which is justified if .E(t) and 
.φ(t) are sufficiently slowly varying functions of time, corresponding to very low 
frequencies. The inhomogeneous wave equation for . p2 thus becomes, following 
integration of Eq. (8.1) with .δ = 0, 

.
∂p2

∂z
− c0

2

⎰ τ

−∞
(∇2⊥p2) dτ = β

2ρ0c30

∂p2
1

∂τ
. (8.49) 

An axial Green’s function solution for . p2 (in the time domain) can be constructed 
from Eq. (8.10) (which is expressed in the frequency domain) as follows: On axis 
.(r = 0), for no absorption .(αn = 0), and with harmonic frequency dependence nk 
replaced by .ω/c0, Eq.  (8.10) becomes 

.Gω(0, z|r ', z') = jω

2πc0(z − z')
exp

⎾
− jωr '2

2c0(z − z')

⏋
. (8.50) 

Recalling the time convention .ejωτ , from Fourier transform theory we associate the 
first factor of . jω in Eq. (8.50) with the derivative .∂/∂τ , and the argument of the 
exponential with the time delay .−r '2/2c0(z − z'). Using Fourier transforms and the 
definition of the Green’s function, one finds that the axial solution of Eq. (8.49) for  
arbitrary .p1(r, z, τ ) is 

.p2(0, z, τ ) = β

2ρ0c40

∂2

∂τ 2

⎰ z

0

⎰ ∞

0
p2
1

⎾
r ', z', τ − r '2

2c0(z − z')

⏋
r ' dr 'dz'

z − z' . (8.51) 

Now introduce the same approximations employed in Sect. 8.3.4. Take  z to be 
sufficiently large that the phase term .r '2/2c0(z − z') can be ignored, replace 
.dz'/(z−z') by .dz'/z, and extend the upper integration limit on . z' to . ∞. Substitution 
of Eq. (8.48) into Eq. (8.51) then results in elementary integrals over both . r ' and . z', 
which yield
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.p2(0, z, τ ) ≃ βp2
0a

2

16ρ0c40z

d2

dτ 2

E2(τ )

α(τ)
. (8.52) 

One of the derivatives comes from the right-hand side of Eq. (8.49), and the 
second is associated with propagation from the near field to the far field [the latter 
corresponds to the leading factor of jk  in Eq. (8.16)]. For .φ = const and therefore 
.α(τ) = α0, Eq.  (8.52) reduces to Berktay’s (1965) solution. Moffett et al. (1970) 
reported the first measurements of self-demodulation, and demonstrated agreement 
(Moffett et al., 1971) with the waveform predicted by Berktay. 

Finally, we may construct a complete solution .p = p1 + p2 for the axial 
waveform, taking thermoviscous absorption into account, as follows. Begin with 
the linear axial solution of Eq. (8.1) corresponding to the source condition in the 
first of Eqs. (8.46), for arbitrary .f (t) (Frøysa et al., 1993): 

.p1(0, z, τ ) = p0[f (τ) − f (τ − a2/2c0z)] ∗ D(z, τ), (8.53) 

where .D(z, τ) = (c30/2πδz)1/2 exp(−c30τ
2/2δz) is a thermoviscous dissipation 

function [see Eqs. (4.230)], and the asterisk indicates convolution with respect to 
. τ . For .f (t) = sinωt , Eq.  (8.53) reduces to Eq. (8.3) with . q1 given by Eq. (8.30). In 
what follows, .f (t) is given by the second of Eqs. (8.46). For .z > La , propagation 
of the field . p2 may be described by linear theory. Assuming that . p2 is generated 
within a relatively compact volume directly in front of the source, we may combine 
Eqs. (8.52) and (8.53) to obtain the following solution for the axial waveform 
(Averkiou et al., 1993): 

. p(0, z, τ ) ≃ p0

⎾
f (τ) − f (τ − a2/2c0z) + βp0a

2

16ρ0c40z

d2

dτ 2

E2(τ )

α(τ)

⏋
∗ D(z, τ).

(8.54) 

Near the source .(z ∼ La), prior to where the asymptotic result for . p2 is valid, the 
dominant contribution to p is the primary wave . p1. Comparisons with numerical 
solutions of Eq. (8.1) show Eq. (8.54) to be accurate for .α0z0 > 1. 

Theory and experiment for the self-demodulation of a tone burst with center 
frequency .ω0/2π = 3.5 MHz, radiated in glycerin from a piston of radius 
.a = 6.4 mm, are compared in Fig. 8.4 (after Averkiou et al., 1993). Here 
.z0/La ∼ 30, and the nonlinear interaction region is terminated well within the 
near field of the primary beam. The theory is given by Eq. (8.54) with . E(t) =
exp[−(ω0t/25π)10], φ(t) = 0, and .z0/z̄ = 1.6, where .z̄ = ρ0c

3
0/βp0ω0 is 

the lossless plane-wave shock formation distance at frequency . ω0. Observe how 
rapidly the tone burst is attenuated in comparison with the low-frequency, “self-
demodulated” waveform. At .z/z0 = 1.15, virtually all that remains is the waveform 
predicted by Eq. (8.52). The corresponding frequency spectra in the right column 
reveal no significant second-harmonic generation.
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Fig. 8.4 Axial waveforms (theory and experiment, first two columns) and corresponding fre-
quency spectra (experiment, third column) illustrating self-demodulation of a pulsed sound beam 
in glycerin (after Averkiou et al., 1993). Inset decibel values indicate levels relative to source. 

8.4 Strong Nonlinearity 

By strong nonlinearity we mean effects that cannot be modeled with quasilinear 
theory, for example, waveform distortion and shock formation. For these cases 
one usually resorts to numerical solutions of Eq. (8.1) (see Sect. 11.3.1). Before 
proceding to a discussion of the corresponding numerical results, we call attention 
to two analytically based techniques for solving the fully nonlinear form of the KZ 
equation, i.e., the lossless form of Eq. (8.1). Although Gaussian amplitude shading 
at the source is assumed in both approaches, each method may be extended to 
include other source distributions. 

One method incorporates analytical techniques used in nonlinear geometrical 
acoustics (Hamilton et al., 1997). Coupled equations are obtained from an expansion 
of the sound pressure about the beam axis, and an approximate axial solution is 
derived for the preshock region of a Gaussian beam radiated by a monofrequency 
source. The solution is derived in the time domain and has a simple implicit analytic 
form. In the high-frequency, geometrical acoustics limit where effects of diffraction 
disappear, the solution reduces to the plane-wave solution of the KZ equation,
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i.e., the solution of the lossless Burgers equation. The solution is also expressed 
in the frequency domain as an explicit Fourier series, which in the limit of very 
high frequencies reduces to the Fubini solution. Good agreement is shown with 
numerical solutions of the KZ equation. The lossless axial forms of the quasilinear 
solutions (8.19) and (8.22) are recovered by straightforward expansion in powers 
of the acoustic Mach number. One consequence of the analysis is the following 
transcendental equation that approximates the shock formation distance . ̄zG along 
the axis of a Gaussian beam in a lossless fluid, subject to the source condition 
associated with Eq. (8.18): 

.
1
4 ln

2[1 + (z̄G/z0)
2] + arctan2(z̄G/z0) = (z̄/z0)

2, (8.55) 

where .z̄ = ρ0c
3
0/βp0ω0 is the corresponding plane-wave shock formation distance. 

It can be seen that the limits .z̄G → z̄ as .z0 → ∞ .(a → ∞) and .z̄G → z0e
z̄/z0 as 

.z0 → 0 .(a → 0) are obtained, consistent with the theory for plane and spherical 
waves, respectively. The effect of focusing was also included in the results described 
above. 

The second method is based on combining the perturbation technique referred to 
as renormalization (Sect. 10.4) with what amounts to an application of weak shock 
theory (Frøysa and Coulouvrat, 1996). Although also restricted to Gaussian beams, 
this method is more general than the solution described in the previous paragraph 
in that it applies to pulses, both on and off axis, and shock formation is taken into 
account. Comparisons with numerical solutions reveal the technique to be accurate 
over a wide range of parameters, even well beyond the shock formation distance. 
The trade-off is an increase in complexity. Mainly, multiple numerical integrations 
in the corresponding quasilinear solution of the problem are required to perform the 
renormalization. An intricate procedure must also be followed to determine where 
to place the shocks, but similar difficulties would be faced in the first method if 
shocks were included. 

We turn now to direct numerical solutions of Eq. (8.1). To facilitate computations, 
the following transformation is frequently employed (Hamilton et al., 1985): 

. P =
⎛
1 + z

z0

⎞
p

p0
, R = r/a

1 + z/z0
, Z = z

z0
, T = ω0τ − r2/a2

1 + z/z0
,

(8.56) 

where a is a characteristic source radius, . ω0 is a reference frequency, . z0 = 1
2k0a

2

.(k0 = ω0/c0), and . p0 is a characteristic source amplitude. Substitution into Eq. (8.1) 
and integration with respect to T yields 

.
∂P

∂Z
= 1

4(1 + Z)2

⎰ T

−∞
(∇2

RP ) dT + A
∂2P

∂T 2 + NP

1 + Z

∂P

∂T
, (8.57)
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where .∇2
R = ∂2/∂R2 + R−1(∂/∂R), .A = α0z0 is a dimensionless attenuation 

coefficient (. α0 is the attenuation coefficient at frequency . ω0), and .N = z0/z̄ is 
a dimensionless nonlinearity coefficient . (z̄ is again the lossless plane-wave shock 
formation distance). The transformation preserves the parabolic form of Eq. (8.1), 
but with range dependent coefficients. For .Z ⪢ 1 we have .R ≃ 1

2k0a tan θ and 
.T ≃ ω0τ − k0r

2/2z, and therefore constant values of R and T coincide with, 
respectively, the radial divergence and spherical wavefront curvature in the far field 
of a sound beam [recall Eq. (8.16)]. Equations (8.56) and (8.57) can be modified to 
accommodate the convergence and subsequent divergence of focused sound beams 
(Hart and Hamilton, 1988). 

Equation (8.57) may be integrated directly in the time domain (Lee and 
Hamilton, 1995; see also Sect. 11.3.1.3), which is convenient for investigating 
pulsed sound beams. Effects of relaxation have also been included in time-domain 
numerical solutions of Eq. (8.57) (Cleveland et al., 1996). For sound beams radiated 
by monofrequency or bifrequency sources, frequency-domain algorithms are often 
more efficient for numerical computations. For these latter cases, solutions are 
sought in the form of a Fourier series, for example, 

.P(R,Z, T ) = 1

2

M⎲
n=1

Pn(R,Z)ejnT + c.c. (8.58) 

The series is truncated, for numerical reasons, at the Mth harmonic. Substitution into 
Eq. (8.57) yields the following coupled equations that can be solved numerically for 
the spectral amplitudes . Pn (Naze Tjøtta et al., 1990; see also Sect. 11.3.1.2): 

. 
∂Pn

∂Z
= ∇2

RPn

j4n(1 + Z)2
− n2APn

+ jnN

4(1 + Z)

⎛
n−1⎲
m=1

PmPn−m + 2
M⎲

m=n+1

PmP ∗
m−n

⎞
. (8.59) 

For fluids with attenuation coefficients that do not depend quadratically on fre-
quency, .n2A can be replaced in Eqs. (8.59) by arbitrary coefficients .An+jDn, which 
account also for dispersion through .Dn (see Sect. 5.2). The first comprehensive 
series of experiments performed for comparison with numerical solutions of coupled 
spectral equations based on the KZK equation is reported in a sequence of articles 
by Baker (1992), Baker and Humphrey (1992), and Baker et al. (1988). 

Measurements of harmonic generation in sound beams radiated in water by 
unfocused circular pistons are compared in Fig. 8.5 with calculations based on 
Eqs. (8.59). The measurements in Fig. 8.5a (Averkiou and Hamilton, 1997) were  
obtained with a source of radius .a = 9.4 mm that radiated at . ω0/2π = 2.25
MHz .(A = 0.053, N = 0.97), and the measured beam patterns at . z/z0 = 2.9
in Fig. 8.5b (TenCate, 1993) were obtained with a source of radius .a = 12.1 mm
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Fig. 8.5 (a) Axial propagation curves (Averkiou and Hamilton, 1997) and  (b) beam patterns 
(TenCate, 1993) for harmonic generation produced by radiation from a circular piston in water. 

Fig. 8.6 Calculations showing the effect of absorption on harmonic beam patterns at .z = 10z0 in 
the field of a circular piston (Hamilton et al., 1985) for .n = 1 (solid line), .n = 2 (dash-dot-dashed 
line), .n = 3 (dashed line), and .n = 4 (dotted line). 

radiating at 1 MHz .(A = 0.008, N = 0.42). As noted in Sect. 8.3.2, efficient 
harmonic generation occurs mainly beyond the last axial minimum in the primary 
beam (Fig. 8.5a). In Fig. 8.5b, it can be seen that the nth-harmonic beam pattern has 
n times as many side lobes as the beam pattern at the source frequency (Berntsen 
et al., 1984; Hamilton et al., 1985). With increasing n, the harmonic components 
become more directional and exhibit greater side-lobe suppression. The additional 
side lobes are near-field effects that can be significant out to distances on the order of 
a hundred Rayleigh distances. Measurements made by TenCate (1993) reveal that 
the amplitudes of the additional side lobes in the second-harmonic beam pattern 
[corresponding to the function .D2f (θ) in Eq. (8.33)] decay as .z−1e−α2z. 

Figure 8.6 shows numerical results (Hamilton et al., 1985) that demonstrate the 
effect of absorption on the relative levels of the additional side lobes in the field of 
a circular piston .(z/z0 = 10, N = 1.5). For strong absorption .(A = α0z0 = 1.0,
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and thus .z = 10α−1
0 ), the additional side lobes are completely attenuated. The far-

field structure is fully established, and the directivity function for the nth-harmonic 
component is given very nearly by .Dn(θ) = Dn

1 (θ) (Lockwood et al., 1973), 
where .D1(θ) is defined by Eq. (8.31). For weak absorption .(α0z0 = 0.01, and 
thus .z = 0.1α−1

0 ), the additional side lobes are very prominent, and beam patterns 
similar to those in Fig. 8.5b are observed. Finally, it can be seen that decreasing 
the effect of absorption (or, similarly, increasing the source level and therefore the 
relative effect of nonlinearity) produces flattening of the main lobes, which causes 
the relative levels of the side lobes to increase. Ultimately, nonlinear effects in the 
main lobes can become sufficiently strong that acoustical saturation occurs (Shooter 
et al., 1974; see also Sect. 4.4.3.4), and further increase in source level produces no 
increase in the axial pressure at a given distance. 

The propagation of a high-intensity tone burst is demonstrated with numerical 
results in Fig. 8.7, for which the source condition at .z = 0 is given by Eq. (8.46) 
with a Gaussian envelope defined by .E(t) = exp[−(ω0t/3π)2], and with . φ(t) =
0, A = 0.1, and .N = 2.0 (Lee and Hamilton, 1995). Frequency spectra are 
displayed adjacent to each waveform. By the end of the near field .(z/z0 = 1), 
the combined effects of nonlinearity and diffraction on the waveform have caused 
sharpening of the positive portions, rounding of the negative portions, and the 
formation of shock fronts. In addition, the peak positive pressures are approximately 
twice the peak negative pressures. This asymmetric waveform distortion is a 
hallmark of the combined effects of nonlinearity and diffraction in the near field. 
Waveform distortion in the near field causes energy to be shifted primarily upward 
in the frequency spectrum. Farther away from the source, absorption filters out the 
nonlinearly generated high-frequency components, and the shock fronts disappear 
.(z/z0 = 10). The maximum in the energy distribution is eventually shifted below 
the primary frequency as self-demodulation occurs .(z/z0 = 30–50). The waveform 
ultimately resembles .d2E2/dτ 2 (but with some asymmetry) at .z/z0 = 100, 
where only frequencies associated with the pulse envelope characterize the energy 
spectrum. Parametric arrays with shocks exhibit comparable waveform distortion 
and spectral evolution (Naze Tjøtta et al., 1990). 

Features similar to those observed in Figs. 8.5, 8.6 and 8.7 also appear in focused 
sound beams. Shown in Fig. 8.8a and b are comparisons of measurements (solid 
curves) with theory (dashed curves) for harmonic generation in the field of a focused 
piston with radius .a = 1.9 cm and focal length .d = 16 cm, radiating at 2.25 MHz in 
water with focusing gain .G = 10.6, α0d = 0.025, and .d/z̄ = 0.21 (Averkiou and 
Hamilton, 1995). Also shown are measurements of the waveform (Fig. 8.8c) and 
corresponding frequency spectrum (Fig. 8.8d) for shock formation in a pulse at the 
geometric focus .(z = d), with .d/z̄ = 0.34 but otherwise under the same conditions 
(after Averkiou and Hamilton, 1997, with theory removed for clarity).
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Fig. 8.7 Calculations showing waveforms and frequency spectra for a pulse along the axis of a 
sound beam radiated by a circular piston (Lee and Hamilton, 1995).
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Fig. 8.8 Measurements (solid curves) of (a) axial propagation curves, (b) beam patterns in the 
focal plane, (c) transient waveform, and (d) corresponding spectrum at the geometric focus in the 
field of a focused circular piston (after Averkiou and Hamilton, 1995, 1997). In (a) and (b) the 
dashed curves are theory, and curves for harmonics .n = 1 through .n = 4 appear in top-to-bottom 
order. 

Acknowledgments The author wishes to thank Michalakis A. Averkiou for modifying Figs. 8.4 
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9.1 Introduction 

The study of nonlinear acoustics of solids requires the introduction of new variables 
not used for fluids. This stems from the fact that a solid in motion is generally in 
a nonhydrostatic state of stress and cannot be characterized by pressure alone. The 
fundamental parameter is the local state of strain, and a careful definition of it is 
required for a discussion of nonlinear dynamics. Two general sources of nonlinearity 
can be recognized: the kinematic, or convective, nonlinearity that is independent 
of the material properties, and the inherent physical nonlinearity of the solid, as 
characterized by its constitutive behavior. As with fluids, both effects must be taken 
into account, although for highly nonlinear materials, such as rocks, the geometric 
nonlinearity can be insignificant. 

The focus here will be on weakly nonlinear wave motion, for which the 
appropriate small parameter is the ratio of dynamic displacement to wavelength. 
To leading order, elastic waves propagate isentropically, although thermal losses 
through heat flux can be the dominant source of attenuation, at least in metals. 
Internal friction, akin to viscosity in fluids, is the primary energy loss mecha-
nism for nonmetallic materials, and appropriate viscoelastic models are available 
(Kolsky, 1963). The leading-order adiabatic approximation is satisfactory for linear 
sinusoidal compressional waves of frequencies below about 1 GHz (Bland, 1969), 
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and it is generally adequate except over regions of rapid change, as occurs at 
shock fronts, for example. Analysis of shocks and solutions of the fully nonlinear 
equations of motion, including effects of finite thermal conductivity, can be found 
in, for instance, Bland (1969). A major strand of research concerns the propagation 
of singular surfaces and acceleration waves. These are formally exact solutions 
for wavefronts of vanishing thickness, and their analysis stems from research by 
Hadamard (1903), and advanced by T. Y. Thomas, C. Truesdell, and others in the 
1950s and 1960s (McCarthy, 1975). Useful reviews of waves in solids with an 
emphasis on nonlinearity are given by Zarembo and Krasil’nikov (1971) and by 
Thurston (1984). 

9.2 Equations of Nonlinear Elastodynamics 

Wave motion in solids is governed by the following momentum balance equation, 
which replaces Eq. (3.2): 

.ρ
Du
Dt

= ∇ · σ . (9.1) 

Here, . ρ is mass density, . u is particle velocity, .σ = σT is the stress tensor, also known 
as the Cauchy stress, and .(∇ · σ )i = ∂σij /∂xj .1 Nonlinear elasticity in solids is 
usually formulated in terms of a Lagrangian (or material) description, in contrast to 
that in fluids, which is normally considered in Eulerian (or spatial) coordinates. The 
distinction is that the current coordinate of a particle, which is . x, is displaced from 
its original or natural position . a by the displacement .U = x−a. A laboratory sample 
is conveniently described in the unstressed, equilibrium state, which corresponds to 
the material coordinates . a. Thus, a typical nonlinear wave experiment in a solid 
that measures the transit time of a wave across a sample of a given material length 
provides data on the wave speed in material coordinates. 

The connection between the current and material descriptions is through the 
deformation gradient tensor, defined as 

.F = ∂x
∂a

= I + ∂U
∂a

, (9.2) 

where I is the second-rank identity tensor, or .Fij = ∂xi/∂aj = δij+∂Ui/∂aj , where 
. δij is the Kronecker delta. The lengths of . dx and . da, corresponding to the same 
infinitesimal line element, are related by .dx2−da2 = dx·dx−da·da = 2da·(E·da), 
where .E = ET is the Lagrangian, or Green, strain tensor, given by

1 The summation convention is employed, which implies summation over repeated indices, e.g., 
.∂σij /∂xj̇ = ∂σi1/∂x1 + ∂σi2/∂x2 + ∂σi3/∂x3. 
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.E = 1
2 (F

T ·F − I), or Eij = 1

2

⎛
∂Ui

∂aj

+ ∂Uj

∂ai

+ ∂Uk

∂ai

∂Uk

∂aj

⎞
. (9.3) 

Mass conservation is taken into account by the relation .ρ dV = ρ0 dV0 [rather than 
Eq. (3.1) for fluids], where dV and .dV0 are the volumes of infinitesimal boxes in 
the current and material coordinates, each containing the same particles, and . ρ0
is the constant density in the reference (unstressed) configuration. By definition, 
.dV = (detF) dV0, and hence 

.
ρ

ρ0
= 1

detF
. (9.4) 

Equation (9.4) may be expressed explicitly in terms of the strain by writing . detF =
(1+ 2IE + 4IIE + 8IIIE)1/2, where . IE , . IIE , and .IIIE are the principal invariants 
of the strain tensor (Eringen and Suhubi, 1974): 

. 
ρ

ρ0
= [1 + 2 trE + 2(trE)2 − 2 trE2 + 4

3 (trE)3 − 4(trE)trE2 + 8
3 trE

3]−1/2.

(9.5) 

Either Eq. (9.4) or (9.5) eliminates density from consideration as a variable. It 
remains to express the stress in terms of the strain. 

Equation (9.1) is cast in Eulerian coordinates, with the velocity . u = u(x, t)
implicitly a function of . x and t . In the Lagrangian description, we consider the 
displacement as a function of a and t , i.e., .U = U(a, t), and thus .u = ∂U/∂t . 
In order to transform Eq. (9.1) to Lagrangian coordinates, we introduce the non-
symmetric tensor .P = (ρ0/ρ) σ · (F−1)T, known as the first Piola–Kirchhoff stress 
tensor, or sometimes the Lagrangian stress tensor. Substituting . σ = (ρ/ρ0)P · FT

and .Du/Dt = ∂2U/∂t2 into Eq. (9.1) and using the Euler–Piola–Jacobi identity 
.∇ · [(ρ/ρ0)FT] = ∇ · |FT/ detF) = 0 (Truesdell and Toupin, 1960, p. 246), we 
obtain .ρ0∂

2Ui/∂t2 = Fjk∂Pik/∂xj = ∂Pij /∂aj , or  

.ρ0
∂2U
∂t2

= ∇a ·P, (9.6) 

where . ∇a denotes the gradient with respect to the material coordinates . a. 
The equations of motion (9.6) can also be obtained from the Lagrangian density 

.L = 1
2ρ0u

2 − ρ0W , where W is the specific strain energy of the elastic body per 
unit mass. The Euler–Lagrange equations for . L yield Eq. (9.6) with . P = ρ0∂W/∂F
[see, e.g., Eqs. (26.2) and (26.3) of Landau and Lifshitz, 1986]. For most materials, 
it is reasonable to assume that the strain energy depends upon the local stretching 
and volume change, which in turn are completely determined by the Green strain 
tensor E. Hence .W = W(E), and it follows from the previous formula for . P that
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.P = ρ0F · ∂W

∂E
⇔ σ = ρF · ∂W

∂E
·FT. (9.7) 

The strain energy is assumed to have the following expansion for small strains: 

.ρ0W = 1

2!CijklEijEkl + 1

3!CijklmnEijEklEmn + · · · , (9.8) 

and the symmetry of . E implies that the second- and third-order moduli can 
be expressed using Voigt’s notation: .Cijkl = cIJ , Cijklmn = cIJK , where 
.I, J,K ∈ {1, 2, 3, 4, 5, 6} with the relationships . ij = 11, 22, 33, 23, 31, 12 ↔
I = 1, 2, 3, 4, 5, 6. Equations (9.7) and (9.8) together imply that 

. Pij = Cijkl

∂Uk

∂al

+ 1
2Mijklmn

∂Uk

∂al

∂Um

∂an

+ 1
3Mijklmnpq

∂Uk

∂al

∂Um

∂an

∂Up

∂aq

+ · · · ,

(9.9) 

where 

.Mijklmn = Cijklmn + Cijlnδkm + Cjnklδim + Cjlmnδik, (9.10) 

and Thurston (1984) gives an expression for the higher-order coefficients .Mijklmnpq . 
Note that .Mijklmn /= Mjiklmn, which implies that the nonsymmetry of . P is a second-
order effect. 

The number of second- and third-order moduli, at most 21 and 56, respectively, 
is much lower in the presence of material symmetry. Pure crystals display a 
symmetry associated with molecular arrangement, whereas man-made materials 
display textured symmetry; see Cowin and Mehrabadi (1995) for a complete account 
of elastic symmetries. We shall concentrate on isotropic solids, for which the strain 
energy has the expansion 

.ρ0W = λ

2
(trE)2 + μ trE2 + C

3
(trE)3 + B(trE)trE2 + A

3
trE3 + · · · , (9.11) 

where . λ and . μ are the Lamé moduli. The third-order moduli .A, B, and . C are those 
used by Landau and Lifshitz (1986), but there are many other notations, some of 
which are  shown in Table  9.1. The isotropic moduli are 

.Cijkl = λδij δkl + 2μIijkl, (9.12) 

where .Iijkl = (δikδjl + δilδjk)/2, and 

. Cijklmn = 2Cδij δklδmn + 2B(δij Iklmn + δklImnij + δmnIijkl)

+ A
2

(δikIjlmn + δilIjkmn + δjkIilmn + δjlIikmn). (9.13)
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Table 9.1 Relations between third-order elastic constants for isotropic solids. 

Toupin and 
Bernstein 
(1961) 

Murnaghan 
(1951) 

Bland 
(1969) 

Eringen and 
Suhubi (1974) 

Standard, 
. cIJK

.ν1 = 2C .l = B + C .α = 1
3C .lE = 1

3A + B + 1
3C .c123 = 2C . c111 = 2A + 6B + 2C

.ν2 = B .m = 1
2A + B .β = B .mE = −A − 2B .c144 = B . c112 = 2B + 2C

.ν3 = 1
4A .n = A .γ = 1

3A .nE = A .c456 = 1
4A . c166 = 1

2A + B

A solid is characterized by a positive shear modulus . μ and a positive bulk 
modulus .K = λ + 2

3μ, but the signs of the third-order moduli are not definite. 
An inviscid fluid is formally obtained by taking .μ = 0, λ = A = ρ0c

2
0, where . c0 is 

the small-signal sound speed in the fluid, and .A = 0, B = −A, and . C = (A−B)/2
(Kostek et al., 1993), where .B = ρ2

0(∂
2P/∂ρ2)0, and P is pressure [see Eqs. (2.2)– 

(2.4) and Sect. 2.5]. 
The theory as presented ignores internal attenuation. The simultaneous effects 

of thermal and viscoelastic dissipation can be included by replacing . P in Eq. (9.6) 
with .P+D, where . D is a viscous-like stress tensor defined by (see, e.g., Landau and 
Lifshitz, 1986) 

.Dij = 2η(Ėij − 1
3δij Ėkk) + (ζ + χ)δij Ėkk, (9.14) 

where . η is the shear viscosity coefficient, . ζ is the bulk viscosity coefficient, and . χ =
κT0(αT K/clCp)2, in which . κ is thermal conductivity .(η, ζ, κ > 0), . T0 is ambient 
temperature, . αT is the thermal expansion coefficient, and . Cp is the specific heat per 
unit volume at constant pressure. The dots in Eq. (9.14) indicate time derivatives. 

9.3 Longitudinal and Transverse Plane Waves 

A single equation of motion, in the absence of viscosity, is obtained by combining 
Eqs. (9.6) and (9.9): 

. ρ0
∂2Ui

∂t2
= ∂2Uk

∂aj ∂al

⎛
Cijkl + Mijklmn

∂Um

∂an

+ Mijklmnpq

∂Um

∂an

∂Up

∂aq

+ · · ·
⎞

.

(9.15) 

Let .U = (U, V,W) be a function of .a = a1 and t ; then Eq. (9.15) yields2 (Goldberg, 
1961)

2 For clarity in Eqs. (9.16)–(9.18), the subscripts on the displacement components represent partial 
differentiation with respect to the indicated quantities; for example, .Utt = ∂2U/∂t2. 
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. Utt − c2l Uaa =
⎛
3c2l + c111

ρ0

⎞
UaUaa

+
⎛

c2l + c166

ρ0

⎞
(VaVaa + WaWaa) + · · · , . (9.16) 

Vtt  − c2 t Vaa =
⎛

c2 l + 
c166 

ρ0

⎞
(UaVaa + VaUaa) + · · ·  , . (9.17) 

Wtt  − c2 t Waa =
⎛

c2 l + 
c166 

ρ0

⎞
(UaWaa + WaUaa) + · · ·  , (9.18) 

where . cl and . ct are the propagation speeds of linearized (small-signal) compres-
sional and transverse elastic waves, respectively: 

.cl =
/

λ + 2μ

ρ0
, ct =

/
μ

ρ0
. (9.19) 

The three equations of motion (9.16)–(9.18) reduce to one for purely longitudinal 
motion .(V = W = 0), which can be written as (Thurston, 1984) 

.
∂2U

∂t2
= c2l

∂2U

∂a2
g

⎛
∂U

∂a

⎞
, (9.20) 

where 

.g(ξ) = 1 +
⎛
3 + c111

ρ0c
2
l

⎞
ξ +

⎛
3 + 3c111 + c1111

ρ0c
2
l

⎞
ξ2

2! + · · · . (9.21) 

The one-dimensional equation (9.20) may be solved along characteristics as in 
Sect. 3.3.1. A wave traveling in the . +x direction has Riemann invariant . 12 (λ − u) =
0 (λ here is not the Lamé constant!), where now 

.λ = −cl

⎰ ∂U/∂a

0
g

1
2 (ξ) dξ. (9.22) 

The wave speed relative to the reference configuration is .cref = clg
1
2 (∂U/∂a). The  

speed in actual space is .c + u, where .c = cref(1 + ∂U/∂a). By eliminating . ∂U/∂a

using Eq. (9.22) and .λ = u, we find that .c + u = cl + βu + · · · , with coefficient of 
nonlinearity 

.β = −
⎛
3

2
+ c111

2ρ0c2l

⎞
. (9.23)
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This agrees with Eq. (2.25) when the identity .c111 = 2A+ 6B + 2C (see Table 9.1) 
is used. 

The nonlinear distortion of a wave is accompanied by the generation of har-
monics of all orders for single-frequency input. A simple perturbation analysis of 
Eq. (9.20) shows that the source excitation .U(0, t) = U0 sinωt, V = W = 0, 
produces a propagating second harmonic according to (Zarembo and Krasil’nikov, 
1971) 

.U(a, τ) = U0 sinωτ + β

4

⎛
ωU0

cl

⎞2
a cos 2ωτ + · · · , (9.24) 

where .τ = t − a/cl . Note that the amplitude of the second harmonic is of 
order .aU2

0 /λ20, where . λ0 is the fundamental wavelength, and it grows in direct 
proportion to propagation distance. Equation (9.24) provides a practical means to 
determine . β, and hence the TOE (third-order elasticity) constant . c111. Theoretical 
and experimental applications of harmonic generation techniques for measuring 
TOE constants of cubic crystals are reviewed by Breazeale and Philip (1984). 
One advantage of this approach is that it permits measurements to be made 
as a continuous function of temperature. The technique depends upon absolute 
amplitude measurements, which can be exacerbated by intrinsic attenuation in the 
sample. This is not a serious problem in crystals at the frequency ranges of practical 
interest, but it becomes a severe limitation for highly attenuative materials such 
as rock. With thermoviscous attenuation included [see Eq. (9.46)], the solution 
becomes (Zarembo and Krasil’nikov, 1971) 

. U(a, τ) = U0e
−αa sinωτ + β

8α

⎛
ωU0

cl

⎞2
(e−2αa − e−4αa) cos 2ωτ + · · · ,

(9.25) 

where .α = ω2( 43η+ζ+χ)/2ρ0c3l . The amplitude of the second harmonic is bounded 
in this case, having a maximum value of .βU2

0ω2/32αc2l at distance .(ln 2)/2α from 
the source. 

The analysis leading to Eq. (9.24) was based upon a truncation of the exact 
constitutive equation, and ignored the fact that coefficients of fourth order and higher 
could also generate second harmonics. A more precise examination of the problem 
by Thurston and Shapiro (1967) considered all higher orders, with expansions in 
powers of the acoustic Mach number at the source, .ε = ωU0/cl . They obtained 
definitive results relating experimental data to third-order coefficients, independent 
of fourth-order coefficients. 

In addition to longitudinal waves, an isotropic elastic solid supports transverse, 
or shear, wave motion, for which the displacement is polarized perpendicular to the 
propagation direction. Small-signal transverse waves travel at speed . ct , which is 
always less than . cl . In fact, the inequality .ct < cl/

√
2 holds for solids with positive 

Poisson’s ratio (solids with negative Poisson’s ratio are theoretically possible—e.g.,
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origami—but are of little interest as far as wave motion is concerned). When the 
source displacement is not purely longitudinal—for example, . U(0, t) = U0 sinωt

and .V (0, t) = V0 sinωt—an additional contribution to the longitudinal second-
harmonic component results from the term .VaVaa in Eq. (9.16). Generation of a 
longitudinal second-harmonic component with propagation speed . cl by a shear wave 
with propagation speed . ct is an asynchronous interaction that causes the amplitude 
of the former to beat with spatial period .l = π/(kt − kl), where .kt = ω/ct and 
.kl = ω/cl (see Fig. 5.5 for measurements of an analogous process, asynchronous 
harmonic generation of sound in a waveguide). Since l is of order one wavelength 
because of the disparity in propagation speeds, this interaction is very inefficient, 
and the resonant second-harmonic generation taken into account by Eqs. (9.24) and 
(9.25) dominates at distances .a ⪢ l. Generalizations of Eqs. (9.24) and (9.25) that 
account for transverse source displacement are provided by Polyakova (1964). 

Equations (9.16)–(9.18) do not support uncoupled transverse waves of the form 
.U = W = 0. As just described, a first-order component V generates a second-
order component U , and wave mixing occurs. Moreover, solution of Eq. (9.17) by  
perturbation methods shows that a first-order component V generates no second-
order contribution to V , and consequently the quadratic nonlinearity for transverse 
waves is zero. The absence of transverse harmonics can be simply understood in 
terms of the isotropic material symmetry, which forbids quadratic terms for shear 
deformation (Norris, 1991). 

The wave mixing process can, however, produce interesting three-wave interac-
tions, which provides another means to measure combinations of TOE constants. 
Jones and Kobett (1963) calculated resonance conditions based on wave vector 
matching for oblique elastic-wave interactions (see also Landau and Lifshitz, 1986, 
Sect. 26), and experiments subsequently measured the amplitude of the wave 
generated from the interaction of two primary waves (Rollins et al., 1964). For 
example, the resonance condition for which two transverse plane waves having the 
same frequency generate a longitudinal second-harmonic wave is .|ka

t + kb
t | = 2kl , 

where the transverse-wave vectors indicate respective directions of propagation, and 
.|ka

t | = |kb
t | = kt . The resonance condition is satisfied when the angle formed by . ka

t

and . kb
t is .θ = 2 cos−1(ct /cl). Zarembo and Krasil’nikov (1971) discuss three-wave 

interaction processes and provide a review of experimental results on the generation 
of transverse-wave harmonics in crystals. 

9.4 Acoustoelasticity: Stress Dependence of the Wave Speeds 

The most commonly used and the most precise method for determining TOE 
constants is based on the acoustoelastic effect, in which a static state of stress 
and strain applied to an elastic body changes the speeds of small-signal waves. 
The effect is relatively small (e.g., .∼10−5/MPa for aluminum), and it requires 
high-precision measurements, such as the “sing-around” technique in which the 
resonance frequency of a slab is measured. It also introduces the possibility of
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birefringence, whereby the degeneracy of the transverse waves is broken, and 
transverse waves polarized along two principal directions have slightly different 
speeds. Acoustoelasticity can also be used to measure an existing state of stress, 
such as residual stress (Pao et al., 1984). A summary of the experimental data on 
TOE constants of crystals can be found in the monograph by Thurston (1984). 

The theory underlying acoustoelasticity is well developed, starting with the fun-
damental paper by Toupin and Bernstein (1961). Three states and their coordinates 
need to be distinguished: the natural, . a; the initial, . X; and the current, . x. For  
simplicity, suppose that the initial stress and strain are uniform and defined by the 
static displacements . Us : .X = a + Us . The acoustoelastic response is measured 
by the further “small on large” dynamic displacement . Ud : .x = X + Ud . The  
equation of motion for . Ud follows from Eqs. (9.6) and (9.9) by linearization about 
the initial state. Also, it is useful to express the acoustoelastic equations in the initial 
coordinates, which, because of the infinitesimal nature of . Ud , coincide with the 
laboratory coordinates. The change of variable .a → X is achieved by use of the 
chain rule, with the result 

.ρ0
∂2Ud

i

∂t2
= Bijkl

∂2Ud
k

∂Xj∂Xl

, (9.26) 

where the effective elastic stiffnesses are 

. Bijkl = Cijkl + δikCjlqr (∂Us
q/∂Xr) + Crjkl(∂Us

i /∂Xr) + Cirkl(∂Us
j /∂Xr)

+ Cijrl(∂Us
k /∂Xr) + Cijkr (∂Us

l /∂Xr) + Cijklmn(∂Us
m/∂Xn). (9.27) 

Equation (9.26) is a second-order (quadratic) approximation of Eqs. (9.6) and (9.9). 
The assumption of uniform initial stress and strain implies that the coefficients . Bijkl

are constants. 
Consider a plane wave propagating in the direction of the unit vector . n, Ud =

Ud0 sinω(t − n · X/v), where the polarization .Ud0 (constant) satisfies, from 
Eq. (9.27), 

.ρ0v
2Ud0

i = BijklnjnlU
d0
k . (9.28) 

If the solid is assumed to be isotropic in its undeformed state, the eigenvalue 
equation (9.28) predicts one quasi-longitudinal wave in the direction of . n, and two 
quasi-transverse waves. With no loss in generality, let the coordinate axes coincide 
with the principal axes of static strain, .es

ij = 1
2 (∂Us

i /∂Xj + ∂Us
j /∂Xi), and static 

stress, .σ s
ij = Cijkle

s
kl . If the propagation direction is aligned with one axis, say 

.n = e1, then the longitudinal and transverse modes are pure, with polarizations in 
the coordinate directions and corresponding propagation speeds given by 

.ρ0v
2
l = ρ0c

2
l + σ s

11 + (4ρ0c
2
l + c111)e

s
11 + c112(e

s
22 + es

33), . (9.29)
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Table 9.2 Stress derivatives of longitudinal and transverse wave speeds in an isotropic solid . [K =
λ + 2

3μ, E = 2μ(1 + ν), ν = λ/2(λ + μ)]. 
Stress Mode Propagation . n Polarization . ρ0(dv2/dp)0

Hydrostatic Longitudinal Arbitrary .‖n . − 5−3ν
1+v

− 1
3K (c111 + 2c112)

Hydrostatic Transverse Arbitrary .⊥ n . − 3(1−ν)
1+ν

− 1
3K (c144 + 2c166)

Uniaxial Longitudinal . ‖ stress .‖n . −1 − 4(1−ν)
(1+ν)(1−2ν)

−
. 1
E

(c111 − 2νc112)

Uniaxial Longitudinal . ⊥ stress .‖n . 4ν(1−ν)
(1+ν)(1−2ν)

+
. 1
E

[νc111 − (1 − ν)c112]
Uniaxial Transverse . ‖ stress .⊥ n . − 2

1+ν
+ 1

E
[νc144 − (1 − ν)c166]

Uniaxial Transverse . ⊥ stress . ‖ stress . − 1−ν
1+ν

+ 1
E

[νc144 − (1 − ν)c166]
Uniaxial Transverse . ⊥ stress . ⊥ stress . 2ν1+ν

− 1
E

(c144 − 2νc166)

ρ0v
2 
t2 = ρ0c2 t + σ s 

11 + (2ρ0c
2 
t + c166)(es 

11 + es 
22) + c144es 

33, . (9.30) 

ρ0v
2 
t3 = ρ0c2 t + σ s 

11 + (2ρ0c
2 
t + c166)(es 

11 + es 
33) + c144es 

22. (9.31) 

Acoustoelastic measurements are normally performed by varying the applied 
static stress according to a single parameter p, such as a hydrostatic pressurization, 
.σ s = −pI, or a uniaxial compression in the direction .m, σ s = −pm × m. Some 
specific applications of the above formulae are listed in Table 9.2, which gives 
the dimensionless derivative .ρ0(dv2/dp)0 for states of hydrostatic pressurization 
and uniaxial compression (the subscript 0 on the derivative indicates evaluation at 
.p = 0). In a typical experiment, the resonance frequency f is measured for a slab 
of thickness . L0 in the undeformed state, with the waves propagating in the direction 
normal to the faces. The wave speed is determined from the equation .v = 2Lf , 
where L is the deformed length. In practice, it is simpler to measure the “natural” 
wave speed (Thurston and Brugger, 1964) .w = 2L0f . The two speeds are related 
by .v/w = L/L0, or  

.ρ0

⎛
dv2

dp

⎞
0

= ρ0

⎛
dw2

dp

⎞
0
+ 2ρ0v

2ninj

⎛
des

ij

dp

⎞
0

. (9.32) 

Values of the pressure derivatives of velocity (the first two in Table 9.2) are listed 
in Table 9.3 for a variety of materials. The values for rock (Berea sandstone) are 
noticeably larger than the rest, indicating a high degree of nonlinearity, although the 
measured values for rock display large spreads (Winkler and Liu, 1996). 

The propagation speed of a transverse wave polarized in the 2 direction and 
traveling in the 1 direction is .vt2 ≡ v12. A pure transverse mode polarized in the 1 
direction can also propagate in the 2 direction with speed . v21, where, according to
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Table 9.3 Dimensionless 
dependence of sound speed 
on pressure for some 
common materials. 

Material .ρ0(dv2l /dp)0 . p0(dv2t /dp)0

Pyrex . −8.6 . −2.84 

Fused silica . −4.32 . −1.42 

Nickel-steel 2.84 1.55 

Molybdenum 3.48 1.05 

Alumina 4.46 1.12 

Tungsten 4.58 0.70 

Water 5.0 0 

Niobium 6.18 0.29 

Gold 6.4 0.90 

Magnesium 6.89 1.47 

Steel (Hecla) 7.45 1.46 

Benzene 9.0 0 

Armco-iron 9.3 5.7 

Lucite.∗ 10.3 1.6 

Polystyrene 11.6 1.57 

Aluminum 12.4 2.92 

PMMA 15.0 3.0 

Cemented glass beads. ∗ 288 84 

Berea sandstone (A).∗ 1628 956 

Data compiled from the literature by Johnson et al. (1994), 
except for those with asterisks, which are calculated from 
moduli reported by Winkler and Liu (1996) 

Eq. (9.30), 

.ρ0v
2
21 − ρ0v

2
12 = σ s

22 − σ s
11. (9.33) 

In a similar situation for an unstressed but anisotropic solid, the wave speeds satisfy 
.ρ0v

2
12 = C2121, .ρ0v221 = C1212, which are identical because of the symmetry of 

the elastic moduli, .C2121 = C1212. The difference, Eq. (9.33), depends upon the 
principal stresses, and offers a means to distinguish stress-induced effects from those 
caused by intrinsic material anisotropy. For instance, a uniaxially stressed isotropic 
material does not act like a solid with transverse isotropy. 

9.5 Sound Beams in Solids 

The evolution of an initial disturbance with a well-defined direction of propagation 
can be described by a nonlinear parabolic equation similar to the Kuznetsov– 
Zabolotskaya–Khokhlov equation for sound beams of finite amplitude in thermo-
viscous fluids (Sect. 3.9). KZK-type equations have been derived for longitudinal 
waves in isotropic solids (Zabolotskaya, 1986b) and for waves in anisotropic solids
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(Zabolotskaya, 1986a; Norris and Kostek, 1993). However, beams of purely trans-
verse motion in isotropic solids are undistorted in the second-order approximation. 
Zabolotskaya (1986b) included fourth-order elastic coefficients and found that the 
cubic nonlinearity generates a third harmonic that mixes with the fundamental to 
produce a transverse second-harmonic wave. Calculations for a linearly polarized 
Gaussian beam showed that the second harmonic is polarized in the direction 
perpendicular to the fundamental. 

We illustrate the procedure for deriving a KZK-type equation for the simplest 
case, longitudinal wave motion in an isotropic solid. The following extension of 
the ordering procedure used in Sect. 3.9 for sound beams in fluids is employed. 
Introduce the retarded time .τ = t − a1/cl and the scaled variables . ̄a1 =
εa1, (ā2, ā3) = ε1/2(a2, a3), where .ε ⪡ 1 is a characteristic acoustic Mach 
number. Internal energy loss is included, although it is assumed that the damp-
ing is small and scales as .(η, ζ, χ) = ε(η̄, ζ̄ , χ̄ ). We assume the following 
forms for the displacements, velocities, and stresses: . (U1, u1, P11, P22, P33) =
ε(Ū1, ū1, P̄11, P̄22, P̄33), .(Ui, ui, P1i , Pi1) = ε3/2(Ūi , ūi , P̄1i , P̄i1) for .i = 2, 3, 
and .(P23, P32) = ε2(P̄23, P̄32). 

The equations of motion (9.6) can be cast as the following quasi–first-order 
system: 

.
∂Ui

∂t
= ui, . (9.34) 

ρ0 
∂ui 
∂t 

= 
∂Pij 
∂aj 

+ 
∂Dij 
∂aj 

, . (9.35) 

∂Pij 
∂t 

= 
∂Pij 
∂Fkl 

∂uk 
∂al 

. (9.36) 

Substitution of the scaled variables into Eq. (9.34) gives  simply  .∂Ūi/∂τ = ūi . The  
force balances in the three directions become, from Eq. (9.35) with .Dij given by 
Eq. (9.14), 

. ρ0
∂ū1

∂τ
+ 1

cl

∂P̄11

∂τ
= ε

⎛
∂P̄11

∂ā1
+ ∂P̄12

∂ā2
+ ∂P̄13

∂ā3
+ ( 43 η̄ + ζ̄ + χ̄ )

c2l

∂2ū1

∂τ 2

⎞

+ O(ε2), . (9.37) 

ρ0 
∂ū2 

∂τ 
+ 

1 

cl 

∂ P̄21 

∂τ 
− 

∂ P̄22 

∂ā2 
= ε

⎛
∂ P̄21 

∂ ̄a1 
+ 

∂ P̄23 

∂ā3

⎞
+ O(ε2), . (9.38) 

ρ0 
∂ū3 

∂τ 
+ 

1 

cl 

∂ P̄31 

∂τ 
− 

∂ P̄33 

∂ā3 
= ε

⎛
∂ P̄31 

∂ ̄a1 
+ 

∂ P̄32 

∂ā2

⎞
+ O(ε2). (9.39) 

An expression for the time rate of change of the stress is obtained from Eq. (9.9):
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.
∂Pij

∂t
= Cijkl

∂uk

∂al

+ Mijklmn

∂Um

∂an

∂uk

∂al

+ · · · , (9.40) 

which in terms of the scaled variables becomes 

. 
∂P̄11

∂τ
+ ρ0cl

∂ū1

∂τ
= ε

⎾
ρ0c

2
l

∂ū1

∂a1
+ λ

⎛
∂ū2

∂a2
+ ∂ū3

∂a3

⎞
− 2βρ0ū1

∂ū1

∂τ

⏋
+ O(ε2),

(9.41) 

where . β is the coefficient of nonlinearity for longitudinal waves, defined in 
Eq. (9.23). Subtraction of .1/cl times Eq. (9.41) from the longitudinal force balance 
equation, Eq. (9.37), eliminates all .O(ε0) terms. Next, differentiation of the result 
with respect to . τ , and use of the relation3 .P̄11,1τ = −ρ0clū1,1τ + O(ε) obtained 
from Eq. (9.37), yields the .O(ε) relation 

.2
∂2ū1

∂ā1∂τ
+ λ

λ + 2μ
Λ1 + Λ2 − β

c2l

∂2ū21

∂τ 2
− ( 43 η̄ + ζ̄ + χ̄ )

ρ0c
3
l

∂3ū1

∂τ 3
= 0, (9.42) 

where .Λ1 = ū2,2τ + ū3,3τ and .Λ2 = −(ρ0cl)
−1(P̄12,2τ + P̄13,3τ ). The 12 and 

21 stress rates are symmetric to leading order and are given by . P̄12,τ = P̄21,τ =
μ(ū1,2 − c−1

l ū2,τ ). Using similar relations for the 13 and 31 stresses, combined 
with the leading-order terms from the transverse force balances, Eqs. (9.38) and 
(9.39), we find that 

.
c2t

c2l

Λ1 − Λ2 = μ

ρ0cl

∇̄2⊥ū1, . (9.43)

Λ1 − Λ2 = 
1 

ρ0 
( P̄22,22 + P̄33,33), (9.44) 

where .∇̄2⊥ = ∂2/∂ā22 + ∂2/∂ā23 . The leading-order terms in Eqs. (9.38) and (9.39) 
allow us to determine that .P̄22,22+P̄33,33 = −(λ/cl)∇̄2⊥ū1, from which the relations 
.Λ1 = −cl∇̄2⊥ū1 and .Λ2 = −2(c2t /cl)∇̄2⊥ū1 follow. 

Finally, we revert to the physical variables of interest by removing the depen-
dence upon . ε. Following elimination of . Λ1 and . Λ2, Eq.  (9.42) thus reduces to 

.
∂2u

∂a∂τ
− cl

2
∇2⊥u − β

2c2l

∂2u2

∂τ 2
− δ

2c3l

∂3u

∂τ 3
= 0, (9.45) 

where .u = u1 is the longitudinal particle velocity, .a = a1 is the coordinate along 
the nominal axis of the beam, .∇2⊥ = ∂2/∂a22 + ∂2/∂a23 signifies the transverse

3 Subscripts preceded by a comma represent partial differentiation with respect to the indicated 
scaled quantities; for example, .P̄11,1τ = ∂2P̄11/∂ā1∂τ . 
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Laplacian, and .δ = ρ−1
0 ( 43η + ζ + χ) is an acoustic diffusivity. Equation (9.45) 

is the longitudinal wave counterpart of the KZK equation in nonlinear acoustics, 
Eq. (3.65). For plane waves, set .∇2⊥u = 0 and integrate Eq. (9.45) with respect to . τ

to obtain the Burgers equation, 

.
∂u

∂a
− β

c2l

u
∂u

∂τ
− δ

2c3l

∂2u

∂τ 2
= 0, (9.46) 

the acoustic counterpart of which is Eq. (3.54). Although Eqs. (9.45) and (9.46) 
are expressed in Lagrangian coordinates, whereas the corresponding KZK and 
Burgers equations for sound waves in fluids are expressed in Eulerian coordinates, 
this distinction is of higher order than the approximations leading to these model 
equations, and it may therefore be ignored. Equations (9.24) and (9.25) are simple 
perturbation solutions of Eq. (9.46). 
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10.1 Background 

Perturbation techniques have proved to be an effective method for deriving ana-
lytical descriptions of finite-amplitude waves in fluids. Solutions obtained from 
perturbation methods have provided physical insights into underlying physical 
phenomena. They also provide benchmarks against which solutions obtained by 
computational methods may be measured. Several procedures are available; each 
involves a trade-off between ease of implementation and degree of generality. A 
comprehensive treatment may be found in the text by Nayfeh (1973). 

The acoustic Mach number . ε, defined as the ratio of the peak particle velocity at a 
representative location to the small-signal speed of sound, is the small parameter for 
the perturbation expansion. The nonlinear effects, which appear in the governing 
equations as quadratic and higher products of the state variables, are an order 
of magnitude smaller than the linear terms. Consequently, one encounters the 
linearized problem in the first stage of a perturbation analysis. 

An important physical aspect of acoustic waves in an ideal fluid is the absence 
of dispersion, which results in a continual exchange of energy between various 
harmonics. Using the linear solution for a plane wave to approximate the nonlinear 
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terms in the governing equations has the effect of driving the differential equations 
by a field of sources that propagates through the fluid at the same speed as a small-
signal wave. This represents a resonant field excitation, which results in cumulative 
growth of the waveform distortion. From a mathematical and physical viewpoint, 
describing this growth effect requires recognition that there are at least two relevant 
length scales. One is the short scale of wavelength, over which the propagation of 
the wave is sufficiently close to the small-signal limit to permit application of a 
straightforward perturbation technique. The long scale for the wave is characterized 
by the shock formation distance. In propagation over distances of that magnitude, 
the buildup of nonlinear effects often results in a wave that differs substantially from 
the one predicted by linear theory. 

The primary limitation on the use of perturbation methods is reliance on the 
linear solution as the starting point. Most analyses have treated situations in which 
the wave fronts and rays of the corresponding small-signal wave coincide with a 
coordinate system in which the wave equation is separable, such as rectangular 
Cartesian and spherical coordinates. The presence of strong diffraction effects, 
notably in sound beams, leads to substantial complications. That this should be so 
is not surprising when one notes that no closed-form linear solution has been found 
for the entire acoustic field of a sound beam. 

Many applications of perturbation techniques to nonlinear acoustics have been 
based on the exact nonlinear wave equation (Goldstein, 1960) governing the velocity 
potential for an ideal gas. The derivation of this equation, which may be found in 
Sect. 3.3.2, involves combining the mass and momentum conservation equations 
with the isentropic equation of state, such that the sound pressure p, particle velocity 
. u, and excess density . ρ' are eliminated in favor of the velocity potential function . φ. 
The result is 

.u = ∇φ, . (10.1) 

ρ'

ρ0 
+ 1 =

⎛
p 
P0 

+ 1

⎞1/γ 
, . (10.2)

⎰ p 

0 

dp 
ρ 

= 
c2 0 

γ − 1

⎾⎛
p 
P0 

+ 1

⎞(γ−1)/γ 
− 1

⏋
= −∂φ 

∂t 
− 1 2∇φ ·∇φ, . 

(10.3) 

∂2φ 
∂t2 

− c2 0∇2φ = −
⎾
2∇ ∂φ 

∂t 
+ 1 2∇(∇φ ·∇φ)

⏋
·∇φ 

− (γ − 1)
⎛

∂φ 
∂t 

+ 1 2∇φ ·∇φ

⎞
∇2φ, (10.4) 

where .c0 = (γP0/ρ0)
1/2 is the small-signal speed of sound, i.e., the phase speed 

of a plane wave of infinitesimal amplitude, . P0 and . ρ0 are the ambient values of the 
pressure and density, respectively, and . γ is the ratio of specific heats.
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10.2 Regular Perturbation Technique 

As noted earlier, the acoustic state variables for pressure, particle velocity compo-
nents, and density change are all .O(ε) or smaller. [When a term is identified as 
being .O(εn), its magnitude for very small . ε is . αεn, where . α is a finite positive 
number.] It is reasonable to expect that the potential function depends analytically 
on . ε, in which case . φ may be expanded in a power series relative to . ε. In view of the  
assumption that the acoustic signal is .O(ε), such an expansion may be written as 

.φ(x, t, ε) = εφ1(x, t) + ε2φ2(x, t) + O(ε3), (10.5) 

where .x = (x, y, z). The  term  .O(ε3) represents the order of magnitude of effects 
that are not included in the two-term expansion. 

The basic idea of a perturbation analysis is that the expansion should be valid for 
any value of . ε that is sufficiently small. Thus, when Eq. (10.5) is substituted into any 
of the governing equations, the coefficients associated with each order of magnitude 
should match. The first-order terms that result from following such a procedure for 
Eq. (10.4) are  

.
∂2φ1

∂t2
− c20∇2φ1 = 0. (10.6) 

Using this expression to eliminate the Laplacian of . φ1 leads to a slight simplification 
in the corresponding second-order equation, with the result that 

.
∂2φ2

∂t2
− c20∇2φ2 = − ∂

∂t

⎾
(∇φ1 ·∇φ1) + β − 1

c20

⎛
∂φ1

∂t

⎞2⏋
, (10.7) 

where the coefficient of nonlinearity .β = (γ + 1)/2 has been introduced in 
order to accommodate liquids, for which .β = 1 + B/2A [see Eq. (2.16)]. (Such 
a replacement is permissible only if one does not progress to the third-order 
approximation.) 

Note that the manner in which the second-order equation, Eq. (10.7), has been 
written is suggestive of the solution sequence, in that the first-order equation is 
solved for . φ1, and that solution then becomes a source term driving the second-
order equation. Once the two perturbation equations have been solved and the 
potential . φ formed according to Eq. (10.5), the corresponding particle velocity 
may be determined directly from Eq. (10.1), while evaluation of pressure involves 
solving Eq. (10.3) for  p. Using the binomial theorem in conjunction with the fact 
that . φ is .O(ε) leads to 

.p = −ρ0

⎾
∂φ

∂t
+ 1

2∇φ ·∇φ − 1

2c20

⎛
∂φ

∂t

⎞2⏋
. (10.8)
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The difference between Eq. (10.5) and a conventional power series is that rather 
than seeking a convergent infinite series in . ε, one expects that there is a sufficiently 
small . ε such that the two-term representation of . φ is as accurate as one wishes. 
If the magnitude of the .O(ε2) term is independent of the location . x and time t , 
the asymptotic series is said to be uniformly valid (or, synonymously, uniformly 
accurate). Because of the smallness of the Mach number . ε, if Eq.  (10.5) is uniformly 
valid, the second-order term . φ2 represents a very small effect, and there is no reason 
to proceed further. By definition, the linear solution corresponds to the limit as . ε →
0. Hence, .εφ1 represents the linear approximation, and Eq. (10.5) is referred to 
as the quasilinear solution. The first application of a regular perturbation series in 
nonlinear acoustics was an investigation of plane waves performed by Airy (1849); 
see Sect. 1.2.3 for historical context. 

Because of the nondispersive nature of many types of waves in linear theory, a 
regular perturbation series often leads to a nonuniformly accurate solution in which 
the second-order term grows. The occurrence of nonuniform terms means that the 
effect grows in importance; it therefore must be described more carefully. 

A simple demonstration of the failure of the quasilinear solution may be 
obtained by comparing it to the Poisson solution for a plane wave (Lamb, 1945) 
[see also Eq. (1.30)]. Consider a plane wave generated by harmonic excitation, 
.ux = εc0 sinωt at .x = 0, where . ux denotes the x component of the particle 
velocity vector. Replacing . ux by .∂φ/∂x and matching like orders of . ε leads to the 
perturbation boundary conditions 

.∂φ1/∂x = c0 sinωt and ∂φ2/∂x = 0 at x = 0. (10.9) 

The task now is to satisfy the perturbation differential equations, Eqs. (10.6) and 
(10.7), subject to these boundary conditions and the radiation condition, which 
requires that the solution represent a wave propagating in the positive x direction. 

The first-order solution is readily identified as a harmonic wave, 

.φ1 = (c0/k) cos(ωt − kx), k = ω/c0. (10.10) 

The result of substituting this expression into the second-order differential equation, 
Eq. (10.7), is 

.c20
∂2φ2

∂x2 − ∂2φ2

∂t2
= β

ω3

k2
sin(2ωt − 2kx). (10.11) 

If the phase of the inhomogeneous term were not proportional to .t − x/c0, the  
particular solution for . φ2 would have the form of this term. This is not possible here, 
because the nondispersive nature of the linear approximation leads to generation of 
a second harmonic that is always in phase with the first-order solution, and therefore 
continuously receives energy. A particular solution may be obtained by the method 
of variation of parameters,
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.φ2 = A(x) sin(2ωt − 2kx) + B(x) cos(2ωt − 2kx), (10.12) 

which when substituted into Eq. (10.11) leads to a pair of equations obtained by 
matching like coefficients of the sine and cosine terms. The solution of the resulting 
equations is 

.A = CA, B = 1
4βc0x + CB, (10.13) 

where . CA and . CB are constants corresponding to the complementary solution of 
Eq. (10.11). It is possible to determine these constants by satisfying the second-
order boundary condition in Eqs. (10.9), but it will be shown that these values are 
not needed. 

The growth of the amplitude .B(x) makes the corresponding solution for . φ2
the wave analog of the resonant response of an undamped one-degree-of-freedom 
oscillator. Growth of . φ2 with increasing x implies that the solution is not uniformly 
valid. However, it is premature to reach such a conclusion because the potential 
function is not a physical variable representing the state of the fluid. For example, 
if the particle velocity had an .O(ε2) term that were constant, the corresponding 
potential would be proportional to x. It is therefore necessary to consider the particle 
velocity and pressure derived from this expression for . φ. Substituting . εφ1 + ε2φ2
into Eqs. (10.1) and (10.8) leads to 

. ux = εc0 sin(ωt − kx) + ε2[(2kCB + 1
2βωx) sin(2ωt − 2kx)

+ ( 14βω − 2kCA) cos(2ωt − 2kx)] + O(ε3), . (10.14) 

p = ρ0c2 0ε sin(ωt − kx) + ρ0ε2[( 1 2βωc0x + 2ωCA) sin(2ωt − 2kx) 

− 2ωCA cos(2ωt − 2kx)] +  O(ε3). (10.15) 

These expressions constitute the quasilinear solution. The presence of .ε2x terms 
in both expressions means that they are not uniformly valid. In comparison, the 
coefficients . CA and . CB , which result from the second-order boundary condition, 
represent contributions that are .O(ε2) everywhere. Setting .CA = CB = 0 simplifies 
the analysis without significantly affecting its accuracy. Indeed, the following 
sections will show that any term in p or . u that remains .O(ε2) independently of 
. x may be ignored, regardless of whether it stems from the complementary or the 
particular solution for . φ2. 

Because the second-order terms in Eqs. (10.14) and (10.15) grow in magnitude 
without bound relative to the respective first-order terms as x is increased, the 
regular perturbation solution is said to have a singularity at .x → ∞. Nevertheless, 
the quasilinear solution might contain useful features. For example, consider 
the Fubini solution (Fubini-Ghiron, 1935) for the pressure at a fixed location x 
corresponding to the excitation in Eq. (10.9) [see Eq.  (4.49)],
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.

p(x) =
∞⎲

n=1

Pn(x) sin[n(ωt − kx)],

Pn(x) = ερ0c
2
0
2Jn(εnβkx)

εnβkx
.

(10.16) 

The leading term in an expansion of the amplitudes . Pn in powers of . ε is 

.Pn = ερ0c
2
0
1

n! (
1
2εnβkx)n−1 + O(εn+1). (10.17) 

The coefficients of the fundamental and second harmonics in Eq. (10.15) (with 
.CA = CB = 0) match the foregoing for .n = 1 and .n = 2, respectively. 

If . εx is sufficiently small, the difference between the harmonic amplitudes in 
the quasilinear solution and the exact solution is negligible. This is the notion 
underlying many analyses of sound beams and parametric arrays (see Sect. 8.3). 
Furthermore, a quasilinear solution that is not uniformly valid suggests the manner 
in which cumulative distortion effects behave. Singular perturbation techniques 
build on such information to obtain a uniformly valid solution. 

10.3 Method of Multiple Scales 

Nonuniform validity of the regular perturbation solution for a plane wave is a 
consequence of failure to recognize that a length scale other than the wavelength 
must be described. A comparable situation arises in nonlinear vibration, where 
the frequency is weakly dependent on amplitude. Let .εΩ1 denote this effect, and 
consider the following Taylor series expansion: 

. sin[(ω + εΩ1)t] = sinωt + εΩ1t cosωt + O(ε2). (10.18) 

Here, truncation of the series at the second term results in a nonuniformly valid 
expression having a singularity at .t → ∞, even though the full Taylor series 
is convergent for any t . In the same manner, nonuniform validity of the regular 
perturbation solution for the plane wave may be interpreted as being a consequence 
of an inadequate truncation of a full Taylor series for the nonlinear wave. 

The term in Eq. (10.18) whose coefficient contains t is referred to as a 
secular term, because it is not a periodic response. Powerful techniques have been 
developed to remove secular terms, and thereby infer a uniformly valid solution. 
An early application of one such approach to nonlinear acoustics, the method of 
multiple scales, is described in a paper by Nayfeh and Kluwick (1976). Consider 
generalization of the boundary condition in Eq. (10.9) to the case of an arbitrary 
excitation,
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.
∂φ

∂x

||||
x=0

= εc0f (t). (10.19) 

Because the magnitude of the troublesome second term in the regular perturbation 
solution is proportional to . εx, whose value changes much more slowly than the 
length scale x associated with the linear solution, the potential is assumed to be an 
explicit function of two length variables, 

.x0 = x, x1 = εx. (10.20) 

Correspondingly, the perturbation expansion of the potential is taken as 

.φ = εφ1(x0, x1, t, ε) + ε2φ2(x0, x1, t, ε) + O(ε3). (10.21) 

The derivatives of . φ become 

.

∂φ

∂x
= ε

∂φ1

∂x0
+ ε2

⎛
∂φ1

∂x1
+ ∂φ2

∂x0

⎞
,

∂2φ

∂x2 = ε
∂2φ1

∂x2
0

+ ε2

⎛
2

∂2φ1

∂x0∂x1
+ ∂2φ2

∂x2
0

⎞
,

∂φ

∂t
= ε

∂φ1

∂t
+ ε2

∂φ2

∂t
,

∂2φ

∂t2
= ε

∂2φ1

∂t2
+ ε2

∂2φ2

∂t2
.

(10.22) 

These expressions are substituted into the nonlinear wave equation, Eq. (10.4), and 
the boundary condition, Eq. (10.19), and terms corresponding to like powers of . ε in 
each are matched, which leads to the following set of perturbation equations: 

.O(ε) : ∂2φ1

∂t2
− c20

∂2φ1

∂x2
0

= 0,
∂φ1

∂x0

||||
x0=x1=0

= c0f (t), . (10.23) 

O(ε2) : ∂2φ2 

∂t2 
− c2 0 

∂2φ2 

∂x2 
0 

= 2c2 0 
∂2φ1 

∂x0∂x1 
− 2 

∂φ1 

∂x0 

∂2φ1 

∂x0∂t 
− 2(β − 1) 

∂φ1 

∂t 
∂2φ1 

∂x2 
0 

, 

∂φ2 

∂x0

||||
x0=x1=0 

= −  
∂φ1 

∂x1

||||
x0=x1=0 

. (10.24) 

The general solution of the first-order differential equation having the form of a 
wave propagating in the positive x direction is 

.φ1 = φ1(τ, x1), τ = t − x0/c0. (10.25)
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Substitution of . φ1 into the second-order differential equation yields 

.
∂2φ2

∂t2
− c20

∂2φ2

∂x2
0

= −2c0
∂2φ1

∂τ∂x1
− 2β

c20

∂φ1

∂τ

∂2φ1

∂τ 2
. (10.26) 

Clearly, the term on the right-hand side of this equation is a function of . τ , but  
any function of . τ is also a homogeneous solution of the equation. As a result, if the 
right-hand side does not vanish, . φ2 will contain a term that is secular. Preventing the 
appearance of such a term yields the criterion determining the dependence of . φ1 on 
. x1, 

.
∂2φ1

∂τ∂x1
+ β

c30

∂φ1

∂τ

∂2φ1

∂τ 2
= 0. (10.27) 

In addition, Eq. (10.25) converts the boundary condition for . φ1 in Eq. (10.23) to  

.
∂φ1

∂τ

||||
x0=x1=0

= −c20f (τ). (10.28) 

The solution of Eq. (10.27) satisfying the boundary condition was shown by Nayfeh 
and Kluwick (1976) to be  

.

φ1 = −c20g(ζ ) + β

2
c0x1f

2(ζ ), g'(ζ ) = f (ζ ),

τ ≡ t − x0/c0 = ζ − β

c0
x1f (ζ ).

(10.29) 

Furthermore, because the occurrence of secular terms has been avoided, . φ2 contains 
only terms that are uniformly .O(ε2). The smallness of . ε means that there is no need 
to actually determine . φ2. 

The last step in evaluating the signal is to determine the particle velocity and 
pressure corresponding to .φ = εφ1 + O(ε2). Because of the dependence of . φ1
on . ζ , application of Eqs. (10.1) and (10.8) requires use of the chain rule. Implicit 
differentiation of the second of Eqs. (10.29), using .x0 = x and .x1 = εx, leads to 

.

∂ζ

∂t
=

⎾
1 − β

c0
x1f

'(ζ )

⏋−1

,

∂ζ

∂x
= − 1

c0
[1 − βεf (ζ )]

⎾
1 − β

c0
x1f

'(ζ )

⏋−1

,

(10.30) 

where .f '(ζ ) ≡ df/dζ . The corresponding particle velocity and pressure are
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.u = ε
∂φ1

∂ζ

∂ζ

∂x
+ ε

∂φ1

∂x1

∂x1

∂x
+ O(ε2) = εc0f (ζ ) + O(ε2), . (10.31) 

p = −ρ0 
∂φ1 

∂ζ 
∂ζ 
∂t 

+ O(ε2) = ερ0c2 0f (ζ ) + O(ε2), (10.32) 

where .O(ε2) denotes terms having the same magnitude for all x. That these 
results are consistent with the Poisson solution [Eq. (1.30)] is readily verified by 
substituting .f (ζ ) = u/εc0 from Eq. (10.31) into Eqs. (10.29), solving the result for 
. ζ , then substituting . ζ back into Eq. (10.31), which leads to 

.u = εc0f (t − x/ĉ), ĉ = c0(1 − βu/c0)
−1. (10.33) 

Because u is .O(ε), the phase speed . ̂c given above is the same to .O(ε2) as the phase 
speed in the Poisson solution [see Eq. (3.19)]. 

An overview of the multiple-scale solution shows that although the secular terms 
exciting . φ2 were eliminated, the ensuing first-order potential . φ1 contains a term 
that grows with increasing x. This is consistent with the earlier observation that 
one cannot infer a priori  from the potential function which terms are associated 
with nonuniform validity. The need to prevent the occurrence of secular terms in . φ2
stems from Eqs. (10.22) for the derivatives of . φ, which show that such terms lead to 
comparable terms in the derivatives. 

In general, the primary difficulty arising in the multiple-scale method is the 
fact that avoiding secular terms leads to one or more partial differential equations 
in the scaled independent variables. In the present case of a plane wave, it is 
possible that Nayfeh and Kluwick (1976) were assisted in finding the solution by 
the similarity of that equation to the one solved by Poisson (1808). The likelihood 
of obtaining an analytical solution of the secularity equations decreases substantially 
with increasing complexity of the basic problem—for example, waves propagating 
in more than one direction. However, even if one cannot solve the multiple-
scale equations exactly, the method can still be useful, because the multiple-scale 
equation(s) for eliminating secular terms are of lower order than the full nonlinear 
wave equation. Hence, they might be more amenable to numerical analysis, which 
is a feature that has been exploited to study the KZK equation for sound beams 
(see Sect. 11.3.1). Also, the multiple-scale equations offer a different perspective. 
For example, Eq. (10.27) may be integrated with respect to time to obtain the 
lossless form of the Burgers equation (see Sect. 3.7 for an alternative derivation 
of the Burgers equation). 

10.4 Method of Renormalization 

Use of the method of multiple scales requires recognition that nonlinearity intro-
duces an additional reference frame from which the wave propagation may be
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viewed. Lighthill’s method of strained coordinates (1949), which preceded devel-
opment of the method of multiple scales, approaches the problem from a different 
perspective. It considers the primary effect of nonlinearity to be a distortion of the 
space–time grid, such that the linear solution is obtained at a location and time 
instant that differ from the prediction of linear theory. This aspect of the plane-wave 
problem is apparent from the multiple-scale solution in the preceding section. For 
example, the expression for p in Eq. (10.32) has the form of the linear solution for a 
one-dimensional wave, except that . ζ replaces .t−x/c0. The linear result is recovered 
when .ε → 0. 

In Lighthill’s approach, one introduces a perturbation series for independent, as 
well as dependent, variables. The series expansions are used to change variables 
in the governing differential equations. One then selects the various terms in the 
expansions to obtain a solution that, in addition to satisfying the differential equation 
and the boundary and initial conditions, contains only terms that are uniformly valid. 

A difficulty is encountered when this approach is applied to problems in 
nonlinear acoustics. As shown by Eqs. (10.29), the correct potential function for 
the wave contains terms that grow with increasing distance. Hence, it is not obvious 
which terms in the differential equation resulting from the Lighthill transformation 
of coordinates lead to terms that are not uniformly valid. The method of renormal-
ization, which was developed by Pritulo (1962), offers an alternative to the steps 
entailed in the Lighthill procedure. Rather than eliminating troublesome terms from 
the differential equation, its approach is to defer changing the independent variable 
until nonuniformly valid solutions for the relevant variables have been obtained. 
For nonlinear acoustics, this means correcting expressions for the particle velocity 
components and pressure, rather than the potential. This is the approach introduced 
by Ginsberg (1975a, 1975b) and later refined by Nayfeh and Kluwick (1976). 

To see how the method of renormalization works, consider the regular perturba-
tion solution in Sect. 10.2. According to Eqs. (10.14) and (10.15), the second-order 
terms lose validity with increasing values of . εx. For this reason, a new coordinate 
variable . ξ that resembles x is introduced. The transformation is assumed to have the 
form 

.x = ξ + εxF (ξ, t), (10.34) 

where .F(ξ, t) is a function to be determined. This function is referred to as a 
coordinate straining because the term .εxF represents a small deviation from . ξ being 
identical to x, as though . ξ represents the markings on a ruler that is stretched and x 
measures the distance from the origin to these markings. 

The task now is to identify the function F . Toward that end, Eq. (10.34) 
is substituted into Eq. (10.14), and the result is expanded in a Taylor series in 
ascending powers of . ε. Because only .O(ε) and .O(ε2) terms have been retained 
in Eq. (10.14), the Taylor series is truncated at .O(ε2):
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. u = εc0{sin(ωt − kξ) − εkxF cos(ωt − kξ)}
+ 1

4ε
2βc0{2kx sin(2ωt − 2kξ) + cos(2ωt − 2kξ)} + O(ε3). (10.35) 

The presence of terms that are uniformly .O(ε2) is acceptable, so F is selected 
to cancel only the . ε2 term whose magnitude is proportional to x. The condition 
.−F cos(ωt − kξ)+ 1

2β sin(2ωt − 2kξ) = 0 is readily solved for F with the aid of a 
trigonometric identity. The .O(ε2) term remaining in Eq. (10.35) has that magnitude 
uniformly, so it is of little importance. Consequently, the expression for particle 
velocity reduces to 

.u = εc0 sin(ωt − kξ). (10.36) 

Using this expression to remove the sine function appearing in F yields 

.x = ξ + εβx sin(ωt − kξ) = ξ + βx(u/c0). (10.37) 

This solution is identical to the multiple-scale result, Eq. (10.31), in the case where 
the excitation function is a sine. 

A subtlety that proves to be relevant for multidimensional waves is the omission 
of pressure from the renormalization analysis. This was permissible because the 
property .p = ρ0c0u encountered in linear theory is also true for the regular 
perturbation solution in Eqs. (10.14) and (10.15), provided one ignores the terms 
that are uniformly .O(ε2). Thus, any change of variables that renormalizes u also 
has the same effect on p. (For the same reason, any uniformly valid expression for 
p also yields an expression for the excess density . ρ' having that property.) 

In general, the particle velocity components and pressure obtained in the 
regular perturbation solution are not algebraically related. The coordinate straining 
transformation must be sufficiently general to provide the flexibility to renormalize 
any state variable that is not algebraically related to the others. This means that one 
might have to consider straining transformations of each position variable and, in 
some situations, time. 

The ability to accommodate generalizations such as the foregoing is a direct 
result of the relative simplicity of the method of renormalization in comparison to 
the method of multiple scales. The fact that the procedure eliminates secular terms, 
and thereby yields a uniformly valid solution, without requiring that differential 
equations be solved has made it the method of choice for analyses of multidimen-
sional problems. Balancing this is the fact that the method of multiple scales offers 
greater generality in the problems to which it may be applied. For example, it can 
accommodate the effects of dissipation in finite-amplitude plane waves by including 
an attenuation scale that matches the scale . x1 over which nonlinear distortion occurs 
(Nayfeh, 1981). 

When the nonlinear wave equation, Eq. (10.4), is solved by a perturbation 
method, the solution is multivalued in regions where a shock exists. Most pertur-
bation analyses have been limited to preshock conditions. However, it is possible to
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remove this restriction by supplementing the analysis with weak shock theory. Such 
an approach was employed by Coulouvrat (1991) to study finite-amplitude Gaussian 
sound beams. His analysis used the method of renormalization to solve the lossless 
form of the KZK equation [Eq. (3.65) with .δ = 0]. Although the signal in that 
situation is multidimensional, the Gaussian nature of the variation transverse to the 
propagation direction leads to a quasi-planar problem. In contrast, the remainder of 
the present chapter is devoted to the extension of perturbation techniques to treat 
phenomena that are inherently multidimensional. 

10.5 Radiation from a Vibrating Plate 

The mathematical understanding gained from the early perturbation solutions 
was crucial to addressing more complicated situations. The first multidimensional 
problem to be considered was two-dimensional waves radiating into an infinite 
half-space above a vibrating plate that is periodically supported at intervals L 
(Ginsberg, 1978a, 1978b; Nayfeh, 1981). This problem served initially as a frame-
work for extending the analytical methods, but further investigation led to several 
generalizations, as well as new insights into the underlying physics of nonlinear 
acoustic waves. 

The plate vibration was taken to be harmonic at angular frequency . ω, and 
the periodic supports imposed a sinusoidal spatial variation in the transverse 
plate displacement w. For a coordinate origin placed at one of the supports, the 
displacement is described by 

.w = −ε(c0/ω) cosωt sin
⎛nπx

L

⎞
, (10.38) 

where n is a positive integer and . ε is the acoustic Mach number for the normal 
velocity of the plate. 

Continuity of velocity between the inviscid fluid and the plate leads to a 
requirement that the fluid’s velocity component normal to the plate’s surface at 
the deformed position of the plate match the plate’s velocity component in that 
direction. The corresponding boundary condition for the velocity potential is 

.∇φ · en

|||
z=w

= ∂w

∂t
, (10.39) 

where . en is the unit normal to the deformed surface; the angle of . en relative to the 
z axis is .− arctan(∂w/∂x). The spatial periodicity requirement parallel to the plate 
replaces boundary conditions in the x direction, while the Sommerfeld radiation 
condition supplies the other boundary condition in the z direction. 

A solution by the method of renormalization begins by obtaining the straight-
forward perturbation solution, in which the potential is represented by Eq. (10.5).
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The first- and second-order differential equations are given by Eqs. (10.6) and (10.7) 
with the gradients expressed in terms of .x, z coordinates. The nonlinear boundary 
condition in Eq. (10.39) may be simplified by using the fact that w is .O(ε) to 
replace it by a condition at .z = 0. This is achieved by invoking the Taylor series 
.f (w) = f (0) + wf '(0) + O(ε2). After substitution of the specified displacement 
w, the first-order boundary condition becomes 

.
∂φ1

∂z

||||
z=0

= 1

ε

∂w

∂t
= c0 sinωt sin

⎛nπx

L

⎞
. (10.40) 

The corresponding first-order solution is identical to the result of linear theory. 
Waves propagate away from the plate for .ωL/c0 > nπ , in which case 

.φ1 = c0

kz

cos(ωt − kzz) sin
⎛nπx

L

⎞
, . (10.41) 

kz = (k2 − n2π2/L2)1/2, k  = ω/c0. (10.42) 

When Eq. (10.41) is used to represent the inhomogeneous terms in Eq. (10.7), 
the differential equation for . φ2 that results contains squares of .sin(nπx/L) and 
.cos(nπx/L). Only the secular terms in . φ2 need be identified in the renormalization 
method. Using the identity for the square of a sine or cosine reveals that the right-
hand side of Eq. (10.7) contains second harmonics of . φ1. These represent secular 
effects because they propagate in the same manner as a free wave. All excitation 
terms not leading to a secular solution for . φ2 are denoted as NST and not considered 
further. The simplified form of the differential equation for . φ2 is 

. c20

⎛
∂2φ2

∂x2 + ∂2φ2

∂z2

⎞
− ∂2φ2

∂t2

= −βω3

2k2z
sin(2ωt − 2kzz) cos

⎛
2nπx

L

⎞
+ NST. (10.43) 

An additional shortcut follows as a consequence of ignoring nonsecular terms. 
The role of the homogeneous portion of the . φ2 solution is to satisfy the second-
order boundary condition, which is the .O(ε2) term in the Taylor series expansion 
of Eq. (10.39). Because such a solution represents a freely propagating wave arising 
from excitation on a boundary, and therefore cannot exhibit cumulative growth, 
there is no need to determine it. The particular solution for . φ2 may be determined by 
the variation of parameters approach used earlier. Because of the periodic nature of 
the dependence on x and t imposed by the plate, the amplitude of the trial function 
can depend only on the distance z from the boundary, so a suitable trial solution is 

.φ2 = A(z) cos(2ωt − 2kzz) cos

⎛
2nπx

L

⎞
+ NST. (10.44)
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Selecting A such that the foregoing forms a particular solution of Eq. (10.43) yields 

.A = −c0Bz, B = β

8

⎛
k

kz

⎞3

. (10.45) 

Note that a constant could be added to the above expression for A. It has been set 
to zero here because the above term grows with increasing distance from the plate, 
while the additive constant would not lead to such growth. 

Because of the two-dimensional nature of the problem, it is necessary to 
evaluate the x and z particle velocity components and the pressure corresponding to 
Eqs. (10.41) and (10.44). The gradient components of .εφ1 + ε2φ2 are 

. ux = εc0
nπ

kzL

⎾
cos (ωt − kzz) cos

⎛nπx

L

⎞

+ ε
β

4

k3

k2z
z cos(2ωt − 2kzz) sin

⎛
2nπx

L

⎞⏋
+ NST, . (10.46) 

uz = εc0

⎾
sin(ωt − kzz) sin

⎛nπx 
L

⎞

− ε 
β 
4 

k3 

k2 z 
z sin(2ωt − 2kzz) cos

⎛
2nπx 

L

⎞⏋
+ NST. (10.47) 

The evaluation of p according to Eq. (10.8) leads to another shortcut associated with 
the omission of nonsecular effects. The quadratic terms appearing in Eq. (10.8) 
are a consequence of solving the pressure-density relation up to second order. 
Because quadratic terms are estimated by . φ1, which is bounded, these terms cannot 
be associated with secular effects. As a consequence, it is permissible to use 
.p = −ρ0∂φ/∂t , which leads to 

.p = (ρ0ω/kz)uz. (10.48) 

Because the pressure is proportional to . uz, only the velocity components given 
by Eqs. (10.46) and (10.47) need to be considered. Each contains a second harmonic 
that grows relative to the first-order (linear) approximation, but the functional 
dependence of these secular terms is quite different. The corresponding coordinate 
straining transformation allows for alteration of both spatial coordinates from the 
physical variables .(x, z) to a strained set .(η, ξ). The growth factor for the secular 
term is z, so the coordinate transformation is 

.x = η + εzFx(η, ξ, t), z = ξ + εzFz(η, ξ, t), (10.49) 

where . Fx and . Fz are to be determined. Substituting these expressions into the 
phase terms of the nonuniformly valid expressions for the velocity components, 
and expanding the result into Taylor series in . ε, yields
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. ux = εc0
nπ

kzL

⎾
cos(ωt − kzξ) cos

⎛nπη

L

⎞

− ε
nπ

L
zFx cos(ωt − kzξ) sin

⎛nπη

L

⎞

+ εkzzFz sin(ωt − kzξ) cos
⎛nπη

L

⎞

+ ε
β

4

k3

k2z
z cos(2ωt − 2kzξ) sin

⎛
2nπη

L

⎞⏋
+ NST, . (10.50) 

uz = εc0
⎾
sin(ωt − kzξ) sin

⎛nπη 
L

⎞

+ ε 
nπ 
L 

zFx sin(ωt − kzξ)  cos
⎛nπη 

L

⎞

− εkzzFz cos(ωt − kzξ) sin
⎛nπη 

L

⎞

− ε 
β 
4 

k3 

k2 z 
z sin(2ωt − 2kzξ) cos

⎛
2nπη 

L

⎞⏋
+ NST. (10.51) 

The task of identifying the functions . Fx and . Fz that result in cancellation of all 
secular terms is achieved with the aid of trigonometric identities. After cancellation 
of the secular terms, the terms remaining in the particle velocity components are 

.

ux = εc0
nπ

kzL
cos(ωt − kzξ) cos

⎛nπη

L

⎞
,

uz = (kz/ρ0ω)p = εc0 sin(ωt − kzξ) sin
⎛nπη

L

⎞
.

(10.52) 

The coordinate transformation resulting from substituting the functions . Fx and . Fz

back into Eqs. (10.49) is  

.

x = η + 1
2εβ

k3L

nπk2z
z cos(ωt − kzξ) cos

⎛nπη

L

⎞
,

z = ξ + 1
2εβ

k3

k3z
z sin(ωt − kzξ) sin

⎛nπη

L

⎞
.

(10.53) 

A simpler set of expressions for the coordinate transformation is obtained by 
using the expressions for . ux and . uz to eliminate the trigonometric terms, which 
leads to 

.x = η + 1
2β

k3L2

n2π2kz

z
ux

c0
, z = ξ + 1

2β
k3

k3z
z
uz

c0
. (10.54)
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Fig. 10.1 Wave fronts and rays for radiation from a periodically supported plate: .ε = 0.005, 
.β = 1.2, .kL = 10, .kzL = 5, .t = 0, .n = 1. 

Fig. 10.2 Waveforms for 
radiation from a periodically 
supported plate: .ε = 0.005, 
.β = 1.2, .kL = 10, .kzL = 5, 
.z/L = 1.76π , .n = 1. 

These expressions are particularly useful for understanding the effect of non-
linearity. According to Eqs. (10.52), lines in .(x, z) along which .η is constant 
correspond to signals that departed from the boundary at the same time. These lines 
represent wave fronts of constant phase. Similarly, lines of constant .ξ correspond to 
signals that departed from the same point on the plate, and therefore represent rays. 
A typical set of these lines is shown in Fig. 10.1. 

In comparison to the linear approximation, in which .η = x and .ξ = z, the effect 
of nonlinearity is to cause specific values of . ux and . uz associated with specific 
values of . η and . ξ to occur at a displaced position .(x, z) obtained from Eqs. (10.54). 
When . uz is positive, the value of z is larger than . ξ , which means that the signal 
has propagated farther than the signal predicted by linear theory. Similarly, signals 
corresponding to negative . uz propagate less far. This effect is like that for a plane 
wave, except that sinusoidal variation of . uz results in alternating advancement and 
retardation along the wave front specified by . ξ . 

The curvature of the rays (constant . ξ ) represents a phenomenon not encountered 
in plane waves. When . ux is positive, the value of x at which the signal is encountered 
is greater than the value .x = η at which the signal is predicted to occur by linear 
theory. Thus a ray is bent in the direction of the particle velocity transverse to it. 
This is the process of self-refraction. A corollary of this process is that the rays and 
wave fronts do not necessarily form an orthogonal mesh. 

If one monitors the pressure at a fixed location as a function of time, the signal 
fluctuates as a result of the fluctuations in the rays due to the changing phase of . uz, 
as well as the changing wave fronts that arrive at that location. This can result in 
waveform distortion that differs substantially from that encountered in plane waves. 
Figure 10.2 shows typical waveforms at three locations equidistant from the plate.
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Only the one for .η = L/2, which is a straight ray .(x = η) because .ux = 0 along 
it, displays the simple tendency to form a sawtooth shape having the fundamental 
period that is exhibited by plane waves. In contrast, the waveform on .x = L/2 has 
the period of the second harmonic. 

An important aspect of nonlinear acoustic waves is their tendency to form a 
shock. In general, shock formation in a solution that has been determined by the 
method of renormalization may be identified by seeking locations at which the 
mapping from the strained coordinates to the physical coordinates is not unique. 
In such cases, a set of values of the strained coordinates corresponds to two or more 
physical locations. The shock formation distance corresponds to the nearest location 
at which such a situation occurs, in which case the Jacobian of the transformation 
vanishes. Because the plate problem involves transformation from .(η, ξ) to .(x, z), 
the shock formation condition is attained when 

.

||||∂x/∂η ∂x/∂ξ

∂z/∂η ∂z/∂ξ

|||| = 0. (10.55) 

For the coordinate straining transformation in Eqs. (10.53), this leads to 

.β
k2

2k2z
sin

⎾
−nπη

L
± (ωt − kzξ)

⏋
= 1. (10.56) 

This relation can be used to determine the value of . ξ corresponding to specified 
values of . η and t at which the transformation is singular. These values may then 
be substituted into Eqs. (10.53) to determine the corresponding .(x, z) position at 
which the condition occurs. Allowing . η to vary with t held constant yields a locus 
of points. The locus of shock formation distances is the minimum value of z for a 
given x and all t at which the transformation is singular. 

The locus of singular transformation points has an interesting property that 
was disclosed by Ginsberg (1978a). The slope of these loci may be obtained 
by considering the combination of Eqs. (10.53) and (10.56) to be a parametric 
description of x and z for fixed t , with the former set of relations represented as 
.x = f1(η, ξ), .z = f2(η, ξ), and solution of the latter yielding .ξ = F(η). Then the 
slope of the loci may be determined according to 

.
dz

dx

||||
fixed t

=
⎛

∂f2

∂η
+ ∂f2

∂ξ

∂F

∂η

⎞/ ⎛
∂f1

∂η
+ ∂f1

∂ξ

∂F

∂η

⎞
. (10.57) 

Evaluation of the various derivatives leads to 

.
dz

dx

||||
fixed t

= ± nπ

kzL
. (10.58) 

In other words, the shock loci are straight lines. This feature is evident in the rays and 
wave fronts in Fig. 10.1. In the vicinity of .z = 0, the wave fronts are approximately
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parallel to the plate and the rays are perpendicular to it. With increasing z, the  
curvature of both wave fronts and rays becomes more pronounced. When the shock 
condition is attained, a ray and a wave front become tangent, with the slope of 
that tangency being given by Eq. (10.58). This tangency is an alternative way of 
interpreting Eq. (10.55). 

The observation that Eq. (10.58) is the shock condition motivates an algebraic 
decomposition of the acoustic field given by Eqs. (10.52) and (10.54) into a  
pair of plane waves propagating symmetrically with respect to . ez, the  z direction 
(Ginsberg, 1978b). As in the linear case, the trace velocity of each oblique 
plane wave tangential to the surface matches the phase speed of the respective 
oppositely directed waves forming the standing vibration pattern in Eq. (10.38). 
The propagation directions of the pair of plane waves are . n1 and . n2, at angle 
.ψ = arctan(jπ/kzL) to the right and left, respectively, of the z axis. When . uj

denotes the particle velocity associated with the plane wave propagating in direction 
.nj .(j = 1, 2), Eqs. (10.52) and (10.54) may be rewritten as 

.u = u1 + u2, p = (ρ0ω/kz)u · ez, . (10.59) 

uj = 
k 
2kz 

εnj cos(ωt − kξj ). (10.60) 

The variable . ξj is a straining of the propagation distance for wave j , 

.nj · r = ξj + β
k

kz

z
uj ·nj

c0
. (10.61) 

Nayfeh (1981) used the method of renormalization to prove the generality of 
Eq. (10.61) when the plate motion consists of a pair of arbitrary waves propagating 
in opposite directions along the plate. He also employed the method of multiple 
scales to extend the analysis to include dissipation, with the result that the individual 
plane waves were shown to satisfy the Burgers equation. 

The similarity of Eq. (10.61) to the coordinate straining for a simple plane wave, 
Eq. (10.37), can lead to the erroneous interpretation that the individual plane waves 
propagate without interaction. The interaction phenomena here cause the growth 
factor in Eq. (10.61) to depend on the (normal) distance z from the field point to 
the plate. In contrast, if there were no interaction, the growth factor for each wave 
would depend on the (oblique) propagation distance . nj · r = z cosψ ± x sinψ

for that wave. Thus, although the wave fronts of each plane wave j are advanced 
or retarded relative to the corresponding small-signal location by an amount that 
depends on . uj , the presence of the other wave causes a change in the distance on 
which the distortion depends. 

The reason for the shock loci being straight is now apparent. The respective 
propagation directions . nj are perpendicular to the loci described by Eq. (10.58). 
The process of shock formation in the overall signal thus corresponds to situations 
in which either of the plane waves forms a shock.
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An important observation follows from the foregoing analysis. It was possible to 
avoid considering the second-order boundary conditions because it was necessary 
only to identify those .O(ε2) terms in the velocity potential that grow. However, 
bounded second-order terms can produce secular terms at the third order. Thus, if 
one were to continue to a higher level of approximation, all boundary conditions 
would need to be satisfied. Doing so in some cases is not possible, because the 
surface motion is not known to the necessary level of precision. (For example, this 
is the case for a projector whose face is fabricated from an array of piezoceramic 
elements.) To ignore these effects by linearizing the boundary condition, so that 
the only cubic terms retained are those appearing in the wave equation, Eq. (10.4), 
would lead to an inconsistent formulation. 

10.6 Curvilinear Coordinates 

Thus far in this chapter, nonlinear waves have been described in terms of Cartesian 
coordinates. The renormalization method has also been applied to cylindrically 
spreading waves (Ginsberg, 1978c, 1978d; Kelly and Nayfeh, 1981b) and spheri-
cally spreading waves (Kelly and Nayfeh, 1980) generated by a harmonic excitation 
whose amplitude varies spatially. As before, the analyses addressed problems whose 
linear analog can be solved by conventional separation of variables techniques. This 
section will treat situations in which the variation along a wavefront is described by 
a single angular wave function for the associated geometry. More general excitations 
are discussed in Sect. 10.7. 

The primary innovation required to analyze nonlinear effects in curvilinear 
coordinates is the notion that these effects should be examined asymptotically for 
large propagation distances. Certain aspects of the overall procedure are apparent 
from the earlier developments. One forms a regular perturbation series for the 
velocity potential, whose first-order solution corresponds to linear theory. Depend-
ing on the type of wave, cylindrical or spherical Bessel functions describe the 
radial dependence. However, using such a solution to generate the nonlinear source 
distribution driving the second-order perturbation equations leads to a difficulty: 
One must generate a particular solution of the wave equation corresponding to 
products of the special functions appearing in the first-order solution. 

The manner in which the difficulty is circumvented is a variant on the technique 
of matched asymptotic expansions. The procedure uses the simpler far-field repre-
sentation to identify the secular terms in the perturbation series. The renormalization 
is also performed in the far field, but additional criteria are imposed to ensure that the 
solution behaves properly in the vicinity of the excitation. It is possible to consider 
the general procedure in outline form without tying it to a specific case. 

Let .(r, θ, χ) denote the curvilinear coordinates, with . θ representing the azimuthal 
angle and r measuring the radial distance from the center of the exciting surface at 
.r = a. For cylindrical waves, . χ is the axial position while, for spherical waves, . χ is 
the polar angle. The excitation consists of a harmonic particle velocity imposed on
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the surface defined by .r = a. An excitation whose spatial dependence matches an 
angular wave function may be described by 

.ur = ∂φ

∂r

||||
r=a

= 1
2εc0f (χ) cos(nθ) exp(−iωt) + c.c., (10.62) 

where c.c. will henceforth denote the complex conjugate of all terms preceding 
it. (This notation and the choice of a complex exponential to describe the time 
dependence are devices that expedite operations involving products of the first-order 
solution.) For the case of a vibrating infinite cylinder, .f (χ) is a sinusoidal function, 
with .f (χ) = 1 for the two-dimensional case, while .f (χ) is a Legendre function 
for the case of waves radiating from a vibrating sphere. It should be noted that the 
boundary condition, Eq. (10.62), has been linearized because only the growing part 
of the second-order solution is to be determined. 

Let .h(μr) denote the radial part of the solution of the Helmholtz equation 
satisfying the Sommerfeld radiation condition at large distances. Thus, h is either 
the first cylindrical or the first spherical Hankel function of order n, and . μ is the 
radial wave number. The corresponding first-order potential satisfying the boundary 
condition is 

.φ1 = 1
2c0

h(μr)

h'(μa)
f (χ) cos(nθ) exp(−iωt) + c.c. (10.63) 

When this expression is used to evaluate the right-hand side of Eq. (10.7), terms 
containing products of .h(μr) are obtained. This presents a difficulty, because there 
are no known analytical solutions corresponding to such terms. However, if . ε is 
sufficiently small, the wave will take on far-field properties before gradual growth 
of nonlinear distortion becomes significant. The far-field representation of either 
Hankel function is proportional to .r−ν exp(iμr) (.ν = 1

2 or 1). Because products of 
exponentials are exponentials, it is much simpler to develop the required particular 
solution using the far-field representation. 

Let (ˆ) denote the principal asymptotic form of a term for .r → ∞, and let 
.N(φ) denote the nonlinear terms in Eq. (10.7). The next step in the perturbation 
analysis is to determine the far-field form . φ̂2 of the second-order potential. This 
entails obtaining a particular solution of 

.c20∇2φ̂2 − ∂2φ̂2

∂t2
= N(φ̂1). (10.64) 

Consistent with the far-field representation, it is permissible to simplify this step 
by ignoring terms that become unimportant at large r . For example, in cylindrical 
coordinates, the term .(1/r)∂φ1/∂r in .∇2φ1 may be ignored. 

Only the portion of the solution of Eq. (10.64) that represents cumulative growth 
needs to be determined. Because the first-order solution decays with increasing r , 
the secular terms in . φ2 are those that grow with respect to . φ1,
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. lim
r→∞(|φ̂2|/|φ̂1|) = ∞. (10.65) 

The simplifications associated with a far-field analysis make it a straightforward 
matter to determine the portion of the particular solution of Eq. (10.64) that behaves 
according to Eq. (10.65). The corresponding far-field expressions for particle 
velocity and pressure, which are not uniformly valid, are determined from 

.û = ∇(εφ̂1 + ε2φ̂2), p̂ = −ρ0
∂

∂t
(εφ̂1 + ε2φ̂2). (10.66) 

The last step in the far-field analysis is to use the renormalization procedure to 
remove the secular terms from the velocity components and pressure. Because the 
far-field pressure is in phase with the radial velocity, there is no need to treat p as 
a separate variable to be renormalized. Furthermore, several analyses have shown 
that secular terms can be removed without introducing a straining transformation 
for the azimuthal angle . θ . (The physical reason for this will be discussed later.) 
Consequently, the coordinate straining is taken to be 

.r = ξ + εg(r)Fr(ξ, η, t), χ = η + εg(r)Fχ(ξ, η, t), (10.67) 

where .g(r) represents the relative growth factor of the second-order terms, specifi-
cally, .|φ̂2|/|φ̂1|. The process of selecting the straining functions to cancel all secular 
terms leads to the result that . Fr and . Fξ are proportional to . ̂ur and . ̂uχ , respectively. 
(Except for the case of cylindrical three-dimensional waves, .Fχ vanishes; the 
specific results will be listed below.) 

At this juncture, the far-field representation of the wave has been determined. 
The last step is to use that result to obtain a description that is valid throughout the 
domain. This is done by imposing four criteria (Ginsberg, 1978a): 

1. In the near field, where r is .O(1), the nonlinear solutions for pressure and particle 
velocity components for infinitesimal . ε should match the corresponding linear 
solutions. 

2. Asymptotic expansions for large r of the desired nonlinear solutions for pressure 
and particle velocity components should match the corresponding far-field 
solutions. 

3. The growth factor in each coordinate straining transformation should match for 
large r the function .g(r) identified in the far-field analysis, but it should be 
modified such that each strained coordinate is identical to the corresponding 
physical coordinate at the surface from which the signal radiates. 

4. The dependence of the coordinate straining transformation on a particle velocity 
component identified in the far-field analysis should also apply to the transfor-
mation covering the entire domain. 

These criteria have not been proven mathematically. They are statements of 
two plausible physical arguments. The first, which is consistent with the notion of 
how nonlinear effects develop, is an assumption that these effects are minor in the
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vicinity of the vibrating surface. The second, which is somewhat more speculative, 
is an assumption that phenomena observed in the far field occur everywhere. 
Since coordinate strainings that depend on the velocity components represent self-
refraction, the second assumption follows if self-refractive processes behave in the 
same manner everywhere. 

After the secular terms are canceled, the far-field expressions for velocity and 
pressure are the same as the comparable forms of the linear solution, except that 
the strained coordinates replace the corresponding physical ones. Thus, the first 
and second criteria are satisfied when the strained coordinates replace the physical 
ones in the near-field form of the linear solution. The third and fourth criteria are 
addressed by using the coordinate straining form in which the dependence on the 
particle velocity components is explicit. If necessary, adjustment of the growth 
factor to make the strained and physical coordinates match at the boundary is 
achieved by shifting the origin for the dependence of the growth factor. 

Ginsberg (1978b) considered the case where an infinite cylinder having radius a 
oscillates with an axial wavelength 2L and circumferential harmonic n. Two strained 
coordinates are needed to remove secular terms, . ξ for the radial distance and . η for 
the axial position. The pressure and particle velocity components were found to be 

.

p = −1

2
ερ0c0

ωHn(μξ)

μH '
n(μa)

cos(nθ) cos
⎛πη

L

⎞
e−iωt + c.c. + O(ε2),

ur = i

2
εc0

H '
n(μξ)

H '
n(μa)

cos(nθ) cos
⎛πη

L

⎞
e−iωt + c.c. + O(ε2),

uθ = − i

2
εc0

nHn(μξ)

μrH '
n(μa)

sin(nθ) cos
⎛πη

L

⎞
e−iωt + c.c. + O(ε2),

ux = − i

2
εc0

πHn(μξ)

μLH '
n(μa)

sin(nθ) cos
⎛πη

L

⎞
e−iωt + c.c + O(ε2).

(10.68) 

In the foregoing, .Hn( ) denotes the first Hankel function of order n, and a prime 
denotes differentiation with respect to the argument. The radial wave number is 
.μ = (k2 − π2/L2)1/2, and .k > π/L is assumed in order that the cylindrical waves 
be propagative rather than evanescent. The strained coordinates are given by 

.

r = ξ + β(k/μ)3(r − a)(ur/c0),

x = η + β(k3L2/π2μ)(r − a)(ux/c0).
(10.69) 

Ginsberg (1978a) performed a separate analysis of the special case where there is 
no axial variation in the oscillation of the cylinder. Most aspects of the results may 
be obtained from the foregoing by letting .L → ∞, .μ → k, and .cos(πη/L) = 1, 
.sin(πη/L) = 0. The exception to this limit pertains to the insertion of the factor 2 
preceding . β in the transformation between r and . ξ . This change will be explained 
below.
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In addition to their studies of cylinders, Kelly and Nayfeh (1980) investigated 
spherical waves. Their analysis was complicated by the boundary motion, which 
required a series of spherical harmonics to represent the dependence on the polar 
angle . ψ . For simplicity, the following results describe the case where the surface 
motion corresponds to only one spherical harmonic; the more general excitation is 
discussed in Sect. 10.7. 

.

p = −1

2
ερ0c

2
0
hm(kξ)

h'
m(ka)

cos(nθ)P n
m(cosψ)e−iωt + c.c. + O(ε2),

ur = i

2
εc0

h'
m(kξ)

h'
m(ka)

cos(nθ)P n
m(cosψ)e−iωt + c.c. + O(ε2),

(10.70) 

where .hm( ) denotes the spherical Hankel functions of the first kind and . P n
m(cosψ)

are associated Legendre functions. The corresponding expressions for . uψ and . uθ , 
which are not presented for the sake of brevity, indicate that the magnitude of 
those velocity components decreases in the radial direction as .1/r relative to the 
magnitude of . ur . The coordinate straining transformation is 

.r = ξ + βr ln(r/a)(ur/c0). (10.71) 

Much physical insight may be derived from an overview of these various results. 
Each wave propagates in the radial direction, with an amplitude that varies along the 
wave front. Unlike the situation for waves in a plate, it appears that in no case is the 
pressure proportional to the radial velocity. However, in the far field, where . kr ⪢ 1
(in which case .kξ ⪢ 1 also), asymptotic expansions of the Hankel functions show 
that the pressure and radial particle velocity are in phase. This is consistent with 
the difference between near-field and far-field behavior of the corresponding linear 
solutions. 

In the far field, the magnitude of the cylindrical Hankel functions is proportional 
to .1/

√
ξ , while that of the spherical Hankel functions is proportional to . 1/ξ . 

Because . ξ is, to a first approximation, the same as r , the foregoing represents the rate 
at which the radial velocity decays. Furthermore, with increasing radial distance, the 
particle velocity components in the angular directions .(uθ for cylindrical waves, 
and . uθ and . uφ for spherical waves) decay at a rate that is r times faster than 
the radial velocity. Because these velocity components become relatively weak, 
they do not play a role in self-refraction. Thus, in the far field, two-dimensional 
cylindrical waves and spherical waves have a quasi-one-dimensional behavior. Their 
particle velocity is approximately in the direction of propagation, and their distortion 
depends on the distance through which the wave has propagated. 

The effect of spreading loss on the distortion process may be seen by considering 
the respective coordinate strainings. In the case of Eq. (10.71), the magnitude of 
.rur in the far field is .O(

√
r). Hence, the distortion effects, as measured by the 

difference between r and . ξ , grow as . 
√

r with increasing propagation distance. This 
is substantially more gradual than the effect for plane waves. For spherical waves in
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the far field, Eq. (10.71), the difference between r and . ξ grows as . ln r . This growth  
factor is more gradual than for cylindrical waves because the wave spreads in two 
angular directions. 

The difference between two-dimensional and three-dimensional curvilinear 
waves is comparable to the difference between plane waves and the two-dimensional 
waves generated by a vibrating plate. In each geometry there is a particle 
velocity component perpendicular to the propagation direction whose magnitude 
is comparable to the particle velocity in the direction of propagation. This leads 
to a pair of strained coordinates. The radial variable . ξ describes the position of 
wave fronts of constant phase, while the variable . η describes the rays of like phase 
emanating from a specified point on the boundary. The difference between . η and the 
physical position x is proportional to the particle velocity in the x direction. Once 
again, this is the phenomenon of self-refraction. In both geometries, the absence of 
variation transverse to the propagation direction (that is, the limiting cases of plane 
waves and two-dimensional cylindrical waves) doubles the growth factor in the 
transformation for the propagation coordinate as a result of coalescence of effects. 

10.7 Wave Groups 

The small-signal analog of each of the waves considered thus far consists of a single 
wave that propagates without dispersion. This section describes the manner in which 
the preceding developments can be extended to handle more general excitations 
that generate several such waves. In multi-dimensional waves, the phase speed 
is dependent on the wavelength in the propagation direction, as well as on the 
frequency, so these waves disperse relative to one another. Perturbation techniques 
have yielded a general description of these waves based on collecting the various 
waves into groups having like phase velocities. The following discussion first 
addresses propagation in waveguides formed by parallel rigid walls, in which case 
the problem is formulated in terms of Cartesian coordinates (see also Sect. 5.3.1). 
Then the modifications of the analysis required to treat cylindrical and spherical 
waves propagating in open domains will be discussed. 

Unless the cross section of a waveguide is rectangular, the various small-signal 
propagation modes have distinct phase speeds. Consequently, the effect of nonlin-
earity is confined to dependence of the phase speed on the acoustic Mach number 
(Keller and Millman, 1970; Nayfeh, 1975). This effect occurs at the third order, and 
therefore is quite weak. In contrast, in a hard-walled rectangular waveguide, linear 
theory indicates that numerous modes have the same phase speed. In nonlinear 
theory, the modes in such situations interact strongly. An initial investigation of 
propagation in a rectangular waveguide was performed by Vaidya and Wang (1977) 
using the method of multiple scales. However, the partial differential equations 
required to remove secular terms could be solved only numerically. 

When one reconsiders the problem in Sect. 10.5 of nonlinear waves radiating 
from a vibrating plate, it is apparent that the rays that are straight correspond to
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parallel rigid walls, because the transverse velocity along both vanishes. This led 
Ginsberg (1979) to extend the renormalization method to the waveguide problem 
addressed previously by Vaidya and Wang (1977). The greater simplicity of the 
renormalization analysis yielded new insights into nonlinear modal interaction, 
which is the phenomenon to be considered in the present section. 

In order to avoid unnecessary complications, only a two-dimensional waveguide 
formed by infinite rigid walls at .x = 0 and .x = L shall be addressed. The 
excitation at .z = 0 is an arbitrary periodic function of time having arbitrary spatial 
dependence on x. Linear theory predicts that the corresponding signal consists of 
an infinite sequence of propagative modes plus an evanescent part associated with 
frequencies that are below the cutoff for each transverse wavelength. The decay 
of the latter prevents buildup of the cumulative distortion process associated with 
nonlinearity, so only the propagating modes are retained. The primary new feature 
of the perturbation analysis is the manner in which these modes are rearranged into 
groups, according to their small-signal phase speed. Let .rm > 0 and .sm ≥ 0 be 
prime numbers representing the lowest harmonic number and longest transverse 
wavelength, respectively, for the modes forming group m. (The plane-wave modes 
correspond to .m = 0 and .sm = 0.) For an infinitesimal wave, the potential is a 
sum of the groups corresponding to the various prime integer pairs. The potential 
for each group is obtained by summing terms having the same harmonic number in 
time and both spatial directions, 

.(φm)lin = εc20

2ω

∞⎲
n=1

Amn exp[inrmω(t − z/cm)] cos(nsmπx/L) + c.c., (10.72) 

where the coefficients .Amn are determined by satisfying the boundary condition 
at .z = 0. The group’s phase speed . cm satisfies the dispersion relation derived by 
requiring that Eq. (10.72) satisfy the linear wave equation, Eq. (10.6): 

.(c0/cm)2 + (smπ/rmkL)2 = 1, k = ω/c0. (10.73) 

The initial investigation by Ginsberg (1979) was restricted to relatively low 
frequencies, corresponding to .kL ⪡ πsm/rm, so that the phase speed of each 
group m is distinct from the plane-wave group. In that case, each nonplanar group 
propagates without significant interaction with the plane-wave group. The high-
frequency case is discussed at the end of this section. Only the highlights of the 
renormalization analysis shall be addressed here. The first-order potential matches 
the linear solution, Eq. (10.72). The sum of all propagative modes is used to evaluate 
the right side of the second-order perturbation equation, Eq. (10.7). Consideration 
of the corresponding particular solution reveals that all interactions of the harmonics 
forming a single group lead to secular terms that grow in proportion to z. In  
contrast, all interactions between harmonics in different groups represent source 
terms whose frequencies and wave numbers do not satisfy the dispersion relation 
for the linear wave equation, so they do not lead to secular terms. The second-
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order potential corresponding to the secular terms therefore consists of a sum over 
nondispersive groups that do not interact. The terms for each group correspond to 
sum- and difference-frequency generation by all modes in that group. The velocity 
components and pressure obtained by differentiating the potential exhibit similar 
behavior. As was true for the plate problem, both the transverse distance x and 
the axial distance z must be transformed in the coordinate straining. A different 
set of strained coordinates . ξm and . ηm applies to each group m. The straining 
transformation is quite similar to the result in Eqs. (10.53), except that all harmonics 
within the group are involved. 

As is usual for a renormalization analysis, the expressions for the velocity 
components and pressure match the linear solution, except that for each group, x 
is replaced by . ηm and z is replaced by . ξm. The contribution of each group to the 
overall signal, to an accuracy of .O(ε2), is  

. uxm = επsmc0

2kL

∞⎲
n=1

nAmn exp[inrmω(t − ξm/cm)] sin(nsmπηm/L) + c.c.,

pm = ρ0cmuzm (10.74) 

= 
1 

2i 
ερ0c

2 
0rm 

∞⎲
n=1 

nAmn exp[inrmω(t − ξm/cm)] cos(nsmπηm/L) + c.c. 

The functions and coefficients appearing in the coordinate straining are determined 
as part of the Taylor series expansion process. Ginsberg (1979) showed that the 
resulting terms are the same as in Eqs. (10.53), which describe the waves radiating 
from an infinite flat plate under harmonic excitation. In terms of the variables for 
the waveguide, the result is 

.x = ηm + 1
2βz

⎛
rmkL

smπ

⎞2
⎛

cmuxm

c20

⎞
, z = ξm + 1

2βz

⎛
c3muzm

c40

⎞
. (10.75) 

According to Eqs. (10.74), lines of constant . ξm represent constant phase at a 
specific instant. Hence, Eqs. (10.75) indicate that the modal harmonics forming 
individual groups undergo waveform distortion that is determined by the total axial 
particle velocity in that group. This is comparable to the behavior of plane waves 
generated by an arbitrary periodic excitation. The multi-dimensional aspects are 
manifested by variation along the wave front, which is determined by the values of 
. ηm. Since constant values of these quantities trace the phase back to the boundary, 
they represent rays. In the waveguide, the self-refraction of the rays for each group 
is determined by the transverse velocity associated with all modal harmonics in that 
group. 

If one desires to evaluate waveforms, it is necessary to solve the coordinate 
straining transformation as a pair of coupled transcendental equations (Ginsberg, 
1979). Once these equations have been solved, the corresponding contribution of



10 Perturbation Methods 301

that group to the signal may be evaluated. This process must be repeated for each 
group that is excited. Note that a shock, which corresponds to a vanishing value of 
the Jacobian of the straining transformation, may occur independently in any group. 

High-frequency excitations were shown by Miao and Ginsberg (1986) to com-
plicate the general theory. They studied the specific case where only the . (2, 0)
mode in a hard-walled waveguide is excited, but the conclusion is general. The 
complication arises because each nondispersive group is essentially a sum of 
obliquely propagating plane waves, comparable to the representation of interacting 
plane waves in Eqs. (10.59)–(10.61). When the frequency is sufficiently high, the 
oblique directions may be very close to the propagation axis, in which case the 
corresponding axial phase velocities are very close to the velocity of the plane 
wave. This leads to coupling between the oblique and plane-wave groups, in which 
beating phenomena are encountered as a result of the slight mismatch in the axial 
phase speeds (see Fig. 5.5). Miao and Ginsberg (1986) did not provide an estimate 
of the maximum value of kL for which this type of interaction could be ignored, 
but Hamilton and TenCate (1988) found in their experiment that the effect was 
important for .kL = √

2πsm/rm, corresponding to a .45◦ propagation angle for the 
oblique plane waves forming the non-planar mode. 

Analyses collecting effects into nondispersive groups have been performed 
for cylindrical and spherical waves (Kelly and Nayfeh, 1981a, 1981b). Like the 
procedure developed in Sect. 10.6, treatment of the curvilinear aspects entails study 
of the far-field behavior, after which the solution is projected back to the near field. 
Certain general conclusions are observed. A different set of strained coordinates is 
associated with each group. The wave fronts for each group are advanced or retarded 
in proportion to the group’s total contribution to the radial particle velocity. Self-
refraction of the rays for a group, in which the ray is deflected in the direction 
of the transverse velocity component of that group, is associated only with the 
axial velocity component in cylindrical waves. Neither the azimuthal velocity in 
cylindrical coordinates nor the azimuthal and polar velocity components in spherical 
coordinates lead to self-refraction, because spreading loss makes their influence 
negligible in the far field. 

The phenomena discussed in this chapter arose as a result of boundary excitations 
whose spatial distribution could be represented by a series. Such a representation is 
not possible for many important problems, notably sound beams. For that reason, 
the renormalization method has been extended to treat signals whose linearized 
version is represented by integral transforms (Ginsberg, 1981, 1984; Coulouvrat, 
1991; Frøysa and Coulouvrat, 1996), but the analyses are too complicated to discuss 
here. 
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11.1 Introduction 

The need to account simultaneously for the combined effects of nonlinearity in 
the continuity, momentum, and state equations, along with absorption originating 
from viscosity, heat conduction, and relaxation, creates an imposing analytical task 
for one-dimensional waves. With the advent of digital computers, it was natural 
for some researchers to pursue numerical solutions. This early work was founded 
on the recognition that the wide range of spatial and temporal scales involved in 
the various processes would cause straightforward numerical approximations of the 
basic equations to exceed the capacity of the available computers. As a result, the 
simulations relied on blending numerical techniques with physical approximations 
comparable to those used in parallel analytic endeavors. 
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As understanding of the basic phenomena increased, interest turned toward mul-
tidimensional propagation problems involving sound beams and waveguides. The 
effects of diffraction and mode interactions in waveguides substantially complicate 
the methods required for numerical solutions. Indeed, even the linearized problem 
might not have an analytical solution. The general philosophy, as well as the specific 
techniques, of the numerical work in this area built on the developments for plane 
waves by selecting model equations and numerical techniques appropriate to the 
physical situation. Recent work has taken a different approach by bringing to 
nonlinear acoustics some of the general computational fluid dynamics techniques 
now in use to solve the full Navier–Stokes equations. 

An overview of the computational investigations reveals that they have employed 
one of three philosophical approaches. Frequency-domain formulations rely on 
the fact that the periodicity of a steady-state signal radiated by a periodic source 
must remain the same. Consequently, the time-dependent part of the signal may be 
represented by a Fourier series whose position-dependent coefficients are required 
to satisfy a field equation appropriate to the particular problem. Direct time-
domain simulations, which are suitable for signals having an arbitrary waveform, 
employ finite-difference techniques to approximate all aspects of the governing 
equations. Phenomenological approaches regard the various physical processes as 
being independent, and therefore superposable, when signals propagate over small 
distances. These approaches lead to hybrid algorithms in which calculations are 
performed in both the time and frequency domains. 

In view of these three philosophical approaches, we have organized the present 
chapter as follows: Sect. 11.2 describes three algorithms for modeling one-
dimensional (plane, cylindrical, and spherical) wave propagation in real fluids. 
The first is a frequency-domain approach, the second a time-domain approach, and 
the third a hybrid phenomenological approach. Each is described in sufficient detail 
that, with the assistance of a standard text on numerical methods (e.g., Ames, 1992), 
the reader should be adequately equipped to write simple, computationally efficient 
programs that can model a wide variety of real propagation problems in nonlinear 
acoustics. In Sect. 11.3, the topic of multidimensional wave fields is covered, with 
emphasis primarily on directional sound beams and, to a lesser extent, on guided 
waves. The algorithms in Sect. 11.3 employ the techniques introduced in Sect. 11.2 
for describing nonlinearity and absorption. We therefore concentrate more on the 
techniques used to account for diffraction. Finally, in Sect. 11.4, a very general but 
computationally intensive approach to modeling nonlinear sound waves is briefly 
described. 

11.2 One-Dimensional Waves 

Although techniques employed by many researchers have contributed to the forms 
of the algorithms presented below, for historical perspective we call attention here 
only to the benchmark method developed by Cook (1962) to model progressive



11 Computational Methods 307

finite-amplitude plane waves in thermoviscous fluids. His was a phenomenological 
model based on the following assumptions: “(1) The distortion mechanism can be 
described by a change in phase velocity directly proportional to the particle velocity. 
(2) The absorption mechanism can be described by assuming that the rate of the 
absorption of each harmonic is proportional to the amount of the harmonic present 
and to the square of the frequency of the harmonic.” This same approach, involving 
calculations in both the time and frequency domains, resurfaces in algorithms 
developed by others. Moreover, results from Cook’s algorithm were often used as 
the basis of comparison for numerical procedures developed later. 

Cook separates the effects of nonlinearity and absorption and superposes these 
effects over the same incremental propagation step in space. First, the waveform is 
distorted in the time domain according to the lossless theory described by Eq. (4.2) 
and illustrated in Fig. 4.1. Second, the Fourier integral of this implicit solution is 
evaluated numerically to obtain the harmonic amplitudes in the waveform. Third, 
the harmonic amplitudes are corrected for thermoviscous absorption over the same 
incremental step. Finally, the distorted and attenuated waveform is reconstructed 
by summing up the Fourier series, and the process is repeated over the next step 
in space. The algorithm described by Cook corresponds to a digital computer 
implementation of the graphical procedure used earlier by Fox and Wallace (1954). 
Cook retained up to 16 harmonics and used step sizes of up to 5% of the shock 
formation distance in his calculations. 

The present development describes three simple, yet efficient, algorithms (fre-
quency domain, time domain, and hybrid time-frequency domain) for modeling the 
propagation of one-dimensional progressive waves in homogeneous, thermoviscous 
fluids. These three algorithms incorporate basic approaches that are found in many 
methods currently encountered in the literature. For ease of comparison, we shall 
formulate each as a solution of the Burgers equation, Eq. (3.54): 

.
∂p

∂x
= βp

ρ0c
3
0

∂p

∂τ
+ δ

2c30

∂2p

∂τ 2
, (11.1) 

where p is the sound pressure, .τ = t − x/c0 is a retarded time associated with 
propagation in the .+x direction at the small-signal sound speed .c0, ρ0 is the 
ambient density, . β is the coefficient of nonlinearity, and . δ is the sound diffusivity 
for a thermoviscous fluid. In practice, the algorithm described by Cook (1962) 
also corresponds to solving Eq. (11.1).1 Consideration of spherical and cylindrical 
spreading, and inhomogeneity of the medium, is postponed to Sect. 11.2.4.

1 In fact, Cook (1962) introduced a minor error by including the second term in his Eq. (11). 
This term was intended to provide an additional correction for finite-amplitude losses. However, 
only without this term does his algorithm reduce to the Burgers equation in the limit of zero step 
size. Fortuitously, the additional term is of negligible significance in the numerical calculations 
(Van Buren and Breazeale, 1968), and for practical purposes Cook’s algorithm approximates the 
solution of the Burgers equation. 
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Algorithms for implementing numerical solutions are most appropriately 
expressed in dimensionless variables. We therefore let . p0 characterize the sound 
pressure amplitude and . ω0 the angular frequency of the signal at a source located 
at .x = 0. For a pulse, . ω0 may correspond to an effective repetition frequency or to 
the dominant spectral component in the source waveform. We thus introduce the 
following dimensionless notation: 

.P = p/p0, σ = x/x̄, θ = ω0τ, A = α0x̄, (11.2) 

where .x̄ = ρ0c
3
0/βp0ω0 is the lossless plane-wave shock formation distance 

for a signal with source condition .p = p0 sinω0t , and .α0 = δω2
0/2c

3
0 is the 

thermoviscous attenuation coefficient at frequency . ω0. In terms of this notation, 
Eq. (11.1) becomes 

.
∂P

∂σ
= P

∂P

∂θ
+ A

∂2P

∂θ2
. (11.3) 

Equation (11.3) is the model equation considered in Sects. 11.2.1–11.2.3. With . P =
sin θ at .σ = 0, the shock formation distance in a lossless fluid .(A = 0) is .σ = 1, 
and determination of the incremental step size .Δσ in this case is independent of 
the physical source pressure . p0. The only adjustable coefficient is the absorption 
parameter A, which is the ratio of a shock formation distance to an absorption length 
(the Gol’dberg number .𝚪 = 1/A is often used for this ratio). For .A ≳ 1 (see 
Sect. 4.5.4.1), nonlinear effects may be ignored in most situations of interest (self-
demodulation of a pulse being one notable exception; see Sect. 8.3.5). 

11.2.1 Frequency-Domain Algorithm 

If attention is restricted to temporally periodic disturbances, the time dependence in 
Eq. (11.3) may be removed from explicit consideration by employment of a Fourier 
series representation. A number of authors have contributed to the development of 
frequency-domain algorithms. Fenlon (1971) was the first to derive coupled spectral 
equations equivalent to those given below, which he solved numerically for sound 
radiated from both monofrequency and bifrequency sources (including spherical 
and cylindrical spreading as described in Sect. 11.2.4). His article also contains an 
extensive review of relevant numerical and analytical solutions that appeared earlier. 
Subsequently, Korpel (1980) presented coupled spectral equations that account for 
arbitrary absorption and dispersion in progressive plane waves, the effects of which 
we include below. 

Consider a trial solution of the form 

.P(σ, θ) = 1

2

∞⎲

n=−∞
Pn(σ )ejnθ , (11.4)
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where .P−n(σ ) = P ∗
n (σ ) (. P ∗

n denotes the complex conjugate of . Pn) because . P(σ, θ)

is a real function. Substitution of Eq. (11.4) into Eq. (11.3) yields, with linear terms 
on the left, nonlinear terms on the right, and .P(∂P/∂θ) = 1

2 (∂P 2/∂θ), 

.

∞⎲

n=−∞

⎛
dPn

dσ
+ n2APn

⎞
ejnθ = 1

4

∂

∂θ

∞⎲

l=−∞

∞⎲

m=−∞
PlPmej (l+m)θ

. (11.5) 

= 
∞⎲

n'=−∞

⎛
j 
n'

4 

∞⎲

m=−∞ 
PmPn'−m

⎞
ejn'θ . (11.6) 

Equation (11.6) was obtained by letting .n' = l + m and taking the derivative with 
respect to . θ . The left and right sides are equal for arbitrary . θ only with .n' = n and 
with the terms in the parentheses equal to each other: 

.
dPn

dσ
+ n2APn = j

n

4

∞⎲

m=−∞
PmPn−m. (11.7) 

Taken together, Eqs. (11.4) and (11.7) are an exact reformulation of Eq. (11.3) for  
periodic disturbances. 

To perform the convolution on the right-hand side of Eq. (11.7), it is convenient 
to rewrite the summation as 

.

∞⎲

m=−∞
PmPn−m =

n−1⎲

m=1

PmPn−m + 2
∞⎲

m=n+1

PmP ∗
m−n, (11.8) 

where the relation .P−n = P ∗
n was taken into account.2 In this way, the summations 

include only quantities . Pn for which n is positive. Moreover, one may now associate 
the products .PmPn−m in the first summation with sum-frequency generation, and the 
products .PmP ∗

m−n in the second summation with difference-frequency generation. 
The main benefit of using Eq. (11.8) is associated with the required truncation of 
the summation in Eq. (11.4) to a finite number of harmonics for the purpose of 
numerical calculations. Specifically, let M be the number of harmonics retained in 
the computations and write 

.P(σ, θ) = 1

2

M⎲

n=−M

Pn(σ)ejnθ = 1

2

M⎲

n=1

Pn(σ )ejnθ + c.c. (11.9)

2 From Eq. (11.7), note that .P0(σ ) = P0(0), and therefore, dc pressure generation .(n = 0) is not 
described by the Burgers equation. We therefore take .P0 = 0. 
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in place of Eq. (11.4), where c.c. represents the complex conjugate of the preceding 
expression. Use of the finite Fourier series corresponds to replacing . ∞ by M in the 
second summation on the right-hand side of Eq. (11.8), and Eq. (11.7) thus becomes 

.
dPn

dσ
= −n2APn + j

n

4

⎛
n−1⎲

m=1

PmPn−m + 2
M⎲

m=n+1

PmP ∗
m−n

⎞
. (11.10) 

Equation (11.10) is a coupled system of M ordinary differential equations in the 
M complex unknowns .P1, P2, · · · , PM . Once obtained, the solutions . Pn may be 
substituted into Eq. (11.9) to construct the waveform. Alternatively, with . Pn = an −
jbn (. an and . bn both real), Eq. (11.9) becomes 

.P(σ, θ) =
M⎲

n=1

[an(σ ) cos nθ + bn(σ ) sin nθ ]. (11.11) 

The same substitution may be used to rewrite Eq. (11.10) directly in terms of . an and 
. bn, which yields two sets of equations following separation of real and imaginary 
terms. 

An efficient method for solving Eq. (11.10) is a standard Runge–Kutta routine 
that marches the solution forward over an incremental step . Δσ . The initial values 
.Pn(0) for the source waveform .P(0, θ) are given by 

.Pn(0) = 1

π

⎰ π

−π

P (0, θ)e−jnθ dθ. (11.12) 

For example, with .P(0, θ) = sin θ , Eq.  (11.12) yields .P1(0) = −j , with . Pn(0) =
0 for .n > 1. When calculations are to be extended into a domain where shocks 
develop in the waveform [e.g., for .σ > 1 with .P(0, θ) = sin θ ], a finite value for 
the absorption coefficient A is required for stability. The smaller the value of A, the  
larger must be the number M of harmonics to reduce the effect of Gibbs oscillations 
in the neighborhoods of shocks. Owing to the spectral convolution that accounts 
for nonlinearity, the computation time increases as . M2. To accurately model the 
propagation of time waveforms with thin shocks, several hundred harmonics must 
be retained. 

Many fewer harmonics are needed if only harmonic propagation curves are of 
interest. Trivett and Van Buren (1981) investigated errors associated with finite 
values of the step size .Δσ and harmonic number M on the spectral components 
calculated for small n. Their algorithm is based on coupled equations in terms of 
the coefficients . an and . bn in Eq. (11.11). They report that for a sinusoidal source 
condition and with no absorption, numerical errors in the first through fifth harmonic 
amplitudes at .σ = 1 are less than 1% for .Δσ = 0.05 and .M = 15. Much larger 
values of M are required as shocks form because of the increased flow of energy 
upward in the frequency spectrum, which results in excessive accumulation in the
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highest harmonics retained in the calculations .(n ∼ M). They suggested that a 
remedy for this would be to modify the algorithm to attenuate the highest several 
harmonics by limiting their amplitudes so that they do not exceed the amplitudes 
of the neighboring lower harmonics. However, their computations instead relied on 
truncation of the series at a sufficient number of terms to prevent the error from 
propagating down to the harmonics of interest. 

Transient source conditions, namely pulses, can be modeled by choosing . ω0
to be a sufficiently low repetition frequency that adjacent pulses in the periodic 
sequence do not interact as a result of the potential increase in pulse duration due 
to nonlinearity and absorption. The penalty for performing calculations of transient 
waveforms in the frequency domain is the substantially larger number of harmonics 
required. For example, with a tone burst repeated at a rate equal to one-tenth its 
center frequency, the computations require approximately 10M harmonics if M are 
required to accurately describe cw radiation at the center frequency of the pulse. 
The computation time in this case increases by a factor of order 100. 

Pishchal’nikov et al. (1996) proposed a novel method for substantially reducing 
the computation time required for evaluating the nonlinear distortion of waveforms 
containing shocks. The expansion in Eq. (11.4) is rewritten as two, one labeled 
.P (1) for the summation over harmonics .1 ≤ n ≤ M , as in Eq.  (11.9), and the 
other labeled .P (2) for the summation over harmonics .M + 1 ≤ n ≤ ∞. The  M 
low-frequency components .P (1)

n are calculated numerically using Eq. (11.10) (but  
with all .1 ≤ n ≤ ∞ harmonics retained in the summations), and the . M + 1 ≤
n ≤ ∞ high-frequency components .P (2)

n are determined analytically subject to 
an appropriate matching condition. It is assumed that .P (1) adequately describes 
the continuous waveform segments between the shocks, and that .P (2) accounts 
for the shocks themselves. On the basis of weak shock theory, the high-frequency 
components are expressed in the form .P

(2)
n = (Ps/n)ejnθs [see Eq. (4.179)], where 

. Ps and . θs are constants. This approximation of .P (2)
n permits analytical expressions 

to be obtained for the summations over harmonics .M + 1 ≤ n ≤ ∞ in both 
Eqs. (11.4) and (11.10). The values of . Ps and . θs are calculated with a matching 
condition that is a function of the highest two frequency components determined 
numerically, .P (1)

M and .P (1)
M−1. Calculated waveforms presented by these authors 

reveal well-defined shocks with no Gibbs oscillations for .M ∼ 10 to 30, and they are 
in good agreement with the results obtained via straightforward numerical solution 
of Eq. (11.10), i.e., with no analytical approximations but with considerably larger 
values of M . The algorithm was demonstrated for waveforms containing a single 
shock (or one per cycle for sinusoidal sources), and the authors do not discuss how 
the algorithm should be modified to accommodate arbitrary numbers of shocks. 

Equation (11.10) may be augmented in a straightforward way to account 
for arbitrary (not just thermoviscous) absorption and dispersion by making the 
substitution 

.n2A → An + jDn, (11.13)



312 J. H. Ginsberg and M. F. Hamilton

where . An and . Dn are the absorption and dispersion coefficients, respectively. Here 
.Dn = nω0x̄(c−1

n − c−1
0 ) takes into account the deviation of the phase speed . cn of 

the nth harmonic component from the reference sound speed . c0. The effect of the 
dispersion terms in the coupled spectral equations is discussed in detail by Korpel 
(1980). Figure 5.3 provides an example of calculations based on Eq. (11.10), taking 
into account absorption and dispersion due to relaxation, in addition to classical 
thermoviscous absorption. 

Finally, reflection from a surface at .σ = σr having arbitrary complex reflection 
coefficient . Rn at frequency .nω0 is easily taken into account in the frequency domain. 
The main assumption is that the mutual nonlinear interaction of the incident and 
reflected waves is negligible in comparison with the nonlinear distortion of these 
waves independently of one another. Such an assumption is particularly reasonable 
for pulses, for which the overlap occurs only within distances on the order of one 
pulse length away from the reflector. Given the solutions .P i

n(σr) for the incident 
wave at the location of the reflecting plane, one sets .P r

n (σr) = RnP
i
n(σr) to initialize 

the spectral amplitudes for the reflected wave, and the propagation algorithm 
continues as for the incident wave. An early application of this approach, based 
on an algorithm similar to Cook’s (1962), was used by Van Buren and Breazeale 
(1968) to study reflection, primarily in relation to total reflection .(|Rn| = 1) with 
phase shifts of . 90◦ and .180◦. For the case of a pressure release surface (180. ◦), when 
reflection takes place in the preshock region and absorption is not taken into account, 
the waveform that is inverted upon reflection undistorts back to the original source 
waveform. 

11.2.2 Time-Domain Algorithm 

The time-domain algorithm presented here is described in detail by Cleveland et al. 
(1996b). Although our discussion is restricted to the solution of Eq. (11.3), these 
authors also included effects of relaxation, and inhomogeneity of the medium in the 
geometrical acoustics approximation. Their algorithm is a modification of the time-
domain procedure developed previously by Lee and Hamilton (1995) for modeling 
pulsed sound beams in thermoviscous fluids. 

Begin by separating Eq. (11.3) into the two equations 

.
∂P

∂σ
= P

∂P

∂θ
, . (11.14) 

∂P 
∂σ 

= A 
∂2P 
∂θ2 

. (11.15) 

Equations (11.14) and (11.15) are solved independently over each incremental step 
. Δσ . Separation of Eq. (11.3) as in Eqs. (11.14) and (11.15) is referred to as operator
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splitting, and solving such equations independently to approximate the solution of 
the original equation is referred to as the method of fractional steps (Ames, 1992). 

Time-domain solutions require discretization of the waveform. We shall assume 
that the waveform samples are separated initially by uniform time intervals . Δθ and 
label each with index i, where .i = 1, 2, · · · ,M . The samples at times . θk

i are labeled 
. P k

i , where the index k designates the current value of . σ , with .k+1 corresponding to 
the solution following propagation over the incremental spatial step .Δσ out to the 
next location, .σ + Δσ . The coordinate pairs .(θk

i , P k
i ) and .(θk+1

i , P k+1
i ) thus define 

the discretized waveforms at steps k and .k + 1, respectively. 
Consider first Eq. (11.14), for which an analytic solution is available. The general 

solution is Eq. (4.29), which in the dimensionless notation used here becomes 
.P(σ, θ) = f (θ + σP ), where .f (θ) is an arbitrary function of time prescribed 
at the source, .σ = 0. To determine the waveform at step .σ + Δσ given a waveform 
.P(σ, θ) at the previous step . σ , the solution may be recast as 

.P(σ + Δσ, θ) = P(σ, θ + PΔσ). (11.16) 

The discretized solution of Eq. (11.14) on the basis of Eq. (11.16) is obtained by 
introducing the following time-base transformation: 

.θk+1
i = θk

i − P k
i Δσ. (11.17) 

The waveform samples at the new times .θk+1
i are labeled .P k+1

i . Note that the values 
of . P k

i and .P k+1
i are equivalent; these points are merely translated along the time 

axis. Thus, for .P k
i > 0, wavelets are shifted earlier in the retarded time frame, 

corresponding to the fact that their local propagation speeds are greater than . c0. For  
.P k

i < 0, the wavelets are delayed. A restriction must be imposed on the application 
of Eq. (11.17) to ensure that a multivalued waveform is not predicted, i.e., that the 
sequential ordering of the time samples .θk+1

1 < θk+1
2 < · · · < θk+1

M is maintained. 
Single-valued solutions of Eq. (11.16) are ensured for .Δσ < [max(∂P/∂θ)]−1, and 
therefore the sequential ordering of the time samples is preserved for 

.Δσ <
Δθ

max |P k
i − P k

i−1|
. (11.18) 

Consequently, waveforms with steeper slopes (e.g., shocks with shorter rise times) 
require smaller spatial steps. Finally, note that following application of Eq. (11.17), 
the waveform samples are no longer spaced uniformly in time. Linear interpolation 
is used to resample the waveform to reestablish the uniform intervals .Δθ in 
preparation for solving Eq. (11.15). 

To include absorption over the same propagation step from . σ to .σ+Δσ for which 
nonlinear distortion was introduced in the previous paragraph, take the solutions 
.(θk+1

i , P k+1
i ) just obtained and relabel them .(θk

i , P k
i ). That is, the output from the 

nonlinear distortion algorithm becomes the input for the absorption algorithm over
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the same incremental step (this is the essence of the method of fractional steps). 
The desired solution now is that of Eq. (11.15), which is the diffusion equation. As 
described in standard texts, a stable solution algorithm for the diffusion equation is 
provided by an implicit Crank–Nicolson method with forward-space, centered-time 
finite differences. When the finite differences prescribed by the Crank–Nicolson 
method are introduced in Eq. (11.15), the resulting system of equations may be 
expressed as 

.A ·Pk+1 = B ·Pk. (11.19) 

Here .Pk = (P k
1 , P k

2 , · · · , P k
M)T is the known, sampled waveform vector at step k, 

and . A and . B are coefficient matrices. Both . A and . B are tridiagonal, and therefore 
the Thomas algorithm can be used to solve for the solution vector .Pk+1 explicitly at 
step .k + 1 (Ames, 1992). 

The algorithm just described, based on application of Eqs. (11.17) and (11.19) 
independently over the same (sufficiently small) propagation step . Δσ , generates 
a solution that includes the combined effects of nonlinearity and absorption in 
accordance with the Burgers equation, Eq. (11.3). The computation time for both 
the nonlinear distortion algorithm and the absorption algorithm (as well as linear 
interpolation) is proportional to the number of time samples M . Recall that the 
computation time for the frequency-domain algorithm described in Sect. 11.2.1 
is proportional to . M2, where M in that context is the number of frequency 
components. Although the number of either time samples or frequency components 
required to accurately represent a waveform with a given resolution corresponds 
nominally to the same value M , the time-domain algorithm is not necessarily more 
efficient than the frequency-domain algorithm. For monofrequency sources, or when 
only harmonic propagation curves rather than time waveforms are of interest, the 
frequency-domain algorithm is usually more efficient. The time-domain algorithm 
is usually preferable for describing pulses, random waveforms, and step shocks. 

The time-domain algorithm is restricted in regard to the types of absorption 
and dispersion laws that can be taken into account, whereas the frequency-domain 
algorithm can accommodate arbitrary absorption and dispersion via Eq. (11.13). 
However, a method for including the effect of multiple relaxation processes in 
the time-domain algorithm is available (Cleveland et al., 1996b). The nonlinear 
distortion routine is unaltered, and the algorithm produces a tridiagonal matrix 
system in the form of Eq. (11.19). Consequently, the effect of relaxation is included 
in the algorithm in the same way as the effect of thermoviscous absorption. 

11.2.3 Combined Time-Frequency Domain Algorithm 

A third approach is to include nonlinear distortion in the time domain, and absorp-
tion and dispersion in the frequency domain. One such method, which has come to
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be known as the Pestorius algorithm (Pestorius, 1973; Pestorius and Blackstock, 
1974), is described here. The time-domain portion of the Pestorius algorithm is 
based on weak shock theory (Sect. 4.4.1). This approach proves advantageous when 
nonlinear effects are strong in comparison with small-signal absorption, because 
weak shock theory includes losses at the shocks and dispenses with the need to 
take a specific absorption mechanism into account; in this case, all computations 
may be performed in the time domain. However, weak shock theory is based on 
the assumption of perfectly thin shocks, and therefore rise times and other features 
related to shock structure are not described. A listing of the code with detailed 
explanation is provided by Pestorius (1973). 

To perform the time-domain operations for the nonlinear distortion algorithm, 
two arrays are now used to define the waveform. As in Sect. 11.2.2, the coordinate 
pairs .(θk

i , P k
i ) are the samples along all continuous segments of the waveform 

between any shocks that may exist. A second set of coordinates .(θ̂ k
i , P̂ k

i,a, P̂
k
i,b) is 

associated with the shocks. Here, . θ̂ k
i identifies the position of the ith shock within 

the waveform, with .P̂ k
i,a and .P̂ k

i,b the corresponding pressures immediately ahead 
of and behind that shock, respectively. In this way, the shock locations in time 
are defined with greater precision than would correspond to the spacing between 
the points . θk

i associated with the more smoothly varying, continuous segments of 
the waveform. Whereas calculation of .(θk+1

i , P k+1
i ) for propagation over step . Δσ

is relatively straightforward, as in Sect. 11.2.2, calculation of . (θ̂ k+1
i , P̂ k+1

i,a , P̂ k+1
i,b )

requires more attention to the structure of the waveform under consideration. 
Our intent below is to describe only the general framework of the weak shock 
propagation algorithm. 

Thus, consider a waveform in which shocks already exist, but for simplicity 
assume that over the propagation step .Δσ under consideration, no new shocks 
are formed and no shock overtakes (i.e., merges with) another. The nonlinear 
distortion algorithm then consists of two steps. The first step is to use Eq. (11.17) to  
distort the continuous segments of the waveform between the shocks, which gives 
.(θk+1

i , P k+1
i ). The second step is to calculate .(θ̂ k+1

i , P̂ k+1
i,a , P̂ k+1

i,b ) as follows. From 
weak shock theory, Eq. (4.163) provides an expression for movement of the shock 
in the retarded time frame, which in the dimensionless notation used here becomes, 
for the ith shock, 

.
dθ̂i

dσ
= − 1

2 (P̂i,a + P̂i,b). (11.20) 

The discretized form of this relation is 

.θ̂ k+1
i = θ̂ k

i − 1
2 (P̂

k
i,a + P̂ k

i,b)Δσ. (11.21) 

It remains to determine .P̂ k+1
i,a and .P̂ k+1

i,b . For this purpose, define .θk
i,a to be the 

time sample of the continuous segment of the waveform ahead of the shock that 
is closest to . θ̂ k

i,a prior to application of the nonlinear distortion algorithm. Similarly,
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define .θk
i,b to be the time sample of the waveform behind the shock that is closest 

to . θ̂ k
i,b. We thus have .θk

i,a < θ̂k
i < θk

i,b. For  .θ
k+1
i,a < θ̂k+1

i < θk+1
i,b following 

application of Eqs. (11.17) and (11.21), the shock remains positioned between the 
same (although now displaced) time samples of the continuous waveform, and the 
shock pressures are unchanged. Thus, set .P̂ k+1

i,a = P̂ k
i,a and .P̂ k+1

i,b = P̂ k
i,b in this 

case. However, if the shock overtakes the point ahead .(θk+1
i,a > θ̂k+1

i ), or if the  

point behind overtakes the shock .(θ̂ k+1
i > θk+1

i,b ), linear interpolation of the solution 

for the now multivalued continuous waveform, .(θk+1
i , P k+1

i ), determines the value 

of .P̂ k+1
i,a or .P̂ k+1

i,b , respectively, at time .θ̂ k+1
i . It is this interpolation procedure that 

accounts for losses at the shocks. 
Although the nonlinear distortion algorithm just described is straightforward to 

implement, further consideration must be given to circumstances related to the birth 
and merger of shocks, and to determination of when absorption reduces the strength 
of a shock so much that it is no longer described accurately by weak shock theory. 
When the effects of absorption and dispersion on the continuous segments of the 
waveform are negligible in comparison with nonlinearity, the distortion algorithm 
may be applied repeatedly over subsequent steps .Δσ up to the desired output 
location, with energy loss at the shocks taken into account automatically by weak 
shock theory. Under these conditions, the present algorithm is substantially more 
efficient for modeling propagation of waveforms with shocks than those described 
in Sects. 11.2.1 and 11.2.2. 

When effects of absorption and dispersion on the continuous segments of the 
waveform cannot be ignored, they are taken into account in the frequency domain. 
Let . Ck

n be the nth spectral coefficient in a Fourier decomposition of the waveform 
at step k. Following application of the nonlinear distortion algorithm over step . Δσ , 
consider the resulting solution to be the input to the algorithm for absorption and 
dispersion over the same step and apply Eq. (11.13) as follows: 

.Ck+1
n = Ck

n exp[−(An + jDn)Δσ ]. (11.22) 

The resulting frequency spectrum is transformed back into the time domain for 
application of the nonlinear distortion algorithm over the next incremental step. 
When absorption and dispersion are weak over step .Δσ but not negligible over 
the desired total propagation distance, it is sufficient to apply Eq. (11.22) after, say, 
every m propagation steps taken with the distortion algorithm. In this case, the cor-
rection factor .exp[−(An+jDn)mΔσ ] is applied each time in the frequency domain. 
Judicious use of the frequency-domain corrections reduces errors introduced by 
repeated application of the fast Fourier transform. The overall computation time 
for the algorithm is proportional to .M logM as a result of the FFT, because the 
computation times associated with the nonlinearity and absorption algorithms are 
each proportional to M . 

A word of caution is offered if absorption is applied in the frequency domain 
when shocks exist in the waveforms. As noted above, energy loss at the shocks
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is taken into account automatically in the time domain via weak shock theory. 
The potential therefore exists for slightly overestimating absorption at the shocks 
through Eq. (11.22). This concern is absent from a subsequent modification of 
the algorithm by Anderson (1974), who avoided use of the weak shock relation 
in Eq. (11.21) and relied instead on thermoviscous absorption through Eq. (11.22) 
to stabilize the waveform steepening. 

The algorithm described above was developed originally to model the propa-
gation of arbitrary waveforms, and in particular finite-amplitude noise, for which 
excellent agreement was obtained with the measurements shown in Fig. 13.4a. In 
this case, distortion of the continuous waveform segments and the associated shock 
formation shifted energy upward in the frequency spectrum, while the coalescence 
of shocks shifted energy back down. Figure 13.6 shows results from the Pestorius 
algorithm for the interaction of a finite-amplitude tone with narrowband noise 
(Webster and Blackstock, 1978a). The same code was used to study acoustical 
saturation (Webster and Blackstock, 1977). 

11.2.4 Spreading 

We now discuss methods for including effects due to spherical and cylindrical 
spreading in the algorithms described in Sects. 11.2.1–11.2.3 on the basis of the 
generalized Burgers equation, Eq. (3.58):3 

.
∂p

∂r
+ m

r
p = βp

ρ0c
3
0

∂p

∂τ
+ δ

2c30

∂2p

∂τ 2
, (11.23) 

where .m = 1 for spherical waves, .m = 1
2 for cylindrical waves. Here r is the 

radial coordinate, and the retarded time is now defined by .τ = t − (r − r0)/c0, 
where . r0 is taken to be the source radius. The constant phase term .r0/c0 is included 
for convenience so that the value of the pressure .p(r, τ ) at the source is given 
by .p(r0, t). For plane waves set .m = 0, in which case the form of Eq. (11.1) is  
recovered. In terms of the dimensionless variables defined in Eqs. (11.2) (but here 
with .σ = r/x̄, where . x̄ is again the plane-wave shock formation distance when the 
signal is sinusoidal at the source), Eq. (11.23) becomes 

.
∂P

∂σ
+ m

σ
P = P

∂P

∂θ
+ A

∂2P

∂θ2
. (11.24) 

The source condition is taken now at . σ equal to .σ0 = r0/x̄, rather than at .σ = 0 as 
for plane waves.

3 We consider here only diverging (outgoing) waves. For converging (incoming) waves, modifica-
tions associated with the sign changes discussed in Sect. 3.8 must be taken into account. 
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Modification of the frequency-domain algorithm in Sect. 11.2.1 is trivial; simply 
introduce the term .−mPn/σ on the right-hand side of Eq. (11.10) and solve 
as before. Trivett and Van Buren (1981) used a substitution of the form . Pn =
σ−me−n2Aσ Qn to factor out effects due to both spreading and absorption, the result 
of which eliminates the spreading and absorption terms in Eq. (11.10), but yields a 
modified form of the nonlinear terms in the resulting equations for . Qn. The time-
domain algorithm in Sect. 11.2.2 is augmented by including the following relation 
in the set of Eqs. (11.14) and (11.15): 

.
∂P

∂σ
= −m

σ
P. (11.25) 

Given .P(σ, θ), the analytic solution of Eq. (11.25) at .σ + Δσ is 

.P(σ + Δσ, θ) = (1 + Δσ/σ)−mP (σ, θ). (11.26) 

This solution is incorporated in the split step algorithm in the same way as the 
solutions for effects due to nonlinearity and absorption. The same modification 
can be introduced in the combined time-frequency domain algorithm described in 
Sect. 11.2.3. 

Alternatively, as done by Fenlon (1971) to include effects of spreading in the 
frequency-domain algorithm, one may define the new variables (Blackstock, 1964; 
see also Sect. 4.6.1) 

.Q = (σ/σ0)
mP, ζ =

⎰ σ

σ0

(σ0/σ)m dσ, (11.27) 

the substitution of which in Eq. (11.24) yields 

.
∂Q

∂ζ
= Q

∂Q

∂θ
+ Ã(ζ )

∂2Q

∂θ2
. (11.28) 

The source location .r = r0 (i.e., .σ = σ0) corresponds to .ζ = 0, with . Q(0, θ) =
P(σ0, θ). Equation (11.28) differs formally from Eq. (11.3) only via the spatially 
varying absorption parameter .Ã(ζ ), which is taken into account in the algorithms 
in Sects. 11.2.1–11.2.3 simply via direct substitution of .Ã(ζ ) everywhere for A. For  
.m = 1, one obtains .ζ = σ0 ln(σ/σ0) and .Ã(ζ ) = Aeζ/σ0 , and for .m = 1

2 , we have  
.ζ = 2σ0[(σ/σ0)

1/2 − 1] and .Ã(ζ ) = A(1 + ζ/2σ0). In this stretched coordinate 
system, nonlinear distortion occurs in the same way as for plane waves, whereas the 
effect of absorption increases exponentially with distance for spherical waves and 
linearly with distance for cylindrical waves. Webster and Blackstock (1978b) used  
the transformation in Eqs. (11.27) to include the effect of spherical spreading in the 
nonlinear distortion routine described in Sect. 11.2.3. 

The algorithms in Sects. 11.2.1–11.2.3 may be further augmented to model 
propagation in inhomogeneous media by introducing a general ray-tube spreading
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term [see, e.g., Eqs. (3.60) and (12.58)] and position-dependent medium parameters 
(Cleveland et al., 1996b). In this case, a separate algorithm is required to determine 
the ray path and thus the values of the medium parameters along that path . (σ in 
this case measures distance along the ray path). Cleveland et al. (1996a) made these 
modifications in the algorithms described in Sects. 11.2.2 and 11.2.3 to model sonic 
boom propagation through the atmosphere, and they compared the results obtained 
from these computer codes when they were run for identical conditions. Despite 
the different procedures used in the two codes, the outputs are shown to be in 
excellent agreement. When real atmospheric absorption and dispersion were taken 
into account, the time-domain code (Sect. 11.2.2) ran the fastest. When an ideal 
lossless medium was assumed, the weak shock algorithm (Sect. 11.2.3) was  most  
efficient. 

11.3 Directional Three-Dimensional Waves 

Here we describe algorithms that are primarily intended to model the propagation of 
directional sound beams, although application of these same algorithms to guided 
waves having frequencies well above cutoff (so that the waves may be described 
as quasi-plane) is also discussed. In each of these algorithms, nonlinearity is taken 
into account by the nonlinear term in the Burgers equation, i.e., to within the accu-
racy required for describing nonlinear effects consistently for quasi-plane waves. 
In Sect. 11.3.1, three algorithms based on the KZK (Khokhlov–Zabolotskaya– 
Kuznetsov) nonlinear parabolic wave equation are described. As in Sect. 11.2, these 
three algorithms illustrate approaches relying to different extents on time- and 
frequency-domain calculations. In Sect. 11.3.2, a time-domain algorithm based on 
another nonlinear parabolic wave equation, referred to as the NPE, is described. In 
Sect. 11.3.3, a frequency-domain algorithm is discussed that avoids the parabolic 
approximation inherent in the diffraction terms in the KZK and NPE models. 

11.3.1 Solutions of the KZK Equation 

The three algorithms described in the following subsections are based on the KZK 
equation, Eq. (3.65). We write the KZK equation here in a form that is obtained 
following integration with respect to time: 

.
∂p

∂z
= βp

ρ0c
3
0

∂p

∂τ
+ δ

2c30

∂2p

∂τ 2
+ c0

2

⎰ τ

−∞
(∇2⊥p) dτ, (11.29) 

where .∇2⊥ = ∂2/∂x2+∂2/∂y2 is a Laplacian that operates in the plane perpendicular 
to the axis of the beam. Here z is taken as the direction of propagation, with .τ =
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t − z/c0. Otherwise, Eq. (11.29) differs from Eq. (11.1) only by the term containing 
.∇2⊥p, which accounts for diffraction effects in the paraxial approximation of the 
region around the beam axis. Only axisymmetric radiation shall be considered, for 
which .∇2⊥ = ∂2/∂r2 + r−1(∂/∂r), where .r2 = x2 + y2. As shown in Sect. 3.9, it  
is consistent in the parabolic approximation to use the linear plane-wave impedance 
relation and write .p = ρ0c0uz, where . uz is the z component of the particle velocity 
vector. This relation is significant because many problems involving sound beams 
are defined with normal velocity source conditions—for example, baffled piston 
radiation. 

11.3.1.1 Combined Time-Frequency Domain Algorithm 

The pioneering numerical investigations of nonlinear effects in directional sound 
beams were performed by Bakhvalov et al. (1976, 1978a, 1978b, 1979a, 1979b, 
1979c, 1980) in a series of articles that are summarized in a book published 
later (Bakhvalov et al., 1987). The appendix of their book contains a detailed 
description of the numerical algorithm, and a very brief discussion appears in the 
first of their articles. Their calculations are based on a dimensionless version of 
Eq. (11.29) expressed in terms of the following quantities (the notation used here 
differs in minor ways from theirs, but it is helpful for discussions in Sects. 11.3.1.2 
and 11.3.1.3): 

.P = p

p0
, R = r/a

1 + z/z1
, Z = z

z0
, T = ω0τ, (11.30) 

where . p0 and . ω0 are the characteristic pressure amplitude and angular frequency at 
the source, respectively, .z0 = 1

2k0a
2 is the corresponding Rayleigh distance (i.e., 

diffraction length) in terms of a characteristic source radius a and wave number 
.k0 = ω0/c0, and . z1 is an adjustable length scale. Equation (11.29) thus becomes 

.
∂P

∂Z
= NP

∂P

∂T
+ A

∂2P

∂T 2
+ 1

4(1 + CZ)2

⎰ T

−∞
(∇2

RP ) dT , (11.31) 

where .∇2
R = ∂2/∂R2+R−1(∂/∂R) and .C = z0/z1. In contrast with the scaling used 

in Eqs. (11.2) and (11.3), here the Rayleigh distance . z0 rather than the plane-wave 
shock formation distance . x̄ defines the characteristic length scale in the direction 
of propagation, with .A = α0z0 and .N = z0/x̄. The algorithm described by 
Bakhvalov et al. (1976, 1987) computes the effects of absorption and diffraction 
in the frequency domain, and it calculates the nonlinear distortion in the time 
domain using the method of Godunov (1959) (which yields solutions consistent 
with algorithms based on weak shock theory, such as described in Sect. 11.2.3). 

We concentrate on the frequency-domain calculations, and in particular the 
diffraction algorithm. The purpose of scaling the radial coordinate r as in Eq. (11.30) 
is that for .CZ ⪡ 1 (which corresponds to the near field for .C ∼ 1), we have .R ≃
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r/a, which is an appropriate cylindrical coordinate for calculations where the beam 
is well collimated. For .CZ ⪢ 1, we have  .R ≃ (z1/a) tan θ (throughout Sect. 11.3, 
. θ is the angle with respect to the axis of the beam, defined by .tan θ = r/z), and . R =
const thus follows the spherical divergence of the beam in the far field, with the 
expansion rate of the spatial grid determined by . z1 (or equivalently, C). The value 
of C was chosen empirically. 

An expansion as in Eq. (11.4) was employed, with . Pn depending also on R, and 
substitution into Eq. (11.31) leads to a system of equations similar to Eq. (11.10) 
but with the addition of a diffraction term. Ignoring the nonlinear terms, the effect of 
which is taken into account in the time domain (the FFT is used to alternate between 
the time and frequency domains), we write here only the frequency-domain equation 
that accounts for diffraction (i.e., ignoring absorption as well): 

.
∂Pn

∂Z
= ∇2

RPn

j4n(1 + CZ)2
. (11.32) 

Because Eq. (11.32) is parabolic, corresponding to a diffusion-like process, it 
may be integrated forward in the .+Z direction without concern for backward-
propagating waves, as is the case with Eq. (11.10). Despite the three-dimensional 
nature of the problem, there is no need for a boundary condition at .Z = ∞. The  
field is represented by a uniformly spaced mesh of points extending in the axial and 
radial directions, the latter covering the bounded region from .R = 0 to .R = Rmax. 
Standard backward finite-difference approximations of the Z and R derivatives were 
used (further discussion of appropriate algorithms is postponed to Sect. 11.3.1.2). 
The condition of axisymmetry requires .∂Pn/∂R = 0 at .R = 0, whereas .Rmax is 
selected to be sufficiently large that the pressure is negligibly small at the largest 
radial distances (information relevant to selection of .Rmax corresponds to linear 
diffraction effects). It follows that the condition appropriate to .R = Rmax is .Pn = 0. 

The scope of the problems investigated by Bakhvalov et al. is revealed by the 
titles of their articles. Source amplitude distributions at .Z = 0 were described by 
either the polynomial function .(1 − R2)2 for .R < 1 and zero for .R > 1, or the  
exponential .exp(−R2m), where m is a positive integer (e.g., .m = 1 for Gaussian 
sources, .m = ∞ for pistons). Radiation from circular pistons was approximated 
by letting .m = 8, thus ensuring a smooth function that may have been helpful for 
providing greater numerical stability. Attention was devoted primarily to the near 
field, and the maximum distance at which numerical results were presented was 
.Z = 4. The algorithm was used also by Zhileikin et al. (1980) to investigate the 
propagation of high-frequency sound in a rigid cylindrical tube. They set . z1 = ∞
.(C = 0) to obtain a cylindrical grid that matches the waveguide geometry, and the 
boundary condition .∂Pn/∂R = 0 was applied at the wall. 

Alternative algorithms employing frequency domain calculations to account for 
diffraction and time-domain calculations to account for nonlinearity were developed 
by McKendree (1981) and Frøysa et al. (1993).
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11.3.1.2 Frequency-Domain Algorithm 

The algorithm described here, which is based exclusively on frequency-domain 
calculations, has been the most widely used to analyze periodic signals radiated by 
circular pistons, both unfocused and focused. The first entirely frequency-domain 
algorithm was developed by Aanonsen et al. (1984) for the near field. Like the 
algorithm developed by Bakhvalov et al. (1987), theirs considered radiation from 
axisymmetric projectors. An expansion as in Eq. (11.4) was again employed, the 
substitution of which into the KZK equation leads to a system of equations similar 
to Eq. (11.10) but with an additional term given by the right side of Eq. (11.32) 
with .C = 0. [More precisely, Aanonsen et al. used an expansion in the form 
of Eq. (11.11), and therefore two coupled sets of equations were obtained for the 
Fourier coefficients . an and . bn.] 

Aanonsen et al. employed a simple implicit backward difference scheme to 
integrate the resulting system of equations numerically. Consideration of boundary 
conditions is much the same as described in Sect. 11.3.1.1. However, since an 
expanding coordinate grid was not used in this work, the computation time for far-
field calculations was high. Calculations for radiation from pistons were confined to 
the near field .(Z ≤ 1), although calculations for Gaussian beams were performed 
out to .Z ≃ 7 (because the more slowly varying field structure of a Gaussian beam 
permits use of larger spatial steps). The effect of varying the number M of harmonics 
retained was investigated, with a maximum value .M = 30 used in that work. 

To improve the efficiency of the algorithm for calculations of the far field, 
Hamilton et al. (1985) introduced a modified form of the transformation in 
Eqs. (11.30): 

. P =
⎛
1 + z

z0

⎞
p

p0
, R = r/a

1 + z/z0
, Z = z

z0
, T = ω0τ − r2/a2

1 + z/z0
,

(11.33) 

the substitution of which into Eq. (11.29) yields 

.
∂P

∂Z
= NP

1 + Z

∂P

∂T
+ A

∂2P

∂T 2 + 1

4(1 + Z)2

⎰ T

−∞
(∇2

RP ) dT , (11.34) 

where the definitions .A = α0z0 and .N = z0/x̄ remain the same as in Eq. (11.31). 
Here, the radial coordinate assumes the value .R ≃ 1

2k0a tan θ for .Z ⪢ 1. We  
also have .p/p0 ≃ P/Z and .ω0τ ≃ T + k0r

2/2z for .Z ⪢ 1, indicating that 
amplitude decay and wave-front curvature associated with spherical spreading have 
been factored out of the transformed variables. Now substitute the expansion 

.P(R,Z, T ) = 1

2

M⎲

n=1

Pn(R,Z)ejnT + c.c. (11.35)
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in Eq. (11.34) to obtain the coupled spectral equations 

. 
∂Pn

∂Z
= ∇2

RPn

j4n(1 + Z)2
− n2APn

+ jnN

4(1 + Z)

⎛
n−1⎲

m=1

PmPn−m + 2
M⎲

m=n+1

PmP ∗
m−n

⎞
. (11.36) 

Given, for example, the monofrequency source condition .p = p0f (r) sinω0t at 
.z = 0, where .f (r) is an arbitrary amplitude distribution, the corresponding source 
condition for Eq. (11.36) is  .P1(R, 0) = −jf (R) exp(jR2), with .Pn(R, 0) = 0 for 
.n > 1. For a piston, .f (R) is unity for .R < 1 and zero elsewhere. As in Sect. 11.2.1, 
the computation time is associated mainly with the nonlinear terms and is therefore 
proportional to . M2. 

Two finite-difference methods are used to compute the diffraction term 
(Berntsen, 1990). Very near the source (e.g., for .Z ≲ 0.1), where the wave field 
can vary rapidly (particularly for the case of radiation from a piston), a fully 
implicit backward-difference method is used. A Crank–Nicolson method is used 
throughout the remainder of the field. Typical step sizes for piston radiation are 
.ΔR ≃ 0.03 (with .Rmax ≃ 8) and .ΔZ = (1 + Z)2(ΔZ)0, where . (ΔZ)0 ≃ 0.003
is the axial step size at the source. Increasing .ΔZ in proportion to . (1 + Z)2

corresponds to the presence of this factor in the diffraction term, and it reduces 
the number of calculations in the more slowly varying far-field region of the beam. 
The transformed coordinates permitted calculations to be made out to .Z = 30, and 
simulations to be run for earlier experiments demonstrating the effects of acoustical 
saturation on far field beam patterns (Hamilton et al., 1985). 

A modification of the coordinate transformation in Eqs. (11.33) is available for 
focused beams (Hart and Hamilton, 1988). With d taken to be the focal length and 
with the source plane now at .z = −d (and thus the focal plane at .z = 0), the 
transformation is 

. P = (z/d ± δ)
p

p0
, R = r/a

z/d ± δ
, Z = z

d
, T = ω0τ − Gr2/a2

z/d ± δ
,

(11.37) 

where .G = k0a
2/2d is a characteristic linear focusing gain (see Sect. 8.3.3), and . δ

here is a small positive quantity that governs the rate at which the transformed spatial 
grid converges in the vicinity of the focus. Once again, the result of substituting the 
transformation and a complex Fourier series in the form of Eq. (11.35) into the 
KZK equation is a set of coupled spectral equations like those in Eq. (11.36), which 
permits use of the same finite-difference algorithm that is used for unfocused beams. 
For the region between the source and focal planes, the minus signs in Eqs. (11.37) 
are used to produce a converging grid. Computations beyond the focal plane use 
the plus signs, which yield a diverging grid. Boundary conditions for the latter are
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obtained from a matching procedure based on the computed harmonics at . z = 0
obtained from the solution in the prefocal region. 

Other applications of the frequency-domain algorithm have included the study 
of radiation from bifrequency (Kamakura et al., 1989; Naze Tjøtta et al., 1990; 
Naze Tjøtta et al., 1991), pulsed (Baker and Humphrey, 1992), and rectangular 
(Kamakura et al., 1992; Baker et al., 1995) sources. The harmonic amplitudes shown 
in Figs. 8.5, 8.6, and 8.8 were computed with the present algorithm. 

11.3.1.3 Time-Domain Algorithm 

The time-domain algorithm developed by Lee and Hamilton (1995) solves  
Eq. (11.34) directly with finite differences. As in Sect. 11.2.2, the method of 
fractional steps is used to solve the equation term by term. The set of equations 
here is 

.
∂P

∂Z
= NP

1 + Z

∂P

∂T
, . (11.38) 

∂P 
∂Z 

= A 
∂2P 
∂T 2 

, . (11.39) 

∂P 
∂Z 

= 1 

4(1 + Z)2

⎰ T 

−∞ 
(∇2 

RP )  dT . (11.40) 

Note the resemblance of Eqs. (11.38) and (11.39), respectively, to Eqs. (11.14) and 
(11.15). 

The nonlinear distortion algorithm that replaces Eq. (11.17) is  

.T k+1
i = T k

i − NP k
i ln

⎛
1 + ΔZ

1 + Z

⎞
, (11.41) 

for which the step size restriction in Eq. (11.18) is replaced by 

. ln

⎛
1 + ΔZ

1 + Z

⎞
<

ΔT

N max |P k
i − P k

i−1|
. (11.42) 

Resampling is required before proceeding to the absorption and diffraction algo-
rithms. Although Lee and Hamilton describe a nonlinearity algorithm in which 
the distortion and resampling procedures are combined in a single operation, the 
step size restriction is more stringent than that in Eq. (11.42). Since Eq. (11.39) 
is formally equivalent to Eq. (11.15), its solution is obtained from Eq. (11.19) as  
before. 

We consider now the diffraction term. Some care must be given to choosing 
an appropriate time window, defined by .Tmin ≤ T ≤ Tmax, to follow the 
waveform throughout the field. An advantage of the transformed retarded time T
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in Eqs. (11.33) is that it follows the spherical curvature of the wave front, and 
therefore with .Tmin and .Tmax held constant, the pulse does not shift significantly 
within the time window as distance from the beam axis is increased. Without this 
transformation, in the original retarded time frame . τ , it would become necessary for 
.τmin and .τmax to be functions of distance from the beam axis. For a tone burst, it is 
usually sufficient to take .Tmin to be the time just a few cycles ahead of the source 
waveform, where the field is always approximately zero in the retarded time frame. 
The value of .Tmax must be considerably farther behind the trailing edge of the pulse, 
normally about ten cycles, to account for the arrival of the diffracted edge wave in 
the near field. 

The integral in Eq.  (11.40) is evaluated with a trapezoidal rule, with the lower 
limit replaced by .Tmin. Otherwise, the diffraction routine is similar to that used 
in the frequency domain. In the near field, a fully implicit backward-difference 
method is used, and beyond this the Crank–Nicolson method is used, with the same 
spatial grid parameters as cited in Sect. 11.3.1.2. Both methods yield tridiagonal 
matrices that can be solved explicitly with the Thomas algorithm (Ames, 1992), 
and the computation time of each is proportional to the number M of time samples 
in each waveform across the beam. Given a source condition .p = p0f (r, t) at 
.z = 0, the boundary condition for the algorithm is .P = f (R, T + R2) at .Z = 0. 
Using comparisons with analytic solutions for pulses along the axis of a circular 
piston, Lee and Hamilton (1995) discuss numerical considerations for the diffraction 
algorithm related to proper description of the edge wave and sharp transient effects. 
The computation time for the entire algorithm is proportional to M . 

Problems that have been modeled with the algorithm have focused on piston 
radiation and include shock formation in tone bursts and random noise waveforms 
that are propagated out to .Z = 100 (Lee and Hamilton, 1995), self-demodulation 
in fluids with strong absorption (Averkiou et al., 1993), and the effect of relaxation 
(Cleveland et al., 1996b). See also Fig. 8.7. 

11.3.2 Time-Domain Algorithm Based on the NPE 

An alternative to the time-domain algorithm described in Sect. 11.3.1.3 is based on 
the nonlinear progressive-wave equation referred to as the NPE (McDonald and 
Kuperman, 1987), which we write here in the form 

.
Dp

Dt
= − βp

ρ0c0

∂p

∂z
− c0

2

⎰ z

−∞
(∇2⊥p) dz, (11.43) 

where here .D/Dt = ∂/∂t + c0(∂/∂z) corresponds to differentiation in the retarded 
time frame .τ = t − z/c0 used above. Comparison of Eq. (11.43) with Eq. (11.29) 
shows that the NPE may be characterized as a lossless KZK equation with the 
roles of propagation distance and time reversed. The NPE appears frequently in the 
literature with an additional term that accounts for small variations in the ambient
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sound speed, which is included below. Absorption may also be included in the NPE 
in a manner similar to the way the corresponding term appears in the KZK equation. 

In acoustics, one is normally interested in radiation from a source at a fixed 
location, where the waveform is prescribed as a function of time. A boundary 
condition posed in this way is appropriate for the Burgers and KZK equations. 
However, the NPE requires a space waveform at a given instant in time. A matching 
routine—based on linear theory, for example—is therefore needed to initialize the 
NPE algorithm when the source condition is posed as a boundary-value problem, 
after which the forward integration in time may proceed. When implementing a 
numerical solution of Eq. (11.43), one must recognize that z is position relative to 
the moving reference frame, so the z domain to be discretized represents a moving 
window that must capture the entire pulse. To produce a time waveform at a fixed 
location in space, it is necessary to select .Δt = Δz/c0 so that each trailing mesh 
point in the moving window arrives at the position of interest at the successive time 
steps. 

As in Sect. 11.3.1.3, each step in the integration process uses a splitting method 
in which different numerical approximation techniques are applied to the various 
terms in order to ensure the stability and accuracy of the approximation. Diffraction 
is taken into account by approximating the integral with a trapezoidal rule and 
applying finite differences according to a Crank–Nicolson scheme. The principal 
distinctive feature of the NPE algorithm is the use of a second-order upwind 
flux-corrected transport scheme (McDonald and Ambrosiano, 1984; McDonald 
and Kuperman, 1985) to include the nonlinear effects in Eq. (11.43) (as well as 
the refraction effects introduced below, if included). This nonlinearity algorithm 
accounts for not only waveform distortion but also shock propagation without 
requiring an absorption term in Eq. (11.43). The nonlinearity algorithm produces 
results consistent with those obtained on the basis of the weak shock algorithm 
described in Sect. 11.3.1.3. 

The first applications of the NPE were to nonlinear propagation in ocean acoustic 
waveguides (McDonald and Kuperman, 1987; Ambrosiano et al., 1990). In these 
cases, the following form of the NPE was used: 

.
Dp

Dt
= − c0

2r
p − ∂

∂r

⎛
c1p + βp2

2ρ0c0

⎞
− c0

2

⎰ r

−∞
∂2p

∂z2
dr, (11.44) 

where we now have .D/Dt = ∂/∂t + c0(∂/∂r) in a cylindrical coordinate system 
where z is ocean depth and r is radial distance in the horizontal plane. The 
term .−c0p/2r accounts for cylindrical spreading. Refraction is taken into account 
through the new quantity . c1, which is a small correction to the local ambient small-
signal sound speed, given now by .c0 + c1(r, z), with .|c1| ⪡ c0. 

McDonald and Kuperman (1987) tested their code with two problems, propaga-
tion of a plane nonlinear N wave and linear propagation in a waveguide. The former 
verified that their nonlinearity algorithm produced results in agreement with weak 
shock theory. For the latter, they considered propagation of a Gaussian waveform 
in a homogeneous fluid bounded below by a rigid surface (at which .∂p/∂z = 0)
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and above by a free surface (at which .p = 0). Comparison of the numerical results 
with alternative solutions verified the diffraction algorithm, principally its ability to 
account for the dispersion introduced by waveguides. The main nonlinear problem 
considered by McDonald and Kuperman was propagation of a weak shock through 
a caustic in an inhomogeneous ocean waveguide. The incident wave was taken to 
originate from an explosive source in a region of constant sound speed below a depth 
. zd , while above . zd the sound speed increases linearly with z. Rays arriving from 
below . zd form a caustic at some depth above . zd . Another application of the NPE 
to ocean acoustics may be found in the paper by Ambrosiano et al. (1990), which 
presents simulations of propagation in a homogeneous fluid .(c1 = 0) bounded above 
by a pressure release surface and below by a penetrable fluid bottom. Attention was 
focused on the dependence of bottom penetration on wave amplitude. 

Too and Ginsberg (1992a) modified the NPE algorithm to model axisymmetric 
sound beams on the basis of Eq. (11.43), with .∇2⊥ = ∂2/∂r2 + r−1(∂/∂r). Their 
axial step size . Δz was 5% of the wavelength at the source frequency, the radial step 
size was .Δr = 5Δz, and the grid width was .rmax = 3a for calculations within 
the Rayleigh distance . z0, where a is again the source radius. The radial boundary 
conditions are the same as those used in the KZK algorithms. 

To test the accuracy of the diffraction algorithm, Too and Ginsberg considered 
linear radiation from a piston projector in an infinite baffle. The waveform window 
close to the source was initialized with the Rayleigh diffraction integral, and 
numerical results at different distances were compared with results obtained from 
direct numerical integration of the Rayleigh integral. Sufficiently long tone bursts 
were used to simulate continuous radiation. Harmonic beam profiles calculated 
numerically are shown to be extremely close to the prediction from the Rayleigh 
integral, even at near-field locations where the paraxial approximations inherent 
in both the NPE and KZK equations are normally assumed to be unsuitable. The 
authors speculate that the good agreement is due to initialization of the routine with 
the Rayleigh integral, rather than the more common approach of using the plane-
wave impedance relation to calculate the pressure in the plane of the baffled piston. 

As discussed in Sect. 11.3.1.2, it becomes necessary to expand the transverse 
grid when one is interested in propagation of a sound beam well beyond the near 
field. Too and Ginsberg (1992b) thus developed a spherical coordinate version of the 
NPE computer code. The dependent variable for this formulation is .q = Rp, based 
on R being the (spherical) radial distance from the source. The moving window 
was propagated in the radial direction, so the transverse Laplacian . ∇2⊥ contained . θ
derivatives. The main features of the resulting equation are like those of Eq. (11.43), 
although with space-dependent coefficients in the diffraction term. Both unfocused 
and focused beams were investigated using this approach. To model focused beams, 
Too and Ginsberg placed the origin of the spherical coordinate at the focal distance 
of a concave baffled projector.
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11.3.3 Frequency-Domain Algorithm Without the Parabolic 
Approximation 

Christopher and Parker (1991a) removed the effect of the parabolic approximation 
inherent in the KZK and NPE algorithms by using a phenomenological approach. 
Like other algorithms described in this chapter, theirs uses a split step superposition 
procedure to describe different physical effects. The key advantage of their method 
is the inclusion of diffraction according to an exact formulation based on the 
Kirchhoff–Helmholtz integral, with the principal source of error in the diffraction 
subroutine arising only through the use of discrete Hankel transforms to perform the 
required convolutions. Otherwise, their methods for including effects of absorption 
and nonlinearity are essentially the same as those in the frequency domain approach 
described in Sect. 11.2.1. 

The focus here is therefore on the diffraction algorithm. Consider a time 
harmonic pressure field p = 1 

2pn(x, y, z)ejnω0t that is known in plane z. In  
the absence of nonlinearity and absorption, the following form of the Kirchhoff– 
Helmholtz integral determines the pressure in plane z + Δz for arbitrarily large Δz: 

.pn(x, y, z + Δz) =
⎰⎰ ∞

−∞
pn(x

', y', z)hn(x − x', y − y') dx'dy', (11.45) 

where 

.hn(x, y) = (1 + jnk0R)
e−jnk0R

2πR3 Δz, R = [x2 + y2 + (Δz)2]1/2, (11.46) 

and k0 = ω0/c0. Equation (11.45) thus provides the pressure in terms of the two-
dimensional spatial convolution of pn(x, y, z)  and hn(x, y) over the xy plane. The 
convolution may be performed by multiplying the 2-D spatial Fourier transforms 
of pn(x, y, z)  and hn(x, y) and then taking the inverse transform of the resulting 
product to obtain pn(x, y, z  + Δz). This general approach is used widely for 
modeling diffraction phenomena (Goodman, 1968). 

Christopher and Parker were interested mainly in axisymmetric sound fields, for 
which the following expansion of the pressure is employed: 

.p(r, z, t) = 1

2

M⎲

n=1

pn(r, z)e
jnω0t + c.c. (11.47) 

The axisymmetric propagation function hn(r) is given by Eqs. (11.46) with R = 
[r2 + (Δz)2]1/2. The diffraction substep is performed using an efficient discrete 
Hankel transform (DHT) algorithm developed by Johnson (1987), which relates the 
values of a radial function f (r)  at a discrete set of points rl to the values of a 
transformed function f̃ (κ)  at a discrete set of wave numbers κm. With W denoting 
the width of a radial window containing N − 1 discrete samples, the transform and
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its inverse are approximated by 

.f̃ (κm) = 2πW 2

j2N

N−1⎲

l=1

Ymlf (rl), f (rl) = 1

2πW 2

N−1⎲

m=1

Ylmf̃ (κm), (11.48) 

where rl = jlW/jN , κm = jm/2πW , Ylm = 2J0(jljm/jN)/J 2 
1 (jm), and jm is the 

mth zero of the zeroth-order Bessel function, i.e., J0(jm) = 0. Note that because the 
values of jm do not occur at constant increments, this transform pair corresponds to 
nonuniformly spaced radial locations and wave numbers. 

In order to carry out the convolution, the functions pn and hn are sampled at 
the locations rl to obtain transformed functions p̃n(κm, z)  and h̃n(κm). The DHT 
of the propagated signal is then, from Fourier transform theory, p̃n(κm, z  + Δz) = 
p̃n(κm, z)h̃n(κm).4 The corresponding radial distribution pn(rl, z  + Δz) is obtained 
by applying the inverse DHT in Eqs. (11.48), which yields 

.pn(rl, z + Δz) = 1

2πW 2

N−1⎲

m=1

Ylmp̃n(κm, z)h̃n(κm). (11.49) 

Finally, this result for pn(rl, z  + Δz) from the diffraction subroutine is taken to 
be the input pn(rl, z)  back at plane z for subroutines that account for absorption, 
dispersion, and nonlinearity. Since the calculations are performed in the frequency 
domain, absorption and dispersion can be included as in Eq. (11.22). Nonlinear 
distortion over stepΔz is taken into account as for plane waves, i.e., according to the 
solution of Eq. (11.10) with A = 0 [alternatively, absorption and dispersion may be 
included in this same step via Eq. (11.13)]. Christopher and Parker also introduced 
small correction factors to account approximately for wave-front curvature and the 
fact that the signal does not propagate precisely in the z direction. 

Like other authors, Christopher and Parker addressed the accumulation of energy 
in the highest harmonics close to the truncation number M . They estimated that 
their computation time increases in proportion to M5 [M2 from nonlinearity in the 
frequency domain and M2 from the DHT (the authors also discussed the alternative 
of using a 2-D FFT), and they increased spatial resolution roughly in proportion 
to M], so they employed a scheme for artificially increasing the attenuation of the 
higher harmonics in order to help reduce the value of M . The selections of Δz and
Δr are based on resolution requirements, while their suggestion for the radial mesh 
size is based on the Nyquist radial sampling rate associated with the fundamental 
frequency component.

4 In a separate treatment of linear propagation, Christopher and Parker (1991b) discussed the 
alternative of using the analytical Hankel transform of hn(r), rather than obtaining h̃n(κm) 
numerically, which would enhance numerical efficiency. However, they showed that to do so can 
lead to increased error, such as aliasing. 
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A notable application of this algorithm has been the modeling of shock wave 
propagation produced by spark source lithotripters (see Sect. 15.6), in which both 
diffraction and nonlinear effects are very strong. Such lithotripters employ a spark 
source at one focus of an axisymmetric ellipsoidal reflector of finite depth, the firing 
of which produces an outgoing spherical wave. The reflected wave converges in 
the neighborhood of the second ellipsoidal focus. The diffraction algorithm was 
found to be very accurate for this challenging geometry (Christopher, 1994), as was 
verified by comparison with a linear analytical solution based on the Kirchhoff– 
Helmholtz integral. 

11.4 General Time-Domain Algorithm 

Each of the computational algorithms discussed thus far applies to situations in 
which the propagation is predominantly in a single coordinate direction. Multidi-
mensional features are included in some formulations by allowing for variation of 
the signal transverse to the propagation direction. When the scale of the transverse 
variation is comparable to the wavelength scale associated with propagation, the 
fundamental assumptions on which these formulations are based cease to be valid. 
In contrast, computational fluid dynamics (CFD) programs are used regularly to 
study inherently multidimensional problems. The difficulty with employing such 
programs to address nonlinear acoustics resides in the smallness of the acoustic 
Mach number, even for the highest amplitudes of usual interest. Application of a 
standard CFD code in such situations can result in the nonlinear effects being lost 
in the numerical approximation errors. One recent line of study, by Inoue and Yano 
(1993, 1996), provides numerical solutions of the exact equations for a perfect gas, 
with dissipation taken into account only at the shocks. They have used their results 
to illustrate differences with predictions based on weak shock theory when acoustic 
Mach numbers approach unity (Inoue and Yano, 1993), and also to model streaming 
in sound beams at similar amplitudes (Yano and Inoue, 1996). 

In the present section we discuss another recent line of study, by Sparrow and 
Raspet (1991), who developed a finite-difference approximation of the Navier– 
Stokes–Fourier equations and thus take dissipation into account explicitly. Specif-
ically, the foundation for their treatment is the set of continuity, momentum, heat 
transfer, energy, and constitutive field equations. They assume that all relaxation 
effects, including bulk viscosity, are negligible. Following expansion of all field 
variables about their equilibrium states and discarding of high-order terms, their 
resulting basic equations, which contain lossless linear and quadratic terms, as well 
as lossy linear terms, correspond to Eqs. (3.30), (3.31), (3.33), and (3.34), plus an 
auxiliary state equation. Sparrow and Raspet used first-order substitutions to rewrite 
several second-order terms, and assumed an axisymmetric cylindrical geometry 
.[(r, z) coordinates, with . ur and . uz the corresponding components of the particle 
velocity vector]. This led to a system of equations in the following form:
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.
∂w
∂t

+ ∂F1

∂r
+ ∂G1

∂z
= F2 + G2, (11.50) 

where .w = (ρ', ur , uz, s)
T, .F1 = [(ρ0 + ρ')ur , p/ρ0, 0, 0]T, . G1 = [(ρ0 +

ρ')uz, 0, p/ρ0, 0]T, . ρ' is the density perturbation, and s is the specific entropy. The 
elements of . F2 and . G2 are lengthy expressions containing derivatives with respect 
to r and z, but not with respect to t . The equations were thus manipulated such that, 
for the purpose of numerical solution, the only time derivative is that which appears 
explicitly in Eqs. (11.50). 

Initial conditions are given for . w over all space, and Eqs. (11.50) are solved 
numerically by stepping forward in time using the splitting method described by 
Maestrello et al. (1981). A uniform discretization in space and time is employed 
in which any variable .ψ(r, z, t) is approximated by .ψ(iΔr, jΔz, nΔt). Equa-
tions (11.50) are separated into 

.
∂w
∂t

+ ∂F1

∂r
= F2,

∂w
∂t

+ ∂G1

∂z
= G2. (11.51) 

The basic idea is to integrate one of Eqs. (11.51), in the process ignoring the 
dependence of . w on the spatial variable that does not appear explicitly as a derivative 
in that equation. This produces updated values that are used to integrate the other 
equation. In the next time step, the integration sequence is reversed, with the second 
equation in the sequence for the prior time step now solved first. 

A symbolic representation of these operations involves defining solution opera-
tors .fr(Δt) and .fz(Δt) for each equation, such that solution of each of Eqs. (11.51) 
after one time step may be written as .w(t + Δt) = fr(Δt)w(t) and . w(t + Δt) =
fz(Δt)w(t), respectively. After two time steps, the solution that is thereby obtained 
is 

.w(t + 2Δt) = fr(Δt)fz(Δt)fz(Δt)fr(Δt)w(t). (11.52) 

The symmetry of the operations between the two time steps is required for the 
approximation to be accurate to second order in time. Expressions for .fr(Δt) and 
.fz(Δt) that are accurate to fourth order in space and second order in time are 
provided by Sparrow and Raspet. At the boundaries of the integration region, where 
the spatial mesh does not provide sufficient points to evaluate the operators, Sparrow 
and Raspet use second-order symbolic operators. In order to maintain acceptable 
accuracy, they found it necessary to set .c0Δt/Δx ≃ 1

4 . 
In a finite-difference representation of a wave equation, discontinuities can lead 

to local oscillations that eventually disperse throughout the discretized domain. 
Sparrow and Raspet addressed this phenomenon by using an artificial viscosity term 
that adds a dissipation term to the kinematic wave equation. The artificial viscosity 
is introduced in such a way that in the absence of absorption and nonlinearity, 
each of Eqs. (11.51) assumes the form .∂ψ/∂t + c0∂ψ/∂x = −μ∂4ψ/∂x4. The  
corresponding numerical approximation entails adding a correction term to the value
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of the variable obtained by stepping forward in the absence of artificial viscosity. 
With . ψn

j denoting the value of a variable at time step n and spatial grid point . jΔx

[x is either r for the first of Eqs. (11.51), or z for the second], the artificial viscosity 
correction used by Sparrow and Raspet is 

.ψn+1
j̇

|new = ψn+1
j |old − ν(ψn

j+2 − 4ψn
j+1 + 6ψn

j − 4ψn
j−1 + ψn

j−2), (11.53) 

which is accurate to fourth order. The viscosity coefficient is therefore given by 
.μ = ν(Δx)4/Δt , and the corresponding attenuation increases as the fourth power 
of the frequency. Hence, the artificial viscosity has the effect of attenuating the high-
frequency components, while leaving the lower-frequency components relatively 
unaffected. (The value of . ν must be chosen carefully, because too large a value 
may influence the relevant features of the signal, and there will be no beneficial 
effect if the coefficient is too small.) Sparrow and Raspet incorporated the viscosity 
correction into the operators .fr(Δt) and .fz(Δt) for . ρ', the  .fr(Δt) operator for . ur , 
and the .fz(Δt) operator for . uz. 

Any finite-difference treatment of an open domain must truncate that domain. 
Sparrow and Raspet (1990) previously had developed an absorbing boundary 
condition for linear wave propagation in order to prevent reflection of signals at 
the artificial boundary. The specific approximation was a variant of the Bayliss– 
Turkel condition, which they determined on the basis of quantitative examples 
to obtain the most accurate approximation of transmission into an open domain. 
Sparrow and Raspet (1991) used the same boundary condition in their subsequent 
nonlinear simulation, even though it is a linear relation. They did so on the basis 
of the assumption that nonlinearity and absorption should not be significant effects 
over the scale of a few grid intervals. 

The examples considered by Sparrow and Raspet (1991) treated various aspects 
of the propagation of a spark pulse in air. The source waveform is given in terms of 
the sound pressure, and the required initial spatial waveform for the pressure, as well 
as the initial spatial waveforms required for all other field variables, is calculated 
using lossless linear theory. Computations were performed for three problems: free-
field propagation of a spherical pulse, normal incidence of a planar pulse on a rigid 
surface, and oblique incidence of a spherical pulse on a hard surface. Waveforms 
calculated for the first problem were found to be in good agreement with those 
obtained with the Pestorius algorithm (Sect. 11.2.3), apart from some numerical 
oscillations just ahead of the shock. For the second problem, good agreement was 
obtained with an analytic expression for the pressure at the wall. No alternative 
solutions were available for the third problem. The authors commented on the 
extreme computational effort of their algorithm. Even for the first problem, in which 
a moving time window was used to improve the efficiency, long execution time was 
required on a supercomputer. 

Sparrow and Raspet (1991) closed their paper by calling for additional work to 
establish the limits of their formulation, as well as to develop improved algorithms 
that would decrease computation times and increase accuracy. It is likely that 
several numerical techniques in general use for computational fluid dynamics can
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be adapted successfully to handle acoustics problems. Such tools are essential, for 
there are many situations in which the propagation is inherently a multidimensional 
phenomenon that is beyond the reach of our present analytical capabilities. 
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12.1 Ray Theory and Its Extension to Finite Amplitude 
Propagation 

12.1.1 Introduction 

We begin this chapter by showing how geometrical acoustics, or ray theory, may be 
extended to allow for nonlinear waveform distortion, in the relatively simple case 
where the medium is stationary. Examples principally related to long-range ocean 
propagation are presented in Sect. 12.2. In Sect. 12.3 the theory is generalized to 
deal with a moving medium; it then becomes necessary to distinguish between ray 
and wavenormal directions. Further examples, related to aeroacoustics and sonic 
boom propagation, follow in Sect. 12.4. 

The theoretical development involves a number of approximations, which are 
reviewed in Sect. 12.5. Essentially they restrict the application of the results to 
weakly nonlinear acoustic waves, propagating in a slowly varying medium that 
is not strongly dispersive. Finally, Sect. 12.6 discusses the relevant acoustical 
properties of water and seawater. 

12.1.2 Definitions and Approximations—Linear Ray Theory 

An inhomogeneous moving medium, in its undisturbed state, has a density .ρ0(x), 
sound speed .c0(x) and velocity .w(x) which are functions of vector position . x.1 

A slowly varying medium is one in which these quantities change by only a 
small amount over distances comparable with a typical acoustic wavelength . λ.

1 Throughout this chapter, the undisturbed state of the medium is regarded as steady. Extension to 
a time-dependent medium is fairly straightforward provided the time dependence is slow enough, 
although it is more complicated to implement numerically. Specifically, the inequalities in (12.1) 
must also hold over time intervals comparable with the acoustic period. 
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Specifically, 

.
Δρ0

ρ0
,
Δc0

c0
,
|Δw|
c0

⪡ 1 for |Δx| ≈ λ. (12.1) 

Because of restriction (12.1), it is possible to regard both the properties and the 
motion of the medium as locally uniform on a wavelength scale. Ray acoustics is 
the approximate description, valid in the far field of the sound source, that results 
from: 

• Treating the sound field locally as a set of plane progressive wave fronts, 
propagating in a single direction, in a uniform medium 

• Allowing the wave-front directions to change according to the laws of refraction 
• Imposing energy conservation to determine the local field strength 

A concise account may be found in Pierce (1989). 

12.1.3 Illustration—Rays in a Horizontally Stratified Medium 

Figure 12.1 shows sound waves propagating from a source at A to a receiver at B; 
the intervening medium is stationary, but has a sound speed .c0(z) that varies with 
the downward coordinate z.2 Such a model, with horizontally stratified properties, 
provides a simplified representation of the Earth’s oceans or atmosphere; in the latter 
case, the wind would normally be included as a horizontal vector .w(z), and the 
complications that this introduces are addressed in Sects. 12.3 and 12.4. 

A ray is the path traced by wavelets (such as P in Fig. 12.1a) that propagate, 
relative to the local medium, at the local sound speed in the wavenormal direction. 
The ray AB in Fig. 12.1a is curved, but its projection in the horizontal plane is a 
straight line (see Fig. 12.1b), as long as the ambient medium is stationary and the 
sound speed depends only on the coordinate z. 

In a stationary fluid3 medium, the unit vector . n in Fig. 12.1a, normal to the 
local wave fronts, coincides with the ray propagation direction. When we deal 
with moving media in Sect. 12.3, it will be necessary to distinguish the wavenormal 
direction . n from the ray direction . m; for stratified moving-medium problems, where 
the wavenormal direction is described by a grazing angle . χ , we shall denote the 
corresponding ray angle by . θ . 

The process of refraction in the stationary-medium example of Fig. 12.1 is 
described by

2 Defining z downward is conventional in ocean acoustics, whereas in atmospheric acoustics z is 
usually defined upward (as in Fig. 12.4). 
3 Or solid; Sects. 12.1 and 12.2 still apply, provided the waves are compressional and the medium 
is isotropic. 
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Fig. 12.1 (a, b) Geometry of a typical ray path in a stratified medium at rest, showing the 
wavenormal grazing angle . χ at a typical point P on the ray path. (c) Ray tube generated by a 
set of adjacent rays, all originating at A. 

.
c(z)

cosχ(z)
= c+

cosχ+
= const, (12.2) 

which is Snell’s law. Here and in the remainder of the chapter, we omit the 
zero subscript denoting undisturbed values of the sound speed, except where it is 
essential. The . + subscript notation introduced in Eq. (12.2) will be used frequently; 
it denotes the value at a reference point on the ray, usually the starting point. 

The local wave-front orientation, described by Eq. (12.2), determines the ray 
geometry. In Fig. 12.1c, rays are drawn from A to a set of neighboring points . B1,

. B2, etc., as well as to B. The bundle of rays defined in this way forms a ray tube; 
its cross-sectional area at any point is denoted by .A(s), with coordinate s measured 
along the ray path. 

12.1.4 Signal Variation Along a Ray—Linear Theory 

In a slowly varying medium that is lossless, a simple time-domain equation connects 
the signal at any point along a ray to its earlier value at a point nearer the source. 
By “signal” we mean any of the linear variables (pressure, particle velocity, etc.) 
that characterize the locally plane progressive wave; the acoustic pressure p is used 
throughout this chapter. The lossless-medium linear relation is 

.
p(s, τ )

p(s+, τ )
= B(s, s+), (12.3) 

where . τ is the shifted, or retarded, time variable defined by
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.τ = t −
⎰ s

s+

ds'

c(s')
. (12.4) 

The amplitude factor B is determined by the ray geometry and the local value of . ρc: 

.B =
⎛

ρc

ρ+c+

⎞1/2 ⎛
A

A+

⎞−1/2

. (12.5) 

An equivalent linear-theory statement is given in Sect. 8-5 of Pierce (1989), along 
with a derivation. 

Equations (12.3)–(12.5) have a simple physical interpretation that is helpful when 
we come to derive a nonlinear version. The integral in Eq. (12.4) is the time taken for 
small-amplitude acoustic waves to travel from . s+ to s along the ray. The amplitude 
factor accounts for energy conservation along a ray tube; the instantaneous energy 
flow rate is the product of the local area A and the local intensity I .(= p2/ρc), and 
its value is required to remain constant as the signal is tracked along the ray path. 

Finally, we note the following important consequence of Eqs. (12.3)–(12.5): 
The quantity .B−1p(s, τ ) is invariant along a ray, according to linear geometrical 
acoustics, for any given value of the shifted time variable . τ . This statement is 
expressed in mathematical form by 

.B−1p = p̃(s, τ ) = p+(τ ). (12.6) 

In Sects. 12.1.6–12.1.10 we show how Eq. (12.6) may be generalized to finite 
amplitudes. 

12.1.5 Propagation in a Lossy Medium 

Before moving to finite amplitudes, we note for future reference how Eq. (12.3) may  
be generalized to describe signal propagation along rays in a lossy inhomogeneous 
medium. This is accomplished by transforming the equation into the frequency 
domain, and then applying factors to account for attenuation and dispersion. In the 
frequency domain, the lossless-medium equation (12.3) is equivalent to a transfer 
function .T (ω, s, s+) = B exp(jωΔt), where . Δt is the time delay .(t − τ) given by 
Eq. (12.4). The correction factor to be applied to T to account for attenuation and 
dispersion is 

.F(ω, s, s+) = exp

⎧
−

⎰ s

s+
α̃(ω, s') ds'

⎫
, (12.7) 

where . ̃α is the complex attenuation coefficient [see Eq. (5.5)]. Multiplying T by F 
is equivalent to local substitution of the lossless propagation coefficient .jω/c by 
.(α̃ + jω/c) at each point along the ray path.
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12.1.6 Nonlinear Ray Theory—Additional Assumptions 
Needed 

The theory of small-amplitude lossless propagation along a ray, as given in 
Sect. 12.1.4, is extended in Sects. 12.1.7–12.1.10 to weakly nonlinear signals. The 
phenomenon of waveform distortion—described for plane progressive waves in 
Chap. 4—is shown to follow analogous rules in a nonuniform medium, insofar as 
ray theory is valid. 

Two key assumptions are involved in this extension: 

1. Every element of the starting waveform (at .s = s+) may be regarded as following 
a common ray path, despite the fact that different elements travel at different 
propagation speeds; 

2. The effects of attenuation and dispersion may be incorporated into the lossless 
analysis retrospectively (Pestorius, 1973) in the manner of Sect. 12.1.5, although 
corrections will need to be made at intervals along the propagation path, rather 
than in one step at the end. 

Assumption 2 is not self-evident, because rays in a nonuniform dispersive medium 
follow frequency-dependent paths: the rainbow or optical prism provides a vivid 
analogy. However, we shall assume the effects of dispersion to be weak enough that 
rays joining any two given points remain sharply defined along their whole length, 
and do not suffer “chromatic aberration.” 

12.1.7 Wavelet Propagation Speed and Ray Velocity 

The following terminology is useful in discussing waveform distortion at finite 
amplitudes. A small segment of the signal time history is called a wavelet; an  
example is .PP ' in Fig. 12.2. Each wavelet is in fact associated with a spatially 
extended wave front, which is regarded as locally plane, and propagates in direction 
. n relative to the undisturbed fluid. The wavelet propagation speed, again relative to 
the undisturbed fluid, is given to first order by 

.vw ≃ c0 + βu ≃ c0 + (β/ρc)p, (12.8) 

where u is the acoustic particle velocity and . β is the coefficient of nonlinearity.4 In 
the small-amplitude limit, . vw reduces to . c0.

4 See Eqs. (2.16). Note that in the last term of Eqs. (12.8), . ρ and c should strictly be interpreted as 
the undisturbed values .ρ0(x) and .c0(x); the difference this makes to . vw is of second order, however. 
We shall therefore drop the zero subscript wherever there is no risk of confusion, while retaining it 
in the zero-order . c0 term. 
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Fig. 12.2 Pressure waveform as a function of time. Adjacent points .P,P ' or .Q,Q' on the 
waveform define a wavelet. 

Our concern is to obtain a nonlinear version of the arrival-time equation (12.4) 
for any given ray path. We do this by introducing the nonlinear ray velocity, defined 
in general (for a moving medium) by 

.vg = vwn + w; (12.9) 

its direction is, by assumption 1 above, along the original linear ray, and its 
magnitude is the rate at which a wavelet advances along the ray path. The notation 
. vg is used because the ray velocity is also the group velocity. Equations (12.8) 
and (12.9) imply that, in Fig. 12.2 for example, .vg(P ) /= vg(Q), and therefore the 
wavelets at P and Q take different times to travel the same distance along the ray 
path. 

An explicit expression is developed below for the amplitude-dependent wavelet 
travel time for the special case of a stationary medium, in which . w is zero. The 
corresponding analysis for a moving medium is deferred to Sect. 12.3. 

12.1.8 Signal Travel Times in a Nonmoving Medium 

It is convenient, from this point on, to characterize or label each wavelet by the time 
. τw at which it passes the reference point .s = s+. The time at which it reaches point 
s is denoted by .t (s, τw), and the travel time between . s+ and s is given by 

.Δt = t (s, τw) − τw =
⎰ s

s+

ds'

vg(s', τw)
. (12.10) 

Because . w is zero, Eqs. (12.8) and (12.9) give  

.
1

vg

= 1

vw

≃
⎛

c0 + β

ρc
p

⎞−1

≃ 1

c0
− β

ρc3
p(s, τw). (12.11) 

An important consequence of Eqs. (12.10) and (12.11) is that the wavelet travel 
time differs from .

⎰ s

s+ ds'/c0(s'), which means that the wavelet does not arrive at 
a retarded time .τ = τw (as it would according to linear theory). To evaluate the
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integral in Eq. (12.10) for a finite-amplitude wavelet, we assume that Eqs. (12.3) 
and (12.6) remain a good approximation if they are applied following the local 
wavelet, i.e., with . τ replaced by . τw. Substituting .p = Bp+(τw), from the modified 
Eq. (12.6), into the nonlinear term of Eq. (12.11) gives the corrected wavelet travel 
time as5 

.Δt ≃
⎰ s

s+

ds'

c0(s')
− p+(τw)

⎰ s

s+

β

ρc3
B(s', s+) ds'. (12.12) 

Note that .p+(τw) is the time history of the pressure at the starting position .(s = s+). 
Equation (12.12) provides a nonlinear estimate of the wavelet travel time, with the 
first term on the right corresponding to the linear result, Eq. (12.4). The second term 
represents a nonlinear correction; positive pressures take less time to arrive than 
negative pressures. 

12.1.9 Terminology—Arrival Phase and Characteristic Phase 

The shifted, or retarded, time .τ = t − (Δt)lin, where .(Δt)lin is the linear signal 
travel time from some reference point on the ray path, is called by some authors the 
time phase variable or simply the phase (Hayes and Runyan, 1972). For nonlinear 
propagation, Eq. (12.12) gives the phase variable following a wavelet as 

.τ(s, τw) = τw − p+(τw)

⎰ s

s+

β

ρc3
B ds'. (12.13) 

Equation (12.13) determines the value of . τ for the arriving signal as a function of 
. τw and s; we shall call this quantity .τ(s, τw) the arrival phase of the signal, and 
. τw the characteristic phase. Hayes and Runyan6 call . τw the linear phase, since the 
retarded time of arrival of a small-amplitude wavelet at any point on the ray is given 
by .τ = τw.

5 The integral factor in the second term is called the age variable by Pierce (1989; see Sect. 11-
8). The same name is used for a different but related quantity by Hayes and Runyan (1972) in  
their important paper on sonic boom propagation. In neither case does the age variable have the 
dimensions of time! In Sect. 12.1.10 the “age variable” terminology will be avoided and Eq. (12.12) 
will be written in an alternative form, analogous to the plane-wave result in Eq. (4.26). 
6 Hawkings (1974) adopts an apparently similar but incompatible terminology in which . τw is called 
the phase, and . τ is then (logically) called the linear phase! 
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12.1.10 Summary of Results for a Lossless Nonmoving 
Medium 

The essential feature of nonlinear geometrical acoustics in a lossless medium, as 
explained in Sect. 12.1.8, is that .p̃(s|τw = const) is invariant along each ray path, 
rather than .p̃(s|τ = const). Here . p̃ is the modified pressure .p/B introduced in 
Eq. (12.6). Thus the arriving wavelet amplitude is given by 

.p̃(s, τw) = p+(τw), (12.14) 

while the actual arrival phase .τ(s, τw) is related to . τw by Eq. (12.13). The point of 
Eq. (12.14) is that the wavelet energy conservation argument that led to Eq. (12.6) 
carries over unaltered to weakly nonlinear waves (Whitham, 1974, Chap. 9). Some 
insight into this conclusion may be gained by noting that when a plane wave front 
develops into a shock, the fraction of the forward-traveling energy that is scattered 
into backward-traveling waves is of order . ε4, where . ε .(= Δp/ρc2) is the acoustic 
Mach number of the initial wave front (Morfey and Sparrow, 1993). 

The arrival phase equation (12.13) may be written in the equivalent form 

.τ(s, τw) = τw −
⎛

β

ρc3

⎞
+

x̃p+(τw); x̃ =
⎰ s

s+

Λ

Λ+

⎛
A

A+

⎞−1/2

ds', (12.15) 

where .Λ = βρ−1/2c−5/2. It may already have occurred to the reader that 
Eqs. (12.14) and (12.15) are identical in form to corresponding plane-wave results 
given by Eqs. (3.61), although the nonlinear propagation being described here takes 
place along curved rays of varying ray-tube area. The quantity . x̃ is a generalized 
version of the plane-wave propagation distance, and will be referred to as the 
reduced path length; the modified pressure . p̃ will be called the reduced pressure. 
Examples illustrating the calculation of . x̃ are presented in the next section. We 
note that, as discussed in Sect. 4.2, the nonlinearly distorted waveform may become 
multivalued: Several wavelets, with different values of . τw, may share the same 
arrival phase . τ . This is an indication that losses need to be taken into account, either 
via weak shock theory (the simplest option) or—where that is not appropriate—via 
the stepwise calculation procedure outlined in Sect. 12.3.5 below. 

12.2 Examples of Nonlinear Propagation in a Stationary 
Medium 

12.2.1 Introduction 

The results derived in Sect. 12.1 show that extending linear ray theory to weakly 
nonlinear signals requires evaluation of a reduced path length . x̃, which is used to
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calculate a nonlinear correction to the signal phase variable at any given point on a 
ray. 

The evaluation of . x̃ from Eqs. (12.15) involves the ray geometry, through the 
ray-tube area .A(s), and a particular combination of the medium properties .(β, ρ, c), 
defined following Eqs. (12.15) and denoted by .Λ(s). Several examples that illustrate 
the calculation of . x̃ are presented in this section, beginning with one-dimensional 
cases and ending with numerical calculations for a stratified model ocean. Other 
examples of ray theory applied to nonlinear waves propagating through nonuniform 
media may be found in an early review by Ostrovsky (1976). 

12.2.2 Waveguide or Ray Tube with Power-Law Area Variation 

Figure 12.3a shows a narrow waveguide with rigid walls, containing a uniform fluid 
at rest. The cross-sectional area is 

.A(x) = A+
⎛

x

x+

⎞2n

; (12.16) 

n may be either negative (as in Fig. 12.3a) or positive. Plane acoustic waves 
propagate axially along the waveguide, in the direction of increasing x. Note that 
with .n = 1

2 or 1, Eq. (12.16) could also represent a ray tube in a cylindrically or 
spherically spreading sound field, generated by a source at .x = 0. 

Propagation from . x+ to x along the waveguide, without passing through .x = 0, 
corresponds to a reduced path length [see also Eqs. (4.291)] 

.x̃(x, x+) =
⎰ x

x+

⎛
x'

x+

⎞−n

dx'; (12.17) 

thus 

.x̃ = x+
1 − n

⎾⎛
x

x+

⎞1−n

− 1

⏋
(for n /= 1), (12.18) 

Fig. 12.3 (a) Waveguide (or ray tube) with power-law area variation. (b) Ray tube in the 
neighborhood of a caustic. The ray tube passes through a line focus at C (cylindrical focusing).
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and when n is zero, we recover the plane-wave result .x̃ = x − x+. For the special 
case .n = 1 [see also Eqs. (4.281)], 

.x̃ = x+ ln
x

x+
(spherical spreading). (12.19) 

Now suppose both . x+ and x are positive. Equations (12.18) and (12.19) show that 
for all values of n less than or equal to 1, . x̃ increases indefinitely in the propagation 
direction; but if n exceeds 1 (faster-than-spherical spreading), . x̃ approaches an 
asymptotic upper limit. This latter situation has been called “waveform freezing,” 
since it implies that the difference between . τ and . τw never grows beyond a certain 
value, however far the wavelet propagates. A similar situation can arise when the 
properties of the medium vary along the ray path, as will be shown in Sect. 12.2.4 
below. 

12.2.3 Rays Approaching a Caustic or Focus 

When neighboring rays pass through a caustic or focus, as in Fig. 12.3b, the ray-
tube area vanishes and the ray approximation breaks down locally. However, it is 
instructive to examine the behavior of . x̃ as the focus is approached from a short 
distance away. 

In Fig. 12.3b, C is the point of zero area, and . ξ is the distance (terminating at 
C) over which the reduced path length will be evaluated. The same ray-tube area 
variation applies here as in the previous example, namely Eq. (12.16), which allows 
for C being a caustic point .(n = 1

2 ) or a three-dimensional focus .(n = 1). Note that 
x is measured from C in the propagation direction, so we are now working in the 
region of negative x. 

Applying Eqs. (12.18) and (12.19) gives . x̃ for a signal traveling from .x = −ξ to 
.x = 0: 

.x̃ = ξ

1 − n
(for n < 1); x̃ → ∞ (for n ≥ 1). (12.20) 

Thus cylindrical focusing .(n = 1
2 ), as at a caustic, leads to the definite value .x̃ = 2ξ . 

Likewise, propagation beyond the caustic out to .x = ξ ' adds a further amount . 2ξ '
to . x̃. 

There is a matching problem at the caustic itself, which for sufficiently weak 
waves may be overcome by using the linear matching procedure: A .π/2 phase 
advance (time factor .ejωt replaced by .ej (ωt+π/2) for positive . ω, and by . ej (ωt−π/2)

for negative . ω) is applied to all frequency components, as explained in Sect. 9-4 of 
Pierce (1989). The local use of linear theory to traverse the caustic is given a formal 
justification by Hunter and Keller (1987); it was first proposed by Obermeier (1974) 
and by Ostrovsky et al. (1976).
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The reduced path length becomes singular as a spherical focus is approached 
.(n = 1), which points to the need for a more accurate nonlinear-propagation 
model in such situations. Specifically, the assumption that rays follow the paths 
given by linear theory may have to be abandoned (Whitham, 1974, Sects. 8.3 
and 8.8; Sturtevant and Kulkarny, 1976; Fridman, 1982; see also Sects. 12.5.3 
and 12.5.4), and dissipative processes and shock formation will need to be included 
(see Sects. 12.1.5 and 12.1.6). 

12.2.4 Ray Propagation in an Isothermal Still Atmosphere 

The sound speed is uniform in this example, so the rays are straight, but the density 
varies with the height z. It is instructive to compare . x̃ results for plane, cylindrically-
spreading and spherically-spreading waves. The ray-tube area in all three cases 
follows the power law .A(s) ∝ s2n (with s measured along the ray from the source), 
with .n = 0, . 12 , and 1, respectively. 

The vertical variation of . β and . ρ, in an isothermal atmosphere consisting of an 
ideal gas at constant absolute temperature T , is given by 

. β(z) = const = β+; ρ(z) = ρ+e−z/H (H = RT/g, the scale height).
(12.21) 

Here z is measured upward from a convenient reference height, and the subscript . +
labels properties of the medium at that height; R is the specific gas constant, and g 
is the acceleration due to gravity. 

The reduced path length will be calculated for propagation from A (at . z = z+ =
0) to B, along the ray tube shown in Fig. 12.4; i.e., from a vertical distance h above 
the source to a vertical distance .h + ξ . The ray path is straight, but it slopes at an 
arbitrary angle. From Eqs. (12.15) and (12.21), . Λ varies along the propagation path 
as follows: 

.Λ = Λ+eξ/2H . (12.22) 

The ray-tube area ratio .A/A+ depends on the source distance h below the reference 
plane, the upward propagation distance . ξ , and the exponent n. Provided h and . ξ +h

have the same sign,7 

.A = A+
⎛

ξ + h

h

⎞2n

. (12.23)

7 Not necessarily positive; the present description covers downward propagation if . ξ and h are 
negative. 
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Fig. 12.4 Definition sketch 
for upward propagation of 
finite-amplitude sound in an 
isothermal atmosphere. 

Substituting Eqs. (12.22) and (12.23) in the second of Eqs. (12.15) gives  

.x̃ =
⎰ ξ

0
eξ '/2H

⎛
1 + ξ '

h

⎞−n

dξ '. (12.24) 

The presence of the exponential factor in the integrand above has a powerful 
effect once . |ξ | becomes comparable with the scale height or greater. Upward-
directed rays then suffer enhanced nonlinear distortion (greatly increased . x̃), 
compared with propagation over the same path in the reference medium whose 
density is . ρ+. Downward-directed rays (. ξ negative) suffer reduced distortion on 
account of the exponential factor: However large the path length, the value of . x̃
never exceeds an asymptotic upper limit, in contrast to the uniform-medium case 
(Sect. 12.2.2), where . x̃ increases indefinitely. The former situation was discussed by 
Ostrovsky and Fridman (1985), who showed that upward-propagating sound waves 
from a source near the ground are strongly dissipated on reaching the ionosphere, 
on account of shock formation in this low-density region. 

For downward-propagating rays, Hayes (1968, 1969) had already noted the 
existence of an upper limit on . x̃, and had coined the phrase “waveform freezing” for 
this situation (cf. Sect. 12.2.2). Hayes was concerned with the nonlinear evolution 
of sonic boom signatures from high-flying aircraft, for which an appropriate ray-
tube model is Eq. (12.23) with .n = 1

2 , rather than .n = 1 as used by Ostrovsky 
and Fridman (1985). It is interesting to compare the asymptotic . x̃ approached 
by downward-propagating rays in the limit .|ξ | ⪢ H for all three values of the 
spreading index .(n = 0, 1

2 , 1), i.e., for plane, cylindrical, and spherical waves. These 
asymptotic limiting values correspond to propagation along the same ray tube in the 
reference medium, but over a “frozen” vertical distance . ξ∞: 

.|ξ∞| = HF(n, h/H). (12.25) 

In the limit .h ⪡ H , the factor .F = |ξ∞|/H is given by 

. F(0, 0) = 2/eγ .= 1.1229; F( 12 , 0) = π/2
.= 1.5708; F(1, 0) = 2,

(12.26) 

while for .h ⪢ H , the effect of wave-front spreading becomes negligible, and the 
plane-wave result .(F = 2) applies regardless of n. 

For the next two examples we introduce a modification factor G, applied to the 
actual path length, as a convenient way to quantify . x̃ in more general situations.
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12.2.5 Long-Range Propagation in a Depth-Dependent Ocean: 
Definition of the Factor G 

Results for . x̃ obtained in Sects. 12.2.6 and 12.2.7 will be presented in terms of the 
path-length modification factor G, defined for rays spreading from a point source 
by the relation 

.x̃(s, s+) = s+ ln

⎾
1 +

⎛
s − s+

s+

⎞
G

⏋
. (12.27) 

Implicit in the choice of Eq. (12.27) to represent . x̃ is the assumption that, from the 
source out to the reference position .s = s+, the inhomogeneity of the medium may 
be neglected. This means that we are assuming .s+ ⪡ H , where H is the vertical 
inhomogeneity scale. 

The factor G in Eq. (12.27) may then be interpreted as follows. Suppose that the 
medium beyond .s = s+ is replaced by a reference medium, with uniform properties 
matching those at . s+. For this reference case, Eq. (12.19) gives  

.x̃(R, s+) = s+ ln
R

s+
(at spherical radius R). (12.28) 

The two values of . x̃ in Eqs. (12.27) and (12.28) will be equal if 

.R − s+ = (s − s+)G. (12.29) 

Thus G is the factor by which the actual curved path length must be multiplied 
in order to produce the same . x̃ (and hence the same nonlinear distortion, for any 
given starting amplitude) under ideal spherical spreading conditions in the reference 
medium, starting from the same radius . s+. 

Finally, we note that Eq. (12.27) may be simplified in the limit of long-range 
propagation, defined by .s ⪢ s+; the long-range version, which we shall use in the 
examples that follow, is 

.x̃ ≃ s+ ln

⎛
s

s+
G

⎞
. (12.30) 

12.2.6 Analytical Results: Ocean with Linear Sound-Speed 
Profile 

In accord with convention, the vertical coordinate z is measured downward from the 
ocean surface. If the sound speed varies linearly with depth, the ray paths are circular 
arcs. The ray-tube area ratio .A/A+ is given in terms of the current ray angle . θ and
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the ray launch angle . λ by 

.
A

A+
≈ rd

r2+
cos θ cos λ

⎛
d = ∂z

∂λ

||||
r

⎞
, (12.31) 

with both angles measured downward from the horizontal. In this expression, r 
denotes horizontal range measured from the source; its value at the reference point 
near the source is . r+. Out  to  .r = r+ the rays are approximated by straight lines, as 
noted in Sect. 12.2.5. 

Combining Eq. (12.31) with standard ray path expressions (Tolstoy and Clay, 
1987; Frisk,  1994) gives  

.
A

A+
=

⎛
s

s+

⎞2 ⎛
sin θ − sin λ

θ − λ

⎞2

sec2λ. (12.32) 

Note that in this example .s/(θ − λ) remains constant along a given ray; its value 
is determined by the (constant) sound-speed gradient. By introducing the gradient, 
either of .(s, θ) may be eliminated in favor of the other, but the form of Eq. (12.32) 
is particularly convenient. 

We now introduce the assumption that . Λ and c are related, along each ray, by the 
power law .Λcn = const. This provides a first approximation to typical deep-ocean 
profiles (Morfey, 1984; see Appendix C). Then 

.
Λ

Λ+
=

⎛
c

c+

⎞−n

=
⎛

cos θ

cos θ+

⎞−n

≃
⎛
cos λ

cos θ

⎞n

. (12.33) 

Inserting Eqs. (12.32) and (12.33) in Eqs. (12.15) gives  . x̃ as an integral along the 
ray path. We use the relation .ds/s = dθ/(θ − λ) to change the integration variable 
from s to ray angle . θ : 

.x̃ ≃ s+ cos λ

⎰ θ

θ+

dθ

sin θ − sin λ

⎛
cos λ

cos θ

⎞n

. (12.34) 

The integral is to be evaluated for .s+ ⪡ s, which means that . θ+ approaches . λ. 
Although the limiting . x̃ is singular, the factor G defined in Eq. (12.30) remains 
finite. The limiting value of G can be expressed analytically for .n = 0 and . n = 1
(Gradshteyn and Ryzhik, 1980). The case .n = 1 yields 

.G(θ, λ) = sin θ − sin λ

(θ − λ) cos θ

⎾
tan

⎛
π

4
+ θ

2

⎞/
tan

⎛
π

4
+ λ

2

⎞⏋sin λ

, (12.35) 

and is of practical interest since in the deep ocean, the product . Λc remains roughly 
constant below the sound channel axis.



352 C. L. Morfey and F. D. Cotaras

Fig. 12.5 (a) Values of the path-length modification factor G calculated for a stratified medium 
with a linear sound-speed profile, using two different models for . Λ as a function of sound speed. 
The ray is launched in the direction of increasing sound speed at an angle of 22.5. ◦ to the horizontal, 
and G is shown as a function of the subsequent ray angle . θ . (b) Further results for the situation 
described in (a), extended to a range of launch angles to either side of the horizontal. Plotting G 
versus .cos θ/cos λ permits comparison with the asymptotic theory of Sect. 12.2.7. 

Note that the sound-speed gradient does not appear in Eq. (12.35), which predicts 
G in terms of n and the initial and final ray angles. As an illustration of the way G 
varies along a typical ray, Fig. 12.5a shows  G plotted against . θ for a ray launched 
downward at .λ = 22.5◦. The ray-tube area effect alone .(Λ = const) produces
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the curve labeled .n = 0; G is less than 1 for this particular ray path because the 
area .A(s) increases more rapidly than . s2. Adding a semirealistic .Λ(s) variation 
accentuates the effect (.n = 1 curve), since the ray starts out downward and . Λ
decreases with depth. 

A wider range of results for the same sound-speed profile and .n = 1 is shown 
in Fig. 12.5b, where the horizontal axis is the sound-speed ratio .c/c+. The effective 
path length for nonlinear distortion is increased when rays are launched upward and 
decreased when rays are launched downward. Plotting G versus .c/c+ reveals the 
approximate power-law relation .G ≈ (c/c+)−1.5, which is given theoretical support 
by the analysis described in Sect. 12.2.7. 

12.2.7 Sound-Speed Profiles with Curvature—Asymptotic 
Results 

If we remove the limitation to linear .c(z) profiles, it is more difficult to find 
analytical expressions for . x̃. Some progress can be made by asymptotic methods, 
with the relative variation in sound speed treated as a small quantity: results obtained 
in this way are summarized below. Otherwise, . x̃ may be evaluated numerically; 
examples are presented in Sect. 12.2.8. The results in this chapter may be compared 
with the earlier work of Pelinovsky et al. (1979). 

It is convenient for asymptotic analysis to define the sound-speed profile in 
inverse form, with z given as a function of the quantity 

.σ = c(z)/c(0) − 1. (12.36) 

The following two-parameter profile family includes the linear profile of Sect. 12.2.6 
as a special case: 

.
z

a
= σ − 1

2bσ 2 (a, b constants). (12.37) 

It leads to a particularly simple prediction for the factor G in Eq. (12.30)—and hence 
for . x̃—when terms of relative order . σ 2 are discarded. The final result is 

.G ≃
⎛

c

c+

⎞−(n+1/2)

, (12.38) 

where n is the index relating . Λ and c, introduced in Eq. (12.33). Details of the 
analysis are given elsewhere (Morfey, 1984, Appendix D). 

Besides the restriction on profile shape imposed by Eq. (12.37), which can 
represent the gradient and curvature of .c(z) only in an average sense, two further 
limitations apply to the asymptotic Eq. (12.38):
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1. .dc/ds must not change sign along the ray path; rays which have passed through a 
vertex, or crossed the sound channel axis, are not validly described by Eq. (12.38) 
beyond that point. 

2. The small-. σ limit strictly requires .σ ⪡ sin2λ, so the asymptotic theory does not 
apply to horizontally launched rays. 

Since the linear sound-speed profile belongs to the profile family defined above, the 
exact expression for G already found as Eq. (12.35) (for  .n = 1) provides a test of 
Eq. (12.38). The appropriate asymptotic prediction is .G ≃ (c/c+)−1.5, and this line 
is plotted in Fig. 12.5b alongside the exact results. The agreement improves as . |λ|
increases, which is consistent with limitation (2) above. 

12.2.8 Realistic Ocean Profiles—Numerical Results 

Figure 12.6 shows values of G calculated numerically from Eqs. (12.15) and (12.30) 
for a depth-dependent ocean typical of the North Pacific (Morfey, 1984). The two 
source depths in Fig. 12.6a and b are above and below the sound channel axis, 

Fig. 12.6 Numerical calculations of the path-length modification factor G, for two source depths 
in a typical North Pacific ocean profile with the sound channel axis at a depth of 600 m. The source 
in (a) is above the sound channel axis at 200 m depth, and the source in (b) is below  the axis at  
1200 m depth.
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respectively. Noteworthy features are, in Fig. 12.6a, the quite large G (of order 
4) attained by near-horizontal rays, and, in Fig. 12.6b, the rapid increase in G as 
the caustic surface is approached. (The numerical calculations were performed in 
discrete steps of horizontal range, and therefore stop short of the actual caustic.) 

When these and similar numerical examples are compared with the analytical 
approximation of G in Eq. (12.38), using .n = 1, it appears that nearly all the 
realistic cases that fall within restriction 1 of Sect. 12.2.7 are quite well described 
by the asymptotic prediction. The agreement between asymptotic and numerically 
calculated values of .(G − 1) is typically within a factor of 1.4. However, restriction 
1 imposes a severe limitation, and the high G values seen in Fig. 12.6a are outside 
the scope of Eq. (12.38): The rays involved have all passed through a sound-speed 
minimum. 

12.3 Finite Amplitude Ray Propagation in Moving Media 

12.3.1 Introduction 

The linear theory of geometrical acoustics in moving media was established by 
Blokhintsev (1946a, 1946b); a concise account, with additional references, appears 
in the book by Pierce (1989). Our aim in this section is to show how the linear theory 
may be corrected to allow for first-order effects of nonlinearity. The procedure 
parallels that given in Sect. 12.1, and we shall not repeat the detail of the earlier 
discussion, but rather focus on the differences caused by a mean ambient flow. 
Practical illustrations are deferred to Sect. 12.4. 

12.3.2 Signal Variation Along A Ray—Linear Theory 

For small-amplitude signals Eq. (12.3) still applies, namely 

.
p(s, τ )

p(s+, τ )
= B(s, s+), (12.39) 

but Eqs. (12.4) and (12.5) are modified to allow for the mean flow: 

.τ = t −
⎰ s

s+

ds'

vg(s')
, . (12.40) 

B = 
cρ1/2(ADvg)

−1/2 

c+ρ
1/2 
+ (ADvg)

−1/2 
+ 

. (12.41)
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Fig. 12.7 (a) Definition of the ray velocity in a moving medium; . w is the mean flow velocity 
vector, . n is the unit wavenormal vector, and . vg is the ray velocity vector. (b) Vector triangles as in 
(a), compared for linear and finite-amplitude wave fronts traveling in the same ray direction. 

Here . vg is the magnitude of the ray velocity as defined in Eq. (12.9) and Fig. 12.7, 
and D is a Doppler factor determined by the component .wn = w · n of the mean 
velocity field: 

.D = 1 + wn/c = (1 + wn/Dc)−1. (12.42) 

The factor D is the ratio of the frequency f heard by a fixed observer to the 
frequency . fm heard by an observer moving with the local flow. 

12.3.3 Signal Travel Times in a Moving Medium 

We now modify the results above to allow for nonlinear propagation. The discussion 
parallels that in Sects. 12.1.7 and 12.1.8, except that for a fixed ray direction, 
the wavenormal direction in a moving medium is amplitude-dependent. This is 
illustrated in Fig. 12.7b, which compares the ray vector triangles for a small-
amplitude and a finite-amplitude wavelet. 

It follows that when the travel time integral in Eq. (12.40) is evaluated along the 
original ray path, and we wish to take account of . vw variations between wavelets, 
the appropriate first-order approximation is 

.vg ≃ vg0 + ∂vg

∂vw

||||
m,w

(vw − c0). (12.43) 

The wavenormal direction . n is allowed to vary in evaluating the partial derivative, 
while the ray direction . m is held fixed. This corresponds to using the linear ray path 
for the nonlinear travel time estimate. The resulting error in . Δt is of second order
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in .(vw − c0), because small variations in the ray path produce no first-order change 
in travel time, by definition. 

The partial derivative in Eq. (12.43) is obtained by differentiating the relation 

.v2w = w2 + v2g − 2wvg cos θ, (12.44) 

where . θ is the angle between the vectors . vg and . w. Holding . m constant is equivalent 
to holding . θ constant. Thus 

∂vw vg vw cos θ 
. 

− 
∂vg

||||
m,w 

=
vw 

= n ·m (from Fig. 12.7b). (12.45) 

Inversion gives 

.
∂vg

∂vw

||||
m,w

= (n ·m)−1 = vg

vw + wn

, (12.46) 

after making the substitutions .n ·m = n · vg/vg and .vg = vwn + w. Finally, when 
Eq. (12.46) is substituted into Eq. (12.43) along with Eq. (12.8) for . vw, we get 

.vg ≃ vg0 + vg

Dc
βu, (12.47) 

which is accurate to first order in the velocity perturbation u. Note that Eq. (12.42) 
has been used to rewrite .vw + wn in terms of D. 

The nonlinear travel time of a given wavelet may now be estimated to the same 
accuracy, as an integral over the linear ray path: 

.Δt =
⎰ s

s+

ds'

vg(s', τw)
≃

⎰ s

s+

ds'

vg0
− p+(τw)

⎰ s

s+

β

ρc2

1

Dvg

B(s', s+) ds'. (12.48) 

This result generalizes Eq. (12.12), derived for a nonmoving medium in Sect. 12.1. 
As before, .p+(τw) is the time history of the pressure at the starting position . (s =
s+). 

As a final comment, we note that if the partial derivative in Eq. (12.43) had 
been evaluated with . n rather than . m held constant, then the coefficient . vg/Dc

in Eq. (12.47) would have been inverted. The difference becomes significant as 
the mean flow Mach number increases. The inverted result was obtained in an 
early paper by Gubkin (1958) that is of historical interest. The correct expressions, 
Eqs. (12.47) and (12.48), are used—although in a different form—by Hayes and 
Runyan (1972), and we shall demonstrate agreement by recovering their result in 
Sect. 12.4.3. For a recent derivation by a different method, the reader is referred to 
Robinson (1991).
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12.3.4 Summary of Results for a Lossless Moving Medium 

The wavelet invariance relation remains as in Eq. (12.14), namely 

.p̃(s, τw) = p+(τw), (12.49) 

but B is now given by Eq. (12.41). The arrival phase .τ(s, τw) follows from 
Eq. (12.48) as  

.τ(s, τw) = τw − p+(τw)

⎰ s

s+

β

ρc2

1

Dvg

B ds'. (12.50) 

This result generalizes Eq. (12.13) of Sect. 12.1. It may be written in the equivalent 
form 

.

τ(s, τw) = τw −
⎛

β

ρc2

⎞
+

⎛
1

Dvg

⎞
+

x̃p+(τw),

x̃ =
⎰ s

s+

βρ−1/2c−1

β+ρ
−1/2
+ c−1+

⎛
Dvg

D+vg+

⎞−3/2⎛
A

A+

⎞−1/2

ds',
(12.51) 

which corresponds to Eqs. (12.15) of Sect. 12.1. 

12.3.5 Extension to a Lossy Moving Medium 

We have already indicated in Sects. 12.1.5 and 12.1.6 how the effects of attenuation 
and dispersion may be allowed for in a stepwise calculation scheme (Pestorius, 
1973). The ray path is subdivided into suitably small segments, and over each 
successive segment the propagation process is simulated in two stages. First the 
time-domain nonlinear distortion algorithm is applied as if the medium were 
lossless, and then a frequency-domain correction factor is applied to the output to 
account for linear attenuation and dispersion over the ray segment. 

The frequency-domain correction factor given in Sect. 12.1.5 must be modified 
because of the mean flow. Two physical effects are involved: 

1. In a reference frame moving with the local mean flow, the apparent frequency is 
.ω/D rather than . ω. 

2. The distance by which a wave front advances relative to the fluid in time . δt is 
.vwδt , which is different from the distance .vgδt traveled along the ray path. 

Between any two points .(s1, s2), the linear frequency-domain correction factor is 
therefore 

.F(ω, s2, s1) = exp

⎧
−

⎰ s2

s1

α̃(ω/D, s)(c/vg) ds

⎫
, (12.52)
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where . ̃α is the complex attenuation coefficient in the linear plane progressive wave 
relation .p = p0 exp{jω(t − x/c) − α̃x} [see Eq. (5.5)]. 

The segment length .s2 − s1 is determined in practice as a compromise between 
computation speed, which requires large segments, and accuracy, for which the ray 
path segments should be small, but not so small as to introduce cumulative errors due 
to repeated resampling. Further discussion of step-size criteria is given in Chap. 4 
of Robinson (1991). 

12.3.6 Alternative Numerical Solution Techniques 

The attraction of the Pestorius approach, mentioned in Sects. 12.1.5 and 12.3.5 (see 
also Sect. 11.2.3), is that each of the two physical phenomena of (1) nonlinear 
distortion and (2) waveform diffusion and dispersion is handled in the most directly 
appropriate manner. The disadvantage is the need to transform repeatedly between 
the time and frequency domains, which can introduce inaccuracy (because of the 
need to resample) and slows the calculation. 

An alternative procedure, developed by Lee and Hamilton (1991, 1995) and used 
by Cleveland et al. (1996), is based entirely within the time domain and represents 
the linear attenuation and dispersion steps by means of tridiagonal matrix operators 
(see Sect. 11.2.2). No FFTs are involved, and the calculation is therefore faster. A 
further advantage is the ease with which transient pulses or single shocks can be 
represented. 

12.3.7 Differential Equations for the Pressure Waveform 

The results given in Sects. 12.3.4 and 12.3.5 can be expressed in differential equation 
form. This leads in the most general case—for a lossy medium—to a generalized 
Burgers equation. 

We begin with the lossless case, for which Eq. (12.49) gives  .∂p̃/∂s|τw = 0, and 
rewrite this result using the identity 

.
∂p̃

∂s

||||
τ

= ∂p̃

∂s

||||
τw

− ∂p̃

∂τ

||||
s

∂τ

∂s

||||
τw

. (12.53) 

The first term on the right is zero, and the second term is evaluated using Eq. (12.50), 
which yields 

.
∂τ

∂s

||||
τw

= − β

ρc2Dvg

Bp+(τw). (12.54) 

The resulting differential equation for the pressure .p(s, τ ) = Bp̃ is
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.
∂p

∂s

||||
τ

− B '

B
p − β

ρc2Dvg

Bp+(τw)
∂p

∂τ

||||
s

= 0, (12.55) 

which to the same order of accuracy may be written as 

.
∂p

∂s

||||
τ

− B '

B
p − β

2ρc2Dvg

∂p2

∂τ

||||
s

= 0, (12.56) 

since .p(s, τ ) is equal to .Bp+(τw) according to linear theory. Here . B ' denotes the 
derivative of .B(s). 

On the other hand, linear ray theory for a lossy medium gives 

.
∂p

∂s

||||
τ

− B '

B
p = L(p), (12.57) 

where L is a linear differential operator, equivalent in the frequency domain to the 
complex factor F of Eq. (12.52) [see also Eq. (5.1)]. Combining the effects of the 
lossy medium and nonlinear distortion into a single differential equation finally 
yields 

.
∂p

∂s

||||
τ

− B '

B
p − β

2ρc2Dvg

∂p2

∂τ

||||
s

= L(p). (12.58) 

This is a generalized, or augmented, version of the Burgers equation that 
includes mean flow [cf. Eq. (3.58)]. In its original form, the Burgers equation 
is limited to plane waves in a uniform medium at rest, with losses restricted to 
the classical frequency-squared dependence of attenuation; whereas Eq. (12.58) 
describes propagation along a ray tube, in a moving medium, with no restriction on 
the frequency dependence of the attenuation. The basis of the augmented equation 
is the assumed smallness of both the nonlinear and dissipative terms relative to the 
first two terms, which describe lossless linear propagation. 

12.4 Examples of Nonlinear Propagation in a Moving 
Medium 

12.4.1 Introduction 

Mean flow effects on sound propagation are a function of Mach number; they are 
therefore important in aeroacoustics, but hardly ever so in ocean acoustics, where 
typical Mach numbers are of order .10−3. In this section we shall examine two 
nonlinear propagation problems from aeroacoustics, focusing exclusively on the 
lossless-medium aspects: sonic boom propagation in Sect. 12.4.3, and shock-wave
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radiation from a supersonic ducted fan rotor in Sect. 12.4.4. The flow-field model 
in both these examples is two-dimensional and stratified, with the stratification 
coordinate perpendicular to the flow in Sect. 12.4.3 and parallel to the flow in 
Sect. 12.4.4: 

.

w = {wx(z),wy(z), 0} (sonic boom);

w = {wx(x), 0, 0} (supersonic fan).
(12.59) 

First, however, we consider the simplest possible situation of one-dimensional 
propagation in collinear flow. 

12.4.2 One-Dimensional Propagation in a Variable-Area Flow 
Duct 

Let the duct have rigid walls and carry a slowly varying mean flow in the x direction, 
with local Mach number .M(x) = w/c. Superimposed on the flow is a finite-
amplitude sound field, which consists of plane waves propagating in the x direction. 
The waveform evolution along the duct is described by the equations summarized 
in Sect. 12.3.4, with .vg0 = c0(1 + M) [from Eq. (12.9)] and .D = 1 + M [from 
Eq. (12.42)]. 

It can be seen from Eqs. (12.51) that the nonlinear shift in signal arrival time is 
proportional to . x̃, and the contribution of any short duct segment . Δx to the . x̃ integral 
is proportional to .Δx(Dvg)

−3/2 or .Δx(1 + M)−3. Thus sound waves traveling 
against a near-sonic flow, with M close to . −1, will experience greatly increased 
nonlinear distortion on account of the mean flow. Moreover, if M passes through 
. −1, with .dM/dx remaining finite, the . x̃ integral becomes singular. This situation 
arises at the throat of a smoothly contoured convergent-divergent nozzle when the 
nozzle is choked. Sound waves attempting to travel upstream from the throat (where 
the flow is sonic) suffer unlimited nonlinear distortion and dissipation, associated 
with the infinite time they take to escape from the throat convergence. 

12.4.3 Propagation in a Stratified Atmosphere with Horizontal 
Wind 

Hayes and Runyan (1972) used a nonlinear modification of geometrical acoustics, as 
described in Sect. 12.3, to model sonic-boom propagation from a supersonic aircraft 
to the ground. They represented the atmosphere as a horizontally stratified lossless 
fluid with a horizontal mean wind velocity w(z). Our aim in this section is to recover 
their main result using Eqs. (12.49)–(12.51).
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The coordinate system to be used is that shown in Fig. 12.1. We choose the z axis 
downward, against the normal convention for atmospheric acoustics, in order to 
avoid negative values of the grazing angle χ . The  x axis is defined as perpendicular 
to the wave fronts in plan view (Fig. 12.1b). The situation differs from the zero-wind 
case described in Sect. 12.1.3, however, because the transverse wind produces a ray 
velocity component vgy = wy(z) in the y direction. Furthermore, the ray grazing 
angle θ in the xz plane is no longer the same as the wavenormal angle χ , but  is  
given by 

. tan θ = vgz

vgx

= c sinχ

wx + c cosχ
/= tanχ. (12.60) 

An important invariant in the present problem is the horizontal phase speed 
v = c(z)/ cos χ(z)  + wx(z) = const, which follows from the stratified-atmosphere 
assumption. Since the wind velocity component wn in the wavenormal direction is 
given by wx cos χ , the invariance relation is equivalent to 

.v = (c + wn)/ cosχ = cD/ cosχ = const, (12.61) 

where D is the Doppler factor defined in Eq. (12.42). We can use these results to 
express the nonlinear time shift τ −τw as an integral involving χ along the ray path. 
There is some advantage, as long as the ray does not pass through a vertex, in using 
z rather than s as the integration variable, and working with the horizontal ray-tube 
area Az—this is the area cut by a horizontal plane, related to A by Azvgz = Avg . 
Since the vector vg defines the ray direction, increments of z and s are related by 

.
dz

ds

||||
ray

= vgz

vg

= A

Az

. (12.62) 

The reduced distance integral [x̃ in Eqs. (12.51)] simplifies in terms of the new 
variables, since the integrand contains the group of terms (ADvg)

−3/2Ads' = 
(AzDvgz)

−3/2Az dz', and we can use Eqs. (12.60) and (12.61) to write 

.AzDvgz = AzDc sinχ = Azv cosχ sinχ. (12.63) 

Substitution in Eqs. (12.51) leads after some algebra to the following result for the 
nonlinear time shift: 

. τ − τw = −
⎛

β

ρc2

⎞
+

1

(cosχ sinχ)+
p+(τw)

v

×
⎰ z

z+

βρ−1/2c−1

β+ρ
−1/2
+ c−1+

⎛
cosχ sinχ

cosχ+ sinχ+

⎞−3/2 ⎛
Az

Az+

⎞−1/2

dz', (12.64)
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which is exactly equivalent to Eqs. (11) and (14) of Hayes and Runyan (1972). It 
applies equally to upward or downward propagation (with χ negative in the former 
case), but at a vertex (χ = 0) the integrand is singular. 

To complete the description, note that the wavelet amplitude variation along the 
ray path is determined by Eqs. (12.39) and (12.41). Use of Eq. (12.63) gives  the  
amplitude factor B(s, s+) as 

.B =
⎛

ρc2

ρ+c2+

⎞1/2 ⎛
Az cosχ sinχ

Az+ cosχ+ sinχ+

⎞−1/2

, (12.65) 

which also agrees with Hayes and Runyan (1972). 

12.4.4 Upstream Shock Radiation from a Supersonic Ducted 
Fan 

When a ducted axial-fan rotor runs at supersonic tip speeds, so that the relative Mach 
number exceeds 1 over the outer portion of each blade, the upstream pressure field 
rotating with the fan blades develops into a shock pattern that spirals up the inlet 
duct. The periodic blade-to-blade pressure waveform becomes saturated within a 
short distance upstream of the rotor face, and may be estimated using weak shock 
theory. The first published analyses (Morfey and Fisher, 1970; Hawkings, 1971) 
modeled the fan rotor as a two-dimensional cascade with uniform flow upstream. 
The extension to two-dimensional inlet ducts of variable area, with axially varying 
Mach number . Mx , density . ρ, and sound speed c, was worked out by Hawkings 
(1974), and we shall show in this section how Hawkings’s result may be recovered 
by an approach similar to that used by Hayes and Runyan for the sonic-boom 
problem. 

Figure 12.8a shows a two-dimensional representation of the fan and its upstream-
propagating pressure field. The mean flow approaching the rotor is axial, with Mach 
number . Mx . In the rotor reference frame, the relative mean flow is nonaxial, with 
components as shown in Fig. 12.8a. The angle . μ between the relative velocity vector 
and the forward-propagating wave fronts is the Mach angle, defined by . sinμ =
1/Mrel. Much of the analysis of Sect. 12.4.3 carries over to the supersonic-rotor 
problem, with the following changes to accommodate the different geometry: The 
coordinate z is measured upstream from the rotor face; the tangential phase speed 
is .v = cMt in the y direction, and the ray velocity component in the upstream 
direction is .vgz = c(sinχ − Mx). Equations (12.61) and (12.62) apply unaltered, 
and the horizontal phase speed invariant is replaced by 

.v = c − wx sinχ

cosχ
= const, (12.66)
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Fig. 12.8 (a) Wave-front geometry for shock waves propagating upstream of a supersonic fan with 
axial inflow. (b) Relation between ray and wavenormal vectors. 

where .−wx sinχ is the mean flow velocity in the wavenormal direction. Also, 
corresponding to Eq. (12.63), .AzDvgz = Azv cosχ(sinχ − Mx). Here  D has been 
replaced by the first of the equivalent expressions .D = Mt cosχ = 1 − Mx sinχ ; 
note that the wavenormal angle . χ , which appears in all these relations, is expressible 
as a function of the relative Mach number components .(Mt ,Mx), in view of the  
last equality. Explicit expressions are given by Morfey and Fisher (1970); see their 
Eq. (13). 

Finally, the ray-tube area . Az transverse to the duct axis is proportional to H , the  
duct height in the radial direction, since the present 2-D model permits no spreading 
in the tangential direction. The nonlinear shift in wavelet arrival time is therefore 
given by an equation similar to Eq. (12.64), but with the substitutions . sinχ →
(sinχ − Mx) and .Az → H . An alternative version of the arrival-time result uses 
the equivalence .sinχ − Mx = q2 cosχ , with .q = (M2

rel − 1)1/4, where .Mrel is the 
relative Mach number .(M2

t +M2
x )1/2; this follows from the .χ(Mt ,Mx) relationship 

mentioned in the previous paragraph. In nondimensional form, therefore, 

. 
τ − τw

T
= −

⎛
β

ρc2

⎞
+

p+(τw)

[cosχ(sinχ − Mx)]+

×
⎰ s

s+

β

β+

⎛
c

c+

⎞−1 ⎛
ρH

ρ+H+

⎞−1/2 ⎛
q cosχ

q+ cosχ+

⎞−3

d(z/l), (12.67) 

where l is the blade spacing (Fig. 12.8a) and . l/v defines the blade-passing period T . 
Equation (12.67) is equivalent to Hawkings’s result, apart from an algebraic error 

(involving powers of . ρ and c) in his factor B [Hawkings, 1974; see  Eqs.  (2.6)
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and (2.12)]. A crucial role is played by the quantity 

.q cosχ = [cosχ(sinχ − Mx)]1/2 = f (Mrel,Mx), (12.68) 

which appears in the integrand and is analogous to .(1 + M) in the 1-D example 
of Sect. 12.4.2. As  .Mx approaches 1, .f (Mrel,Mx) becomes small; its asymptotic 
dependence on .1 − Mx is in fact .f (Mrel,Mx) ∼ (1 − Mx), which emphasizes 
the qualitative similarity with Sect. 12.4.2. Small values of .q cosχ imply large 
contributions to the integral in Eq. (12.67), and therefore rapid nonlinear distortion. 

12.5 Review of Approximations 

12.5.1 Introduction 

The theoretical framework set out in Sects. 12.1 and 12.3, and the examples of 
Sects. 12.2 and 12.4, are based on two key approximations, which were introduced 
in Sect. 12.1.6. Our aim in what follows is to indicate the physical origin of the errors 
involved, and to deduce magnitude estimates. The issue of amplitude-dependent ray 
paths is covered in Sects. 12.5.2–12.5.4, and the issue of frequency-dependent ray 
paths in Sect. 12.5.5. 

12.5.2 The Use of Small-Signal Ray Paths to Describe 
Finite-Amplitude Propagation 

The approach used throughout this chapter has been to start from the results of 
linear geometrical acoustics, and to seek first-order corrections for propagation of 
finite-amplitude signals. For describing propagation between any two points (e.g., 
A and B in Fig. 12.1a), the theory uses the small-signal connecting ray path . (L0)

in two ways: First, the path . L0 is used as the integration path in the travel time 
equations (12.12) and (12.48); second, adjacent paths . L0 are used to calculate the 
ray-tube area .A(s), which appears in the Blokhintsev weighting factor .B(s, s+) of 
Eqs. (12.5) and (12.41). However, finite-amplitude wavelets8 launched from A with 
different values of p or u will in general get to B by slightly different ray paths . Lw, 
with initial wavenormal directions .n(A) = n+ that depend on wavelet amplitude 
(compare Sect. 12.3.3). The physical reasons are explained in Sect. 12.5.3 below; 
they relate to the difference between the finite-amplitude wavelet propagation speed 
and the local sound speed in the ambient medium, i.e., .δvw = vw − c0.

8 We exclude shocks at this stage; they are considered in Sect. 12.5.4. 
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The perturbation in ray path geometry between any two points A and B is 
first-order in . δvw, and implies a first-order perturbation in the wavenormal launch 
direction . n+ if the wavelets traveling their different ray paths are to reassemble at 
B. The same first-order perturbation also applies to the integrands in the travel time 
equations (12.12) and (12.48), so one might expect a similar perturbation in the 
wavelet travel time .(Δt)w. However, the signal travel time along any ray path is, by 
definition, stationary with respect to small perturbations of the path. It follows that 
errors in .(Δt)w incurred by using . L0 as the path of integration are of second order 
in . δvw, whereas the nonlinear correction to .(Δt)w given in Eqs. (12.12) and (12.48) 
is of first order. The use of . L0 is therefore justified, to the accuracy sought in the 
present chapter. 

A numerical calculation scheme based on this approach, called by Ostrovsky 
(1976) the “linear-ray” approximation, was developed by Warshaw (1980) for  
predicting blast pressure waveforms in the upper atmosphere due to ground-level 
explosions. Some success was achieved in matching experimental data (Warshaw 
and Dubois, 1981). It is interesting to note that propagation in the opposite 
(downward) direction, as with sonic booms, does not provide a good source of 
experimental comparison for a stratified-medium model because of the turbulent 
boundary layer in the lowest few hundred meters of the atmosphere. 

12.5.3 Physics of Ray Path Dependence on Wavelet Amplitude 

A finite-amplitude wavelet surface will generally propagate with a slightly different 
ray direction, and also a slightly different ray curvature, compared with a linear 
wave front. The direction effect occurs only in a moving medium; the curvature 
effect occurs in any nonuniform medium. We consider the two phenomena in turn. 
First, in a moving medium, Fig. 12.7 shows that the wavenormal and ray directions 
are different. The angle between them is determined by the scalar product . n ·m =
n ·(vwn+w)/vg = (vw + wn)/vg . Thus, with zero wind, the angle is zero; but if . w
has a component orthogonal to . n, there is a finite angular separation, which varies 
with . vw and thus with the wavelet amplitude. It follows that different wavelets with 
the same value of . n will propagate in different directions; the shift in ray direction 
relative to the small-signal value is obtained from Fig. 12.7b as  

.δm ≃ m × (n × w)δvw/v2w; i.e., |δm| ≃ wtrans

c2
|δvw|, (12.69) 

which depends on the wind speed .wtrans = |n×w| parallel to the wave front surface. 
Second, in a nonuniform medium—which we shall take to be at rest in 

order to simplify the discussion—the curvature of rays is controlled by the ratio 
.(n × ∇vw)/vw (Pierce, 1989; see Sect. 8-3). The numerator equals .n × ∇c, but  
the denominator is amplitude-dependent; it follows that different wavelets follow



12 Propagation in Inhomogeneous Media (Ray Theory) 367

differently curved ray paths. If the increment in ray curvature relative to the small-
signal value is denoted by . δκ , then .δκ/κ0 ≃ δvw/c. 

It is clear from the discussion above that amplitude-dependent changes in ray 
direction and curvature are of first order in . δvw, and therefore proportional to the 
wavelet amplitude. This fact has already been used in Sect. 12.5.2. 

12.5.4 Shock Dynamics 

With one important exception, the propagation of weak shock fronts falls under the 
preceding discussion, provided we replace the wavelet propagation speed . vw with 
the shock propagation speed (Sect. 4.4.1): 

.vs ≃ 1
2 (vwa + vwb) + O(|δvw|2). (12.70) 

Here the subscripts a and b denote values ahead of the shock and behind the shock. 
The exception arises because the strength of a shock—and therefore . vs—can vary 
over the shock surface, even when the shock front propagates into a uniformmedium 
at rest. The strength of a wavelet, on the other hand, is by definition constant over a 
wavelet surface, within the ray acoustics approximation. 

Variation of . vs over the shock surface implies .n × ∇vs /= 0. The shock ray path 
curvature is related to this quantity (see Sect. 12.5.3); a nonzero value implies that 
elements of the shock surface propagate along curved ray paths, even though the 
medium ahead of the shock may be uniform. The result is that spatially nonuniform 
curved shocks exhibit defocusing. 

A situation where shock defocusing has practical significance arises in shock-
wave lithotripsy. Müller (1987) has shown experimentally how an initially spherical 
but nonuniform converging shock front, produced by reflecting a uniform spherical 
outgoing shock from an ellipsoidal surface, fails to produce a sharp focus. Instead, 
the strongest region of the shock front travels faster and the shock front becomes 
flattened as the focus is approached. Henshaw et al. (1986) and Schwendeman 
(1988, 1993) have demonstrated similar phenomena numerically. 

As with all the phenomena discussed so far in Sect. 12.5, the consequent devia-
tions from the approximate model of nonlinear propagation (Sects. 12.1 and 12.3) 
are of second order in the field strength. We next examine a different source of error, 
related to dispersion in the acoustic medium.
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12.5.5 The Assumption That Ray Paths Are Independent of 
Frequency 

The theoretical development of Sects. 12.1 and 12.3 is based on the assumption 
that ray paths do not vary either with amplitude or with frequency. Frequency 
dependence is certainly absent when the medium is uniform, since the rays are 
straight lines.9 Likewise, there is no frequency dependence if the medium is 
nondispersive. However, a dispersive nonuniform medium will produce frequency-
dependent refraction, and signal components at different frequencies will propagate 
along different rays. 

The practical justification for the model described in this chapter is that the 
atmosphere and ocean exhibit extremely weak acoustic dispersion up to ultrasonic 
frequencies. Order-of-magnitude estimates for typical ocean ray paths indicate a 
spread of launch angles . λ, for propagation between two fixed points A and B, of  
.δλ ≈ 10−5|θ − λ| over the range 0–10 kHz. Here .|θ − λ| is the ray turning angle 
between A andB. It seems reasonable to assume that outgoing wave fronts separated 
by so small a launch angle should be identical. 

There remains the possibility that significant arrival-time differences might 
accumulate, over a long propagation path, between wavelets emitted at these slightly 
different launch angles. The difference due to basing travel times on the true 
(dispersive) ray path, rather than a standard (e.g., zero-frequency) ray path, is of 
order .(δc/c)2. Here  . δc is the frequency-dependent variation in sound speed. The 
absence of a first-order error term is due to the stationary-phase principle; it means 
that frequency-dependent travel times are given to good accuracy by integration 
along a standard ray path, as in Eqs. (12.12) and (12.48). However, the effect of the 
second-order correction remains unexplored in the literature. 

12.6 Acoustical Properties of Water and Seawater 

Numerical implementation of the equations derived in Sects. 12.1–12.4 requires 
a knowledge of the acoustical properties . ρ, c, . β and . Λ [defined following 
Eqs. (12.15)]. Values of these quantities for water and seawater are documented 
in a paper by Cotaras and Morfey (1993); in particular, polynomial expressions are 
provided for . β and . Λ as functions of temperature, pressure, and seawater salinity. 

Acknowledgments The authors thank Steve Warshaw, Leick Robinson, and Lev Ostrovsky for 
useful discussions and comments during the preparation of this chapter.

9 Here and throughout Sect. 12.5.5, linear-signal or small-amplitude rays are understood. 
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13.1 Introduction 

Statistical nonlinear acoustics concerns phenomena associated with the propagation 
of intense acoustic noise in homogeneous and randomly inhomogeneous media. 
Investigations of these phenomena are of considerable practical interest because of 
the existence of both natural and man-made sources of intense acoustic noise. Blast 
waves in the atmosphere and the ocean, jet engine noise, and intense fluctuating 
sonar signals are examples of low-frequency disturbances for which nonlinear 
effects can be substantial. The ultrasonic frequency range encompasses noise spectra 
produced by cavitation and acoustic emission. Finally, thunder and seismic waves 
are examples of intense noise produced by natural processes. 

Monographs by Rudenko and Soluyan (1977), Gurbatov et al. (1991), and 
Naugol’nykh and Ostrovsky (1997), and reviews byWebster and Blackstock (1978a, 
1978b), Gurbatov et al. (1983), and Rudenko (1986) describe the advances in 
statistical nonlinear acoustics during the 1970s and 1980s. Extensive reference to 
other work may be found in these publications. In this short chapter, however, 
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we cannot describe all experimental results and theoretical methods. Instead, we 
confine our review to discussion of the more important statistical phenomena that are 
observed, and to qualitative explanations based on the simplest theoretical models. 

13.2 Evolution Equation and Statistical Functions 

The general analysis of plane wave propagation proceeds as follows. Let the finite 
amplitude propagation be described by an evolution equation, for example, the 
Burgers equation [Eq. (3.54)]: 

.
∂p

∂x
− βp

ρ0c
3
0

∂p

∂τ
= δ

2c30

∂2p

∂τ 2
. (13.1) 

Here p is the acoustic pressure, x is the coordinate along which the plane wave 
propagates, .τ = t − x/c0 is retarded time, . c0 and . ρ0 are the equilibrium sound 
speed and medium density, respectively, . β is the coefficient of nonlinearity, and . δ is 
the sound diffusivity. . A source located at .x = 0 produces the signal 

.p(x = 0, t) = ζ(t). (13.2) 

If .ζ(t) is a regular function, for example, a time harmonic or pulsed signal, 
Eq. (13.1) can be solved subject to the boundary condition in Eq. (13.2). The 
dynamic problem is thus reduced to calculation of the waveform .p(x, τ ) at an 
arbitrary point in the medium. The waveform determines all other properties of the 
signal, for example, its frequency spectrum, peak pressure, intensity, and so on. 

If, however, the input signal .ζ(t) is a random process, the received signal . p(x, τ )

will be an irregular function of time. . A series of measurements . (p1, p2, . . . , pN)

at distance x yields N different realizations, each one a random variation of the 
pressure with time. Averaging various characteristics of the wave over an ensemble 
of realizations provides a specific statistical description of the random field. In 
the analysis of noise, one encounters properties such as one-dimensional and two-
dimensional probability density functions [.W(p) and .W(p1, p2), respectively], the 
cross-correlation function .R(x, τ1, τ2) = 〈p(x, τ1)p(x, τ2)〉 (where . 〈·〉 represents 
the expected value of the quantity inside), the intensity spectrum .S(x, ω), average 
pressure . 〈p〉, and others. When these properties are known, one can answer 
questions such as: In what manner does the noise wave energy decrease with x? 
How is the energy redistributed in the frequency domain? What is the probability of 
large outliers, i.e., large pressure excursions? 

We now introduce the basic formulas for calculating general properties of the 
noise. The ensemble average is defined as follows: 

.〈f 〉 = 1

N
lim

N→∞

N⎲

n=1

f (pn) =
⎰ ∞

−∞
f (p)W(x, p) dp, (13.3)
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where .f (p) is an arbitrary function. In particular, with .f = p, we obtain the average 
pressure, whereas for .f = p2, we obtain .p2

rms, where .prms is the root-mean-square, 
or effective, pressure of the wave (note also that .p2

rms is proportional to intensity). 
The variance . σp (units of pressure) is defined by the relation .σ 2

p = 〈(p − 〈p〉)2〉, 
and thus for .〈p〉 = 0 we have .σp = prms. The cross-correlation function is defined 
in terms of the two-dimensional density function: 

. R(x, τ1, τ2) = 〈p(x, τ1)p(x, τ2)〉 =
⎰⎰ ∞

−∞
p1p2W(x, τ1, τ2, p1, p2) dp1dp2.

(13.4) 

If the process is stationary, then .R = R(x, τ), where here .τ = τ1 − τ2, and for 
.〈p〉 = 0 we have .σ 2

p = R(x, 0). The intensity spectrum is given by the Fourier 
transform of the correlation function: 

.S(x, ω) = 1

2π

⎰ ∞

−∞
R(x, τ)e−jωτ dτ = 1

π

⎰ ∞

0
R(x, τ) cosωτ dτ. (13.5) 

In practice, instead of averaging Eq. (13.3) over an ensemble of realizations (which 
is referred to as statistical averaging), one normally averages over time: 

.f̄ = lim
T →∞

1

T

⎰ t0+T

t0

f [p(x, t)] dt. (13.6) 

For ergodic processes, statistical averaging and time averaging produce the same 
result. See Papoulis (1965) for extended discussions of the above definitions. 

13.3 Basic Phenomena in Nonlinear Noise Fields 

The phase speed of sound waves in homogeneous fluids exhibits a very weak 
dependence on frequency, and therefore the spectral components interact efficiently. 
For progressive plane waves, the condition for wave resonance (Vinogradova et al., 
1990), .k3 = k1 + k2, is satisfied for any frequencies that are related according 
to .ω3 = ω1 + ω2, where the wave numbers are defined by .kn = ωn/c0 and the 
phase speed . c0 does not depend on frequency. Resonant interactions result in an 
avalanche-type generation of spectral lines, and therefore in pronounced spectral 
broadening. In the time domain, this process corresponds to formation of steep 
waveform profiles, i.e., shock fronts. Following shock formation, the behavior of the 
signal changes as nonlinear attenuation and acoustical saturation become important 
(Sect. 4.4.3.4). 

We now discuss specific features related to the behavior of a random acoustic 
perturbation, confining our attention for the time being to lossless progressive plane 
waves. We thus set .δ = 0 in Eq. (13.1), in which case a solution that satisfies
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Eq. (13.2) may be written in the form [Eq. (4.29)] 

.p = ζ

⎛
τ + β

ρ0c
3
0

xp

⎞
. (13.7) 

For distances x that are small in comparison with the nonlinear length scale 
.x̄ = ρ0c

3
0/βω0A (where . ω0 and A are a characteristic frequency and pressure 

amplitude, respectively, of the signal), one can expand Eq. (13.7) in terms of the 
small parameter . x/x̄: 

.p ≃ ζ(τ ) + β

ρ0c
3
0

xζ(τ )ζ '(τ ), (13.8) 

where .ζ ' = dζ/dτ . For a quasi-harmonic input signal .ζ(t) = A(t) cos[ω0t + φ(t)], 
Eq. (13.8) acquires the form 

. p ≃ A(τ) cos[ω0τ + φ(τ)] + β

4ρ0c30
x

d

dτ
A2(τ ){1 + cos[2ω0τ + 2φ(τ)]}.

(13.9) 

If the amplitude A and phase . φ do not depend on time, we obtain a regular 
harmonic signal. In accordance with Eq. (13.9), nonlinearity then leads to generation 
of a second-harmonic component at frequency . 2ω0, the amplitude of which is 
proportional to .A2 and increases linearly with propagation distance [compare 
Eq. (4.54)]: 

.A2 = (βω0/2ρ0c
3
0)xA2. (13.10) 

In what follows it is assumed that a quasi-harmonic signal with random amplitude 
and phase modulation is specified at the source. When the modulation is slowly 
varying, A and . φ can be considered constant with respect to the time derivative 
in Eq. (13.9), and the noise signal will simply generate a second harmonic with 
random amplitude . A2. The average intensity of the second-harmonic component, 
.〈A2

2〉, is greater than in the case of a regular harmonic source excitation, that is, 
in the absence of the random modulation. This result follows from the inequality 
.〈A4〉 ≥ 〈A2〉2. In particular, if an input signal has Gaussian statistics, the amplitude 
distribution will follow the Rayleigh distribution .W(A) = (A/σ 2

p) exp(−A2/2σ 2
p), 

with .〈A4〉 = 2〈A2〉2. In this case, it follows from Eq. (13.10) that the average 
intensity of the second harmonic within the noise field is twice as large as that 
of the second harmonic within the field of a regular signal of the same intensity. 
By analogy, it is observed that for Gaussian noise, generation of the nth-harmonic 
component, with amplitude .An ∼ An, is  . n! times more efficient than harmonic 
generation by a regular signal.
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The efficiency of spectral interactions within a noise field, and therefore the rate 
at which harmonic amplitudes increase with distance, is thus associated with the 
general properties of nonlinear wave propagation, which become more pronounced 
with increasing signal amplitude. In a noise field one can identify outliers, i.e., 
values that are anomalously large or small in comparison with the average value of 
the property under consideration (for example, extreme values of the instantaneous 
signal amplitude). Inasmuch as nonlinearity emphasizes large outliers in a random 
process, the nonlinear processes are more efficient for noise than for regular signals. 

The previous observations are now illustrated with a simple example. Consider 
three realizations of a random source waveform, formed with portions of three 
sinusoids: one with average amplitude . 〈A〉, the second an outlier with twice the 
average amplitude, .2〈A〉, and the third a signal with half the amplitude of the 
first, . 12 〈A〉. Let the three realizations occur with equal probability. A nonlinear 
transformation of the type in Eq. (13.10), .a = αA2, yields for each realization 
the second-harmonic amplitudes .a1 = α〈A〉2, a2 = 4α〈A〉2, and .a3 = 1

4α〈A〉2. 
The average intensity is thus .〈a2〉 = 1

3 (a
2
1 + a22 + a23) ≃ 6α2〈A〉4. Therefore, the 

contribution of the large outlier with amplitude .2〈A〉 results in .〈a2〉 being increased 
by approximately a factor of 6, as compared with the value of .a2 = α2〈A〉4 observed 
for the field with amplitude . 〈A〉. 

The influence of large outliers, which was discussed in the previous example of 
second-harmonic generation, proves also to be important in all random nonlinear 
processes, for example, generation of combination frequencies, parametric interac-
tions, and self-interactions of randomly modulated waves. 

Let us illustrate another important property of finite-amplitude noise. Consider 
two quasi-harmonic reference signals, one with amplitude modulation and the other 
with phase modulation, but both having similar correlation functions and spectra at 
the source. We now avoid the quasistatic approximation. Equation (13.9) implies 
that an amplitude-modulated signal will generate not only a second-harmonic 
component, but also low- (i.e., difference-) frequency components in the spectrum: 
.p− ∼ dA2/dτ . In the quasilinear approximation [e.g., Eq. (13.9)], this effect does 
not occur for a signal with only phase fluctuations. Thus, in nonlinear problems, 
the magnitude of the input spectrum of a wave does not define its evolution process 
uniquely. 

A random signal can be characterized completely with a reference spectrum or 
correlation function (second-order moments) only if it possesses Gaussian statistics, 
for which all higher-order moments can be calculated from the second-order 
moments. In general, however, additional information is required on the statistics 
of the input signal, i.e., on its higher-order moments or cumulant functions. 

For stationary signals with Gaussian statistics at the source, Eq. (13.9) yields for 
the correlation function 

.R(x, τ) = R0(τ ) −
⎛

βx

2ρ0c30

⎞2
d2R2

0

dτ 2
, (13.11)



376 S. N. Gurbatov and O. V. Rudenko

where .R0(τ ) = R(0, τ ). Since convolution of the spectrum corresponds to squaring 
the correlation function [recall Eq. (13.5)], Eq. (13.11) yields for the evolution of 
the noise spectrum associated with a progressive plane wave in a lossless fluid 

.S(x, ω) = S0(ω) +
⎛

βx

2ρ0c30

⎞2

ω2
⎰ ∞

−∞
S0(ω − Ω)S0(Ω) dΩ, (13.12) 

where .S0(ω) = S(0, ω). The second term in Eq. (13.12) describes the generation 
of new spectral components, at frequencies .ω = ω1 + ω2, whose intensities are 
proportional to an integral of the spectral density product .S0(ω1)S0(ω2). Here, 
because of the factor . ω2 that multiplies the integral in Eq. (13.12), harmonic 
generation proceeds more effectively at higher than at lower frequencies. In 
particular, Eq. (13.12) reveals that the spectral component at zero frequency is 
unchanged: .S(x, 0) = S0(0). 

In a medium without dispersion, multiple interactions take place among the 
components of the spectrum, and therefore solutions obtained via the method of 
successive approximations yield only a qualitative description of how the noise 
spectrum is transformed due to nonlinearity. For quantitative analysis (Rudenko 
and Soluyan, 1977; Gurbatov et al., 1983; Gurbatov et al., 1991; Rudenko, 1986), 
one must resort to exact or asymptotic solutions of evolution equations such as 
Eq. (13.1). 

13.4 Evolution of Quasi-Monochromatic Signals 

The evolution of a tonal signal of amplitude A and frequency . ω0 can be described 
by Eq. (13.1). In this case, the nonlinear length scale is the shock formation distance 
in an ideal lossless fluid .(δ = 0), .x̄ = ρ0c

3
0/βω0A. For  .x < x̄, waveform 

distortion occurs, but the energy in the wave remains constant. Shocks are formed 
for .x > x̄, and energy dissipation increases with the amplitudes of the shocks. For 
.x ⪢ x̄, the wave is transformed into a succession of triangular sawtooth profiles 
having the same slope, .∂p/∂τ = −ρ0c

3
0/βx. In this advanced stage, the shock 

amplitudes and wave energy no longer depend on the source amplitude. Small-signal 
attenuation .(δ /= 0) ultimately reduces nonlinear effects, makes the shock fronts 
smoother, and at finite distances (of the order of the dissipation length .xd = 1/α0, 
where .α0 = δω2

0/2c
3
0 is the small-signal attenuation coefficient at frequency . ω0) 

completely suppresses the effect of nonlinearity. 
For a signal with random modulation, the manifestation of nonlinear effects 

is different in each characteristic period of the waveform—the higher the local 
amplitude, the more pronounced are nonlinear effects at a given distance. Since 
nonlinearity emphasizes large outliers, the distortion of a randomly modulated 
signal is, on average, stronger than that of a tonal signal. The phase modulation 
also becomes stronger when higher harmonics are generated. Near the source the
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random phase of the nth harmonic is equal to . nφ. As a result, the spectral line 
widths increase with n. 

During the initial stages of the distortion process, when one can neglect 
dissipation and shock formation, the evolution of the wave is described by Eq. (13.1) 
with .δ = 0, and exact expressions for the correlation function and the spectrum can 
be obtained (Rudenko and Soluyan, 1977; Gurbatov et al., 1991). Here, however, 
we shall follow a more simple approach, based on the quasi-static approximation, 
to obtain the expression for the correlation function. For a source excitation 
.A sin(ω0t + φ), the radiated field can be represented by the Fubini solution 
[Eq. (4.49)] 

.p = A

∞⎲

n=1

2Jn(nx/x̄)

(nx/x̄)
sin(nω0τ + nφ), (13.13) 

the nth term of which corresponds to the nth harmonic component, where . Jn is the 
Bessel function of the first kind. It is assumed in the quasi-static approximation that 
Eq. (13.13) is also valid for slow random variations of the amplitude A and phase 
. φ. Neglecting the influence of shocks in the waveform, we obtain the correlation 
function by averaging Eq. (13.13) according to Eq. (13.4). For a Gaussian input 
signal with correlation function .R0(τ ) = σ 2

pr(τ ) cosω0τ , where .r(τ ) . [r(0) = 1]
is a slowly varying envelope responsible for the finite width of the spectral line 
.(Δω ⪡ ω0), and using a two-point probability distribution for A and . φ, we obtain 

.R(x, τ) = σ 2
p

∞⎲

n=1

2 exp[−(nx/x̄)2]
(nx/x̄)2

In[(nx/x̄)2r(τ )] cos nω0τ, (13.14) 

where . In is the modified Bessel function, and .σp = prms, with . σ 2
p characterizing the 

reference noise intensity. The characteristic distortion distance for the random wave 
is defined as .x̄ = ρ0c

3
0/βω0σp. Comparison of Eqs. (13.13) and (13.14) shows that 

for the same source intensities, harmonic generation (as well as depletion of energy 
from the fundamental component) proceeds more rapidly in the case of noise. At 
small distances .(x ⪡ x̄), the ratio of the intensity . IN

n of harmonics generated by 
a random wave to the intensity . IS

n of harmonics generated by a regular harmonic 
signal is .IN

n /IS
n = n!. 

Calculations of the harmonic intensities, with dissipation taken into account, are 
presented in Fig. 13.1a. The effect of weak attenuation is included in Eq. (13.14) 
by multiplying the arguments of the exponential and Bessel functions by . e−2α0x =
exp[−(2/𝚪)(x/x̄)], where . α0 is the amplitude attenuation coefficient at frequency 
. ω0 and .𝚪 = 2βc0σp/δω0 is the effective Gol’dberg number (Rudenko, 1986). 
Figure 13.1a compares the spatial behavior of the normalized second . (n = 2)
and third .(n = 3) harmonic intensities in the field of a tonal signal . (IS

n , 
dashed curves) and narrowband noise [solid curves, calculated with the nth term, 
.IN
n (x) ≡ σ−2

p Rn(x, 0), in the modified form of Eq. (13.14)]. The curves have been
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Fig. 13.1 (a) Comparison between the spatial behavior of the second- .(n = 2) and third-
.(n = 3) harmonic intensities generated by a tonal signal . (IS

n , dashed curves) and narrowband 
noise . (IN

n , solid curves) (Rudenko, 1986). (b) Measurements of harmonic levels . (n = 2−7)
for a monochromatic signal (curves) and noise (. ◦, narrowband noise; . □, third-octave-band noise) 
(Pernet and Payne, 1971). 

constructed for two values of the Gol’dberg number. The reference intensities of the 
noise and the tonal signal were assumed equal, and the center frequency of the noise 
spectrum coincides with the frequency of the tone. Decreasing . 𝚪, which decreases 
the role of nonlinearity because of the increased relative importance of absorption, 
has a more pronounced influence on the tonal components. For .

√
2𝚪 < 10 the solid 

curves lie above the dashed curves for all x, because for small . 𝚪, generation of 
tonal harmonics is suppressed by dissipation, whereas the noise contains outliers 
that are subject to a relatively weaker effect of dissipation. The harmonics in the 
random wave are generated mainly by the large-amplitude outliers, and therefore 
the generation process is, on average, more efficient than that in the regular wave. 

The phenomena predicted in Fig. 13.1a were studied experimentally by Pernet 
and Payne (1971). High-intensity noise, with sound pressure levels between 120 dB1 

and 140 dB at the source, was transmitted in a polyethylene tube of length 75m and 
diameter 4.9 cm. Measurements were made for signals having two bandwidths, 6% 
(“narrowband”) and 23% (third-octave band) of the center frequencies at 0.5, 1, 2, 
and 3.2 kHz. The tube walls were 0.56 cm thick, and the tube was buried in sand 
to suppress flexural modes. A reasonable approximation of plane wave propagation 
was thus achieved. Although boundary-layer losses were observed, the experiment 
provided a good approximation of propagation in free space. 

Typical measurements of the second- through seventh-harmonic sound pressure 
levels are shown in Fig. 13.1b for a monochromatic source (solid curves) and noise

1 The reference value for all sound pressure levels reported in this chapter is .pref = 20μPa. 
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(circles for narrowband noise, squares for third-octave-band noise). Uncertainties 
in the measurements were reported to be . ±1 dB for the lower harmonics, whereas 
spectral overlap introduced additional errors in measurements of the higher har-
monics. The increased efficiency of harmonic generation in the noise wave is 
nevertheless demonstrated very clearly. Estimates for the ratio .IN

n /IS
n were obtained 

by extrapolation to small distances, which yielded 2.2 .(n = 2), 5.6 (3), 16 (4), 45 
(5), 200 (6), and 500 (7). For .n = 2 and .n = 3, there is fair agreement with the 
theoretical value of . n!. Disagreement for .n ≥ 4, apart from the previously mentioned 
spectral overlap, may be due to measurement difficulties in the near field, and to 
effects of dissipation. 

Along with the increase in efficiency of harmonic generation in random wave-
forms, Eq. (13.14) implies that the bandwidths .(Δω)n of the spectral lines increase 
with n. In particular, if the spectral line at the fundamental frequency is characterized 
by a Lorentz function, we have .(Δω)n = n(Δω) in the initial stage of propagation, 
and we have .(Δω)n = √

n(Δω) if it is characterized by a Gaussian function. For 
sufficiently large n, at which  .(Δω)n is of order . ω0, the “wings” of the frequency 
bands overlap and a monotonically decreasing high-frequency spectrum is formed. 
Behavior of the high-frequency spectrum is determined by the thin structures of the 
shock fronts. 

If the shock fronts may be considered to be perfect discontinuities of zero 
duration, the spectrum falls off according to the power law .ω−2. In a dissipative 
medium at sufficiently high frequencies, this law is replaced with the exponential 
dependence .e−ωtr , where . tr characterizes the shock rise time. 

In a medium with weak attenuation and dispersion (e.g., sound waves in pipes, 
where these effects are caused by the thermoviscous boundary layer along the 
walls), discontinuities in the slope of the waveform occur in the vicinity of the 
shock front. The high-frequency spectrum falls off more rapidly in this case, as 
.ω−4. Spectral broadening and generation of a high-frequency wing in the spectrum 
were studied experimentally by Bjørnø and Gurbatov (1985). Figure 13.2a shows  

Fig. 13.2 (a) Measurements of narrowband noise spectra near the source (curve 1) and 10m away 
(curve 2, shown with 20 dB increase for clarity). Dots are the harmonic amplitudes at 10m for 
a tonal signal with the same intensity (Bjørnø and Gurbatov, 1985). (b) Measured probability 
distributions for narrowband noise at 7.5m (curve 1) and 17.5m (curve 2) away from the source 
(Sakagami et al., 1982). Dashed curve depicts initial Gaussian distribution.
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the spectra measured near the source .(x = 0.35m, curve 1) and at distance 
.x = 10m (curve 2). The noise level at the source was 150 dB, with 1.5 kHz center 
frequency and 316 Hz bandwidth. The dots are the harmonic intensities at .x = 10 m 
for a monofrequency source. The difference in levels between the results for the 
monofrequency source and for the noise source increases with n. When broadening 
of the spectral lines is taken into account, it can be shown that the total intensity 
of each harmonic is approximately the same as that for the tonal signal. Deviations 
from this law are due to the fact that the measurements were taken at distances 
.x ≃ 2x̄, where shocks had already formed. Since for .x > x̄ the slope of the 
linear portions of the sawtooth waveform, and the corresponding shock amplitudes, 
depends only weakly on the source amplitude, the total harmonic intensities for 
the noise and the regular signal are approximately the same. Because of spectral 
broadening in the noise signal, a universal asymptotic behavior is always obtained 
at high frequencies. 

After shocks are formed in the waveform, the probability density function 
changes drastically. Prior to shock formation, the one-point distribution in Eq. (13.3) 
is maintained, .W(x, p) = W(0, p) (Webster and Blackstock, 1979; Gurbatov 
et al., 1991). After shock formation, however, nonlinear attenuation at the shocks 
suppresses large outliers. In this case the probability of outliers .|p| exceeding 
.pmax = 2πρ0c

3
0/βω0x vanishes identically (i.e., all pressures are within the 

limits .−pmax < p < pmax), and the probability density function tends toward 
a uniform distribution that no longer varies with distance. The tendency of a 
Gaussian distribution to become uniform was observed experimentally by Sakagami 
et al. (1982). Figure 13.2b depicts the probability distribution for narrowband noise 
propagating in a pipe out to the distances 7.5m (curve 1) and 17.5m (curve 2). 
The sound pressure level at the source was 152 dB, and the center frequency 
was 1 kHz. It is evident that as the wave propagates, the probability distribution 
becomes less similar to a Gaussian distribution (dashed curve) and approaches a 
uniform distribution. Asymmetry of the spectra may be attributed to boundary-layer 
dispersion. 

An important property of narrowband noise is its ability to generate low-
frequency spectral components that are not produced in the field of a regular input 
signal. Such components are important for parametric sonar systems, because they 
experience weaker attenuation and can therefore propagate farther than the high-
frequency components that generate them (Novikov et al., 1987; and Sect. 8.3.4). 
Statistical properties of the low-frequency components are important in the anal-
ysis of parametric sonar systems in which either low-frequency noise bands are 
generated or the primary waves are influenced by noise (Foote, 1974; Novikov 
et al., 1976; Gurbatov et al., 1980; Gurbatov and Demin, 1982). Another statistical 
problem associated with parametric radiators is the nonlinear generation of low-
frequency components in a randomly inhomogeneous medium. In this case, a 
high-frequency wave propagating through random medium inhomogeneities is 
subject to fluctuations that result in the appearance of fluctuating low-frequency 
components and in a decrease in the efficiency of parametric sonar (Gurbatov 
and Pronchatov-Rubtsov, 1982; Zaitsev and Raevskii, 1990).  The scattered low-
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frequency components carry information about the random inhomogeneities of the 
medium. Since it is easy to generate low frequency signals with relatively large 
bandwidths (because small relative changes in the frequencies of the primary waves 
produce large variations in the difference frequency), information can be obtained 
about the spatial spectrum of the inhomogeneities over a wide range of wave 
numbers. A more detailed discussion of these important problems is beyond the 
scope of this review. 

We conclude this section by noting that one type of modulation can be trans-
formed into another during propagation of a randomly modulated wave (Gurbatov 
and Shepelevich, 1978). For example, as an amplitude modulated wave propagates, 
the amplitude modulation is reduced and a low-frequency component is generated. 
This low-frequency component, through interaction with the high-frequency har-
monics, produces phase modulation of the latter. As a result, additional broadening 
and merging of spectral lines occur, and asymptotic relations describe an ever-
growing portion of the spectrum. 

13.5 Evolution of Broadband Spectra: Acoustic Turbulence 

We note that Eq. (13.1) was suggested by Burgers (1948) as a model describing two 
basic phenomena that are typical of hydrodynamic turbulence: the nonlinear evolu-
tion of the frequency spectrum, and damping of disturbances having small length 
scales (i.e., high frequencies); see Sect. 4.5.1 for historical context. The evolution 
of random acoustic waveforms is therefore referred to as acoustic turbulence. The 
apparent simplicity of the Burgers equation stimulated many investigations in which 
various statistical methods based on this equation were used to describe nonlinear 
random wave fields [see, for example, the references provided by Gurbatov et al. 
(1991)]. 

Interest in the nonlinear evolution of broadband acoustic spectra was motivated 
by measurements of intense aircraft noise (Howell and Morfey, 1981, 1987), which 
revealed anomalously low attenuation at high frequencies. Within the 5–10 kHz 
frequency range, the attenuation at 500m was observed to be 10 dB less than 
expected. Effects of temperature variations in the atmosphere, humidity, and other 
properties of the medium were found to be insufficient to explain this effect. It 
was therefore assumed that the anomalously high levels of the high-frequency 
components are attained through energy transfer from the intense low-frequency 
components of the spectrum. 

Morfey (1984) presented detailed measurements of parameters related to jet 
engine noise under natural conditions. Figure 13.3a shows the attenuation of noise 
in one-third octave bands radiated by an aircraft with four jet engines. The data in 
the upper and lower parts of the figure correspond, respectively, to propagation over 
distances that varied from .R1 = 262m to  .R2 = 345m and from .R2 = 345m to  
.R3 = 501m. Note that the solid curves, based on nonlinear theory, are in much 
better agreement with the measurements (circles) than are the calculations based on
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Fig. 13.3 (a) Measured attenuation of jet engine noise, in one-third-octave bands. (b) Measured 
octave-band spectra of rocket noise. Solid curves are nonlinear predictions, dashed curves are linear 
predictions (Morfey, 1984). 

linear theory (dashed curves). If the transfer of energy upward in the spectrum is not 
taken into account, the attenuation is overestimated. Figure 13.3b shows octave-
band measurements (triangles) of noise generated by an Atlas-D rocket engine. 
The measurements at frequencies greater than 1 kHz lie appreciably higher than 
the dashed curves (linear theory), and nonlinear theory is again in much better 
agreement with experiment. 

A series of experiments with finite-amplitude noise has also been performed in 
the laboratory (Pestorius and Blackstock, 1974; Watanabe and Urabe, 1981; Bjørnø  
and Gurbatov, 1985; Robsman, 1991). The experiments performed by Pestorius and 
Blackstock (1974) were conducted with sound pressure levels up to 160 dB in an 
air-filled pipe of length 29.3m. Figure 13.4a shows two measured waveforms, one 
0.3m (1 ft) away from the source and the other 26m (85 ft) away. Two processes 
are clearly revealed: waveform steepening and an increase in the time scale of 
the oscillations. The first process leads to shock formation and energy transfer 
to higher frequencies, which is also observed in outdoor propagation of jet noise 
(Morfey, 1984). The second process is associated with the relative velocities of 
the shock fronts—in particular, their coalescence (Rudenko and Soluyan, 1977; 
Gurbatov et al., 1991), which transfers energy from the central part of the spectrum 
to the low-frequency range. Thus, the noise spectrum broadens because of energy 
transfer to both higher and lower frequencies. Figure 13.4b shows the noise spectra 
measured by Pestorius and Blackstock (1974) in 50 Hz bands at three distances 
from the source. Similar behavior of the spectrum was observed by Watanabe and 
Urabe (1981), who were interested in the statistical properties of the slopes of the 
waveform segments in between the shocks (as in the lower waveform in Fig. 13.4a). 

Robsman (1991) observed similar spectral evolution in a solid (Fig. 13.5). Nor-
mally, intensities on the order of watts per centimeter squared at frequencies of tens
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Fig. 13.4 (a) Comparison of measured noise waveforms near (at distance 1 ft .= 0.3m) and far 
away (85 ft .= 29m) from the source. (b) Related noise spectra measured at distances 1 ft (0.3m), 
49 ft (15m), and 73 ft (27.3m) (Pestorius and Blackstock, 1974). 

Fig. 13.5 Measured 
evolution of a broadband 
noise spectrum in a solid 
containing cracks and 
micropores (. ◦, input 
spectrum; . Δ, spectrum at 
0.5m; . •, spectrum at 2.5m) 
(Robsman, 1991). 

of kilohertz are insufficient for observation of nonlinear effects. However, Robsman 
used a 3-m-long concrete beamwith cracks. Solid media with cracks and micropores 
can exhibit anomalously high nonlinearity (Ostrovsky, 1991; Naugol’nykh and 
Ostrovsky, 1997), and, indeed, the measured nonlinearity parameter was found to be 
800 (instead of a value of order 10, which is typical for homogeneous solids). The 
source was attached to the end of the beam and radiated with an acoustic intensity 
of 5 W/cm2

. . Figure 13.5 shows the source spectrum (open circles), together with 
measurements at 0.5 m (triangles) and 2.5 m (closed circles), away from the source. 
Since the measured nonlinear effects correlate with structural defects in the material, 
conclusions can be made regarding the strength of the material. 

Theoretical descriptions of the evolution of broadband noise have been obtained 
for two limiting cases, at small distances .x ⪡ x̄, where the influence of the 
infrequently occurring shocks can be ignored, and for .x ⪢ x̄, where the shocks 
determine the statistical properties. It is reasonable to use the value . x̄ = ρ0c

3
0τ0/βσp

for a nonlinear distortion length in the case of broadband noise, where . τ0 is the time 
scale (the inverse characteristic frequency) of the disturbance, and .σp = prms is 
again the characteristic pressure amplitude.
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Near the source, where waveform distortion is described by Eq. (13.7), one can 
perform exact statistical averaging (Rudenko and Soluyan, 1977; Gurbatov et al., 
1991). For a source waveform with Gaussian statistics and correlation function 
.R0(τ ), the intensity spectrum is given by the expression 

.S(σ, ω) = σ 2
pe−(ωτ0σ)2

2π(ωτ0σ)2

⎰ ∞

−∞

⎾
e(ωτ0σ)2R0(τ )/σ 2

p − 1
⏋
e−jωτ dτ, (13.15) 

where .σ = x/x̄. Expansion of the exponential under the integral yields a 
power series in terms of the initial correlation function . R0. Although the medium 
nonlinearity is quadratic, the expansion contains all powers of the correlation 
function of the source waveform [in contrast to Eq. (13.12)], which correspond 
to multiple interactions of the harmonic components. Equation (13.15) makes it 
possible to explain qualitatively the evolution of the frequency spectra observed in 
the experiments described previously. For example, it follows from Eq. (13.15) that 
nonlinearity leads to the transfer of wave energy upward in the spectrum. Also, if 
the source spectrum falls off at low frequencies as .S0(ω) ∝ ωn, n ≥ 2, nonlinearity 
will cause the low-frequency spectrum to evolve into one following the universal 
asymptotic dependence .S(x, ω) ∝ ω2. 

Along with the intensity spectrum, important information in statistical nonlinear 
acoustics is provided by higher-order spectra and, in particular, by the bispectrum. If 
.C(ω) is a Fourier transform of a stationary process, then the bispectrum . S2(ω1, ω2)

is defined as follows: 

.〈C(ω1)C(ω2)C
∗(ω3)〉 = S2(ω1, ω2)δ(ω1 + ω2 − ω3), (13.16) 

where here . δ is the Dirac delta function. For an input signal with Gaussian statistics, 
.S2 ≡ 0. Comparison of Eq. (13.16) with the phase synchronism conditions shows 
that the bispectrum reflects the process of three-wave interaction in a quadratic 
medium, and, hence, the value of the bispectrum characterizes the extent of 
nonlinear effects. The bispectrum can be used to determine whether energy is shifted 
upward or downward in the frequency spectrum. Measurements of the bispectrum 
were reported by Watanabe and Urabe (1981), whose results demonstrate clearly 
the breakdown of Gaussian statistics as a result of nonlinear wave distortion. 

At distances .x > x̄, the waveforms appear as a succession of randomly located 
shocks connected by straight line segments, i.e., random sawtooth waveforms 
(recall the second waveform in Fig. 13.4a). The shocks propagate at random speeds 
(because their amplitudes are random), which leads to coalescence of the shocks and 
therefore an increase in the time scale of the turbulence, .τ0(x). An analogy can be 
made between the behavior of the shocks and that of an ensemble of particles. Each 
shock corresponds to a particle whose velocity coincides with the propagation speed 
of the shock, and mass is proportional to shock amplitude. The instant when two 
shocks merge corresponds to a perfectly inelastic collision, with coalescence of the 
particles following the laws of conservation of mass and momentum. This analogy
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is used in kinetic equations such as the Boltzmann equation, and it allows one to 
obtain a statistical description of the random distribution of the shocks (Khokhlova 
et al., 1990). 

The second method for analyzing acoustic turbulence is based on an asymptotic 
solution of the Burgers equation (Gurbatov et al., 1991). In the region where 
shocks are well developed .(x ⪢ x̄), one- and two-dimensional probability density 
functions for the pressure field can be derived, as can correlation functions, intensity 
spectra, and probability distributions for the amplitudes and velocities of the shocks. 
As a result of the multiple coalescence of shocks, information about the input signal 
structure is lost, and the statistical characteristics become self-similar. All statistical 
characteristics are defined by the time scale .τ0(x) of the turbulence, which increases 
according to the following law, in terms of .σ = x/x̄ (Gurbatov et al., 1991): 

.τ0(σ ) = τ0σ
1/2 ln−1/4(σ ), (13.17) 

where it is assumed that .S0(ω = 0) = 0. Because of shock coalescence, the number 
of shocks per unit time decreases as .n = τ−1

0 (σ ) ∼ σ−1/2, and the following self-
similar noise spectrum is obtained: 

.S(σ, ω) = σ−2τ 30 (σ )S1[ωτ0(σ )]. (13.18) 

Equation (13.18) exhibits two asymptotic properties, the dependence . S ∼
σ−3/2ω−2 at high frequencies, and .S ∼ σ 1/2ω2 at low frequencies. On the whole, 
however, the maximum of the energy spectrum is shifted to lower frequencies 
as .τ−1

0 (σ ). Shock coalescence, and the associated transfer of energy to lower 
frequencies, causes noise to be attenuated more slowly than a regular signal. 

With finite but sufficiently small viscosity, a sawtooth waveform exists out 
to a distance where the effective Gol’dberg number becomes small. Beyond this 
distance, the high-frequency dependence .S ∼ ω−2 is replaced with the exponential 
law .S ∼ exp[−(ωτf )ν], ν < 1, because of variations in the rise times of the shock 
fronts. Consequently, the spectrum falls off more slowly at high frequencies than for 
a quasi-monochromatic signal. Also, unlike that for a periodic signal, the attenuation 
of finite-amplitude noise cannot be predicted by linear theory until distances become 
very large (Gurbatov et al., 1991). 

13.6 Interaction of a Regular Wave with Noise 

Of all the problems encompassed by statistical nonlinear acoustics, those involving 
interactions between regular waves and noise are perhaps of greatest interest from 
the viewpoint of application. For example, an intense regular wave can be used 
to control the behavior of a random wave by increasing or decreasing the energy 
in the noise in a certain frequency range or by pumping the noise energy from 
one portion of the frequency spectrum to another. On the other hand, because of
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nonlinear coupling, a regular wave that propagates through a noise field attenuates 
more rapidly than when the same wave propagates in the absence of noise. 

The nonlinear interaction of a regular signal with noise depends on many factors, 
including the characteristics of both the regular wave (periodic, pulsed, weak, 
or intense) and the noise (broadband, quasi-harmonic, Gaussian or non-Gaussian 
statistics), and the ratio of the characteristic frequencies of the interacting waves. 

Cavitation noise spectra, acoustic radiation from jet engines, and other sources of 
intense disturbances consist of discrete spectral lines embedded in a background of 
broadband noise. The generation of various combination frequencies broadens the 
spectra associated with the discrete signal frequencies and their harmonics, and the 
continuous part of the spectrum grows rapidly with increasing propagation distance 
(Bechert and Pfizenmaier, 1975; Rennick and Scott, 1976). In particular, Bechert 
and Pfizenmaier (1975) measured an increase of 7 dB in the level of broadband noise 
produced by a jet stream when a high-intensity signal (130 dB) was introduced. 

Numerical predictions obtained by Webster and Blackstock (1978a) for  the  
interaction of noise with an intense tone are shown in Fig. 13.6. The spectra were 
calculated at increasing distances from the source using the algorithm described 
in Sect. 11.2.3. The results show clearly how the propagation of noise with an 
intense tone is accompanied by generation of harmonics of the tone that broaden and 
intensify the continuous part of the spectrum (the inset for .σ = 0 is a sample of the 
input noise waveform). At 20 kHz, the noise level increases by 25 dB as the distance 
increases from .σ = 0.8 to .σ = 1.2 (not shown in Fig. 13.6). Webster and Blackstock 
(1978a) also performed an experimental investigation of the interaction of a tone 

Fig. 13.6 Numerical simulation of the interaction of an intense tone with noise, as a function of 
.σ = x/x̄ (Webster and Blackstock, 1978a).
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with noise in a plane-wave tube filled with air. In the experiment corresponding to 
Fig. 13.6, an 864 Hz tone with 151 dB source level was embedded in the lower end of 
a three-octave noise band with 128 dB overall source level. Spectra were measured 
next to the source and at two locations downstream, at distances 7.4 and 15m, once 
with both the tone and the noise propagating together, and once with just the noise. 
It was observed that in the absence of the intense tone, the noise spectrum remained 
virtually unchanged and the noise thus propagated according to linear theory. In the 
presence of the tone, however, the noise spectrum was transformed as in Fig. 13.6, 
with energy extending up to at least 50 kHz. Similar results were obtained when the 
experiment was repeated with the tone embedded in the upper end of the noise band. 

The anomalously large increase in level at high frequencies is most pronounced 
near the shock formation distance of the regular wave, and it can be observed for 
arbitrary ratios of the frequencies of the interacting waves (Gurbatov, 1981). The 
physical explanation is that noise introduces random fluctuations at the shocks in 
the intense regular wave, which in turn produce broadening of the spectral lines for 
the harmonics of the regular wave. The fine structure of the nonlinearly generated 
frequency bands depends on the frequency ratio of the interaction components, 
while the dependence of the noise level in the vicinity of the nth signal harmonic on 
distance and harmonic number is weak or completely absent in this case. 

We demonstrate this effect for the case in which the characteristic frequency . ωN

of the noise .ζ(t) is much less than the frequency . ω0 of an intense tone. If .An(x) are 
the harmonic amplitudes of the regular signal, then for .ωN ⪡ ω0, the field of the 
nth harmonic can be formulated as 

.pn(x, τ ) = An(x) cos

⎾
nω0

⎛
τ + β

ρ0c
3
0

xζ(τ )

⎞⏋
. (13.19) 

The interaction leads to random phase modulation of the high-frequency wave, and 
the phase shift .Фn(τ) = nω0(β/ρ0c

3
0)xζ(τ ) increases with both harmonic number 

and distance. If the phase shift is small, we obtain for the “scattered” component, 
from Eq. (13.19), 

.pscat
n (x, τ ) = An(x)

⎾
nω0

β

ρ0c
3
0

xζ(τ )

⏋
sin nω0τ, (13.20) 

and consequently, near the nth harmonic, the spectrum of the scattered signal 
follows that of the low-frequency noise, . ζ(t). In the sawtooth region, where the 
amplitudes of the regular signal harmonics vary as .An ∼ 1/nx, the scattered 
component has an amplitude independent of distance x and equal to that of the 
low-frequency noise up to very high frequencies. This effect is associated with 
the amplification and frequency transformation of the noise that was observed 
experimentally by Webster and Blackstock (1978a). 

It should be noted that in addition to the possibility of increasing the level of the 
noise by introducing an intense tone, one can also use the tone to suppress the noise
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level in certain narrow frequency bands. To suppress the noise, the frequency of the 
intense tone must be chosen sufficiently high that neither it nor the spectral pedestal 
that is generated at neighboring frequencies during propagation overlaps with the 
input noise spectrum. 

The suppression of low-frequency noise by an intense regular signal was 
observed by Zorin et al. (1975). The experimental arrangement consisted of a tube 
11 cm in diameter, constructed with five detachable sections, each 1m long. The 
noise source, an air jet, was placed on the axis at one end of the tube. Part of the 
air stream was directed into narrowband signal generators—ultrasonic whistles— 
located at the input end around the jet opening. To reduce the effect of the jet, the 
measurements were taken at a distance at least 1 m away, and at a .45◦ angle with 
respect to the axis of the tube. In the absence of the ultrasonic signal, the noise 
spectrum remained virtually unchanged at distances from 1 to 5m. The presence of 
the regular signal caused the noise level in a portion of the frequency band to drop 
by 10–15 dB [see Fig. 9a of Rudenko (1986)]. Increasing either the amplitude of 
the signal or the distance of observation was associated with further suppression of 
the noise level in that frequency band. 

We note that noise can also be suppressed by an intense regular signal of much 
lower frequency than the input noise spectrum [see Fig. 10 of Rudenko (1986)]. 

Let us now proceed to discussion of another important problem, increased 
attenuation of a weak signal as a result of its interaction with an intense noise 
wave. This problem is related to the attenuation of sound in solids as a result of 
interaction with thermal phonons. Different aspects of this problem have also been 
considered in the context of nonlinear acoustics (Westervelt, 1976; Rudenko and 
Soluyan, 1977). It has been shown that for collinear interaction of Gaussian noise 
with a weak harmonic wave, propagation of the latter is described by 

.pn(x, τ ) = A exp[−α0x − (βω0σp/ρ0c
3
0)

2x2] cosω0τ. (13.21) 

Here . α0 is the classical thermoviscous attenuation coefficient at frequency . ω0. 
The additional attenuation, associated with the second term in the exponential, 
is determined completely by the noise intensity . σ 2

p and does not depend on the 
frequencies of the noise and the tone. 

Experimental investigations of the suppression of a regular signal by noise 
have been conducted by several researchers (Zorin et al., 1975; Moffett et al., 
1978; Stanton and Beyer, 1978; Burov et al., 1978; Larraza et al., 1996). Burov 
et al. (1978) obtained measurements in a tank filled with water. A source was 
pulsed at 11.5 MHz with a pressure amplitude of 1.2 kPa. The noise spectrum 
was concentrated at 0.6–1.9 MHz, with intensity 0.3 W/cm. 2, which corresponds 
to .σp = 69 kPa. Observed attenuation of the 11.5 MHz signal was in reasonable 
agreement with Eq. (13.21). 

The attenuation factor .e−ax2 in Eq. (13.21) is valid only for collinear wave 
interactions. When the noise field is isotropic, with components that propagate 
in all directions with equal probability, the attenuation with distance follows the
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standard exponential law .e−bx . The attenuation factor b for the latter case was 
calculated by Westervelt (1976). For noncollinear interaction where the regular 
signal and the noise propagate in distinct yet different directions, asynchronous 
nonlinear interactions occur, which are qualitatively different from those described 
above (Lind and Hamilton, 1991). 

13.7 Conclusion 

Statistical nonlinear acoustics today possesses all the attributes of a developed 
science, and one can refer to hundreds of published works concerning theory, 
experiment, and applications in this area. These problems are of interest not only to 
specialists in acoustics, but also to specialists in statistical radiophysics, the theory 
of nonlinear waves, mechanics of turbulence, and the physics of solids. Therefore, 
our investigation does not pretend to encompass entirely the current state of the art. 
In particular, it practically ignores the mathematical methods of statistical nonlinear 
acoustics, which are significantly different from the traditional methods used in 
nonlinear statistical optics and in the statistical theory of plasmas (Gurbatov et al., 
1991). Our review is dedicated only to what, in our opinion, are some of the most 
important problems in this area, and it can serve as a brief introduction to this 
interesting and rapidly developing branch of science. 
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14.1 Introduction 

The present chapter concerns sound interactions in situations that differ from those 
analyzed in most of the other chapters of this book. The main processes examined 
in the present chapter involve either of the following: (1) situations where the 
coefficient of nonlinearity .β = 1 + B/2A is large in a flat layer, or (2) four-
wave mixing processes where the perturbation of the local speed of sound in the 
medium (or other induced phase perturbations) varies in proportion to the square 
of the amplitude of an acoustic pump wave. Situation 1 and certain manifestations 
of situation 2 have the following common aspect: The response of heterogeneities 
within the fluid medium governs the resulting sound-wave production. In both cases 
the host fluid medium is commonly taken to be water. In situation 1 the relevant 
heterogeneities are usually taken to be bubbles of a gas, and the relevant response 
is the volume pulsation of the bubble. One manifestation of situation 2 examined 
here concerns an initially spatially uniform suspension of particles. The relevant 
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response of the particles is the formation of layers of enhanced concentration 
induced by the radiation pressure of sound. In that case the layers of enhanced 
particle concentration result in the Bragg reflection of sound. 

Both categories of nonlinear response mentioned have analogies in nonlinear 
optics. Similarities between nonlinear acoustical and optical phenomena have been 
reviewed by Bunkin et al. (1986). Some of the applications of the optical analogies 
include optical phase conjugation (or wave-front reversal) and optical probes of 
physical processes in heterogeneous media or in adverse environments. While there 
is insufficient space to examine the optical analogies, selected references will be 
given. As in the optical case, the acoustic response of the nonlinear medium to a 
diverging acoustic probe wave can be to produce a converging wave that in certain 
circumstances may be focused back toward the source of the probe wave. Reversal 
of acoustic wave fronts is not limited to processes depending on nonlinear acoustics. 
Recent advances in transducer array fabrication and the rapid electronic parallel 
storage and regeneration of array signals have facilitated the array synthesis of a 
type of time-reversed ultrasonic wave (Nikoonahad and Pusateri, 1989; Fink, 1993). 

The analysis of the nonlinear acoustical processes given here is limited to 
quasilinear responses in a sense that will be evident from the formulations used. 
It is the intent of the authors that principal sections may be read independently. 

14.2 Focused-Wave Production by Parametric Mixing in a 
Nonlinear Layer 

14.2.1 Formulation and General Case of Parametric Focusing 

In this section, the interaction of acoustic waves within a flat layer of nonlinear 
fluid is analyzed and is shown to produce an outgoing focused wave when certain 
conditions are met. It will be convenient to designate one of the waves incident on 
the layer as the acoustic pump wave and the other incident wave as the acoustic 
probe wave. The pump and probe waves have different frequencies. Nonlinear 
processes in the fluid outside the layer are neglected throughout the analysis so 
that linear wave equations can be used to describe the propagation toward and away 
from the layer. For the purpose of illustrating the production of focused waves by 
the nonlinear mixing processes, the external fluid is taken to be homogeneous and 
to have a small-signal sound speed . c0. The parametric wave produced by the mixing 
process has a frequency given by the difference in frequency of the pump and probe 
waves. A physical picture of the mixing process for the case of a spherical probe 
wave is that the response of the nonlinear layer is to act like a dynamic Fresnel zone 
reflection or transmission grating. The grating evolves in time in such a way as to 
focus a component of the scattered pump wave and to shift the frequency of the 
component. Because three waves are essential to the description of the process (the
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Fig. 14.1 Pump and probe waves spread out from point sources at . S1 and . S2, respectively, and 
interact in a nonlinear layer where .B/2A is enhanced. The enhancement is normally the result of 
a layer of microbubbles in water. The resulting sound radiated at the difference frequency has foci 
located symmetrically on both sides of the layer. 

incoming pump and probe waves and the outgoing difference-frequency wave), the 
process is sometimes described as three-wave mixing. 

The geometry under consideration is shown in Fig. 14.1. Let  . S1 denote the 
location of the source of an acoustic pump wave of radian frequency .ω1 = 2πf1, 
and let . S2 denote the location of the source of an acoustic probe wave of frequency 
.ω2 = 2πf2. The case where .ω1 > ω2 will be analyzed. The difference-frequency 
wave has a frequency .ω3 = ω1 − ω2. The Cartesian coordinates of the mth source 
will be denoted by .(xm, ym, zm), .m = 1 and 2, and we may take . S2 at .(0, 0, z2) and 
. S1 at .(x1, 0, z1). The small-signal sound pressure due to these sources is 

. p1(x, y, z, t) = 1
2 [P1(r) exp(jω1t) + P2(r) exp(jω2t)

+ P ∗
1 (r) exp(−jω1t) + P ∗

2 (r) exp(−jω2t)], . (14.1) 

Pm(r) = (Am/Rm) exp(−jkmRm), m = 1, 2, (14.2) 

where . Pm is the complex amplitude of the mth component at . r, asterisks denote 
complex conjugation, .km = ωm/c0, .Am is the source strength, and .Rm(x, y, z) is 
the distance at some field point .r = (x, y, z) from . Sm. In the parametric generation 
of sound the local instantaneous source strength density q is associated with the 
usual quadratic nonlinearity (Westervelt, 1963). When applied to the situation under 
consideration, the Westervelt parametric source equation [Eq. (3.46) with .δ = 0] 
becomes 

.∇2p2 − 1

c20

∂2p2

∂t2
= −ρ0

∂q

∂t
, . (14.3) 

q = 
β(z) 

(ρ0c
2 
0)

2 

∂p2 
1 

∂t 
, (14.4)
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where . ρ0 denotes the ambient density, and the coefficient of nonlinearity . β is taken 
to be a function of z so as to localize the interaction process at or near the plane of 
constant z, as shown in Fig. 14.1. Notice that in the quasilinear analysis given here, 
q depends only on the pressure of the pump and probe acoustic waves as given by a 
linear analysis. Hydrodynamic corrections for obliquely incident waves have been 
neglected in Eqs. (14.3) and (14.4) [see Eq.  (5.26)], since .B/2A is  assumed to be  
large in the interaction region. 

Since the nonlinearity parameter . β for pure water is typically about 3.5, some 
comments are appropriate concerning how a large effective enhancement of . β may 
be achieved in a layer. The most common enhancement considered is the result of 
mixing stabilized microbubbles with water. While the full analysis is complicated 
by inertia and heat flow, one of the reasons for the enhancement of .B/2A and 
therefore . β follows from consideration of the quasistatic response of a bubbly 
mixture. The quasistatic enhancement is a consequence of the enhancement of 
.B/2A = [ρc(∂c/∂P )s]0 in the equation of state, where . ρ and c are evaluated for 
the mixture and the partial derivative is evaluated for adiabatic conditions (Everbach 
et al., 1991), and the subscript 0 indicates the equilibrium state; see also Eq. (2.7). 
For a mixture of gas bubbles in water, the sound velocity c is a strong function 
of bubble volume fraction . μ when . μ is less than about .10−3. The velocity of 
sound increases with decreasing . μ. [See the definition of . c00 in Eq. (5.63), and 
measurements by Karplus shown by Duvall and Taylor (1971).] Because of the 
relatively high compressibility of the gas within the bubbles, an increase in pressure 
can result in a decrease in the effective . μ, giving an enhanced pressure dependence 
for the effective sound speed c. Consequently .B/2A of the mixture is enhanced 
through the factor .(∂c/∂P )s . An explicit expression for .B/A as a function of . μ is 
given by Eq. (5.66). 

The inclusion of the effects of inertia on the response of the bubble gives rise to 
resonance enhancement of the bubble’s response associated with either the pump 
or probe frequency or the difference frequency. In resonance regions, damping 
becomes important and, depending on the bubble size, heat exchange between the 
bubble and the surrounding water may be relevant. A partial review of previous 
studies of the enhancement is given by Wu and Zhu (1991), with measurements 
of second-harmonic generation in the presence of microbubbles (stabilized by thin 
polycarbonate membranes) suggesting effective .B/A of .104 to . 105. Theoretical 
studies include those of Welsby and Safar (1970), Zabolotskaya and Soluyan (1973), 
and Nazarov and Sutin (1989); see also Sect. 5.3.2. Other experimental or combined 
experimental and theoretical studies include those of Kobelev and Sutin (1980), 
Kustov et al. (1985, 1986, 1987), and Asada and Watanabe (1990). While there 
is no doubt that stabilized microbubbles can give rise to local enhancements of 
. β, the actual dynamics of the bubble’s response may result in phase shifts of the 
difference-frequency sound produced that differ from those predicted by Eq. (14.4). 
For a spatially uniform bubble layer, such phase shifts would not depend on the 
spatial position. Their presence will not affect the analysis here of parametric focal 
properties, which follows Marston and Kargl (1990).
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The spatial features of the parametrically generated wave field indicative of 
focusing may be seen from the following analysis of the situation illustrated in 
Fig. 14.1. Inspection of Eqs. (14.1)–(14.4) shows that components of the paramet-
rically generated wave . p2 oscillate at .ω3 = ω1 − ω2, with q being proportional 
to .P ∗

2 (x, y, z)P1(x, y, z) and .P2(x, y, z)P ∗
1 (x, y, z), where .(x, y, z) are the coor-

dinates at the site of the interaction. The contribution to . p2 that oscillates at . ω3
will be designated as .pd(x', y', z', t). The standard solution of Eq. (14.3) based on 
superposition for a homogeneous fluid gives 

.pd(x', y', z', t) = −
⎰ S(r, t − |r' − r|/c0)

4π |r' − r| d3r, . (14.5) 

S(r, t)  = 
ω2 
3 

2ρ0c4 0 
[β(z)P ∗

2 (r)P1(r) exp(jω3t) + β(z)P2(r)P ∗
1 (r) exp(−jω3t)]. 

(14.6) 

Consider the case of a layer of thickness L that is sufficiently small that the phase 
shift for propagation through the layer, approximated as .c0L/ωm, is much less than 
unity for .m = 1, 2, and 3. Then for a layer centered in the plane .z = z0, the spatial 
dependence of . β may be approximated as 

.β(z) ≃ βe(ω1, ω2)Lδ(z − z0), (14.7) 

where . βe on the right-hand side denotes the effective coefficient of nonlinearity 
within the layer, and . δ is the Dirac delta function. For the case of a layer of 
microbubbles, . βe may depend on . ω1 and . ω2 because of resonances. To simplify the 
evaluation of Eq. (14.5), it is convenient to take .z0 = 0. The Fresnel approximation 
may be used to simplify the various propagation distances (see, e.g., Marston, 1992). 
Equations (14.6) and (14.7) give  

.pd(x', y', z') ≃ − ω2
3L

8πρ0c
4
0|z'| (J + J ∗), . (14.8) 

J = βeP
∗
2 (0)P1(0) exp(jω3t − jk3r

') 
∞⎰⎰

−∞ 

e−j (x2+y2)F/2ejxG  ejyH dxdy, . 

(14.9) 

F = 
k3 

|z'| + 
k1 

z1 
− 

k2 

z2 
, G  = 

k1x1 

z1 
+ 

k3x
'

|z'| , H  = 
k3y

'

|z'| , (14.10) 

where the axes have been chosen such that .x2 = y2 = 0 as illustrated in 
Fig. 14.1, and . r ' designates the distance from O to the observation point .(x', y', z'). 
The function in Eq. (14.8) may be written .J + J ∗ = 2Re(J ). The integral in 
Eq. (14.9) has been simplified by approximating the spreading factor by .|z'|−1,
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since it is the dependence on phase that usually determines . pd . Consequently, 
the incident-wave amplitudes . Pm are evaluated only at the origin O, and aperture 
effects have been neglected. For observation points on the far side of the layer, . z' is 
negative. Notice that the parametric field is symmetric in this level of approximation: 
.pd(x', y',−z', t) = pd(x', y', z', t). 

A field point .(x', y', z') giving an infinite J in Eq. (14.9) corresponds to a focal 
point of the parametrically generated wave and will be denoted by .(xf , yf , zf ). The  
condition for divergence is .F = G = H = 0. There are two foci, each with . yf = 0
and with 

.zf = ±(ω1 − ω2)

(ω2/z2) − (ω1/z1)
, xf = −x

ω1|zf |
ω3z1

, (14.11) 

where the . ± sign implies that there are forward- and backward-directed foci that 
are symmetric with respect to the layer. Notice that except for special cases, 
.(xf , yf , zf ) is shifted away from the probe source location .(x2, y2, z2). An  
important special case corresponds to phase conjugation (discussed in Sect. 14.2.2), 
where .(xf , yf , zf ) = (x2, y2, z2) with .ω1 = 2ω2, in which case the parametric-
wave frequency . ω3 corresponds to the probe frequency . ω2. This focal condition 
is met by taking .x1 = 0 and . z1 infinite, so that the pump wave is a plane wave 
at normal incidence. This is consistent with symmetry and the related analysis in 
Sect. 14.4. 

When the field point .(x', y', z') is displaced from the focal point .(xf , yf , zf ), J 
may be approximated using the two-dimensional stationary phase approximation 
(SPA) as reviewed by Marston (1992). The SPA may be used to illustrate the 
convergence of the parametrically generated wave front, as will now be illustrated. 
It is sufficient to require that .y' = 0 and to restrict attention to .zf > 0. The phase of 
the integrand is stationary at .x = xs , where 

.xs = (Δz)−1(zf x' − z'xf ), Δz = zf − z'. (14.12) 

The geometrical construction illustrated in Fig. 14.2 shows that a ray from the layer 
at .(xs, 0, 0) drawn through the field point .(x', 0, z') also intersects the focus at 
.(xf , 0, zf ). A paraxial assumption that such rays, as well as those from . S1 and 
. S2 to O, are nearly parallel to the z axis, and the SPA of Eq. (14.9), give 

.pd(x', y', z', t) ≃ Re{G(A∗
2/R) exp[jω3t + jk3R sgn(Δz) − j (π/2) sgn(Δz)]}, . 

(14.13) 

G = −  
P1(0) 
2p0c

2 
0 

βek3L

⎾
zf 
R02 

exp(jk2R02 − jk3R0f )

⏋
, (14.14) 

where R denotes the distance from .(x', y', z') to .(xf , yf , zf ), and .R0f and . R02
are the distances from O to F and . S2, respectively. The function .sgn(Δz) is 
.±1 depending on the corresponding sign of . Δz. Equation (14.13) describes the
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Fig. 14.2 F at .(xf , 0, zf ) is a focal point, and P at .(x', 0, z') is some observation point displaced 
from it. The phase of the integral in Eq. (14.9) is stationary for .x = xs and .y = 0, which are 
the coordinates of S. The parametrically generated wave front converges on F , and the stationary 
phase contribution is associated with the ray to F that passes through P . In the case of phase 
conjugation, F and . S2 are the same point. 

convergence of a spherical wave front toward .(xf , yf , zf ). If the wave is allowed 
to pass through the focus unobstructed, it then spreads out, since the space-time 
dependence becomes .exp[j (ω3t − k3R)]. Upon the wave’s passing through the 
focus, there is a phase advance of the wave by . π , as expected for a three-dimensional 
focus (Marston, 1992). In obtaining Eq. (14.13), use was made of the expression 
.P2 = A2/R2 for the probe wave that spreads out from . S2. From the form of 
Eq. (14.13), . G is the complex “gain” due to parametric mixing in the layer. 

As the focal point is approached, R vanishes, the SPA becomes invalid, and it is 
necessary to include effects of diffraction. Let w denote the smaller of the widths 
of the pump and probe beams at the nonlinear layer. By analogy with the focal 
properties of a converging lens of diameter w, the magnitude of the pressure at the 
focus is estimated to be 

.|pd |max ≃ (k3w
2/2πzf )|GP2(0)|, (14.15) 

which apart from numerical factors close to unity agrees with an analysis of Kustov 
et al. (1986). 

Equations (14.8)–(14.10) are symmetric with respect to moving either . S1 or . S2
(or both) to the other side of the screen so that . zm in Eq. (14.11) can be replaced by 
. |zm|. For example, the layer could function as part of a parametric receiving system 
by allowing the probe wave to be incident from the right-hand side of the layer. The 
analysis may be generalized for pump or probe waves that converge toward virtual 
source locations at . S1 or . S2 beyond the nonlinear layer.
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14.2.2 Wave Front Reversal and Phase Conjugation 

Consider now the special case in which .ω3 = ω2 and the pump conditions are such 
that the parametric wave is focused back to the probe source at . S2. This corresponds 
to the conditions of phase conjugation as suggested by the proportionality of . Pd to 
the complex conjugate of the pump-wave amplitude in Eq. (14.13). Since .ω3 = ω2, 
the converging wave is associated with a reversal of the probe wave front incident 
on the nonlinear layer. The reversed wave may be shifted as a result of the phase 
of . G, though the conditions are such that the quantity in the brackets in Eq. (14.14) 
may be replaced by unity. The significance of phase conjugation (Pepper, 1982; 
Zel’dovich et al., 1985; Gower and Proch, 1994) follows by examining the case 
where the probe wave front incident on the parametric layer has been distorted by a 
phase perturbation due to an inhomogeneity within the medium. Suppose that a local 
portion of the probe wave front is delayed slightly; as a consequence of the complex 
conjugation of . A2 in Eq. (14.13), the corresponding portion of the outgoing wave 
front is advanced in space. The advancement is such that after propagation back 
through the same inhomogeneity, a spherical wave front is produced that converges 
on . S2. This property has motivated the development of optical phase conjugation 
(Pepper, 1982, 1986) and the analysis of acoustical analogs (Jackson and Dowling, 
1991; Fink, 1993; Cassereau and Fink, 1993). 

While some other nonlinear acoustical mechanisms for phase conjugation will 
be discussed later in this chapter, it is appropriate to review some of the exper-
iments carried out with bubble layers. Kustov et al. (1985, 1986) demonstrated 
the parametric production of focused sound by a bubble layer by measuring the 
evolution of the amplitude and width of the parametrically generated beam. These 
were maximized and minimized, respectively, at the focus. (The reader is cautioned 
that experiments described as phase conjugation by those authors actually involve 
probe and parametrically generated waves that differ in frequency, since they have 
.f2 = 60 kHz and .f3 = 40 kHz.) One of the difficulties in making . |G| in Eq. (14.14) 
sufficiently large for practical applications stems from the large magnitude of . ρ0c20
in the denominator. (For water, .ρ0c20 ≃ 22,200 atm.) Other complications include 
attenuation and [as discussed by Marston and Kargl (1990)] the dephasing of the 
pump and probe waves relative to the midplane of the bubble layer as a result 
of spreading or corrugations of the layer. Perhaps parametrically focused sound 
in water could be more thoroughly explored if other mechanisms for producing a 
large enhancement of the effective value of .B/2A in a layer could be developed. 
Other ways of demonstrating focusing include (1) measuring for the parametrically 
generated wave the phase dependence on the transverse coordinates . x' and . y' for 
comparison with Eq. (14.13) for values of . z' displaced from the focus; and (2) for 
such .(x', y', z') demonstrating the flow of energy along the ray shown in Fig. 14.2 by 
selected blocking of possible ray paths. Parametric demodulation and experiments 
with .ω1 − ω2 ⪡ ω1 are described by Kustov et al. (1987) and Asada and Watanabe 
(1990). The latter report values of . βe as large as 78 in a layer of hydrogen bubbles 
in water produced by electrolysis. Zabolotskaya (1984) analyzed a system in which
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the .2ω2 component of the interaction results from the response of bubbles to a pair 
of opposing pump waves having the same frequency as the probe wave. 

14.3 Four-Wave Mixing Resulting from Responses to 
Radiation Pressure 

14.3.1 Four-Wave Mixing Mediated by a Suspension of 
Particles 

The processes examined in this section differ from those considered in Sect. 14.2, 
since here the interaction of three waves produces a fourth wave of interest. 
Furthermore, the processes depend on the slow response of the medium to ultrasonic 
radiation pressure of incident waves. Such processes have been explored in optics, 
where an aqueous suspension of dielectric spheres was used to produce what is an 
artificial Kerr medium (Smith et al., 1981, 1982). In optics, the terminology “Kerr 
medium” is used to describe a medium in which the complex optical refractive index 
changes in proportion to the local intensity (Pepper, 1982; Gower and Proch, 1994). 
An analogous change in the acoustical refractive index occurs when a suspension of 
particles or droplets that is initially spatially homogeneous is altered by the radiation 
pressure of sound. As a consequence of the response to radiation pressure, the sound 
speed or density of the effective medium varies spatially. The scattering of sound 
(typically that of a probe wave) by the variations results in the production of a 
fourth wave. The interaction can be used as a probe of suspension properties or (see 
Sect. 14.3.2) for phase conjugation. The process is efficient in the following sense: 
A pump wave having an amplitude of only 5000 Pa can result in appreciable levels 
of coherent reflection of a probe wave from a sparse suspension in an interaction 
volume of only a few cubic centimeters. A suspension of bubbles should also exhibit 
this interaction, though it differs from Zabolotskaya’s dynamic four-wave mixing 
interaction mentioned at the end of Sect. 14.2.2. 

The analysis and experimental results summarized here are those of Simpson 
(1992) and Simpson and Marston (1993, 1995). The interaction geometry is shown 
in Fig. 14.3. A standing pump wave is established in a suspension of particles 
by counterpropagating waves having wave vectors . k1 and . k2 that are equal in 
magnitude but opposite in direction. In response to the radiation pressure of the 
standing wave, particles within the suspension will migrate to form spatially peri-
odic variations in the number n of particles per unit volume. For the measurements 
with solid particles to be described, as for the case of most solid particles in 
water, the particles are attracted to the pressure nodes (velocity antinodes) of the 
standing wave. The spacing between the enriched layers is .d = λ1/2, where 
.λ1 = 2π/k1 is the wavelength of the pump wave. A probe wave having a wave 
number .k3 = ω3/c0 > 2k1 is Bragg reflected by the induced grating of particles 
when the probe-wave frequency . ω3 and angle of incidence . θ meet the condition
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Fig. 14.3 Acoustic 
four-wave mixing mediated 
by a suspension. The particle 
suspension is spatially 
modulated in response to 
radiation pressure. Bragg 
reflection from the resulting 
grating generates the wave 
directed along . k4. 

.k3d cos θ = mπ. (14.16) 

When this Bragg condition is met, the waves reflected with an angle of reflection 
equal to the angle of incidence interfere constructively, and the reflected signal is 
thus enhanced in proportion to the number of reflecting layers for the usual case of 
a sparse grating. 

The process of grating formation is important to the understanding of the 
evolution and magnitude of the Bragg reflected signal. Consider first the equilibrium 
properties of the grating that are reached a sufficiently long time after the standing 
pump wave is established. The analysis is based on the radiation pressure on 
small spherical objects (particles or droplets of oil) in a standing wave that are 
sufficiently sparse that only the radiation pressure due to the incident standing wave 
is significant. The approximation of the radiation pressure on a small spherical solid 
particle is the same as that for a fluid particle of the same radius provided that the 
adiabatic compressibility of the particle is related to the elastic properties of the solid 
by .κp = ρ−1

p (c2l − 4
3c

2
t )

−1, where . ρp is the density and . cl and . ct are the velocities 
for longitudinal and transverse waves. Gor’kov (1962) expressed the radiation force 
on a spherical particle in a standing wave as .−∇U , where U is an effective potential 
[see Eq. (6.96)]. For a standing-wave pressure given by .p = p0 sin k1z sinω1t , the  
potential becomes 

.U = Vpκ0p
2
0

8
(A − B cos 2kz), (14.17) 

where .Vp = 4πa3/3 is the volume of the particle and here
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.A = −
⎛

κp

κ0
− 4ρ0 − ρp

2ρp + ρ0

⎞
, B = −

⎛
κp

κ0
− 5ρp − 2ρ0

2ρp + ρ0

⎞
, (14.18) 

where .κ0 = 1/ρ0c20 is the compressibility of the outer (or host) liquid. The 
resulting force is the same as the prediction by Yosioka and Kawasima (1955) 
calculated by a different method (see also Sect. 6.3.1.3). The viscous corrections 
have been shown to be weak when the thickness of the oscillating Stokes layer 
around the particle is small in comparison to the particle radius a (Doinikov, 1994). 
Gor’kov argued that for a suspension of weakly interacting particles, the particle 
number density .nB(z) varies with position z according to a Boltzmann distribution 
.nB(z) = C exp(−U/kBT0), where . T0 denotes the ambient temperature and . kB

denotes Boltzmann’s constant. The constant C may be expressed in terms of the 
number N of particles per area contained in one layer, which is taken to be a 
constant, independent of standing-wave amplitude. (It is assumed that the migration 
of particles into the standing-wave region shown in Fig. 14.3 is inhibited.) The 
number density becomes (Simpson and Marston, 1995) 

.nB(z) = k1N exp(q cos 2k1z)

πI0(q)
, q = VpBp2

0β0/8kBT0, (14.19) 

where . I0 is a modified Bessel function. 
The widths and peak concentrations of the resulting bands of particles depend 

strongly on the amplitude of the standing wave. The solid curves in Fig. 14.4 show 
the predicted equilibrium values of .nB(z) for different standing-wave amplitudes. 
The calculation is for SDVB (styrene-divinylbenzene) particles having radii . a =
12.5μm and compressibility .κp = 2.35 × 10−10 kg. −1m. −1s. 2 in a density matched 
saline solution with .ρ0 = ρp = 1.05 g/cm. 3 and .κ0 = 3.86 × 10−10 kg. −1m. −1s. 2. 
The calculation is shown for a pump-wave frequency .f2 = 800 kHz that has . d =
0.981mm. The number density in the absence of a pump wave is .2.00 × 1010 m. −3, 
which corresponds to a sparse volume fraction of only .1.64 × 10−4. Inspection of 
Fig. 14.4 shows that substantial increases in the concentration are predicted. 

The banding of particles or droplets due to ultrasonic standing waves in aqueous 
suspensions or emulsions is easily seen by eye. Figure 14.5 shows a photograph of 
the phenomenon for the case of an emulsion of dodecane oil drops in a 1.2 MHz 
ultrasonic standing wave in water. The drops were made neutrally buoyant by 
dissolving a small amount of CCl. 4 in the oil. A small amount of surfactant was 
added to help stabilize the emulsion so that the drop radii were typically less than 
50 . μm. 

Calculation of the Bragg reflected amplitude makes use of an effective media 
approximation where the local acoustic properties depend on .nB(z). The experiment 
can be arranged so that the disturbance of the grating of particles by the radiation 
pressure of the probe wave is negligible. There are two approaches that have been 
found to give equivalent predictions for sparse gratings (Simpson and Marston, 
1995). These approaches may be summarized as follows: (1) replace .nB(z) by a
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Fig. 14.4 The spatial 
Bolztmann distribution of 
particles in the radiation 
pressure potential well is 
shown for an example of 
neutrally buoyant SDVB 
(styrene-divinylbenzene) 
particles in a saline solution. 
The distribution (solid curve) 
becomes narrower for 
increasing pump pressure 
amplitudes . p0. The dashed 
curve is the local distribution 
assumed in one of the Bragg 
scattering models. 

Fig. 14.5 Bands in an 
emulsion of dodecane oil 
droplets that have formed in 
response to the radiation 
pressure of an ultrasonic 
standing wave. The distance 
between bands is 0.7mm, 
which is half of the 
wavelength.
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nearly equivalent distribution for which the scattering problem by a single layer is 
known and calculate the many-layer case using a Born approximation that neglects 
the depletion of the probe wave; or (2) evaluate the spatial Fourier coefficients 
of the acoustical refractive index and express the scattering amplitude using a 
coupled-wave theory (developed for thick optical holograms) simplified with the 
aforementioned Born approximation. Approach 1 was facilitated by using the 
symmetric refractive index profile known as an Epstein layer, for which an exact 
expression for the reflectivity is known. The refractive index profile is related to 
a particle number density profile .nB(z) for a single layer through an effective 
media approximation. The dashed curves in Fig. 14.4 show .nB(z) in the vicinity 
of the velocity amplitude at .z = 0 for different standing-wave pressure amplitudes 
.p0. Comparison with .nB(z) confirms that the Epstein layer should be a good 
approximation for sufficiently large .p0. The limiting form of the reflectivity and 
the effective media approximation were also confirmed in the sparse particle limit 
by comparison with Rayleigh backscattering for a single layer of particles. 

To approximate the reflection of the probe waves off of the system of layers dia-
grammed in Fig. 14.3, the complex amplitude reflected by each layer is superposed 
in the Born approximation. The resulting amplitude reflection coefficient for the 
array is 

.RA(k3, θ) = νNlRE(k3, θ)
sin(Nlk3d cos θ)

Nl sin(k3d cos θ)
, (14.20) 

where .RE(k3, θ) is the reflection coefficient for a single Epstein layer for the 
indicated wavenumber and angle of incidence, . ν is an aperture factor equal to 
unity for the case of an unbounded plane probe wave, and . Nl is the total number 
of reflecting layers. A reference phase has been assumed, making it unnecessary 
to include a separate propagation phase shift in Eq. (14.16). Neglecting aperture 
restrictions gives .Nl ≃ w(d tan θ)−1 for a grating of width w. Notice that . |RA|
is maximized when the Bragg condition given by Eq. (14.16) is met. At the Bragg 
condition, one obtains .RA = νNlRE because the reflections from the layers have the 
same phase. To model experiments, the factor . ν becomes less than unity to account 
for the volume of overlap between a probe beam and the region viewed by the 
receiver (Simpson, 1992). For . θ near . 45◦, it is a good approximation to take .νl ≃ 1

3 , 
as was done for the plot of .|RA(k3, θ)| shown in Fig. 14.6. The properties assumed 
for the suspension and the pump wave are as for Fig. 14.4. The reader is referred 
to Simpson and Marston (1995) for expressions relating .RE to the suspension 
properties and to the pump amplitude . p0. While the peak reflectivities may appear 
to be small, it should be remembered that they increase roughly in proportion to the 
initial volume fraction, which is only .1.64 × 10−4. 

In method 2 for calculating the scattering, the application of diffraction-grating 
coupled-wave theory (Gaylord and Moharam, 1982) makes it necessary to restrict 
. θ and . k3 to values such that the Bragg condition is met. Our resulting expression 
for the reflection at the mth Bragg order is exact within the assumptions of the 
Born approximation and effective media theory for the situation where .ρp = ρ0
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Fig. 14.6 Predicted equilibrium reflection coefficient as a function of pump amplitude . p0 for the 
SDVB particle suspension considered in Fig. 14.4. The ridges correspond to the Bragg condition. 
The angle of incidence is .θ = 41◦. 

and the particle number density is given by .nB(z). The magnitude of the amplitude 
reflectivity at the mth Bragg order is 

.|Rm| = νC|1 − κp/κ0|Im(q)/I0(q), (14.21) 

where .C = (VpN/d)(k3w/2 sin θ), and the aperture factor . ν has been inserted 
as discussed following Eq. (14.20). For small values of q, the ratio . Im(q)/I0(q)

becomes .qm2mm! and .|Rm| is proportional to . p2m
0 . Since q is proportional to 

the ratio of the depth of the potential energy well U to .kBT , large values of q 
correspond to highly localized layers of particles, as shown in Fig. 14.4 for the case 
.p0 = 2000 Pa. The resulting reflectivity saturates as .q → ∞ and .Im/I0 → 1, 
since all of the particles in the suspension scatter in the Bragg direction with the 
same phase. A direct comparison (Simpson and Marston, 1995) shows that the 
transition from the .p2m

0 onset of the reflectivity to saturation in Eq. (14.21) is  
well approximated by .|RA| from Eq. (14.20) at the Bragg condition. This transition 
corresponds to the ridges evident in Fig. 14.6. 

The general behavior evident in Fig. 14.6 was observed in experiments (Simpson, 
1992), with some differences that illustrate limitations of our analysis. Figure 14.7 
shows the measured reflectivity magnitude as a function of pump pressure for a fixed 
angle of incidence .θ = 40.3◦. The measurement of . |R| as a function of frequency 
made use of a calibration procedure that accounted for the frequency response 
of the probe-source/receiver system, and the probe tone bursts were sufficiently 
long to achieve steady-state reflection by the grating. (The number of cycles is
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Fig. 14.7 Measured reflection coefficient for the sparse suspension of SDVB particles considered 
in Fig. 14.4. The buildup of the reflectivity with increasing pump pressure . p0 is at higher 
amplitudes than calculated in Fig. 14.6 because the approach to equilibrium is long. 

Fig. 14.8 A slice through the 
measured response surface in 
Fig. 14.7 is shown in the 
saturated region 
.(p0 = 20,000 Pa) as the solid 
curve. The prediction from 
Eq. (14.23) as a function of 
pump frequency is shown as 
the dashed curve. 

larger than the number .Nl of layers within the grating.) The ridges evident in 
Fig. 14.7 correspond to the Bragg maxima in Fig. 14.6, and the measured .|R| in 
the saturation region is similar to (or slightly greater than) the predicted value as 
shown in Fig. 14.8. A significant difference between Figs. 14.6 and 14.7 is that the 
observed onset of the Bragg reflectivity ridge occurs for a larger apparent value of 
.p0 than predicted. The reason for this is that, for small .p0, the time for the induced 
grating to reach equilibrium becomes too large to be achievable. [See the discussion 
of Eq. (14.22) below.] The measurements in Fig. 14.7 (and several other scans not 
shown here) were carried out by increasing .p0 in small steps of about 100 Pa. After 
each new .p0 is established, there is a 1- to 3-minute waiting period before a probe 
frequency scan is recorded. The probe tone bursts had .f3 ranging from 2 to 10 MHz 
and .f3 was incremented in 50 kHz steps.
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The dynamics of migrating suspended particles in an ultrasonic standing wave 
are analyzed by Higashitani et al. (1981). The drag force which opposes the motion 
in response to the radiation force .−∇U is given by the Stokes drag, since the 
Reynolds number is small. It is generally necessary to include the effect of Brownian 
diffusion, which leads to the equilibrium distribution .nB(z). The early-time response 
of particles to a change in the radiation pressure is governed by the Stokes drag, 
which leads to the following estimate for the magnitude of the grating formation 
time: 

.τf ≃ 9ηd2

2πκ0Ba2p2
0

, (14.22) 

which depends strongly on the particle radius a and the pump amplitude . p0 as 
well as the viscosity . η. For example, for the 12.5 . μm radius particles used in the 
experiment, .τf ≥ 2×103 s is obtained, unless .p0 ≥ 5000 Pa for sudden application 
of a pump wave. The magnitude of . τf is such that an equilibrium grating is expected 
only for the region where . |R| saturates in Fig. 14.7 when the suspension responds 
to the sequence of steps used in the experiments. Simpson (1992) analyzed the 
early-time behavior of an initially homogeneous suspension in response to sudden 
application of pump waves having amplitudes .p0 ≥ 7000 Pa. The time evolution 
of the Bragg reflectivity was calculated by application of the coupled-wave method 
discussed in conjunction with Eq. (14.21). The predicted behavior gives a period 
where the reflectivity is negligible, followed by a steep rise. The onset delay and rate 
of rise are strongly affected by . p0. These features were confirmed by experiments. 

While the factors that affect the magnitude of the grating formation time . τf

may make it impractical to use the response to radiation pressure to facilitate the 
control of sound with sound, the dynamics and magnitude of the response may 
facilitate its use as a probe of suspensions. For example, Eq. (14.21) predicts that 
the saturated reflectivity is proportional to .k3w/ sin θ and to .VpN/d, which is the 
initial volume fraction of particles. The onset time for the growth of the reflectivity 
varies in proportion to .η/a2p2

0, where a is the particle radius. It is remarkable that 
changes in the equilibrium grating reflectivity in response to small changes in the 
pump wave intensity are predicted to be larger in the acoustic case than in the optical 
case investigated by Smith et al. (1981). The reason is that the potential well depth 
when expressed in terms of the pump-wave intensity and the corresponding value 
q in Eqs. (14.19) are proportional to the product of the particle volume . Vp and 
reciprocal of the wave velocity. Since the speed of sound is much less than the 
speed of light, the required acoustic pump wave intensity is relatively small.
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14.3.2 Phase Conjugation Involving Responses to Radiation 
Pressure 

The response to the combined radiation pressure of pump and probe waves can 
be used to facilitate acoustical phase conjugation. Sato et al. (1990) demonstrated 
that a suspension of microspheres could be used to generate a conjugate wave. The 
interaction geometry may be described using Fig. 14.3. The system is configured 
with .ω1 = ω2 = ω3. The  wave  . k1 serves as a reference wave in the generation of 
a hologram that forms in response to the radiation pressure of the standing wave 
associated with the interference by the probe wave . k3. The Bragg diffraction of a 
readout wave . k2 by the induced grating produces a phase conjugated wave having 
.k4 = −k3. For practical reasons, the waves . k1 and . k3 are turned off during the 
readout process, and the degradation of the grating by particle diffusion is inhibited 
by application of a higher-frequency standing wave. 

An earlier observation of acoustical phase conjugation (Andreeva et al., 1982) 
and subsequent experiments (Bunkin et al., 1985) made use of the response of a free 
horizontal water surface to radiation pressure. A pump wave propagates vertically 
to reflect from the surface and produces a standing wave. A probe wave having the 
same frequency is incident on the surface at an angle. The wave may be diverging 
from a point source. The combined radiation pressure of the pump and probe waves 
produces a stationary pattern of ripples (elevations and depressions). The pattern 
serves as a phase grating that diffracts a portion of the incident pump wave to 
produce a conjugate probe wave. The situation is analyzed by Zel’dovich et al. 
(1985). 

14.4 Kinematic Processes and Miscellaneous Phase 
Conjugation Processes 

Conjugation processes described here as “kinematic” are closely related to those 
discussed in Sect. 14.2.2. Figure 14.9 shows the essential features of the interaction. 
A probe wave of frequency . ω2 diverges from a point source at . S2. Near the plane 
.z = 0 is a region where the velocity of sound or attenuation may be temporally 
modulated with a frequency . ω1. To illustrate the focal properties of the transmitted 
wave, it is sufficient to restrict attention to phase modulation in a region of narrow 
width .L ⪡ |z2|. Let the phase delay introduced by paraxial propagation through 
that region be given by .(kL − 2ε sinω1t), where . ε is a small parameter and . k =
ω2/c0. The Fresnel approximation of the complex amplitude of the outgoing wave 
at .z = L/2 is 

.p ≃ A2

|z2|e
−jk[|z2|+(L/2)]e−jk(x2+y2)/2|z2|ej (ω2t+2ε sinω1t). (14.23)
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Fig. 14.9 Configuration for kinematic production of a focused wave by propagation through a 
thin region where the phase velocity is modulated at frequency . ω1. If the probe-wave frequency . ω2
equals .ω1/2, the  focus  F is symmetric about the midplane with the source point . S2. The effect of 
modulation analyzed applies to various parametric phase conjugation methods. 

Since . ε is small, the approximation . exp(j2ε sinω1t) ≃ 1 + ε exp(jω1t) −
ε exp(−jω1t) may be used. From the third term, there is a component of the 
transmitted wave that has an amplitude .εA2/|z2| and a time dependence of 
.exp[j (ω2 − ω1)t]. Restrict attention to the case where .ω1 = 2ω2. The time factor 
becomes .exp(−jω2t), so that the dependence of phase on .x2 + y2 is such that 
the wave converges toward point F at .z = |z1|. This wave has all the features of a 
conjugate wave except that it is forward-directed. (For example, the analysis may be 
used to describe the focus produced at the far side of the layer for the situation shown 
in Fig. 14.1. The oscillating phase shift is the result of the response of the nonlinear 
layer to the pump wave. Processes we describe here as kinematic are described as 
“parametric” by most other authors.) To produce a conjugate wave with the system 
shown in Fig. 14.9, a mirror is placed in the plane .z = L/2. Double passage of 
the probe wave through the modulation region gives a conjugate outgoing wave of 
amplitude .2εA2/|z2|. 

Several mechanisms for achieving the required time-dependent phase shift have 
been investigated, and only a summary is given here. Brysev et al. (1990) demon-
strated the production of conjugate ultrasonic longitudinal waves in a solid where 
the photoelastic effect was used to make the conjugate wave visible. The phase 
modulation mechanism was an oscillating magnetic field applied to a propagation 
region of Ni-ferrite magnetoelastic solid. Ohno and Takagi (1992), and references 
cited therein, report conjugation of ultrasonic waves in water by application of 
an oscillating electric field to a LiNbO. 3 crystal in contact with the water. The 
conjugator was used to reduce the aberrations of acoustical images of an object 
within submerged agar having a rippled surface. An appropriate kinematic phase 
shift is produced by replacing the modulated region in Fig. 14.9 by a (not necessarily 
flat) surface oscillating at frequency . 2ω2. While a full analysis would include the 
parametric interaction of the wave radiated at frequency .2ω2 with the incident 
and reflected probe waves, inspection of the modified form of Eq. (14.23) reveals 
the presence of a kinematically generated conjugate wave. Brysev et al. (1982) 
summarize a related experiment, and Lyamshev and Sakov (1988) analyze phase
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conjugation due to scattering by a sphere pulsating at frequency . 2ω2. The production 
of focused difference-frequency sound due to reflection at a free water surface was 
demonstrated by Simpson (1992). 

Several authors have investigated microwave acoustic phase conjugation in solids 
or solid powders. See Fossheim (1985) for  a review.  
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15.1 Introduction 

Since its beginnings in the late 1930s, medical ultrasound has become an indispens-
able diagnostic and therapeutic tool and a multibillion-dollar industry. Ultrasound 
produces detailed, high resolution images of most of the soft tissues of the body, 
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measures the flow of blood by the Doppler effect, and combines flow information 
with images in a technique that has come to be known as color-flow Doppler. In 
addition to its diagnostic applications, ultrasound is used in therapy, notably in 
physiotherapy to treat soft-tissue injuries. Because of its ability to produce localized 
heating of deep tissues, ultrasound has advantages for use in hyperthermic treatment 
of tumors. At higher intensities, ultrasound has been used as a surgical tool to 
modify or destroy selected regions in tissues such as the prostate, the brain, and 
the eye. Most of these applications are achieved with ultrasound at frequencies 
between 0.5 and 10 MHz. More recent applications of ultrasound for examining 
the surface layers of skin and the walls of blood vessels have involved frequencies 
in the range 10–40 MHz. At even higher frequencies (40–1000 MHz), acoustic 
microscopy in transmission and reflection modes provides detailed images, based 
on the mechanical (acoustic) characteristics of tissues, that complement the optical 
images of conventional microscopes. Shock waves with peak positive pressures up 
to 100 MPa are used in extracorporeal and endoscopic lithotripsy for the treatment 
of kidney stones and gallstones. 

Until the early 1980s, the development of medical ultrasound proceeded under 
the tacit assumption that sound propagation is a linear process. Today, we realize that 
the effects of finite-amplitude propagation can be seen in almost every medical use 
of ultrasound. This was apparent once the expertise that had evolved in nonlinear 
acoustics was directed to problems in medical ultrasound (Muir and Carstensen, 
1980; Carstensen et al., 1980). In addition, there has been a slow escalation 
over the years in the amplitude of the sound fields applied to patients through 
diagnostic procedures (Duck and Martin, 1991). The payoff has been greater depth 
of penetration at higher frequencies and greater resolution and information content 
in the images. Together with today’s increased capabilities of medical ultrasound 
comes a gradual increase in awareness of the possibility for the production of 
potentially adverse biological effects. This brings a need not only to know the 
levels of the acoustic fields in patients but also to understand the physical processes 
involved in the propagation of finite-amplitude sound in tissue as well as in water. 
One potential hazard of ultrasound is tissue heating, and finite-amplitude effects 
can significantly increase this heating above the levels predicted on the basis of 
small-signal propagation. If one wishes to know the relevant levels in vivo, it is 
necessary to take account of the differences between the characteristics of the 
test medium (usually water) and those of tissue. These differences give rise to 
a nonlinear relationship between the reference measurements and the exposure 
levels experienced by the patient. The physical processes involved in ultrasonic 
hyperthermia are similar to those in diagnosis, although the beam sizes and absolute 
temperature rises may be different. 

Since the 1980s, the widespread use of shock-wave lithotripters to destroy kidney 
stones has increased by orders of magnitude the pressure levels used in therapeutic 
procedures. To understand the operation of these devices, one must analyze 
nonlinear propagation effects. Piezoelectric and electrodynamic lithotripters rely on 
nonlinear propagation to form the shock waves. Electrohydraulic lithotripters create 
shock waves by discharge of a spark.
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This review describes the acoustical properties of tissues and discusses the 
impact of nonlinear propagation in medical ultrasound. Important aspects of this 
discussion are the characteristics of medical equipment as measured in water, the 
relationship of measurements in water to the levels in tissues, and the implications 
of these fields for biological effects. 

15.2 Acoustical Properties of Tissues 

With the exceptions of lung, bone, and fat, the tissues of the body have acoustic 
impedances that differ by only a few percent from that of water. Their small-
signal absorption coefficients are determined largely by their macromolecular 
composition. A very broad spectrum of macromolecular relaxation processes gives 
rise to absorption that increases approximately with the first power of frequency over 
most of the medically interesting range of frequencies (1–10 MHz). Representative 
soft tissues have absorption coefficients of approximately 5 (Np/m)/MHz (NCRP, 
1992). The total attenuation of an acoustic wave includes energy losses (absorption) 
and losses from diversion of the wave from its path (scattering). For most soft 
tissues, scattering is relatively small and the attenuation and absorption coefficients 
are approximately equal. In contrast, lung has the highest attenuation coefficient of 
any of the tissues of the body, and the attenuation appears to come almost entirely 
from scattering (Dunn, 1974; Pedersen and Ozcan, 1986; Hartman et al., 1992). 
Bone has the highest true absorption of the body tissues (. >100 Np/m at 1 MHz). 

15.2.1 Nonlinear Properties of Tissues 

Techniques for the measurement of the nonlinearity parameter .B/A of materials 
are described in Sect. 2.4, and a summary of the available data for tissues is 
provided in Table 2.3. Most of the macromolecular constituents of tissues have a 
somewhat higher nonlinearity parameter .B/A than water does. For the purposes of 
this summary, it is possible to characterize the nonlinearity of tissues by a linear 
mixture equation. Figure 15.1 is a straight line connecting the value . B/A = 5.2
for water at 30 . ◦C to .B/A = 11 for fat, a tissue with low water content. Tissues 
with high water content fall between these limits. Most measurements to date have 
been performed on excised tissue samples. However, in one study, Zhang and Dunn 
(1987) measured cat liver in vivo, and after excision found less than 2% difference 
between the preparations.
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Fig. 15.1 The nonlinearity 
parameter .B/A of 
representative soft tissues, 
blood, and water. To a first 
approximation, the values can 
be represented as a linear 
mixture of macromolecular 
constituents and water. 
Circles indicate scatter of 
data. Solutions of 
macromolecules such as 
hemoglobin and albumin also 
follow this relationship. 

15.2.2 Microbubbles in Tissues 

Very small concentrations of gas dispersed in the form of micrometer-sized gas 
bodies can have a dramatic effect on the acoustical properties of the medium. 
Bubbles near resonance size for the frequency of the sound can have absorption 
and scattering cross sections that are many times greater than their physical size. 
Furthermore, .B/A for such a medium can be many times greater than its value for 
the same medium in the absence of bubbles [Eq. (5.66)]. No systematic studies 
of tissues from this point of view have been reported. It is known that certain 
specialized tissues, such as insect larvae and the leaves of aquatic plants, contain 
stabilized gas bodies associated with their respiration. Except in lung and intestine, 
microbubbles appear to be rare in mammalian tissues (Dalecki et al., 1997c). But it 
is reasonably well established that transient populations of bubbles can be created 
in the blood and tissues of mammals exposed to lithotripter fields (Delius, 1990). 
Ultrasound contrast agents are deliberately introduced into the blood of patients 
to increase scattering. Most of these agents use stabilized bubbles to achieve their 
effect (Nanda et al., 1997). 

15.2.3 Tissue Characterization 

The first “B-Scan” tomographic images made with ultrasound showed the out-
lines of tissue structures resulting from the relatively large reflections at acoustic 
impedance discontinuities. With the addition of a gray scale to the image, a 
qualitative indication of scatter from within organs provided the beginnings of ultra-
sonic tissue characterization. More sophisticated systems today provide quantitative 
measures of the scattering coefficients of tissue regions. Color Doppler gives a color-
coded image of flow. Tissue characterization based on the attenuation, the sound
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speed, and the nonlinearity parameter .B/A of tissues, and combinations of these 
parameters, have been explored (e.g., Jiang et al., 1991). Techniques have been 
proposed in which an acoustic pump wave of finite amplitude is used to modify 
the properties of tissues so that a probe beam can detect the nonlinear properties of 
the tissues through phase changes or from the production of difference or harmonic 
frequencies (Ichida et al., 1983). 

15.3 High-Amplitude, Focused Fields of Medical Equipment 

The ultrasonic echoes from most tissues are small relative to the transmitted signal 
amplitude. As a result, imaging equipment requires high output pressure levels to 
achieve a reasonable signal-to-noise ratio in the image. The time-average intensity 
is relatively low at any specific site in the tissue (on the order of a few milliwatts per 
centimeter squared), but nonlinear distortion of the wave can still be significant, 
as a result of the high amplitude (. >1000 W/cm. 2, or 5 MPa maximum negative 
pressure) of the individual pulses. At the other extreme, equipment used for physical 
therapy employs time-average intensities up to 3 W/cm. 2, but the relatively low 
frequency (typically 1 MHz), low amplitude, and short propagation distance mean 
that nonlinear propagation is unlikely to be important. 

15.3.1 The Shock Parameter 

In developing an understanding of nonlinear effects across the wide range of medical 
applications, it is useful to have a means of characterizing the degree of nonlinear 
distortion of the wave at any given position in the field. The dimensionless quantity 
. σ used in weak shock theory (Blackstock, 1966), referred to here as the shock 
parameter, combines source amplitude and frequency, propagation distance, and 
properties of the medium in a single number that is correlated with the degree 
of shock formation over a wide range of conditions. For initially sinusoidal plane 
waves, its definition is [Eq. (4.23)] 

.σ = βεkz, (15.1) 

where .β = 1 + B/2A is the coefficient of nonlinearity, .k = 2π/λ is the wave-
number, . λ is the acoustic wavelength, . ε is the ratio of the particle velocity amplitude 
at the source to the small-signal sound speed, and z is the distance from the source. 
For spherically converging waves, Eq. (15.1) is replaced by 

.σ = βεkd ln[1/(1 − z/d)], (15.2)
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where d is the radius of curvature of the source (i.e., focal length). On the axis of a 
focused Gaussian beam (see Sect. 8.3.3), a corresponding shock parameter can be 
defined (Dalecki et al., 1991a), 

.σ = βεkd√
1 − G−2

ln[(G +
√

G2 − 1)(R +
√

R2 + 1)], (15.3) 

where G is the focal gain (the ratio of focal to source amplitudes) and . R = −(1 −
z/d)(G2 − 1)1/2. Equation (15.2) is based on ray acoustics and has a singularity 
at .z = d, but it can provide useful information in the prefocal region, .z < d. 
Equation (15.3) takes some account of diffraction and can be used at the focus of 
realistic sound fields. 

As shown in Eqs. (4.50)–(4.53), for nondiffracting waves, sound propagation 
is essentially linear for . σ somewhat less than unity; a sinusoidal waveform at the 
source remains approximately sinusoidal as it propagates through the medium. As 
. σ approaches unity, nonlinear distortion of the waveform becomes significant as 
energy is transferred from the fundamental component into higher harmonics. At 
.σ = 1, the wave begins shock formation and by .σ = 3, a full sawtooth wave has 
developed (Sect. 4.4.3.2). 

In the absence of diffraction, the intensity at an axial field point z can be 
expressed as [see Eq. (4.300)] 

.I(z) = ez

I0

(1 − z/d)a

∞⎲

n=1

B2
n(σ ), (15.4) 

where . I0 is the intensity at the source, . ez is the unit vector in the direction of 
propagation, and .a = 0, 1, and 2 for plane, cylindrical, and spherical waves, 
respectively. The harmonic amplitude coefficients .Bn are given by [Blackstock, 
1966; see also Eq. (4.183)] 

.Bn = 2

nπσ

⎾
Фsh +

⎰ π

Фsh

cos n(Ф − σ sin Ф) dФ

⏋
, (15.5) 

where .Фsh = 0 for .σ ≤ 1, in which case .Bn = (2/nσ)Jn(nσ) is obtained, where . Jn

is the Bessel function of the first kind. For .σ > 1, Фsh is the smallest positive root 
of the transcendental equation .Фsh = σ sin Фsh, and Eq. (15.5) must be integrated 
numerically. For .σ > 3, the asymptotic value .Фsh = πσ/(1 + σ) is approached, 
corresponding to .Bn = 2/n(1 + σ).1 

1 Equation (15.4) can also be written in the equivalent time-domain form (Blackstock, 1990) 

.I(z) = ez

I0

(1 − z/d)a

⎾
1 − Psh

π
(σ − cos σPsh − 2

3 σP 2
sh)

⏋
, (15.4a)
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Fig. 15.2 Dependence of 
intensity on the shock 
parameter . σ , based on the 
summation in Eq. (15.4) 
(Dalecki et al., 1991a). Given 
is the ratio of the true 
intensity to the value that it 
would have if nonlinear 
losses were ignored. The 
theory (Blackstock, 1966) 
assumes negligible 
small-signal attenuation. 

As illustrated in Fig. 15.2, even though the waveform gradually becomes modi-
fied as the shock parameter increases, losses are negligible up to .σ = 1, but beyond 
.σ = 3 losses eventually become so great that the field intensity becomes nearly 
independent of the source intensity (acoustical saturation). See Sect. 4.4.3.3 for 
related discussion based on Eq. (15.5). 

15.3.2 Weak Shock Absorption 

Although more general models to evaluate nonlinear heating rates numerically in 
specific cases are now available, weak shock theory (Blackstock, 1966, 1990; and 
Sect. 4.4) provides an adequate framework to model the general characteristics of 
the losses that are dominated by shock formation and are relatively independent 
of the magnitude of the small-signal absorption coefficient of the acoustic medium 
(Dalecki et al., 1991a). See also Sect. 4.6.2. 

Application of the basic definition of the absorption coefficient, 

.α = −∇ · I
2I

, (15.6) 

to Eq. (15.4) yields a finite amplitude, “weak shock absorption coefficient” (Dalecki 
et al., 1991a) 

.αf = −∂σ

∂s

(∂/∂σ)
∑

B2
n(σ )

2
∑

B2
n(σ )

, (15.7) 

where .Psh = Фsh/σ is the dimensionless amplitude of the shock, and .Фsh is defined following 
Eq. (15.5); see Eq. (4.303).
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Fig. 15.3 The weak shock 
absorption parameter . αf

(multiplied by the distance 
function F ) as a function of 
the shock parameter (adapted 
from Fig. 2 of Dalecki et al., 
1991a). 

where is the spatial variable along the direction of propagation of the wave.2s 
The expression on the right is determined almost entirely by the shock parameter 
.σ , which in turn is a function of the amplitude and frequency of the source, the 
nonlinearity parameter of the medium, and the geometry of the field. There is thus 
a direct relationship between weak shock absorption and the shock parameter at a 
given point in the field. 

Weak shock losses occur as a result of strong irreversible processes resulting 
mainly from the accentuated influences of viscosity, heat conduction, and relaxation 
at the discontinuity, and they depend upon the strength of the shock and the shape 
of the waveform on either side of the shock. Figure 15.3 displays the losses in terms 
of the weak shock absorption parameter, where the function . F = σ(∂σ/∂s)−1

depends on the geometry of the beam and has the dimensions of distance (Dalecki 
et al., 1991a). The asymptotic value .αf F = 1 is approached for .σ ⪢ 1. With 
the relation .F = z obtained for a plane wave, the limiting value of the weak 
shock absorption parameter in this case is simply the reciprocal of the propagation 
distance, .αf = 1/z. Much larger values of . αf can be achieved in focused fields. 
These weak shock losses are completely foreign to linear theory of acoustics. 
They are essentially independent of the magnitude of the small-signal absorption 
coefficient of the medium as long as the small-signal absorption is small. To a 
first approximation, the total absorption parameter for a real but weakly absorbing 
medium is the sum of the small-signal absorption coefficient and the weak shock 
absorption parameter. 

In evaluating the fields of clinical instruments, it is frequently difficult to 
measure the (dimensionless) source amplitude . ε directly. Bacon (1984) developed 
an approximate method for determining the shock parameter from hydrophone 

2 The time-domain form of Eq. (15.7) is [see Eq. (4.306)] 

.αf = ∂σ

∂s

2
3 σP 3

sh

π − Psh(σ − cos σPsh − 2
3 σP 2

sh)
. (15.7a)
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Fig. 15.4 Weak shock 
heating rate for a plane wave 
at 4 MHz in water. The dotted 
line shows the heating rate 
that would be computed for 
.z = 10 cm according to linear 
theory based on the 
small-signal absorption 
coefficient for water. 

measurements made in the focal region that provides useful information for most 
medically interesting output levels. 

15.3.3 Heating 

Absorption of sound leads to heat generation in the acoustic medium. Specifically, 
the rate of heating (in mechanical units) is equal to the negative divergence of the 
local acoustic intensity, which for a small-signal plane wave is proportional to the 
product of the absorption coefficient of the medium and the local intensity [recall 
Eq. (15.6)]. Figure 15.4 gives the heating rate of water in a plane-wave field as a 
function of source intensity. Weak shock absorption is completely dominant in this 
example. For perspective, the heating predicted for water by linear theory is shown 
by the dotted line in the lower right-hand corner of the plot. Instead of a heating rate 
that is directly proportional to source intensity, as predicted by linear theory, heating 
rises rapidly (in the range .1 < σ < 3), reaches a limiting value, and becomes 
independent of source intensity thereafter. The limiting value of the heating rate 
decreases as distance from the source increases. However, shocks develop at lower 
source intensities as distance from the source increases. Similar phenomena occur 
in focused fields (Dalecki et al., 1991a). 

Description of sound fields in terms of the shock parameter provides insight 
into the general phenomenon of nonlinear propagation and gives semiquantitative 
predictions of weak shock absorption and heating rates for tissues with relatively 
low small-signal attenuation (Dalecki et al., 1991a). However, weak shock theory 
is not adequate to deal quantitatively with propagation in tissues possessing small-
signal absorption coefficients as large as those of most of the soft tissues of the 
body. For this purpose, more powerful numerical methods are required (e.g., those 
discussed in Chap. 11). Examples of such computations are given in Sect. 15.4. 

At small-signal levels where the waveforms are sinusoidal, the amplitude of 
the fundamental frequency component and the peak negative pressure amplitude
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Fig. 15.5 An asymmetric, 
nonlinearly distorted 
waveform in a diffracting 
beam, typical of those 
produced by high-power 
diagnostic ultrasound devices 
(adapted from Fig. 3 of 
Cleveland et al., 1996). 

of the waveform are identical. In the case of a plane wave of infinite extent in a 
weakly attenuating medium such as water, as the amplitude of the wave increases, 
the wave front steepens symmetrically and, in the high-intensity limit, harmonics 
with amplitudes inversely proportional to their number are generated, as noted 
following Eq. (15.5), and the waveform assumes a sawtooth shape. In realistic 
medical ultrasound fields, diffraction and dispersion effects combine to yield an 
asymmetric wave, as shown in Fig. 15.5, where the amplitude of the negative phase 
of the wave is seen to be smaller than that of the positive phase [see also Fig. 8.8c]. 
Depending upon the phase relationships among the harmonics, the negative pressure 
can be either greater or smaller than the amplitude of the fundamental component 
alone, but frequently they are of comparable magnitude. 

15.4 Predicting Fields in Tissues: The “Derating” Problem 

Characterization of the fields of medical ultrasound devices usually is based on 
measurements made with hydrophones in water. Data obtained in this way can be 
used to estimate fields in tissues provided (1) that an appropriate model of the tissue 
as a propagation path is available and (2) that signals are small enough that linear 
theory applies. The use of measurements made in water to predict fields in tissue has 
come to be called “derating” in the medical device community. Two general tissue 
models have been proposed for this purpose (AIUM, 1988; NCRP, 1992). The most 
generally useful model requires a homogeneous tissue path from source to target. 
The other model, proposed originally by Carson et al. (1989), is intended for the 
special case in obstetrics in which most of the propagation path is through weakly 
attenuating fluids and most of the attenuation of the signal before it reaches the fetus 
is limited to a layer of skin and abdominal muscle near the face of the transducer. 

As currently defined, these derating models are based on linear acoustical theory. 
However, most diagnostic devices can operate at levels high enough to create 
shock waves in water (Duck et al., 1985; Duck and Martin, 1991). Under these 
conditions, extrapolation of water data to tissues becomes much more complex, 
and, as acoustical saturation is approached, the data obtained in water provide only 
very limited information about source amplitudes and tissue fields. Some of the
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problems of derating under the conditions of finite-amplitude propagation have been 
addressed (Bacon, 1989; Dalecki et al., 1991a; NCRP, 1992). 

15.4.1 Intensity 

Christopher recently developed a numerical propagation model that takes into 
account realistic tissue properties and includes the combined effects of nonlinearity, 
diffraction, absorption, and dispersion (Christopher and Parker, 1991; Christopher, 
1993, 1994; see also Sect. 11.3.3). This model has been employed to evaluate 
the derating problem under nonlinear propagation conditions (Christopher and 
Carstensen, 1996). For illustration, consider a 3 MHz, 1-cm-radius source with 
a focal length of 8 cm. Figure 15.6 gives the focal intensities as a function of 
source intensity for propagation through water, liver, and fatty tissue. The small-
signal absorption coefficient for liver is assumed to be 0.13 Np/cm in this example. 
For perspective, commercial diagnostic ultrasound devices may produce focal 
intensities as high as 400 W/cm. 2 at this frequency in tissues such as liver. Dashed 
lines in the figure are linear extrapolations of the focal fields, for comparison. 

In a general sense, highly attenuating media such as tissues reduce the amplitude 
of the wave by small-signal absorption and, in this way, minimize nonlinear effects 
of propagation. Note that acoustical saturation is approached at lower source 
intensities in water than in tissues. This makes it difficult to use measurements 
in water to estimate fields in tissues. Using the data in Fig. 15.6 for illustration, 
we see that, with a source intensity of 100 W/cm. 2, the focal intensity in water is 
approximately 1000 W/cm. 2. The waveform is highly distorted, and it is obvious in 
a qualitative sense that nonlinearity is important. However, if nonlinearity is ignored 
and the ratio of the small-signal absorption in water to that in liver is applied, the 
derated intensity will be 60 W/cm. 2 instead of . ∼300 W/cm. 2, the latter being the 
actual value in Fig. 15.6 that we find for liver by taking nonlinearity into account. 
In general, the closer sound fields in water approach saturation, the more difficult 

Fig. 15.6 Focal intensities 
produced by a source of 
radius 1 cm, focal length 
8 cm, radiating at 3 MHz 
(Christopher and Carstensen, 
1996). Dotted lines are linear 
extrapolations corresponding 
to the source intensities given 
on the abscissa.
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Fig. 15.7 Effects of 
nonlinear propagation on 
focal intensity (Christopher 
and Carstensen, 1996). The 
ordinate gives the ratio of the 
solid to the dashed curves in 
Fig. 15.6. 

it becomes to use data obtained for sound in water to predict fields in any other 
medium. However, simple linear extrapolation of the small-signal derated fields, in 
general, overestimates the true focal fields. 

Recognizing this problem, the World Federation of Ultrasound in Medicine and 
Biology (WFUMB, 1998) cautioned that “the common practice of linear derating 
from high level measurements in water is undesirable because it can lead to 
substantial underestimates of tissue fields” because of nonlinear propagation. To 
avoid this problem, the WFUMB (1998) recommended that “estimates of tissue 
field parameters at the point of interest should be based on derated values calculated 
according to an appropriate specified model and be extrapolated linearly from 
small signal characterization of source-field relationships.” As noted above, this 
practice errs in the direction of overestimating true fields in vivo at high source 
intensities. When greater accuracy is desired, corrections for the effects of nonlinear 
propagation can be made theoretically. The data in Fig. 15.6 are replotted in Fig. 15.7 
using the linearly extrapolated focal intensities as the independent variable and the 
nonlinear correction as the ordinate of the graph. Note that linear derating for liver 
according to the WFUMB procedure overestimates the true focal intensities by more 
than a factor of 2 near the upper limits of the outputs of diagnostic ultrasound 
devices. Figure 15.7 shows for water the nonlinear enhancement of the axial focal 
intensity that occurs in the early stages of shock formation when power is transferred 
from the fundamental beam to higher-harmonic components that have narrower 
beam patterns. 

15.4.2 Heating 

Figure 15.8 gives the focal heating rates corresponding to Fig. 15.6. The curve for 
water provides a striking example of the effects of nonlinear propagation on the 
effective absorption parameter. The small-signal absorption coefficient for water is 
much smaller than that for either liver or fat, which is evident in the heating rate
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Fig. 15.8 Focal heating rates 
for water, liver, and fatty 
tissue, corresponding to 
Fig. 15.6 (Christopher and 
Carstensen, 1996). 

in water at low intensities. However, as shock waves begin to form, the effective 
absorption parameter for water increases dramatically, and, in this example, the 
focal heating rate in water substantially exceeds that in liver. Shock-wave absorption 
has been proposed as a mechanism for localized enhancement of tissue heating 
for hyperthermia and for ultrasonic thermal surgery (Carstensen and Muir, 1986; 
Hynynen, 1987). Even though nonlinear propagation effects strongly enhance 
focal heating rates in liver at the highest intensities, the steady-state temperature 
increment differs very little from that which would be predicted on the basis of linear 
theory. The explanation lies in the effects of nonlinear propagation on the heating 
patterns that characterize the sound field. For values of .σ in the range between 1 and 
3 at the focus of a sound beam, the heating rate due to nonlinear propagation effects 
is increased more strongly on- than off-axis, and the heating pattern is narrowed 
relative to the small-signal beam pattern. Enhanced heat diffusion from the narrower 
beam largely disperses the excess nonlinearly enhanced heating on the axis. 

15.4.3 Acoustic Pressures 

Figure 15.9 gives the focal pressures corresponding to Fig. 15.6. At high output 
levels, the combination of nonlinear generation of harmonic frequencies with 
diffraction and dispersion produces highly asymmetric focal waveforms, such as 
those in Fig. 15.5, and it is somewhat more arbitrary to characterize the field 
by pressure rather than by intensity. The positive pressure spike is difficult to 
measure and of questionable relevance to known biological effects. The fundamental 
component of the wave and the negative pressure, shown in Fig. 15.9 (solid 
and dashed curves, respectively), are affected similarly by nonlinear propagation. 
Figure 15.9 also shows that because of acoustical saturation, it is difficult in practice, 
regardless of output levels, to achieve fundamental or negative pressures greater 
than 3 or 4 MPa at distances of 8 cm or more at the frequencies that are commonly 
used in diagnosis (.>2 MHz). Of course, much higher pressures can be achieved at
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Fig. 15.9 Focal acoustic 
pressures for the conditions 
of Fig. 15.6 (Christopher and 
Carstensen, 1996). The 
amplitude of the fundamental 
component of the wave and 
the maximum value of the 
negative pressure are affected 
similarly by nonlinear 
propagation. 

shorter focal lengths before saturation occurs because of the shorter high-intensity 
propagation path. 

15.5 Implications of Nonlinear Contributions to Radiation 
Forces and Acoustic Streaming 

In fluids, transfer of acoustic momentum to the medium via absorption results in 
macroscopic acoustic streaming in the direction of sound propagation. Acoustic 
streaming is readily observed in liquids. The second-order unidirectional body force 
exerted on a fluid by a sound field is equal to the divergence of the radiation pressure. 
This force is a function of the product of the local intensity and the absorption 
parameter of the fluid. Because nonlinear propagation can increase the effective 
absorption parameter of a medium such as water manyfold, streaming can be very 
much greater in a pulsed field than in a cw field of the same temporal average 
intensity. The problem that this causes for the use of a steel sphere radiometer for 
the measurement of the total intensity of a finite-amplitude wave was described 
by Carstensen et al. (1980). Mitome (1990) discussed the streaming phenomenon, 
and Starritt et al. (1991) reported the enhanced streaming observed with certain 
diagnostic devices operating with sound waves containing shocks. The general 
phenomenon of acoustic streaming and certain of its medical applications are 
discussed in detail in Chap. 7. 

Lehman and Krusen (1955) observed that transport through membranes in vitro 
could be enhanced by irradiation with ultrasound. They attributed the effect to 
acoustic streaming at the liquid-tissue interface, which minimizes concentration 
gradients that otherwise would develop in a stagnant medium as solutes diffuse 
across the liquid-tissue boundary. Similar conclusions were reached by Howkins 
(1969) and by Mortimer et al. (1988). If this mechanistic explanation is correct, it 
should be possible to enhance the effect for a given temporal average intensity by 
using high-peak-intensity, pulsed ultrasound.
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From general knowledge of the frequency response of nerves to mechanical 
and electrical stimuli, it is unlikely that peripheral receptors respond to the ac 
pressure changes in medical applications of ultrasound. Thresholds for perception of 
vibratory stimuli are in the range of 20–200 Pa at 200 Hz, depending upon exposed 
area and site (Moore, 1968). The thresholds for tactile perception rise rapidly 
for frequencies greater than 300 Hz. Radiation forces are another matter, however 
(Dalecki et al., 1995a). If all of the ultrasound were absorbed near the surface of the 
skin, intensities of 3–30 W/cm. 2 would exert radiation pressures of 20–200 Pa. As 
discussed above in connection with heating, nonlinear enhancement of absorption 
increases the fraction of the momentum of the field that is transferred to the tissue 
and brings the thresholds closer to the values corresponding to complete absorption. 

In lithotripsy, nonlinear absorption may contribute to perception in a more subtle 
way. Acoustic pressures used in lithotripter fields are very large, but durations of 
the pulses are typically only a few microseconds. The corresponding radiation force 
impulse has the same temporal characteristics as the envelope of the acoustic signal. 
However, because of nonlinearly enhanced absorption in the water, the lithotripter 
field causes fluid flow in the coupling medium. In this way, flows lasting for many 
milliseconds are directed toward the surface of the skin. Stimuli of this duration are 
readily perceived (Dalecki et al., 1995a). 

15.6 Lithotripsy 

More than a decade ago, it was discovered that acoustic shock waves could break 
kidney stones into fragments small enough to be eliminated through the urinary 
tract without surgery (Chaussy, 1986). Today, lithotripsy has become the technique 
of choice for the destruction of kidney stones. More than 100,000 cases of kidney 
stone disease are treated this way in the United States each year. Gallstones present 
a greater technical challenge for lithotripsy than kidney stones. 

In most of these procedures, the wave is generated outside the body and 
propagates for distances of 20–50 cm through an aqueous coupling medium and the 
patient’s tissues. In electromagnetic and piezoelectric lithotripters, the waves begin 
as low-amplitude pulses and become shocks by virtue of nonlinear propagation 
through the coupling medium. Electrohydraulic lithotripters employ spark sources, 
and the high amplitude acoustic shock created by the expanding plasma is collected 
by an ellipsoidal reflector and reconstituted at the other focus of the ellipsoid. At 
the focus inside the patient, the waveform typically rises to peak positive pressures 
ranging from 30 to 100 MPa in times typically shorter than can be measured by 
conventional hydrophones, i.e., less than . ∼10 ns (Coleman and Saunders, 1989). 
The positive pressure decays to zero in roughly 1 . μs, followed by a negative pressure 
excursion of 2–10 MPa that may last for several microseconds. 

Until the advent of lithotripsy, the existence of nonthermal mechanisms in 
medical applications of ultrasound was open to question. But now it is clear not 
only that the destruction of stones is nonthermal but also that there are many side
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effects on nearby tissues that are caused by nonthermal mechanisms. Probably the 
most important of these mechanisms is acoustic cavitation. 

15.6.1 Mechanisms of Stone Destruction 

In spite of the success of extracorporeal shock-wave lithotripsy in eliminating the 
need for kidney stone surgery in the majority of cases, the details of how it works 
are still not clear. The “classic” explanation relied on purely mechanical forces. In 
particular, the shock wave was thought to enter the stone as a positive pulse but 
reflect from the back surface of the stone as a negative pulse, thus creating tensile 
stress that exceeds the tensile strength of the material (spalling) (Nasr, 1986; Whelan 
and Finlayson, 1988). Evidence for a role of cavitation in stone destruction has been 
accumulating gradually (Coleman et al., 1987; Delius et al., 1988a; Delius, 1990; 
Sass et al., 1991; Holmer et al., 1991). Probably both mechanisms contribute in 
some degree to stone destruction. 

15.6.2 Side Effects of Lithotripsy 

In contrast to cavitation produced by low-amplitude cw ultrasound, the bubbles 
produced by the acoustic pressures used in lithotripsy are large enough (Church, 
1989) to be visualized easily in water and transparent gels by fast photography, 
and in tissues by transient excess scattering of ultrasound. Several investigators 
have presented strong evidence that cavitation is produced in tissues (Delius et al., 
1988b; Delius, 1990; Delius and Brendel, 1988; Coleman et al., 1995). Hemorrhage 
is a common acute side effect of lithotripsy in kidney (Delius et al., 1988b, 1990c; 
Delius, 1990) and liver (Delius, 1990; Delius et al., 1990b; Albert et al.,  1991; Prat  
et al., 1991; Rawat et al., 1991). Clear evidence for long-term complications, includ-
ing hypertension, is more difficult to document (Williams et al., 1988; Wolfson 
et al., 1992). When mice are exposed to ten spherically diverging, spark-generated 
shock waves, the threshold for kidney hemorrhage appears to be in the range of 
3–5 MPa peak positive pressure (Mayer et al., 1990). The negative pressures in 
those studies were immeasurably small. These exposures can be compared with 
clinical treatments for kidney stones, which employ 500–3000 individual shocks at 
20–50 MPa positive pressure and 5–10 MPa negative pressure. However, when 1 and 
4 MHz focused, pulsed ultrasound fields with peak positive pressures in excess of 
10 MPa were delivered to murine kidneys, no hemorrhage was seen even when the 
total numbers of individual shocks exceeded one million (Carstensen et al., 1990b). 

Early reports of the use of shock waves for the treatment of kidney stones noted 
side effects on lung (Konrad et al., 1979; Delius et al., 1987). Lung is particularly 
susceptible to damage by acoustic fields. With twenty, spherically diverging, spark-
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generated shock waves, the threshold for lung hemorrhage in mice is approximately 
1.5 MPa peak positive pressure (Hartman et al., 1990a). 

The intestine, which contains microscopic as well as macroscopic gas bodies, is 
susceptible to hemorrhage when exposed to lithotripter fields. In mice exposed to the 
fields of a piezoelectric lithotripter, the threshold for hemorrhage is approximately 
2 MPa (Dalecki et al., 1995b,c). Most of the evidence points to cavitation as the 
responsible physical mechanism for intestinal hemorrhage. 

With the exception of lung and intestine, most mammalian tissues are remarkably 
tolerant to lithotripter exposures. The development of lithotripsy has been possible 
because of this fortunate fact. The addition of microbubbles to the blood of mice 
dramatically decreases the threshold for hemorrhage in almost all tissues except 
lung and intestine (Dalecki et al., 1997d). This observation strongly supports the 
hypothesis that inertial cavitation can take place in vivo at acoustic pressures that are 
very small in comparison with those required to break kidney stones. The absence 
of comparable damage in normal mammals, even at much higher acoustic pressures, 
indicates that effective cavitation nuclei must be rare under ordinary physiological 
conditions. 

Near term, fetal mice are particularly sensitive to lithotripter exposures near 
bony structures. Pregnant mice were exposed on the 18th day of gestation to 200 
individual pulses from a piezoelectric lithotripter. Thresholds for hemorrhage at 
these sites are of the order of 1 MPa (Dalecki et al., 1997e). No similar, bone-
related damage has been reported in adult animals. In the absence of evidence 
that cavitation nuclei are selectively associated with bony structures, there does not 
appear to be any basis for implicating cavitation in the damage. Possibly related 
to these observations is the report from Ohmori et al. (1994) that killing of fetuses 
exposed to lithotripter fields increased with gestational age. 

During diastole, shock waves from a piezoelectric lithotripter stimulate heart 
muscle, resulting in premature contractions (Dalecki et al., 1991b). These acute 
effects appear to have thresholds between 5 and 10 MPa. Preliminary observations 
show that it is possible to pace the frog heart by shock-wave stimulation. 

Figure 15.10 summarizes the available threshold data for biological effects in 
vivo that result from exposure to lithotripter fields. The numbers of individual 
acoustic pulses (10–200) used in these experimental studies are small in comparison 
with those of a typical clinical treatment for stone disease. In the case of murine 
lung, the experimentally determined threshold decreased with pulse number up to 
the maximum of 20 shocks used in the study. No systematic study of the relationship 
between pulse number and threshold pressure has been carried out. 

Several independent investigating teams have reported qualified success in the 
treatment of tumors with lithotripter fields (e.g., Russo et al., 1986). Among these, 
the study by Weiss et al. (1990) is particularly notable in that striking success was 
achieved in tumor killing when the target tissues were backed by air.
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Fig. 15.10 Thresholds for biological effects of lithotripter fields. Hemorrhage has been observed 
near fetal bone (Dalecki et al., 1997e), adult murine lung (Hartman et al., 1990a), adult murine 
intestine (focused spark, Miller and Thomas, 1995; piezoelectric, Dalecki et al., 1995c), and 
murine kidney (spherically diverging spark, Mayer et al., 1990; piezoelectric, Raeman et al., 1994). 
Arrhythmias in frog heart (Dalecki et al., 1991b), killing of larvae (Carstensen et al., 1990a), and 
malformations and killing of chick embryos (Hartman et al., 1990b) have been observed. When 
microbubbles are added to the blood of mice, almost all of the tissues can be hemorrhaged at 
pressures less than 2 MPa (Dalecki et al., 1997d). 

15.6.3 Endoscopic Lithotripsy 

The shock amplitudes very near plasmas created by sparks or laser pulses can be 
greater than the focal fields of extracorporeal lithotripters. Although technically 
less sophisticated, endoscopic lithotripsy is an effective means for the treatment of 
kidney stones. In these procedures, a probe is inserted through the urinary tract and 
positioned adjacent to the stone. The general characteristics of the bubbles and the 
shock fields created by lasers and sparks are much the same (Vogel and Lauterborn, 
1988; Doukas et al., 1991; Campbell et al., 1991). In representative clinical devices, 
the pressure in the initial shock rises very rapidly (in nanoseconds) and decays on 
the order of a microsecond. Doukas and colleagues report peak pressures well in 
excess of 100 MPa at distances a few tenths of a millimeter from the plasma created 
by a 3 mJ laser source. The plasma-generated bubbles continue to expand, reaching 
maximum diameters (in water) of the order of 1 cm. Collapse of the bubbles occurs 
at times of the order of 1 ms. Upon rebound, another shock wave is generated that is 
comparable to the initial shock in terms of peak pressure and total energy. Typically, 
the rise time of the shock due to rebound of the bubble is not as short as that of 
the initial shock. Weaker shocks are generated as the damped bubbles continue to 
oscillate. 

In view of the violence of the mechanical processes that take place near these 
bubbles, it is not surprising that damage to soft tissues occurs in addition to that
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inflicted upon the target stone. In addition to the shock waves that are produced 
by radial rebound of bubbles, high-velocity fluid jets are produced when bubbles 
collapse asymmetrically (Vogel and Lauterborn, 1988; Crum,  1988). Although 
heating and chemical processes have been suggested as sources of tissue damage 
in endoscopic lithotripsy, the mechanical stresses associated with the plasma bubble 
appear to be the primary cause, and specific suggestions for mitigation of these 
problems have been proposed (Mayer et al., 1991). 

15.7 Pulsed Ultrasound 

The large-amplitude fields that are employed frequently in diagnostic ultrasound 
have waveforms that have been distorted by nonlinear propagation effects. A recent 
survey found that 90% of Doppler devices on the market had shock parameters 
greater than unity (Starritt and Duck, 1991). Effects of exposure to spark-generated 
shock waves and piezoelectric lithotripter fields may suggest directions for research, 
but at present we do not know how to extrapolate directly from those results to 
pulsed ultrasound exposure conditions in a meaningful way. Direct determinations 
of thresholds for biological effects of pulsed ultrasound in mammals are summarized 
in Fig. 15.11. In all cases, the tissues were exposed to diagnostically relevant 

Fig. 15.11 Thresholds for biological effects of diagnostically relevant, pulsed ultrasound in 
vivo. Thresholds for lung hemorrhage are remarkably uniform among species, age, and between 
laboratories (Child et al., 1990; Dalecki, 1997a, 1997b; Holland et al., 1996; Baggs et al., 1996). 
Data on murine intestine are from Dalecki et al. (1995c). Hemolysis was observed in mice only 
after microbubbles were added to the blood (Dalecki et al., 1997c). No effects of pulsed ultrasound 
were observed on mouse kidney (Carstensen et al., 1990b). Acute effects on frog and murine heart 
required pulse lengths greater than 1 ms, and therefore the heart observations are not relevant to 
diagnostic ultrasound as currently practiced (Dalecki et al., 1993; McRobbie et al., 1997).
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pulsed ultrasound. Pulse durations were less than 10 . μs, and repetition frequencies 
were low enough that heating can be ruled out as a mechanism for the action of 
ultrasound. The effects include hemorrhage of lung and intestine, and hemolysis. 
Lung hemorrhage has been observed in mice, rats, rabbits, swine, and monkeys. 
Although lung owes its extreme sensitivity to acoustic stresses to the presence of 
air in the alveoli (Hartman et al., 1990a), it is not clear that the physical mechanism 
responsible for damage is cavitation (Raeman et al., 1997). 

The large-amplitude fields that are employed frequently in biomedical ultrasound 
tend to involve waveforms that have been distorted by nonlinear propagation 
effects. Although, in a general sense, large acoustic pressures lead to cavitation, 
the nonlinear distortion per se has little effect on the behavior of bubbles except 
insofar as it makes the amplitude of the wave more difficult to characterize. 

Comparison of Figs. 15.10 and 15.11 shows that the pressure thresholds for 
damage to lung are approximately the same for lithotripter fields and pulsed 
ultrasound. As mentioned above, hemorrhage in kidney occurs at a somewhat 
lower level with spherically diverging, positive shock waves than with a focused 
piezoelectric lithotripter or pulsed ultrasound with source frequencies in the 1– 
4 MHz frequency range. Acute effects on the frog heart occur at similar peak 
positive pressure levels with 1–4 MHz pulsed ultrasound and with a piezoelectric 
lithotripter. However, pulse durations in excess of 1 ms were required to produce 
the effects. 

Thus far, the studies that have been conducted using either lithotripter fields or 
pulsed ultrasound have demonstrated no unique relationship between the shock 
characteristics of the waves and biological effects. In the murine lung study 
(Child et al., 1990), the threshold waveforms radiated by unfocused sources and 
detected at the subject showed marked nonlinear distortion, particularly at higher 
frequencies, whereas the threshold waveforms radiated by focused sources were 
nearly sinusoidal. Yet, threshold pressures for focused and unfocused fields were 
the same. Of several parameters that were used to characterize the exposures, the 
fundamental component of the wave provided the best correlation with the observed 
biological effects. A similar conclusion was reached in a study of the killing of 
Drosophila larvae by pulsed ultrasound (Aymé and Carstensen, 1988). 

The bulk of the data available at the present time suggest that it is the pressure 
amplitude rather than the shock characteristics of the wave that correlate best with 
biological effects. There is an exception that should be noted before resting with that 
conclusion, however. Using laser-generated stress waves, McAuliffe et al. (1996) 
found that transient changes in membrane permeability in cells exposed to 100 ns 
positive stress pulses with amplitudes of the order of 50 MPa were more directly 
correlated with the rate of rise of the pressure than with the amplitude of the pressure 
pulse. 
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Index 

A 
Absorbing boundary condition, 332 
Absorption coefficient 

boundary layer, 157 
for bubbly liquids, 167 
complex, including dispersion, 151, 341, 

358–359 
finite amplitude, 139–143, 421–422 
for relaxing fluids, 152 
thermoviscous, 52, 152 
for waveguides, 160 

Absorption length, 114, 241, 245 
Acceleration waves, 260 
Acoustical saturation, 112–114, 134, 142, 254, 

425, 427 
Acoustic fountain, 188 
Acoustic levitation, 188 
Acoustic streaming 

basic equations, 206–209 
Eckart, 217 
jet, generation of, 188, 222 
at liquid-tissue interface, 428 
due to oscillating cylinder, 223 
in plane wave in channel with closed ends, 

221 
in plane wave in channel with open ends, 

220 
in plane wave that grazes wall, 218 
due to point source, 207 
radiometer, effect on, 428 
in a sound beam, 212, 330 
due to thin disk source, 208 
turbulence, generation of, 216 
due to vibrating bubble, 223–224 

Acoustic turbulence, 381–385 

Acoustoelasticity, 266–269 
Aeroacoustics, ray theory for, 360–365 
Age variable, 344 
Analogues 

mass-spring oscillator, 159, 279 
nonlinear optics, 170, 394, 400 

Aperture factor, 245 
Arrival phase, 344 
Asynchronous interactions, see Beating 

phenomenon 
Attenuation coefficient, see Absorption 

coefficient 

B 
Ballou’s rule, 26 
.B/A ratio 

adiabatic gas, 26 
bubbly liquids, 171, 396 
definitions, 24–25 
first measurements, 19 
measured values 

amino acids, 35 
biological tissues, 34, 417–418 
fluids, 32 
liquefied gases, 33 
proteins, 35 

measurement techniques 
aqueous solutions, 29–30 
finite-amplitude method, 28–29 
mixture rule, 30 
phase comparison method, 29 
thermodynamic method, 28 

physical interpretation, 27 
Bayliss–Turkel condition, 332 
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Beating phenomenon, 159, 162 
Bernoulli’s equation, 14 
Bessel’s integral, 76 
Bifrequency source radiation, lossless, see 

Fenlon solution 
Birefringence, 267 
Bispectrum, 384 
Blokhintsev weighting factor, 365 
Boltzmann distribution, 403 
Boltzmann equation, 385 
Boundary layers 

absorption and dispersion due to, 
156–157 

thickness, 48, 219 
Boyle’s law, 2 
Bragg condition, 402 
Bragg reflection, 402–408 
Brownian diffusion, 408 
Bubble layers, 396, 400 
Bubble resonance, 166–167 
Bubbly liquids 

absorption and dispersion, 167 
nonlinear propagation effects, 165–172 

Bubbly tissues, 418 
Burgerlence, 116 
Burgers equation 

acoustic pressure, in terms of, 55 
for arbitrary absorption and dispersion, 

150–151 
for cylindrical and spherical waves, 57 
general solution, 125–126 
history of origins, 115–123 
for inhomogeneous media, 360 
for longitudinal waves in isotropic solids, 

272 
particle velocity, in terms of, 121 

C 
.C/A ratio, 25 
Cauchy stress, 260 
Caustic, 347–348 
Caustic surface, 355 
Cavitation, in lithotripsy, 430–433 
Characteristic phase, 344 
Chromatic aberration, 342 
Coefficient of nonlinearity 

adiabatic gas, 10, 44 
first measurements, 19 
general relations, 31, 44 
isentropic fluids, 27 
isotropic solids, 31, 264 
noncollinear wave interaction, 159 
relation to propagation speed, 27 

seawater, 368 
second harmonic in bubbly liquid, 168–170 

Compound waves, 12, 42–43 
Compressional elastic waves, see Longitudinal 

elastic waves 
Computational methods 

absorption and dispersion, arbitrary, 
311–312 

frequency domain, 308–312, 322–324, 
328–330 

spreading, 317–319 
time domain, 312–314, 324–325, 330–333 
time-frequency domains combined, 

314–317, 320–321 
weak shock propagation, 315–316 

Convection 
in noncollinear interactions, 159 
in progressive waves, 11 

Convolution integral, 125 
Coupled spectral equations 

for arbitrary absorption and dispersion, 151 
derivation of, 308–310 
for sound beams, 252 

Crank–Nicolson method, 314, 323, 325, 326 
Cross-correlation function, 372 
Cumulative nonlinear effects, 13, 17, 53, 

70–71, 276 

D 
Deformation gradient tensor, 260 
Derating, 424–425 
Difference-frequency generation, plane waves, 

78–79 
Diffusivity of sound 

for fluids, 51–52 
for isotropic solids, 272 

Dispersion 
due to boundary layers, 156–157 
in bubbly liquids, 165–172 
length, 162 
due to relaxation, 151–156 
in waveguides, 158–164 

Doppler effect, in imaging, 415–416, 418 
Doppler factor, 356 
Ducts, with varying cross section 

stretched coordinates for, 57, 138, 346–347 
wave equation for, 57, 138 
with flow, 361 
with flow from fan, 363–365 

E 
Earnshaw’s law, 11, 13, 44
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Earnshaw solution 
for adiabatic gas, 10, 67 
approximate, 72 

Eigenfunctions, 160–161 
Elastodynamics, nonlinear, 260–263 
End-fire array, 245, 247 
Energy 

conservation across a shock, 14–15, 
87–88 

conservation along a ray, 341 
dissipation at a shock, 103 

Ensemble average, 372 
Enthalpy, 88 
Entropy 

conservation of, 42, 86 
jump across shock, 89–90 
jump across weak shock, 91, 93 
relation for thermoviscous fluids, 41, 50 

Envelope solitons, 164 
Epstein layer, 405 
Equal-area rule, 99–102 
Ergodic process, 373 
Escape speed, 11 
Eulerian coordinates, 6, 260 
Eulerian–Lagrangian coordinate 

transformation 
for fluids, 178, 211 
for solids, 261 

Euler–Piola–Jacobi identity, 261 
Euler’s equations, 2, 4 
Euler’s constant, 237 
Evanescent waves 

bubbly liquids, 168 
cylindrical radiation, 296 
waveguides, 299 

Exponential horn, 139 
Exponential integral, 237 
Exponential waveform, weak shock solution, 

108 

F 
Fast Fourier transform (FFT), 316, 321 
Fay solution, 18, 133 
Fenlon solution, 77–78 
Fingers, 241 
Finite source displacement, 66–68 
Flux-corrected transport scheme, upwind, 

326 
Focusing gain, 242–243 
Forced and free waves, 159, 161–162 
Four-wave mixing, 401–409 
Fractional steps, method of, 312–313 
Fresnel approximation, 397 

Fresnel zone reflection, 394 
Fubini solution, 18–19, 76, 279–280 

G 
Galilean invariance, 87 
Gaussian statistics, 375–376 
Geometrical acoustics, see Ray theory 
G factor, in ray theory, 350–355 
Gibbs oscillations, 310–311 
Gol’dberg number, 18, 129–130, 308 
Green’s function 

for diffusion equation, 125 
for KZK equation, quasilinear, 233–234, 

248 
Green strain tensor, 260–261 

H 
Hankel transform, 233 
Hankel transform, discrete (DHT), 328–329 
Heat conduction, 13, 15, 41 
Heating, due to shocks 

tissue, 426–427 
water, 423 
weak shock theory for, 143 

Heaviside unit step function, 234 
History 

of Burgers equation, 115–123 
of nonlinear acoustics before World War II, 

1–20 
Hopf–Cole transformation, 124–125 
Horizontally stratified medium, 339–340 
Hugoniot diagram, 89 
Hugoniot equation, 89 
Hyperthermia, from shock waves, 427 

I 
Impedance 

characteristic 
adiabatic gas, 9, 68 
general relation, 68 

for cylindrical and spherical waves, 56 
for sound beam, 59 

Inhomogeneous media, see Ray theory 
Intensity 

computations for focused beams, 425–426 
spectrum, 373 
weak shock theory for, 139–143, 420–421 

K 
Keck–Beyer solution, 131–132 
Kerr medium, 401 
Khokhlov solution, 135
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Khokhlov–Zabolotskaya–Kuznetsov (KZK) 
equation 

for longitudinal waves in isotropic solids, 
271–272 

for sound waves, 59 
Kirchhoff–Helmholtz integral, 328 
Korteweg–deVries–Burgers equation, 170–171 
Korteweg–deVries (KdV) equation, 171 
Kramers–Kronig relations, 149 

L 
Lagrangian coordinates, 4, 17, 260 
Lagrangian density, 51, 52, 261 
Lagrangian strain tensor, see Green strain 

tensor 
Lagrangian stress tensor, see Piola–Kirchhoff 

stress tensor 
Lamé moduli, 262 
Lithotripsy, 367, 429–433 
Local nonlinear effects, 17, 53, 70–71 
Longitudinal elastic waves, 263–266 

M 
Mass 

conservation across a shock, 14, 87–88 
conservation of, 40, 48 
conservation of, Lagrangian coordinates, 

120, 261 
conservation of, for narrow duct, 57 

Mass transport velocity, 211 
Mach number, acoustic, 47, 275 
Material coordinates, see Lagrangian 

coordinates 
Modes 

acoustic, thermal, and vorticity, 47–48 
waveguide, 160–164 

Modulation 
amplitude and phase, 247 
amplitude and phase, random, 374 
frequency, 82 

Momentum 
conservation across a shock, 14, 87–88 
conservation of, 40, 49 
flux tensor, 207 

Monofrequency source radiation 
case history for strong wave, 134–135 
lossless propagation (see Fubini solution) 
plane-wave solution for thermoviscous 

fluid, 131 
quasi-monofrequency radiation, 376–381 
shock rise time, 135–136 
weak shock theory, 108–114 

N 
Noise 

aircraft, 381–382 
broadband, 386 
in cracked solid, 383 
Gaussian distribution, 379–380 
interaction with tone, 385–389 
jet engine, 381–382 
narrowband, 377–380 
noncollinear interaction of tone with, 

389 
rocket, 382 
suppression of, 388 
suppression of tone with, 388 
third-octave band, 378 

Noncollinear wave interaction, 158–159 
Nonlinear progressive wave equation (NPE), 

325–327 
Nonlinear Schrödinger equation, 164 
N wave  

cylindrical and spherical, 138 
plane, 106–107 

O 
Old age region, 134 
Operator splitting, 312–313 
Ordering schemes, 48, 50, 277 
Order symbol, 277 
Outliers, 375 

P 
Parabolic approximation 

defined, 58–59 
restrictions on, for sound beam, 240 

Parametric amplification, 79–80 
Parametric array, see Sound beams 
Parametric focusing, 394–401 
Particle suspensions, 401–409 
Perfect gas, lossless 

implicit solutions for, 66–68 
relations for, 44–45 
wave equations for, 46, 64 

Periodic waves, lossless, 73–82 
Perturbation techniques 

multiple scales, 280–283 
regular, 277–280 
renormalization, 283–286 
strained coordinates, 284 

Pestorius algorithm, 314–317 
Phase conjugation, 398, 400, 409–411 
Piola–Kirchhoff stress tensor, 261 
Plate vibration, radiation due to, 286–293
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Poisson solution 
approximate, 45 
adiabatic gas, 10, 66–68 
isentropic fluid, 43–44 
isothermal gas, 6 
for spherical wave, approximate, 137 

Prandtl number, 47 
Propagation speed, finite-amplitude 

plane progressive waves, 7, 10, 27, 43, 65 
physical interpretation, 7, 11 
ray path, along a, 342–343, 357 
weak shocks, 100, 105 

Probability density functions, 372 

Q 
Quasilinear solutions 

definition of, 278 
difference frequency, lossless plane wave, 

79 
second harmonic 

in bubbly liquid, 169 
in focused Gaussian beam, 243 
in Gaussian beam, 236–237 
longitudinal wave in elastic solid, 265 
lossless plane wave, 77 
lossless spherical wave, 137 
lossy plane wave, 132 
in waveguide, 163 

sum and difference frequency 
in Gaussian beam, 239 
in waveguide, 161–162 

Quasi-plane waves, 58 

R 
Radiation force 

on bubble in a liquid, 196–197 
on liquid sphere in immiscible liquid, 

193–196 
resonance frequency shift, effect of, 201 
on rigid sphere in a gas, 189–192 
on spherical particle in standing wave, 

402 
temperature profile, effect of, 198 
on tissue, 429 

Radiation pressure 
absorbing wall, pressure on, 182–185 
Eulerian, 178 
fluid interface, pressure on, 185–188 
and four-wave mixing, 401–409 
Lagrangian, 178–179 
Langevin, 179–180 
Rayleigh, 179–180 

reflecting wall, pressure on, 181–182 
standing wave, pressure in, 181–182 

Radiation stress tensor, acoustic, 176–177 
Random medium inhomogeneity, 380–381 
Rankine–Hugoniot relations, 14, 87 
Rao’s rule, 26 
Rayleigh backscattering, 405 
Rayleigh distance, 58, 235 
Rayleigh distribution, 374 
Rayleigh–Plesset equation, 166 
Rayleigh torque, 198 
Ray path 

definition, 339–340 
dependence on frequency, 368 
dependence on wave amplitude, 366–367 

Ray theory 
finite-amplitude assumptions, 342 
isothermal atmosphere, 348–349 
ocean with linear sound-speed profile, 

350–353 
ocean with real profile, 354–355 
small-signal assumptions, 338–339 
stratified atmosphere with wind, 361–363 

Reduced path length, see Stretched coordinates 
Reflection, 312 
Refraction, in inhomogeneous medium, 

339–340 
Relaxation 

chemical, 41 
frequency, 152 
multirelaxing fluids, 152, 155–156 
shock rise time in monorelaxing fluid, 

153–154 
sinusoidal radiation in monorelaxing fluid, 

155 
stationary wave in monorelaxing fluid, 

152–155 
time, 151–152 
in tissue, 417 
vibrational, 41 

Resonance 
in plane-wave interactions, 373 
in waveguide interactions, 162–164 

Reynolds stress, 208 
Riemann invariants, 12, 42–43, 264 
Root-mean-square pressure, 373 
Runge–Kutta method, 310 

S 
Sawtooth region, 110, 114, 136 
Sawtooth waves, 18, 110, 133–135, 141–142 
Scattering of sound by sound, 54, 239 
Second law of thermodynamics, 86
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Second-order approximation theory, 70–73 
Second-order wave equation, with losses, 51 
Secular terms, 280 
Self-demodulation, 247–250 
Self-refraction, 290, 297–301 
Shear waves, see Transverse elastic waves 
Shock formation distance 

arbitrary plane progressive wave, 69, 73 
cylindrical wave, sinusoidal at source, 138 
exponential horn, sinusoidal at source, 

139 
plane, arbitrary periodic wave, 75 
plane, sinusoidal at source, 13, 70 
spherical, sinusoidal at source, 137 

Shock waves 
expansion shocks, 8, 11, 93 
first interpretation, 8 
history of analysis, 13–16 
propagation speed of, 15 
rarefaction shocks (see expansion shocks) 

Sidebands, 81–82 
Simple waves, 12, 43 
Singularity, in perturbation solutions, 279 
Singular surfaces, 260 
Slowness, weak shocks, 100, 105 
Slow scales, 54, 56, 58, 170, 270 
Snell’s law, 340 
Sonic boom, 106, 319, 349 
Sound beams 

circular piston radiation, 239–241, 252–256 
directivity function, linear theory, 236 
far field, linear theory, 58, 235 
far field, second harmonic, 237–238, 241 
focusing, 241–244, 254, 256 
Gaussian beams, 236–239, 242–244 
near field, 58 
numerical algorithms for, 319–330 
parametric array, 244–247 
parametric receiving array, 247 
quasilinear theory, general, 232–236 

Sound speed, finite-amplitude 
adiabatic gas, 3 
isentropic fluid, 3, 42 
isentropic fluid, series expansions for, 27 
isothermal gas, 2–3 

Sound speed, small-signal 
adiabatic gas, 3 
bubbly liquid, high frequency (frozen), 168 
bubbly liquid, low frequency, 167 
equilibrium, for relaxing fluid, 152 
frozen, for relaxing fluid, 152 
isothermal gas, 3 
isentropic fluid, 24 
seawater, 368 

Source and initial value problems, 10, 64, 
66 

Spatial coordinates, see Eulerian coordinates 
Spherical harmonics, 297 
Spreading 

cylindrical and spherical, 56–57, 136–138, 
317–318 

State equation 
expansions with losses, 50–51 
general, 41 
adiabatic gas, 44 
perfect gas, 41 

Stationary process, 373 
Stationary wave 

in monorelaxing fluid, 152–155 
in thermoviscous fluid (see Taylor shock) 

Stokes drag, effect on particles, 408 
Stokes drift, see Velocity transform 
Stretched coordinates 

for cylindrical and spherical waves, 
136–137, 318 

for depth-dependent ocean, 350 
for ducts, variable cross section, 57, 138, 

346–347 
for focused Gaussian beam, 420 
for isothermal atmosphere, 349 
for ray paths, 345 
for relaxing fluids, 156 

Substitution rules, 45, 50, 71 
Successive approximations, method of 

for acoustic streaming, 210–212 
for bubbly liquids, 166–168 

Summation convention, 260 
Suppression of sound by sound, 80–82 

T 
Tait–Kirkwood equation, 26, 176 
Taylor shock 

rise time, 128–129 
thickness, 16, 129 
wave proflle, 128–129 

Thermal conduction, see Heat conduction 
Thermoviscous dissipation function, 249 
Theta function, 133 
Third-order elastic (TOE) constants 

cubic crystals, 265 
isotropic solids, 31, 262 
relations between different notations, 

262–263 
Thomas algorithm, 314, 325 
Three-wave mixing, 394–399 
Time averages, Eulerian and Lagrangian, 209, 

211
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Time window, for numerical calculations, 
324–325 

Tissue 
absorption coefficient, 417 
characterization of, 418–419 
heating of, 426–427 
microbubbles in, 418 
nonlinearity of, 417–418 

Transverse elastic waves, 263–266 
Turbulence, 55, 116–117 

V 
Variance, 373 
Velocity transform, 211 
Virtual sources, 53, 132, 234, 238, 245 
Viscosity 

artificial, 331 
bulk, 40–41 
shear, 40–41 

Viscous stress tensor, 263 
Viscous torque, 198–200 
Voigt notation, 262 
Vorticity, 47–49, 209 
Vorticity source strength, 209 

W 
Wall impedance, specific acoustic, 160 
Waveform distortion, illustrations for plane 

waves 
first published, 8 

leading to shock formation, 65–66 
through sawtooth and old age regions, 135 

Waveform freezing, 139, 347, 349 
Wave front reversal, see Phase conjugation 
Wave groups, 298–301 
Waveguides 

homogeneous media, 158–164, 298–301 
normal mode solutions for, 160–164 
ocean acoustic waveguide, 164, 326–327, 

350–355 
Wavelet, 342 
Wave vector matching, in solids, 266 
Weak shock absorption coefficient, see 

Absorption coefficient, finite 
amplitude 

Weak shocks 
amplitude in exponential waveform, 108 
amplitude in N wave, 107 
amplitude in wave sinusoidal at source, 

109–110 
arrival time, 93, 100–101 
coalescence of, 384 
defocusing, 367 
location of, 100 
in monorelaxing fluids, 154–155 
propagation speed of, 15, 100, 105 
reflections from, 94–99 

Weak shock theory, general framework, 
104–106 

Westervelt directivity function, 245 
Westervelt equation, 53
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