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Chapter 1

Calorimetry

Nural Akchurin

Texas Tech University, Advanced Particle Detector Laboratory,
Department of Physics and Astronomy,

Lubbock, TX 79409, USA

Calorimetry has been an essential part of nearly all high-energy physics
experiments for several decades and has witnessed a remarkable evolu-
tion in capability and complexity. Relatively simple and coarse detectors
have evolved into highly granular, sophisticated devices that deliver
maximal information on energy deposition of particles in matter. In
this chapter, we cover the fundamentals of energy measurement at high
energies, highlight the salient features of a select few calorimeters at the
LHC, and review the emerging ideas that hold promise for the future.
Advances in calorimetry have been facilitated by impressive progress in
high performance electronics, material science, and computing. There
is little doubt that the knowledge gained by targeted R&D efforts
and the experiences garnered in calorimetry at the LHC will result in
unprecedented devices for precise energy, space, and time measurements
of all fundamental particles at future colliders and elsewhere.

Keywords: Calorimetry, particle cascades, sampling calorimetry.

1.1 Introduction

Energy measurement of elementary particles at high energies is the domain

of calorimetry. Calorimeters produce signals that are proportional to the

energy of the impinging charged or neutral particles when these particles

completely deposit their energies within them. The types and processes by

which they generate these signals vary widely: a flash of light or a collection

of electric charge may represent the energy of the initial particle. These
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2 Instrumentation and Techniques in High Energy Physics

signals may be produced by electromagnetic and hadronic interactions

as the initial particle produces a cascade of secondary particles in the

calorimeter. In some cases, the calorimeter is a dense crystal (fully active)

and in others, comprises alternating layers of absorber and active materials

(sampling). In the last few decades, several insightful publications have

given us perspectives on the art and science of calorimetry [1–4]. In this

chapter, we focus on the fundamentals of electromagnetic and hadronic

showers by reviewing the relevant quantities and scaling relationships. To

date, hundreds of calorimeters have been built and operated with different

levels of capability. While we do not intend to give an exhaustive account

of all, we discuss a select few by delving into the phenomena behind

their unique features. We conclude this chapter by examining the latest

developments that are likely to play a role in the near future.

1.2 Electromagnetic Showers

Electrons above ∼1 GeV interact with a dense material mostly by

bremsstrahlung or “breaking radiation.” This is the process through which

energetic electrons that are accelerated in the Coulomb field of a nucleus

(+Ze) emit photons. As the electron traverses the medium, it experiences

the electric field of the atomic nucleus, incurs a change in its direction, and

emits a photon (e → e + γ) as the nucleus recoils, conserving energy and

momentum. In this process, the nucleus does not break up and the photons

display a 1/E spectrum. The atomic electrons play a negligible role in this

process because they carry a much smaller charge compared to the nucleus.

Photons of similar energies interact with the electric field of the nucleus

and create an electron–positron pair (γ → e+ + e−).
The interaction involves production of secondary particles in a cascade

process, also called a shower, until the energy of secondaries fall below a

threshold. When the average energy per particle is below this threshold,

the particle production stops, and electrons and positrons lose their energy

through ionization (dE/dx), typically below ∼10 MeV. Other processes,

such as Möller and Bhabha scattering and positron annihilation, contribute

to the energy loss but to a much smaller extent.

1.2.1 Radiation length and critical energy

The characteristic amount of matter traversed by an electron or positron

is called the radiation length, Xo. It is defined as the average longitudinal
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length at which an energetic electron (>1 GeV) loses 1− 1/e = 0.632 of its

energy through bremsstrahlung and atomic screening effects. The radiation

length is written as

X−1
o = 4αr2e

NA

A

{
Z2 [Lrad − f(Z)] + ZL

′
rad

}
(1.1)

where α is the fine structure constant, re is the classical electron radius

(e2/4πεomec
2 ≈ 2.82 fm), NA is Avogadro’s number, and A = 1 g mol−1.

Note that the coefficient 4αr2e
NA

A = (716.408 g cm−2)−1 applies specifically

to electrons through the mass term in the expression for the classical

electron radius. The function f(Z) is an infinite sum:

f(Z) = a2
[
(1 + a2)−1 + 0.20206− 0.0369a2 + 0.0083a4 − 0.002a6 + · · · ]

(1.2)

where a = αZ [5]. Lrad and L
′
rad are calculated by Tsai [6, 7] and given in

Table 1.1. A simpler expression that is accurate within a few percent is

Xo =
716.4A

Z(Z + 1) ln(287/
√
Z)

(1.3)

in units of g cm−2. It is understood that a high-energy electron will lose the

same fraction of its energy in going through 17.6 mm of iron, or 5.6 mm of

lead, or 361 mm of water, all representing 1 Xo. Therefore, the radiation

length is a useful measure in quantifying depth, essentially independent of

material properties (see Fig. 1.1).

One can think of Xo as the longitudinal length at which the number of

electromagnetic particles double. For electrons and positrons, this doubling

continues until their energy is degraded such that it becomes more likely

that they lose energy by dE/dx than by producing new particles, as

mentioned earlier. For photons, e+e− pair production becomes impossible

below the kinematic limit of Eγ = 2mec
2. Below this ∼1 MeV limit,

Table 1.1. The values for Lrad and L
′
rad are used to calculate

the radiation length of an element using Eq. (1.1).

Element Z Lrad L
′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others >4 ln(184.15Z−1/3) ln(1194Z−2/3)
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Figure 1.1. The scaling of electromagnetic showers in depth can be observed from EGS4
simulation [8] for different absorbers (Al, Fe, and Pb) for 100 GeV electrons [4]. Depth

is expressed in units of radiation lengths.

photoelectric effect and Compton scattering come into play, introducing

material dependences that can be significant.

For a mixture of materials, the radiation length can be calculated as

X−1
o =

∑
i

fi/Xi (1.4)

The fi is the volume fraction, and Xi is the radiation length (in mm) of

the ith component in the mixture. For compounds, the volume fraction

should be replaced by the mass fraction, and the radiation length should

be expressed in g cm−2.

The critical energy Ec may be identified as the energy at which energy

loss through ionization equals energy loss through bremsstrahlung. The

Particle Data Group [9] adopts Rossi’s definition of critical energy and

defines it as the energy at which the ionization loss per radiation length is

equal to the electron energy. These two definitions are the same with the

approximation [dE/dx]brems ≈ E/Xo. To account for the density differences

in materials, the approximate formulation of the critical energy can be given

as a/(Z + b)α. The parameter a equals 710 (gas) or 610 (solid) MeV, and

b equals 0.92 (gas) and 1.24 (solid) with α ≈ 1. For example, the critical

energy is 22 MeV for iron, 7.4 MeV for lead, and 83 MeV for water. The

largest fractional deviation appears at large Z values.
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The Molière radius (ρM ) is used to characterize the extent of transverse

shower size and, unlike the radiation length, does not have a fundamental

meaning:

ρM = Es
Xo

Ec
(1.5)

The scale energy Es =
√

4π
α mec

2 = 21.2 MeV and Ec is based on Rossi’s

definition. Assuming an infinite material length, a shower is contained at a

90% (99%) level inside a cylinder with 1 (3.5) ρM . Beyond this radial size,

the Molière radius scaling no longer works properly because the composition

effects become significant. The material independence of the Molière radius

can be shown by a crude approximation: the radiation length scales as
A
Z2 ≈ 1

Z and the critical energy as ∼ 1
Z . The Molière radius is 16.9 mm for

iron, 16.0 mm for lead, and 92 mm for water.

1.2.2 Longitudinal and transverse shower profile

The average distance at which energetic photons lose 1 − 1/e = 0.632 of

their energy (mean free path) equals (9/7)Xo. The near equality of the two

length scales for bremsstrahlung and pair production suggests a comparable

significance of these two processes in electromagnetic interactions. In

addition, this near-equality renders a well-behaved longitudinal shower

profile for electromagnetic showers generated by an incoming particle with

energy E0:

dE

dt
= E0b

[
(bt)a−1e−bt

Γ(a)

]
(1.6)

where t = x/Xo, a and b are free parameters, and Γ(a) is the gamma

function. The shower maximum occurs at tmax

tmax = (a− 1)/b = ln y + Cj (j = e, γ) (1.7)

where y = E/Ec, Ce = −0.5 for incident electrons, and Cγ = +0.5 for

incident photons. It is evident that the multiplicity of shower particles is

maximum at tmax and that the depth of shower maximum logarithmically

increases with energy. In order to use Eq. (1.6), one generally uses Eq. (1.7)

to find a by assuming b ≈ 0.5. For some common absorbers, the fitted b

values are plotted for incident electrons in the range of 1 ≤ E0 ≤ 100 GeV

using EGS4 [8]. It should be stressed that Eq. (1.6) represents the average

profile and does not work well in the early part of the shower. The cascade
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(b)(a)

Pb

Al

Cu

2 Xo

15 Xo

6 Xo

Figure 1.2. (a) The radial profiles of the energy deposited at 2, 6, and 15 radiation
lengths of Cu and (b) radial profiles for Al, Cu, and Pb are shown for 100 GeV electrons
based on EGS4 [8] simulations from Ref. [4].

process rises rapidly while the gamma function remains relatively flat in

this region. The EGS4 should be used when accurate results are needed.

The transverse profile of electromagnetic showers is generally expressed

by the sum of two Gaussians. In the earlier stage of the shower development,

before the shower maximum, the electrons and positrons travel off-axis

by multiple scattering within a narrow cylinder around the shower axis.

After the shower maximum, the photons and electrons are produced

isotropically. Compton scattering and the photoelectric effect dominate

their interactions, and the particles tend to travel farther off-axis in a larger

cylinder, expressed by a wider Gaussian (see Fig. 1.2(b)).

We can posit an important property about the energy resolution of

an electromagnetic calorimeter by assuming that the number of particles

doubles for each radiation length traversed. This process continues until

the average particle energy in the shower reaches the critical energy. The

average shower particle energy scales as E/n(t) or E/2t, where E is the

energy of the incoming particle, n represents the number of shower particles,

and t is the number of generations. The number of particles at the shower

maximum is n(tmax) ≈ E/Ec = y, where tmax ≈ log(y). The relationship

n(tmax) ∝ E indicates a linear response, and n obeys Poisson statistics.
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Thus, the fluctuations around the number of particles imply a (stochastic)

term in energy resolution that scales as a1/
√
E. For this basic reason, it is

vital to understand the sources of nonlinearities and deviations from 1/
√
E

scaling in electromagnetic calorimeters if the data suggest such a behavior.

A term that scales as a2/E can be added to account for noise that is often

relevant for precision electromagnetic calorimeters. In addition, there are

often energy-independent and uncorrelated effects that degrade the energy

resolution, which are represented by an additional (constant) term a3:

σ/E =

√
(a1/
√
E)2 + (a2/E)2 + (a3)2 (1.8)

A common way of writing the same is σ/E = a1/
√
E ⊕ a2/E ⊕ a3, where

⊕ means square root of sum of squares.

1.3 Two Examples of Electromagnetic Calorimeters

In this section, two typical electromagnetic calorimeters are described, and

their performances are analyzed in the light of what has been presented

above. The first example is a homogeneous calorimeter (CMS), where all

the particle’s energy is deposited in the active volume and is used to produce

a signal that is proportional to the incoming particle’s energy. The second

example is a sampling calorimeter (ATLAS), where a dense absorber and

active layers are interleaved. This approach allows the high density to fully

absorb the particle’s energy, while the shower is sampled in the active layers,

in which the measurable signal is produced. It should be noted that both of

these calorimeters played a crucial role in the discovery of the Higgs boson

in 2012 [10, 11] and they have been upgraded in various ways since their

original commissioning.

1.3.1 A fully active electromagnetic calorimeter:

CMS ECAL

Typically, homogeneous electromagnetic calorimeters are constructed using

blocks of scintillating high-Z inorganic crystals (e.g., BGO, BaF2, CsI,

CsI(Tl), LSO, LYSO, NaI(Tl), and PbWO4), Cherenkov radiators (e.g.,

PbF2 and lead glass), or noble liquids (e.g., Ar, Kr, and Xe). The best

energy resolution is obtained from homogeneous calorimeters, especially if

the scintillation light is high. Since they are homogeneous, there are no

sampling fluctuations degrading the energy measurement. Some of their

parameters are listed in Table 1.2.
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Table 1.2. Some high-Z crystal parameters relevant for calorimetry are given. The
superscripts for τdecay , λmax, and Relative Light Yield (LY) indicate the fast (f) and
(s) components of scintillation emission. For more details, see Ref. [9].

ρ Xo ρM dE/dx λint τdecay λmax n Relative
[g/cm3] [cm] [cm] [MeV/cm] [cm] [ns] [nm] LY

BGO 7.13 1.12 2.23 9.0 22.8 300 480 2.15 21
BaF2 4.89 2.03 3.10 6.5 30.7 650s 300s 1.50 36s

<0.6f 220f 4.1f

CsI 4.51 1.86 3.57 5.6 39.3 30s 310 1.95 3.6s

6f 1.1f

PbWO4 8.30 0.89 2.00 10.1 20.7 30s 425s 2.20 0.3s

10f 420f 0.077f

NaI(Tl) 3.67 2.59 4.13 4.8 42.9 245 410 1.85 100
PbF2 7.77 0.93 2.21 9.4 21.0 — — — Cherenkov

The CMS electromagnetic calorimeter is based on lead tungstate

crystals (PbWO4) [12]. As can be seen from Table 1.2, it is very dense

and exhibits a short radiation length and Molière radius, thereby rendering

electromagnetic showers more compact compared to the other crystals

listed. It also has high dE/dx. The shorter interaction length λint means

that the hadronic showers are also likely to start in the crystals. Compared

to NaI(Tl), PbWO4 is considerably less bright, but the photon emission

spectrum peaks around 425 nm, well matched to most photodetectors,

e.g., the avalanche photodiodes in CMS. The overall structure of the CMS

electromagnetic calorimeter is shown in Fig. 1.3.

The barrel section covers the range |η| < 1.479 and contains 61,200

crystals. The crystals are tapered and mounted such that the cracks

between them are not aligned with the particle trajectories coming from

the intersection point (3 degrees off in η and φ). The crystals are 23

cm (25.8Xo) in depth, and the cross-sections are slightly larger than a

Molière radius, measuring 2.2× 2.2 cm2 at the front and 2.6× 2.6 cm2

at the rear end. In terms of transverse granularity, this cross-section

corresponds to approximately 0.0174× 0.0174 in η and φ coordinates. The

barrel calorimeter weighs 67.4 tons.

The endcap section covers the range 1.479 < |η| < 3.0. Each endcap is

divided into 2 halves for mechanical reasons and holds 3,662 crystals. The

crystals are pointing 2 to 8 degrees off of projective orientation and are

22 cm (24.7Xo) in depth. The cross-section measures 2.86× 2.86 cm2 at

the front and 3.0× 3.0 cm2 at the rear end. The endcap calorimeter weighs

24.0 tons.
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Figure 1.3. Sketch of the CMS electromagnetic calorimeter where the individual
PbWO4 crystals are shown in the barrel and endcap regions. The crystals are tapered
and nearly projective, pointing to the interaction [12].

Two avalanche photodiodes (APDs) per crystal are used to detect the

scintillation light in the barrel section. The vacuum phototriodes (VPTs)

are used in the endcaps.

The energy resolution of the CMS electromagnetic calorimeter is given

as 3%/
√
E ⊕ 0.2/E ⊕ 0.5% with E in GeV [9]. In what follows, we analyze

each of these terms separately. The dominant factor that contributes to the

stochastic term of 3% is fluctuation in the photon yield and is given by√
F/Np.e.. F is the noise factor that parametrizes fluctuations in the gain

process, and it is about 2 for the APDs and 2.5 for the VPTs. Np.e., the

number of photoelectrons generated per GeV, is ∼4, 500. Thus, the photo-

statistical contribution is ∼2.1%. The lateral containment of the showers

also plays a role at the level of ∼1.5% after the signals from 5× 5 crystals

are summed. The contribution increases to ∼2% if a 3 × 3 crystal array

is used. The stochastic term reaches 2.6–2.9% when these two effects are

added in quadrature.

The noise term, 0.2 GeV in this case, scales as 1/E and comes predom-

inantly from electronics and digitization noise, with a small contribution
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from pile-up events. Incoherent noise is set by the square root of the number

of detector cells being summed. In a test beam study, the measured noise

level for the barrel was 40 MeV/channel after removal of the small channel-

to-channel correlated noise. As expected, this procedure resulted in a noise

level for the sum of 25 channels that was exactly 5 times the noise in a

single channel.

The main factor in the constant term, 0.5%, is the non-uniformity of

the longitudinal light collection. In the case of CMS, the crystal quality

specification was such that the contribution of this non-uniformity to

the constant term was less than 0.3% at the time of construction. This

meant a limit on the slope of the longitudinal light collection curve

in the region of the shower maximum of ∼0.35% per radiation length.

With time, radiation damage induces optical absorption, reducing the

light yield and introducing sizable non-uniformities in light collection. The

CMS collaboration developed an elaborate monitoring system to track and

correct for these effects [13]. In addition, the temperature sensitivity of

PbWO4 (−2.5%/oC) requires stringent temperature stability: 0.05 oC in

the barrel and 0.1 oC in the endcaps. Other smaller contributors come

from the inter-calibration errors and longitudinal energy leakage.

1.3.2 A sampling electromagnetic calorimeter:

ATLAS ECAL

The ATLAS electromagnetic calorimeter is a sampling calorimeter with

alternating layers of lead (Pb) and liquid argon (LAr). While the Pb

absorber is efficient in interacting with electrons and photons (Xo = 5.6

mm), the LAr layers (2 mm in the barrel and 1.2–2.7 mm in the endcap

with Xo = 14.2 cm) are responsible for generating measurable electron/ion

pairs that drift in the electric field (2 kV for 2 mm gaps in the barrel) and

induce a signal (∼450 ns drift time), which represents the energy deposition.

The calorimeter is arranged in an accordion shape in the barrel and endcap

calorimeters (Fig. 1.4).

Both the barrel and endcap calorimeters are longitudinally segmented

into three layers. The first layer is about 4.4Xo thick and is segmented into

strips in the η direction, typically 0.003 × 0.1 in Δη × Δφ in the barrel,

so as to provide an event-by-event discrimination between single photon

showers and overlapping showers coming from the decay of neutral hadrons

in jets. The second layer collects most of the electromagnetic energy in 17Xo

depth with a granularity of 0.025 × 0.025. The third and last layer is about
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(a) (b)

Figure 1.4. (a) Sketch of an ATLAS electromagnetic calorimeter module where the
different layers are visible. The granularity in η and φ for each of the three layers and for

the trigger towers is also shown. (b) A view of a small sector of the barrel calorimeter in
a plane transverse to the LHC beams [14].

2Xo thick with a strip granularity of 0.05 × 0.025. This layer is designed

to identify energy leakage beyond the calorimeter for high-energy showers.

In front of the barrel accordion modules, a 1.1-cm thick LAr pre-sampler

layer is used to correct for energy losses upstream of the calorimeter. While

this multi-layer structure introduced calibration difficulties, extensive use of

Monte Carlo and multivariate analysis techniques helped achieve excellent

electromagnetic response linearity and energy resolution for the ATLAS

collaboration.

Detector performance was characterized using a test beam over a range

of 15–180 GeV. The performance was linear within ±0.1% and the energy

resolution was found to be 10%/
√
E ⊕ 0.2% (E in GeV) [15–17].

1.4 Hadronic Showers

1.4.1 Structure of hadronic showers

As Fig. 1.5 illustrates, there are two major components in hadronic showers:

an electromagnetic component that comes from the decay of πos, ηs, and

other mesons, and a non-electromagnetic component that encompasses

everything else. The non-electromagnetic component includes the energy

expended by breaking up nuclei by overcoming the nuclear binding energy of
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λint

Absorber

π+
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(30-40%)

n
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Figure 1.5. A cartoon of a hadronic shower in an absorber such as lead. The
percentage numbers indicate the approximate amount of energy carried by each
process as a fraction of the non-electromagnetic component.

nucleons that does not result in a measurable signal, e.g., unlike the signals

generated by e− and e+ tracks in electromagnetic showers. This “invisible”

energy may be as large as 40% of the non-electromagnetic component. In

addition to the event-by-event fluctuations in energy sharing between the

electromagnetic and non-electromagnetic components of the shower, the

“invisible” energy within the non-electromagnetic component fluctuates

as well. Both fluctuations degrade the precision with which the energy of

incoming particles is measured.

The rapid decay (∼10−16 ns) of πos and other mesons to photons in the

shower may take place nearly anywhere in the calorimeter. These decays

resemble highly localized bursts of electromagnetic energy and are unique

to hadron showers, as shown in Figs. 1.6(c) and 1.6(d) [18]. One hadronic

shower does not look like another, whereas electromagnetic showers display

little variation (Figs. 1.6(a) and 1.6(b)).

For illustration purposes, if one assumes that all available energy goes

to meson production in a hadron-initiated shower and, on average, that
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(a) (b) (c) (d)

Figure 1.6. Longitudinal energy deposit profiles for randomly selected 170 GeV
electron (columns (a) and (b)) and 270 GeV π− (columns (c) and (d)) showers
in a lead/iron/plastic-scintillator calorimeter [18]. The longitudinal profile of
electromagnetic showers varies little from shower to shower, as observed in the
six events in the left two columns. The sharp peaks in (c) and (d) are due
to local electromagnetic showers induced by πo decays and occur beyond the
first interaction length of the calorimeter. This feature has deep implications for
hadronic energy resolution, response linearity, signal distribution, and calibration
[19, 20]. The horizontal axes range from 0 to 6 λint, while the vertical axes are
proportional to the deposited energy.

1/3 of the mesons are πos in the first interaction, then in the second

interaction, if energetically possible, the remaining hadrons produce mesons

of which a third will again be πos. At the end of the second interaction,

the electromagnetic fraction (fem) will thus be 1/3 + 1/3× 2/3 = 5/9. At

the end of the third interaction, the electromagnetic fraction will further

increase to 5/9 + 1/3 × 4/9 = 19/27. For n interactions, fem will simply

obey a power law, 1 − (1 − 1/3)n. Of course, as depicted in Fig. 1.5, the

hadronic interactions are more complicated than purely meson production.

In commonly used absorbers, such as iron, copper, or steel, typically ∼80%
of the non-electromagnetic energy is deposited through nuclear reactions.

Apart from the nuclear binding energy losses, which constitute the invisible

energy, these reactions produce evaporation protons and neutrons, alphas,
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and other light ions. The hadron-induced showers also contain about

10% kaons. Vastly different energies and sampling of these particles make

hadronic calorimetry somewhat complex.

The average fem in hadronic showers initiated by a hadron with energy

E is expressed as

〈fem〉 = 1− (E/E0)
k−1 (1.9)

where E0 is a material dependent scale factor related to the average energy

needed to produce one pion in hadronic interactions. The value of E0 varies

from 0.7 GeV for copper to 1.3 GeV for lead in π±-induced reactions.

The exponent k defines the energy dependence of fem and is around 0.8

[21, 22]. The connection between Eq. (1.9) and the previously discussed

power-law simplification of fem becomes clear by observing that the non-

electromagnetic fraction (1− 1/3)n can be written as (1− fπo)n and more

generally expressed as (1 − fπo) = 〈m〉(k−1), where 〈m〉 stands for the

average multiplicity per nuclear interactions. It then follows that 〈fem〉 =
1− 〈m〉n(k−1) = 1− (E/E0)

k−1
.

For proton-induced reactions, 〈fem〉 is typically smaller, which is broadly

attributed to baryon number conservation. At high energies, an incoming

proton is more likely to remain a proton or turn into another baryon

(e.g., neutron) after undergoing a hadronic interaction, thereby suppressing

the energy fraction going into the electromagnetic component through πo

decays. If an incoming particle is a charged pion, a leading charged or

neutral pion is produced at the first interaction. If the leading particle

is a πo, the electromagnetic fraction is boosted. If, on the other hand, the

leading particle is a charged pion, the second interaction may produce a πo.

Consequently, for non-compensating calorimeters (see Section 1.4.3), the

event-by-event fluctuations are smaller and more symmetrically distributed

around the average value for proton-induced showers (Fig. 1.7) [23, 24].

1.4.2 Hadronic shower profiles

The average distance that a high-energy hadron traverses before undergoing

a nuclear interaction in a medium is defined as the nuclear interaction

length (λint) and is used as the length scale to describe hadronic showers.

The probability that an interaction takes place on a path along z-direction

is then 1 − exp (−z/λint). The inelastic interaction cross-section σ is

proportional to A/(NAλint), and in units of g cm−2, λint ∝ A1/3 because

σ ∝ A2/3. To a good approximation, λint = 37.8 (g cm−2)A0.312. The
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(a) (b) (c)

Figure 1.7. (a) Event-by-event fluctuations in the electromagnetic fraction of
150 GeV π− showers in lead [25]. Signal distributions for 300 GeV pion (b) and
proton showers (c) in a copper-based calorimeter [24].

interaction length for iron is 16.8 cm, for lead 17.0 cm, and 84.9 cm for

water. Note that the interaction length is generally given for protons. Up

to ∼100 GeV, the pp cross-sections are larger than πp cross sections by

roughly 30%. Thus, the interaction length for pions is longer by the same

amount.

Hadron calorimetry requires a better than 99% longitudinal contain-

ment if a good energy measurement is desired. In iron, and in materials

with similar Z, 99% longitudinal containment requires a thickness ranging

from 3.5λint at 10 GeV to 7λint at 100 GeV. Figure 1.8(a) shows 95%

and 99% containment depths for pions in iron based on data from the

CDHS experiment [26]. The energy containment at the level of 95% in the

transverse direction requires a radius of 1.5− 2λint (Fig. 1.8(b)).

The nuclear interaction length is generally much larger than the

radiation length, and the ratio λint/Xo is proportional to Z. Therefore,

it is possible to distinguish electrons from hadrons based on longitudinal

shower profile by using high-Z absorbers as part of pre-shower detectors.

For example, a thin sheet of lead combined with a scintillation counter

makes a very efficient electron/pion discriminator because λint/Xo is about

30 for lead. A 2-cm (3.6Xo) thick block will induce showers for electrons,

while hadrons will have only ∼11% probability of undergoing an inelastic

interaction with it.
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(a) (b)

Figure 1.8. (a) The depths needed to contain hadronic showers, on average, at
the level of 95% or 99% in iron as a function of the pion energy [26]. Data from
Ref. [27] suggest a larger depth requirement for 99% containment. (b) Average
transverse containment of pion-induced showers in a lead-based calorimeter as a
function of the radius of an infinitely deep cylinder around the shower axis, for
three different pion energies [28], shows that the lateral shower leakage fraction
decreases with increasing pion energy. Large event-to-event fluctuations in πo

production are responsible for the fact that the hadronic energy resolution is
more sensitive to the effects of side leakage (Section 1.4.1).

1.4.3 Calorimeter response and compensation

Calorimeter response is defined as the average conversion efficiency of

the deposited energy into a measurable signal that is normalized to that

of electrons. We denote the calorimeter response to the electromagnetic

showers as e and to the hadronic shower components as h. The e/h ratio

for a calorimeter can be evaluated based on the response measurements

to pions and electrons as a function of particle energy E. In practice, one

performs an energy scan in as wide an energy range as possible to obtain

the π/e ratios and calculates 〈fem〉 based on appropriate choices of E0 and

k for each energy using Eq. (1.9):

e

h
=

1− 〈fem(E)〉
π/e(E)− 〈fem(E)〉 (1.10)

The e/h value reflects the calorimeter’s efficiency to generate signals in

response to electromagnetic versus non-electromagnetic energy depositions;
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it rarely equals one and is said to be under- (e/h > 1) or over-compensating

(e/h < 1). The vast majority of calorimeters are under-compensating as a

consequence of invisible energy. In principle, it is possible to tune the e/h

ratio to equal unity through the sampling fraction. The sampling fraction,

fsamp, is equal to the energy deposited in the active medium divided by the

total energy deposited in the calorimeter by a minimum ionizing particle

(mip) or to the ratio of the minimum values of (dE/dx) for the active

medium and calorimeter. The simplest way of suppressing e is to use a

high-Z absorber. The high-Z absorber very effectively suppresses signal

generation by low-energy photons because of the strong Z-dependence

of photoelectric effect (σ ∝ Z5). The majority of photoelectrons are

captured within the absorber, and only the ones near the surface escape,

inducing an observable signal. Enhancing the non-electromagnetic response

h, on the other hand, requires hydrogen in the active medium so that

recoiling protons from abundant neutrons contribute to the overall hadronic

response.

The electromagnetic response linearity with energy is fundamental and

dictated by Poisson statistics, as stressed in Section 1.2.1. However, the

calorimeter response to hadrons, 〈fem〉+(1−〈fem〉)h/e, is energy-dependent
and non-linear. Event-by-event fluctuations in fem are large and non-

Poissonian. If e/h �= 1, these fluctuations dominate the energy resolution

and are reflected in asymmetric signal distributions (Fig. 1.7). It is often

assumed that the effect of non-compensation on energy resolution is energy-

independent and represented by the constant term; however, the effects of

fluctuations in fem on energy resolution can be described by a term that is

very similar to the one used for the energy dependence of its average value

(Eq. (1.9)). This term can be added in quadrature to the E−1/2 scaling

term that accounts for all Poissonian fluctuations:

σ

E
=

a1√
E
⊕ a2

[(
E

E0

)l−1]
(1.11)

where the parameter a2 = |1 − h/e| is determined by the degree of non-

compensation [29]. This approach leads to a somewhat larger stochastic

term when the energy resolution is expressed as a linear sum: a1/
√
E + a2.

We tend to characterize most calorimeters by the stochastic term in

their resolution; however, the a1/
√
E parametrization serves a limited

purpose at high energies because the resolution is dominated by deviations

from this scaling. In addition, statements about energy resolution are only

meaningful if they include the effects of nonlinearity, which apply to almost
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all calorimeter systems currently in use or planned. Signal nonlinearity

introduces additional uncertainties in the mean value of the response for

jets, which have to be taken into account if one wants to address the

precision with which the energy of individual jets can be measured.

1.5 Two Examples of Hadronic Calorimeters

The CMS and ATLAS hadron calorimeters are large, complex, and

considerably different from each other in operating principles. After a brief

description of each, we focus on their unique features, drawing on the

concepts discussed so far.

1.5.1 Scintillating plates/brass calorimeter:

CMS HCAL

The CMS hadronic calorimeter (HCAL) is a sampling structure consisting

of alternating brass and scintillator plates. It is located behind the PbWO4

crystal electromagnetic calorimeter (ECAL) we discussed in Section 1.3.1.

The e/h ratios of 2.5 (ECAL) and 1.4 (HCAL) [30] are appreciably differ-

ent, and the combined calorimeter system presents interesting challenges

because of this difference [31].

The barrel HCAL covers the pseudorapidity range −1.3 < η < 1.3

and consists of 36 identical azimuthal brass wedges (Δφ = 20◦), which
form two half-barrels. Each wedge is further segmented into four azimuthal

(Δφ = 5◦) sectors. The plates are bolted together in a staggered geometric

configuration that contains no projective passive material for the full radial

extent of a wedge. The interleaved scintillator plates are divided into 16 η

sectors, resulting in a segmentation of (Δη,Δφ) = (0.087, 0.087). The total

absorber thickness at 90◦ is 5.82 λint. The effective thickness increases with

the polar angle to 10.6 λint at |η| = 1.3. The ECAL in front adds ∼1.1λint

independent of η [30, 32].

The signal distributions for 5 and 100 GeV π− test beam particles are

displayed in Fig. 1.9. A sizable fraction of pions interact in the ECAL, as the

higher and broader signal distributions indicate in Figs. 1.9(a) and 1.9(d).

Sharp and narrow minimum ionization peaks, caused by particles that

penetrate the ECAL without starting a shower, are also evident. The signals

in the HCAL show complementary distributions, i.e., small signals for the

early showering particles and larger signals for the ones that penetrate the

ECAL.
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(a) (b) (c)

(d) (e) (f)

Figure 1.9. The signal distributions for 5 and 100 GeV π− are shown for the
CMS ECAL section (a) and (d), the HCAL section (b) and (e), and the combined
system ECAL+HCAL (c) and (f), which also includes longitudinal energy leakage
[31,33].

Figure 1.10 shows the response of the CMS calorimeters to a variety

of particles. The data are normalized to the electron response for both

sections of the calorimeter. In Fig. 1.10(a), where the calorimeter response

is plotted as a function of beam momentum, large differences between the

different particles are apparent, especially at low momenta. For example, at

5 GeV, the antiproton response is ∼70% of the electron response, while the

responses to charged pions and protons are 62% and 47% of the electron

response, respectively. However, a calorimeter responds to available energy,

which is different for different particles carrying the same momentum. For

pions and kaons, the available energy is their kinetic energy plus their mass.

For protons, it is the kinetic energy, and for antiprotons, the available energy

for a calorimetric signal equals the kinetic energy plus twice the proton rest

mass. In Fig. 1.10(b), the same data are plotted as a function of available

energy. One would expect the response to be independent of the hadron
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(a) (b)

Figure 1.10. (a) The response of the combined CMS ECAL+HCAL calorimeter to
different particles is shown as a function of beam momentum or (b) as a function
of available energy [31]. The combined response is normalized to that for electrons.

type when the data are represented this way, but differences still remain

for reasons we explain next.

The response to π+ is systematically larger than the π− response

and more so as the energy decreases. This can be understood from the

characteristics of the charge exchange reactions, π+ + n → πo + p (I) and

π− + p→ πo+n (II). In these reactions, a large fraction of the pion energy

is carried by the final state πo, which develops electromagnetic showers.

Therefore, the calorimeter response to pions interacting this way is close to

unity.

Since the target material (PbWO4) contains about 50% more neutrons

than protons, the relative effect of reaction (I) is larger than that of reaction

(II), and consequently, the calorimeter response to π+ should be expected to

be larger than the π− response. As noted earlier, the inelastic cross-section

for baryon induced interactions is larger than for pions; a larger fraction

of the baryons start showering in the ECAL. The effective thickness of the

ECAL is thus 1.05λint for protons and 0.89λint for pions. Since the total

cross-sections for protons and antiprotons are about the same, the same

holds for the effective ECAL thickness.

Figure 1.11 illustrates how energy is shared between the ECAL and

HCAL sections for different hadrons. The fraction of the energy recorded by

the ECAL increases from ∼25% at the highest energies to ∼60% at 2 GeV.
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(a) (b)

Figure 1.11. (a) The fraction of energy deposited in the CMS ECAL as a function
of the available energy for charged pions and (anti)protons. (b) The response to
pions as a function of energy, for the CMS barrel calorimeter. The events are
subdivided into two samples according to the starting point of the shower, and the
response is also shown separately for these two samples [33]. The normalization
is based on the response to electrons.

At the same energies, protons deposit on average less than pions in the

ECAL, while antiprotons deposit more than pions. Antiprotons start their

showers, on average, earlier than pions, and therefore a larger fraction of

the energy ends up in the ECAL. It would seem that one could expect

the same for proton-induced showers. However, when a proton interacts

in the ECAL, the final state should contain 2 baryons, which limits the

energy available for πos. And, since the ECAL, for all practical purposes,

only sees the πo component of the showers, this effect suppresses the

proton signal in the ECAL despite the fact that protons are more likely

to start their showers in the ECAL compared to pions. The baryon number

conservation requirement does not limit πo production for antiproton

induced showers. To first approximation, there is no difference with pion

induced showers. The ECAL/HCAL energy sharing properly reflects the

difference in interaction length in this case.

The effects described above also explain why the antiproton response is

systematically smaller than the pion response (Fig. 1.10(b)). Antiprotons

are more likely to start showering in the ECAL compared to pions. Pions

deposit, on average, a larger fraction of their energy in the HCAL. Since
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the e/h value of the HCAL is smaller than that of the ECAL, the pions

benefit more from the increased response to the non-electromagnetic shower

components.

Another consequence of different e/h ratios for the ECAL and HCAL

emerges in energy reconstruction when the showers start early in ECAL or

late in HCAL. Figure 1.11(b) shows that the late showers deposit almost

no energy in the ECAL, and therefore their response is determined by

the more compensating HCAL. Early showers experience the strong (by a

factor of 2.5) reduction in the response to the non-electromagnetic shower

component deposited in the ECAL. The fact that the discrepancy increases

at lower energy reflects the changes in the longitudinal shower profile also

observed in the energy sharing plot (Fig. 1.11(a)). The larger the average

fraction of the shower energy deposited in the ECAL, the larger the response

discrepancy between showers that start in the ECAL and those that do

not. CMS applies corrections in reconstructing the energies of hadrons, as

described in detail in Ref. [31]. Above 5 GeV, these corrections lead to an

energy resolution of the combined system where the stochastic term equals

84.7±1.6 %/
√
E (E in GeV) and the constant term is 7.4±0.8 %. The

corrected mean response remains constant within 1.3% rms.

1.5.2 Scintillating plates/iron and liquid argon

calorimeter: ATLAS HCAL

The ATLAS hadronic calorimeter (TileCal) is a sampling iron/plastic-

scintillator detector in the region |η| < 1.7. It is divided into three

cylindrical sections, referred to as the barrel and extended barrel sections.

This hadronic calorimeter extends from an inner radius of 2.28 m to an outer

radius of 4.25 m. Each section is segmented into 64 azimuthal sections,

referred to as modules, covering Δφ = 2π/64 ≈ 0.1. The scintillator

plates are oriented perpendicularly to the colliding beam axis and are

radially staggered in depth, as shown in Fig. 1.12. By the grouping of

wavelength shifting fibers to specific photomultiplier tubes (PMT), modules

are segmented in η and in radial depth. In the direction perpendicular to

the beam axis, the three radial segments span 1.5, 4.1, and 1.8 λint in

the barrel and 1.5, 2.6, and 3.3 λint in the extended barrels. The resulting

cell dimensions are Δη × Δφ = 0.1 × 0.1 (0.1 × 0.2 in the last segment).

This segmentation defines a quasi-projective tower structure, where the

deviations from perfect projectivity are small compared to the typical

angular extent of hadronic jets. Altogether, TileCal comprises 4,672 readout
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Figure 1.12. The mechanical structure of the ATLAS TileCal module. The plastic
scintillator tiles are read out from both sides with wavelength shifting fibers into
separate PMTs. The staggered absorber/scintillator and the radioactive source
tubes are shown on the right.

cells, each equipped with two PMTs that receive light from opposite sides of

every tile; see Refs. [28,34] for detailed description. The endcap and forward

hadronic calorimeters (1.5 ≤ η ≤ 4.9) are based on LAr technology.

The ATLAS collaboration tested their electromagnetic (Pb/LAr) and

hadronic calorimeter systems with low (3–9 GeV) [35] and high momentum

(20–350 GeV) [36] particle beams. Both sections were calibrated using

electrons, and the shower energy in the calorimeter was determined as

the sum of raw signals from these two sections, Eraw = Eraw(EM) +

Eraw(HAD). The Eraw(EM) term was the sum of the energy deposited in

the front, middle, and back samples of the electromagnetic section, and the

Eraw(HAD) represented the sum of signals from the first and second samples

of the hadronic section for low energies. In reconstructing the energy of the

event, several conditions were applied: no pre-sampler contribution was

added to the electromagnetic signal, and only calorimeter cells with energy

depositions larger than twice the standard deviation of the electronic noise
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(a) (b)

(c) (d)

Figure 1.13. Distribution of the reconstructed energy (Eraw) for the combined
ECAL+HCAL ATLAS system for (a) 3 GeV, (b) 5 GeV, (c) 7 GeV, and (d) 9 GeV
pions at ηbeam = 0.35 [35]. The full points represent the measured data. The
dashed curves correspond to a fit to the data in a region ±2σ around the mean
value where the electron and muon contaminations in the beam are taken into
account. The solid curve represents the expected contribution of the electron
contamination in the beam. At 3 GeV, the long-dashed curve shows the expected
contribution from the decay muons. The histograms correspond to the prediction
of the GEANT4 with the QGSP BERT physics list [37].

were included in the sum. The total expected electronic noise level was

∼160 MeV, and the absolute value of the pedestal shift was less than

2 MeV. No corrections due to shower containment, non-compensation, or

dead material were applied. The signal distributions for low energies are

shown in Fig. 1.13.

Figure 1.14 reveals a strong signal nonlinearity in response to hadrons as

a function of energy. The relative response difference between the measured

and simulated data depends on the beam energy and the impact point on

the calorimeter (ηbeam). The simulation overestimates the signal by 5–10%

at low momenta (3–9 GeV), while the energy resolution is underestimated

by 15% at 3 GeV and 5% at 9 GeV. In general, the agreement is somewhat

better at higher energies but degrades at higher ηbeam.
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(a) (b)

Figure 1.14. The measured Eπ/Ebeam ratio (for ηbeam = 0.35) for the combined
ECAL+HCAL ATLAS system (a) at low [35] and (b) high energies [38]. The
error bars include statistical as well as systematic errors added in quadrature.
The GEANT4 prediction is represented by the black circles.

(a) (b)

Figure 1.15. The response of TileCal (at ηbeam = 0.35) to pions as a function of
pion energy (a) before and (b) after corrections for the effect of shower leakage.
The squares represent GEANT4 predictions. The curve shows the result of a fit,
Eπ = Eem[h/e+〈fem〉(1−h/e)]−1 with e/h = 1.33, E0 = 1 GeV, and k = 0.85 [28].

In Fig. 1.15(a), the responses are plotted without leakage corrections,

and in Fig. 1.15(b), with longitudinal and transverse leakage correc-

tions [28]. The response of the TileCal to pions was parametrized as

E(π)/Ebeam = (1 − fh) + (he )fh and fitted to experimental data. When

Figs. 1.14 and 1.15 are compared, it becomes clear that most of the signal

nonlinearity is induced by the Pb/LAr ECAL calorimeter: in the 20–350
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GeV range, ∼10% nonlinearity of TileCal alone increases to ∼20% in the

combined system. At low energies, the nonlinearity is even more dominated

by the ECAL.

The TileCal hadronic energy resolution is best described by a stochastic

term of (52.9± 0.9)%/
√
E (E in GeV) and a constant term of 5.7± 0.2%.

The noise level is small at all energies and is not considered in this

evaluation. There is a good agreement at higher energies between the

GEANT4 simulation [37] and measurements.

The response difference between pions and protons, originally observed

in Cherenkov calorimeters [24], was also observed in the TileCal beam tests

[28]. As the particle energy increases up to 200 GeV, the π/p response ratio

decreases; however, the energy resolution for protons is 15–20% better as

πo production fluctuates less, event by event.

1.6 Developments and Trends

The idea of compensation (e/h = 1) by utilizing signals due to slow neutrons

that occur over long times (several 10s of ns) and over large volumes (radius

of several 10s of cm) was put forth four decades ago, and it was successfully

demonstrated to improve hadronic energy resolution [39, 40]. More than

a decade later, the DREAM (Dual-REAdout Module) collaboration [41]

showed that event-by-event compensation was also possible by tracking

the electromagnetic fraction, fem, if the signals from scintillating and

clear fibers were measured simultaneously. Around the same time, the

CALICE (CAlorimeter for LInear Collider Experiment) collaboration [42]

developed highly granular calorimeters to “image” showers and to be used

in combination with precision trackers in support of a particle flow approach

for the future collider experiments. The emerging ideas today center

around integrating artificial intelligence and machine learning techniques

for improved energy, space, and time reconstruction. Simulation results are

encouraging; however, experimental confirmation of these results is needed.

We discuss these approaches in this section.

At a future e+e− collider, likely the next major collider to be built after

the LHC, one of the requirements will be to identify hadronically decaying

W and Z bosons. An important gain in event rates can be achieved by using

the hadronic decay modes of the Z (e.g., in e+e− → HZ), if the hadronically

decaying W s from more abundant processes (e.g., in e+e− → W+W−)
can be distinguished by the calorimeters. The requirement necessitates

measuring 80–90 GeV jets with a resolution of 3–3.5 GeV or achieving

a ∼30% stochastic term in the hadronic energy resolution.
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1.6.1 Dual-readout approach

In the dual-readout approach, one simultaneously measures dE/dx and

the Cherenkov light generated in the active components of the calorimeter

and determines the fem event by event. Doing this removes the degrading

effects of its fluctuation on the energy resolution. These two signals provide

complementary information on the shower content: the non-electromagnetic

component mostly originates from non-relativistic particles and does not

contribute to the generation of the Cherenkov signal. This principle was

first experimentally demonstrated by the DREAM Collaboration with a

Cu/fiber calorimeter [43]. Scintillating fibers (S) measured dE/dx contri-

bution from all charged particles (e±, π±, K±, recoil and spallation p, and

nuclear fragments), whereas the quartz/clear plastic fibers (Q) generated

the Cherenkov light initiated by the relativistic e±s coming from the πo

decays:

S = E

[
fem +

1

(e/h)S
(1 − fem)

]
(1.12)

Q = E

[
fem +

1

(e/h)Q
(1− fem)

]
(1.13)

where the e/h ratios for the scintillator and Cherenkov structures of the

calorimeter are denoted by the corresponding subscripts. These ratios were

(e/h)S ≈ 1.3 and (e/h)Q ≈ 4.8 for the DREAM module. The Q/S ratio

has no energy dependence, as the incoming particle energy E cancels out

in the the ratio and the electromagnetic fraction equals:

fem =
(h/e)Q − (Q/S)(h/e)S

(Q/S)[1− (h/e)S ]− [1− (h/e)Q]
(1.14)

It is convenient to define a parameter χ so that the hadron energy can be

simply expressed:

E =
S − χQ

1− χ
where χ =

1− (h/e)S
1− (h/e)Q

(1.15)

A correlation between the S and Q signals is shown for 100 GeV pions

in Fig. 1.16(a). Both axes are in GeV and calibrated by electrons. Several

comments are appropriate at this point:

• Since both sections of the calorimeter are calibrated with electrons, the

100 GeV electron data points, if they were plotted, would form a tight

cluster at (100 GeV, 100 GeV), indicating fem = 1. The larger the

electromagnetic component of the hadronic shower, the higher the events
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(a) (b)

Figure 1.16. (a) Cherenkov (Q) signals versus scintillator (S) signals and
(b) the distribution of the Q/S ratio and the fem fraction derived on the basis of
Eq. (1.14), for 100 GeV π−s detected with the DREAM calorimeter [43].

are along the diagonal line Q/S = 1. For example, electromagnetic energy

leakage out of the calorimeter means that the data points move diagonally

down along this line.

• The scintillation signal is always larger than the Cherenkov signal because

all charged particles contribute to S, whereas only the relativistic ones,

a subset of all charged particles, contribute to Q.

• The ionization signal from a recoil or spallation proton moves the

data points along the S-axis. Enriching the hydrogen content of the

active material (scintillator) would have the effect of rotating the cluster

of events counterclockwise around the fem = 1 point. If the signal

collection is performed over a long time and in a large volume, the

correlation cluster will be entirely vertical, achieving compensation. At

this point, the dependence on Q vanishes, implying insensitivity to

energy fluctuations between the electromagnetic and non-electromagnetic

shower components. Conversely, for example, if the energy leaks out of

the calorimeter in the form of neutrons, the data points shift horizontally

to the left along the S-axis.

• It is instructive to think of the dual-readout approach as a rotation

around the fem = 1 point by an angle π
2 − θ that displaces the cluster

of data points such that their projection onto the S-axis minimizes its
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Figure 1.17. The time structure of a typical shower signal measured in the BGO
calorimeter equipped with a UV filter. The signals were used to measure the
relative contributions of scintillation light (gate 2) and Cherenkov light (gate 1).
Note that in this case, with a single readout it is possible to measure the both
signals from a single active medium [47].

standard deviation, thus improving energy resolution measured by using

the S signals. The slope of the cluster (angle θ with respect to the S-axis)

depends only on the two e/h ratios (note cot θ = χ as in Eq. (1.15)). The

larger the difference between the two e/h ratios, the more effective is the

dual-readout approach [44].

This technique can be applied to dense crystals where both the scintilla-

tion and Cherenkov photons are simultaneously generated (Fig. 1.17). The

separation of scintillation and Cherenkov photon signals has been shown to

be achievable (e.g., PbWO4 and BGO) by exploiting the features in signal

time structure and the emission wavelength [45–47]. Other discriminating

features such as directionality and polarization [48, 49] of Cherenkov light

may also be exploited in the future. The use of crystals is often preferable

when exceptionally good electromagnetic energy resolution is desired. This

will likely be the case for the heavy flavor and electroweak physics programs

at future e+e− colliders [50, 51].
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In addition to the pulse integrals, the temporal characteristics of pulses,

or pulse shapes, carry rich information to be exploited. For instance, the

exponential tail of plastic scintillator signals contains the characteristic

information expected of non-relativistic neutrons that is absent in the

time structure of the Cherenkov signals. The event-by-event contribution

of neutrons to the calorimeter signals in this way would further improve

the energy resolution beyond the levels made possible by the dual-readout

[52]. For example, if rare-earth doped scintillators were introduced in

addition to organic scintillating ones in a triple-readout scheme, then

it would be possible to track the fluctuations originating from binding

energy losses in nuclear break-up by detecting the neutrons of a few

MeV. In principle, this can be accomplished by measuring the signal

difference between the two scintillating (hydrogenous vs. non-hydrogenous)

media on an event-by-event basis. Other variations are also evident: for

example, taking advantage of the differences in signal decay times, mixed

Cherenkov and (inorganic) scintillation light can be separated by a pulse

shape discrimination technique (e.g., Fig. 1.17), reducing the number of

multiple readout channels but maintaining the advantage of a multiple-

readout scheme.

1.6.2 Particle flow approach

The principle concept behind the particle flow approach is the use of a

tracker in conjunction with a high-granularity calorimeter. The momenta

of charged jet particles are measured with the tracker in a magnetic field,

while the energy of the neutral particles is measured with the calorimeter.

This approach was successfully demonstrated by the ALEPH collaboration,

which measured the mass of hadronically decaying Zs within 6.2 GeV [53].

The CMS collaboration has also adopted a similar approach, appreciably

improving missing energy resolution [54].

A challenging aspect of this technique is that the calorimeter has to

interpret energy deposits coming neither from charged particles nor from

photons as neutral hadrons. But the calorimeter cannot distinguish neutrals

from charged, and this ambiguity leads to the so-called “confusion.”

Proponents argue that highly granular calorimeters with small individ-

ual cells, comparable to Molière radius or radiation length throughout

the calorimeter, reduce the effect of this confusion [55]. Among several

reconstruction algorithms based on particle flow approach, Pandora [56] is

commonly used in the context of future lepton collider studies.
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The CALICE collaboration has built several high-granularity prototypes

and pioneered the development of “imaging” calorimetry. Among them, two

high-granularity silicon (SiW-ECAL) [57] and scintillator (ScW-ECAL) [58]

electromagnetic calorimeters with tungsten absorbers were investigated.

The dense absorber, such as tungsten with small Xo and ρM , allows for

a compact design that aids in resolving adjacent showers. SiW-ECAL

featured nearly 10,000 1 cm2 silicon pads in 30 active layers (24 Xo).

The energy resolution of 16.53%/
√
E ⊕ 1.07% for electrons was achieved

[59] in beam tests at DESY and CERN. An upgraded version with over

15,000 channels was tested with low-energy electrons at DESY [60]. The

ScW-ECAL consisted of 30 layers of 3.5 mm thick absorber plates (20Xo)

with over over 2,000 scintillator channels coupled to wavelength shifting

fibers and readout by silicon multipliers. This prototype achieved energy

resolution of 12.5%/
√
E ⊕ 1.2% energy resolution for electrons at Fermilab

tests [61].

The CALICE collaboration has been investigating various types of

highly granular hadronic calorimeters and has built digital (DHCAL) and

analog (AHCAL) prototypes. The DHCAL is based on resistive plate

chamber (RPC) technology [62] and operates in a digital mode: it is

assumed that the number of hits over a threshold is proportional to

the incoming particle’s energy. The steel prototype consisted of 350,208

readout channels with transverse granularity of 1× 1 cm2 and longitudinal

segmentation of 38 layers. Figure 1.18 shows the electromagnetic and

hadronic energy resolutions from beam tests performed at Fermilab [63].

The data points (black squares) are fitted to Eq. (1.8), and the ratio

between the simulation and the data (bottom plots) shows an agreement

within ∼5% for the energies below 20 GeV. The saturation caused by dense

electromagnetic showers in this binary readout of 1× 1 cm2 pads clearly

degrades the performance to a modest resolution of (34.6 ± 0.9)%/
√
E ⊕

(12.5 ± 0.3)%. This saturation may be mitigated by employing weighting

algorithms based on the hit densities [64].

Figure 1.18(b) shows the energy resolution of DHCAL for pions.

The black curve represents the fitted Eq. (1.8) for beam energies below

32 GeV, which gives (51.5 ± 1.5)%/
√
E ⊕ (10.6 ± 0.5)%. Above 32 GeV,

the resolution degrades for the same reason as in the electromagnetic case.

The saturation effects dominate in this binary readout scheme and result

in poor performance.

The CALICE collaboration developed a semi-digital hadron calorimeter

(SDHCAL) with a three-threshold readout system to address the saturation
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(a) (b)

Figure 1.18. (a) The energy resolution for positrons with energies from 2 to
25 GeV and (b) the energy resolution for π+ with energies from 6 to 60 GeV.
The bottom plots show the ratio of the simulations and data. The data points are
indicated by black squares, and the black curve represents the fit to Eq. (1.8). The
error bands show the systematic and statical uncertainty added in quadrature.
The statistical errors are smaller than the size of the markers [63].

effects observed in the binary readout system discussed above [65]. They

found that the energy response with a 4–5% deviation from linearity in

the 5–80 GeV energy range. The resolution associated with the linearized

energy response of the same selected data sample was also estimated in

the binary and the multi-threshold modes. The multi-threshold capabilities

clearly showed improved resolution at energies above 30 GeV. The energy

resolution is 7.7% at 80 GeV, likely due to information provided by the

second and third thresholds. For more details, see Refs. [66, 67].

The CMS collaboration has adopted silicon and SiPM-on-tile high

granularity technology and is in the process of building a 6-million-channel

endcap calorimeter for the HL LHC phase [68–70]. The large number of

channels presents challenges in mechanical and electronics integration and

data processing. The calibration method relies on a minimum ionizing

muon signal being above noise for the lifetime of the detector, a challenge

exacerbated by radiation damage of active elements (silicon sensors and

scintillating tiles) [71–73]. Figure 1.19 shows a 300 GeV pion track before a
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Figure 1.19. An event display illustrating the development of a hadronic shower
initiated by a pion of 300 GeV energy starting in the last layers of the
electromagnetic section and depositing energy in the hadronic sections [74].

hadronic shower develops in the later layers of the first section (ECAL) and

extending into the second and third sections (HCAL) in a beam test [74].

1.6.3 Emerging ideas

The capability to image showers with highly granular calorimeters has

opened new avenues in energy, or more broadly, information reconstruc-

tion. The recognition that the topological structures within the showers

encompass valuable information about interaction types lends itself to new

ways of energy reconstruction. Figure 1.20 shows the spatial distributions

of shower particles generated by a single 30GeV π+ in copper: pions and

protons display a clear vertex structure, and positrons are produced in

pair production following πo decays that are associated with the hadronic

vertices. These pions, protons, and positrons make up the fast (t < 5 ns)

shower components. Neutrons and gammas are slower and spread more

widely within the calorimeter. Electrons similarly spread out: some come

from the πo decay chain, and many others are from Compton scattering.

Figure 1.21 shows a strong correlation between the invisible energy

and the number of hadronic vertices, as in π+, π−, and p in Fig. 1.20,

produced in inelastic hadronic interactions in the first <5 ns. If the number

of vertices can be counted or imaged by a highly granular calorimeter,

the invisible fraction of the deposited energy can be estimated with good

precision, as simulation studies suggest, leading to remarkably good energy

reconstruction using neural networks (see Refs. [75, 76] for details).
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Figure 1.20. Simulated images of shower particles for a single 30 GeV π+ in a
solid copper absorber (100× 100× 150 cm3): (a) fast π+, π-, and protons display
distinctive hadronic vertices and tracks. The e+ and e- are shown separately.
(b) e+s arise mainly from fast pair production via πo decays, whereas (c) e-s
come from the slow component of the shower due to Compton scattering of
widely spread γs, as well as counterparts of positrons in the fast component.
(d) Slow neutrons and γs from neutron capture spread broadly and form a “fuzzy”
image [75].

In addition to the value of the shower image in three-dimensional space,

the impact of shower timing using neural networks is also being investigated

[75]. Single pion and electron energy distributions in space for various

integration times (i.e., the duration of the window of time a signal may be

collected and observed as the integration time) are shown in Fig. 1.22 [77].

Each subfigure gives a representation of the spatial distribution of energy

at some integration time; the vertical axis represents the radial distance

from the shower axis, and the horizontal axis represents the longitudinal

depth of the shower. The energy is accumulated up to a 10 ns integration

interval, and the number of time slices is treated as a variable to evaluate

the impact of timing precision. The time of any simulated energy deposition

is recorded as t = tG4 − z/c, where tG4 is the time when the energy is
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(a) (b)

Figure 1.21. Invisible energy vs the number of hadronic vertices in a sampling
calorimeter: (a) with ionization signal in Cu (17 mm)+Si (3 mm) and (b) with a
Cherenkov signal in Cu (17 mm)+Quartz plate (3 mm) for 30, 100, and 200 GeV
π+s. The “invisible energy” in this case is defined as the difference between the
beam energy and the simple sum of ionization signal or Cherenkov signal. The
“hadronic vertex” is defined as a vertex of hadron–nucleus inelastic interaction
excluding neutron–nucleus interaction. The energy scale was calibrated with
electrons [77].

deposited as reported by GEANT4 and z/c is the travel time of light in

vacuum to cover the longitudinal depth. This form of visualization draws

attention to the development of the radial extent of showers at different

timescales. Unlike hadron showers, the electron-initiated energy deposits

take place promptly without much spatial structure; low-energy deposits

from photons are found transversely far from the shower axis. Roughly

speaking, by going from long to short integration times, the calorimeter

is effectively transversely segmented. This segmentation supplies valuable

information for the networks to exploit since the timescales of some hadronic

processes are much longer than the electromagnetic processes.

Figure 1.23 illustrates the effect of increasingly better timing measure-

ment on energy resolution [77]. Each data point (solid and open circles)

includes several time slices. While the signal is integrated for 10 ns for

all data points, the precision with which timing intervals are known is

plotted on the horizontal axis. For example, the timing precision of 0.5 ns

includes time intervals (0, 0.5 ns), (0, 1 ns), (0, 4 ns), and (0, 10ns) and is

plotted at 0.5 ns. As shorter time slices are included, the energy resolution

improves. The information inherent to short time slices, possibly due to

low energy protons, contributes additional information to the network.

Essentially, protons in shorter timescales seem to stand in for neutrons

in longer timescales for enhanced energy measurement. The value of
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Figure 1.22. The energy deposits due to a single 131 GeV charged pion (top row) and
a single 142 GeV electron (bottom row) are shown in r− z coordinates, where the colors
indicate deposited energy. As indicated at the top of each plot, the integration times
gradually increase from 0–15 ps to 0–10 ns. Time is ‘local’; in other words, it is corrected
for the travel time, t = tG4 − z/c, along z-axis for all particles [77].

timing information for enhanced calorimeter performance, apart from the

purposes of pile-up mitigation or time-of-flight measurements, requires

further research at the level of optimized neural networks and beam tests

with similarly optimized calorimeter prototypes.

1.7 Outlook

The field of high-energy calorimetry has undergone significant revitalization

in recent decades. Much progress has been made in understanding the

fundamentals of calorimetry, and effective techniques have been developed

to enhance performance of various aspects. We expect this positive

trajectory to continue at an accelerated pace, thanks to the integration of

imaging showers, neural networks, and optimized reconstruction algorithms.

The inclusion of images and temporal structures of showers provides

additional information that reveals previously inaccessible quantities, such

as invisible energy, which has been a long-standing challenge specific to

hadron calorimetry. It is likely that we will witness significant advances,



Calorimetry 37

10 210 310
Timing precision [ps]

4

5

6

7

8

9

10

R
es

ol
ut

io
n 

[%
]

CNN 30GeV

CNN 100GeV

EMcorr 100GeV

EMcorr 30GeV

Esum 100GeV

Esum 30GeV

GNN 100GeV

GNN 30GeV

Figure 1.23. The energy resolution (σ/E) for 30 GeV (black) and 100 GeV
(red) pions: simple energy sum (Esum), fem corrected energy sum (EMcorr) as
in the dual-readout approach, CNN and GNN reconstruction techniques. The
horizontal axis indicates the assumed timing precision for the GNN technique. The
energy resolutions obtained from different reconstruction techniques are shown for
comparison [77].

perhaps achieve similarly precise energy measurements for all fundamental

particles as for electrons and photons, before the next collider is built.

It’s important to note that this chapter does not delve into topics

related to calibration, simulations, sensor technologies, material science,

and the effects of external magnetic field and radiation damage. Nor have we

discussed inventive calorimeters in non-accelerator experiments. For readers

seeking more detailed information, the references provided at the end of this

chapter should prove useful. Furthermore, for the latest updates and specific

details, we recommend referring to the online documentation provided by

the Particle Data Group [9].
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2.1 What Is a Tracking Detector?

In a high energy particle experiment, a beam of particles (electrons, protons,

muons, etc.) is focused onto a target and the scattered particles are

measured using a detector. The properties of the target can be reconstructed

from measurements of the scattered particles. It can be insightful to

compare the problem to conventional microscopy where a small object is

imaged using scattered light rays. There are important differences from

optical microscopy:

1. The target being studied can be the quantum vacuum rather than a

solid object, in which case the incident beam of particles is focused

onto another incident beam of particles: this is the particle collider

configuration.

2. The scattered particles need not be the same as the incident beam

particles. Larger numbers and types of particles typically emerge. Energy

is conserved, but if the incident beam energy is higher than the rest mass

of some particles, those particles may be produced in the collision.

3. There is no lens that can focus scattered particles as done with light. The

characteristic ray tracing of optics reconstructs straight line rays from

two points: the lens (common to all rays) and the position on the image

sensor. The analogous ray tracing for particles is done by measuring two

2024 c© The Author(s). This is an Open Access chapter published by World Scientific
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or more points along the trajectory of each particle and inferring the tra-

jectory from those points. This is called track reconstruction or tracking.

When considering a single particle emerging from a target and traveling

in vacuum, measuring two points would suffice to infer the straight line tra-

jectory. However, there are hundreds or thousands of particles emerging at

the same time, which introduces ambiguities when connecting the two mea-

sured points. In addition, the particles have electric charge, which means

they will not travel in a straight line; rather they will follow a helix due to

the applied magnetic field. Finally, the particles do not travel in a vacuum,

as both accelerator and detector contain significant material. To address

these conditions, significantly more than two points per trajectory must be

measured. The detector that makes such measurements is call a tracker.

Practical trackers measure points along the trajectories of electrically

charged particles only. The interaction cross-section of charged particles

with matter peaks at low values of energy loss [1] so that an energetic

charged particle traversing material will gradually lose energy along its

path. Thus, small amounts of material can be used to extract enough energy

for a detection signal from a traversing charged particle with high efficiency,

yet without stopping or significantly changing the trajectory of the particle.

Neutral particles (gamma rays, neutrons, and neutral kaons), on the other

hand, lose energy in larger, discrete interactions, either being completely

stopped or deflected, making it unfeasible to sample their trajectories

without disturbing them.

2.2 Why Solid State?

Gas, liquid, and solid materials have all been used to build trackers. Earlier

trackers all used internal gain, meaning that the energy lost by a traversing

particle is amplified though some physical process within the detection

medium before being measured by electronic or optical means. Bubble

chambers used a superheated liquid as the energy loss medium, in which

traversing particles cause nucleation, leading to local boiling along the

trajectory, leaving a trail of bubbles that could be photographed. This is

a relatively slow process and not compatible with continuous operation. In

gaseous detectors, such as drift chambers, a high electric field near a sense

electrode leads to avalanche breakdown in the presence of ionization from a

traversing particle. This process is much faster than bubble formation but

still too slow (the recovery in particular) for contemporary colliders [2].

Furthermore, the position resolution of gaseous trackers is limited by
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ionization statistics. The density of a gas is low enough that the distance

between ionizing interactions of a passing charged particle1 is Poisson

distributed with mean of order 100μm, and this limits how well the track

position can be known from the ionization [3].

Solid state trackers, which overwhelmingly use silicon as the detection

medium, are both faster and more precise than gaseous trackers. The high

density of solids results in sufficient ionization that no intrinsic gain is

required in order to measure the signal from a traversing particle. This

is also thanks to low noise electronics enabled by integrated circuits and

high density interconnection methods (wire bonding and bump bonding).

The capacitance of interconnects enters into the electronic noise as will be

seen later. Detection without intrinsic gain is faster because one does not

need to wait for the intrinsic gain process and its recovery to take place,

and this enables the very high rate capability of silicon trackers. Ionization

statistics no longer limits resolution (for the time being), as the mean free

path between energy deposits of minimum ionizing particles in silicon is of

order 1μm.

While resulting in high ionization which is good for fast, precise

detection, the high density of solids is also a liability because it leads to

scattering of the particles whose trajectory is being measured. Fundamen-

tally, a tracker must extract energy from traversing particles in order to

measure them while at the same time not extracting energy in order to

leave their trajectory undisturbed. This is clearly an optimization problem

for the thickness and separation of the solid state sensors in a tracker. Early

silicon trackers all used 300μm thick silicon sensors because this happens

to be the standard thickness for commercial silicon wafers and results in

a signal that can be readily measured, but contemporary trackers use ever

thinner sensors, as other factors enter into the optimization, in particular

radiation damage to the sensor.

2.3 Strips, Pixels, and Monolithic Pixels

A tracker design involves the optimization of many parameters and tracker

designs have evolved in response to changing parameters. Some parameters

are driven by the experiment and science requirements, while others are

due to available technology and practical matters, such as cost. In broad

strokes, the historical trends go from small to large systems (both size

1We are mainly concerned with relativistic particles in the so-called minimum ionizing
regime [1].
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Figure 2.1. Evolution of silicon tracking detectors for particle and nuclear physics,
separated into the three main types. All of them are on ground-based experiments except

for Fermi-LAT, which is a space mission. The green triangles for strip detectors are
duplicate points scaled by channel count rather than area because area is constrained
by the existing solenoid magnets the detectors must fit into. The solid square on
the horizontal axis (Omega) is just 2 cm2 (so off scale). The dashed arrow indicates
when the CCDs first appeared in consumer digital cameras, while the solid arrow marks
when the monolithic CMOS sensors first appeared in webcams. The vertical dotted line
shows the time of this writing.

and channel count), from slow to fast, and from less to more radiation

tolerant. Figure 2.1 shows the historical area trends for three main types

of silicon trackers: strips, hybrid pixels, and monolithic. In all trackers, one

can identify a basic unit called a module which is replicated many times. A

module is like a tile in a tiled floor or wall. A tracker consists of surfaces

(which are often cylindrical) tiled with modules. The main difference

between the three types of trackers is what the modules are made of.

Silicon Strips: The modules consist of a silicon sensor and readout

electronics (Fig. 2.2(a)). The sensor is an array of parallel line channels

or strips connected to readout at one end. This is the oldest type of tracker

and the simplest to build using more or less generic components. The first

such detectors were built with discrete electronics fed by one wire per strip,

but area scaling and collider configurations were enabled by integrated

circuit electronics and automated wire bonding technology. The first custom

integrated circuit for particle physics, the Microplex chip, was developed in

1983 precisely to be able to scale the use of silicon strip sensors to larger

areas and collider detector geometry. It is worth noting that the first silicon

strip sensors were commercially sold in 1969, so the sensor technology was
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(a) (b) (c)

Figure 2.2. Schematic depiction of module types. (a) Strip module with sensor on
right and sensor strips connected by wire bonds to the readout electronics on the left.
(b) Hybrid pixel module with sensor and readout integrated circuit having matching
geometry and connected to each other face-to-face by metal bump bonds. A corner has
been cut away to help visualize the assembly. (c) Monolithic module.

mature; it was the development of integrated circuits that made them ideal

for particle physics applications.

Hybrid Pixels: The modules consist of a silicon sensor and readout elec-

tronics (Fig. 2.2(b)), but the sensor is a matrix of pixels connected to read-

out electronics via bump bonds (one bump per pixel). Since the sensor and

readout integrated circuit must have matched geometries, and because fine

pitch bump bonding requires specialized equipment, hybrid pixels are com-

plex to build and require custom designed components. However, a major

advantage is that the sensor and readout integrated circuit can be separately

optimized using very different fabrication processes. Mature strip sensor

technology could be used to produce science grade pixel sensors almost

“out of the box.” High efficiency at the same time as high readout rate and

radiation tolerance could be achieved thanks to the separate optimization.

Monolithic Active Pixel Sensors (MAPSs): A MAPS module can

consist of just one MAPS sensor and some interconnects. MAPS are the

closest relative of consumer image sensors ubiquitous in every mobile

device. While MAPSs are simple to assemble, they are complex to

produce, requiring a customized integrated circuit fabrication process.

Since integrated circuits are mass produced in large foundries, particle

physics-specific customization for producing small volumes is challenging

to negotiate. MAPS sensors provide the lowest mass option for particle

tracking but have rate and radiation tolerance limitations relative to hybrid

pixels. Thus, the highest rate and radiation experiments have not managed

to make use of them. Such monolithic technology was investigated very

early on [4] (before CMOS imagers replaced CCD imagers in consumer

electronics) but was initially disfavored relative to hybrid pixels, which had

a mature sensor technology base.



50 Instrumentation and Techniques in High Energy Physics

2.4 How Does the Detector Work?

2.4.1 Hybrid sensor

A silicon sensor channel (strip or pixel) can be very simply modeled as

a parallel plate capacitor in vacuum, in which electric charges magically

appear along the trajectory of a particle crossing the gap. A resistor is in

parallel to the capacitor and a DC voltage called bias of order 100V is

required across this RC for operation. For silicon sensors, the amount of

charge from a passing particle is on average 80 electrons (and 80 positive

charges or holes) per micron of path length, which for a 300μm thick sensor

traversed perpendicularly is 4 fC. This is the signal. To read out this signal,

the charge must be extracted from the sensor channel and turned into a

voltage. The capacitance of a silicon strip (pixel) channel is of order 1 pF/cm

(100 fF) and the resistor is of order 100GΩ. So the voltage change on the

channel from the added charge is of order 1mV (40mV) for a 4 cm strip

(pixel). One cannot easily read this voltage that sits on top of the 100V

bias. Instead, the charge is extracted by a readout circuit, which generates

a voltage from it.

The sensor is not in reality parallel plates in vacuum but a solid silicon

crystal. High resistivity silicon is used, which means it has a low level

of doping and hence a low charge carrier concentration. Highly doped

implants are used to define the pixels or strips. These implants form

PN diode junctions with the high resistivity bulk. For an introduction to

and reference on silicon devices, see [5]. Applying a reverse bias voltage

to the diodes will grow the depletion region until the entire bulk is

depleted of free carriers. The depleted sensor bulk is the vacuum of the

parallel plate capacitor model in which charge can magically appear.

A traversing high energy particle will lose energy in the silicon crystal

and this energy will promote charge carriers from the valence band to

the depleted conduction band. The average energy per electron–hole pair

promoted to the conduction band in silicon is 3.7 eV. Thus, the 80 e-h

pairs per micron correspond to an energy loss of 300 eV per micron by the

passing charge particle. This is of course the energy loss by a minimum

ionizing charged particle in silicon [1]. As a fun digression, consider what

if one really had vacuum instead of silicon. It is still possible to turn

energy into charge carriers, but one needs twice the electron mass per

electron positron pair created, which would be 80GeV per micron instead

of 300 eV. So other than the 8 orders of magnitude energy difference and a
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solid lattice to conserve momentum for the lost energy, a depleted sensor

is a good analogy for Dirac’s negative energy electron sea filling all of

space [6].

A depleted semiconductor is almost like an insulator (or vacuum) but

not quite. Imperfections in the crystal have different energy levels than pure

silicon and can result in carriers within the forbidden region separating the

valence band from the conduction band. Combined with carrier diffusion,

this leads to promotion of carriers into the conduction band manifesting as

a steady “leakage current.” The parallel resistor in the simple model was

there to simulate this current. Leakage current, also known as dark current

in photodiodes, is a major topic in semiconductor detectors. The first thing

to note is that it looks exactly like signal: charge carriers appearing in the

depleted conduction band. Consider the 100GΩ resistor under 100V vias of

the simple model. This results in 1 nA of leakage current, or 1000 fC/s, to be

compared with the 4 fC signal. This may sound hopeless, but it just means

that the readout electronics need to be fast because the signal appears all at

once as an AC pulse, while the leakage current is DC. If the electronics can

integrate the signal in 1μs, for example, then the above leakage contribution

becomes negligible. However, the story does not end there because 1 nA is

the leakage current of a very high quality, brand new sensor channel, but it

can increase by orders of magnitude with radiation damage. A common

technique in strip detectors is to capacitively couple each strip to the

readout (called AC coupling), which preserves the signal while stopping

DC current, but this still leaves the fluctuations in the leakage current to

contend with because leakage current is a stochastic process. Furthermore,

AC coupling adds processing cost, limits the bias voltage that can be

applied, and is not practical for pixels. Two main technologies are used

to address leakage current for detectors that must withstand high radiation

(which is most of them): (1) sensor material engineering and (2) cooling. An

international collaboration called RD50 has been perfecting silicon material

for tracker applications for decades [7]. Cooling reduces leakage current

because, since leakage current depends on diffusion of intrinsic carriers,

it scales like the intrinsic carrier concentration, which is proportional to

T 1.5e−Eg/2kT , where T is absolute temperature, Eg is the bandgap (1.12 eV

in silicon), and k is Boltzmann’s constant. The use of advanced materials

and methods in the low mass mechanical design (see Section 2.8) enables

cold operation of silicon trackers, ranging from −20◦C to +10◦C sensor

temperature.
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2.4.2 Integrated circuit and readout

The readout integrated circuit (either hybrid or monolithic) is primarily

responsible for extracting the signal from the sensor and turning it into

communicable information that can be relayed to a data acquisition system,

which can be a significant distance away, of order 100m. The distinct feature

of hybrid pixel and strip detectors is that each channel (each individual pixel

or strip) is an independent unit with its own electronics, and all channels

run in parallel. This is in sharp contrast to consumer image sensors, either

CMOS or their CCD ancestors, where all or many pixels on one device

are staged onto a common readout channel. The all-in-parallel operation

permits trackers to reach the high frame rates required by particle physics

experiments, for example, 40MHz at the LHC. A 40MHz frame rate is

unheard of (and unnecessary) for commercial electronics. If one takes as

a figure of merit detector area times frame rate, to cover 1m2 of detector

at 40Mfps would require 20 billion mobile phone image sensors since each

sensor is about 0.5 cm2 and capable of 40 fps. Instead, this is done with

2,500 custom integrated circuits in the case of pixels and 10 times fewer in

the case of strips. The problem is data volume, as should be clear from the

mobile phone comparison. (If everyone on the planet had 10 mobile phones

and tried to upload video to the cloud simultaneously for a few years non-

stop, this would be a problem.) The central question for tracker readout is:

what is the information that must be extracted and how can that be done?

The information content (or information entropy) in a tracker can be

calculated [8, 9]. The information entropy, which can be expressed in bits,

depends linearly on the number of particles traversing the tracker, which

should not be too surprising. But it depends very weakly (logarithmically)

on the number channels, and it depends more strongly on the noise

performance and timing resolution of the electronics. For example, for High

Luminosity LHC pixel detectors (rightmost solid squares in Fig. 2.1), the

information content is about 25 bits per particle in each detector layer

crossed. This is a measure of the information available. Without lower noise

or faster electronics, there is no more useful information to be had. But this

does not mean that one will transmit 25 data bits per particle from each

detector module to the data acquisition system. This is an information

entropy bound, which means that unless information is discarded, it is

impossible to move the information off-detector with fewer than 25 bits

per particle. But it is actually very challenging to achieve this entropy

bound. The High Luminosity LHC pixel detectors will get to within 25%
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or so, which is better than ever done before, and with very good reason:

the High Luminosity LHC particle rate is extremely large, and moving

information out of the pixel detectors (namely, readout cables) is what

limits their tracking performance, due to the mass of the cables causing

multiple scattering. This illustrates the complexity of tracker design, where

apparently disconnected parameters depend on each other, such as the

noise target for electronics depending on the amount of data to be moved

off detector in two separate ways: first, because it would be useless to

generate more information (lower noise = more information) than can be

transmitted, and second, because higher precision (lower noise = higher

precision) than the multiple scattering smearing due to data cables will not

improve tracking performance (Section 2.6).

Viewed as images, the frames from a tracker module will be dark fields

with a few bright dots. Transmitting such frames as images would use many

bits because of all those dark channels, which are of no interest for tracking

yet are preserved in an image. Instead, dark channels are suppressed by

applying a threshold (called zero-suppression), so only the bright dots

must be read out. The threshold is applied as early as possible, before

any digitization. In fact, this threshold discrimination is itself used as the

digitization technique. Some detectors simply record which channels are

above threshold (also called hits) with no further information, while others

store a low precision amplitude value for every hit by counting “Time over

Threshold” (ToT).

The readout process is depicted conceptually in Fig. 2.3. Even if

the entropy bound were achieved, transmitting all information for every

bunch crossing usually results in too much data to handle off-detector.

The High Luminosity LHC ATLAS and CMS experiments will see about

10,000 charged particles per beam bunch crossing. If each particle crosses

10 detector layers, that would be 2.5Mbits per bunch crossing, which leads

to 100Tb/s. Therefore, the trackers need a way to decide which bunch

crossings to send off-detector rather than sending all of them. This selection

is shown as a trigger signal in Fig. 2.3. Since deciding to keep or discard a

bunch crossing takes some time, this means the readout integrated circuit

must be a large digital memory to store all the data until a trigger arrives.

For this reason, tracker integrated circuits are produced in the technology

nodes with the smallest transistors that detector builders have access to.

Smaller transistors means more memory per unit area to be able to store

more hits per unit area. Therefore, Moore’s law has been an important

enabler of advances in semiconductor trackers.
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Figure 2.3. Representation of readout integrated circuit data flow with High Luminosity
LHC pixel detector values. The waveform shows the analog signal for a single channel,
with a noisy baseline and negative-going signal pulses. The horizontal line represents the
applied threshold. Only pulses exceeding threshold are further processed, digitized, and
stored in on-chip memory. The vertical lines mark the 40MHz beam bunch crossings,
with only one possible digitization per bunch crossing. The trigger signal selects only
specific bunch crossings for off-detector readout.

Trigger signals are often supplied from outside the tracker, but a tracker

can also be self-triggered, locally deciding which hits to transmit off-

detector and which to discard. Hits produced by charged tracks will be

correlated from one layer to the next, and the spatial correlation will

depend on the track origin and momentum (if there is a magnetic field).

Measuring the charge deposition profile in a sensor of finite thickness is

sensitive to the incident particle direction but with precision limited by the

sensor thickness d, as well as the position precision of the sensor Δx. The

angular measurement error will be Δx/d. Interconnecting two layers some

distance apart can greatly increase precision by increasing d far beyond

sensor thickness. The CMS experiment is implementing such a direction-

sensitive detector with electrically interconnected pairs of sensing layers

consisting of one strip and one pixel, which measure correlated hit pairs

called stubs. These are 3-D vectors rather than 3-D points in space. The

stubs are filtered on-chip, and only those compatible with particle tracks of

interest are read out, and combined off-detector to serve as a trigger signal

for other subsystems.
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Earlier we said the data rate was too high to read out everything

without any trigger. However, in the case of the LHCb experiment, the

number of particles per beam collision is an order of magnitude less,

and additionally the fixed-target detector geometry permits routing cables

outside the volume where the particle propagates. Thanks to these features,

the LHCb experiment has implemented full triggerless readout of their

detectors. This actually simplifies the architecture of the readout chips,

as a storage of data while waiting for a trigger is no longer needed. This

simplification is offset by the need to move data faster both on-chip and

to the DAQ, requiring higher bandwidth circuits. The data must still be

filtered off-detector to select events of interest. More sophisticated filtering

is possible, as correlations between all detector elements can be exploited

but only if enough computing resources can be deployed, which can be a

significant cost. Even where triggerless readout is possible, detector design

must balance the potential physics advantage from having all data off-

detector against the lower cost and processing complexity of filtering data

at the source, before it is read out.

Analog Front End and Signal Discrimination: The analog Front End

(FE) is the readout circuit element responsible for extracting the signal from

the sensor and converting it to a substantial voltage for further processing.

It must move an electric charge Q from a significant sensor capacitance Cd,

where it only equates to a small voltage V = Q/Cd, onto a smaller capacitor

Cf where it will result in a larger voltage V = Q/Cf . The design and

function of integrated circuit amplifiers for silicon detectors are extensive

topics and only a superficial overview is given here in order to motivate

the different types of devices used; for a more in-depth treatment, see, for

example [10]. A plumbing analogy for the FE starts a small amount of

water at the bottom of a bathtub, which needs to be moved to a glass in

order to measure how much water there is. For the case of the bathtub, this

can be accomplished with a pump, with the time taken and power used

to transfer the water to the glass depending on the pump characteristics.

Furthermore, for unattended operation, one needs a mechanism to empty

the glass periodically or continually (through a small hole at the bottom).

With a small hole, the water level in the glass will rise as the pump empties

the tub and then fall as the glass drains, resulting in a water level vs.

time pulse shape depending on how fast the pump pumps and the size of

the hole. Silicon detector FEs are most commonly of this kind, where the

electrical equivalent of the pump is a high open-loop gain preamplifier, the
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Figure 2.4. Schematic diagram of a typical analog front end (FE). Signal polarities and
Time over Threshold (ToT) are indicated along the bottom. The 1st stage or preamp
shows a feedback capacitor Cf , a reset current Irst, and a leakage compensating current
Ileak. The comparator stage, C, shows a threshold voltage adjustment Vthreshold.

glass is a capacitor placed in the preamp feedback loop (Cf ), and the hole

is a continuous reset of the capacitor (Irst) provided by a resistor, a current

source, or a more complex circuit to control linearity and baseline. These

elements can be seen schematically on the left of Fig. 2.4.

Figure 2.4 also shows an additional feedback element, Ileak, a 2nd

stage preamp, and voltage comparator (C) with an applied threshold. The

2nd stage is conceptually not a separate functional element but typically

required to provide additional gain and/or drive the comparator input.

The Ileak feedback element is functionally important if the sensor is DC

connected to the FE input, such that sensor leakage current will flow

through the FE. Sensors can also be capacitively coupled to the FE, in

which case the no leakage current circuitry is needed, but this adds cost and

complexity to the sensors and is typically only possible for strip detectors.

The comparator carries out the pulse height discrimination, distinguish-

ing pulses above a user-chosen threshold, which ideally are only produced

by particles hitting the sensor, from electronic noise (or thermal noise) and

from leakage current fluctuations (called shot noise). Optimization of the

threshold to be more than 99% efficient for real particle hits while having

low firing rate in the absence of real hits is a main challenge of analog

design.

Thermal noise can be thought of as fluctuations of voltage in an

electronic system. At no point in an electronic system is the voltage a

perfectly constant value with time, but it wiggles with some RMS noise

value. Therefore, if one samples a voltage (or compares two voltages as
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is done in a comparator), the result depends on exactly at what point in

time the sampling happens. If a circuit is very slow (low bandwidth), the

wiggles are slow and the result does not change much for small changes

in sampling time, but if the bandwidth is high, the change is larger. So a

slow amplifier will have less noise, but it can’t be made too slow because it

has to distinguish bunch crossings. A very important point is that thermal

noise is a voltage noise, whereas the signal in particle detectors is a charge.

Noise in silicon detectors is typically expressed in units of Equivalent Noise

Charge (ENC), also known as input-referred noise. We want to know the

value of signal-like charge fluctuation that results in a voltage fluctuation

equal to the electronic voltage noise. Crucially, this depends on the sensor

capacitance for no more complicated reason than the Q = CV relationship.

Thus, thermal noise (or more correctly thermal signal to noise, S/N) scales

with sensor capacitance! Another important point is that the ENC depends

on the amplifier signal gain and charge collection efficiency. Recall that in

a continuous reset FE the glass being filled by the pump has a hole it,

so the slower the pump fills it, the lower the maximum level the water

will rise to. For a resistive reset, the discharge current is Vout/R, while

the charging current from the amplifier operation is (Q0/τ)e
−(t/τ). The

current starts at some value Q0/τ and asymptotes to zero when the entire

signal charge Q0 has been extracted from the sensor. The integral of this

extracted current is Q0 and the time constant, τ , is a characteristic of

the amplifier (how fast the pump pumps in the plumbing analogy). The

output voltage is Vout = QCf , where Q is instantaneous charge on the

feedback capacitor Cf (analogous to the volume of water in glass next to

the bathtub):

dQ

dt
=

Q0

τ
e−(t/τ) − Q

RCf
(2.1)

This has a characteristic pulse shape with a rise time given by τ and a

fall time given by RCf . The peak amplitude Qpeak occurs when dQ/dt = 0,

and it can be readily appreciated from Eq. (2.1) that the faster the fall time

(the smaller R), the lower Qpeak for a given Q0. All this is to say that the

ENC is not only the voltage noise times the detector capacitance, but it is

further increased by a factor Q0/Qpeak.

The shot noise arises because charge is quantized. Integrating leakage

current for a period of time equates to counting a number of charges and

like any counting is subject to a Poisson fluctuation of
√
N for large N .

The larger the N (or the integrated leakage current Qleak), the smaller



58 Instrumentation and Techniques in High Energy Physics

Figure 2.5. Depiction of contributions to Equivalent Noise Charge (ENC) from thermal
(voltage) noise and leakage current shot noise. The ENC is the quadrature sum of the

thermal noise converted to equivalent charge, including peak amplitude (gain) correction
as explained in the text, and the shot noise, which already has units of charge. The peak
amplitude decrease on the left of the figure signals that the shaping time is becoming
comparable to the amplifier rise time (the hole in the glass is becoming too large in the
plumbing analog of the text).

the relative error
√
N/N . Thus, shot noise decreases for longer integration

time (larger value of R). Note that it makes no difference if the sensor

is AC or DC coupled for shot noise, since the fluctuations are an AC

signal. However, since shot noise is already a charge fluctuation, it does

not depend on detector capacitance. Unlike shot noise, thermal noise

increases with increasing R because the bigger time window allows more

voltage wiggles to be sampled. The amplifier shaping (RCf in this simple

case) can thus be optimized to minimize ENC (maximize S/N), as shown

in Fig. 2.5.

There are many important conclusions that can be drawn from the

simple noise analysis presented. Strip detectors have significant sensor

capacitance and leakage current, simply because the area of each strip is

relatively large. They need more sophisticated amplifiers with high gain due

to the large sensor capacitance and cannot operate at very high bandwidth

because of leakage current. Hybrid pixel detectors, on the other hand, have

exactly the same signal size as strip detectors but lower capacitance and

leakage currents; they are just like extremely small strips. So they can have a

simpler, lower gain FE and can operate at higher bandwidths. MAPSs have

even smaller capacitance and therefore can use an even simpler FE or no FE
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at all: the sensor capacitance is analogous to the size of the bathtub in the

plumbing example, so when the bathtub becomes the size of a glass, one no

longer needs a pump to collect the water into a measuring glass. However,

MAPSs also have smaller signal size, and the development of that signal can

be slower than in a standalone sensor, so they cannot necessarily exploit

the low capacitance to achieve high speed; they are generally significantly

slower devices than hybrid pixels. This already hints at the importance

of shot noise for MAPSs, since the signal is small, the integration time is

relatively long, and shot noise does not care that the detector capacitance

is tiny.

For detectors with charge readout, the fact that a comparator follows

the FE of silicon detectors is universally exploited to digitize the signal

amplitude with the technique to Time over Threshold (ToT), as mentioned

in Section 2.4.2. This kind of digitization requires minimal circuitry (just

a counter) by making use of the already available comparator output and

the beam crossing clock. The comparator output is a digital pulse whose

duration is equal to the time that the FE output exceeded the comparator

threshold. This time is measured by using that pulse to gate a counter that

counts beam crossing clock cycles. Clearly, this only works if the FE output

pulses are typically longer than one beam crossing, which tends to be the

case because the amplifier rise time is chosen to be just fast enough to

distinguish beam crossings, and the fall time must be longer to minimize

ENC, as per Fig. 2.5.

We can now return to to the hit discriminating function of the

comparator in more detail. The ENC must be small enough (equivalently

S/N large enough) that one can choose a threshold which achieves the

required 99% hit efficiency with a low rate of noise hits. This is depicted

in Fig. 2.6. In the ideal case of the figure, the threshold can be chosen

where there is zero response probability, resulting in zero hit rate in the

absence of signal and 100% efficiency for signal. In practice, there is typically

some overlap between tails of the two distributions. The distributions can’t

simply be added to determine the minimum probability point suitable

for the threshold because they have different normalizations. The particle

response function is normalized by the real hit rate impinging on the

detector, while the ENC distribution is normalized by the maximum hit

rate that the FE can respond to, which depends on FE speed and shaping.

The ENC hit rate will rise exponentially as the threshold is decreased, up

to the maximum at zero threshold. The operating threshold can be chosen

to either reduce noise hit rate or increase signal efficiency. An interesting
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Figure 2.6. Depiction of FE response probability distribution functions and the
suggested threshold setting. In the absence of signal, the FE response is given by the
ENC, a Gaussian centered at zero (fluctuations can be negative or positive). When a
minimum ionizing particle ionizes the detector, a random charge value obeying a Landau
distribution with most probably value of 80 e−/µm appears at the FE input, leading to a
response at the output given by Landau, convoluted with the ENC (since noise is always
present whether or not there is a signal). In this ideal example, there is zero response
probability between the two distributions, where the threshold is shown.

observation is that for high rate experiments such as those at the High

Luminosity LHC, the real particle hit rate will reach values of 3GHz/cm2

and therefore very high noise hit rates (in the MHz/cm2 range) could in

principle be tolerated with minimal impact to the data readout. However,

experiments typically opt for running with much lower noise hit rates for a

variety of reasons, including the ability to perform noise-free calibrations.

A final consideration about the threshold is that it must be the same

(when referred to the input) for all channels in a chip and also stable with

time so that the hit efficiency is uniform and, in the case of ToT, the

charge measurement is uniform. Uniform response of analog circuits is not

automatic within integrated circuits. Such uniformity in the static case

is typically achieved with a programmable channel-by-channel threshold

adjustment. But threshold fluctuations in time can be more challenging

to control. For example, changes in chip power consumption can lead to

threshold shifts, and processing of hits can affect power consumption. In

pixel detectors, this tends to lead to a maximum occupancy beyond which

operation may become unstable. For these reasons, the threshold is better

thought of as a band of some thickness rather than the thin line in Fig. 2.6.
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2.5 Tracker Performance

In the ideal case of a helical trajectory in a magnetic field, the momentum

resolution of a tracker with N layers is given by the following Gluckstern

formula [11]:

σpT

pT
=

(
pT

0.3|z|
σpoint

L2B

√
720

N + 4

)
⊕
(
σpT

pT

)
MS

(2.2)

where pT is transverse momentum in GeV/c, L is the radial length in m,

B is the magnetic field in T filling the tracker volume, z is the particle

electric charge in elementary units, σpoint is the resolution of the detector

measurements in m, and N is assumed to be large in this approximation.

L has the largest effect in the equation, but note that the whole of L has

to be filled with magnetic field, and the stored energy in a solenoidal field

scales like B2L2, so making L very large is not trivial. It may therefore

seem that improving point resolution may be the most economical way to

enhance tracker performance. However, this has to compete against the

second term in quadrature. Point resolution also has to compete against

alignment precision, which is not considered in Eq. (2.2).

The second term in Eq. (2.2) is the multiple scattering (MS) contribu-

tion for a number of detector layers N . It can be written as

(
σpT

pT

)
MS

=
0.0136

0.3 β BL

√
(N − 1)x/sinθ

X0

√
CN , [L] = m, [B] = T

(2.3)

where L is the radial track length and (x/sin θ)/X0 is the total mate-

rial thickness traversed by a particle incident with polar angle θ with

respect to the beam, in units of the radiation length. One radiation

length is the thickness of material that reduces the energy of impinging

relativistic electrons by 1/e, or equivalently that pair-converts e−7/9 (45%)

of impinging energetic gamma rays. CN is a factor depending on the

number of layers: CN = 2.5 for the minimum of three layers to measure

a circle and approaches CN = 1.33 for N → ∞ (continuous scattering).

Equation (2.3) shows that the low momentum performance of a tracker is

limited by its mass. The radiation length of 1mm thick silicon, copper,

and carbon composite, is 1%, 7%, and 0.3%, respectively. State-of-the-art

hybrid (monolithic) trackers achieve under 2% (1%) of a radiation length

per layer.
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2.6 How Does Tracking Work?

Track reconstruction, or tracking, is the process of converting the hit

coordinates that were read out from the detector, known as space points,

into momentum vectors of the charge particles that produced them. The

results of Section 2.5 only apply after tracking has done a good job.

Multiple operations are involved, which we group into four main categories:

pattern recognition, track fitting, alignment, and simulation. One might

here ask why not train an artificial neural network to perform this complex

transformation from space points to momentum vectors? This is a very

active development area but does not affect the division into these four

categories. Machine learning is being applied within each of the four

individual categories, but a solution to infer final vectors directly form

hits in a single step (called end-to-end), that is, competitive in terms of

precision and performance, is not considered feasible.

Pattern Recognition: Pattern recognition is the process of dividing all

the space points from an event into track candidates, where each track

candidate is just a group of space points. This process is very sensitive to

the number and spacing of the layers in a detector and it is the greatest

consumer of computing time in modern experiment track reconstruction.

Space points in different layers are linked together by extrapolating “seeds,”

where a seed is any pair or triplet (different techniques use pairs or triplets)

of space points that may or may not belong to the same track. Seeds

are typically created combinatorially and can therefore reach astronomical

numbers, but most of them will be spurious combinations that will be

gradually rejected for having no additional points in their extrapolations.

It is instructive to analyze the linking of hits of a hypothetical three-layer

arrangement. In order to distinguish true tracks from random combinations,

the probability of finding random combinations that align into tracks should

be small. This “fake” probability is straightforward to calculate. Even when

a particle track is known up to a certain layer, the extrapolation of that

track to the next layer has an angular uncertainty α, with a lower bound

given by multiple scattering (the multiple scattering angular error can be

found in [1]). This uncertainty projects a circle of radius xα onto the next

layer, where x is the distance to that next layer. The number of random

coincidence hits within this circle is the area of the circle times the hit

density in that layer, ρ. The hit density is given by the track density at

that layer, so it is known regardless of detector details. Actually, to the

extrapolation area, one must add a position resolution area, because the
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measured hit positions have their own uncertainty, given a resolution d (for

simplicity, we assume equal resolution in two dimensions, but in practice,

detectors can have different resolution in each dimension (notably strip

detectors have excellent resolution in one dimension only). The probability

of finding a random hit in the extrapolation of a track is therefore

P12 = π(α2x2 + d2)ρ (2.4)

where P12 denotes the probability of the extrapolation from layer 1 to

layer 2 linking a fake hit, not related to the track in question. In the case

of a three-layer tracker with total length L, two successive extrapolations

(from layer 1 to layer 2 and from layer 2 to layer 3) must each find a random

hit coincidence in order to result in a fake track. The fake probability

from layer 1 to layer 2 was given in Eq. (2.4). The fake probability from

layer 2 to 3 (P23) is also given by the same equation but replacing the

distance x (which was the distance from layer 1 to 2) by L − x. The

probability of the two successive fakes is simply the product P12P23:

Pfake = P12P23 = π2ρ2ρ3(α
2
1x+ d22)(α

2
2(L− x)2 + d23) (2.5)

where the subscripts now refer to the layers since different layers can

have different masses and resolutions. Note the multiple scattering in the

extrapolation source layer and the position resolution in the destination

layer determine the uncertainty circles. Figure 2.7 shows the relative

probability for fake tracks vs. the position of layer 2, ranging from very close

to layer 1 to very close to layer 3 (the separation between layers 1 and 3 is

always the constant L), where we assumed for simplicity α and d are the

same for all layers. Two cases are plotted: the extrapolation uncertainty at

distance L/2 is dominated by the hit resolution or dominated by multiple

scattering (dominated means twice as large). It can be appreciated that

when multiple scattering is small (which is the case for high momentum

particles) there is a slight pattern recognition advantage to evenly spaced

layers, whereas if multiple scattering is important (the case for low

momentum particles), there is a significant advantage to placing some layers

close together (often called doublets, as in the self-triggered CMS tracker

discussed earlier). This makes it clear that there is no one-size-fits-all tracker

geometry, but the geometry must be optimized depending on the detailed

requirements.

Track Fitting: Section 2.5 assumed particle trajectories are perfectly

helical, the magnetic field is perfectly uniform, multiple scattering smears
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Figure 2.7. Relative fake track probability in three-layer tracker discussed in the text
and given in Eq. (2.4). The positions of layers 1 and 3 are at the left and right of the
plot, respectively, with constant separation L. The effect of varying the position of layer 2
between layers 1 and and 3 is plotted for the cases where the layer position resolution
is the dominant uncertainty (solid) and multiple scattering is the dominant uncertainty
(dashed).

all measurements equally, etc. But none of these conditions hold exactly. To

obtain the best results, track fitting is not a simple least squares fit to an

analytic formula. Starting from the initial momentum we wish to know, a

particle’s position in the first tracker layer is only smeared by the material

entering the tracker (like the collider beam pipe), while at the last layer,

it is smeared by a random walk through the entire tracker. The fitting

algorithm that correctly unfolds these progressive errors, universally used

in track reconstruction, is the Kalman filter [12]. An integral part of this

method is comparing each hit position to the expectation of where it should

be based on all prior hits. The track parameters are updated hit by hit. This

requires a model of the detector and machinery to predict, from the track

parameters, where the next hit should be. This is called track propagation.

Track propagation performs the transport of track parameters and the

associated covariance matrices through the detector geometry, taking into

account interactions with the material (using the detector model) and the

magnetic field (using a magnetic field map). Accurate simulation is an

absolutely integral part of tracking.
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2.7 Radiation Considerations

Sensors are fabricated from high purity single crystal silicon so that

a significant depth can be depleted of charge carriers. Impurities and

lattice defects degrade the sensor performance. Nuclear interactions from

impinging hadronic particles can damage the crystal lattice, a mechanism

called Displacement Damage (DD) or bulk damage. DD is quantified by

Non-Ionizing Energy Loss (NIEL) in terms of the flux of 1MeV neutrons

that cause the same damage (abbreviated 1MeV n eq.). DD leads to

increased leakage current (by orders of magnitude), increase of reverse bias

voltage needed to deplete the sensor, and reduction of free carrier lifetime

(which reduces charge collection efficiency). Through fabrication techniques

known as defect engineering, silicon sensors are currently being made to

withstand NIEL doses of 2× 1016 1MeV n eq.

Radiation damage in CMOS circuits is entirely due to charge carriers

generated by ionization in the dielectric layers of the process and not

displacement damage. Ionizing dose is delivered at hadron colliders by a

combination of minimum ionizing particles (mainly pions) and background

X-rays and termed Total Ionizing Dose (TID). The doping concentrations

in CMOS transistors are so high (1015 cm−3 and higher) that compared

to them, the defect density introduced by bulk radiation damage is

negligible [13] (below 1014 cm−3 for HL-LHC inner layers after 3000 fb−1).

This means NIEL damage has no effect on CMOS electronics. However,

there are many dielectric structures in a modern CMOS process and each

one leads to its own radiation effect due to TID. It is not by accident

that radiation tolerance requirements have kept pace with the logic density

evolution in the ROIC generations. The reason is that both hit rate and

radiation dose scale with particle flux. Required radiation tolerance went

from 50Mrad for the 1st generation, to 250Mrad for the 2nd, to 1Grad in

the 3rd. 1Grad corresponds to about 50 minimum ionizing particles crossing

every Si lattice cell. Not all effects from charge generation in the dielectrics

are equally important. As radiation dose increases, understanding and

managing previously negligible effects become necessary.

In addition to long-term degradation due to accumulated dose, energy

loss by ionizing particles leads to instantaneous soft errors called Single

Event Upsets (SEUs). The most common SEU is the flipping of a stored

bit in a memory. SEU also can produce voltage transients on signal or

control lines that can result in accidental operations (for example, a single-

level asynchronous line to reset logic or memory would be vulnerable to
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SEU). Protection against SEU involves hardening of memory cells, avoiding

designs with vulnerable control signals or hardening control signals where

their use cannot be avoided, and circuit triplication. These techniques have

been in use since 1st generation readout integrated circuits and they have

not seen significant changes in the 2nd generation. However, as collider rate

continues to increase and higher logic density translates into lower deposited

charge needed for upset, these techniques will no longer be sufficient. An

approach being introduced in 3rd generation readout integrated circuits is

to design for reliable operation while a significant level of upsets is taking

place. Fundamentally, this is abandoning the idea of circuit hardening as a

solution to the SEU problem and instead designing all functions such that

SEU is not a problem to begin with. In practice, a combination of hardening

and SEU-friendly functionality will be used.

Extensive literature and experience exist on SEU of memory cells in

the context of electronics used in space. This is not directly applicable to

particle physics pixel detectors but is nevertheless a good starting point.

SEU of a given circuit, like an SRAM cell, latch, or flip-flop, depends on the

amount of energy deposited by an impinging ion, which is characterized by a

Linear Energy Transfer (LET). It is important that this is meant to describe

non-relativistic ions, which lose energy approximately uniformly along their

path through electromagnetic interactions. The upset rate is characterized

by the cross-section for causing a bit flip (SEU cross-section). Cross-section

vs. LET is typically fit with a Weibull function, resulting in a threshold and

saturation cross-section, as shown in Fig. 2.8. In submicron technologies, the

typical LET threshold is of order 1MeV·cm2/mg pretty much regardless of

Figure 2.8. Conceptual plot of Single Event Upset (SEU) cross-section vs. Linear Energy
Transfer (LET) for a typical memory cell.
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memory cell type. Saturation cross-section varies with cell design but is of

order 10−7–10−8 cm2 for common SRAM, latches, and flip-flops. However,

an energetic proton (or pion) has an LET of order 0.01MeV·cm2/mg, which

immediately signals that it cannot upset memory cells by the same energy

loss mechanism as ions (it is far below the LET threshold). Upsets in this

case are due to nuclear interactions. This can be seen from the fact that SEU

cross-sections are about the same for energetic neutrons and protons [14].

There is thus a kinematic threshold depending on the nuclei in the material

rather than an LET threshold. Typical SEU cross-sections for protons are of

order 10−13 cm2 [14]. At relatively low energies, an adequate model has the

proton imparting momentum to a nucleus which then becomes a traditional

high LET heavy ion. But at the GeV energies of the LHC, inelastic collisions

can produce showers of high LET particles, affecting a large area of silicon.

This is important for hardening techniques.

2.8 System Aspects Overview

The mechanical and electrical system designs of a tracker are what ulti-

mately limits its practical performance, not only due to cooling but also due

to material that particles must pass through and to the alignment precision

achieved. Achieving low mass, or more precisely low multiple scattering, is

critical for tracker and heavily influences the system design. The multiple

scattering detector mass is quantified in terms of electromagnetic radiation

interaction length: the mean distance over which a high-energy electron

loses all but 1/e of its energy by bremsstrahlung. Hybrid trackers achieve

masses as low as 1–2% of a radiation length per layer, while MAPS trackers

can be as low as 0.3–0.5%. One percent of a radiation length corresponds to

a thickness of about 1mm of either silicon or aluminum, or 0.16mm of cop-

per, or 3mm of carbon fiber composites. This should convey the difficulty of

producing detectors with 1% of a radiation length per layer or less, including

micron-level mechanical precision mechanical structures, power cables, cool-

ing, and readout. Simply in terms of energetics, the most power intensive

hybrid systems can dissipate over 0.5W/cm2, which for a 10m2 tracker

means 50 kW, yet this same tracker must operate at −10◦C to control

sensor leakage current and readout integrated circuits radiation damage.

Given almost zero thermal mass, an exquisite balance must be maintained

between 50 kW in through electrical wires and 50 kW out though circulating

coolant. It is therefore not surprising that trackers make use of the highest

performance to mass ratio materials and systems available.
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All modern tracker structures are built of carbon composites. Com-

posites allow choosing structural properties different from the intrinsic

properties of individual bulk materials, such as thermal expansion coeffi-

cient or thermal conductivity. Furthermore, properties can be chosen to be

different in different directions. Tracker structures have a near-zero thermal

expansion coefficient so that trackers can be assembled at room temperature

and maintain micron-level precision at their operating temperature 50◦C
colder.

Cooling, electrical power delivery, and data transmission are all system

aspects that require custom solutions to meet tracker low mass require-

ments. Additionally, these elements must be radiation hard to different

degrees, but this configuration is determined by the mass requirement. The

technology of evaporative CO2 cooling was developed for HEP trackers,

as the first application that absolutely needed the extreme performance

it offers. This is based on a typical two-phase refrigeration cycle, where

the refrigerant is condensed and cooled outside of the active volume and

evaporated though a pressure change inside the active volume. Heat is

removed mainly through the latent heat of evaporation of the refrigerant.

Liquid CO2 has almost twice the density of water, which means a large mass

flow can circulate in a small pipe, and more than twice the latent heat of

evaporation as typical refrigerants. It has one significant challenge, however,

which is that it only has a liquid phase at pressures above around 50 bar

(depending on temperature). The implementation of systems that pumps

cold, high-pressure liquid to the detector and extracts high pressure gas

to be condensed outside, has allowed building of large low mass trackers

with significant power consumption, not possible with any other cooling

technology. The same cooling performance achieved with few mm diameter

CO2 pipes would require cm diameter conventional refrigerant pipes and

several cm diameter pipes for simple water (single phase) cooling.

Just as important as removing the heat is supplying all that electrical

power with low mass. Power supply to detector distance scales tend to be

of order 50–100m if nothing else because off-the-shelf electronics cannot be

sited too close to a particle accelerator. State-of-the-art integrated circuit

electronics operate at voltages below 2V. Supplying 50 kW from 100m away

with cables that do not themselves produce more than 50 kW of heat due to

their resistance (for a total wall power of 100kW instead of 50 kW) would

require 180kg of copper per meter of cable length. Clearly, not good for

making a low mass tracker. The well-known solution for delivering electrical

power without massive cables, present everywhere around us in our power
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grid, is to do so at high voltage. The problem for trackers then becomes one

of transforming “high” to low (under 2V) voltage without significant mass,

in a strong magnetic field, and with radiation tolerance. Two technologies

have been developed: radiation hard, low mass DC-DC converters that

operate in a high magnetic field and serial power. The former works with

10–12V input and 1.5–2.5V output, multiplying the input current by the

voltage ratio. DC-DC conversion is adequate for relatively low power density

detectors, such as hybrid strips, as it adds an amount of mass proportional

to the power density (twice as much power in the same area needs twice

as many DC-DC converters and therefore twice as much mass). Serial

power can be implemented with readout integrated circuits designed to

operate from a constant current rather than constant voltage power supply.

Such devices can be chained in series and with a special type of power

regulation [15] also placed in parallel. The total voltage drop of a serial

chain is NdVd, where Vd is the voltage across a single device (of order

2V). The mass of Nd devices is the same whether they are chained in

series or powered in parallel, so serial power adds no mass to the tracker,

making it suitable for high power density trackers, such as hybrid pixels. But

serial power does add complexity in terms of operation, communication, and

sensor bias. Values of Nd as high as 14 are being used in current trackers.

Both DC-DC and serial technologies achieve an efficiency of 70–80%, which

means an increase of the heat to be removed by the cooling system by 25%.

This is acceptable thanks to the high capacity of CO2 cooling.

Once power delivery and cooling mass have been minimized with

the above techniques, the most significant mass contributions can be

due to readout cables. While commercial high speed links can move

vast data volumes with compact formats, a tracker presents a different

readout problem, not well matched to the commercial solutions. Aside from

radiation tolerance, a tracker contains a large number of data sources spread

throughout a m3 volume or larger. This is different from the commercial

problem of a concentrated data source such as a processor. A 100Gbps

point-to-point link is not very useful for reading a tracker because that

volume of data is produced by order 100 different devices over a 1m length

scale. There isn’t a common solution to this problem: each detector finds a

different optimization, depending of the data to be moved and geometrical

constraints. Common components have been developed, notably a radiation

hard, low mass optical data link capable of 10Gbps. Custom electrical

cables, including flexible circuit strip lines, aluminum conductors, and twin-

axial transmission lines, are commonly produced for trackers.
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Plastic scintillator is used in a wide variety of particle physics detectors
due to its versatility and low cost. However, exposure to ionizing
radiation decreases its light output. In this chapter, the chemistry and
light emission mechanisms of plastic scintillators are reviewed. The
causes and symptoms of its radiation damage are discussed.

3.1 Introduction

Organic scintillators are inexpensive, versatile materials that produce light

when transversed by charged particles. In their liquid form, they are used

extensively in neutrino experiments. As plastics, they are used in many

collider experiment subdetectors [1], such as calorimeters, trackers, and

beam luminosity monitors. Figure 3.1 shows some plastic scintillators, both

in solid and fiber form, similar to those used in the calorimeter of the CMS

detector [2–4] at the Large Hadron Collider.

When considering their use in detector elements in current and future

hadron collider detectors, especially those close to the beamline, the

intense radiation environment must be considered. Liquid scintillators

generally continue to perform well even when subjected to large radiation

doses [5–7], but flammability and containment issues limit their use. Plastic

scintillators, on the other hand, are subject to significant radiation damage.

For doses that are not too large (less than ≈100 kGy [8]), their light output
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Figure 3.1. Plastic scintillating tiles with embedded wavelength shifting fiber similar to
those used in the barrel, endcap, and outer hadron calorimeters of the CMS detector at
the LHC. The photo shows the fiber being installed in a machined groove.

decreases approximately exponentially with the received dose

L(d) = L0 exp(−d/D) (3.1)

where L(d) is the signal after irradiation to a dose d, L0 is the signal

before irradiation, and D is the “dose constant,” a numeric parameter

whose value depends on the scintillator geometry, the specific scintillator

used, environmental factors, and on the dose rate d
dt(d) ≡ R. Larger values

of D correspond to greater radiation tolerance. Values of D for common

commercial plastic scintillators based on polystyrene (PS) or polyvinyl

toluene (PVT) at dose rates typical of current collider experiments at the

LHC are on order of tens of kGy [8, 9]. Figure 3.2 shows a dose map for

the proposed future collider FCC-hh [10], a proton–proton collider with a

center-of-mass energy of 100 TeV. The inner regions of the calorimeters

experience doses in significant excess of this value.

The purpose of this chapter is to describe the causes and results of

radiation damage to plastic scintillators. In Section 3.2, I describe in greater

detail the effects on radiation on plastic scintillators. In Section 3.3, I give

an elementary review of the chemistry needed to understand the damaging

interactions of ionizing particles with polymers. In Section 3.4, I give a

more detailed chemical description of the polymers that are the basis of

these materials. In Section 3.5, I discuss why these molecules scintillate.
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Figure 3.2. Schematic of a proposed detector for FCC-hh (top) and dose map (bottom)
for 30 ab−1 of proton–proton collisions at a center-of-mass energy of 100 TeV from
Ref. [10]. The blue arrow indicates the dose corresponding to significant damage to
plastic scintillator.

Figure 3.3. (left) From Ref. [8], plastic scintillators before and after irradiation.
From left to right: Unirradiated EJ-200, EJ-200 irradiated to 500 kGy at 11 kGy/hr,
unirradiated EJ-260, and EJ-260 irradiated to 500 kGy at 11 kGy/hr. (right) A piece
of EJ200, a plastic scintillator from Eljen Corp. with a polystyrene matrix, that was
irradiated to 70 kGy at 460 Gy/hr, 15 days after the end of the irradiation.
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In Section 3.6, I discuss details of the chemistry of the interactions of

charged particles with polymers. In Section 3.7, I discuss the special role

oxygen plays in these interactions. In Section 3.8, I discuss some promising

avenues for mitigating the damage, and finally in Section 3.9, I give some

concluding remarks.

3.2 Radiation Damage Phenomenology

In this section, the basic symptoms of radiation damage are described

qualitatively. In the following sections, the chemistry behind these behaviors

and a more quantitative description are given.

Besides the exponential dependence of the light output on dose

mentioned in Section 3.1, radiation damage in plastic scintillators can

produce several other symptoms. First, as shown in Fig. 3.3 (left), while

before irradiation the plastic scintillators shown (from Eljen Technology

company1) are somewhat transparent, allowing light to easily pass to the

photodetector. Afterwards, the plastic can become discolored or “yellowed.”

This is the same effect seen when common household plastics are left out in

the sun. After the end of irradiation, the discoloration can lessen, a process

called “annealing.” During the annealing process, the plastic clears starting

at the edges, moving toward the center. At room temperature in standard

atmosphere for common commerical plastic scintillators based on PS and

PVT that are a few mm thick, the annealing timescale is on the order of

weeks.

When the decrease in light output is measured, two types of effects

are noted. In general, both types of damage are seen. If a long piece of

scintillator is irradiated, and a photodetector put at one end, the amount

of detected light varies with the position of the transversing charged particle

as shown in Fig. 3.4. There can be a part of the light loss that is independent

of position, which will be called “initial light loss.”

There is in general also a part that depends on the path length to

the photodetector that will be called “color center formation.” (The origin

of this nomenclature is unclear, but perhaps the originator was thinking

of small defects which absorb specific wavelengths or colors of light. The

modern description is given in Section 3.6.) Note that some color centers

exist before irradiation as well, as the material is not perfectly transparent.

1Eljen Technology, 1300 W. Broadway, Sweetwater, Texas 79556, United States.
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Figure 3.4. Illustration of the two fundamental types of light losses. The graphs
show, as a function of the distance between the transversing charged particle, and the

photodetector, the measured light L divided by the light output when the particle is
very close to the photodetector, both before (solid) and after (dashed) irradiation. The
top graph shows changes to the initial light loss, while the bottom shows color center
formation. Typically, both kinds of damage occur.

For this second type, the detected light is an exponential function of the

path length

L(x) = Loe
−x/λ (3.2)

where L(x) is the light output when the ionizing radiation is a distance

x from the photodetector, Lo is the light measured for x = 0, and λ is

the “attenuation length.” The attenuation length is related to the number

density of color centers μ that absorb light:

λ =
1

μ · σa
(3.3)

where σa is the light absorption cross-section of an individual color center.

The cross-section σa has a strong wavelength dependence and generally is

larger for shorter wavelengths. For ultraviolet light, the plastic is essentially

opaque.

Radiation damage in plastic scintillators shows dose rate effects.

Figure 3.5 (left) shows a plot from Ref. [9] of the light output from
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Figure 3.5. Figures from Ref. [9] on the light output from scintillating tiles with
wavelength-shifting embedded fiber from the CMS endcap calorimeter. (left) Light
output versus dose for tiles in different dose-rate (R) regions. (right) Fitted dose constant
D versus dose rate from the CMS data, along with some measurements at high dose rate
from 60Co irradiations.

scintillating tiles with embedded wavelength shifting fiber in the CMS

endcap calorimeter (similar to those shown in Fig. 3.1) versus dose for

tiles at different distances from the beamline and thus in different dose rate

environments. Tiles with lower dose rate show a larger decrease in light

with dose than those at higher dose rate. This generally surprises those

not familiar with plastics, as a naive guess might be that high dose rates

would be more damaging. The reason low dose rates are more damaging is

discussed in Section 3.7. A summary plot of the dose constantD versus dose

rate is shown in Fig. 3.5 (right). The dose constant D exhibits a power-law

behavior in dose rate, with an exponent close to 0.5. For both figures, the

damage is to both the scintillator and the wavelength shifting fiber. Similar

figures can also be seen in Ref. [8] for scintillator by itself.

Some of the dose rate effects are visible to the eye. Figure 3.3 (right)

shows a piece of scintillator 15 days after the end of a low dose rate

irradiation at room temperature. Three features can be seen: the edge is

slightly cloudy and was like this all during the irradiation. Inside this is

another clearer zone, which started to appear after the end of irradiation

and which will continue to propagate toward the center of the tile until the

entire inside of the cloudy region becomes clearish (annealing). The inside

shows significant discoloration. The depth of the outer slightly cloudy region

depends on the dose rate. Radiation damage also affects the material’s index

of refraction [11]. At low enough dose rate, the entire rod is slightly cloudy

all though irradiation, and no annealing occurs at room temperature. Thus,

barriers to oxygen should be avoided to limit discoloration. (Note that
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Figure 3.6. Sketch of light output versus time for a low dose-rate irradiation both during
the irradiation and after the end of irradiation at room temperature.

the chemistry of this region has a strong temperature dependence, as is

discussed in Section 3.7. Low temperatures should also be avoided when

possible.)

Figure 3.6 shows a sketch of the light output as a function of time

for a very low dose rate irradiation (where the definition of very low is

given in Section 3.7) at room temperature both during irradiation and

after its end for two different atmospheres: standard air and an oxygen-

free atmosphere. The damage after annealing is less in the oxygen-free

atmosphere, but severe damage occurs during the irradiation. The standard

atmosphere at room temperature shows little annealing. The resulting

damage after annealing is called “permanent damage,” while the part

that anneals is called “temporary damage.” The exact behavior depends

on the oxygen concentration and partial pressure of the atmosphere

surrounding the scintillator during irradiation. It also depends strongly on

the temperature [12].

Radiation damage, when severe, can also cause plastic to become brittle

and a fine web of cracks (“crazing”) to appear on its surface.

The causes of these behaviors have been understood by radiation

chemists and are discussed in Sections 3.6 and 3.7.

3.3 Chemistry 101 for Particle Physicists

Understanding the effects of radiation on polymers requires a basic

knowledge of chemistry. In this section, we remind the reader of the basic

chemical notations and definitions needed to understand the subsequent

sections.
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There are three basic types of bonds between atoms in molecules. From

strongest to weakest, they are covalent (where electrons are shared between

atoms), ionic (where an electron is effectively transferred from one atom to

another), and van der Waals. Covalent bonds are most relevant to plastics.

A covalent bond between atoms A and B where one electron is shared is

denoted A B or A B (for carbon, this is also called a “saturated” bond).

A covalent bond where two electrons are shared is denoted A B or A B

(for carbon unsaturated). A covalent bond where three electrons are shared

is denoted A B (for carbon unsaturated). When a molecule interacts with

photons during an irradiation, its electrons can be elevated to an excited

state, and the resulting excited atom is denoted A*.

The strength of a bond is an important factor in radiation chemistry,

as weaker bonds are easier to break, producing “free radicals” (atoms,

molecules, or molecular fragments which have one or more unpaired

electrons available to form chemical bonds), and the resulting molecular

fragment is denoted A. A radical created in a polymer can be a long or

short, depending on the location of the break. Radicals and their chemical

interactions are the main source of radiation damage to plastic scintillator.

You can think of a radical as a molecule or molecular fragment that has

an outer shell electron that would normally be in a covalent bond but

is not because the bond was broken by the irradiation. This unbonded

electron typically has strong interactions with nearby materials, especially

other radicals. Note that the electron is a normal part of its molecule or

molecular fragment and that a radical is electrically neutral: it is not an ion

(although ions can also be produced during irradiation and are also very

chemically active).

A key chemical structure in organic scintillators is the aromatic

compound, which is a ring-shaped organic molecule. The simplest aromatic

ring is benzene C6H6. The diagram for a benzene ring is shown in Fig. 3.7

(left). This diagram is also simplifed to Fig. 3.7 (right). Aromatic rings are

quite stable (difficult to break their bonds), as the pi electrons (discussed

in more detail in Section 3.5) distribute the energy over the whole system,

so the pi electron’s excitations do not concentrate energy at a particular

location. They can also act as an energy sink for other parts of the molecule.

A polymer is an organic molecule built from long chains of a basic

building block called a monomer. For the polymers of interest to us, each

monomer will contain a benzene ring. The length can range from 1000 to

50000 carbon atoms. While crystal polymers exist, most affordable polymers

are “glassy” and consist of long molecules with random bends and twists,

often intertwining. As with other glasses, slow flows and other motions are
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Figure 3.7. Benzene full diagram (left) and simplified (right).

possible. A key parameter in a polymer is its molecular weight, which is the

sum of the atomic weights (a bit more than 1 for H, and a bit more than

12 for carbon) of its atoms and is a measure of the length of the molecule.

In articles in chemistry journals on radiation damage in plastic scin-

tillator, the chemists will often talk about “g-values.” A “g-value” is the

number of molecules of reactant consumed or product formed per 100 eV

of energy absorbed. Thus, it is a chemical constant needed to calculate the

number of radicals produced, their types, and the rates at which chemicals

such as carbon dioxide and water are produced when molecules are broken

into radicals and interact, forming new chemicals (“products”).

3.4 What Is a Plastic Scintillator?

Plastic scintillators are constructed from a “substrate” or “matrix” made

of an aromatic polymer into which is dissolved a “primary” wavelength

shifting fluorophore (“fluor” or “dopant”) at a concentration of about

1–3% and a “secondary” wavelength shifting fluor with a concentration of

about 0.01–0.2%. Inexpensive radiation-resistant aromatic polymers include

PS and PVT. Their chemical diagrams can be seen in Figs. 3.8 and 3.9,

respectively. While PS has extensive commercial uses, PVT is mostly used

by nuclear and particle physicists. PVT produces about 30% more light

than PS and is more resistant to radiation damage at high dose rates (in

standard atmosphere and and standard (room) temperature). In addition,

small amounts of other materials such as anti-oxidants can be added to

improve mechanical and other properties.

Common fluors include 2,5-diphenyloxazole, p-terphenyl, 9,10-diphenyl-

anthracene (9,10-DPA), 1,4-bis(2-methylstyryl)benzene (bis-MSB), and

1,4-bis(5-phenyl-2-oxazolyl)benzene (POPOP). The light output from PS

and PVT-based scintillators typically is typically 1 photon per 100 eV

of energy deposition [13], although the collected signal can be orders
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Figure 3.8. Chemical diagram of polystyrene.

Figure 3.9. Chemical diagram of polyvinyl toluene.

of magnitude lower due to absorption in the materials, absorption upon

reflection, and photodetector inefficiency. The emission wavelength of the

secondary is chosen to minimize absorption in the matrix and to match

the detection efficiency of the photodetector. Blue scintillators are the

most popular, but green and red scintillators also exist. As the light

absorption cross-section of color centers is larger at smaller wavelengths,

redder scintillators have longer attenuation lengths.

An excellent detailed resource on plastic scintillators is Ref. [14]. Other

useful reviews that focus on radiation damage include Refs. [15, 16].

3.5 Fundamentals of Scintillation

The primary source of both the scintillation and the radiation damage is the

matrix. The processes whereby energy depositions by particles transversing

bulk matter become emitted light were set out by Birks, and his 1964

book [17] remains a classic. A cartoon of the overall process is shown in

Fig. 3.10.
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Figure 3.10. Cartoon summary of the production of light by scintillator when trans-
versed by a charged particle. The solid lines represent the trajectory of charged particles,

and the letter × indicates an interaction of a charged particle with the matrix, forming an
excitation. The transfer of the excitation to the primary fluor (light grey circles) via the
Förster mechanism is represented by the dashed lines, and the radiative transmission
from the primary to the secondary fluor (medium grey circle) is represented by the
waves. The photons emitted from the secondary (wave) travel through the matrix to the
photodetector, sometimes being absorbed in their path by “color centers” (dark grey
circle).

The process begins with the excitation of the matrix. The electron

orbital structure of the benzene ring can be found in many standard

chemistry texts, and is a key to its behavior. The p-orbital electrons in

carbon form both “pi” and “sigma” bonds in the benzene molecule; the

pi bonds are responsible for scintillation. Figure 3.11 (right) shows the pi

energy levels. Scintillation involves the singlet (angular momentum l = 0)

states, with decay times measured in ns. Typically, the excitation is not

to the lowest energy excited state. The electron usually de-excites first to

the lowest excited state and then to the ground state. Due to this, and

because the energy levels shift when the molecule is excited, the emitted

photon generally has longer wavelength than the absorbed. The wavelength
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Figure 3.11. Pi orbital energy levels from Ref. [18].

difference is called the Stokes’ shift. A large Stokes’ shift is desirable because

then the emitted photon is less likely to be re-absorbed by the matrix.

Thermal energies, collisions, and interactions between the excited

molecules can transfer the excitation to the triplet (angular momentum

l = 1) states that have significantly longer lifetimes, although these

processes are rare. Photonic decays of triplet states are referred to as

“phosphorescence” and produce lower-energy light emissions than the direct

scintillation, as triplet states are the lowest energy excited state due to

Hund’s rule [19].

Photons emitted by the matrix are typically ultraviolet and are easily

reabsorbed by the benzene ring. Fluors are thus introduced to shift the

wavelength. At typical concentrations of the primary fluor, transfer from

the matrix to the primary fluor is primarily via the Förster mechanism [20],

a dipole–dipole interaction that decreases as the sixth power of the

distance between molecules. To further decrease the absorption probability,
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Figure 3.12. Typical transmission spectra for rods with a PVT matrix, with no fluors
(black, medium dashes), EJ-260 fluors (green, short dashes), and EJ-200 fluors (blue,
long dashes) from Ref. [8]. The sharp rise in transmission with wavelength moves to
higher wavelength when the fluors are added because they strongly absorb at the lower
wavelengths.

a secondary fluor is used to shift to even longer wavelengths. Figure 3.12,

from Ref. [8], shows the transmission probability for a 1 cm thick piece

of PVT versus wavelength for typical commercial scintillators with and

without the fluors.

The light output of organic scintillators is not linear in the ionization

density dE/dx. Tracks with large dE/dx (with slow speed and/or high

charge) emit less light than expected, compared to minimum-ionizing

particles. A widely used semi-empirical model by Birks posits that recombi-

nation and quenching effects between the excited molecules reduce the light

yield [21]. Inter-molecular interactions can transfer excitations to the triplet

states. These effects are more pronounced when the density of the excited

molecules is larger. Birks’ formula is

dL(dE/dx)

dx
= L0 dE/dx

1 + kB dE/dx
(3.4)
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where dE/dx is the amount of energy deposited by a charged particle

per unit path length, L is the resulting light output (luminescence), L0
is the luminescence at low specific ionization density, and the product kB

is known as Birks’ constant, which must be determined for each scintillator

by measurement. The value of kB for polystyrene is 0.126mm/MeV [22].

The light yield also depends on temperature. The temperature depen-

dence of the refractive index and light yield was studied over a wide range

of temperature in Ref. [23]. They find a 10/◦C temperature rise would

correspond to a 2% light yield loss.

3.6 Basics of Radiation Damage in Polymers

The effects of radiation on polymers are complex but were well studied

in the 1950s. Excellent, detailed books [24, 25] exist that are well worth

reading for anybody working with these materials. Parts of this section are

an abbreviation of the material found in Spinks and Woods [24].

The start of the chain of processes that lead to radiation damage in

plastic scintillator is the formation of free radicals. In general, radicals

are formed when a bond in a molecule breaks, which can occur through

thermal dissociation, photodissociation (via interaction with a photon,

typical during irradiation), and oxidation–reduction processes. The photon

energies required to break several relevant bonds can be found in Table A3.3

of the 1990 edition of Ref. [24]. When the energy of the electromagnetic

interaction of the charged particle with the molecule is not enough to

create a radical at the absorption bond, the excitation can move along

the molecule or to another molecule until it finds a bond with low enough

energy and create a radical there. Radicals can interact with the polymer,

as is discussed. As the radicals are formed along the path of the charged

particle, their density can be large, leading to radical–radical interactions in

addition to radical–matrix interactions. Note that the triplet states shown

in Fig. 3.11, with their parallel-spin electrons, act as di-radicals. Due to

this and their long life time (10−4–10−3 s), they can influence radiation

chemistry as well.

While the chemistry behind the creation of radicals is fairly straight-

forward, the interactions of radicals with each other and with the polymer

are complex. Here we give a sense of the kinds of interaction mechanisms

that can influence how radiation-resistant a particular matrix will be and

introduce some of the vocabulary needed to understand articles in chemistry

journals. References [24, 25] give a more complete description. Once a
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Figure 3.13. An example of a unimolecular reaction, involving an initial configuration
with the hydrogens on opposite sides of the molecule changing to one where they are on
the same side.

radical is created, it has a number of available interaction mechanisms:

rearrangement, disassociation, addition reactions, abstraction reactions,

radical combination, and disproportination. The first two of these are

unimolecular reactions—where an excited polyatomic molecule reaches

a stable stage through molecular rearrangement. An example is shown

in Fig. 3.13. Unimolecular reactions include the breaking of a polymer

into two molecules, with radicals at the breakage point. The rest of

the interaction mechanisms are bimolecular. Bimolecular reactions involve

a second molecule to form new chemical products and so depends on

the radical density. Examples of bimolecular interactions are electron

transfer, abstraction, addition, and Sterm–Volmer reactions. Addition and

abstraction include a radical among the products, while combination,

disproportionation, and electron transfer do not (they instead “terminate”

the radical).

Radicals can move within the molecule, and they can propagate through

the matrix, sometimes passing through a large number of molecules. The

basic propagation mechanisms are electron transfer (producing two ions),

abstraction (usually hydrogen abstraction) A* + B C A B · + C · ,
and addition R · + AB R AB · . An example of an addition diagram

is shown in Fig. 3.14. As radicals propagate through a material, they also

tend to become less reactive.

Due to their high reactivity, radicals typically are short-lived, forming

new bonds quickly, via reactions like R · + S · RS, sometimes reform-

ing the bond that was originally broken. However, some long-lived radicals

exist. An example of a long-lived radical is shown in Fig. 3.15. Due to the

energy released via bond creation, small molecules typically immediately

break back apart again, but larger molecules, like polymers, have other

ways to distribute the energy and the bonds can hold.

The probability/timescale of rebonding (“annealing”) depends on the

radical’s reactivity and selectivity, and strongly on temperature. The

reactivity of a radical depends on several factors. The stability of organic
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Figure 3.14. Addition to anthracene.

O O

Figure 3.15. Semiquinone, a long-lived radical.

radicals is increased when a hydrogen attached to the carbon atom

carrying the free electron is replaced by any other atom or group so

that CH2 · is less stable then C · , which is less stable than C · .
Typical highly reactive radicals are H · and ·OH. Radical reactions tend to

become less selective at higher temperatures because the increased motion

increases the probability of encountering another radical or bonding site

and interacting, forming bonds. Usually, chemical processes occur faster at

higher temperature. Thus, annealing and radical migration have a strong

temperature dependence.

Molecules and molecular fragments containing radicals have undesirable

optical properties. They tend to strongly absorb visible light, especially at

shorter (bluer) wavelengths. Even when they re-bond, the products can

have undesirable optical properties: sometimes reformed bonds will absorb

light of the relevant wavelengths; sometimes they will not. Ideally, the

radical will reconnect to its original position. However, this is not always the

case. Figure 3.16 shows some non-standard radical terminations with and

without oxygen (the ones with oxygen are discussed in Section 3.7). Rebond-

ing to the original position is more likely in liquids, where the molecules can

be constrained from movement due to the “Franck-Rabinowtich” or “cage”

effect [26].
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Figure 3.16. Examples of changes to polystyrene undergoing irradiation. The change
on the right can only occur in the presence of oxygen.

During irradiation, light can be absorbed by the radicals present in

the material and by the new bad bonds. At the end of irradiation, the

radicals continue to slowly rebond. Since many of the reformed bonds

do not absorb the wavelengths of interest, the material becomes clearer.

Thus, the observed strong initial discoloration after irradiation is due to

unbonded radicals in the plastic, the annealing due to re-bonding. If the

new bond interferes with the scintillation of the benzene ring, the transfer

of its excitation to the primary fluor, or the transfer from the primary to the

secondary, the initial light output decreases. If it absorbs in the emission

wavelengths of the secondary fluor, it decreases the absorption length.

The reformed bonds in polymers contribute to two types of long-term

physical damage. Irradiation changes the molecular weight via crosslinking

and degradation. Crosslinking is when two separate long chain molecules

become linked together into a single molecule. Crosslinking increases the

materials viscosity and melting point. Degradation is the opposite: breaking

a molecule into two molecules of lower weight. For PS and PVT, crosslinking

dominates in oxygen-free environments, degradation when oxygen is present

(more on the very important role of oxygen in all the chemistry of

radiation damage in Section 3.7). Crosslinking can cause swelling. When

the crosslinking is large enough that a molecule becomes crosslinked with

itself via a chain of other crosslinked molecules, it is called a “gel” [25].

Although crosslinking is a dominant radiation damage mechanism in PS

without oxygen, PS is one of the most radiation resistant polymers because

the energy required to form a crosslink is about 100 times greater than

for other molecules [25]. The benzene ring absorbs energy, reducing link

formation.

Quantitatively, the rate of radical production during irradiation in an

oxygen-free environment goes as [27]

d[Y ]

dt
= gQR− k[Y ]2 (3.5)
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where [Y ] is the density of radicals, g is the radiation-chemical yield, Q is

the scintillator density, and k is the reaction constant for the decay (which

to a chemist means termination) of the radical. The first term represents

the creation of radicals, while the second term represents two unterminated

radicals recombining to neutralize (“second-order” termination). At short

times, when the second term is small compared to the first, integration

yields a radical density that is proportional to dose: Y = gQd. If the

radical is not neutralized by, e.g., oxidation, then the second term grows

with time, and eventually, a steady state is reached, when the two terms are

equal. In this case, the radical density becomes constant with time and is no

longer proportional to dose, and deviations from the postulated exponential

behavior of Eq. (3.1) occur. When in this steady state, the number of

radicals produced per unit energy absorbed is a nonlinear function of the

dose rate. For a very simple propagation and termination chain, the yield

goes as the inverse of the square root of the dose rate [24].

When the first term dominates, Eq. (3.2) becomes

L(d) = L0 exp(−gQdσl) (3.6)

where σ is the cross-section for absorption of light by the radicals and l is the

light’s path length through the scintillator to the photodetector, recovering

Eq. (3.1).

3.7 Oxygen and Radiation Damage

The presence of oxygen inside a polymer completely changes the chemistry

of its interactions with irradiation. Although plastic scintillators may look

like impermeable solids to us, they actually contain gaps and voids into

which gases can penetrate. For unirradiated plastic, the amount of gas

present in a polymer is given by Henry’s law

c = Sp (3.7)

where c is the concentration of the gas in the polymer (usually quantified

with pseudo-mass unit cm3STP which corresponds to the mass of 1 cm3 of

gas at standard temperature and pressure STP), p is the partial pressure of

the penetrant at the interface (usual unit is cmHg), and S is the solubility

coefficient, also known as the Henry coefficient (usual unit cm3STP
cm3·cmHg ). The

solubility has a strong temperature dependence, given by a Van’t Hoff-type

equation [28]:

S = S0e
−ΔHs/(RT ) (3.8)
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where ΔHs is the molar heat (enthalpy), R is the universal gas constant,

and T is the temperature in degrees Kelvin. The author of this chapter

only knows of one measurement of the solubility of PS [29] (8.9× 10−6 cm3

STP/cm3/cmHg at 22◦ C) and none of PVT.

The reason oxygen is so important to radiation chemistry is that it

readily adds to free radicals. Oxygen has a triplet ground state and therefore

acts as a diradical. The chemical interactions of oxygen with polymers

during irradiation have been carefully studied by chemists at Sandia

National Laboratories, and papers with Clough or Gillen in the author list,

such as Refs. [29–35], are well worth reading. (Papers by the Hamburg group

are also very educational, for example Refs. [27,36–40].) The Sandia group,

though, was mainly interested in how oxidation affects the mechanical

properties of scintillator. However, recent work [8] indicates the importance

to its optical properties as well. A really excellent resource on studies of

radiation damage in fibers at different oxygen concentrations is Ref. [27].

It is worth reading several times.

A typical reaction, producing the relatively stable peroxy radical, is

R · + O2 R O O · Since this radical is relatively stable, it can

linger for a long time after irradiation, acting as a color center. Another

oxygen reaction involving hydrogen (a component of our plastics) is RO2 ·
+ RH RO2H R · . These reactions lead to autooxidation of a wide

variety of organic compounds. These reactions compete with crosslinking,

explaining why degradation dominates in samples containing oxygen.

When an irradiation starts, the produced radicals will quickly interact

with the oxygen currently in the sample, producing peroxides. As the

oxygen in consumed, more oxygen will come in from the outside. If oxygen

can enter fast enough to replenish that consumed, the plastic becomes

cloudy due to the peroxides but does not develop the strong color typical

of unterminated radicals. However, if the density of radicals is high enough,

the oxygen will all be consumed before reaching the radicals in the center,

and the cloudy region with peroxides is only on the edge, as seen in Fig. 3.3

(right), where the center is oxygen-free and unterminated radicals produce

the green color. Note that this is a steady state condition: the position

of the edge between the regions with and without oxygen becomes stable

during the irradiation and does not change with time. The penetration

depth depends on the radical density and thus on the dose rate, leading to

dose rate effects. Quantitatively, the steady state penetration depth z0 for

oxygen into a rectangular slab of plastic is [41]

z20 =
2M C0

ΥR =
2M S P

ΥR =
γ

R (3.9)



90 Instrumentation and Techniques in High Energy Physics

where M is the diffusion coefficient for oxygen, C0 is the oxygen concentra-

tion at the matrix’s surface on the matrix side, Υ (= gQ) is the specific rate

constant of active site formation, S is the oxygen solubility, and P is the

external oxygen pressure. (In general, these parameters depend on strongly

on temperature [42]. The diffusion constant for PS has been measured at

room temperature in Ref. [29] and at several temperatures in Ref. [43].)

The values in the literature for the constant γ at room temperature for

PS vary considerably. Ref. [37] gives 99 ± 10mm2 · Gy/hr while Ref. [33]

gives 400–500mm2 ·Gy/hr. Currently, this discrepancy is not understood.

At the depth z0, there is an abrupt transition between areas with and

without oxygen. The oxygen concentration in the oxidized regions is almost

uniform [33]. At low enough dose rates at room temperature, oxygen

permeates the entire sample during irradiation. Since it binds quickly to

any produced radicals, there will be no remaining radicals at the end of

irradiation and no recovery. However, note that whether or not this occurs

strongly depends on the temperature.

The diffusion of oxygen into the plastic after irradiation is the primary

source of the observed annealing in normal air.2 Thus, in Fig. 3.3 (right),

the slightly cloudy part marks the oxygen penetration during irradiation,

the clearer part the diffusion in the 15 days after irradiation, and the green

part the portion oxygen has not yet reached.

During irradiation, the rate of polymer oxidation (oxygen consumption)

is [29–31, 35, 44]

dC(x, t)

dt
= − C1 C(x, t)

1 + C2 C(x, t)
(3.10)

where x is the depth relative to the surface of the material where the

rate is being measured and C(x, t) is the position-dependent concentration

of oxygen within the matrix. The constants C1 and C2 depend on the

kinematics of the chemical reactions. The constant C1 is proportional to

the square root of the dose rate for bimolecular reactions (leading to a

dose-rate effect) and to the dose rate for unimolecular reactions (no dose-

rate effect because integration yields a proportionality to dose).

2Note that the diffusion constant always has an exponential dependence on
temperature.
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3.8 Recovery of Damaged Scintillators

Recent research indicates that it may be possible to use visible light (from

LEDs) to undo some of the permanent damage to scintillators. The first

work is documented in Refs. [36, 38]. Recent work includes Refs. [45, 46].

Reference [46] studies the effect on soda lime glass and found up to 50%

recovery. Ref. [45] studies EJ-260 after a high dose rate exposure to about

100 kGy but found negligible recovery. The effects could be related to

breaking bad bonds, which then reform into better bonds. It could also

be related to allowing long-lived radicals, ions, or electrons trapped in an

energy well to escape. Much remains to be learned about the chemistry of

this promising process.

3.9 Concluding Remarks

Plastic scintillators are useful, inexpensive, components of particle physics

detectors. Care does need to be taken when using them in a high radiation

environment, especially at low temperature. Damage is larger for a given

dose at low dose rate, and the damage can have a characteristic depth

profile, especially at high dose rates. In addition, the kinds and amounts

of damage depend on the atmosphere, pressure, and scintillator geometry.

While in principal the basic chemistry is known, currently many of the

relevant constants have not been measured and can vary with the exact

scintillator composition. In addition, the composition of scintillators is often

information proprietary to the manufacturer. Thus, careful measurements

at the relevant dose rate and atmosphere should be done to be sure the

damage is not underestimated. There is ongoing research on how to reverse

radiation damage that may extend the use of these materials to higher doses

in the future.
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4.1 Particle Identification

Particle identification (PID) is an important aspect of many experiments

in high energy physics and particle astrophysics. In general, the PID

techniques aim to identify stable particles whose decay lengths are larger

than 10−5 m. These include p, n,K±, π±, e±, μ±, γ, etc. Each type of

particle has a unique invariant mass and hence the PID involves measuring

quantities which depend on the mass so that the particle type can be

inferred from them.

4.1.1 Identification of neutral particles

Identification of neutral particles are based on the energy they deposit in

calorimeters [15]. For example, in an experiment with a tracking system

and an electromagnetic calorimeter, electrically neutral particles create

signals only in the calorimeter and not in the tracking system. A charged

particle, such as electron, would create signals in both. This feature is

used to discriminate between the signals created by photons and electrons.

Further information on neutral particle PID can be found in the chapter

on electromagnetic and hadronic calorimeters.

2024 © The Author(s). This is an Open Access chapter published by World Scientific
Publishing Company, licensed under the terms of the Creative Commons Attribution 4.0
International License (CC BY-NC 4.0). https://doi.org/10.1142/9789819801107 0004

97

https://doi.org/10.1142/9789819801107_0004
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


98 Instrumentation and Techniques in High Energy Physics

4.1.2 Identification of charged particles

Different techniques are used for identifying charged particles based on their

electromagnetic interactions with matter via the exchange of photons. For

identifying charged hadrons in a large momentum range, the detectors using

the Cherenkov techniques described in the following sections are the most

commonly used detectors. A Ring Imaging Cherenkov detector (RICH) is

a type of Cherenkov detector that is used in many experiments.

Three other techniques for identifying charged particles are listed as

follows, along with the corresponding references where further details can

be found.

One method is to make use of the ionization in the a material as the

particle traverses through it. The corresponding energy deposited by the

particle in the material is related to the mass of the particle [15, 24]. For

example, in a material such as silicon, one can deduce that the energy

deposited per unit length (dE/dx) is proportional to (m/p)2, where m

and p are the mass and momentum of the particle, respectively. Therefore,

measurements of the energy deposited and the momentum are used for

inferring the particle type. Due to the fluctuations in the amount of energy

deposited, the energy is measured from different detector layers to extract

the most probable value. Typically, this method was used for particles whose

momenta are below 5 GeV/c. The (dE/dx) technique has also been used

for identifying particles traversing through a gas [29].

When a charged particle crosses the boundary between two materials

with different dielectric properties, the electromagnetic field from the

particle is reformed and this results in the emission of photons. Transition

radiation detectors (TRD) make use of the fact that the intensity of this

radiation is dependent on the (energy/mass) of the particle, in addition to

the properties of the materials [11]. In order to produce sufficient number of

photons, several interfaces are used, for example a stack of foils with gaps in

between each of them. These detectors are used mainly for discriminating

between pions and electrons in the momentum range 0.5–200 GeV/c.

The time-of-flight (TOF) detectors [19] measure the time of arrival of

the particles on a detector plane. From this measurement and the distance

travelled by the particle, one can determine the mass of the particle.

Typically, these detectors provided a 3σ separation between pions and kaons

up to 3 GeV/c. With the new photon detectors, which have excellent timing

precision, new TOF detectors are being developed which can provide the

similar separation up to 10 GeV/c.
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Various aspects related to the design and operation of Cherenkov

detectors and the methods used for PID using the data collected from them

are delineated in the following sections.

4.1.3 Usefulness of Cherenkov detectors

These detectors are used mainly for discriminating between different

charged hadrons.When trying to reconstruct the invariant mass of a particle

which decays into hadrons, the PID provided by the Cherenkov detector can

reduce the combinatorial backgrounds. This is illustrated in Fig. 4.1 where

the invariant mass of the particle which may decay into K+K− is plotted

from the data collected by the LHCb experiment at CERN. In this figure,

one of the plots is made without using the data from the RICH system

in LHCb, and in this case, the combinatorial background dominates over

the signal. For the other plot, the kaons are selected based on the results

of the PID provided by the RICH system, and in this case, the signal

for the φ meson can be seen. In a similar way, the data from Cherenkov

detectors are used for finding the signals from different mesons and

baryons.

Some RICH detectors provide very good capability to identify muons

and electrons in addition to hadrons. The RICH detector in NA62

experiment at CERN is an example of this [20].

The Cherenkov detectors are a crucial part of the physics programme

of many experiments.

Figure 4.1. Plots of K+K− invariant mass spectrum with (right) and without (left)
particle identification made possible by RICH data. The signal for the φ meson can be
seen in the plot which uses the PID provided from the RICH data.

Source: Ref. [14].
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4.2 Introduction to Cherenkov Detectors

4.2.1 Historical perspective

Although Cherenkov radiation was predicted in 1889 by Heaviside from

Maxwell’s equations and a blueish luminescence was observed in radioactive

solutions by Marie Curie 100 years ago, it was Pavel Cherenkov who inves-

tigated this effect using a simple apparatus in 1934. His observations were

fully explained by Frank and Tamm using classical electromagnetic theory

and this resulted in these three scientists being awarded the Nobel Prize in

1958. The apparatus used for the discovery of antiproton in 1955 [10] made

use of the Cherenkov radiation. This was followed by the development of a

few Cherenkov detectors named “differential counters” in the 1970’s.

At present, there are two major categories of Cherenkov detectors that

are used for particle identification. The first category is the “imaging

counters” that are used in accelerator-based experiments and in Cherenkov

telescopes. An example of such counters is the RICH detector whose

development was pioneered by Ypsilantis and others [30, 31] in the 1980’s.

The second category is the “Cherenkov calorimeters” that are used in

astroparticle and long baseline experiments.

4.2.2 Fundamentals of Cherenkov radiation

The phase velocity of light (cM ) in a transparent dielectric material is

lower than the speed of light (c) in vacuum. Passage of a charged particle

with velocity (v) through such a material results in local polarization of

the molecules and as they return to their original states, electromagnetic

radiation is emitted. When v < cM , this radiation is evanescent. When

v > cM , this radiation forms a coherent electromagnetic wave and it is

called the Cherenkov radiation. Here, the photons are emitted uniformly in

azimuth (φ) around direction of the particle. The polar angle (θ) between

the particle and the photons is called the Cherenkov angle where

cos(θ) = 1/(nβ) (4.1)

Here, β = v/c = 1/
√
(1 + (mc/p)2), n(λ) = c/cM = phase index of

refraction, λ = photon wavelength, m = mass of the particle, and

p = momentum of the particle. This is illustrated in Fig. 4.2 where the

trajectories of a charged particle and a photon can be seen. The photons

produced along the path of the particle form a wavefront, as indicated by

the dashed line in this figure. If n is a constant, the photon path is normal

to the wavefront. In this case, the lines in this figure form a right triangle
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Figure 4.2. Illustration of Cherenkov photon production. Here Ltk and Lph refer to
the distances traveled during a time interval Δt by the charged particle and photon,
respectively.
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Figure 4.3. Plots of Cherenkov angle versus the particle momentum for different
particles in three different radiators named Aerogel, C4F10 gas, and CF4 gas.

and therefore one can derive Eq. (4.1) by dividing the photon path length

(Lph) with the particle path length (Ltk) in this figure. In general, n varies

with λ and this is discussed in Section 4.3.2.

The Cherenkov photons are not emitted below a velocity threshold

corresponding to βt = 1/n and the corresponding threshold in momentum

is pt = m/
√
(n2 − 1). This threshold is specific for each combination of

material and particle type, as illustrated in Fig. 4.3. As β approaches 1.0,

the θ tends to become cos−1(1/n), regardless of the particle type, as shown

in this figure, and the corresponding charged track is called a saturated

track. For particle identification, the momentum range of the particles

needs to be well below saturation in the radiator material and this is taken
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into account when designing Cherenkov detectors. The amount of energy

radiated by a particle per unit length as Cherenkov radiation is very small

and is given by

dE/dx = (q/c)2
∫
v>c/n(ω)

ω(1− (1/(βn(ω))2))dω (4.2)

where ω = photon frequency = c/λ and q is the charge of the particle.

To first order, the energy loss is proportional to the photon frequency

and hence there is more intense radiation at low wavelengths compared

to high wavelengths. Indeed, most of the photons are emitted in the UV

part of the spectrum and the photons in the visible part of the spectrum are

predominantly blue. In a typical Cherenkov detector in accelerator-based

experiments, particles whose momenta are a few GeV/c emit photons which

have a few eV of energy.

The number of photons produced (Nprod) by a particle along a path

length L in a material for a photon energy range from E1 to E2 is predicted

by the Frank–Tamm theory to be

Nprod = (α/�c)q2L

∫ E2

E1

sin2(θ(E))dE (4.3)

where (α/(�c)) = 370 eV−1cm−1 and E = hc/λ = photon energy. In a

Cherenkov detector, only a fraction of these photons are detected. For

example, if they are reflected by a mirror with reflectivity R(E) and go

through a quartz window with transmission T(E) and detected by a photon

detector with efficiency Q(E), the number of photons detected is

Ndet = (α/�c)q2L

∫ E2

E1

sin2(θ(E))R(E)T (E)Q(E)dE (4.4)

For the case where the variation of n with photon energy is small and q = 1,

Ndet ≈ N0L sin2(θ), where N0 is called the “figure of merit” of a Cherenkov

detector and is indicative of the fraction of photons detected compared to

what was produced. Typical values of N0 are in the range 30–200 cm−1.

The effective resolution of a Cherenkov detector is expressed in terms

of Δβ/β.

4.2.3 Overview of PID using Cherenkov detectors

This overview uses RICH detectors as an example. Many of the items

described here are valid for the other types of counters also. Further infor-

mation regarding PID from Cherenkov calorimeters can be found in a later

section and in the chapter on “Large scale Cerenkov neutrino detectors”.
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Typically, in an accelerator-based experiment, the direction and momen-

tum (p) of each charged track are obtained from the tracking system.

The RICH detector measures the positions (Xph) of Cherenkov photons

on a detector surface. Combining the Xph and the information from the

tracking system on the track direction, one can calculate the Cherenkov

emission angle (θ). In principle, from the θ, the knowledge of the index of

refraction (n) and the momentum (p), one can estimate the mass of the

particle using Eq. (4.1) and thus identify the particle type.

However, when there are many charged tracks that give rise to many

overlapping Cherenkov rings, one does not know which photon signals

(recorded hits) are associated with a given track. Hence, one starts with

many combinations of tracks and hits. In this case, one needs the algorithms

described in Section 4.6 for PID.

Some detectors also measure the time of arrival (TOAph) of the photons.

In the absence of dispersion, the n is a constant and the photons created

in a radiator by a track that are expected to arrive in the same region

of the detector plane would have the same TOAph, regardless of their

emission points. The dispersion typically results in a spread up to 100 ps

on TOAph. Therefore, using the TOAph, one can reduce the backgrounds

from spurious combinations of tracks and photon hits. One option for

this is to select only those combinations which have the TOAph within

a few hundred picoseconds to a few nanoseconds of the expected time

of arrival of the corresponding photons. Various options are adopted for

combining the information from Xph and TOAph measurements in different

detectors.

The presence of dispersion also implies that one does not know the

exact index of refraction (n) corresponding to any specific photon and

this also contributes to the uncertainty in the PID results as described

later.

Some of the techniques described in Section 4.6 can combine the infor-

mation from Xph, momentum, track direction, and TOAph measurements.

In the Cherenkov calorimeters described in Section 4.5, the tracking system

does not exist and hence track direction also needs to be estimated from

Cherenkov hit data.

4.3 Main Components of Cherenkov Detectors

A Cherenkov detector has a radiator for creating photons, optical elements

such as mirrors and quartz plates for facilitating the photon transport, and

a set of photon detectors with their readout system.
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4.3.1 Cherenkov radiators

A radiator can be any transparent dielectric medium. The PID in a

certain momentum range depends on the refractive index of the radiator.

Choosing a material as a radiator is primarily based on refractive index

and radiation length. In practice, before choosing a material, one also

considers many other factors. A flammable gas can cause safety concerns.

If the material absorbs other gases, such as water vapor, its refractive index

could change with time. The probability for Rayleigh scattering and Mie

scattering processes by the photons needs to be as small as possible in the

material since the scattering loses the photon emission angle information.

The material must have excellent optical transparency in the wavelength

ranges considered.

Examples of radiators used in accelerator-based experiments are helium

gas, C4F10 gas, C6F14 liquid, silica aerogel, and quartz. In some astropar-

ticle experiments, the atmosphere, the ocean, and the ice in Antarctica are

used as radiators, and the photon transport is contained in these radiators.

The Cherenkov emission angles from all these radiators are acute angles.

There is R&D proposed for designing radiators with desired refractive index

using periodic structures, and in case this materializes, the emission angle

can be an acute or obtuse angle [22].

4.3.2 Cherenkov radiation in dispersive materials

When the radiator medium is dispersive, n is not a constant as seen in

Fig. 4.4 and the value of θ depends on the wavelength of the photon

emitted. The corresponding variation in the measured Cherenkov angles

for each track is called the chromatic error. The strategies to reduce this

error include the following:

(1) Filtering off low wavelength photons since the variation of refractive

index is worse at low wavelengths compared to that at high wavelengths.

However, this option reduces the number of detected photons. The

feasibility of this option also depends on the sensitivity of the photon

detectors in different wavelengths, as indicated in the following sections.

(2) Choosing a material that has only a small variation in refractive index.

Another consequence of the dispersion is that the conical wavefront in

Fig. 4.2 is not quite normal to the photon direction and the mach cone

angle ξ is not a complement to θ in that figure. Using the notations in

Fig. 4.5, the time taken by a photon to travel from its emission point to a
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Figure 4.4. Refractive index of three different radiator materials as a function of photon
wavelength.
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Figure 4.5. Schematic picture of a Cherenkov cone. Here a photon is emitted at e and
detected at d so that it travels a distance Lph = (dz − ez)/ cos(θ).

plane where it is detected is given by

tph = (Lph)ng/c = (dz − ez)(ng/c)(1/ cos(θ)) (4.5)

Here one uses the fact that the photon energy travels with the group velocity

and the group index of refraction (ng) is related to the phase index of

refraction (n) using the equation

ng(λ) = n(λ) − λdn(λ)/dλ (4.6)
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As a result, different photons from the same track arrive at the detector

plane at different times, depending on their wavelengths. This can have

an observable effect on the time resolution of the Cherenkov detectors

which use fast timing if, in these detectors, the time resolution for the

measurement is expected to be already in the range of a few tens of

picoseconds. In the past, it was difficult to observe this effect since the time

resolution was dominated by that of the photon detectors and readout

system. However, some of the modern photon detectors can have time

resolutions in this range.

There have been attempts in recent years to calibrate the variation in

the emission angle with the time of arrival (TOAph) of photons at the

detector plane and thus correct for the chromatic error contribution to the

Cherenkov angle resolution [7]. For this, the photon detectors need to have

a timing resolution typically better than 100 ps.

4.3.3 Mirrors and focusing

In some RICH detectors, Cherenkov photons are focused with spherical

mirrors. The Cherenkov photons produced at the same azimuthal angle

(φc) around the particle direction, are parallel to one another if we neglect

the effects of scattering and dispersion. In this case, they are focused by

the mirror to a point at the focal plane and thus the photons produced

at different φc create a ring at the focal plane as can be inferred from

Fig. 4.6. Ideally, the focal plane of the mirror with radius of curvature

R also has curved shape and the reflected photons travel a distance R/2.

The radius (r) of this Cherenkov ring is r = (R/2) tan(θ). In practice, the

photon detectors are placed in a flat plane near the ideal focal plane and, in

some cases, the spherical mirrors are tilted to keep those detectors outside

the acceptance of the charged particles. These give rise to a variation of the

measured Cherenkov angle from different photon hits at different azimuthal

angles (φc) around the same track and this is called the emission point error.

Special coatings are applied on the mirror surface to get an average

reflectivity above 90% over the wavelength range of interest. In general, the

mirrors are made from quartz or light materials, such as carbon fibre [23],

which are radiation hard.

When the mirrors are installed in the RICH detector, there can be

residual misalignments between the tracking system and RICH detector

system. As a result, the projection of a track on the detector plane would

be at a point away from the center of the Cherenkov ring and therefore
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Figure 4.6. Schematic picture of the optical configuration of a RICH detector. The
dotted lines are photon paths. This shows how a spherical mirror is used for focusing the
Cherenkov photons.

the reconstructed Cherenkov angle as a function of φc will be a sinusoidal

distribution. An alignment procedure would need to correct for this so that

it does not degrade the Cherenkov angle resolution.

In some experiments, the Cherenkov photons travel only a small distance

in the radiator before reaching the photon detectors. This avoids the need

to have the focusing mirrors, and this arrangement is called “proximity

focusing”. In these cases, the radiator is normally a solid or liquid, which

produces sufficient number of photons even when the distance traversed by

the particle in the radiator is small. Figure 4.7 [25] shows an example of

this. This configuration was used by the ALICE experiment at CERN.

4.3.4 Photon detectors

These detectors are required to be sensitive to single photons with high

efficiency and low noise. The photons are converted into electrons using the

photoelectric process or photoconductivity. The quantum efficiency (QE)

is the probability for a photon to convert into a photoelectron from any of

these processes.

Different photocathodes are sensitive to different wavelength ranges,

from UV to near IR. Many of the commercially available solid photo-

cathodes are made from mixtures of alkali metals since they have a
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Figure 4.7. Example of proximity focusing. Here, the Cherenkov photons are created in
the C6F14 liquid radiator and they are then incident on a photocathode made of CsI.

Source: Reproduced with permission of IOP Publishing from [1]; permission conveyed
through Copyright Clearance Center, Inc.

relatively low “work function” to liberate the electrons. In some detectors,

photosensitive gases are used for creating the photoelectrons. The silicon

photomultipliers (SiPMs) can be sensitive to photons up to about 1100 nm

using photoconductivity.

The signal from each electron is amplified so that this becomes a

detectable signal ready to be sent to the readout system. This is done

using different methods in different photon detectors. The probability

for initiating this amplification process is labeled here as the triggering

efficiency (PTrig).

Some of the applications also require excellent timing resolution, low

sensitivity to magnetic fields, radiation hardness, capability for high readout

rate, and good pixel segmentation. These requirements can drive up the

costs and hence they need to be reviewed when designing the Cherenkov

detectors. Although several types of photon detectors are available these

days, developing the best performing photon detector is an active area of

R&D, done in collaboration with industry.

Arrays of photon detectors, such as photomultiplier tubes (PMTs), may

have gaps between adjacent pixels and between adjacent PMTs. The active

area fraction (PA) is the ratio of the sensitive area to the total area on the
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Figure 4.8. Typical photon detection efficiencies of SiPM, MaPMT, and HPD. These
efficiencies are plotted for different photon wavelengths. A plot of (refractive index-1) ×
10000 for C4F10 gas is also shown as a function of photon wavelength.

detector plane. Some of the recent versions of PMTs can reach a PA near

80%. The readout also can have an efficiency (Er) for signal detection.

The detection efficiency (PDE) of a photon detector is defined as the

product of QE, PTrig and PA, as appropriate. Figure 4.8 shows the typical

detection efficiencies of three types of photon detectors as a function of the

wavelength. The refractive index of a gas radiator is also superposed in this

figure. From this it can be inferred that, one of the ways to mitigate the

chromatic error is to choose a photon detector whose efficiency distribution

is shifted to large wavelengths.

The photon detectors can be broadly categorized into (a) vacuum-based

detectors, (b) gaseous detectors, and (c) solid state detectors.

Examples of vacuum-based detectors are PMTs with dynodes, hybrid

photodiodes (HPD), and microchannel plate PMTs (MCP-PMT). These

devices have a thin layer of photocathode in a vacuum tube. The signal

created by the photoelectron is amplified to be well above the noise level in

the readout system. In a multi-anode photomultiplier tube (MaPMT) [16],

this is achieved through a set of dynodes. In an HPD, the photoelectron is

accelerated within the tube so that they are focused on a silicon detector

anode, as shown in Fig. 4.9. This figure also has a photograph of a

typical HPD that was used in the LHCb experiment until 2018. In an
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HPD : schema�c view

Figure 4.9. HPD: Schematic picture and a photograph.

Source: Reproduced with permission of IOP Publishing from [4]; permission conveyed
through Copyright Clearance Center, Inc.

MCP-PMT [16], the dynodes are replaced by couple of thin glass plates

named microchannel plates, which have arrays of thin holes where the

amplification takes place.

The PMTs and HPDs have been used in large Cherenkov detector

systems, although there are opportunities for further improvements. Many

versions of them can work at high rates such as 40 MHz and some type

of PMTs can be operated in remote locations such as below the surface

of the ocean. The MCP-based detectors can offer better spatial and time

resolutions and they are more resistant to magnetic fields compared to

HPDs and PMTs. For example, some MCPs have achieved a time resolution

of 30 ps with a low dark count rate; however, they suffer from restricted

lifetime and R&D is in progress to mitigate this. One problem of the

MCP is that residual gas in the detector’s channels gets ionized. The ions

and photons produced from this gas gradually destroy the photocathode.

Measures that are implemented to alleviate this problem include improving

the level of vacuum in the tube and using atomic layer deposition (ALD)

for making the microchannel plate [15]. Recently, MCP-PMTs also started

to be used in Cherenkov detectors in accelerator-based experiments.

Gaseous detectors [28] offer a relatively inexpensive and traditional

option to cover large areas with photon detectors. Many of the first genera-

tion of RICH detectors were based on gas technology. In these devices, the

photoelectrons are detected by a wire chamber or TPC (Time Projection
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Chamber). For the photon conversion, one option is to mix the TPC gas

with approximately 0.05% TMAE (tetrakis(dimethylamino)ethylene), as

was done in the RICH in the DELPHI experiment at CERN. The CLEO-

III RICH at CESR mixed the wire chamber gas with TEA (triethylamine).

The ALICE experiment used a solid photocathode composed of CsI for

the photon conversion and the photoelectrons were detected by an MWPC

(multi-wire proportional chamber) in the configuration shown in Fig. 4.7.

In these devices, the secondary photons and ions created in the gas can

reduce efficiency and create backgrounds. These ions can also accelerate

the aging of solid photocathodes. Recently, gas electron multipliers (GEM

and THGEM) have been developed to solve these problems by directing

the secondary electrons and ions created in the gas to another electrode

[27, 28]. The PHENIX HPD [5] is one of the first RICH detectors to

use CsI photocathode with GEM. Since the photon conversion in the

photocathodes in these detectors are optimized for the UV region, there

can be significant chromatic errors and the photon yields can be reduced,

compared to those from the photocathodes operating in the visible region.

These detectors can work in a magnetic field. The detectors which use

TEA and CsI are moderately faster than those which TMAE. However,

the readout rate for these detectors are normally too low for Cherenkov

detectors which require fast timing at the level of a few nanoseconds or

better.

Silicon photomultipliers (SiPMs) [15] have already been used in

Cherenkov telescopes and there is R&D underway for using them in other

detectors that are in high luminosity environments. A silicon detector is

essentially a reverse-biased p-n junction and it is widely used for the

tracking of charged particles. Photons with energy greater than the bandgap

energy of silicon (1.12 eV at 300 K ) can create electron–hole pairs in such a

detector. In order to provide an amplification above 105 to this signal, a bias

voltage is applied which is above the breakdown voltage. This results in the

creation of an avalanche of electron–hole pairs and this mode of operation

is called the “limited Geiger mode”. A quenching resistor is installed in

series with the diode so that after the single-photon detection, the Geiger

avalanche is quenched and the state of the diode is restored to be able

to detect another photon. A SiPM contains arrays of such single-photon

avalanche diodes (SPADs). SiPMs are compact, resistant to magnetic fields,

and have excellent spatial and time resolutions. The design of the SiPMs

can be optimized such that the PDE can peak at high wavelengths, as

seen in Fig. 4.8, and this can help reduce the chromatic error. However, the
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typical dark count rate (DCR) is about 500 kHz/mm2 at room temperature,

which is too high to use in many Cherenkov detectors. If the SiPMs were

to be installed in some of the experiments at the Large Hadron Collider

(LHC), they could be subjected to fluences of approximately 1014/cm2 1-

MeV-equivalent neutron fluence. This can also increase the DCR. Operating

SiPMs at very low temperatures, for example at −100◦C, is considered as

an option to mitigate this problem.

4.4 Types of Cherenkov Detector Designs

Cherenkov detectors can be classified into threshold counters and imaging

counters.

4.4.1 Threshold counters

Threshold counters do not measure the Cherenkov angle θ, but they can give

a decision on the particle type using of the fact that only particles whose

momenta are above the Cherenkov threshold create signals in the detector.

For example, in the case of a mixture of two particle types “a” and “b”

with masses ma and mb, where ma > mb, their momenta would need to

be such that the “a” is below threshold and “b” is above threshold. As

an improvement, one may use the number of photoelectrons (or calibrated

pulse heights) observed to discriminate between particle types and this can

result in a modest increase in the momentum range covered. The typical

figure of merit (N0) is 90 cm−1. If the momentum threshold for “a” is

p and the radiator length is L, the number of photons created by “b” at

this momentum per unit length is Nb/L = N0× (m2
a−m2

b)/(p
2 +m2

a). The

efficiency of such a counter is influenced by Poisson fluctuations, which can

be challenging when there is one dominant particle type in the mixture.

Since the rejection of a particle type is based on not seeing a signal, various

sources of noise and the probability that a particle which does not create

signal may decay into another particle which is “above threshold” would

need to be considered. One of the recent experiments that used a threshold

counter is the BELLE experiment in Japan [17].

4.4.2 Imaging counters

Imaging counters measure the positions (Xph) of the photons as they arrive

at the photon detector, and from this, the Cherenkov emission angles (θ)

are calculated. Some of these also measure the time of arrival (TOAph) of
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the photons and the number (Np) of photons detected. There are two main

types of such counters, namely, the RICH detector and Cherenkov tracking

calorimeters.

4.4.2.1 Features of RICH detectors

All the RICH detectors in accelerator-based experiments measure Xph and

Np and some of them measure also measure TOAph. The momentum and

direction of the charged particles are provided by the tracking systems in

those experiments. In a typical RICH detector, the photons are focused onto

the image plane, as shown schematically in Fig. 4.6. The spatial resolution

obtained from RICH per charged track is given by

δβ/β = tan(θ)× σθt (4.7)

where σθt = (< σθph > /Np)
⊕

C. Here σθph is the Cherenkov angle reso-

lution for single photon, Np is the number of photons that created signals

from a charged track, and σθt is the Cherenkov angle resolution per charged

track. The σθph can have contributions from chromatic error, detector pixel

granularity, optical arrangement, and other sources. In this equation, the

term “C” includes the resolutions associated with the measurement of the

directions of charged particles, multiple scattering, and the curvature of the

corresponding tracks in the magnetic field in the radiator.

In general, the resolution obtained from a RICH detector is better than

that from a threshold counter since the RICH measures both Xph and Np,

whereas the threshold counter measures onlyNp. An estimate of the number

of sigma separation between two particle types with masses ma and mb at

momentum p is given by

Nσ = (|m2
a −m2

b |)/(2p2σθt

√
n2 − 1) (4.8)

This equation is useful for the initial design of a RICH detector. In

practice, various other factors, such as the presence of multiple tracks giving

overlapping rings and various types of backgrounds, can influence the actual

discrimination capability between particle types.

4.4.2.2 Features of Cherenkov tracking calorimeters

Cherenkov tracking calorimeters [18] use large radiator volumes, such as the

large tanks of water or the ice in Antarctica. They search for rare processes,

such as the conversion of neutrinos into electrons, muons, and tau in these

radiators. The Cherenkov signals created by these charged particles are

detected by photon detectors, which are typically PMTs.
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These photon detectors have good timing resolution, which allows them

to measure TOA in addition to Xph and Np. These are used for determining

direction of the photons and the charged tracks. Considering there can be

many charged tracks in these events, the pattern recognition can become

a complex procedure. In this case, one makes use of the fact that non-

showering particles such as muons and protons create sharp rings, whereas

particles such as electrons create diffused rings. The number of photons

detected is a measure of the particle energy, and in this context, a careful

energy calibration is needed.

4.5 Examples of Cherenkov Detector Systems

There are several accelerator-based experiments which have a Cherenkov

detector for PID. These include the RICH detectors in DELPHI at LEP

at CERN, HERMES at HERA at DESY, NA62 at CERN, BELLE2 in

Japan, and many others [20]. The salient features of three RICH detectors

described in the following are indicative of the properties of many other

similar detectors.

4.5.1 Threshold detector at BELLE

The BELLE detector at the asymmetric KEKB e+e− collider studied CP

violation in the decays of particles produced at and around the Υ(4S)

resonance. The Cherenkov detector had to discriminate between pions and

kaons in the hadronic decays of B mesons. To accomplish this, it used a

detector named Aerogel Cherenkov Counter (ACC) [17], which used silica

aerogel as the radiator. Fine mesh PMTs were used for photon detection

in a 1.5 T magnetic field from a solenoid. In this detector, most pions

produced Cherenkov radiation above threshold, while most kaons were

below Cherenkov threshold. This detector collected data successfully for

more than 10 years and achieved a kaon identification efficiency up to 90%

with a pion misidentification probability of 6%, for a momentum range up

to 3.5 GeV/c.

4.5.2 DIRC at BABAR

The BABAR experiment at the asymmetric PEP II e+e− collider also stud-

ied CP violation in Υ(4S) decays. For this detector, pion/kaon separation

for particle momenta up to 4 GeV/c was provided by a Cherenkov detector

called DIRC (Detection of Internally Reflected Cherenkov light) [2]. In this

detector, quartz bars were used as both a radiator and a light pipe. These
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Figure 4.10. Schematic picture of the DIRC at BaBAR experiment.

Source: Reproduced with permission of IOP Publishing from [21]; permission conveyed
through Copyright Clearance Center, Inc.

bars were rectangular in shape and hence the photons were transported

toward the edge of the bar via total internal reflection, ensuring that

the photon detectors could be kept outside the acceptance of the charged

particles. The photons that reached the edge of the bar were imaged via a

“pin hole” through an expansion region filled with purified water and then

onto an array of photomultiplier tubes located 1.2 m from the end of the

bar. These tubes recorded the location and time of arrival (TOAph) of the

photons. Figure 4.10 shows a schematic picture of this configuration. This

detector collected data for more than 8 years until 2008. For a pion identi-

fication probability around 85%, the kaon misidentification probability was

well below 1%, for momenta up to 3 GeV/c. This corresponds to a π/K

separation of at least 2.5 σ for momenta up to 4 GeV/c.

New versions of DIRC detectors are expected to use MaPMTs or MCP-

PMTs, which provide better pixel granularity and improved time resolution

compared to the photon detectors used in BaBAR. This can improve the

precision in the measurement of the Cherenkov angle. In some cases, they
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would be able to measure the particle time of flight and correct for the

chromatic dispersion in the radiator as indicated in Section 4.3.2. For

example, the Barrel DIRC for the PANDA detector at FAIR [20] will use

MCP-PMTS with a timing precision of 100 ps. In this case, the photons

created in silica radiator bars will be focused with a lens and this detector

is expected to provide a π/K separation at the level of 3σ, up to a

momentum of 3 GeV/c.

4.5.3 LHCb RICH detectors

The LHCb experiment installed at the LHC has two RICH detectors,

covering the momentum range 2–100 GeV/c [4]. The original version

had three radiators, whereas since 2015, only two gas radiators are used.

Their refractive indices are shown in Fig. 4.4 and these values determined

the ranges of momenta covered by each of these radiators for particle

identification. Table 4.1 shows some of the features of these radiators,

including their momentum coverage and the RICH detector in which they

are installed. The detector named RICH1 is installed upstream of the LHCb

magnet and it is designed for the PID of the low momentum particles. The

detector named RICH2 is installed downstream of the LHCb magnet and

it is designed for the PID of the high momentum particles. A large fraction

of the photons produced in aerogel were subject to Rayleigh scattering

within the aerogel, thereby losing the Cherenkov angle information. The

fraction of the photons transmitted without getting scattered in aerogel is

given by:

T = Ae(−Ct/λ4) (4.9)

Table 4.1. Features of LHCb RICH radiators.

Radiator Units Aerogela C4F10 gas CF4 gas

Length cm 5 86 196
θmax
c mrad 242 52 30
πth GeV/c 0.6 2.6 4.4
Kth GeV/c 2.0 9.3 15.6
Momentum GeV/c <10 <70 <100

coverage
Detector RICH1 RICH1 RICH2

Note: aAerogel not used since 2015.
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Figure 4.11. Schematic picture of LHCb RICH1 detector. The RICH1 is downstream
of the LHCb vertex detector named VELO. A magnetic shield surrounds the arrays of
photon detectors.

Source: Reproduced with permission of IOP Publishing from [4]; permission conveyed
through Copyright Clearance Center, Inc.

where t = thickness of the aerogel tile, λ = photon wavelength, typically

A = 0.94, and C = 0.0059 mm4/cm.

The schematic picture of the RICH1 detector is shown in Fig. 4.11.

In this figure, one can see examples of Cherenkov cones created in the

radiators and how the photons are focused onto the detector plane. The

optical system consists of spherical and flat mirrors. The spherical mirrors

are tilted to keep the photon detectors outside the acceptance of the charged

particles. The flat mirror helps reduce the length of the detector along the

beam axis. Until 2018, HPDs were used as photon detectors. The RICH

system was later upgraded and, beginning in 2022, MaPMTs have been

used. Considering that the residual magnetic field in the region of the
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photon detectors could affect the path of the photoelectrons, the arrays

of photon detectors are surrounded by a magnetic shielding structure as

shown in Fig. 4.11. In addition to this, local shielding is provided to each

photon detector.

The detector has a binary readout and hence the data collected are a

set of channel numbers. From these, the locations (Xph) where the photons

arrive at the detector plane are reconstructed. Until 2018, the readout

had a time window of 25 ns, which corresponds to the LHC collision

frequency. However, beginning in 2022, the readout is expected to have

a time window in the range of 3–6 ns. Further upgrades to the readout

are planned in the future, which would enable the detector to read out the

TOAph of the photons so that one can apply tighter time windows around

the signal during data reconstruction. These time windows are expected

to be approximately 600 ps and will be limited mainly by the transit time

spread of the MaPMTs. With the introduction of new photon detectors such

as the SiPM, these windows could be further tightened to a level below 100

ps in the future.

The two gas radiators were kept at ambient pressure (P) and tempera-

ture (T). Since their refractive index varies with (P/T), these parameters

were monitored continuously. The photons produced by scintillation in CF4

in RICH2 are quenched by adding a small amount of CO2 to the CF4 so that

the resulting mixture had about 5% of CO2 [8]. In this case, the scintillation

was a cascade-free emission in the wavelength range used by RICH2, and

this quenching resulted in a radiation-less transition from one molecule to

the other, with a subsequent emission in the infrared.

Since 2015, the RICH PID software has been running in LHCb online

as part of the high-level trigger in the data acquisition system, in order to

select events that are useful for different physics channels. This required the

RICH calibration and alignment also to run as part of the data acquisition

system.

In previous runs, the single photon Cherenkov angle resolution achieved

from the C4F10 radiator in RICH1 was 1.62 mrad and that from the

CF4 radiator in RICH2 was 0.68 mrad [3]. The number of photon signals

collected per saturated track was approximately 20 from C4F10 in RICH1

and 16 from CF4 in RICH2. This performance is expected to be further

improved in the runs beginning in 2022 [12]. As described in earlier sections,

the contributions to the single photon resolution come from the pixel

granularity of the photon detectors, chromatic error, and emission point

error.
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Figure 4.12. Plots of Cherenkov angle versus particle momentum from the real data
collected using C4F10 gas radiator in LHCb-RICH1.

Source: Ref. [3].

In Fig. 4.12, for isolated tracks in the RICH1 detector, the Cherenkov

angle from the C4F10 gas radiator measured in real data is plotted against

the corresponding particle momentum measured using the LHCb tracking

system. From this, one can see the signals for the different particle types

listed in this figure. The shapes of these signals are similar to those expected

from Fig. 4.3.

4.6 Algorithms for PID in RICH Detectors

Events with a large number of charged tracks give rise to many overlapping

rings at the photon detector surface. In this environment, it is difficult for

the software algorithms to find the photon hits associated with each track.

Depending on the optics, the image of the hits at the detector plane from

each track may or may not be circular in shape. Even if the images are

expected to be circular rings, they may not have perfect circular shapes,

due to the tilts of the mirrors.

The Hough transform method [6,13] projects each track to the detector

plane and accumulates the distance of each hit from the projection point
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in case the images are expected to be circular rings. The peaks in the

distribution of these distances are used to associate the hits with tracks.

From the Cherenkov angle reconstructed using these hits and the tracks,

one can use Eq. (4.1) to determine the mass, thus identify the particle.

This method is used for the Cherenkov detector in the ALICE experiment

at CERN.

In the global log-likelihood method [9, 26], the reconstructed tracks are

projected to the detector plane to determine the set of plausible combi-

nations of tracks and hits corresponding to each particle type hypothesis.

These combinations are called “photon candidates”, and the Cherenkov

angle is reconstructed for each of them. Photons are generated for each

track and for each “particle type hypothesis”. Using a fast simulation

procedure, they are projected to the photon detectors to determine the

“expected signal” at the pixels and predict a corresponding uncertainty.

The average level of background expected at each pixel is also added to this.

This “expected signal” is compared with the signal from the corresponding

“photon candidate”, in order to create a “likelihood”. This comparison

takes into account the uncertainties in the measurement and it is done in

the Cherenkov angle space in order to mitigate the problems associated with

the imperfect signal shapes on the detector plane. Using this procedure, a

“global likelihood” is determined for each combination of track and “particle

type hypothesis” in an event. This is used to find the combination with the

best “global likelihood”. The results of PID for each track are quoted in

terms of the logarithm of the likelihood ratios which is defined as:

Delta Log Likelihood (DLL) = log (likelihood for a “particle type

hypothesis”/likelihood for pion hypothesis).

This procedure does not involve reconstruction of Cherenkov rings. The

global algorithm takes into account the signals from all tracks in an event,

in order to find the optimal likelihood.

A version of this algorithm, called the “local likelihood method”, uses

the signals from each track separately. This is used for the data from the

detectors where the track multiplicities are modest.

Figure 4.13 shows an example of PID performance from LHCb, in terms

of the kaon identification efficiency and pion misidentification probability

over a large momentum range, obtained using the global likelihood algo-

rithm. In order to evaluate the PID performance from real data, samples

of events from a calibration channel are selected using cuts based on

decay kinematics and not using the information provided by the RICH.

For Fig. 4.13, the typical calibration channel used is D∗ → D−π+, where
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Figure 4.13. Example of particle identification performance from LHCb as function of
particle momentum. The red plots represent the efficiency of identifying a kaon as a

kaon when the selection cuts listed in the figure are applied on the DLL. The black plots
represent the probability of misidentifying a pion as a kaon when the selection cuts listed
in the figure are applied on the DLL. For illustration, these plots are shown with two
different cuts on DLL: one for the plots with solid squares and another for the plots with
empty squares. The DLL parameter is defined in the text.

Source: Ref. [3].

D− → K−π−π+. Here, the narrow mass difference between D∗ and D−

helps apply a tight cut to select a clean sample of events. The kaons and

pions in the final states of such events are compared with the results of the

PID from the RICH.

4.7 Summary

The Cherenkov radiation in bulk materials is described by the classical

theory of electromagnetism. Cherenkov detectors make use of the different

properties of this radiation for particle identification. These include the exis-

tence of the Cherenkov threshold, the relationship between the Cherenkov

angle and the mass of the particle, and the dependence of the number of

photons produced on the radiator length and the Cherenkov angle.

Cherenkov detectors have benefited from various advances in technology

in recent years. These include the development of photon detectors that

have single-photon detection capability and fast timing.
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The RICH detectors offer better particle identification performance

compared to those from the earlier versions of Cherenkov detectors. The

design of these detectors continue to be improved. It is expected that these

improvements will be made possible by future advances in the vacuum-

based photon detectors and solid state photon detectors.

Cherenkov detectors are used for particle identification in many

accelerator-based experiments and astrophysics experiments. They have

contributed to important discoveries in particle physics in the last 70 years.
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5.1 Introduction

In high energy physics (HEP), the study and use of machine learning

(ML)—the practice of solving problems by allowing machines to “discover”

algorithms using data or experience without explicit programming—

have been exploded in recent years. According to the INSPIRE HEP

database, the number of articles in HEP and related fields that refer

to ML and related topics has grown twenty times compared to ten

years ago.1 Notwithstanding this recent surge of interest, ML has deep

ties to HEP, especially instrumentation, with early work dating back to

the late 1980s and early 1990s [31, 33–35, 87–89]. In these early days,

the most popular techniques, including cellular automata and multi-layer

perceptrons, helped shape experimental particle physics. As deep neural

networks have achieved human-level performance for various tasks, such

as image classification [59, 79] in the early 2010s, they were adopted more

regularly in particle physics [14, 56, 61, 106]. Unlike traditional approaches,

deep learning techniques operate on lower-level information to extract

higher-level patterns directly from the data.

2024 © The Author(s). This is an Open Access chapter published by World Scientific
Publishing Company, licensed under the terms of the Creative Commons Attribution 4.0
International License (CC BY-NC 4.0). https://doi.org/10.1142/9789819801107 0005
1https://inspirehep.net/literature?q=%28deep%20learning%29%20OR%20%28neural

%20network%29%20OR%20%28machine%20learning%29%20OR%20%28artificial%20i
ntelligence%29.
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Figure 5.1. Nomological net of topics in ML in particle physics inspired by the HEP
ML Living Review [61].

ML in particle physics has become more than a tool and has emerged

as a subfield worthy of intense academic study in its own right. This can

be seen through the HEP ML Living Review [61], which as of January

20242 categorizes 1,252 articles, proceedings, reviews, book chapters, and

other contributions in this subfield. Inspired by this classification, we can

visualize the different topics of ML in particle physics as a nomological net

in Fig. 5.1. Use cases range from standard classification and regression to

simulation, uncertainty quantification, and real-time inference.

2https://github.com/iml-wg/HEPML-LivingReview/blob/2c7cd26/HEPML.bib.

https://github.com/iml-wg/HEPML-LivingReview/blob/2c7cd26/HEPML.bib
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This chapter is meant to introduce the reader to the basic concepts of

ML that are widely used in HEP. After reviewing these concepts, we survey

popular applications in HEP.

5.2 Machine Learning Basics

5.2.1 Types of learning

The basic premise of ML is to use a set of observations to uncover an

underlying process corresponding to an unknown target function mapping

the inputs to the correct outputs. Within this framework, there are several

different types of learning paradigms, which differ in the information

contained in the dataset and how that information is used. When observa-

tions are coupled with correct outputs, known as labels, based on reliable

information from simulation or empirical observation (ground truth), and

the learning process that uses them, this is known as supervised learning.

This is the most prevalent and well-studied form of learning in HEP and

beyond, but other types are increasingly being applied. For example, in

unsupervised learning, the training data do not contain any desired output

or label information at all. For the remainder of this chapter, we focus

primarily on supervised learning, but we discuss some applications of

unsupervised learning.

5.2.2 Supervised learning

Within supervised learning, different tasks require different types of

outputs. Tasks that require producing continuous, real-valued predictions,

for example for quantities like mass, temperature, or energy, are known

as regression. On the contrary, the main goal of classification is to assign,

among a set of fixed options, the category to which a data sample belongs.

Typically, the output of the model is a set of values pi ∈ [0, 1], one for each

class, that represent the probabilities that the data sample belongs to a

particular class i.

Given a training dataset S = {(x1, y1), . . . , (xN , yN )} consisting of data

samples in an input domain xi ∈ X and labels in a target domain yi ∈ Y,
where i indexes the sample in the dataset, the goal is to learn a function

from the input to the output domain f : X → Y, parameterized by a vector

of parameters θ, that best approximates the labels. We denote the output

of the function for a given input x as f(x|θ). The space of functions under

consideration is known as the model or hypothesis class.
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(a) (b)

(c) (d)

Figure 5.2. Examples of data representations and supervised learning tasks in physics,
including (a) predicting the mass of a star given a measurement of its radius,

(b) classifying image data from the NOvA experiment as one of the four types of neutrino
interactions [6], (c) reducing noise in time series data to better identify gravitational
wave signals [101], and (d) reconstructing particles based on detector measurements in
a collider experiment [103, 104].

Examples of supervised learning are illustrated in Fig. 5.2:

(a) Predicting the mass of a star given a measurement of its radius. In this

case, the input domain corresponds to the set of real numbers X = R

and Y = R.

(b) Classifying image data from the NOvA experiment as one of four types

of neutrino interactions [6]. In this case, X = R
100×80×2 because there

are two detector views (x − z and y − z) with each image featuring

100 by 80 pixels of information. The target domain is a set of labels

Y = {νμ CC, νe CC, ντ CC, ν NC}, where each element is a different

type of neutrino interaction.

(c) Reducing noise in time series data to better identify gravitational wave

signals [101]. For this task, X = R
8192 and Y = R

8192, corresponding

to 8 s of the data sampled at a rate of 1024Hz, before and after noise

reduction.

(d) Reconstructing particles based on detector measurements in an LHC

experiment [103]. Here, X =
∏6,400

i=1 R
7×{track, cluster}×{−1, 0,+1},

where there are seven continuous features and two discrete features
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(whether the measurement is a calorimeter cluster or a track and the

measured charge of the track) for up to 6,400 measurements per event.

The target domain Y =
∏6,400

i=1 R
4 × {charged hadron, neutral hadron,

γ, e±, μ±}×{−1, 0,+1} because there are four continuous features (four
momentum of the particle) and two discrete features (particle type and

charge) for up to 6,400 particles per event.

5.2.3 Objective function

The objective function, often called the loss or cost function, L(yi, f(xi|θ))
measures the quality of predictions made by an ML algorithm. For example,

a simple choice for regression problems is the squared loss L(y, y′) =

(y′ − y)2. The farther away the predicted value y′ is from the true value y,

the larger the value of the loss function. The more accurate an ML algorithm

is, the smaller the loss value should be, on average, for a given set of data.

Therefore, our goal is to minimize the loss function.

The learning objective is to find the parameters that minimize the

loss function averaged over the entire training dataset, which we denote

l(θ). These optimal parameters, denoted θ∗, can be expressed using the

argmin operator, which returns the value where a given function attains

its minimum:

θ∗ = argmin
θ

l(θ) ≡ argmin
θ

1

N

N∑
i=1

L(yi, f(xi|θ)) (5.1)

Roughly speaking, θ∗ is the set of parameters that minimizes the difference

of the output of the algorithm and ground truth label.

Depending on the type of optimization process, there are additional

requirements for the loss function. For example, the gradient descent

algorithm discussed in Section 5.2.6 requires calculating the gradient of the

loss function with respect to the model parameters to determine how to

modify the parameters to reduce the loss function. Thus, the loss function

must be differentiable in the model parameters.

Training an ML algorithm is closely related to statistical inference

via the method of maximum likelihood [49]. In the maximum likelihood

method, observed data are modeled by a probability distribution function

with some free parameters. To estimate those parameters, we find their

values such that the observed data are the most probable under this

statistical model.
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There is a correspondence between commonly used loss functions and

likelihood functions. For example, minimizing the squared loss corresponds

to maximizing a Gaussian likelihood. A Gaussian likelihood with observed

value y′ and expected mean y and standard deviation σy is given by

G(y′|y, σy) =
1

σy

√
2π

exp

(−(y′ − y)2

2σ2
y

)
(5.2)

If we take the negative logarithm of this likelihood,

− lnG(y′|y, σy) = (y′ − y)2/(2σ2
y) + ln(σy

√
2π) (5.3)

= c(y′ − y)2 + b (5.4)

we see that up to a multiplicative constant c and an additive constant b,

this is equivalent to the squared loss.

Another common loss function appropriate for binary classification tasks

is the binary cross-entropy (BCE), which can be derived from the Bernoulli

likelihood. Given two true classes, y = 0 or y = 1, and a model output y′

defined between 0 and 1, which represents the probability that the data

sample belongs to the y = 1 class, the Bernoulli distribution defines the

likelihood

B(y′|y) = (y′)δ[y=1](1− y′)δ[y=0] (5.5)

where the δ operator evaluates to 1 or 0 if the argument is true or false,

respectively. Note that only one of these two terms appears, depending on

the true value of y. Taking the negative logarithm of the likelihood yields

the BCE loss function:

LBCE(y, y
′) = − lnB(y′|y) = −δ[y = 1] ln y′ − δ[y = 0] ln(1− y′) (5.6)

This can also be generalized to the categorical cross-entropy (CCE) for

classification tasks with more than two target classes.

Figure 5.3 compares the squared loss and BCE for a given example

whose true label is y = 0. Although both losses increase the farther y′ is
from y, BCE is more appropriate for classification problems because it takes

into account that y′ = 1 is an extremely incorrect prediction and the loss

grows without bound as y′ → 1.
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Figure 5.3. Comparison of the squared and binary cross-entropy loss functions for a true
value of y = 0. The BCE loss grows without bound as the prediction y′ approaches 1.

5.2.4 Linear models

Despite their simplicity, linear models are the workhorse of machine

learning. Given a set of D features, each data point is a vector in

D-dimensional space x ∈ R
D, and a linear model can be expressed as

f(x|θ, b) = θᵀx+ b (5.7)

where the weight θ ∈ R
D and bias b ∈ R are unconstrained parameters

of the model. These parameters are chosen to minimize the loss function on

the training data. For notational convenience, we can absorb the bias into

the weight vector by extending the input vector with a constant feature

x(0) = 1 and setting the corresponding entry of the weight vector equal to

the bias θ(0) = b. This allows us to express linear models directly as

f(x|θ) = θᵀx (5.8)

To expand on the foundational ML concepts, we introduce an explicit

example of regressing the logarithm of the radius of stars in the so-called

main sequence as a function of the logarithm of the star mass. This means
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Figure 5.4. Training data points (crosses), testing data points (dots), and linear models
(lines) fit to the data. A linear model using the original features x (upper) and a linear

model after using a polynomial embedding φ(x) = (1, x, x2) (lower) are shown.

we will train a model to predict log10(R/R�) given log10(M/M�). Sample

data, split into training data (crosses) and testing data (dots), and a trained

linear model (line) are shown in Fig. 5.4 (upper).

Linear models can perform more challenging tasks by replacing our

input x with a transformation or embedding of x called φ(x). To illustrate

this, consider a classification task in which we want to separate the two

classes of data points in the (x1, x2) plane, represented by + and ◦
symbols, respectively, as shown in Fig. 5.5 (left). The two classes could

be separated by a circular boundary. Unfortunately, linear models can only

create boundaries that are straight lines. Thus, no linear model can perfectly

separate these two classes of data in the original input space of (x1, x2).

However, we can apply a simple transformation squaring both components

of the input φ(x1, x2) = (x2
1, x

2
2), as shown in Fig. 5.5 (lower). Now, the two
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Figure 5.5. Example of embedding for a classification task. Two classes of data points
in the (x1, x2) plane, represented by + and ◦ symbols, respectively, cannot be separated

by a straight line (left). After transforming the data φ(x1, x2) = (x2
1, x

2
2), the two classes

can be separated by a straight line (right).

classes are separable by the straight line shown, which we can implement

with a linear model.

More quantitatively, we can return to our regression task. If we use a

polynomial embedding φ(x) = (1, x, x2), then our model becomes

f(φ(x)|θ) = θᵀφ(x) = θ0 + θ1x+ θ2x
2 (5.9)

This model achieves a smaller training error than a linear model with the

original feature x, as shown in Fig. 5.4 (lower). We say that this model

is more expressive because it can represent a wider variety of functions.

Although this is equivalent to polynomial regression in the original feature

x, it is still a linear model in the new embedded features φ(x). For certain

models, it is even possible to use the discriminating power of the embedded

features without explicitly calculating them through the so-called “kernel

trick.” Further discussion of kernel methods can be found in Hofmann et al.

[67], Scholkopf and Smola [114].

Although we have not yet defined neural networks, we can already try

to build some intuition for how they work based on the concepts discussed

already. As shown in Fig. 5.6, neural networks have linear models as their

basic building block. A neural network can be thought of as a linear model

after inputs are mapped to features through a nonlinear transformation.

The initial layers of a neural network act as “automatic featurizers,” where
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Figure 5.6. More complex model classes like neural networks have linear models as
their basic building block. A neural network can be thought of as a linear model after
inputs are mapped to features through a nonlinear transformation. Neural networks are
“automatic featurizers.”

Figure 5.7. Decision boundary of a linear model after an embedding φ(x1, x2) =
(x2

1, x
2
2), corresponding to x2

1 + x2
2 = 2 (left). Decision boundary for a simple two-layer

neural network with three hidden features (right).

instead of us guessing a well-suited embedding of our input features, the

model learns one directly.

Revisiting the classification task of Fig. 5.5, a simple two-layer neural

network can map the two input features to three “hidden features” where

the two classes are separable. Figure 5.7 displays the decision boundaries
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for the linear model after the embedding described previously and a simple

neural network. Since the embedding is hand-tuned for this dataset, its

decision boundary can be thought of as ideal. The neural network’s decision

boundary is an imperfect approximation with jagged corners, but it has

the advantage that no feature engineering was necessary—the features

were learned by the neural network automatically. To gain intuition for

neural networks before we describe them fully in Section 5.3.2, readers are

encouraged to explore a visualization tool called TensorFlow Playground at

https://playground.tensorflow.org.

5.2.5 Generalization and bias-variance decomposition

One of the central goals of ML is to train models that generalize, meaning

that they perform well on test data outside the training set. But what

exactly does that mean? Generally, it means the expected test error is

small. As we see, two main sources of error prevent ML algorithms

from generalizing beyond their training set. One is bias arising from

erroneous assumptions in the ML algorithm and the other is variance

arising from sensitivity to statistical fluctuations in the training set.

A graphical visualization of bias and variance is shown in Fig. 5.8.

These ideas are connected to underfitting, when a model is unable to

capture the relationship between the inputs and labels accurately, resulting

in a large error rate in both training and test data, and overfitting,

when a model fits exactly (or nearly so) in training data but does not

perform accurately on test data. Explicit examples of both underfitting

and overfitting are shown in Fig. 5.9. In this case, either a zeroth-order

(upper) or fifth-order polynomial (lower) is used to fit the training data.

The zeroth-order polynomial underfits the training data, resulting in a large

Figure 5.8. Graphical visualization of bias and variance using a bulls-eye diagram. Each
hit represents a different, individual training of an ML model. The proximity to the
center of the bulls-eye target indicates how low the test error is. Three different cases
representing different combinations of high and low bias and variance are shown.

https://playground.tensorflow.org
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Figure 5.9. Examples of underfitting with a zeroth-order polynomial (upper) and
overfitting with a fifth-order polynomial (lower). Training data points (crosses), testing

data points (dots), and models (solid lines) fit to the data.

test error due to its high bias. Correspondingly, the fifth-order polynomial

overfits the training data, also resulting in a large test error due to its high

variance.

The bias-variance decomposition is a way of analyzing an ML algo-

rithm’s expected test error as a sum of bias and variance terms. To formalize

this concept, we must introduce some statistical concepts and notation. For

a random variable x sampled from a probability density function (PDF)

P (x), which we denote x ∼ P (x), we can define its expected value as

Ex∼P (x)[x] =

∫ ∞

−∞
x′P (x′)dx′. (5.10)

The expectation operator E is a generalization of the weighted average,

where a subscript usually denotes the random variable(s) being sampled.

Informally, the expected value is the arithmetic mean of a large number
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of independently selected outcomes of a random variable. For a continuous

random variable, we effectively weight the integral by the PDF. For an

integrable function f(x) of the random variable, we can obtain its expected

value in an analogous way:

Ex∼P (x)[f(x)] =

∫ ∞

−∞
f(x′)P (x′)dx′ (5.11)

Returning to the question of the generalizability of our models, we

examine the test error. Assuming each training data point (xi, yi) is sampled

independently from P (x, y) the “true” unknown probability distribution,

then a trained model f(x|θ) has a true test error

LP (f) = E(x,y)∼P (x,y) [L(y, f(x|θ))] (5.12)

In general, we cannot compute this quantity, but we can estimate it using a

test set of independent samples from P (x, y). The training error is generally

smaller than the test error. Overfitting occurs when the test error is much

larger than the training error, while underfitting corresponds to the case

when the training and test error are similar, but both are high.

The optimal set of model parameters θ∗S is a function of the training

dataset S. We can rewrite Eq. (5.1) to make this dependence explicit,

θ∗S = argmin
θ

1

|S|
∑

(x,y)∈S

L(y, f(x|θ)) (5.13)

that is, if we change the training dataset S, the optimal set of parameters

may change as well. The optimal parameters θ∗S are themselves random

variables because the training dataset S is randomly sampled.

We can write the expected test error over all possible training

datasets as

ES [LP (f(x|θS)] = ES

[
E(x,y)∼P (x,y) [L(y, f(x|θS))]

]
(5.14)

If L is the squared loss, we leave it as an exercise to the reader to show

that we can decompose this expected test error into two terms:

ES [LP (f(x|θS)] = E(x,y)∼P (x,y)

⎡
⎢⎣ES

[
(f(x|θS)− F (x))2

]
︸ ︷︷ ︸

variance

+(F (x)− y)2︸ ︷︷ ︸
bias

⎤
⎥⎦

(5.15)

where F (x) ≡ ES [f(x|θS)] can be thought of as the “average” prediction

of our model over different possible training datasets.
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Figure 5.10. Bias-variance decomposition of test error as a function of model complexity.

How can we interpret Eq. (5.15)? The first term inside the expectation

operator quantifies the variance: the difference in predictions when training

on different datasets. The second term quantifies the bias : the difference of

the average prediction from the ground truth. Thus, there is naturally a

tradeoff: models with high variance tend to have low bias and vice versa.

We can relate overfitting and underfitting to the concepts of bias and

variance. Overfitting implies high variance: the model class is too complex

and retraining yields vastly different models. Variance tends to increase

with model complexity and decrease with more training data. Underfitting

implies high bias: the model class is too simple and has a large error rate.

This relationship is shown schematically in Fig. 5.10.

5.2.6 Optimization

Gradient descent is a first-order iterative optimization algorithm for finding

a local minimum of a differentiable function. It is the basis for many of

the optimization algorithms commonly used in modern ML. “First order”

means it only requires first derivatives of the function. The idea is to start

with some (possibly random) initial values for all the parameters and then

compute the gradient of the function with respect to all the parameters.

The gradient represents the direction of the steepest ascent of the function

in parameter space. Since we want to minimize the function, we take a small

step in the opposite direction of the gradient by updating the parameter

values. Then, we repeat this process until we reach a minimum.

More precisely, the gradient descent algorithm proceeds as follows. Each

iteration of the algorithm is indexed by an integer t, starting with t = 0, and

the current values of the parameters are θt. We set the parameters to some

initial values, for example θ0 = 0 or randomly sampled from a Gaussian
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distribution θ0 ∼ N (μ = 0, σ = 1) or some other distribution specific to

a particular type of learning algorithm. At iteration t, the parameters are

updated using the negative of the loss function gradient:

θt+1 = θt − η∇θl(θt) (5.16)

= θt − η

N
∇θ

N∑
i=1

L(yi, f(xi|θt)) (5.17)

where η is a hyperparameter known as the step size or learning rate. The

learning rate controls how large a step the algorithm takes during each

update.

Unfortunately, we cannot determine a priori the optimal learning rate

for a given model on a given dataset. Instead, a good (or good enough)

learning rate must be discovered through trial and error. Typical values to

consider are in the range of η ∈ [10−6, 1], while a good starting point is

generally 10−3 or 10−2. If you set the learning rate too high, your training

may not converge because the weight updates “overshoot” the minimum

of the loss function. If you set the learning rate too high, your model may

also not converge (or converge too slowly) because the weight updates are

tiny. Hyperparameter optimization procedures, like grid search, Bayesian

optimization, or the asynchronous successive halving algorithm [84], can

help find a good learning rates.

Note that in Eq. (5.17), the entire “batch” of training data is used to

determine the gradient. In principle, this can give a more accurate estimate

of the test loss that is less susceptible to statistical fluctuations, at the

cost of more computation, that is, iterating over the full training dataset

for each update. We repeat these updates until we reach some predefined

convergence criteria.

A popular variant of this algorithm is stochastic gradient descent (SGD).

In this case, the true gradient over the entire dataset is approximated by

that for a single data point. In other words, the update rule is modified to

consider only one, usually shuffled, data point (xi, yi) at a time:

θt+1 = θt − η∇θL(yi, f(xi|θt)) (5.18)

Although this is much more computationally efficient, it can be subject to

large statistical fluctuations.

At this point, it may be helpful to work through an end-to-end example

of SGD for a regression problem, as shown in Fig. 5.11. Consider a training

dataset consisting of two labeled data points (x1 = (1, 1), y1 = 1) and
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Figure 5.11. Example of stochastic gradient descent with two data points. Each frame
from left to right represents an SGD iteration. The dotted line represents the current
model with the current parameters listed on the canvas. The starred data point represents
the one being used to compute the next parameter update. SGD converges after the
second iteration.

(x2 = (1, 0), y2 = 0), where we have augmented the input with the

“dummy” feature of 1 to simplify notation as described earlier. We use

the squared loss function, a learning rate of η = 0.5, and an initial set of

parameters θ0 = (0, 0), which includes the bias as the first component.

First, we can calculate the gradient of the loss with respect to the

parameters:

∇θL(y, f(x|θ)) = ∇θ(y − θᵀx)2 = −2(y − θᵀx)x (5.19)

Now we can write the SGD update rule of Eq. (5.18) as

θt+1 = θt + 2η(y − θᵀt x)x (5.20)

= θt + (y − θᵀt x)x (5.21)

where in the second line we use the fact that η = 0.5. Performing the first

update with the data point (x1, y1) yields

θ1 = θ0 + (y1 − θᵀ0x1) = θ0 + x1 (5.22)

= (0, 0) + (1, 1) = (1, 1) (5.23)

Similarly, the second update with the data point (x2, y2) gives

θ2 = θ1 + (y2 − θᵀ1x2) = θ1 − x2 (5.24)

= (1, 1)− (1, 0) = (0, 1) (5.25)

which is exactly the optimal set of parameters. In this example, SGD

converges after two iterations and will not give any further updates to the

parameters because the loss is now zero for all data points, i.e., the data
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are fit perfectly. We note that the example here was carefully chosen, and,

in general, many more updates are required.

A compromise between batch and stochastic gradient descent is mini-

batch stochastic gradient descent, where the gradient is approximated by

the average over a mini-batch of Nb samples:

θt+1 = θt − η

Nb
∇θ

Nb∑
i=1

L(yi, f(xi|θt)) (5.26)

This is more computationally efficient and may result in smoother con-

vergence, as the gradient computed at each step is averaged over more

training samples. The hyperparameter Nb is known as the mini-batch size,

which is typically taken to be a power of 2. It has been observed that

choosing a large mini-batch size to train deep neural networks appears

to deteriorate generalization [82]. One explanation for this phenomenon

is that large mini-batch SGD produces “sharp” minima that generalize

worse [64,74]. Specialized training procedures to achieve good performance

with large mini-batch sizes have also been proposed [55, 66, 126].

Many alternatives to SGD have been developed to improve training

dynamics and avoid common pitfalls, such as slow progress along shallow

parameter dimensions, “jitter” or oscillations along steep parameter dimen-

sions, sensitivity to parameter initialization, excessively noisy gradient

estimates, and getting stuck in local or sharp minima. SGD with momen-

tum, named by analogy with physical momentum, remembers previous

updates in an attempt to accelerate training, reduce the impact of statistical

fluctuations, and prevent getting stuck in local minima [100, 110, 118].

Adaptive momentum estimation (Adam) [76] is an extremely popular

SGD variant that combines many improvements from its predecessors [44,

62, 127] to make it more robust. In particular, it uses an adaptive learning

rate specialized for each parameter. Figure 5.12 illustrates a comparison

of SGD-based methods. Momentum can be seen as a ball running down a

slope while Adam behaves like a heavy ball with friction that prefers flat

minima in the error surface.

5.2.7 Regularization

Regularization refers to the practice of applying constraints, either implic-

itly or explicitly, to a model in order to guide optimization toward a

simpler solution to prevent overfitting and improve generalization. As the

complexity, capacity, and sheer number of parameters of ML models have
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Figure 5.12. Comparison of different SGD methods optimizing the Beale function
f(x, y) = (1.5− x+ xy)2 +

(
2.25− x+ xy2

)2
with global minimum f(3, 0.5) = 0.

grown in recent years, the likelihood of overfitting becomes greater, making

regularization a critical component of modern ML. Explicit regularization

refers to when an explicit term is added to the loss function, while implicit

regularization includes other forms of regularization, for example, early

stopping, using a robust loss function, and discarding outliers. Implicit

regularization is ubiquitous in modern ML approaches, including stochastic

gradient descent for training deep neural networks, and ensemble methods

(such as random forests and gradient boosted trees).

The most common type of explicit regularization is Ln regularization,

in which a term is added to the loss that penalizes large weights and biases:

Ln = −λ1

Nθ∑
i=1

|θi|n (5.27)

where θi is parameter of the model. Usually, n = 1 (called L1 regularization

or lasso regression) or n = 2 (called L2 regularization or ridge regression)

is chosen. L1 regularization naturally induces sparsity, whereas L2 regular-

ization tends to keep all parameters with lower magnitudes. The reason for

this is illustrated in Fig. 5.13. In these two parameters, the constraint region

for L1 regularization is diamond-shaped, while for L2, it is elliptical. Since
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Figure 5.13. Depiction of L1 (left) and L2 (right) regularization constraint regions. The
contours of an unregularized loss function are shown. The intersection with the constraint
region from L1 regularization gives an optimum value θ∗ that is sparse, i.e., θ1 = 0. On
the other hand, L2 regularization yields an optimum value θ∗ where both θ1 and θ2 are
small but non-zero.

L1 regularization sets certain weights to zero, it is often used as part of

feature selection and model compression techniques. On the other hand, L2

regularization reduces the contribution of high outlier nodes and distributes

the weight given to correlated features, potentially leading to a more robust

model.

A popular implicit regularization method is known as dropout [116], in

which certain units are randomly dropped (along with their connections)

from a neural network during training. This prevents units from co-adapting

too much. During training, dropout samples from an exponential number of

different “thinned” networks. At test time, a single “unthinned” network is

used that effectively averages the predictions of all these thinned networks.

Dropout introduces a new hyperparameter p (typically between 0.1 and

0.5) that specifies the probability of dropping units in a given layer.

To illustrate the effectiveness of regularization, we use a highly over-

parameterized neural network (three hidden layers of 100 nodes each) to

classify data generated according to spiral patterns, both with and without

dropout (p = 0.15). The results are shown in Fig. 5.14. The unregularized

network (left) overfits the data as the decision boundary encircles single

data points. The regularized network (right) learns a decision boundary

that is much more faithful to the underlying spiral pattern.

5.2.8 Compression

In recent years, ML models have grown dramatically in their computational

complexity, from thousands of parameters and operations to millions or even

billions. However, many real-world and HEP applications require real-time

on-device processing capabilities. The main challenge is that the devices
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Figure 5.14. Decision boundary for a highly overparameterized network fitting spiral
data with (right) and without (left) dropout (p = 0.15). The unregularized network (left)

overfits the data as the decision boundary encircles single data points. The regularized
network (right) learns a decision boundary that is much more faithful to the underlying
spiral pattern.

used in these scenarios are resource-constrained, with limited memory,

processing capabilities, and usually a strict latency budget. Reducing the

size of ML models with compression can enable their use.

Compression techniques aim to improve the computational efficiency of

models while keeping the performance as close as possible to the original.

The two most ubiquitous methods are quantization [7, 30, 36, 41–43, 57, 70,

83, 92, 93, 95, 98, 107, 123, 128, 129, 131, 132], which modifies the number of

bits used to calculate and store results in the model, and pruning [8,46,57,

81, 108, 130], which removes connections in a neural network.

In CPU- and GPU-based ML inference, it is common to use 32-bit

floating-point precision. This allows the network to capture a very large

range of values; the largest magnitude number that can be stored in

32-bit floating point format is 3.402823466 × 1038 and the smallest is

1.175494351 × 10−38. However, for many applications, the full floating-

point precision range may not be required. Reduced-precision formats, such

as integer or fixed-point precision, are commonly used instead, as shown in

Fig. 5.15.

One disadvantage of reduced-precision formats with respect to floating

point is a reduced dynamic range. Thus, care must be taken to ensure that

weights or outputs of the ML model do not underflow or overflow in the
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Figure 5.15. Comparison between 32-bit floating-point (upper), 16-bit fixed-point (lower
left), and 8-bit integer (lower right) representations.

reduced-precision format. However, reduced-precision representations are

much more amenable to computations on specialized hardware, such as

field-programmable gate arrays (FPGAs).

We can distinguish post-training quantization (PTQ), in which model

parameters are quantized after a traditional training is performed with

32-bit floating-point precision, and quantization-aware training (QAT), in

which training is performed with a modified procedure designed to emulate

reduced precision formats.

Pruning is the removal of unimportant weights, quantified in some

way, from a neural network. The two main categories are unstructured

pruning, where weights are removed without considering their location

within a network, and structured pruning, where weights connected to

a particular node, channel, or layer are removed. These are depicted in

Fig. 5.16. Pruning reduces the number of computations that must be

performed to produce an inference result, thus reducing the hardware

resources or algorithm latency. There are many different ways to decide

which connections can be removed in a network, and the development of

pruning algorithms and understanding their behavior are active areas of

research.

One relatively simple method of pruning weights is called iterative,

magnitude-based pruning, illustrated in Fig. 5.17. In this process, an L1

regularization term is added to the loss that penalizes large weights.

Training with this loss term typically produces two populations in the

weights for a given layer. The weights that are deemed unnecessary by
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Figure 5.16. Pruning removes “unimportant” parameters and operations from a
neural network. Removed connections are illustrated as gray dotted lines, while the

remaining connections are solid black lines. Unstructured pruning (left) removes weights
without considering their location within a network. Structured pruning (right) removes
weights connected to a particular node, channel, or layer.

Figure 5.17. Illustration of the iterative magnitude-based parameter pruning and
retraining with L1 regularization procedure [43]. The distribution of the absolute value
of the weights relative to the maximum absolute value of the weights is shown after each
step of the pruning and retraining procedure. In the top left, the distribution before
compression is shown, while in the bottom right, the distribution after compression is
displayed.



Machine Learning for Analysis and Instrumentation in High Energy Physics 147

the training will have very small values, while the weights that are deemed

necessary will have larger values. Then, those weights with small values can

be fixed to 0 (thereby removing that connection from the network), and

training can be repeated. In many cases, successive training will identify

additional weights that can be made small and thus removed. Repetition

of this procedure can remove more weights until the desired reduction in

connections, or sparsity, is achieved. This process usually results in networks

that have slightly reduced performance compared to the full network,

although the performance loss can be negligible depending on the target

sparsity.

Both quantization and pruning can be applied together or individually

depending on the problem at hand and implementation requirements, and

the exact tradeoff between performance and sparsity or quantization is

model-specific and depends on the model size, complexity, and task.

5.3 Models

In this section, we explore some of the most frequently used models in HEP.

5.3.1 Decision trees

Decision trees are among the simplest and most robust nonlinear models

first invented in the context of data mining and pattern recognition as

classification and regression trees (CART) [16]. Roughly speaking, they

ask a series of yes-or-no questions based on individual features in order

to categorize data. An example of a simple decision tree is shown in

Fig. 5.18 to differentiate electron neutrino signal interactions (νen →
pe−) from muon neutrino background interactions (νμn → pμ−) in the

MiniBooNE detector [109]. In this case, the features used are relevant

for this classification task, including the number of photomultiplier tube

(PMT) hits, the total deposited energy, and the radius of the Cherenkov

radiation ring. Distinguishing these two classes is essential to measure

the quantum mechanical phenomenon of neutrino oscillation, in which a

neutrino of one flavor (electron, muon, or tau) can later be measured to

have a different flavor [53].

Formally, decision trees consist of a set of internal, or branch, nodes,

that lead to two further nodes, and terminal, or leaf, nodes with no further

branching. Every branch node i has a binary query function qi(x) that maps

the input x to 0 or 1 and determines the subsequent node. The basic form
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Figure 5.18. A schematic decision tree for event classification in the MiniBooNE
experiment [109]. The goal is to differentiate signal νen → pe− charged current
quasi-elastic (νe CCQE) interactions from background νμn → pμ− (νμ CCQE)
interactions based on the Cherenkov radiation patterns measured by the photomultiplier
tubes.

of the query function is a cut in an individual component x(di) of x:

qi(x) = δ[x(di) > ci] (5.28)

Every leaf node makes a constant prediction. For a given sample x,

prediction begins at the root node, calling the query function for each visited

node. If the returned value is 1, the left child node is chosen, while the right

child node is chosen otherwise. This process is repeated until a leaf node is

reached.
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Decision trees express piecewise-constant functions. A given tree creates

J axis-aligned partitions of the input space X = X 1
⋃ · · ·⋃X J , through

a sequence of binary splits, where the length of the sequence is the depth

of the tree. The number of leaf nodes is J . Each partition has a constant

prediction bj. The model can be written as

f(x|θ) =
∑
j

bjδ[x ∈ X j ] (5.29)

where j ∈ {1, . . . , J} indexes each leaf node.

Decision trees can often outperform linear models because they can learn

nonlinear decision boundaries, as shown in Fig. 5.19 (upper). However,

because most tree-based models consider splits aligned with individual

feature components, there are some failure modes. In particular, it can

be difficult to learn decision boundaries diagonally across two components,

as shown in Fig. 5.19 (lower). Nonetheless, tree-based models are often

preferred over other models because they work well with tabular data that

Figure 5.19. Two different cases demonstrating the strengths and weaknesses of linear
models and decision trees. A decision tree can learn a nonlinear decision boundary
unlike a linear model (upper). A simple linear model can learn a decision boundary
diagonally across two feature components, while it requires a more complex decision tree
to approximate the same decision boundary (lower).
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may comprise a mix of continuous and discrete features, and there is less

need for preprocessing.

So far we have described how decision trees look, but how are they

constructed in the first place? A common (top-down) approach to building

a decision tree starts with a root node and grows the tree with splits based

on individual components of x. To decide when a given split is advantageous,

we need to use a metric, called an impurity measure. Generally, they

quantify to what degree a split refines the terminal nodes to be more

pure than the parent node. The most widely used measure is the Gini

impurity [16] defined as

IGini =
(
1− p2 − (1− p)2

)
(5.30)

where p is the fraction of positive examples (y = 1) in the partition.

Intuitively, the Gini impurity is the probability of incorrectly classifying

a randomly chosen element in the dataset if it were randomly labeled

according to the class distribution in the dataset. Other popular impurity

measures include (cross-)entropy (also known as information gain) and

Bernoulli variance.

Regularization is an important consideration with tree-based models as

one can always learn a tree that assigns exactly one training data point

to each leaf node, memorizing the training dataset exactly. Regularization

methods include restricting the tree building process, based on

• minimum size: stop splitting if the resulting children are smaller than

a minimum size;

• maximum depth: stop splitting if the the resulting children are beyond

some maximum tree depth;

• maximum number of nodes : stop splitting if the tree already has

maximum number of allowable nodes; and

• minimum reduction in impurity: stop splitting if resulting children do

not reduce impurity by at least δ%.

Individual trees are known as weak learners because they generally

perform only slightly better than random guessing. Multiple trees can

be combined in various ways via ensemble methods to create stronger

classifiers. The two main types of tree ensemble methods are bootstrap

aggregation (bagging) [17], which aims to reduce the variance of low-bias

models, and boosting [48], which aims to reduce the bias of many low-

variance models. The differences between the two methods are illustrated

in Fig. 5.20.
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Figure 5.20. Comparison between bagging (left) and boosting (right) ensemble methods
for decision trees. In bagging, N models are trained (potentially in parallel) after
randomly sampling N subsets from the original training data with replacement. In
boosting, N models are trained sequentially by placing higher weight on those events
that are misclassified by previous models.

In bagging, the goal is to learn T models and then average the prediction

for regression tasks

f(x|θ) = 1

T

T∑
t=1

ft(x|θt) (5.31)

or return the class selected by most trees for classification tasks. Typically,

the T training datasets B1, . . . , BT , each of size N , are resampled with

replacement from the original training dataset S (bootstrap resampling).

If the T training datasets were completely independent, then the bias of the

average model would be the same as the original model, but the variance

would be reduced by a factor of T . With bootstrap resampling, the bias

may increase, but reducing the variance often improves performance.

Random forests [63] combine bagging with the selection of random

subsets of attributes. Instead of choosing the best split among all attributes,

the best split among a random subset of k attributes is chosen. Random

forests are more resistant to overfitting their training set.

One of the first boosting algorithms, adaptive boosting (AdaBoost) [47],

builds a sequence of trees f1, . . . , fT , each trained with reweighted versions

of the original training dataset. The weight of an individual training sample

is based on the prediction error of the previous iteration. The loss function
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and training procedure for each iteration are modified to account for the

weighted training dataset {xi, yi, wi}, i = 1, . . . , N .

The procedure is initiated by setting uniform weights w(t=0) = 1/N .

For classification, the weighted error of the tth model is

Et =

∑N
i=1 w

(t)
i δ[yi 	= ft(xi|θt)]∑N

i=1 w
(t)
i

(5.32)

For highly accurate models, this error is small, Et ∼ 0, while for highly

inaccurate models, this error may be large, e.g., Et ∼ 0.5. Unlike in

Eq. (5.31), where the weight of each model is 1, we set a different weight βt

for each model depending on the error βt = ln[(1−Et)/Et]. For the ensemble

prediction, we return the class selected by the trees with the largest sum of

weights. Since βt is larger for more accurate models, we prioritize those in

the ensemble prediction.

At each iteration, the weights of the misclassified events are updated

as w(t+1) = w(t) exp(βt) and then normalized so that the sum of all the

weights is 1. This reweighted dataset is then used to train the next model

ft+1(x|θt+1). As an example, a mediocre classifier, with a misclassification

rate Et = 30%, would have a corresponding βt = ln[(1 − 0.3)/0.3)] = 0.85.

So, misclassified events get their weights multiplied by exp(0.85) = 2.3,

and the next tree will consider these events to be about twice as important.

Now, consider an excellent classifier with an error rate Et = 1% and βt =

ln[(1− 0.01)/0.01)] = 4.6. Misclassified events have their influence boosted

by a factor of exp(4.6) = 99.5 and thus contribute significantly to the next

tree.

In HEP, a popular framework for training BDTs is the Toolkit for

Multivariate Data Analysis (TMVA) [65]. More recently, XGBoost [25],

which implements a variant of gradient boosting [48], has found widespread

use in HEP due to its speed, support for GPU acceleration, and integration

with the scientific Python ecosystem. Models built with XGBoost have been

successfully applied in many HEP data analyses, including winning first

place in the Higgs Boson Machine Learning Challenge, hosted on Kaggle [3].

5.3.2 Neural networks

A feedforward, artificial neural network, also referred to as a multi-layer

perceptron, is a collection of units organized into L layers f = fL ◦ · · · ◦
f1. The �th layer is a mapping from d�−1 real-valued inputs to d� real-

valued outputs, f�: R
d�−1 → R

d� . Each layer is implemented as an affine
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x ∈ R
4 f1: → R

10 f2: → R
10 f3: → R

10 f4: → R

Figure 5.21. Example of a neural network with four layers.

transformation — a multiplication of the input vector u ∈ R
d�−1 by a weight

matrix W ∈ R
d�×d�−1 and the addition of a bias vector b ∈ R

d�—together

with a pointwise nonlinear activation function σ:

f�(u) = σ(W�u+ b�) (5.33)

The purpose of the activation function is to enable learning more com-

plex functions of the input. Without these nonlinearities, the network

would be equivalent to a linear model. The parameters of the neural

network are the complete set of weights and biases for each layer θ =

(W1, . . . ,WL, b1, . . . , bL). An example of a four-layer neural network is

shown in Fig. 5.21.

Traditionally, biologically inspired saturating activation functions have

been used, including the sigmoid function sigmoid(u) = 1/(1 + e−u) and

the hyperbolic tangent function tanh(u) = (eu − e−u)/(eu + e−u). Far

from zero input, both sigmoid and tanh saturate at nearly constant values.

This can create a problem for gradient-based optimization, especially if the

inputs, weights, and biases are not properly scaled so that they take on

large positive or negative values. This is known as the “vanishing gradient

problem.” A popular activation function that partially circumvents this

issue is the rectified linear unit (ReLU) [51, 99], ReLU(u) = max(u, 0),

which is widely used in deep neural networks [59]. However, ReLU suffers a

similar saturation problem for negative inputs, known as the “dying ReLU

problem,” so a variety of alternative solutions have been proposed, including

leaky ReLU [91], parameterized ReLU (PReLU) [58], exponential linear unit
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Figure 5.22. Activation functions, including biologically inspired saturating ones, such
as sigmoid and tanh, and non-saturating ones, such as ReLU, leaky ReLU, PReLU, ELU,
and GELU.

(ELU) [27], and Gaussian error linear unit (GELU) [60]. Visualizations of

these different kinds of activation functions are shown in Fig. 5.22.

A softmax function is often used to normalize elements of a discrete

vector u, or to interpret the output as a probability over a set of nC discrete

categories as in multi-classification tasks. Given a real-valued input vector

u ∈ R
nC , the softmax function computes an output vector v ∈ R

nC , whose

ith component is given by

softmax(u)i = vi =
exp(ui)∑nC

j=1 exp(uj)
(5.34)

The output has the property that vi ∈ (0, 1) and
∑

i vi = 1. The input

vector components ui are often referred to as logits, and the softmax

function is commonly used as the last layer in multi-class classifier because

it is compatible with the CCE loss.

5.3.2.1 Backpropagation

To train neural networks with gradient descent, we must compute the

gradient of the loss function with respect to each parameter. Naively, this
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requires many individual computations, but by organizing these computa-

tions in a specific way and reusing the outputs of previous computations,

we can efficiently compute all of the needed gradients. This is known as the

backpropagation [111] algorithm, and its basis is the chain rule of calculus.

As an explicit example, consider a two-layer neural network. For

simplicity, we ignore the bias parameters. It is a composite function, where

we can perform the computations layer by layer. Then, to compute the loss

function, we only need the output of the neural network and the target y.

Writing out these steps explicitly, given an input x,

z1 = W1x (5.35)

u1 = σ(z1) (5.36)

z2 = W2u1 (5.37)

u2 = σ(z2) (5.38)

l = L(y, u2) (5.39)

where W1 (W2) is the weight matrix of the first (second) layer, z1 (z2)

is the pre-activation output of the first (second) layer, σ is the activation

function, u1 (u2) is the post-activation output of the first (second) layer,

and l is the loss function value. These computational steps are called the

“forward pass” because we progress through the network in the forward

direction.

To compute the gradient of the loss function with respect to all

parameters, it is natural to begin from the last layer. So, let us compute

the gradient with respect to W2 in the second layer, denoted ∂l/∂W2. To

do this, we can apply the chain rule to decompose the gradient into three

terms:

∂l

∂W2
=

(
∂l

∂u2

)(
∂u2

∂z2

)(
∂z2
∂W2

)
(5.40)

The term ∂u2/∂z2 is just the derivative of the nonlinear activation function,

which is often easy to compute. We can save the numerical values for each

of these separate terms.

Working backward through the network, we can proceed to compute

the gradient with respect to W1 in the first layer with the chain rule:

∂l

∂W1
=

(
∂l

∂u2

)(
∂u2

∂z2

)(
∂z2
∂u1

)(
∂u1

∂z1

)(
∂z1
∂W1

)
(5.41)
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Figure 5.23. Visualizations of the backpropagation algorithm for the computation of
∂l

∂W2
(upper) and ∂l

∂W1
(lower). The forward pass is shown with straight gray lines, while

the backward pass is shown with curved black lines. For the second computation of ∂l
∂W1

,
the reused computations are shown with dotted lines.

Of the five terms, two of them (highlighted in gray) have already been

computed in Eq. (5.40). Furthermore, one of the remaining terms is the

derivative of the first activation function with respect to its input ∂u1/∂z1,

which is equal to the previously calculated ∂u2/∂z2. So, in order to find

the gradient with respect to W1, we only need to perform two additional

computations. This is the essence of the backpropagation algorithm. This

process of computing and multiplying gradients is known as the “backward

pass.” These rules can be extended to arbitrarily deep neural networks, as

long as each layer and the loss function are differentiable.

Figure 5.23 shows the computational graph of the network, highlighting

the computations needed for ∂l
∂W2

(upper) and ∂l
∂W1

(lower). Each node is

an input, output, or parameter. The forward pass is shown with straight

gray lines, while the backward pass is shown with curved black lines. For

the second computation of ∂l
∂W1

, the reused computations are shown with

dotted lines.

Modern ML software packages implement automatic differentiation

(AD), exploiting the fact that neural networks consist of a sequence of

elementary arithmetic operations and functions with known derivatives and

repeatedly applying the chain rule to compute the target partial derivative

automatically.

5.3.3 Convolutional neural networks

An inductive bias expresses assumptions about the data-generating process

or the space of solutions, allowing a learning algorithm to prioritize one

solution over another [94]. Incorporating an inductive bias into an ML
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algorithm can enable them to learn more efficiently, for example, with

less data or fewer parameters. These models may also generalize better

to unseen data.

For image-like data, there are inductive biases that help carry out

common tasks, such as classification, regression, and segmentation:

• Locality: Nearby areas within an image tend to contain stronger

patterns.

• Translation equivariance: Only relative positions within an image are

relevant.

As an example task, consider classifying galaxy morphologies [5, 38], e.g.,

spiral, elliptical, or lenticular. For this task, the solution should not depend

on the location of the galaxy within an image. Moreover, many of the

identifying characteristics of different types of galaxies are localized in small

patches of an image.

Convolutional neural networks (CNNs), as shown in Fig. 5.24, incorpo-

rate these inductive biases through their design. An input image is described

by a tensor x ∈ R
H×W×C , where H is the height of the image in pixels and

W is the width of the image in pixels, and at each pixel location, there is

a vector of C features or channels. For natural images, there are typically

three channels representing the red, green, and blue color channels. CNNs

implement a convolution of the input image and a filter, or kernel, with

height J and width K. The parameters of the filter are learnable and the

convolution involves traversing over input and calculating the product of

the filter W with a patch of the input, which has the same spatial shape

as the filter and is centered at the target pixel. In practice, M filters are

combined into a single tensor W ∈ R
J×K×M .

We can calculate one element of the output tensor y ∈ R
V ×U×M from

the input tensor x, filter tensor W , and length-M bias vector b as3

y[v, u,m] =

⎛
⎝ C∑

c=1

J∑
j=1

K∑
k=1

W [j, k, c,m]x[v + j, u+ k, c]

⎞
⎠+ b[m] (5.42)

For simplicity, we typically assume J = K (square kernel). By repeating

the operation over all the input pixels, the result of a kernel convolution is

also an image.

3Note that in practice x is shifted by, e.g.,
(

J+1
2

, K+1
2

)
in order to be symmetric

around (v, u).
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Figure 5.24. Convolutional neural networks incorporate the inductive biases of locality
and translation equivariance through their design. A CNN can be interpreted as an MLP

with shared weights.

A key feature of convolutions is that they are equivariant to translations:

if the input image is shifted x[i, . . . ] → x[i − j, . . . ], then the output is

also shifted by the same amount y[v, . . . ] → y[v − j, . . . ]. Another way

of looking at this is to compare this to a fully connected MLP. A fully

connected MLP acting on the same image as a fully unrolled vector would

generally not have this symmetry. Another way of interpreting a CNN is

as a very specific type of MLP with shared weights. CNNs generally have

fewer parameters than the corresponding fully connected MLP, which can

improve the optimization process. The CNN structure allows for patterns

in one part of an image in the training dataset effectively contribute to

learning that pattern anywhere in the image.

A kernel convolution involves three hyperparameters: the kernel size

(typically an odd number so that the filter has an unambiguous center),

stride, and padding. In practice, kernel sizes of 1×1, 3× 3, or 5×5 are

frequently used. A 1× 1 convolution cannot capture correlations among

different pixels, but it can increase or decrease the number of features per

pixel [59, 86, 119]. The stride is the number of pixels between each target

pixel. For example, for a stride of 1, the target pixels are adjacent, whereas

for a stride of 2, 1 pixel is skipped along each axis. Padding expands the
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Layer 1
Layer 2

Layer 3

Figure 5.25. Illustration of receptive field in CNNs. Stacking two 3× 3 kernels will lead
to a larger receptive field equivalent to a 5× 5 kernel.

input image by a specified number of pixels for when the target pixel is

near the edge and the filter would extend beyond the input image.

CNNs can identify features with a spatial size larger than the kernel

size by stacking multiple convolutional layers. For example, stacking two

3× 3 kernels will lead to a larger receptive field equivalent to a 5× 5 kernel,

as shown in Fig. 5.25. Another approach, known as an inception module,

extracts features using kernels of different sizes simultaneously [119, 120].

CNNs often use pooling to downsample the image, further extending

the receptive field. A pooling operation is a type of aggregation that takes

many input pixels and produces one output pixel. The most popular pooling

operations are max pooling and average pooling. Max pooling picks the

highest activation pixel value within the specified receptive field, while

average pooling computes the average pixel value in the receptive field.

Average pooling tends to smooth out an image, so sharp features may not

be preserved. However, a drawback of max pooling is that all pixels other

than the maximum one are ignored. Examples of the two operations are

shown in Fig. 5.26.

By globally pooling over the entire image, a single feature vector with

no spatial index can be created, giving rise to a potentially translation-

invariant CNN. Reducing the image size, either through pooling or a con-

volution with stride larger than 1, can also be computationally beneficial.

The reduction in the spatial size of an image is carried out gradually,

typically by a factor of 2. After the spatial size is reduced, the number of

channels is typically increased (usually by the same factor of 2). CNNs can

consist of dozens or sometimes hundreds of convolutional layers, and their
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Figure 5.26. Max (upper) and average (lower) pooling in CNNs. Max pooling picks the
highest activation pixel value within the specified receptive field, while average pooling
computes the average pixel value in the receptive field.

optimization may be challenging due to the vanishing gradient problem.

Techniques such as batch normalization [73], which normalize the tensors

at each convolution layer, and skip connections [59] can mitigate this and

have contributed to the tremendous success of CNNs for image-based tasks.

5.4 Applications

Machine learning has found numerous natural applications in analysis

reconstruction in particle physics. At the lowest level, machine learning

tools can perform hit reconstruction or track finding in individual detector

systems. These tools can also identify objects such as electrons, photons, τ

leptons, and jets, using information from various detector systems. Recently,

researchers have also explored the use of ML to accelerate or replace

computationally intensive detector simulation [4,19]. Finally, ML tools have

been widely used to classify entire events as background- or signal-like, both

in the final statistical analysis and at the initial trigger decision.

ML tools have found high-profile applications in particle physics. For

example, BDTs were instrumental in the discovery of the Higgs boson [1,

23, 24], including in the CMS H → γγ, CMS V H → bb, and ATLAS

H → ττ analyses. For five key Higgs boson analyses, ML greatly increased

the sensitivity of the LHC experiments, improving the discovery p-values

by factors ranging from about 2–20, or equivalently, reducing the amount

of data that would need to be collected by about 13–56% [106].

In this section, we discuss two representative use cases of ML in HEP,

intended to highlight unique aspects of HEP data and requirements: jet

tagging and trigger applications.
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5.4.1 Jet tagging

Quarks and gluons originating from high energy particle collisions, such

as the proton–proton collisions at the LHC, generate a cascade of other

particles (mainly other quarks or gluons) that then arrange themselves into

hadrons. The stable and unstable hadrons’ decay products are observed

by large particle detectors, reconstructed by algorithms that combine the

information from different detector components and then clustered into jets,

using physics-motivated sequential recombination algorithms [20–22, 39].

Jet identification, or tagging, algorithms are designed to identify the nature

of the particle that initiated a given cascade, inferring it from the collective

features of the particles generated in the cascade. This is illustrated in

Fig. 5.27.

Traditionally, jet tagging was meant to distinguish three classes of jets:

light flavor quarks, gluons, or bottom quarks. At the LHC, due to the large

collision energy, new jet topologies emerge when heavy particles, e.g., W ,

Z, or Higgs bosons or top quarks, are produced with large momentum

and decay to all-quark final states. In this case, the resulting jets contain

Figure 5.27. A visual representation of a collision event at the LHC and the task of jet
tagging. Proton beams (purple arrows) cross at a collision point (blue cross). Outgoing
particles make tracks (curved orange lines), energy deposits in the electromagnetic
calorimeter (green boxes), and energy deposits in the hadron calorimeter (blue boxes).
The orange cone represents a cluster of tracks and energy deposits reconstructed as a
jet. The task of jet tagging is to infer, on a statistical basis, the origin of a jet based on
its measured characteristics.
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Figure 5.28. Visualization of different jet representations, including high-level features,
sequences, images, and graphs.

the overlapping showers of these decay products and can appear similar

to showers from single quarks or gluons. These jets are characterized

by a large invariant mass and differ from quark and gluon jets in their

energy correlations. Several techniques have been proposed to identify these

jets by using physics-motivated quantities, collectively referred to as “jet

substructure” variables [80].

Machine learning approaches for jet tagging have been extensively inves-

tigated using different representations of the jet, i.e., ways to encode and

preprocess the information, as shown in Fig. 5.28. Different representations

are naturally coupled to different kinds of ML models. For example, physics-

motivated quantities, also known as high-level features, such as mass,

particle multiplicity, or N -subjettiness [121] can be processed with fully

connected neural networks or BDTs. A lower-level representation consists of

treating the particle features as a sequence, list, or set of inputs. This type of

representation can be processed by recurrent neural networks (RNNs) [90],

which act on each element in a sequence and contain an internal memory, or

deep sets [78], whose output is invariant under permutations of the inputs.

Jets can also be preprocessed into two-dimensional images in the (η, φ)

plane, in which each pixel value represents the sum of the particle transverse

momenta pT or energies deposited in a given spatial detector cell. Unlike

natural images, jet images are typically sparse, with only a small fraction

of non-zero pixels. Jet images can be processed by CNNs, albeit potentially
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with some modifications, such as larger kernel sizes [32] or specialized layers

optimized for sparse inputs [40].

Finally, jets can also be represented as graphs, with nodes representing

particles and edges representing pairwise relationships between particles.

This graph data can be processed by graph neural networks (GNNs), a class

of models for reasoning about explicitly structured data [18, 50, 77, 85, 112,

113, 124]. GNNs have been successfully applied to identify Higgs bosons

decaying to bottom quarks and several other types of jets [96, 97, 105]. It

is also possible to encode symmetries, such as Lorentz symmetry, or other

physics-inspired inductive biases in GNN models [10–13,52].

5.4.2 Trigger applications

In HEP, a significant amount of data processing, including data com-

pression, filtering, and selection, takes place in real time even before the

data is written to disk. For example, at the LHC, proton–proton collisions

occur at a rate of 40MHz, but only roughly 1 kHz of this can be saved

for offline analysis. Out of this factor of 40 000 rejection, a factor of 400

must occur within a few microseconds of the collision, and the remaining

factor of 100 must occur in the next ∼100ms. In addition, resources are

often limited and some applications use specialized hardware such as field-

programmable gate arrays (FPGAs) and application-specific integrated

circuits (ASICs). Developing ML algorithms for low-latency and resource-

constrained environments requires specialized techniques.

FPGAs and ASICs are designed for fast parallel processing with low

power usage. The most significant difference between FPGAs and ASICs

is that FPGAs can be reprogrammed, while ASICs cannot be changed

once manufactured. Therefore, FPGA designs are more flexible, typically

consume more power, and have slightly larger latencies than the equivalent

ASIC designs. ASICs can also be designed to tolerate high levels of radiation

through methods like triplication.

FPGAs contain building blocks of logic gates which can be used

to construct algorithms by programming the interconnects between the

components. The primary building blocks are dedicated arithmetic units

or digital signal processors (DSPs), lookup tables (LUTs) for implementing

logic, and two different units for storing information: registers or flip-flops

(FFs) and block random-access memory (BRAM). FPGAs also contain a

large number of input–output (I/O) links to receive input data and transmit

output data. A schematic of a generic FPGA is shown in Fig 5.29. Unlike
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Figure 5.29. Schematic of a generic FPGA. The primary building blocks are digital
signal processors (DSPs), lookup tables (LUTs), flip-flops (FFs), block random-access
memory (BRAM), and input–output (I/O) links. FFs and LUTs are combined into
configurable logic blocks (CLBs).

traditional CPUs, these devices are only capable of running the algorithm(s)

that have been programmed. As a result of this specialization and their high

clock frequencies (typically hundreds of MHz), algorithms can be executed

in O(ns).
Programming FPGAs requires the use of dedicated hardware description

languages (HDLs) such as VHDL or Verilog as well as a design methodology

that is aware of the limitations and nature of the relevant device. All

components of an FPGA program must be synchronized with the rising

and falling edges of the clock, and the relations between components

must be thought of in relation to these clock periods. Recently, high-

level synthesis (HLS) tools [72, 115, 125], which take algorithms written

in untimed (typically C) code decorated with directives and produce

equivalent HDL algorithms, have lowered the barrier to entry for using

FPGAs and ASICs.

Several tools, including hls4ml [43], FINN [9, 122], Conifer [117], and

fwXmachina [68], have been developed to automatically create firmware

from ML algorithms, as shown in Fig. 5.30. These tools have been used

for applications ranging from jet tagging [75] to muon pT regression [28],
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Figure 5.30. Tools like hls4ml [43], FINN [9, 122], Conifer [117], and fwXmachina [68]
can translate ML algorithms from libraries like TensorFlow, Keras, PyTorch, ONNX,
Scikit-learn, TMVA, or XGBoost into firmware for FPGAs.

on-detector data compression [37], charged particle tracking [45, 69],

calorimeter reconstruction [71], and anomaly detection [54]. Hardware-

AI co-design principles, including pruning [57], quantization [29], and

parallelization [43], are important to consider to produce optimal designs

that satisfy strict latency and resource constraints.

5.5 Summary and Outlook

Machine learning (ML) is now an integral part of research in high energy

physics (HEP), from analysis to instrumentation, reconstruction, and

simulation. Beyond being an essential tool, computational methods like ML

are a third fundamental approach for studying physics on the same logical

level as theory and experiment. In this chapter, we gave an overview of ML

basics, types of models, and advanced techniques like model compression

and surveyed some recent ML applications in HEP. There are, of course, a

plethora of techniques and tools that we could not cover, many of which

can be found in the HEP ML Living Review [61].

The ML in HEP research community benefits tremendously from the

proliferation of public datasets and research code on GitHub, open-source

software packages, such as TensorFlow [2], Keras [26], PyTorch [102], and

JAX [15], commercial hardware for ML training and inference, such as

NVIDIA GPUs, and widely available learning resources. This culture of

openness advances the fast-paced nature of ML development, in which
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the latest state-of-the-art methods can be quickly extended and even

superseded within months.

Strides in ML and HEP research benefit each other. In one direction,

ML has helped revolutionize HEP research by enabling discoveries with less

data, model-agnostic searches for exotic new physics, and exploration of

final states previously thought impossible. In the other direction, HEP has

unique characteristics and challenges, such as the petabyte-scale datasets,

enormous data throughput, strict latency and resource constraints, and

the physics and symmetry structures underpinning the data, that drive

innovation in ML. Despite these benefits, there are valid criticisms of using

ML in HEP research, such as the possibility of bias, the need for careful

validation and calibration of ML models in data, and the difficulty of

reinterpretation of HEP results that heavily rely on ML models.

Beyond the dizzying array of existing HEP applications, there continue

to be many new opportunities to apply ML in surprising ways. If advances

continue at the current pace, the future is bright for this (still) growing

subfield.
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Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova,
Via Dodecaneso 33, 16146, Italy

simone.marzani@ge.infn.it

6.1 A Brief Introduction

Collisions at very high energies produce a plethora of particles that are

collected by detectors surrounding the interaction point. In particular,

because of the conspicuous magnitude of the coupling αs, strongly interact-

ing particles are abundantly produced in every such collision. This occurs

for both lepton (e.g., e+e−) colliders and for experiments in which at least

one hadron is brought to collision, such as, for instance, proton–proton (pp)

collisions at the CERN Large Hadron Collider (LHC) or lepton–proton (ep)

or, more generically, lepton–hadron (eh) collisions, such as the ones that

will be investigated by the future BNL Electron Ion Collider (EIC).

Studies of hadronic final states in e+e− collisions have been instrumental

to establish Quantum-Chromo Dynamics (QCD) as the theory of strong

interactions. This is because the initial-state leptons carry no color charge

and, consequently, QCD radiation can only be produced by the final state.

More complex environments are found in ep and pp collisions because

QCD radiation can also originate from the hadronic initial states. In this

context, past ep experiments allowed us to reach a deep understanding

of the structure of the proton in terms of parton distribution functions.
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The successful physics program of the LHC, including the study of strong

interactions at unprecedented energies, builds upon the knowledge acquired

at previous particle colliders. Even more challenging is the study of collisions

involving heavy ions, which allow us to probe new regions of the QCD phase

diagrams, such as the color glass condensate and the quark-gluon plasma.

Studies of strong interactions in particle collisions come with enormous

theoretical and experimental challenges. From the theory point of you, we

can exploit a fundamental property of QCD, called asymptotic freedom, to

perform perturbative calculations. In this framework, valid at high energies,

i.e., far above the characteristic energy scale of hadron formation, typically

denote by Λ or taken to be of the order of hadron masses, i.e., 1 GeV, the

theory is weakly coupled and quarks and gluons, collectively referred to as

partons, are good degrees of freedom. Thus, at high energy, QCD processes

can be described in terms of scattering and production of these states.

Quarks and gluons cannot be directly detected in experimental appa-

ratuses. We can imagine highly energetic quarks and gluons, which are

produced in the collision, or from the decay of a high-mass intermediate

particle, starting radiating further partons, thus reducing their energy.

This process of successive splittings, usually referred to as parton shower,

continues until one reaches the characteristic scale of hadron formation

Λ. In this regime, QCD is no longer perturbative and, because of con-

finement, quarks and gluons form hadrons. Although some first-principle

understanding of the hadronization process does exist, we often rely on

phenomenological models implemented in Monte Carlo event generators to

describe the transition from partons to hadrons.

One peculiar feature of parton showers is that, because of the structure

of QCD matrix elements, QCD splittings preferentially happen at small

angles, giving rise to a series of collimated quarks and gluons. This charac-

teristic is not washed out by the hadronization process and hence hadrons

resulting from high-energy interactions are not uniformly distributed in the

detector but rather appear in a few collimated sprays that are named jets.

This peculiar feature can be exploited to perform meaningful comparisons

between theoretical calculations and experimental data. This is extremely

useful because calculations in perturbative QCD feature a few final-state

partons in fixed-order calculations, or a few tens of partons after the

showering process, while a hadron-level event contains hundreds, if not

thousands, of particles, the dynamics of which would be very difficult to

individually determine. In some sense, jets constitute a portal between

theory land and the real world.
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jet hadron formation

perturbative radiation
(parton shower) underlying event 

(multiple parton 
interactions)

pile-up
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Figure 6.1. A cartoon representing jet formation in proton–proton collisions, such as
the ones happening at the LHC. On top of highly energetic phenomena, which we can
describe using perturbative field theory, jet formation is affected by soft, and hence
non-perturbative, QCD effects, such as hadronization, the underlying event and pile-up.

Despite the remarkably successful application of perturbative cal-

culations to describe collider phenomenology, we should bear in mind

that actual collision events are much more complicated, as depicted in

Fig. 6.1. Every time those two protons collide, multiple (semi-hard) partonic

interactions can happen, giving rise to more hadronic activity, denoted

by the term underlying event. Furthermore, in actual colliders, bunches of

protons are brought to collisions and so multiple proton–proton interactions

per bunch crossing can happen. This produces rather uniform soft radiation,

usually referred to as pile-up. This is an unwanted consequence of the desire

for higher and higher luminosity, which is necessary in order to probe rare

events and pile-up mitigation is a very active area of research [1].

6.2 The Concept of Jets

The parton-shower picture described above, which may appear hand-wavy,

finds its foundation on the factorization properties of QCD. However, it does

simplify several aspects because it is essentially based on a semiclassical

approximation of quantum field theory. If higher-order corrections are

included, the concept of parton becomes ill-defined because both real

emissions and virtual contributions must be taken into account. We discuss

some of the issues we encounter when doing higher-order calculations in

Section 6.2.1.1.

From a more practical point of view, we immediately realize that the

concept of jet is somewhat ambiguous. Assigning two particles (or two
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partons in perturbative calculations) to the same jet, or to different ones,

has some degree of arbitrariness because it depends on what we mean by

two objects being collimated. In a more precise way, when talking about

jets, we must introduce a resolution scale that allows us to separate objects

in an event. This concept can be formalized by saying that we have to

introduce a jet definition, i.e., a procedure that dictates how to reconstruct

jets from the set of final-state hadrons (or partons) in a collision event. Jet

definitions usually contain two parts:

• The jet algorithm is the set of rules that we must follow in order to

map the set of final-state particles into jets. Most jet algorithms can be

applied in an inclusive way, whereby the number of resulting jets is not

fixed a priori, or in an exclusive mode, whereby an event is mapped into a

specified number of jets. Jet algorithms feature free resolution parameters

that are set by the user according to the physics case they are interested

in. For example, a parameter that is present in most jet definitions for

LHC studies is the jet radius, which sets the jet resolution scale in the

azimuth-rapidity plane.

• The recombination scheme specifies how the kinematic properties of a jet,

e.g., the jet four-momentum or its axis, are derived from the kinematics

of the jet constituents. In most applications, the so-called E-scheme is

employed. In this approach, the jet momentum is simply the vectorial sum

of the four momenta of its constituents and the jet axis is aligned with

the jet momentum. Although this choice does appear as the most natural

one, specific applications may require different recipes. For instance, in

the context of jet substructure studies, the so-called Winner-Take-All

(WTA) [2] scheme is sometimes employed. In this scheme, the result of

the recombination of two particles has the rapidity, azimuth, and mass of

the particle with the larger transverse momentum, while the transverse

momenta themselves are summed up. As a consequence, in the WTA

scheme, the jet axis always lies along the direction of the hardest particle

in the jet.

The design and the implementation of jet definitions are still an area of

active research and a detailed discussion of the several algorithms that have

been proposed in past few decades goes beyond the scope of this chapter.1

Here, we limit ourselves to discuss and highlight, from both theoretical

1For an extensive review on jet definitions, we highly recommend the reading of Ref. [3].
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and experimental viewpoints, the features of two main categories of jet

definitions: the ones that feature cone algorithms and the ones based on

sequential recombination. Before doing so, let us discuss the basic properties

that jet definitions should respect.

6.2.1 What experimenters want... what theorists

want...

Jets live at the boundary between theoretical and experimental high-

energy physics. Thus, their definition should be meaningful both when

applied to observable particles without considering detector effects (e.g.,

truth level) and also when applied to real data, which is to say detector

signals. These signals include things like tracks left by charged particles

or energy deposits in calorimeter cells. At the same time, the very same

jet definitions should be used by theorists when performing perturbative

calculations involving quarks, gluons, loops, and all that. In the 1990s, a

group of theorists and Tevatron experimentalists formulated what is known

as the Snowmass accord [5]. To date, this document represents the minimal

set of fundamental criteria that any jet algorithm should satisfy:

(1) simple to implement in an experimental analysis;

(2) simple to implement in theoretical calculations;

(3) defined at any order of perturbation theory;

(4) yields finite cross-sections at any order of perturbation theory;

(5) yields cross-sections and distributions that are relatively insensitive to

hadronization.

The first point of the list is the main demand that arises from

experimental considerations. The information gathered from the vari-

ous detector components, such as the trackers, the electromagnetic and

hadronic calorimeters, and the muon spectrometer allows us to obtain

a good picture of the types of particles that are produced in a given

collision. However, jet reconstruction, often referred to as clustering, is

typically performed at an early stage, when particle identification is still

incomplete. In the first two runs of the LHC, ATLAS and CMS used

different strategies to define jets. The former predominantly exploited

topological clusters, so-called topoclusters, which are based on information

obtained from the calorimeters, while the latter used so-called particle flow

objects, which combine information from the tracker and the calorimeter to

build a coherent single object. All major experimental collaborations have
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dedicated groups actively working on the performance of jet definitions.

For instance, the ATLAS collaboration has introduced for LHC Run 3 new

Unified Flow Objects (UFOs) that aim to maximize performance across

many orders of magnitude in the jet transverse momentum by combing the

virtues of calorimetric and particle-flow approaches [6].

Once the inputs have been defined, jets must be reconstructed.

Currently, the standard computer program for doing this step is

FastJet2 [7,8], used by both the experimental and theoretical communities.

FastJet employs different strategies, including ideas from computational

geometry, in order to speed up jet reconstruction. To illustrate this point,

the plot in Fig. 6.2 shows the average time it takes to cluster an event

with N particles into jets, for a few representative algorithms. There is a

noticeable difference between the original ktjet implementation [9] of the

kt algorithm, which was deemed too slow, and the FastJet implementation

which is faster by 2–3 orders of magnitude in the region relevant for

phenomenology.

2See also http://fastjet.fr.

http://fastjet.fr
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Conditions (2), (3), and (4) come from the theorists. We have already

discussed the second one, namely, one should be able to use quarks and

gluons as inputs to the jet algorithms. Conditions (3) and (4) have instead

to do with InfraRed and Collinear (IRC) safety, a concept so important that

deserves a separate discussion. We dive into this topic in Section 6.2.1.1,

but before doing that, let us briefly comment on condition (5). Admittedly,

this point is less precise and somewhat more subjective. Since jets are

supposed to capture the “hard partons in an event,” we should hope that

observables built from jet quantities are as little sensitive as possible to

non-perturbative effects like hadronization, the underlying event, and pile-

up. Furthermore, jets should not be too sensitive to detector effects so

that corrections deriving from moving from detector-level to particle-level

quantities, the so-called unfolding procedure, remain under control.

6.2.1.1 A detour about IRC safety

Following the Snowmass accord, we work with jet algorithms that are

defined and yield finite cross-sections at any order of perturbation theory.

In order to better understand the origin of this request, let us work

through a simple example that initially does not involve jets. We consider

the calculation of the total cross-section for the production of hadrons

in e+e− collisions. In this discussion, we are going to mostly quote

results of perturbative calculations and interpret them with physical

arguments. We encourage the interested readers to actually perform such

calculations, following one of the many beautiful textbooks about high-

energy applications of perturbative quantum field theory.

As we have already mentioned, hadrons are bound states that cannot be

described in perturbation theory. However, hadron formation happens at an

energy scale that is much smaller than the scale of the hard interaction. For

instance, at LEP1, leptons were brought to collision at an energy Q equal to

the Z boson mass, which is two orders of magnitude bigger than the hadron

formation scale Λ. We can separate, we say factorize, the production cross-

section as follows:

dσe+e−→hadrons =
∑
{i}

dσe+e−→{i} × dF{i}→hadrons +O
(
Λ2

Q2

)
, (6.1)

where the {i} sum runs over all partonic state that are possible at a

given perturbative order. Thus, up to power corrections that are small

at very high-energy colliders, we can separate a partonic cross-section,
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which we can compute in perturbation theory, from a non-perturbative

contribution that describes the fragmentation of partons into hadrons.

Theorists usually focus on the former, computing higher and higher

orders in the perturbative expansion. The calculation of the lowest order

contribution is particularly straightforward. We only have to consider two

Feynman diagrams, corresponding to the processes:

e+e− → Z/γ∗ → qq̄. (6.2)

Note that the cross-section for this process at leading order (LO), or

Born-level, only involves electroweak couplings. Its expression is a bit

cumbersome because it involves the photon contribution, the Z one, and

their interference. At energies much lower than the Z mass, but still larger

enough than Λ, so that we can trust our factorized formula in Eq. (6.1),

the photon contribution dominates and the inclusive, i.e., after integration

over the phase space, Born cross-section has a particularly simple form:

σγ∗
0 =

4πα2

3Q2
NC

∑
f

Q2
f , (6.3)

where α is the fine-structure constant, the sum is over the quark flavors

that are accessible at the energy Q considered here, Qf is the fractional

quark electric charge, and NC = 3 is the number of colors in QCD.

We are now interested in the next-to-leading order (NLO) corrections,

i.e., the O (αs) contributions, to the partonic cross-section. We have to

consider two types of contributions. First, we can dress the LO diagram

with loops involving quarks and gluons. At O (αs), we have only one such

diagram, which is depicted in Fig. 6.3(2). Second, we should remember

that we are ultimately interested in the inclusive cross-section for the

production of hadrons, and according to Eq. (6.1), we must consider all

possible partonic states {i}. At O (αs), this means that we should also

consider the emission of a real gluon, as shown in Figs. 6.3(3) and 6.3(4):

σNLO =

∫
dΦ2(k1, k2) | M0 +Mloop |2 +

∫
dΦ3(k1, k2, k3) | Mreal |2,

(6.4)

where dΦn is the n-body Lorentz-invariant phase space. It goes beyond

the scope of this presentation to describe the details of the calculation.

Here, we simply state that both the integral over the loop momentum in

the virtual amplitude and the one over the phase space of the real gluon
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Figure 6.3. Feynman diagrams contributing to the cross-section of e+e− → qq̄ up to
NLO. Diagram (1) gives the Born-level contribution, (2) the one-loop correction, and

(3) and (4) describe the real-emission contribution.

are divergent. In order to understand the origin of these singularities, it

is convenient to inspect the kinematics of the real emission. We find that

the real emission contribution is singular when the gluon is either soft,

i.e., with vanishing energy, or its three momentum becomes collinear to

the directions of either the quark or the antiquark. This is a very general

feature of massless gauge theories: infrared and collinear singularities arise

when massless gauge bosons become soft or when two massless particles

become collinear. It is interesting to note that in these singular limits, the

kinematics of the three-body final state reduces to one of the two-body

final states, i.e., one of the Born contribution and of the loop correction.

This makes sense because we cannot resolve infinitely soft particles or two

particles that are too close in angle. Thus, it is at least conceivable that

the singular behavior of the real contribution may conspire with one of the

loop diagrams, giving a finite result.3 It is useful to rewrite the cross-section

3Loop amplitudes can also exhibit singularities in the ultra-violet, which can be dealt
with the renormalization procedure.
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separating out the divergent contributions:

σNLO =

∫
dΦ2(k1, k2) |M0 +Mloop-finite |2 +

∫
dΦ3(k1, k2, k3) |Mreal-hard |2

+

∫
dΦ2(k1, k2)

[
2ReM∗

0Mloop-div +

∫
dΦ1(k3) | Mreal-IRC |2

]

+O (α2
s

)
, (6.5)

where we have exploited the factorization properties of phase-space inte-

grals. The explicit computation of the problematic contributions reveals

that

2ReM∗
0Mloop-div = −

∫
dΦ1(k3) | Mreal-IRC |2, (6.6)

Thus, IRC singularities cancel and the cross-section that describes the

process e+e− → hadrons can be safely computed in perturbation theory

by considering the corresponding partonic process. The cross-section up to

NLO reads

σNLO = σ0

(
1 +

αs

π

)
, (6.7)

where σ0 is the generalization of Eq. (6.3) that also includes the Z

contribution and the Z/γ∗ interference.

This important result is a manifestation of rather general theorems:

the Bloch–Nordsieck [10] and Kinoshita–Lee–Nauenberg [11, 12] theorems

state that observable transition probabilities are free of IRC singularities.

However, as it stands, it leads to rather boring phenomenology because it

holds for the inclusive cross-section. It is therefore interesting to investigate

whether it can be generalized to more exclusive processes, such as the

production of jets. In order to study this, we introduce a measurement

function Jr({ki}) that takes as inputs the momenta of the final-state

partons ki and maps them into a set of jet momenta, with some resolution

parameters r. More generally, we can consider measurement functions

Jr that define physical observables, also characterized by one or more

resolution scales r, with jets being a particular example. Let us go back

to our e+e− example at O (αs) and consider the map Jr that produces two

jets. Following the discussion about the inclusive cross-section, we write the
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2-jet cross-section separating out the divergent contributions:

σ2 jets =

∫
dΦ2(k1, k2) | M0 +Mloop-finite |2 Jr(k1, k2)

+

∫
dΦ3(k1, k2, k3) | Mreal-hard |2 Jr(k1, k2, k3) (6.8)

+

∫
dΦ2(k1, k2)

[
2ReM∗

0Mloop-div Jr(k1, k2)

+

∫
dΦ1(k3) | Mreal-IRC |2 Jr(k1, k2, k3)

]
.

Thus, thanks to Eq. (6.6), we obtain a finite 2-jet cross-section, provided

that the 3-particle measurement function reduces to the 2-particle one,

in the limit in which k3 becomes soft and/or collinear to the fermions’

directions. If the measurement function has this property, we say that the

observable (or the jet algorithm) is Infra-Red and Collinear (IRC) safe

and its cross-section can be computed in perturbation theory. Clearly,

not all possible measurement functions Jr are IRC safe. For instance,

a measurement function that simply counts the number of partons,

irrespectively of their momenta, does not respect this criterion. Indeed,

particle multiplicity, i.e., an observable that simply counts the number of

particles in a region of phase space, is not IRC safe.

Different definitions of IRC safety exist in the literature. Here, we have

adopted the one in Ref. [13] that ensures cancelation of IRC singularities

to any order in perturbation theory:

Jr (k1 . . . , ki, kj , . . . , kn) −→ Jr (k1 . . . , ki + kj , . . . , kn) if ki ‖ kj ,
(6.9)

Jr (k1 . . . , ki, . . . , kn) −→ Jr (k1 . . . , ki−1, . . . , ki+1 . . . , kn) if ki → 0.

(6.10)

IRC safe properties of jet cross-sections and related variables, such as event

shapes and energy correlation functions, were first studied in Refs. [14–16].

We note that in the case of inclusive observables, for which Jr = 1,

the cancelation between the soft and collinear contributions in Eq. (6.8)

is complete and, consequently, the total cross-section remains unchanged

by the emission of soft and collinear particles, as it should. In case of

exclusive (but IRC safe) measurements, including jet definitions, although
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the singularities cancel, the kinematic dependence of the observable can

cause an unbalance between real and virtual contributions, which manifests

itself with the appearance of potentially large logarithmic corrections to

any orders in perturbation theory. There exist techniques to resum these

large logarithmic corrections to all perturbative orders. In this context, the

concept of recursive IRC safety is particularly useful [17]. Finally, we also

mention that recent work [18–21] has introduced the concept of Sudakov

safety, which enables to extend the reach of (resummed) perturbation

theory beyond the IRC domain.

6.2.2 Cone algorithms

Cone algorithms were first introduced in a famous paper by Sterman and

Weinberg [13]. They are based on the idea that jets represent dominant

flows of energy in a collision event. According to this definition, a 2-jet

event in e+e− collisions is such that all, but a fraction ε of the total energy

is contained into two cones of opening angle δ. Considering the O (αs)

calculation in Eq. (6.8), we have that the two-parton measurement function

is equal to unity, Jε,δ(k1, k2) = 1, because if we only have two partons in

the final states, they must be hard and well separated in angle. If instead

we have three partons, the 2-jet condition becomes4

Jε,δ(k1, k2, k3) = Θ (min(θ12, θ13, θ23) < δ)

+ Θ (min(θ12, θ13, θ23) > δ)Θ (min(E1, E2, E3) < ε),

(6.11)

where we have introduced the angles θij between the directions of motion of

particle i and j and their energies Ei. The first Θ function says that if the

angle between the three momenta of the closest pair of parton is below δ,

then the two partons belong to the same jet and so the event has two jets.

The second set of constraints tells us that a configuration in which the three

partons are well separated in angle, but the energy of the softest particle is

below threshold, leads to two jets. In the limit where two directions become

collinear, the second line of Eq. (6.11) is never satisfied, while the first one

becomes Θ(0 < δ) = 1. Similarly, in the soft limit, the energy constraints

4We introduce the following notation for the Heaviside step function: Θ(a > b) = 1, if
a > b, and Θ(a > b) = 0, if a < b.
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are always satisfied and we obtain

Θ (min(θ12, θ13, θ23) < δ) + Θ (min(θ12, θ13, θ23) > δ) = 1.

Thus, Sterman–Weinberg cones are IRC safe, at least to O (αs).

In realistic hadron-collider environments, cone algorithms rely on the

concept of a stable cone, i.e., the sum of all particles’ momenta in the

cone should point in the direction of the center of the cone. In order

to find stable cones, the JetClu [22] and (various) midpoint-type [23, 24]

cone algorithms use a procedure that starts with a given set of seed particles.

Taking each of them as a candidate cone center, one calculates the cone

contents, finds a new center based on the four-vector sum of the cone

contents, and iterates until a stable cone is found. However, stable cones

in a given event can overlap, meaning particles can belong to more than

one cone. The most common approach is to run a split–merge procedure

once the stable cones have been found. This iteratively takes the most

overlapping stable cones and either merges them or splits them depending

on their overlapping fraction. The procedure is repeated until one is left

with non-overlapping objects that can be identified as jets.

Cone algorithms were widely used by the Tevatron experiments. For

instance, the JetClu algorithm, used during Run I at the Tevatron, takes

the set of particles as seeds, optionally above a given threshold in transverse

momentum. This can be shown to be IRC unsafe for configuration for

which two hard particles are within a distance smaller than twice the

cone radius, rendering JetClu unsatisfactory for theoretical calculations.

Midpoint-type algorithms, used for Run II of the Tevatron, added to the

list of seeds the intermediate points between any pair of stable cones found

by JetClu. This is still infrared unsafe, this time when 3 hard particles are in

the same vicinity, i.e., one order later in the perturbative expansion than

the JetClu algorithm. This IRC issue was solved by the introduction of the

SISCone [25] algorithm, which provably finds all possible stable cones in an

event, making the stable cone search IRC safe.

6.2.3 Sequential recombination algorithms

Due to the aforementioned problems related to IRC safety, the use of cone

algorithms in modern high-energy physics experiments has dwindled in

favor of approaches that form jets by successive pairwise combinations of

more elementary objects. These sequential recombination algorithms are
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based on the idea that, from a perturbative QCD viewpoint, jets are the

product of successive parton branchings, as we discussed at the beginning

of this chapter. Thus, if jets are supposed to capture the properties of

the very energetic partons produced in the hard collision, jet algorithms

attempt to invert the parton shower process by successively recombining

pairs of particles, which are close to each other, according to some user-

defined (and physics-inspired) metric, into objects that can be taken as

proxies to the hard partons. The metric used in this process determines the

type of algorithm.

6.2.3.1 JADE algorithm

A natural choice for the distance metric is the invariant mass of the

pair under examination m2
ij = (pi + pj)

2. This is clearly a Lorentz-

invariant measure that reflects important features of QCD, namely,

collinear splittings and soft emissions, which both produce small invariant

masses, are favored. The sequential recombination algorithm that exploits

this distance measure was first introduced by the JADE collaboration

at the PETRA e+e− collider and it is therefore called the JADE

algorithm [26,27]. It is formulated as follows:

(1) Take the particles in the event as the initial list of objects.

(2) For each pair of particles i, j work out the distance

yij =
2EiEj(1− cos θij)

Q2
, (6.12)

where Q is the total energy. If particles i and j are massless, then yij is

the just their squared invariant mass, normalized to the square of the

total energy.

(3) Find the minimum ymin of all the yij .

(4) If ymin is below some jet resolution threshold ycut, then recombine i and

j into a single new particle (or “pseudojet”) and repeat from step 2.

(5) Otherwise, declare all remaining particles to be jets and terminate the

iteration.

The parameter ycut plays the role of the resolution variable of the algorithm.

In particular, as ycut grows smaller, softer and/or more collinear radiation

is resolved into separate jets. Thus, the number of jets found by the

JADE algorithm is controlled by a single parameter rather than the two

parameters (ε and δ) of Sterman–Weinberg cones.
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The JADE algorithm is IRC safe because soft particles are recombined

at the beginning of the clustering, as they produce small invariant masses

with any other particle, as do pairs of collinear particles. However, the

presence of the product EiEj in the distance measure means that two

very soft particles moving in opposite directions may be recombined into

a single particle in the early stages of the clustering, which is at odds

with the intuitive picture of a jet as a stream of collimated particles. This

peculiar behavior is reflected in a rather intricate structure of higher-order

corrections for the distributions of the JADE resolution scale [28–30]. In a

modern language, it is possible to show that despite being IRC safe, the

JADE algorithm lacks recursive IRC safety [17].

6.2.3.2 Generalized kt algorithm

Due to the unwanted features of the JADE algorithm, sequential recombina-

tion algorithms with alternative metrics have been suggested since the early

1990s. Here, instead of a historical discussion, we group these algorithms

into a one-parameter family, the generalized kt algorithm [8], discussing the

most common examples. We present the algorithm in its incarnation for

hadron–hadron collisions, although it can also be applied to e+e−, with
small modifications.5 The algorithm proceeds as follows:

(1) Take the particles in the event as the initial list of objects.

(2) From the list of objects, build two sets of distances: a pairwise distance

dij = min(p2pt,i, p
2p
t,j)ΔR2

ij , (6.13)

where p is a free parameter and ΔRij =
√
(yi − yj)2 + (φi − φj)2 is the

geometric distance in the rapidity-azimuthal angle plane, and a “beam

distance”:

diB = p2pt,iR
2, (6.14)

with R the algorithm resolution parameter, often called the jet radius.

5At hadron colliders, we typically express the kinematics in terms of transverse
momentum, rapidity, and azimuth, while, as we have already seen, in lepton–lepton
colliders, energy and (polar) angle are preferred.
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(3) Find the minimum of all dij and diB .

(4) If the smallest distance is a dij , then objects i and j are removed from

the list and recombined into a pseudo-jet which is itself added to the

list.

(5) If the smallest is a diB , object i is called a jet and removed from the

list.

(6) Go back to step 2 until all the list of objects is empty.

In all cases, we see that if two objects are close in the rapidity-azimuth

plane, as would be the case after a collinear splitting, the distance dij
becomes small and the two objects are more likely to recombine. Similarly,

when ΔRij > R, the beam distance becomes smaller than the inter-particle

distance and objects are no longer recombined, making R a typical measure

of the size of the jet. Indeed, if we only have two particles, any member of

the generalized kt family will cluster them together if their distance in

the rapidity-azimuth plane is less than R, irrespective of the value of the

parameter p:

min(p2pt,i, p
2p
t,j)ΔR2

ij < min
(
p2pt,iR

2, p2pt,jR
2
)
⇒ ΔRij < R. (6.15)

The situation changes if we consider three or more particles and indeed the

shape of realistic jets strongly depends on the value of the parameter p, as

we are about to discuss.

kt algorithm: The first solution to alleviate the issues related to the JADE

algorithm, while preserving the idea of clustering soft particles first, was the

so-called kt algorithm [31, 32], which corresponds to taking p = 1 above.

According to this metric, emissions with small transverse momentum are

close and therefore are recombined early in the clustering, in accordance

with the parton-shower picture. However, the presence of the “minimum”

in the distance measure, instead of the product, guarantees that two soft

objects geometrically far apart are not recombined, thus avoiding the

issues encountered with JADE. It should be noted that, while physically

motivated, the kt distance enhances sensitivity to all sorts of low-energy,

non-perturbative, effects, such as the underlying event and pile-up, and for

this reason, kt jets are seldom used in hadron–hadron collisions.

Cambridge/Aachen algorithm: Another specific incarnation is the

Cambridge/Aachen algorithm [33, 34], which is obtained by setting p = 0

above. With this choice, the metric measures a purely geometrical distance
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in the rapidity-azimuth plane and particles close in angles are recombined

first. This choice is physically motivated because of the collinear enhance-

ment of QCD splittings and it suffers less from the contamination due to

soft backgrounds than the kt algorithm does.

Anti-kt algorithm: In the context of LHC physics, jets are almost always

reconstructed with the anti-kt algorithm [35], which corresponds to the

generalized kt algorithm with p = −1. This choice seems at first rather

unnatural because it is at odds with the picture emerging from the QCD

parton shower. However, its primary advantage consists in the fact that the

anti-kt metric favors clusterings between hard particles. Thus, anti-kt jets

grow by successively aggregating soft particles around a hard core, until the

jet has reached a (geometrical) distance R away from its axis. Since two soft

particles are always far away with the anti-kt metric, anti-kt jets have very

little sensitivity to soft radiation and they appear to have circular shapes

in the azimuth-rapidity plane. Indeed, anti-kt behaves as a rigid cone in

the soft limit, which simplifies all-order calculations of jet properties. From

an experimental point of view, the resilience against soft radiation implies

that anti-kt jets are easier to calibrate. This is the main reason why it was

adopted as the default jet clustering algorithm by all the LHC experiments.

6.2.4 Sensitivity to soft physics

The effect of soft radiation on jets clustered with different algorithms is

shown in Fig. 6.4. The three-dimensional plots show calorimeter cells in

the azimuth-rapidity plane, with the vertical axis measuring the transverse

momentum carried by the particles in each cell. The shaded regions cor-

respond to the active catchment area of each jet [36], which is obtained

by adding infinitely soft particles (usually called ghosts) that are clustered

with the hard jets, thus determining their boundaries. Anti-kt jets have

sharp and round boundaries, demonstrating resilience against soft physics.

In actual experimental situations, this translates into reduced sensitivity to

the underlying event and pile-up.

Another measure of a jet resilience to soft backgrounds is the back-

reaction. Let us suppose to have a hard scattering event that produces a

set of jets, with given properties. If we then add soft radiation to this event

and we rerun the same jet algorithm, we will obtain a different set of jets.

In particular, not only jets can acquire additional soft constituents, but we

are also not guaranteed that a given jet will contain the same hard particles
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Figure 6.4. Representation of jets in the azimuth (φ) and rapidity (y) plane obtained
with SISCone and with the three members of the generalized kt family discussed here.
All algorithms have R = 1, while f = 0.75 is the overlap parameter for the SIScone
algorithm. While the jets obtained with the Cambridge/Aachen and kt algorithm have
irregular boundaries, the hard jets obtained with anti-kt clustering are almost perfectly
circular. SIScone produces smaller jets, which become more irregular as the number of
constituents increases.

Source: Figure taken from Ref. [35].

of the original hard event. The back-reaction is precisely the deformation

of the original jets because of the presence of the soft background. This

is illustrated by the cartoon on the left-hand side of Fig. 6.5. The black

dots represent the particles from the hard scattering, while the gray ones

the (almost uniform) soft radiation, e.g., pile-up. The original jet, which

is represented by the light gray area, is modified because of its interaction

with the soft background (dark gray area).

The impact of the back-reaction on the transverse momentum of a jet

is illustrated in Fig. 6.5, on the right, for different jet definitions. Positive

values of Δp
(B)
t correspond to transverse momentum gain, while negative

ones to loss of pt. We clearly see that back-reaction effects are strongly
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Figure 6.5. On the left, we show a cartoon describing the back-reaction effect, i.e., the
modification of a hard jet due to its interactions with a soft background. On the right,
we show the distribution of the transverse momentum change due to back-reaction for
the anti-kt algorithm as compared to kt, Cambridge/Aachen, and SISCone.

Source: Figure taken from Ref. [35].

suppressed for the anti-kt algorithm relative to the others, a feature that

can help reduce the smearing of jets’ momenta due to the underlying event

and pile-up.

6.3 Jets as Tools

Jets are ubiquitous objects in collider phenomenology. They are employed

in dedicated measurements that aim to stress-test our understanding of

the Standard Model to the highest accuracy. In this context, we mention,

for instance, measurements of electroweak bosons in association with many

jets. Jets also appear in numerous searches for new physics, e.g., cascades of

supersymmetric particles, events with one jet produced in association with

missing energy in searches for dark matter, and, generically, searches for

heavy states decaying into hadrons. Let us consider, for instance, a search

for a new resonance X , which decays into quarks. If the mass of this new

resonance is very large, it is most likely produced with a small velocity

in the laboratory frame or, equivalently, with small transverse momentum.

Then, its decay products move in opposite direction, fragmenting into well-

separated jets, as depicted in the left-hand cartoon of Fig. 6.6. The most

basic search strategy in this scenario is then to look for resonance peaks

(the so-called “bump hunt”) in the invariant mass distributions of the two

jet with the highest transverse momenta.

We might also be interested in studying the hadronic decays of particles

with mass around the electroweak scale. These can be Standard Model

particles like electroweak and Higgs bosons or top quarks but also any
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X is at rest and its decay products are 
reconstructed in two jets

X is boosted and its decay products 
are reconstructed in one jet

X
X

Figure 6.6. If a heavy state X is produced at rest, in the laboratory frame, its hadronic
decay products are reconstructed as two (or more) well-separated jets, as depicted on
the left. However, if its transverse momentum is large, pt � 2m/R, its decay products
are collected in a single jets of radius R.

new particle with a mass of the order of the electroweak scale. Due to

its unprecedentedly high colliding energy, the LHC is reaching energies far

above the electroweak scale. Therefore, analyzes and searching strategies

developed for earlier colliders, in which electroweak scale particles were

produced with small velocities, had to be fundamentally reconsidered. In

particular, as the transverse momentum of the decaying particle grows

larger, its decay products become more collimated. If pt � 2m
R , the decay

products are reconstructed into a jet of radius R, as depicted in the right-

hand cartoon of Fig. 6.6.

At the LHC, this scenario is particularly relevant for Higgs physics and,

in particular, in the context of measurements of the couplings of the Higgs

boson to the fermions. This is a crucial test for the Higgs mechanism of

electroweak symmetry breaking, which predicts that the couplings to the

fermions should be proportional to their masses. Despite the fact that

the branching ratios into heavy (beauty b and charm c) flavors are not

small, these measurements are challenging because of the large QCD

background. However, when the Higgs boson is produced with a large

transverse momentum, its decay products are likely to be reconstructed

in a single jet. The presence of the Higgs boson can be then inferred by

studying the substructure of this jet [37–39]. Consequently, jet substructure

has emerged as an important tool for searches at the LHC, and a vibrant
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field of theoretical and experimental research has developed in the past

decade, producing a variety of studies and techniques [4, 40–46].

We have already said that, in the context of resolved analyzes, the key

observable to look at is the invariant mass distribution of the two jets. We

can try and play the same strategy in the case of analyzes in the boosted

regime and look at the jet invariant mass:

m2
jet =

⎛
⎝∑

i∈jet

pi

⎞
⎠

2

, (6.16)

where pi are the four momenta of the jet’s constituents. If the jet comprises

all the debris of the decay, then its invariant mass distribution should peak

around the decaying particle mass. On the other hand, background, i.e.,

QCD, jets have no intrinsic mass scale6 and therefore their invariant mass

must be proportional to the jet transverse momentum. Thus, one may hope

that a cut on the jet invariant mass distribution will do the trick. It turns

out that, despite being an important discriminant, the jet mass distribution

is not enough. For instance, the jet mass turns out to be very sensitive to

soft contamination, such as the underlying event and pile-up, resulting in

degradation of its performance. We can see a striking example of this in

Fig. 6.7, on the left. The invariant mass distribution of the leading QCD jet

is shown, as measured by the ATLAS collaboration during the first run of

the LHC. The different curves correspond to different pile-up situations, as

measured by the number of reconstructed interaction vertices. Despite the

transverse momentum of the jet being rather high, pt ∈ [600, 800] GeV, we

can see that pile-up has a huge effect on the distribution, causing a shift of

several tens of GeV. Thus, if we want to develop tools that can successfully

discriminate signal and background jets in the boosted regime, we must

move beyond the standard jet invariant mass and find new strategies to

scrutinize the substructure of jets.

6.3.1 Grooming and tagging

The two key concepts in jet substructure go under the names of grooming

and tagging. Broadly speaking, a grooming procedure takes a jet as an

input and tries to clean it up by removing constituents which, being at wide

6The hadron-formation scale Λ is always present, but it is much lower than the energy
scales considered here.
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Figure 6.7. The leading jet mass distribution as measured by the ATLAS collaboration
during LHC Run 1. The curves correspond to different numbers of primary vertices, a
measure of the pile-up environment. The plot on the left is for standard jets, and the
plot on the right for jets groomed with trimming [47].

Source: Figure taken from Ref. [48].

angle and relatively soft, are likely to come from contamination, such as the

underlying event or pile-up. After this contamination has been removed, we

are left with groomed jets that should be closer to our partonic picture. At

this stage, we can perform a tagging step, namely, a cut on some kinematical

variable that is able to distinguish signal from background. For instance,

in electroweak boson decays, the energy sharing between the two daughters

is symmetric. This is in contrast to QCD splittings q → qg, for which

the gluon tends to be soft. Thus, the energy sharing between subjets in

the jets can be used as a tagging variable. We can build on this idea by

noticing that high-pt QCD jets are likely to appear as containing one prong,

i.e., a hard core surrounded by a cloud of soft radiation. Electroweak (and

Higgs) jets are instead two-pronged because they are initiated by a two-

body decay into quarks. Jets that contain boosted top quarks feature three

prongs because the top is so massive that goes through an electroweak decay

before hadronizing, t → Wb. If the W decays hadronically, then the top

jet will contain three main subjets: one originated by the b quark and two

from W → qq̄′. Thus, we can build tagging algorithms that distinguish jets

according to the number of prongs they feature. The most famous example

of such a tagger is called N -subjettiness [49, 50].
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Many grooming algorithms have been developed, successfully tested,

and are currently used in experimental analyzes, e.g., the mass-drop

tagger [39], trimming [47], and pruning [51, 52]. A successful application

of jet trimming by the ATLAS collaboration is shown in the right-hand

plot of Fig. 6.7. The invariant mass distribution of the leading QCD jet is

shown, but this time, jets are trimmed. We see that, in contrast to standard

jets (on the left), no sensitivity to pile-up is found.7

By staring at the two plots in Fig. 6.7, we note a second interesting

feature. The trimmed jet mass distribution is insensitive to pile-up, but

it is not the same as the standard jet mass distribution, in the absence

of pile-up. Thus, trimming is modifying standard jets, possibly carving

away perturbative radiation too. This is something we should investigate

because we do not want to undermine our perturbative understanding of

jets. Regardless of their nature, substructure algorithms try to resolve jets

on smaller angular and energy scales, thereby introducing new parameters.

This challenges our ability of computing predictions and indeed most of

the early theoretical studies of substructure tools were performed using

Monte Carlo event generators. While these are powerful general-purpose

tools, their essentially numerical nature offers little insight into the results

produced or their detailed and precise dependence on the algorithms’

parameters. A deeper, first-principle, understanding of the most used

grooming and tagging techniques, both in the presence of background

[53, 54] and signal jets [55, 56], was achieved when perturbative (all-

order) techniques were employed to describe jet substructure. When this

understanding was put at work, a second generation of substructure algo-

rithms, which combined efficient signal-from-background discrimination

together with robust theoretical understanding, was devised. One of them

is SoftDrop [19], which we discuss in some detail.

The SoftDrop procedure starts with a standard jet, typically an anti-kt
jet in LHC studies. However, if we want to understand the substructure

of this jet, the first thing we should do is to order the constituents in a

way that reflects the jet formation history. Since the anti-kt history does

not have this feature, we recluster the jet with a more physical algorithm,

namely, Cambridge-Aachen. After this procedure, we have at our disposal

7We should mention that in the more challenging pile-up environments of LHC Run
2 and 3, grooming algorithms are not enough to remove pile-up and dedicated pile-up
subtraction techniques are applied.
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a physically meaningful clustering tree, in which the clustering steps are

ordered in angle, e.g., the final node, which corresponds to the first splitting,

clusters together two prongs that are far away in the azimuth-rapidity plane.

The SoftDrop procedure then performs the following steps:

(1) Break the jet j into two subjets by undoing the last stage of Cambridge-

Aachen clustering. Label the resulting two subjets as j1 and j2.

(2) If the subjets pass the SoftDrop condition min(pt1,pt2)
pt1+pt2

> zcut
(
ΔR12

R

)β
,

then deem j to be the final SoftDrop jet.

(3) Otherwise, redefine j to be equal to subjet with larger pt and iterate

the procedure.

(4) If j is a singleton and can no longer be declustered, then one can either

remove j from consideration (“tagging mode”) or leave j as the final

SoftDrop jet (“grooming mode”).

The difficulty posed by substructure algorithms in general, and SoftDrop

in particular, is the presence of new parameters (here the angular exponent

β and the energy fraction zcut) that slice the phase space in a non-

trivial way, resulting in potentially complicated all-order behavior of the

observable at hand. This is exemplified in Fig. 6.8, where we show the
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Figure 6.8. On the left, we show the SoftDrop phase space for emissions on the
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z
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θ
) Lund plane. For β > 0, soft emissions are vetoed while much of the soft-

collinear region is maintained. For β = 0, both soft and soft-collinear emissions are
vetoed. For β < 0, all (two-prong) singularities are regulated by the SoftDrop procedure.
Figure taken from Ref. [19]. On the right, we show a measurement of the normalized
SoftDrop jet mass distribution by the ATLAS collaboration. The data are compared
to two different high-precision perturbative calculations, showing excellent agreement,
across a wide range of the observable.

Source: Figure taken from Ref. [57].
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phase space for soft and collinear gluon emission, from a hard parton, in

the (ln 1
z , ln

R
θ ) plane, where 0 ≤ z ≤ 1 is the energy fraction of the emitted

gluon with respect to the hard parton initiating the jet, and 0 ≤ θ ≤ R is the

angle of the emission, measured from the hard parton. This representation

of the soft and collinear phase space is often called the Lund plane. In the

soft and collinear limit, the SoftDrop condition can be written as

z > zcut

(
θ

R

)β

⇒ ln
1

z
< ln

1

zcut
+ β ln

R

θ
(6.17)

Thus, vetoed emissions lie above a straight line of slope β on the (ln 1
z , ln

R
θ )

plane, as shown in Fig. 6.8. For β > 0, collinear splittings always satisfy

the SoftDrop condition, so a SoftDrop jet still contains all of its collinear

radiation. The amount of soft-collinear radiation that satisfies the SoftDrop

condition depends on the relative scaling of the energy fraction z to the

angle θ. As β → 0, more of the soft-collinear radiation of the jet is removed,

and in the β = 0 limit, all soft-collinear radiation is removed. In this

limit, SoftDrop essentially coincides with the modified Mass Drop Tagger

[53, 54]. In the strict β = 0 limit, collinear radiation is only maintained if

z > zcut. Finally, for β < 0, the soft-collinear region is removed and a hard

splitting is imposed. For example, β = −1 roughly corresponds to a cut on

the relative transverse momentum of the two prongs under scrutiny.

The above understanding can be formalized and precision calculations

of observables measured on SoftDrop jets have been performed [58, 59].

Furthermore, while by design SoftDrop reduces the sensitivity to the

underlying event and pile-up, it has been shown that this algorithm can

also reduce the size of hadronization corrections, although they acquire a

more complicated structure [53, 60–62].

Thus, because of their theoretical properties, i.e., good perturbative

behavior and reduced sensitivity to non-perturbative physics, SoftDrop jets

have emerged as an excellent playground for QCD studies at the LHC.

As an example of this, we show on the right-hand side of Fig. 6.8 the

comparison between a measurement of the SoftDrop jet mass performed by

the ATLAS collaboration [57] (CMS also performed similar measurements,

see, for instance, Ref. [63]) to high-precision perturbative calculations

by two different groups: LO+NNLL [58] and NLO+NLL+NP [60], where

the acronyms denote the accuracy of the calculations is apparent. The

agreement is excellent and only in the three lower bins there is need for

non-perturbative corrections, which are included in the NLO+NLL+NP

calculation. The remarkable theoretical understanding reached for SoftDrop
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jets, together with the fine measurements performed by the experiments,

has led to studies assessing the use of jet substructure techniques to extract

Standard Model parameters, such as the strong coupling [64–66] or the

top quark mass [67]. Furthermore, these observables can also be used to

stress-test and improve event-simulation tools, such as parton showers and

hadronization models.

6.3.2 Jets in the era of artificial intelligence

Our journey through jet physics would not be complete without a dis-

cussion about new approaches based on artificial intelligence. The rapid

development, within and outside academia, of machine-learning techniques

is having a profound impact on many aspects of society and fundamental

research is not immune to this. In the context of jet physics, this revolution

has brought to life a third generation of jet substructure techniques, which

are now the gold standard for LHC Run 3 analyzes. However, because of its

novelty and ongoing rapid progress, machine learning can still be considered

an ad hoc field: a multitude of problems can be solved and addressed

with different techniques, but some of the basic principles, the underlying

structure, and a unified picture are still missing. Thus, we believe that

times are not mature yet for a complete and exhaustive description of these

techniques in a book.8 Therefore, in this final section, we limit ourselves

to raise a few points about the relation between deep-learning tools and

expert-knowledge developed in more than ten years of jet substructure

studies.

A bread and butter application of machine learning to particle physics

are classification problems, including jet tagging. In this context, clas-

sification algorithms are typically trained on a control sample, which

could be either Monte Carlo pseudo-data or a high-purity dataset, and

then applied to an unknown sample to classify its properties. This is an

example of so-called supervised learning. These ideas have been exploited

in particle physics for a long time. However, because of limitations on

efficiency and computing power, algorithms used to be applied to relatively

low-dimensional projections of the full radiation pattern that one wished

to classify. Even so, such projections usually corresponded to physically

motivated observables, such as the jet mass, and therefore limitation in

8We refer the interested readers to Ref. [70].
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performance was mitigated with physics understanding. Current develop-

ments in machine learning allows us to move away from low-dimensional

projections and exploit deep neural networks to perform classification.

This opens up the door to almost limitless possibilities that go far beyond

supervised learning. Just to mention a few examples, unsupervised learning

has led to the design of algorithms, which can be applied, for instance, to

anomaly detection in new physics searches. Furthermore, neural network

can be used not only for classification but also for simulations (e.g., parton

showers, hadron formation, and detector responses) in a fast and faithful

way — the particle physics equivalent of deepfake.

The most successful innovations in machine learning are coming from

outside high energy physics (and chiefly from the industry giants). However,

particle physics provides us with one of the few examples of a big-data

system with a deep scientific understanding of the underlying model,

potentially allowing us to get more insight into the broader machine-

learning field. In this context, an interesting debate to mention has to do

with the choice of inputs and architecture to use when building a neural

network for a specific physics case. Should we be as agnostic as possible

and provide a complex network with raw data from the experiments? Or

should we build on our understanding of the physical processes and use

physically motivated observables as input to (possibly simpler) machine

learning algorithms? The former approach has the advantage of being

unbiased, while following the second one we may hope, for instance, to

understand what kind of information the network is learning from the data.

We close this discussion with a comparison between these two philoso-

phies. In order to do that, we go back to our electroweak boson tagging

problem. We can view a particle detector, and in particular the hadronic

calorimeter, as a huge camera, taking pictures of particle collisions and,

using the information from the calorimeter cells, we can build jet images [68,

71]. After appropriate averaging and pre-processing, the jet images can

be input to machine-learning algorithms that are appropriate for pattern

recognition, such as convolutional neural networks. Alternatively, we can

build a picture of the jets based on our understanding of QCD. This is

provided by the (primary) Lund jet plane [69]. The Lund jet plane is

constructed by parsing backward the clustering history of a jet’s Cambridge-

Aachen tree, similar to the SoftDrop procedure previously described. At

each step, the kinematics of the splitting, e.g., the distance between the

two branches in the azimuth-rapidity plane Δ and the relative transverse

momentum kt, is recorded. The set of values that we obtain always following
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the harder branch constitutes the primary Lund jet plane. Considering

many jets, we can construct the density of the primary plane. Examples

of a jet image and a primary Lund plane image for W jets are shown in

Fig. 6.9.

6.4 Closing Remarks

We conclude this chapter by stressing once again that the key aspect

that repeatedly appears in the context of jet physics is the design of

algorithms that can be meaningfully used by both theory and experimental

communities. Very often this implies the necessity of a tradeoff between

performance and robustness. In the 1990s, one of the reason for preferring

cone algorithms over sequential recombination ones was the issue of speed,

an example of performance. However, as it turned out, the algorithms used

at the Tevatron were not robust because they lacked IRC safety.

In the context of jet substructure studies, by performance, we usually

mean the discriminating power of a tool when extracting a given signal from

the QCD background, and by robustness we mean the ability to describe
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the tool using perturbative QCD, i.e., being as little sensitive as possible

to model-dependent effects such as hadronization, the underlying event,

pile-up, or detector effects, all of which likely translate into systematic

uncertainties in an experimental analysis.

We can apply similar considerations to the latest-generation machine-

learning tools. On the one hand, these algorithms augment performance

so much that they have become standard tools for collider physics. On the

other hand, they are sometimes treated as black-boxes and, more often than

not, their robustness is difficult to assess with standard technologies. It is

an exciting challenge for particle theorists and experimentalists to find new

ways to study these tools, assess their systematics, and, ultimately, find the

best metric to measure their robustness.
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Liquid Argon Time Projection Chambers (LArTPCs) have become a

prominent detector technology employed in experimental neutrino physics.

This chapter presents a review of the LArTPC technology, with an emphasis

on its use in large-scale neutrino experiments which study MeV to GeV

neutrino interactions from accelerator or astrophysical sources. First, we

provide a description of how these detectors came about and what motivates

their construction in Section 7.1. Next, we describe the operational principle

of LArTPC detectors, covering how signals are formed (Section 7.2),

propagated (Section 7.3), and detected (Section 7.4). We then conclude

with a description of how signals from LArTPCs are reconstructed and

analyzed, and provide a brief overview of how such detectors are calibrated

in Section 7.5.

7.1 Introduction: Why and How LArTPC Neutrino

Detectors Came About

In the literature, several people are often highlighted for their contributions

to the development of the LArTPC technology. The potential for liquid

argon detectors as fully active detectors for particle physics was recognized

by Willis and Radeika [1] and Nygren [2] in the early 1970s. Their
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applicability to neutrino detection was put forward by Rubbia [3] and

others [4] shortly after. Since these early proposals, the successful devel-

opment of the technology came about thanks to the effort of entire

communities tied to research in detector instrumentation, electronics,

engineering, software, and offline tool development. Before delving into a

description of the technology itself, it is worth understanding why and how

this detector technology came to be such a significant player in experimental

neutrino physics.

Detectors are developed because they solve a given technological

challenge. Liquid argon neutrino detectors do so in two fundamental ways:

they provide fully instrumented large-mass targets for neutrino interactions

and do so while faithfully tracking with millimeter accuracy the particles

produced in such interactions. These features address the need for large-

scale detectors in neutrino experiments, where event statistics are a precious

commodity, and satisfy an important requirement to accurately measure the

leptons and hadronic system needed to reconstruct the neutrino flavor and

energy which are input to neutrino oscillation measurements. LArTPCs

achieve this by leveraging argon’s large yield of ionization charge and

scintillation light. In this way, the detector acts both as the active target

for incoming neutrinos and the source of ionization charge and scintillation

light signals. Transport of the charge signals through a uniform electric field

allows us to efficiently instrument a single 2D detector wall while preserving

the 3D pattern of charge deposition, providing accurate 3D imaging

capabilities. Finally, the ability to instrument such a detector with modern

readout electronics elevates the bubble chamber like imaging capabilities

of a LArTPC providing detailed calorimetric information necessary for

quantitative measurements with modern computing tools. These features

combined make the LArTPC an ideal technology for precision measure-

ments of neutrino interactions and oscillations. The exquisite imaging

capabilities of the LArTPC further enable searches for rare interaction

modes which are the signature of Beyond the Standard Model (BSM)

physics. These searches often complement the experimental program at

intense neutrino beam facilities.

Making the simple detection principle of the LArTPC a reality has

required significant technological development. Advances in cryogenic

engineering as well as argon purification have made possible constructing

large-scale detectors which allow for the efficient propagation of electron

and photon signatures over meter-scale distances. Low-power electronics

that operate in liquid argon with high channel count have enabled high-

resolution imaging with low noise. Advances in computing and analysis
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methods have made the study of dataset comprising O(106) neutrino

interactions a reality. These are only some of the developments that have

contributed to making the LArTPC technology successful today. While this

chapter provides a comprehensive overview of the operation and perfor-

mance of liquid argon neutrino detectors, further references can provide

more detailed information. Of note are references that discuss aspects

of instrumentation and detector performance tied to this technology.

Reference [5] detailing the performance of the 3-ton prototype for the

ICARUS experiment, a launching pad for the development of this detector

technology, provides a comprehensive overview of many detector effects

and operation parameters. The “Detector Papers” from ICARUS [6, 7],

MicroBooNE [8], LArIAT [9], and protoDUNE [10,11] are useful references

that discuss in detail the design of important LArTPC detectors while also

providing insight into detector design, construction, and operation more

broadly. More references from the broad literature of liquid argon neutrino

experiments tied to specific subsystems, detector effects, or calibration

methods are provided throughout this chapter when relevant.

7.1.1 Operational principle of a LArTPC

This section gives a practical overview of how a LArTPC is used to

image neutrino interactions. The many concepts and detector components

introduced here are expanded on in subsequent sections. A neutrino

LArTPC aims to detect the visible signature of neutrino interactions

comprised of the ionization charge and scintillation light produced as

charged particles propagate through the detector. Figure 7.1 shows a

schematic of the main components of a TPC and how ionization electrons

are used to record signals on the electronics. A uniform electric field is

applied across the TPC through a negative potential on the cathode plane.

This field causes ionization electrons to drift toward the anode, where

charge sensors (wires or pixels) record the current induced by the drifting

electrons, or collect their charge directly. Each sensor records an analog

pulse associated with the drifting electron cloud. The uniform drift allows

ionization electrons recorded at the anode to faithfully map out the 3D

pattern of energy deposition produced by charged particles resulting from

the neutrino interaction. Multiple wire planes, oriented at different angles,

are used to record multiple complementary signatures of the same ionization

electron cloud. Time-coincident signals on different wire planes can then be

used to “triangulate” the charge and obtain the exact 2D coordinate for the

ionization cloud on the 2D wire plane. Finally, the depth in the detector



216 Instrumentation and Techniques in High Energy Physics

Cathode 
Plane

Edrift 

U V Y

Liquid Argon TPC

Y wire plane waveforms

V wire plane waveforms

Sense Wires

t

In
com

in
g N

eutri
no

Charged Particles

Figure 7.1. Cartoon depicting the operational principle of a LArTPC. Ionization charge
drifts uniformly across the detector volume, producing signatures on different sense wire
planes which when combined in offline reconstruction are used to recover the 3D charge
deposition pattern.

Source: Figure from Ref. [8].

along the direction of the electric field can be calculated leveraging the fact

that electrons drift at a constant speed of O(1) mm/μs. The TPC provides

full 3D information up to a degeneracy in the absolute distance of energy

deposition along the direction of the electric field associated with the drift

velocity. Breaking this ambiguity requires an independent measurement of

the interaction time which is provided by the scintillation light. Scintillation

photons travel across the detector in a few ns but unlike ionization electrons

propagate isotropically. Collecting them while maintaining the uniform and

fully active nature of the TPC requires placing light sensors — typically

Photo Multiplier Tubes (PMTs) or Silicon Photo-Multipliers (SiPMs) —

on the edge of the TPC, often right behind the anode plane. Scintillation

light provides accurate timing which is essential for absolute 3D position

reconstruction as well as background rejection in surface-based LArTPC

detectors studying GeV–scale neutrino interactions.
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Figure 7.2. Event display showing a candidate neutrino interaction recorded with the
MicroBooNE LArTPC. The 2D image shows the signals recorded on the wires of one of

the three wire planes with which the detector is instrumented. Data from each wire is
represented as a vertical strip in the image, with the vertical axis denoting the recorded
time of the signal on the wire. The color scale in the image denotes the amount of charge
collected. The large portions of blue in the image represent regions with no collected
signals. The neutrino (which originates from the beam and enters from the left in the
image) is not directly visible in the detector but produces charged particles which ionize
the argon and leave behind trails of ionization electrons. The activity in green and red is
the signature of these ionization electrons as recorded on the sense wires. The topology
and charge profile of the ionization pattern can be leveraged to reconstruct each particle’s
species and its kinematics.

Source: Figure reproduced from microboone-exp.fnal.gov.

In addition to providing millimeter-scale position resolution on

final-state particle trajectories, the large signal-to-noise of modern LArTPC

detectors provides up to percent-level charge resolution for individual

energy deposits on the collection wires and thresholds of O(100 keV).

Figure 7.2 shows a neutrino interaction candidate collected with the Micro-

BooNE LArTPC with several final-state particles coming out of the

interaction vertex. The charge collected on the wires, represented by the

color scale on the figure, measures the energy loss profile which is used for

calorimetric energy measurements as well as particle identification (PID).

microboone-exp.fnal.gov
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7.1.2 Experimental landscape in the early 2020s

Liquid argon neutrino detectors are now at the forefront of the experimental

neutrino physics program aiming to perform precision measurements

of neutrino oscillations and search for new physics. This experimental

program, international in nature, is centered around Fermilab’s intense

neutrino beams which provide a focused source of 0.1–10 GeV neutrinos

delivering 1–10× 1020 protons on target (POT) per year. Two experimental

projects currently make use of the LArTPC technology in Fermilab’s

neutrino beamline: the Short Baseline Neutrino (SBN) program [12] and the

Deep Underground Neutrino Experiment (DUNE). Available references in

the literature provide a useful overview of the SBN [13] and DUNE [14–16]

experimental programs. Here, we provide a brief summary of both to help

better contextualize the LAr neutrino detector description in relation to

the physics being pursued.

The physics reach of this program is very broad and encompasses several

areas. Driving the detector and beam design is the precision measurement

of neutrino oscillations, with emphasis on the measurement of the δCP

violating phase in the lepton sector, and the neutrino mass ordering with

DUNE. The broader DUNE and SBN programs have a varied BSM physics

program which leverages the intense neutrino beams as a possible source of

new particles produced through feeble couplings to the standard model. The

DUNE far detectors, thanks to their underground location, serve as a unique

astrophysics observatory for neutrinos from a possible galactic supernova

burst and from solar neutrinos. The quiet far detector environment further

makes the experiment well suited for searches for proton decay or neutron-

antineutron oscillation which test fundamental symmetries. Finally, the

SBN program provides a venue for key measurements of neutrino scattering

on argon, an important source of systematic uncertainty for oscillation

measurements and BSM searches alike. The breadth of this program

is possible in part thanks to the versatile capabilities of the LArTPC

detector’s ability to image interactions with exceptional resolution across

the MeV to several GeV energy regime.

The SBN program is comprised of three LArTPC detectors placed at

different distances from the neutrino beam target. The three detectors are

the Short Baseline Neutrino Detector (SBND), the MicroBooNE detector,

and ICARUS. In addition to multi-detector searches for eV-scale sterile

neutrinos, each detector carries out an independent physics program. The

MicroBooNE experiment [8] collected data from 2015 to 2021, making it
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the longest-running LArTPC experiment to date. Throughout this time,

MicroBooNE has played a key role in transforming the LArTPC technology

into one capable of delivering high-precision measurements of neutrino

interactions with advanced analysis techniques with large-scale datasets.

This includes MicroBooNE’s first results investigating the nature of the

MiniBooNE excess [17–21]. The ICARUS experiment [22] serves as the

primary far-detector for the SBN program thanks to its 600 tons of active

argon mass. The detector began data-taking in 2020. SBND, the near

detector for the program, sits only ∼100 m from the beam target and is

therefore exposed to a very large flux of neutrino interactions. This makes

the SBND detector uniquely positioned for high-statistics measurements

of neutrino–argon interactions and searches for rare processes tied to

BSM signatures. The SBND detector is expected to begin data-taking

in 2023.

DUNE will represent the culmination of the long-baseline oscillation

program and leverages a powerful beam, longer baseline from the neutrino

source, and large LArTPC active mass to achieve the statistics and precision

needed for its oscillation physics program. The experiment is comprised of

near and far detectors located in the Homestake mine in South Dakota

and on the Fermilab campus, respectively. The detector is expected to

start data-taking in the late 2020s, with a staging of the several modules

and detectors which make up the experimental facility. The far detector,

situated one mile underground at the Sanford Underground Research

Facility in Lead, South Dakota, will additionally serve as a unique facility

for the observation of astrophysical neutrinos from a galactic supernova

burst and the Sun [15]. The near detector provides a rich physics program

itself, centered on searches for BSM physics [16].

The development of the LArTPC technology benefits from a continuous

stream of small-scale demonstrators and R&D test stands. Those that

have documented their operations in the literature provide an invaluable

source for readers interested in learning the details of hardware components,

engineering requirements, cryogenic, DAQ, and many other topics related to

the design, construction, and operation of a LArTPC. Details can be found

in references from the LArPD [23] and LongBo [24] test stands at Fermilab,

the ICARUS 3-ton demonstrator [5], and BNL’s 20-liter test stand [25].

Large-scale prototype detectors such as the protoDUNE single [10,11] and

double-phase TPC complement this list and are providing insight for the

construction of multi-kiloton LArTPC detectors in DUNE.
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7.2 Particle Propagation and Signal Formation in

Liquid Argon Neutrino Detectors

Liquid argon neutrino detectors take advantage of their ability to precisely

track the path of charged particles propagating through the detector

volume. This section describes how particles propagate in liquid argon and

how signals of ionization charge and scintillation light are formed.

7.2.1 What does a neutrino LArTPC see?

Neutrino experiments rely on the detection of final-state particles produced

in neutrino interactions. Of particular relevance to the study of neutrino

oscillations is the signature of the charged lepton resulting from charged

current neutrino interactions. This primarily means electrons and muons

from νe and νμ charged current (CC) interactions, respectively. The

hadronic response in neutrino interactions from the MeV to the few-GeV

scale is vastly complex and tied to the details of the neutrino interaction

mode and effects that impact the propagation of particles through the argon

nucleus. A review of such processes is outside of the scope of this text.

Here we focus on describing how the most common particles produced

in neutrino interactions propagate through and manifest themselves in

LArTPC detectors. One of the features that make LArTPC detectors

so powerful in the study of neutrinos is their ability to record with low

threshold particles produced in the interaction’s hadronic recoil. Photons,

charged and neutral pions, protons, and neutrons are the most commonly

produced particles for interactions of up to several GeV of energy. The

description of particle propagation is subdivided between particles that

are often referred to as “shower-like”, such as electrons and photons,

and those that are “track-like”, such as muons, protons, and charged

pions. A final section on the propagation of neutrons concludes this

presentation. While the description presented centers on propagation in

LAr, relevant background can be found in the PDG’s “Passage of Particles

through Matter” chapter of the Particle Data Group’s “Review of Particle

Physics” [26].

7.2.1.1 Propagation of electrons and photons

The propagation of electrons and photons in argon is governed by

Compton scattering and pair production for photons and ionization and

Bremsstrahlung for electrons. Figure 7.3 shows the energy loss profile for
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Figure 7.3. Left: Energy loss for electrons as a function of energy divided in the
two primary components: Collision stopping power (or ionization) and radiative losses
(Bremsstrahlung photon production). Right: Mean-free path for photons propagating
in argon contributed by two main processes: Compton scattering and pair-production,
dominating below and above 10 MeV, respectively.

electrons (left) and the interaction length for photons (right) as a function

of energy. Pair production (γ → e+e−) for photons and Bremsstrahlung

(e + N → e + γ) for electrons cause the propagation of these two

particles to be interconnected and leads to the formation of electromagnetic

(EM) cascades which manifest as “showers” in the detector. Energy has a

significant impact on the topology of EM showers. Electrons and photons

of several hundred MeV or more lead to fully developed EM showers that

are easily recognized as such in the detector. As one approaches the O(100)
MeV regime, the stochastic nature of pair production and Bremsstrahlung

photon production lead to “fragmented” EM showers. Below O(100) MeV,

EM showers appear largely as a single track-like ionization segment caused

by an electron, followed by several isolated Compton scatters contributed

by low-energy Bremsstrahlung photons. Figure 7.4 shows examples of

EM showers in LAr in all three energy regimes. Shower length scales

logarithmically with energy and generally propagates for a distance O(1)
m for showers in the 10s of MeV to GeV range, while they are contained

transversely by a Moliere radius of ∼9 cm.

Having highlighted the similarity between electron and photon propa-

gation in LAr, it is worth mentioning the important differences that allow

the LArTPC technology to distinguish between these two particles. Since

photons do not carry electric charge, they do not deposit energy in LAr



222 Instrumentation and Techniques in High Energy Physics

Figure 7.4. Examples of EM interactions in LAr. Left: Michel electron of several tens
of MeV (reproduced from Ref. [27]). Center: Few hundred MeV EM showers from a νe
interaction candidate (reproduced from Ref. [19]). Right: Higher energy EM shower from
a νe interaction candidate (reproduced from microboone-exp.fnal.gov).

Figure 7.5. Left: Electron shower candidate from a νe interaction. Right: Two photon
candidates from the decay of a π0 produced in a neutrino interaction. In the event with
photons, one can easily make out the gap from the shower start point to the interaction
vertex (reproduced from microboone-exp.fnal.gov).

until they have interacted. The initial propagation distance covered by the

photon before pair-converting leads to a visible “gap” from the neutrino

interaction vertex. This gap is characteristic of photons’ ∼20 cm conversion

distance in LAr. Electrons, which ionize the argon as soon as they are

produced, leave no such gap from their production point. Given the large

conversion distance for photons, this gap is clearly visible in the detector

but requires the presence of coincident activity at the interaction point

such as visible tracks from the hadronic recoil. Figure 7.5 illustrates how

the presence of a gap helps distinguish photons vs. electrons. The second

distinguishing feature is associated with the energy loss profile at the start

of the shower. The electron–positron pair produced by a photon will lead

to double the ionization stopping power compared to a single electron. This

difference will remain until the EM shower has a chance to develop, typically

after several centimeters. The segment before the EM shower starts to fully

microboone-exp.fnal.gov
microboone-exp.fnal.gov
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Figure 7.6. Distribution of shower trunk dE/dx for electrons and photons observed
in the MicroBooNE detector from the NuMI neutrino beamline. The distribution is
dominated by electrons, in light gray, contributing at 2 MeV/cm, and photons, in dark
gray, peaking at 4MeV/cm.

Source: Figure reproduced from Ref. [28].

develop is referred to as the shower “trunk”. Figure 7.6 shows one of the

first demonstrations of this e/γ separation technique, measuring the dE/dx

energy loss in the first four cm of the shower trunk and clearly distinguishing

electrons, peaking at 2MeV/cm from photons at twice that value.

7.2.1.2 Propagation of muons, charged pions, kaons, and

protons

Muons, charged pions, and protons do not radiate much of their energy at

GeV energies. Instead, they primarily lose energy through direct ionization

of the argon. This leads to “track-like” signatures: fairly linear segments

of uniform ionization. Unless the particle re-interacts, it will come to

a stop after having lost all its kinetic energy. The energy loss profile

follows the Bethe–Bloch distribution, which describes the energy-dependent

energy loss per unit distance (dE/dx) for a particle of a given mass. This
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Figure 7.7. Left: Ionization energy loss for different particle species as a function of
kinetic energy. Right: Measured dE/dx distribution from the protoDUNE detector for

minimally ionizing muons.
Source: Figure from Ref. [10].

distribution is characterized by a minimum (occurring roughly when the

particle’s kinetic energy is equivalent to its mass) and a “Bragg peak”: a

sharp increase in the rate of ionization as the particle’s energy decreases.

Figure 7.7 shows the mean energy loss to ionization for muons, protons,

charged pions, and kaons as a function of the particle’s kinetic energy. While

the Bethe–Bloch function describes the mean energy loss, the probability

distribution function of the energy lost by a particle traversing a layer

of argon follows a Landau–Vavilov distribution [29]. A useful metric by

which ionization energy loss is quantified is the most probable value (MPV)

of this distribution. Unlike the mean energy loss, the MPV depends on

the thickness of the layer of material traversed, dx. Figure 7.7 (right) shows

the distribution of dE/dx measured with the protoDUNE detector with a

sample of minimally ionizing muons, which have an MPV energy loss of

roughly 1.7 MeV/cm.

While ionization is the primary means of energy loss for track-like

particles, other interaction modes are relevant to the overall topology and

energy loss profile in the TPC. Muons will occasionally produce δ-rays:

energetic electrons which branch out from the primary muon track. Protons

and pions often reinteract with an argon nucleus before coming to rest,

leading to more complicated topologies which can include a number of final

state hadrons. These reinteractions are energy dependent, becoming more

likely as the proton or pion’s energy increases. Finally, muons, charged

pions, and charged kaons will decay via the weak force once stopped,
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each producing a characteristic signature in the detector. The decay chain

differs depending on the charge of the particle. Positive muons will decay

promptly to a Michel electron, while negatively charged muons will capture

on argon and decay to an electron only ∼3/4 of the time. The resulting

decay electron, referred to as a “Michel” electron, has an energy of up to

half the muon mass and appears in the TPC as a secondary particle track

branching from the muon end point (as can be seen in the left-most image

of Fig. 7.4). When charged pions come to rest, they will decay promptly

to a muon which subsequently follows the decay chain described above.

The decay muon is produced with a small kinetic energy of mπ −mμ ∼ 35

MeV, making it hard to detect and causing the pion-decay and muon-decay

topologies to resemble each other. Finally, charged kaons can follow several

possible decay modes. The most common (64% branching ratio) is to a

muon and νμ. This decay path leads to a characteristic topology in the

detector with a three-track segment of K → μ → e where the muon has a

fixed energy of mK −mμ which can be leveraged for kaon identification.

7.2.1.3 Propagation of neutrons

Neutrons are an important final-state particle in neutrino interactions

yet are largely invisible in liquid argon. Their large interaction length

often causes them to escape the detector entirely. This makes neutrons

one of the main contributors to bias and uncertainty in neutrino energy

reconstruction. When neutrons interact in the argon, they do so through

neutron capture or inelastic scattering. Both processes lead to final-state

low-energy photons, producing isolated point-like activity in the detector

which rarely spans more than one wire on the TPC. These signatures can

help determine the presence of neutrons but are not adequate for measuring

their energy or direction. Higher energy inelastic scatters on argon can lead

to final-state particles from the struck nucleus exiting with considerable

energy, often producing visible protons. For the study of O(0.1 − 10) GeV

neutrinos, the primary efforts tied to the measurement of neutrons are

focused on identifying their presence in a neutrino interaction in order to

improve neutrino energy reconstruction.

7.2.2 Signal formation in LArTPCs

As charged particles traverse the argon, their passage induces local

perturbations to the electric field which transfer energy from the particle to

electrons orbiting the argon nucleus. These electrons will either completely
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Figure 7.8. Ionization and excitation signal formation by the passage of a charged
particle in liquid argon.

disassociate from the atom, leading to free electrons, or will reach a

higher energy orbital, leading to an excitation which de-excites producing

scintillation photons. One of the features which makes argon an ideal

detector medium is the high yield for both signals, which are produced in

roughly equal amounts. Roughly 40,000 scintillation photons and ionization

electrons are liberated for every MeV of energy deposited. Figure 7.8 shows

a schematic of the processes and ionization and excitation, and how these

two paths are interconnected.

We describe the specific features of both signatures individually. Since

the production of the two signatures is interconnected, we come back

and discuss their interplay through the effect of ion recombination which

influences particle identification and calorimetric measurements.

7.2.2.1 Ionization charge

Ionization electrons are freed from their orbit as a consequence of the

passage of a nearby energetic charged particle. The average energy

expended per ion pair, referred to as W , determines the number of free

electrons produced per amount of energy deposited. For liquid argon, this

quantity is 23.6+0.5
−0.3 eV [30]. Given the ∼0.5 MeV of energy deposited by

a particle on a single wire in a TPC, this leads to electron clouds of ∼104
electrons drifting toward each wire. Ionization electrons produced in the
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detector can have O(eV) of energy but quickly thermalize to energies of a

fraction of an eV as a consequence of random collisions with nearby argon

atoms [31]. How these electrons behave next is complicated by the busy

environment in which they find themselves: a sea of positive (Ar+) and

negative (e) ions which together cause an effect known as ion recombination,

which is discussed in Section 7.2.2.3. The propagation of free electrons

across the detector is discussed in Section 7.3.1.

7.2.2.2 Scintillation light

Excited argon atoms rapidly combine with a ground-state argon atom to

form excited dimer Rydberg states: an Ar∗2 core with a bound, shared

electron. Two different excitation states are populated, referred to as the

“singlet” and “triplet”, which get their name from how the spin of the

electron and argon dimer are coupled. Both states de-excite to produce

photons in the Visible Ultra-Violet (VUV) spectrum in a narrow wavelength

range centered at 128 nm. The singlet and triplet excimers have significantly

different lifetimes of 6 ns (“fast”, or “prompt”) and ∼1.3 μs (“late-light”),

respectively, leading to two components in the scintillation light response.

The ratio of scintillation photons produced via the singlet vs. triplet decay

is roughly 1:3, though this ratio is dependent on the particle species and

local electric field. The total light yield for scintillation light in argon

is ∼40, 000 γ/MeV [32], though again this quantity is dependent on the

local environment and particle species, as become apparent in the following

section describing ion recombination.

7.2.2.3 Ion recombination and impact on charge and light

Ionization electrons are surrounded by their positively charged argon ion

counterparts. The positive attraction between the Ar+ and e− ions will

cause them to recombine, an effect referred to as “ion recombination”. The

amount of electrons which will recombine with nearby positively charged ion

atoms is a function of two key parameters: the local density of ions and the

amount of time the electrons and Ar+ are in close proximity. Ion density

is proportional to the energy lost by the ionizing particle, dE/dx. How

quickly ionization electrons will drift away from the positive ions instead

depends on the strength of the external electric field E applied in the TPC.

Recombination, denoted as R, is therefore expressed as a function of these

two macroscopic observables, R(dE/dx,E).
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Ion recombination has two key consequences for LArTPC particle

detection. First, ion recombination leads to a nonlinear relation between

deposited energy and observable charge. This is due to the larger amount

of recombination (and therefore larger fractional charge quenching) which

takes place for larger local energy deposition, where a higher density of

ions leads to an increased probability of electrons recombining. The second

key impact is to closely link ionization and scintillation signatures. As

electrons recombine with positively charged ions, they do so forming excited

states which in turn produce scintillation photons. The charge quenching

caused by recombination thus leads to an increase in scintillation light.

This leads to an anti-correlation between the yield of ionization electrons

and scintillation photons. For a sense of scale, minimally ionizing muons

(dE/dx ∼ 2.1 MeV/cm) observe charge quenching of 30–50%, while for

highly ionizing particles such as protons in the Bragg peak, the amount of

charge quenching can reach 80% or more. Two detailed studies and most

widely used parametrizations for ion recombination were produced by the

ICARUS [33] and ArgoNeuT [34] experiments.

7.3 LArTPC Signal Propagation

Argon is transparent to its own scintillation light and ionization charge,

making it an excellent detector target for signal transport over the large

volumes necessary to observe neutrino interactions with high statistics.

Ionization charge drifts uniformly under the influence of the TPC’s electric

field producing a 3D map which faithfully tracks the trajectory of charged

particles in the detector, while scintillation photons propagate isotropically

from their point of origin. This section focuses on describing the details of

how ionization electrons and scintillation photons propagate through the

argon to reach their respective sensors.

7.3.1 Ionization charge transport

Once ionized, electrons begin to drift under the influence of the external

TPC electric field. While this causes electrons to accelerate in the direction

opposite the electric field, the intrinsic thermal motion of the electrons, and

their constant collision with nearby argon atoms, leads them to quickly

reach terminal velocity and drift at a uniform speed. The drift velocity

grows logarithmically with increasing E-field strength. The relatively slow

drift velocity causes ionization charge to take O (ms) to drift over O (m)
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Figure 7.9. Detector effects that impact the propagation and transport of ionization
charge across the TPC.

scales. This has significant impact on the design of electronics and DAQ

systems which must record charge from the TPC for this timescale to fully

image interactions and can lead to pile-up of interactions, such as coincident

cosmic rays. During this relatively slow journey across the detector, several

factors can interfere with the propagation of free electrons. Quenching due

to electronegative impurities, diffusion of ionization clouds, and distortions

due to “Space-Charge” effects are all described next. Figure 7.9 illustrates

the detector effects that impact the propagation and transport of ionization

charge across the TPC.

7.3.1.1 Charge quenching due to impurities

Electronegative impurities in the argon attract the drifting electrons,

quenching the charge signal. The rate at which electrons are absorbed is

directly proportional to the impurity concentration. Water and oxygen,

natural contaminants in argon, are the primary contributors to charge

quenching. With concentrations at the part-per-billion (ppb) level, the

attenuation length of ionization electrons becomes of order meters. Limiting

the amount of impurities in the argon is therefore essential in order to

operate LArTPC detectors with meter-scale drift lengths. Achieving high
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argon purity was one of the key technological developments that has enabled

the LArTPC technology to mature into a viable detection method for

neutrino experiments. Charge quenching leads to a non-uniform detector

response, due to the exponential suppression of ionization charge as a

function of depth in the TPC (along the direction of the TPC’s electric

field). If impurity concentrations are too high, charge signals will fade away

and not be detected on the TPC wires. Significant effort has gone into

achieving high-purity through advances in engineering of the cryogenic re-

circulation and purification systems for LArTPC. Figure 7.10 from Ref. [35]

shows the measured water and oxygen concentration in the MicroBooNE

cryostat during detector commissioning as a function of time after initiating

argon filtration. While water and oxygen have the largest impact due to

their relatively larger concentrations, other contaminants can quench argon

signals. A review and assessment of the impact on electron attenuation due

to different contaminants can be found in Ref. [36].

Figure 7.10. Concentration of water and oxygen in the MicroBooNE cryostat as a
function of days since filtration of the argon. The detector reaches concentrations at
or below one part per billion, enabling high electron lifetime and therefore high signal
transparency across the TPC volume.

Source: Figure from Ref. [35].
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7.3.1.2 Ion diffusion

The collisions occurring on a microscopic scale between drifting electrons

and argon atoms lead to a broadening of the electron clouds produced

by ionization. Diffusion affects aspects of detector performance tied to

position resolution, peak amplitude (impacting detection thresholds), and

the optimization of aspects of TPC readout, such as sampling frequency

and electronics shaping response. Furthermore, diffusion can affect calcula-

tions of charge-sharing across TPC wires [37, 38], impacting calibrations.

Macroscopically, diffusion leads to the broadening of electron clouds of

one micron after a propagating over a drift distance of 1m. The exact

magnitude is different in the component along the direction of the electron

drift (longitudinal, DL) and that perpendicular to it (transverse, DT ) and

is impacted by the strength of the local electric field. Diffusion is quantified

as the spread in an electron cloud in cm2/s. Measurements are typically

performed for DL, with values in the 4–6 cm2/s range [39–41]. Values of

the transverse diffusion DT are typically slightly larger and also depend on

the value of the local electric field.

7.3.1.3 Space charge effect

Positive argon ions drift as well, though much more slowly than their

electron counterparts. In surface LArTPCs, a large steady-state rate of

ionization from cosmic rays leads to a build-up of positively charged Ar

ions in the detector, which in turn distorts the electric field in the TPC,

causing what is referred to as the space charge effect (SCE). SCE in a TPC

has the same effect as atmospheric aberration for telescopes: by causing

local distortions in the TPC’s uniform electric field, it bends the otherwise

straight trajectory of drifting electrons. Uncorrected, it leads to a distortion

of the reconstructed 3D charge map for ionization taking place in the TPC.

Figure 7.11 shows the impact of this effect in the MicroBooNE detector:

dotted lines represent the actual detector boundaries in the drift (x) and

vertical (y) coordinates, while the scatter points are the start and end-

point of reconstructed cosmic-ray tracks in the detector before any SCE

corrections are applied. The large differences between the two, particularly

close to the cathode plane (right boundary in the figure), are a consequence

of the deflection of ionization drift due to positive ions.

Positively charged ions tend to build up near the TPC cathode, where

distortions are greatest. The varying electric field further impacts detector

response by impacting the amount of ion recombination (see Section 7.2.2.3)
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Figure 7.11. Effect of SCE as seen in MicroBooNE.

Source: Figure from Ref. [42].

and therefore the charge and light yield. The magnitudes of SCE distortions

are both dependent on the position within the detector and on the rate

of positive ion build-up in the detector. This second quantity depends

primarily on the steady-state rate of ionizing radiation to which the detector

is exposed: more ionization leads to a larger SCE effect. This means that

detectors operating on the surface will be impacted by a significantly larger

SCE effect than those underground. Quantitative studies of SCE effects

have been carried out with the ICARUS [43], MicroBooNE [42, 44], and

protoDUNE [10] detectors. What is a macroscopic offset of O(1-10) cm on

the surface becomes a negligible effect underground, where the cosmic-ray

rate is suppressed by several orders of magnitude.

7.3.2 Scintillation light propagation

The fact that argon is transparent to its own 128 nm scintillation photons

means that to first-order photons collected as a function of distance from

the production point follow a 1/r2 dependence. Rayleigh scattering and

attenuation due to impurities impact the total amount of light collected

and cause to deviate from this relationship. These two effects are described

next.

7.3.2.1 Rayleigh scattering

Rayleigh scattering describes elastic scattering of light on particles of

wavelength smaller than that of the incident photon. The Rayleigh
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scattering rate is proportional to 1/λ4 and therefore has a strong

dependence on the photon wavelength. Recent measurements [10, 45] of

the Rayleigh scattering length on argon report a value of ∼90–100 cm.

These measurements are complicated by the fact that detector volumes for

existing LArTPCs are of similar scale to the scattering length itself, and

numerous effects can contribute to impacts that mimic that of scattering.

The primary impact Rayleigh scattering has on detecting scintillation

photons is to modify the simple 1/r2 dependence expected on the number

of photons observed as a function of distance and direction from their

production location. Rayleigh scattering also directly impacts the group

velocity of photons traveling in argon, with a measured value from Ref. [45]

of 13.4 ± 0.1 cm/ns. In this context, doping of argon with Xenon has been

proposed as a way to mitigate the impact of Rayleigh scattering over large

volumes due to the larger emission wavelength of ∼178 nm for xenon.

7.3.2.2 Light attenuation

Impurities in the argon can quench scintillation photons. Nitrogen, a

contaminant found at the part-per-million level, has the largest impact,

quenching scintillation light by “stealing” the shared electron from excited

argon dimers. The very fast decay timescale of the singlet state leaves

it almost completely unaffected by nitrogen contaminants, which instead

compete with the de-excitation of the longer-lived (1.3 μs) triplet state.

Quenching of the triplet excited state causes, in addition to an overall

decreased light yield, a reduction of the effective late-light time constant.

This in turns impacts the use of scintillation light for pulse-shape discrim-

ination and other application of timing obtained from scintillation light.

7.4 LArTPC Signal Detection

Once drifting electrons and scintillation photons have reached the edges of

the detector, they are detected by charge and light sensors, respectively. In

this section, we describe the methods and hardware used to record these

two signatures.

7.4.1 Ionization charge detection

The method employed to measure the ionization signature of an LArTPC

traditionally relies on wire sensors. More recently, pixel-based detectors

have been proposed and successfully operated. We discuss largely
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wire-based readout, which has been used in LArTPC detectors for many

decades. While the core detection principle is the same, details tied

to hardware and operations of pixel-based detectors can be found in

Refs. [46, 47].

A wire-based TPC must be able to produce multiple signatures for

the same cloud of ionization electrons on different wire planes in order to

recover the 3D position of the energy deposition. To achieve this, wires are

arranged in distinct planes at different orientations. Each plane is operated

at a specific voltage in order to allow clouds of electrons to drift past the

first wire planes, while still inducing a detectable signal, finally causing

the charge to collect on the last, “collection” plane. The left panel of

Fig. 7.12 shows a top-down view of the MicroBooNE detector with different

wires denoted as dots arranged on three planes. The field lines followed by

ionization electrons converge on the bottom (collection) plane. The image

on the right shows the induced signature (top and middle) and collected

charge (bottom) caused by the same cloud of ionization electrons. The

time-coincidence of these signals, together with knowledge of the geometric

location of the wires, allows us to recover the 3D coordinates of the energy

deposited. The need for distinct wire planes comes with significant design

challenges tied to achieving full transparency through the application of

appropriate bias voltages on the three wire planes. This in turn motivates a

Figure 7.12. Wire geometry and simulated trajectory of drifting electrons for the
MicroBooNE TPC wire plane.

Source: Figure from Ref. [48].
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Figure 7.13. Left: Temperature dependence of TPC noise with cold electronics from
MicroBooNE [51]. Right: Signal-to-noise measured in protoDUNE data [11].

detailed understanding of the field response which causes the induced and

collected signals. Extensive details on this topic are provided in references

on TPC signal processing from the MicroBooNE collaboration [48, 49].

The ability to effectively operate the TPC depends on achieving

sufficient signal-to-noise to detect drift electrons. The development of

low-power cold electronics for TPC wire readout [50] have enabled further

noise suppression that has brought noise levels in TPCs to the few-hundred

electrons in Equivalent Noise Charge (ENC). Figure 7.13 (left) shows the

noise dependence on temperature for MicroBooNE’s TPC collection plane

wires, indicating the significant reduction at LAr temperatures. The right

panel of Fig. 7.13 shows the signal-to-noise for ionization in protoDUNE

measured on all three wire-planes. Signal-to-noise levels of ∼40 are achieved

for minimally ionizing muons on the collection plane.

7.4.2 Scintillation light detection

Detecting scintillation light photons produced in argon requires being

sensitive to their 128nm wavelength. Wavelength shifters are used to

convert the 128 nm photons to photons of longer wavelength which can be

detected by PMTs or SiPMs. TetraPhenyl-Butadiene (TPB) is an organic

scintillator molecule which efficiently absorbs VUV photons re-emitting

them with a wavelength of ∼400–500 nm, a range that allows them to pen-

etrate the glass surrounding a PMT and undergo photoelectric conversion

on the photocathode. Other wavelength shifters are also available, and a

review of LAr scintillation light wavelength shifters is available in Ref. [52].

Integrating the TPB wavelength shifter in LAr detector design has been

achieved through multiple methods, including coating directly the PMT’s
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glass surface, placing a TPB-coated plate directly in front of the PMT [8],

or coating the detector surface [53]. In coincidence with development of PD

systems for the DUNE experiments, further solutions for LAr scintillation

detection have been designed. In particular, the ARAPUCA [54,55] concept

acts as a light trap through the use of a dichroic filter and leads to two

wavelength shifting stages: the first to allow photons to enter the detector

and the second to trap them in the scintillator strip. Since the ARAPUCA

concept was introduced, this detector technology has expanded in several

directions and is being deployed in detectors such as protoDUNE [10]

SBND, and the DUNE Vertical Drift technology [56]. Increasing the light

yield is also achieved through the installation of wavelength-shifting and/or

reflective surfaces on the inner walls of the TPC. This solution was

employed by the WarP [53] detector and is being implemented in the SBND

TPC, where it will provide high light yield of O(100) PE/MeV uniformly

across the TPC volume, countering the 1/r2 dependence typically seen for

scintillation signals due to the asymmetric positioning of light sensors in

the cryostat.

7.4.3 Auxiliary detectors

LArTPC detectors are sometimes accompanied by external Cosmic Ray

Taggers (CRTs) which consist of scintillator strips mounted externally to

the detector’s cryostat and are leveraged to identify coincident cosmic-ray

particles which traverse the detector volume. CRTs such as those described

in Refs. [57, 58] are primarily used to form anti-coincidences for vetoing

cosmic-ray activity that may mimic neutrino interactions.

7.5 Operation, Performance, and Calibration of

Liquid Argon Neutrino Detectors

Achieving stable operation of large-scale LArTPC detectors has been a

major technological milestone that has enabled the technology to produce

high-quality physics results and set the stage for decade-long operation of

detectors, such as DUNE. A significant component of LArTPC operations

is the need to operate a reliable cryogenic infrastructure to circulate,

replenish, and purity the LAr inside the detector cryostat. While not

discussed in this chapter, Refs. [5, 8, 23, 59] provide valuable information

on the topic.

One of the advantages of the LArTPC technology is the ability to not

only image particle interactions with high resolution but also provide the
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detailed calorimetry necessary for quantitative measurements of particle

kinematics. For modern experiments, this inevitably requires having access

to efficient and accurate reconstruction and calibration techniques which

are able to process and interpret data in an automated way, providing

reconstructed particle kinematics on an event-by-event basis to be used

to develop event selections and carry out physics measurements. This is

particularly true for neutrino experiments which aim to study complex

particle interactions where the final-state observables vary both in particle

species and kinematics. Having established the successful operation of

LArTPC detectors and their ability to collect rich datasets of neutrino

interactions, it is important to discuss the technological challenge of

leveraging these data for precise neutrino measurements with sophisticated

pattern recognition and analysis tools. Furthermore, it is worth highlighting

the significant progress made in recent developments in reconstruction and

analysis methods for LArTPC detectors. Due to these reasons, we dedicate

this section to reviewing the status and progress in the calibration and

analysis of LArTPC datasets.

7.5.1 LArTPC reconstruction

Converting the raw signals obtained from an LAr neutrino detector into

quantitative measurements of particle kinematics for use in physics analyses

is a task that falls under the name of “event reconstruction”. This is a

fundamental operation without which the quality of the data obtained from

the detector cannot be put to use for quantitative physics measurements.

This operation needs to be performed in an automated way, through

computing tools that can be run at-scale over millions of events and are

reproducible. Significant progress has been made to deliver high-quality

reconstruction methods for LArTPC detectors. Contributions from the

ICARUS, ArgoNeuT, MicroBooNE, and protoDUNE experiments have,

in different phases, spearheaded the publication of physics results with

LArTPC data. We briefly discuss the major components in LArTPC event

reconstruction for LArTPC detectors.

7.5.1.1 Signal processing and hit finding

Converting signals recorded on individual wires (or pixels for pixel-based

LArTPC detectors) into measurements of charge deposition is the first step

in most reconstruction workflows. This operation takes several forms but

often starts with an initial signal processing stage which is responsible
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for filtering TPC electronics noise and applying signal deconvolution to

correct for the impact of electronics response on signals induced by drifting

electrons. The outcome of this process is a measurement of the amount

and arrival time of charge for each recorded energy deposit on a wire.

While these tasks are not new to LArTPC reconstruction, they have been

significantly expanded in recent years. Reference [60] discusses the noise-

filtering techniques utilized both in hardware and offline analysis, which

lead to achieving signal-to-noise of up to 50-to-1 on the collection plane.

References [48, 49] describe the signal processing developed to reconstruct

signals from raw waveforms. Of note is the innovative 2D deconvolution

methods implemented to account for angle-dependence in wire response

and the impact of charge-sharing across wires, which when incorporated in

the deconvolution procedure provide a more uniform detector response and

higher signal efficiency for tracks oriented with a large pitch with respect

to the wire plane. Figure 7.14 shows the impact of 2D deconvolution on

(a) (b) (c)

Figure 7.14. Two-dimensional deconvolution applied to a MicroBooNE neutrino inter-
action candidate. The sharpness of the tracks originating from the neutrino interaction
vertex (at coordinates 20 mm, 300 μs) is significantly improved in the 2D deconvolution
method (right panel) with respect to a 1D approach (center). This can be seen clearly
in the tracks that are aligned with the vertical coordinate in the image.

Source: Figure from Ref. [48].
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signal from a neutrino interaction candidate recorded with the MicroBooNE

LArTPC. Charge measurements on each plane, often referred to as “hits”,

need to then be correlated across planes to produce 3D patterns of energy

deposition. This is achieved by relying on the geometric overlap of wire

planes and charge-matching deposits of equal charge on different wire

planes. Different reconstruction paradigms perform the transition from 2D

to 3D differently, and several workflows which employ image-like pattern

recognition through machine learning techniques rely directly on wire

images as input to tracking and PID algorithms.

7.5.1.2 Tracking and particle flow reconstruction

Given the measured energy deposits in the TPC, reconstruction algorithms

are next tasked with isolating individual interactions taking place in the

detector. For surface detectors, where the large rate of external cosmic-

ray interactions leads to “busy” events, this can be a fairly complex task.

An example event from the MicroBooNE detector is shown in Fig. 7.15,

where dozens of cosmic-ray interactions pile up on top of a single neutrino

interaction, shown in the zoomed in panel. The image gives a sense of

the reconstruction complexity involved. The individual particles making

up each interaction need to be isolated and tracked. These tasks are

Figure 7.15. Collection-plane view of an event recorded by MicroBooNE. The event
is filled with cosmic-ray interactions which reach the detector during the TPC’s O(ms)
drift window. The single beam neutrino interaction in the event is isolated in the zoom-in
panel.



240 Instrumentation and Techniques in High Energy Physics

achieved through the employment of multi-algorithm chains which leverage

the position and charge map of energy deposits to identify particle tracks

and their parentage relationship. Comprehensive reconstruction toolkits

such as Pandora [61, 62] and Wire-Cell [63, 64] offer fully automated

reconstruction with tracking and particle-flow reconstruction for generic

neutrino and cosmic-ray interactions. Machine learning techniques have also

been developed to leverage the image-like quality of LArTPC data for the

purpose of event reconstruction. Details on such methods are documented

in Refs. [65–71].

7.5.1.3 Cosmic rejection and charge-to-light matching

Surface LArTPC detectors suffer from a high rate of cosmic-ray activity

which swamps neutrino signals, in part due to the slow TPC readout.

Even for events where a neutrino interaction occurs in the detector, O(10)
cosmic-ray interactions pile-up on the neutrino image, requiring tools that

are capable of identifying and isolating the TPC charge deposited by

the neutrino interaction. This task is referred to as “flash-matching”,

or “charge-to-light” matching. Leveraging the prompt scintillation light-

signature in-time with the beam, flash-matching identifies the interaction

in the TPC that is compatible with the observed scintillation light signal.

This is achieved by comparing the geometric pattern of scintillation light

recorded in the detector to the light that is predicted to hit each photosensor

based on the spatial charge distribution. This matching leverages the

absolute charge and position-dependence collected with both the PDS and

TPC systems and is capable of reducing cosmic-ray backgrounds from

signal-to-background levels of 1 : 100 to 1 : 1 or better [72, 73]. Figure 7.16

shows how this operation takes place. The left panel shows a side view of

the MicroBooNE TPC with the PMT positions denoted by circles. The

Figure 7.16. Flash matching illustrations from Refs. [72, 73].
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elongated splash in the image is a candidate νe interaction reconstructed

with TPC information. The circles within the TPC rectangle indicate the

number of photoelectrons recorded by the PMT array in-time with the

neutrino beam, while the circles below the TPC represent the expected

light predicted based on the observed charge recorded by the TPC. The

good match between them indicates that the TPC interaction is consistent

with having occurred in-time with the beam. The image on the right shows

an analogous quantitative study comparing the spectrum of photoelectrons

recorded on the PMT array (solid line) to the predicted number of photons

based on the pattern of charge from two different TPC interactions: one of

them clearly matches, while the other can be rejected.

7.5.1.4 Calorimetry, particle kinematics measurements,

and particle ID

Once individual particle tracks are reconstructed in the TPC, their

kinematics (momentum and direction) and particle species are recon-

structed leveraging the TPC’s spatial and calorimetric information. Particle

ID first aims to determine the track-like or shower-like nature, which

typically separates track-like μ, p, π+/−, and K from shower-like e and

γ particles. Within track-like particles, calorimetric PID algorithms make

use of the dE/dx vs. residual range profile characteristic of each particle

to determine the particle species. Figure 7.17 shows the characteristic

separation in energy-loss profile for protons and muons. For contained

tracks, compatibility with the expectation for each particle species (given by

the solid theoretical lines superimposed on the figure) allows us to provide

accurate PID. Electron–photon separation is a task that was introduced

in Section 7.2.1.1 and leverages two key features: the “gap” between an

interaction vertex (when visible) and the start of the EM shower which

is present for photons but not for electrons, and the energy loss at the

shower trunk, which for photons which pair convert is twice as large as for

electron showers. Figure 7.6 shows an example of this second, calorimetric

classification method.

While LArTPCs provides excellent PID capabilities, charge sign deter-

mination is a task that is not performed on a particle-by-particle basis in

LArTPCs given the lack of an external magnetic field.

Once the particle species is determined, a measurement of its kinematics

follows. For track-like particles (muons, protons, and pions) which come

to stop in the detector, their momentum is typically estimated by range,
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Figure 7.17. Muon and proton dE/dx profile vs. residual range from protoDUNE [10].
The grayscale histogram shows measured energy loss as a function of residual range for
proton and muon candidates. The population with larger dE/dx values is associated with
protons which ionize more heavily. The difference in energy loss profile between different
particle species allows for precise particle ID in LArTPC detectors.

leveraging the strong correlation between track length and momentum.

This method gives an energy resolution of a few percent for protons and

muons. While the method works well for charged pions as well, their

higher probability of re-interacting makes a momentum determination more

difficult to obtain reliably. The effect of Multiple Coulomb Scattering

(MCS) is used for energy estimation for uncontained muons. MCS leverages

the correlation between a muon’s energy and the average angular deflection

due to Coulomb scattering to measure the muon energy with an accuracy

of ∼20%. This method, employed through the use of a likelihood and

demonstrated in both the ICARUS [74] and MicroBooNE [75] experiments,

proves reliable up to O(1) GeV energies, at which point the scattering

amplitudes become comparable with the detector’s angular resolution.

For EM showers from electrons and photons, energy reconstruction is

calculated calorimetrically by integrating the visible charge deposited in the

TPC. This method, which requires careful considerations tied to absolute

energy scale calibration, including the impact of ion recombination on

EM showers, achieves performance which ranges in the 10–20% resolution.

Importantly, the method is often limited by reconstruction inefficiencies in

fully collecting charge produced by the EM shower which either falls below



Instrumentation and Techniques in High Energy Physics 243

hit-reconstruction thresholds or is incorrectly missed by charge-clustering

algorithms. This inefficiency also leads to a need for corrections to any

potential bias in determining the shower energy, which lead to an under-

estimation of the shower energy if left uncorrected. Extensive details on

EM shower energy-scale reconstruction and calibrations can be found in

Refs. [27, 76–79].

7.5.1.5 Machine learning in LArTPC reconstruction

Machine Learning (ML) and Artificial Intelligence (AI) have become

integral components of data analysis in high energy physics. The devel-

opment of reconstruction tools based on ML methods has in particular

leveraged the image-like features of LArTPC datasets. These methods often

rely on the use of deep or sparse neural networks which have found broad

application in AI and computing beyond physics. Tasks such as neutrino

identification [80,81], pixel-based particle ID [82,83], and reconstruction [84]

are all rapidly making significant advances in reconstruction capabilities

and being deployed in physics measurements [20].

7.5.2 Detector calibrations

Calibrating for the multiple effects which impact charge and light signals

described earlier in this chapter requires significant effort. Several strategies

and sources are leveraged to perform calibrations of different signals. Intrin-

sic sources of energy loss provide valuable samples for detector calibration.

In particular, surface LArTPCs can leverage a uniform and steady-state

rate of cosmic-ray muons for relative position-dependent and absolute

energy-scale calibrations. Samples of both neutrino and cosmic-ray induced

particles often leveraged include π0 → γγ decays and Michel electrons for

EM shower energy-scale calibrations, as well as stopping protons and muons

for absolute energy-scale and ion recombination calibrations. Figure 7.18

shows the reconstructed invariant mass from diphotons coming from π0

candidates. The kinematics of the π0 decay allow us to recover the π0 mass

and provide a valuable way to validate and calibrate EM shower energy-

scale reconstruction.

In addition to this “free” calibration source, several detector subsystems

and components are installed to provide additional tools intended to meet

particular calibration challenges. Ionizing lasers such as that described in

Ref. [85], which produce continuous track-like segments of ionization in

the TPC, are used to map out the electric field in the TPC and calibrate
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Figure 7.18. Reconstructed invariant diphoton mass from π0 candidates.

Source: Figure from MicroBooNE [19].

effects such as SCE. Scintillation light LED calibration systems such as

those described in Refs. [10, 86] also help complement natural sources of

photons.

Calibrations for scintillation light signatures have been developed by

several experimental collaborations leveraging either test-beam facilities

(protoDUNE [11] and LArIAT [87]) or leveraging cosmogenic muons and

protons as in the case of MicroBooNE [88,89].

Calibration of the TPC response to ionization is critical in order to

obtain accurate calorimetric measurements necessary for PID and particle

kinematics measurements. Calibrations that cover relative distortions in the

charge response across the TPC volume need to account for multiple effects,

including dependence on the local wire response, quenching due to impu-

rities, and SCE distortions. Absolute energy-scale calibrations responsible

for converting measured currents on the wires into total energy deposited

are instead primarily impacted by electronics gain and ion recombination.

While multiple calibration techniques are employed to measure each effect

independently, they are often integrated in a comprehensive calibration

strategy, described in Ref. [90] for the MicroBooNE experiment and Ref. [10]

for protoDUNE. A comprehensive review of these methods is presented in

Ref. [91]. The calibration of EM showers poses specific challenges tied to

the topology of shower propagation in liquid argon. This is in part due

to the lossy nature of EM shower energy reconstruction, which relies on
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calorimetric charge measurements but may suffer from charge falling below

threshold or reconstruction inefficiencies. The importance of EM shower

energy-scale calibrations is paramount to both the ν oscillation program

searching for νμ → νe signatures with electron showers in the final state

as well as BSM searches in the sub-GeV regime which often include EM

shower final states. The topic of EM shower calibrations in LArTPCs is

discussed in several articles, including Refs. [27, 76–79].
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8.1 Introduction

This chapter describes the Cherenkov neutrino detectors used in

high-energy “high-E” (above about 0.1 GeV) physics experiments.

These experiments include atmospheric neutrino oscillation measurements,

nucleon decay searches (atmospheric neutrinos are the background), long

baseline beam neutrino oscillation measurements, astrophysical neutrino

searches, and so on. Each section also briefly mentions differences from

low-energy “Low-E” (�100MeV) physics measurements such as solar and

supernova neutrinos.

We can only detect the presence of a neutrino if it interacts with the

detector material. Neutrinos interact in two ways: charged-current (CC)

interactions and neutral-current (NC) interactions. In CC interactions, the

neutrino converts into the equivalent charged lepton (e.g., νe+n→ e−+p)

and the experiments detect the charged lepton, as well as any other charged

particles which emit Cherenkov light. In NC interactions, the neutrino

remains a neutrino and we detect the other particles produced by the

interaction.
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In principle, CC interactions are easier to work with because electrons

and muons have characteristic signatures in the Cherenkov detectors and

are thus fairly easy to identify. Tau neutrinos are more difficult to identify

for two reasons. Since the tau is more massive, the energy thresholds for

the CC tau production (3.5GeV) and the Cherenkov radiation of the tau

lepton (2.7GeV) are much higher. Also, the tau is extremely short-lived

and therefore does not travel far enough to emit much Cherenkov light

(cτ ∼ 9× 10−5 m).

Since neutrinos only weakly interact with matter, neutrino detectors

must be generally very large to detect a significant number of events. The

combination of a transparent medium such as water with photomultiplier

tubes (PMTs) as light sensors is beneficial for achieving a large effective

volume at a low cost. Such a medium serves as a target for neutrino

interactions and is well suited for propagating Cherenkov light from

charged final-state particles and energetic photons. PMTs are chosen

with wavelength sensitivity overlapping with the produced Cherenkov

spectrum. A water purification system can remove radioactive substances

and impurities and constantly circulate ultrapure water in the tank. The

detectors are often built underground to isolate the detector from cosmic

rays. In addition, detectors outside the main detector absorb or discriminate

against incoming background particles from outside.

In order to extract as much information from each event as possible,

the detector should have the following: good angular resolution so that

the direction of the particle can be accurately reconstructed; good particle

identification, allowing particle discrimination; good energy measurement

so that the energy can be reconstructed; good time resolution so that the

time evolution of transient signals can be studied; and so on.

In Section 8.2, the principle of the Cherenkov detector is explained

using the Super-Kamiokande (Super-K or SK) detector [1–4]. SK is the

world’s largest water tank Cherenkov neutrino detector. This is the

second-generation detector, with more mature experimental techniques

than the first-generation IMB/Kamiokande detectors [5–7]. Since water

Cherenkov detectors have a relatively sparsely instrumented readout per

detector mass, using only PMTs to view a large active water volume,

software for event reconstruction is very important. For this reason, the

Appendix details how to reconstruct the events by software programs

in SK. Section 8.3 summarizes past and present Cherenkov detectors.

Section 8.4 presents the instrumentation and techniques of the hardware

used in SK. Calibrating the detector is necessary and important for good

physics results, so we explain this in Section 8.5. Some future prospects
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with reference to next-generation experiments are discussed in Section 8.6.

Finally, the achievements of Cherenkov neutrino detectors are summarized

in Section 8.7.

8.2 Principle of Cherenkov Detectors

8.2.1 Cherenkov radiation

Water has a refractive index of 1.33 for visible light wavelengths, so light

in water travels at 0.75c. Particles aren’t affected by the refractive index,

so a particle traveling at almost the speed of light through water will be

traveling faster than the local speed of light in that medium. As an aircraft

traveling faster than the speed of sound emits a sonic boom, similarly, a

particle traveling through a transparent medium faster than the speed of

light in that medium emits a kind of “light boom,” a coherent cone of blue

light known as Cherenkov radiation [8].

Figure 8.1 shows the geometry of Cherenkov radiation. The charged

particle is traveling left to right at speed βc through a medium with

Figure 8.1. The geometry of Cherenkov radiation. From the left, a charged particle
propagates, polarizing atoms and molecules around it. These atoms and molecules emit
electromagnetic radiation, which propagates outward from each point along the track as
a spherical wave. The wavefronts form a forward-propagating cone. The horizontal arrow
is the velocity (v) of the charged particle, β is v/c, and n is the refractive index of the
medium. The diagonal arrows show the direction of the radiation.

Source: Wikipedia.
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refractive index n. The Cherenkov cone has half-angle θ given by

cos θ =
1

nβ
(8.1)

To emit Cherenkov light, β must be above 1/n (cos θ must be less than 1).

The energy threshold above which Cherenkov radiation is emitted is 0.8

MeV for an electron, 160MeV for a muon, and 2.7GeV for a tau. At the

highest speeds (β ∼ 1), the “Cherenkov opening angle” is about 41◦ in

water and the Cherenkov light is radiated almost diagonally.

The spectrum of the Cherenkov light as a function of the wavelength

λ is

dN

dλ
=

2παx

c

(
1− 1

n2β2

)
1

λ2
, (8.2)

where α ≈ 1/137 (fine structure constant) and x is the length of the

charged particle trajectory. A charged particle emits about 400 photons

per centimeter pathlength in water in the wavelength region, 300−700nm,

where photomultiplier tubes (PMTs) are sensitive. Most visible Cherenkov

radiation is in the violet range because of Eq. (8.2).

8.2.2 Cherenkov light detection (overview)

The detector water is contained in a tank lined with PMTs. For each event,

the number of photons and time information for each PMT is recorded

Figure 8.2. Cherenkov light is emitted in a cone shape along the direction of the charged
particle. A tank wall is lined with photosensors (PMTs).

Source: Kamioka Observatory, ICRR, The University of Tokyo.
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(Section 8.5.1.1). The Cherenkov light produced by a charged particle is

reconstructed as a ring of hit PMTs (Fig. 8.2). Cherenkov light is emitted

in a cone shape, surrounding the direction of the charged particle, and

therefore the energy, direction, particle type, and so on are determined

using information obtained from the PMTs, such as the amount of light

detected and the ring shape (see Appendix). By assuming a type of neutrino

interaction (e.g., quasi-elastic scattering), measurements of each charged

particle in the final state can be used to reconstruct the original neutrino

direction, energy, and so on.

Cherenkov light in the medium undergoes repeated wavelength-

dependent absorption and scattering until it reaches the PMT. The

attenuation of light due to absorption and scattering in water is measured

as a function of wavelength (Sections 8.5.1.2 and 8.5.1.3) and is taken into

account in the detector simulation and the event reconstruction for the

physics analyses. For example, as discussed in Section 8.5.1.2, symmetric

Rayleigh scattering is dominant at shorter wavelengths and absorption

is dominant at longer wavelengths. The light transmittance is highest at

around 400nm. SK’s PMT has the maximum quantum efficiency of the pho-

tocathode at about 400 nm [1]. The water transparency in SK is ∼100m at

around 400 nm, while in ice (Section 8.3.1.2) it is a couple of tens of meters.

Muons are leptons with a rest mass of 106 MeV/c2 and a mean lifetime

of 2.2×10−6 s. They have a relatively large mass with respect to that of the

electron (0.511 MeV/c2), and these particles do not participate in the strong

interaction. Muons can penetrate longer distances in water (∼0.5 cm/MeV)

and are less susceptible to radiative energy losses compared to electrons.

Over a broad energy range, the dominant energy loss mechanism is that of

ionization. For example, the track length of a 1 GeV/c muon is about 5m

in water.

High-energy electrons and positrons primarily emit photons as they

traverse the detector medium, a process called bremsstrahlung. Photons

above a few MeV interact with matter primarily via pair production

(an electron–positron pair). These processes (electromagnetic showers)

continue, leading to a cascade of particles of decreasing energy until

photons fall below the pair-production threshold, and electron (positron)

energy losses become dominated by processes other than bremsstrahlung.

Therefore, primary electrons have shorter track lengths than muons of the

initial same energy.

As illustrated in Fig. 8.2, if a charged particle stops before reaching the

surface of the water tank, it emits Cherenkov light at an angle determined

by Eqs. (8.1) and (8.2) and is imaged on the tank surface as a Cherenkov



256 Instrumentation and Techniques in High Energy Physics

light ring. The size and thickness of the Cherenkov ring image on the

tank surface are determined by the distance of the particle vertex to the

surface, particle type, direction, and momentum of the charged particles.

In contrast, if the charged particle penetrates the tank before stopping, it

will result in a Cherenkov light pattern with no holes. See Section 8.4.11 for

the classification of events according to where charged particles are created

and stop.

Muons are basically single particles and make sharp rings, whereas

electrons, positrons, and gamma ray photons initiate electromagnetic

showers and the nearly parallel electrons and positrons in the shower

combine to make a fuzzy ring, as shown in Fig. 8.3. Coulomb scattering

of the electron also contributes to the fuzziness of the ring.

Neutrino interactions can produce mesons such as pions, as well as the

charged lepton. In general, charged pions (a mass of 140MeV/c2 and a

lifetime of 2.6 × 10−8 s) are difficult to distinguish from muons, but they

may be able to be identified by using the properties of hadronic scattering

(A.1.8).

When multiple Cherenkov rings are observed, the direction, particle

type, and momentum are obtained for each ring, as in the case of the

single-ring event. A neutral pion π0 (a mass of 135MeV/c2 and a lifetime

of 8.4 × 10−17 s) immediately decays into two gammas and is detected as

two “electron-like” rings. Figure 8.4 shows a typical reconstructed invariant

mass distribution of the neutral pion events. See Section A.1 for details of

reconstructing the event in the high-E physics analyses.

Tau leptons (a mass of 1.78GeV/c2 and a lifetime of 2.9 × 10−13 s)

produced in CC ντ interactions decay quickly to secondary particles. Due

to the short lifetime of the tau lepton, it is impossible to directly detect taus

in SK. The decay modes of the tau lepton are classified into leptonic and

hadronic decay, based on the secondary particles in the decay. The leptonic

decays produce neutrinos and an electron or a muon. These events look

quite similar to the atmospheric CC νe or νμ background. The hadronic

decays of the tau are dominant and produce one or more pions, plus

a neutrino. The existence of extra pions in the hadronic decays of tau

allows for the separation of the CC ντ signal from CC νμ, CC νe, and NC

background. Multiple-ring events are relatively easy to separate from single-

ring atmospheric neutrino events. However, the multi-ring background

events, resulting from multi-pion/DIS atmospheric neutrino interactions,

are difficult to distinguish from the tau signal. Simple selection criteria

based on kinematic variables do not efficiently identify CC ντ events.
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 8.3 (Continued). The upper and lower displays are a typical muon and an
electron-simulated event, respectively, in SK. In this example, a muon (electron) of about
500MeV/c was created near the center of the tank, which headed toward the barrel wall.
The display shows the expansion of the vertical cylindrical detector (∼40m diameter and
∼40m height). The larger and smaller figures are the inner detector (ID) and the outer
detector (OD), respectively. See Section 8.4 for each detector component. The color dots
visualize which PMTs were hit in the event. The color correspond to the number of
photoelectrons registered at that particular PMT. The timing distribution of the hit
PMTs is shown at the bottom right.

Source: Kamioka Observatory, ICRR, The University of Tokyo.

Figure 8.4. Reconstructed invariant mass distribution of the atmospheric-neutrino-
induced π0 events in the observed data (dot) and simulated atmospheric neutrino samples
(histogram) in SK [9]. Two “electron-like” ring events are selected without any tagged
“Michel electron” (an electron from a muon decay) in the fiducial volume (defined as a
distance from the reconstructed vertex to the nearest inner detector wall is greater than
2m). See Section A.1 for the meaning of each cut parameter.

In order to statistically identify events with the expected characteristics

that differentiate signal and background, a multivariate method is applied

in the SK analysis, based on the reconstructed parameters [10].

The final-state charged particles used in lower-energy “low-

E” (�100MeV) neutrino data analysis are almost exclusively electrons

or gamma rays. For example, for electrons at SK, approximately several

photoelectrons per MeV (pe/MeV) are detected at the PMT. Since more

than 10,000 PMTs (Section 8.4.3) are mounted on the inner detector
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(ID) wall of SK, the number of photoelectrons per PMT for each low-E

neutrino event is typically one. Therefore, unlike for high-E events, low-

E event reconstruction basically does not use PMT charge information

but only PMT hit and time information. The high-E and low-E event

reconstructions, respectively, are detailed in Appendix A. In high-E physics

data analyses, we use events above the energy threshold of several tens of

MeV, so a few MeV radioactivity is not a background.

8.3 Past and Present Cherenkov Detectors

8.3.1 Water Cherenkov experiments

8.3.1.1 Densely instrumented artificial tanks

The pioneering Irvine–Michigan–Brookhaven [5, 7] (IMB, 1982–1991)

and Kamioka Nucleon Decay Experiment [6] (Kamiokande, 1983–1996)

experiments, made famous by their observations of SN 1987A, were

originally conceived as detectors for nucleon decay. Atmospheric neutrinos

are a background for the nucleon decay search as the neutrino interactions

produce charged particles, sometimes kinetically indistinguishable from the

nucleon decay signal.

Super-Kamiokande [1–4] (1996−present) was designed to extend and

improve upon the experience gained by its scientific predecessors, the

Kamiokande and IMB experiments, as well as to detect high-E neutrinos,

search for nucleon decay, study solar and atmospheric neutrinos, and watch

for supernovae in the Milky Way galaxy. As an example, the results of the

discovery of atmospheric neutrino oscillations published in 1998 [11] are

shown in Fig. 8.5. SK has also been used as a far detector for long-baseline

beam neutrino oscillation experiments: K2K [12] (1999–2004) and T2K [13]

(2010−present).
The K2K experiment used a 1-kiloton (1 KT) water Cherenkov neutrino

detector located at about 300m from an aluminum neutrino production

target to determine the neutrino beam characteristics and to measure neu-

trino cross-sections [12,14,15]. This 1KT “near detector” was a scaled-down

version of the 50-kiloton SK “far detector.” The vertical cylindrical tank

(∼11m in diameter and ∼11m in height), the PMT type, the photo-

coverage (40%), the water purification system, the readout electronics,

the event reconstruction algorithms, and the detector calibration methods

were basically the same as those in SK. Having the same detector

technology along the beam line allowed for a significant reduction of
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Figure 8.5. Zenith angle distributions of muon-like and electron-like events for sub-
GeV and multi-GeV datasets [11]. Upward-going particles (longer atmospheric neutrino

travel length) have cosΘ < 0 and downward-going particles (shorter travel length) have
cos Θ > 0. The hatched histogram shows the Monte Carlo expectation. The bold line is
the best-fit expectation for νμ ↔ ντ oscillations. “Partially Contained” is explained in
Section 8.4.11.

detector uncertainties related to the prediction of the neutrino interaction

rate and energy spectrum in SK before the neutrino oscillations. The

detector performance, including the energy reconstruction and particle

identification, was similar to that achieved in high-E analyses at SK. The

1KT detector also provided high statistics measurements of neutrino–water

interactions.

8.3.1.2 Sparsely instrumented natural water (neutrino

telescopes)

A very large volume of natural water can be instrumented with a sparse

array of PMTs dispersed throughout the volume [16–20]. The cone geometry

is not visually apparent but can be reconstructed using the time at which

each hit PMT records its pulse, where the Cherenkov opening angle is

known because these detectors observe only high-E particles. The threshold

of these detectors depends on the spacing of the PMTs and is typically

high (tens or hundreds of GeV). These detectors typically reconstruct

muons, which make a long straight track, much better than electrons,

which deposit all their energy in a fairly small volume and are thus seen by

fewer PMTs.
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The pioneering project for the construction of an underwater neutrino

telescope was developed by the DUMAND collaboration [16], which

attempted to deploy a detector off the coast of Hawaii in the 1980s. In

parallel, the BAIKAL collaboration [17] began to build a similar detector

system in the Baikal Lake. These experiments have been continued in the

Mediterranean Sea by the ANTARES collaboration [18], which completed

in 2008 the construction of the largest neutrino telescope (∼0.1 km2) in the

northern hemisphere.

Regarding deep ice, a major step toward the construction of a large

neutrino detector was made by the AMANDA collaboration [19], which

completed their detector in 2000, and then IceCube, completed in 2011,

with a total of 86 scheduled strings [20].

The detection principle to search for high-E neutrinos of astrophysical

origin relies mainly on the detection of Cherenkov light emitted from an

up-going muon induced by a νμ that penetrated the Earth. The detection

strategy is based on the measurement of the intensity and arrival time

of Cherenkov light produced along the muon track on a three-dimensional

array of PMTs. A typical event display which shows an upgoing muon event

is shown in Fig. 8.6.

The main problem in track reconstruction is that, at the energy of inter-

est in neutrino telescopes (namely, from about 100GeV to about 1 PeV),

high-energy muons can produce electromagnetic radiation in the interaction

with the Coulomb field of the nuclei in the material. These radiative

energy loss processes generate secondary charged particles along the muon

trajectory, which also produce Cherenkov radiation that arrives after the

ideal Cherenkov cone. These track-correlated processes are stochastic, and

their relative photon yield fluctuates with distribution around the true track

position, depending on the physics of the underlying secondary process

and on the properties of the detector. In addition, the arrival time of the

photons on the PMTs has poor resolution because of the optical properties

of the material in which the tracks propagate. The dominant effect is the

scattering that depends strongly on the distance of the PMT from the track.

Moreover, environmental background contributes to a large noise counting

rate. In an undersea neutrino detector, the decay of radioactive elements in

the water, mainly the β-decay of potassium isotope 40K, generates electrons

that produce Cherenkov light, resulting in an isotropic background of

photons. These photons may degrade the hit pattern of a neutrino-induced

event and consequently the event reconstruction, even when coincidence

methods significantly reduce the contamination.
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Figure 8.6. An upgoing muon event from the 59-string configuration. The light collected
by each sensor is shown with a gray sphere. The color shows the time sequence. The size

reflects the number of photons detected.

Source: IceCube Collaboration.

8.3.2 Other Cherenkov experiments

The Sudbury Neutrino Observatory [21] (SNO, 1999–2006) used 1,000 tons

of ultrapure heavy water contained in a 12m diameter vessel made of 5 cm

thick acrylic plastic. This target was observed by 9,456 PMTs on a 17.8m

diameter support structure contained within a cylindrical cavern that was

22m in diameter and 34m height and filled with ordinary ultrapure water.

The experiment was located 2 km underground in an active nickel mine

near Sudbury, Ontario. Heavy water, D2O, replaces normal hydrogen with

its heavier isotope deuterium (2H or D), whose nucleus contains a neutron in

addition to the proton of normal hydrogen. Deuterium is extremely weakly

bound and therefore easily broken up when struck. Therefore, in addition to

the neutrino interactions visible in a regular water detector, a neutrino can

break up the deuterium in heavy water in two different ways: CC reactions

result in an electron signal and are sensitive to only electron neutrinos, while

NC reactions can break apart a deuteron, resulting in a neutron signal and

are sensitive to all active neutrino flavors.
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SNO used three different techniques to detect neutrons, all viable due

to the presence of heavy water. The first of these techniques [22] used pure

D2O in which neutron capture on D resulted in a 6.25 MeV gamma ray.

With the addition of 2 tons of NaCl to the D2O [23], neutrons captured

by 35Cl with a higher capture cross-section resulted in a gamma cascade

of 8.6 MeV and higher neutron detection efficiency. These events can be

statistically separated from the electron signal making use of parameters

sensitive to the event isotropy. In the final phase of the experiment, the salt

was removed and 3He proportional counters were deployed [24] to measure

the neutron signal independently of the Cherenkov signal.

8.4 Detector Components in SK

We introduce the instrumentation and techniques of the hardware used in

SK [1–4].

8.4.1 Detector location

SK is located in the Mozumi mine of the Kamioka Mining and Smelt-

ing Company, Gifu, Japan. The detector cavity lies under the peak of

Mt. Ikenoyama, with 1,000m of rock, or 2,700m-water-equivalent (m.w.e.)

mean overburden (Fig. 8.7).

Cosmic ray muons with energy of less than 1.3TeV cannot penetrate

to a depth of 2,700m.w.e. The observed muon flux, which does not pose a

significant background for the experiment, is 6 × 10−8 cm−2 s−1 sr−1.

8.4.2 Water tank

The SK detector consists of a welded stainless-steel vertical cylindrical

tank, 39m in diameter and 42m in height, with a total nominal water

capacity of 50,000 tons. The tank top itself is used as a platform to support

electronics huts, equipment for calibration, water quality monitoring, and

other facilities.

On the top of the tank, there are multiple feedthroughs with an

inner diameter of ∼20 cm at intervals of several meters along the x and

y axes (z is defined vertically upward) and along the outer wall for

detector calibration (Section 8.5) of the inner detector (ID) and the outer

detector (OD), respectively. For calibrations relevant to low-E physics (solar

neutrinos, supernova neutrinos, and so on), an electron linear accelerator

“LINAC” [25] is installed at the top of the tank toward the +x direction.
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Figure 8.7. A sketch of the SK detector site, under Mt. Ikenoyama.

Source: Kamioka Observatory, ICRR, The University of Tokyo.

The electron beam is bent 90◦ toward the −z direction and delivered into

the tank through the ID calibration holes.

8.4.3 ID PMTs

Within the tank, a stainless-steel framework of thickness 55 cm, spaced

approximately 2–2.5m inside the tank walls on all sides, supports separate

arrays of inward-facing and outward-facing PMTs. The inward-facing array

consists of 11,146 Hamamatsu Type R3600 50 cm diameter hemispherical

PMTs in SK-I (1996–2001). These PMTs have a photocathode made of

bialkali (Sb-K-Cs), with a maximal photon conversion probability in the

wavelength range of Cherenkov light (Eq. (8.2)). The inward-facing PMTs,

and the volume of water they view, are referred to as the inner detector (ID).

The experiment began data-taking in 1996 and was shut down for

maintenance in 2001. This initial phase is called SK-I. Due to an accident

during the ensuing upgrade work, the experiment resumed in 2002 with only

about half of its original number of ID-PMTs (SK-II). To prevent similar

accidents, all ID-PMTs were encased in fiber-reinforced plastic (FRP) cases

with ultraviolet transparent acrylic front windows starting from SK-II. Such

protective covers are needed to avoid any cascade implosion of the PMTs.
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Figure 8.8. The inner detector during the full reconstruction in 2006. The light-colored
figures in the lower left are three people.

Source: Kamioka Observatory, ICRR, The University of Tokyo.

Figure 8.8 shows the ID during the full reconstruction before filling water

toward SK-III (2006–2008) in 2006.

The density of PMTs in the ID was such that effectively about 40%

(20%) of the ID surface area was covered by a photocathode in SK-I, SK

III-VIII (SK-II). Although the photo coverage was half that of other eras,

SK-II (2002–2005) has obtained a detector performance that is almost the

same as other detector phases in high-energy physics analyses. See Refs. [26,

27], for example.

8.4.4 OD PMTs

Optically isolated from the ID is an array of 1,885 outward-facing

Hamamatsu R1408 20 cm diameter hemispherical PMTs in SK-I. These

PMTs, and the water volume they view, are referred to as the outer detector

(OD). The optical isolation of ID and OD is made by black polyethylene

terephthalate sheets (“black sheets”) on the inside of the barrier and highly

reflective Tyvek� sheets on its outside. Tank walls are also lined with

Tyvek� sheets. Each OD PMT is attached to a 50 cm× 50 cm acrylic

wavelength shifting (WS) plate. These features improve light collection

efficiency for the OD, compensating for the relatively sparse PMT array.
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8.4.5 Compensation coils

Twenty-six sets of horizontal and vertical coils are arranged around the

inner surface of the tank to neutralize the geomagnetic field that would

otherwise affect photoelectron trajectories in the PMTs. Before and during

filling of the tank with water for SK-III, and with the coils carrying

their design currents, the residual fields at 458 PMT locations around the

detector were measured using a device that can simultaneously measure the

magnetic field vector along three orthogonal axes.

During the SK refurbishment tank open work between SK-IV (2008–

2018) and SK-V (2019–2020), we remeasured the residual magnetic field for

all the PMTs with a tilted-corrected and waterproof 3-axis magnetometer,

providing a magnetic field map of the whole tank. These results confirm that

the geomagnetic field is successfully reduced by the coils. Dynode directions

are also recorded for all the PMTs.

The geomagnetic compensation coil cables failed in three places at

the end of 2023. In 2024, SK-VIII (2024 - present) was started after we

successfully installed new coils to restore geomagnetic field cancellation.

8.4.6 PMT HVs and electronics

The cables from each PMT for both ID and OD are brought up to the top

of the tank and connected to the signal digitizers and the HV supplies in

four quadrant electronics huts. The PMT cables have the same length to

maintain the delay, and the signal qualities are the same. The ID (OD)

PMTs are operated with a gain of about 107 at a supply HV ranging

from 1,600 to 2,000V (1,300–1,800V). See Section 8.5.1.1 for the PMT

HV determinations.

At the start of the SK-IV period in 2008, the front-end electronics were

upgraded to a system with an ASIC based on a high-speed charge-to-time

converter (QTC), the QBEE (QTC-based electronics with Ethernet) [28]

module for both ID and OD. This allows us to record all hits above the

discriminator threshold, including the dark noise hits. All the hit data are

sent to the front-end readout computers without filtering, and the events

are defined using the software trigger. Each ID PMT has a dynamic range

from 1 photoelectron (pe) to about 300 (1,000) pe in SK-I-III (from SK-IV).

An electronics hut, the “Central Hut,” contains electronics and

associated computers for GPS time stamping. Also, various detector

monitoring systems are located there.
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8.4.7 Online software trigger system

The Cherenkov photon signal for a given event is emitted promptly along

particle tracks and clusters within a few hundred ns, but dark noise is

random and does not form a timing cluster. Pulses on PMTs exceeding a

charge threshold corresponding to roughly 0.25 pe are registered as hits, all

of which are processed by a software trigger system. The number of hits (∼6
hits/MeV except SK-II) within 200ns is counted, and if the number of hits

exceeds a certain value (equivalent to a few MeV), a trigger is applied. The

online trigger efficiency for the high-E (>∼100MeV) physics events is 100%.

T2K-SK beam events (Section 8.3.1.1) are selected by requiring the

time of the event in SK to coincide with the expected time of arrival of

the neutrino beam. For T2K analyses [13], all hits occurring in the 1ms

windows centered on each beam spill arrival are written to disk. Beam

spills are excluded from the analysis if they coincide with problems in the

data acquisition system or the GPS system used to synchronize SK with

the accelerator at J-PARC. Additionally, spills that occur within 100 μs of

a beam-unrelated event are rejected to reduce the contamination of T2K

data with cosmic-ray muon Michel electrons.

8.4.8 GPS system

The K2K experiment (Section 8.3.1.1) required synchronization of clocks

with ∼100ns accuracy at the near and far detector sites (KEK and SK,

respectively), which are separated by 250km [29]. GPS provides a means

for satisfying this requirement at a very low cost. Commercial GPS receivers

output a 1 pulse per sec (1PPS) signal whose leading edge is synchronized

with GPS seconds rollovers to well within the required accuracy. For each

beam spill trigger at KEK, and each event trigger at SK, 50MHz free-

running Local Time Clock (LTC) modules at each site provide fractional

second data with 20 ns ticks. At each site, two GPS clocks run in parallel,

providing hardware backup as well as data quality checks.

Basically, the same GPS system is used for the T2K experiment with

some updates. The standard GPS receivers installed in Kamioka and

Tokai (the near detector site) cannot verify whether their outputs are

well synchronized with each other. To overcome this problem, special

GPS receivers, capable of providing information for the “Common View”

method, were installed at both sites. The Common View method uses

information from the same GPS satellites, which are visible from different
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locations simultaneously, and provides the data to compare timing signals

from standard GPS receivers. These devices confirm that the reference clock

signals from two GPS receivers in Kamioka and Tokai are synchronized and

stable within the order of O(100 ns).

8.4.9 Water purification system

The water used in SK is sourced from natural water in the Kamioka mine.

To maximize water transparency and minimize backgrounds due to natural

radioactivity, the water used to fill the SK tank is highly purified by a multi-

step system including deionization (DI) resins, filtration, reverse osmosis

(RO), and degasification. Water purity is maintained by recirculation

through the purification system.

The water circulation pattern in the detector can be manipulated by

changing the temperature of the water that is fed into the bottom of the

detector from the recirculation system. Since the temperature difference

between the top of the tank and the bottom of the tank is only about 0.1◦ C,
the water temperature should be controlled with better than 0.01◦ precision.
To achieve temperature control, a thermometer with 0.0001◦ precision is a

component of the recirculation system and its output is fed back to the

water-cooling system. The same thermometers are placed at eight positions

in both the ID and the OD to monitor the water temperature and their

time dependence.

In order to improve SK’s neutron detection efficiency and to thereby

increase its sensitivity to the diffuse supernova neutrino background flux,

13 tons of Gd2(SO4)3·8H2O (gadolinium sulfate octahydrate) was dissolved

into the SK tank in 2020, marking the start of the SK-Gd phase of

operations, SK-VI [3] (2020−2022). In 2022, an additional 26 tons of

Gd2(SO4)3·8H2O was dissolved, and SK-VII [4] (2022–2024) was started

yielding a 75% neutron capture efficiency on Gd. In the recirculation system

for the gadolinium sulfate water, DI and RO are omitted, and instead,

special anion and cation resins that keep Gd3+ and SO2−
4 are deployed.

Nevertheless, the attenuation length of the Cherenkov light in the SK tank

(Section 8.5.1.3) is sufficiently long and stable for physics analyses.

8.4.10 Fresh air system

To mitigate the relatively high radon background present in the air of the

mine, the tank area is supplied with fresh air pumped in from a site outside

and well away from the mine entrance. The flow rate and temperature
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of the air sent from a prefabricated hut (“Radon Hut”) outside the mine

entrance to the SK are a few 100m3/min and about 10◦ C, respectively. It

is necessary to lower the temperature in order to reduce the condensation in

the pipe that sends air into the mine. Air is cooled with source water in the

mine and a chiller. Radon concentration is checked by monitors installed in

the Radon Hut and at several locations in the SK.

This Rn-reduced air is supplied to the gap between the water surface and

the top of the SK tank and is kept at a slight overpressure to help prevent

ambient radon-laden air from entering the detector. The air purification

system consists of three compressors, a buffer tank, dryers, filters, and

activated charcoal filters. The SK Rn-reduced air system uses 50 L of chilled

activated charcoal to remove Rn from throughput air. Since it is known

that the Rn-trapping efficiency of activated charcoal increases significantly

below temperatures around −60◦ C, the system was upgraded in 2013 to

bring its cooling power down from −40◦ C in the previous design to below

this threshold. In order to do so, the system’s coolant was changed to 3

MNOVECTM 7100 and its refrigerator upgraded [30]

8.4.11 Event classifications

Neutrino interactions are detected via the Cherenkov light emitted by the

charged particles produced (Section 8.2). Events due to entering charged

particles can be identified using the OD PMTs. Neutrino interaction

candidates produced in the ID are defined as events producing Cherenkov

light in the ID, with no evidence of entering particles in the OD. Neutrino

events produced in the ID are termed “fully contained” if there is no activity

in the OD indicating exiting or entering particles.

Events originating in the ID with OD light patterns consistent with

exiting particles are termed “partially contained.” For these events, the

energy deposited in the detector is only a lower limit on the neutrino

energy. Upward-going muons, which are assumed to be products of neutrino

interactions in the rock below SK, are also recorded. For upward muons,

Cherenkov light patterns consistent with an entering muon are required.

Finally, downward-going muons (cosmic-ray muons), products of meson

decay in the atmosphere, are observed at a net rate of about 2Hz. These

events provide useful housekeeping and calibration data. For example,

through-going muons are used to monitor the attenuation length of

Cherenkov light in water, and stopping muons are used to check the energy

scale for physics analyses (Section 8.5.1.3).
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8.5 Detector Calibrations

We describe the calibration methods in SK-IV [2], in which new readout

QBEE electronics (Section 8.4.6) have been operating.

8.5.1 ID calibration

8.5.1.1 PMT and electronics calibrations

For the PMT charge calibration, it is necessary to measure the “gain” and

“QE” of each PMT. “Gain” is a conversion factor from the number of

photoelectrons to charge (pC), and “QE” is defined as the product of the

quantum efficiency and the photoelectron collection efficiency on the first

dynode of the PMT.

An appropriate HV value for each PMT was determined so that all

PMTs output approximately the same charge. A scintillator ball connected

to an Xe lamp was placed in the center of the SK tank to emit isotropic

light. The number of photons reaching each PMT is affected not only by the

difference in geometrical distance within the large cylinder tank (Section

8.4.2) but also by the position dependence of light propagation due to water

quality and light reflection on the tank surface (Section 8.5.1.2). To avoid

this problem, 420 “standard PMTs” with HV pre-determined using a pre-

calibration system were installed in the tank. PMTs at the same distance

from the light source are grouped and the standard PMT placed in each

group is used as a reference. The scintillator ball connected to the Xe lamp

remains in the center of the tank as a monitor of PMT gain as well as other

measurements.

The PMT gain measurement is performed in two stages. First, the

relative gain is measured and then the absolute gain is calibrated. A diffuser

ball connected to a nitrogen-laser-driven dye laser through an optical fiber

was placed in the tank for the relative gain measurements. High light

intensity (sufficient number of photons reaching each PMT) and low light

intensity (∼1 photon reaching each PMT) measurements were made. The

former measures the charge Qobs(i) and the latter measures the number of

hits Nobs(i) in each PMT i:

Qobs(i) ∝ Is × a(i)× εqe(i)×G(i) (8.3)

Nobs(i) ∝ Iw × a(i)× εqe(i) (8.4)

where Is and Iw are the average intensities of the high- and low-intensity

flashes, respectively, a(i) is the acceptance of PMT, εqe(i) denotes its QE,
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and G(i) is its gain. The gain of each PMT can be derived by taking the

ratio of Eqs. (8.3) and (8.4), except for a factor common to all PMTs:

G(i) ∝ Qobs(i)

Nobs(i)
(8.5)

Then the relative gain of each PMT is derived by normalization with the

average gain over all PMTs. These relative gains are used as corrections

in the conversion of each PMT’s output charge to an observed number of

photoelectrons.

The absolute gain is calibrated from the cumulative single-photoelectron

charge distribution for all PMTs. A Ni-Cf (“nickel source”) deployed in the

center of the tank is used for this purpose. It produces isotropic gamma

rays of about 9MeV when thermal neutrons from the spontaneous fission

of the californium capture on the nickel. To evaluate the distribution below

the usual threshold of 0.25 pe, data with double the usual PMT gain and

half the usual discrimination threshold were taken (Fig. 8.9). The value

averaged over the whole pC region was defined as the conversion factor from

pC to single photoelectron. The single-photoelectron charge distribution is

implemented in the SK detector simulation (“SK-MC”).

The nickel source data are also used to measure the relative QE. As

shown in Eq. (8.4), the number of hits observed at each PMT is proportional

to each QE value when a source with sufficiently low light intensity is used.

The nickel source data were taken after achieving uniform water quality by

causing water convection in the tank. The uniform water quality can be

identified by measuring the water temperature profile in the tank (Section

8.4.9). The ratio of the number of hits between data and MC is implemented

in the SK-MC as the relative QE for each PMT.

The charge linearity of the whole system combined with PMT and

readout electronics was measured using the laser system. It is necessary

to cover all possible charge ranges including the saturation region (above a

few 100 pe). For this purpose, data were taken with the diffuser ball placed

at an off-center location in the tank. The average nonlinearity measured for

all PMTs is taken into account in the SK-MC.

The time response of each readout channel, including PMTs and readout

electronics, must be calibrated for precise reconstruction of the event

(Appendix A). The response time of readout channels can vary due to

differences in the transit time of PMTs, lengths of PMT signal cables,

and processing time of readout electronics. In addition, the timing of

discriminator output depends on the pulse heights of PMTs since the rise
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Figure 8.9. The single-photoelectron charge distributions in pC unit for nickel source
data [2]. The black line (>∼ 0.6 pC) shows the data with normal PMT gain, the green
line (∼0.3–0.6 pC) shows the data with double gain and half threshold, and the red line
below ∼0.3 pC is linear extrapolation.

time of a large pulse is shorter than that of a smaller one. This is known

as the “time-walk” effect.

The overall processing time and the time-walk effect were measured

by injecting fast light pulses from a gas flow nitrogen laser into PMTs

in the tank. The wavelength of the laser light is shifted to 398 nm by a

dye, where the convoluted response with Cherenkov spectrum (Eq. (8.2)),

light absorption spectrum (Fig. 8.11), and quantum efficiency of the PMTs

is almost maximum. The fast light is guided into the tank by an optical

fiber and injected into a diffuser ball located near the center of the tank to

produce an isotropic light. Figure 8.10 shows a typical scatter plot of the

time-charge “TQ” distribution for one readout channel. The calibration

constants, called the “TQ-map,” are derived by fitting the TQ distribution

to polynomial functions. Each readout channel has its own TQ-map used

to correct the time response.
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Figure 8.10. Typical TQ distribution for a readout channel [2]. The horizontal axis is
the charge (QBin) of each hit, and the vertical axis is the time-of-flight-corrected timing
(T) of the hits. Larger (smaller) T corresponds to earlier (later) hits in this figure.

The timing resolution is evaluated using the same dataset used for

the TQ-map evaluation. All PMT timing distributions corrected by their

TQ-maps are fitted by an asymmetric Gaussian to evaluate the timing

resolution in each charge region. The results are implemented in the

SK-MC.

For the real-time monitoring of the time response, SK employs a

nitrogen laser that uses sealed nitrogen as a gain medium and is better

suited for continuous operation. The light output of the dye system is

injected into the same diffuser ball used for the TQ-map measurement.

8.5.1.2 Calibration for photon tracking

By injecting a collimated laser beam into the SK tank and comparing

the timing and spatial distributions of the light with MC, we can extract

light absorption and scattering coefficients as functions of wavelength. The

earlier timing PMT hits come from scattered photons, while the later timing

hits represent photons reflected by the PMTs and black sheets. The total

number of scattered photons and the shape of the time distribution are

used to tune the symmetric and asymmetric scattering and the absorption

parameters for the SK-MC in each SK phase. Figure 8.11 shows each water
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Figure 8.11. Typical water quality parameters implemented in the SK-MC [2]. The
points are the data obtained in April 2009. Each line through the points for absorption
(dashed), symmetric scattering (dotted), and asymmetric scattering (dash-dotted) shows
the fitted functions while the top line shows the total of all fitted functions added
together.

quality parameter as a function of wavelength. Time variation of each

parameter is monitored at several wavelengths using several light injectors

directed vertically and horizontally in the tank.

It has been found that water quality depends on position in the tank,

especially vertically, and mainly comes from differences in absorption. This

is because the pure water enters from the bottom area of the OD in the

tank (Section 8.4.9). The vertical dependence of absorption in the SK-MC

is determined from the monthly nickel source data and monitored with the

real-time Xe system (Section 8.5.1.1).

Light reflection at the PMT surface in the SK-MC is tuned using the

same laser data used to determine the water quality parameters. Four layers

of material (refractive index) from the surface to the inside of the PMT are

taken into account: water (1.33), glass (1.472 + 3670/λ2, where λ is the

wavelength in nm), bialkali (nreal + i · nimg), and vacuum (1.0). Here, nreal

and nimg are the real and imaginary parts of the complex refractive index.
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Cherenkov photons are reflected or absorbed on the black sheet (Section

8.4.4). The reflectivity of the black sheet in the SK-MC is measured by a

light injector set in the tank. The reflected charge was measured at three

incident angles with three wavelengths.

8.5.1.3 Energy scale calibrations in physics analyses

The energy scale is one of the most important detector parameters. This

is because the reconstructed energy is used in all physics analyses, and

its uncertainty is the source of the most dominant detector systematic

uncertainties in most physics analyses.

We describe how to calibrate the energy scale and estimate its uncer-

tainty in the high-E physics analyses first. Following the various basic

detector calibrations (Sections 8.5.1.1 and 8.5.1.2), the SK-MC’s global

photon yield is tuned using cosmic-ray through-going muon data. The

Cherenkov light attenuation length used in the event reconstructions (A.1)

is also determined by using cosmic-ray through-going muon MC. The

electron and muon particle gun MC events are generated using the SK-

MC, and the relationship between the corrected charge (A.1.2) and true

momentum is obtained. The time variation of PMT gain is monitored by

using the charge distribution of dark noise for each PMT. The time variation

of the attenuation length is monitored by the cosmic-ray through-going

muon data. Details on the attenuation length measurement analysis are

available elsewhere [1]. Both time variations are taken into account in the

corrected charge as a function of time.

After the above energy scale calibrations, the energy scale uncertainty

is estimated using control data samples, cosmic-ray stopping muons, π0s

produced by the atmospheric neutrino interactions (Fig. 8.4), and Michel

electrons from the cosmic-ray stopping muons [26, 27]. These samples are

independent of the control data samples used in the prior calibrations. The

uncertainty of the energy scale used in the physics analyses is estimated

from the quadratic sum of the uncertainty of the absolute scale (difference

between data and MC) in the calibration reference time period and the

residual time variation in each SK phase. The directional dependence of

the energy scale obtained using Michel electron data is also considered in

the physics analyses as another energy scale error source.

For the low-E analyses, the same initial calibrations (Sections 8.5.1.1

and 8.5.1.2) are used. The energy scale is of particular importance to the

solar neutrino analysis since the recoil electron spectrum from the elastic
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scattering of 8B solar neutrinos on electrons is steeply falling with energy.

A precise calibration is performed with the LINAC (Section 8.4.2), which

also checks angular resolution. To crosscheck it and to study the directional

dependence of the energy scale, 16N is produced via (n, p) reactions on 16O

using a deuterium-tritium (“DT”) fusion neutron generator which makes

∼14MeV neutrons [31]. 16N decay is dominated by an electron whose

maximum energy of 4.3MeV coincides with gamma radiation at 6.1MeV.

Spallation from cosmic-ray muons produces neutrons that can also be used

for calibration [32].

8.5.2 OD calibration

Requirements for OD calibration are not as stringent as for the ID in the

current SK physics analyses. The readout electronics and the PMT HV

power supply are similar to those for the ID (Section 8.4.6). The calibration

and simulation parameter tuning for the OD-PMTs are similar but done

separately from that for the ID. The PMT timing and gain calibrations are

done using cosmic-ray muon and dark noise data, respectively. Cosmic-ray

muon data are also used to tune the light reflection on the Tyvek� sheets

(Section 8.4.4) in the SK-MC.

From the same laser used in the ID PMT timing monitor, 52 optical

fibers extend through OD calibration holes (Section 8.4.2) to each OD

region in the tank. A diffuser is attached to the end of each fiber. The

charge nonlinearity of each readout channel is measured with all the light

injector data and implemented in the SK-MC.

8.6 Future Prospects

Hyper-Kamiokande (Hyper-K or HK) [33] and KM3Net [34] are used as

examples to discuss the prospects for future plans for high-E physics

experiments.

8.6.1 Densely instrumented artificial tanks

The planned HK detector will consist of an order of magnitude larger

tank than the predecessor, SK, and will be equipped with ultrahigh

sensitivity photosensors. A larger HK tank will be used in order to

obtain in only 10 years an amount of data corresponding to 100 years

of data collection time using SK. This allows for the observation of

previously unrevealed rare phenomena and to probe CP violation in
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neutrino oscillation. We expect an order of magnitude higher sensitivity

to nucleon decay searches. We have been developing the world’s largest 50

cm PMTs, which exhibit a photodetection efficiency two times greater than

that of the SK PMTs. These new PMTs are able to perform light intensity

and timing measurements with a much higher precision.

Thanks to its vertical cylindrical tank which is similar to SK, there is

no major concern which makes the expected energy scale error significantly

larger in HK. However, it is necessary to reduce the systematic error of

the energy scale in HK to reach the target physics analysis sensitivities.

For this purpose, improved measurements of low-level detector parameters,

such as scattering and absorption in the water and PMT performance

will be pursued and linked to the uncertainties on reconstructed particle

parameters. To improve physics sensitivities, a more extensive OD calibra-

tion will be performed, including the effect of water quality and Tyvek�

reflectivity.

In addition to the 50 cm PMT from Hamamatsu, use of Multi-PMT

(“mPMT”) is currently considered in HK. The mPMT module consists of

19PMTs of 7.5 cm diameter, contained in a vessel with a diameter of 50 cm.

The mPMT module has the following advantages over the conventional

50 cm PMT:

• It has high granularity with multiple 7.5 cm PMTs, which provides higher

resolution of Cherenkov ring images, especially for charged particles

created at a short distance from the wall.

• Its directionality improves the reconstruction of the edge of the

Cherenkov ring image, which is not recognized with 50 cm PMTs if the

vertex is close to the wall. This also helps to identify the position of light

emission.

• It has better timing resolution with small PMTs.

The mPMT will be also used for calibration. As the mPMT is

an independent photon detection device from the 50 cm PMT system,

comparing the two readout systems can investigate possible biases in one

of the photo-sensor systems. Due to the large difference in the acceptance

(the photo-cathode area of a 50 cm PMT is a factor 40 larger than that of

the 7.5 cm PMT), the two photo-sensor systems measure different numbers

of photoelectrons from the same light source. Therefore, nonlinear bias, if it

exists, appears differently in 50 cm PMTs and mPMTs. The directionality

and improved timing resolution of the mPMTs, combined with data from
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the 50 cm PMTs, can also enable improved measurements of low-level

detector parameters from calibration sources.

For large detectors, measurements necessary for calibration must be

automated as much as possible. It is also necessary to find ways to further

reduce detector downtime in order to not miss important physics events

like supernovae.

Attempts to reconstruct events using new software techniques such as

machine learning have also begun in both SK and HK. These new techniques

are expected to improve the performance of event reconstruction.

8.6.2 Sparsely instrumented natural water

The Cubic Kilometer Neutrino Telescope, or KM3NeT, is a future European

research infrastructure that will be located at the bottom of the Mediter-

ranean Sea. It will host the next-generation neutrino telescope in the form

of a water Cherenkov detector with an instrumented volume of several cubic

kilometers distributed over three locations in the Mediterranean.

KM3NeT will search for neutrinos from distant astrophysical sources like

Core-Collapse Supernovae (CCSN), the dramatic explosions of giant stars

at the end of their evolution, or their remnants (SNR), gamma-ray bursts,

or colliding stars and will be a powerful tool in the search for dark matter

in the universe. Its prime objective is to detect neutrinos from sources in

our galaxy. Arrays of thousands of optical sensor modules will detect the

faint light in the deep sea from charged particles originating from collisions

of the neutrinos and the water or rock in the vicinity of the detector.

The KM3NeT telescope will consist of two sites, realizing two neutrino

telescopes: ARCA and ORCA. With the ARCA telescope, which is more

sparsely instrumented but has a larger volume, KM3NeT will be sensitive to

higher-energy, lower-rate distant astrophysical sources, such as gamma-ray

bursts or colliding stars. The ORCA telescope is more densely instrumented

and will be sensitive to lower energy neutrinos, and is the instrument for

KM3NeT scientists studying neutrino properties by exploiting neutrinos

generated in the Earth’s atmosphere.

ARCA will be installed at the KM3NeT-It site, about 100 km offshore of

the small town of Portopalo di Capo Passero in Sicily, Italy. The detection

units of the ARCA telescope will be anchored at a depth of about 3,500 m.

With an appropriate granularity of the three-dimensional arrays of sensor

modules in the detector of the ARCA telescope, cosmic neutrinos with

energies between several tens of GeV and 100 PeV can be observed [35].
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Deployed at the KM3NeT-Fr installation site about 40 km offshore

from Toulon, France, the ORCA neutrino detector will take advantage of

the excellent optical properties of deep-sea water to achieve the angular

and energy resolutions required for resolving the neutrino mass hierarchy.

A multi-megaton scale array of KM3NeT light sensor modules will be

used with a granularity optimized for studying reactions of atmospheric

neutrinos with the seawater. The sensor modules will be arranged on

vertical detection units with a height of about 150 m and in the dense

configuration required for detection of neutrinos with energies as low as

about a GeV, three orders of magnitude lower than the typical energy scale

probed by the detector of the ARCA telescope for neutrino astroparticle

physics.

In the future and pending funding, the full neutrino telescope will

contain on the order of 12,000 pressure-resistant glass spheres attached to

about 600 strings. The strings hold sensor spheres, each anchored to the sea

floor and supported by floats. Each sphere, called a “digital optical module”

(DOM), is about 43 cm in diameter, contains 7.6 cm PMTs with supporting

electronics, and is connected to shore via a high-bandwidth optical network.

At the shore of each KM3NeT installation site, a farm of computers will

perform the first data filter in the search for the signal of cosmic neutrinos,

prior to streaming the data to a central KM3NeT data center for storage

and further analysis.

8.6.3 Contrasts and complementarities with DUNE

A future detector with overlapping physics aims with respect to next-

generation water Cherenkov detectors is the Deep Underground Neutrino

Experiment (DUNE). DUNE is a 40-kton liquid argon time-projection

chamber (LArTPC) planned for an underground site in South Dakota, in

conjunction with a neutrino beam from Fermilab. LArTPC technology has

advantages and disadvantages with respect to water Cherenkov technology;

in particular, LArTPCs provide fine-grained tracking capability without a

Cherenkov threshold so that hadronic components of final-state products

of neutrino interactions are not lost. The disadvantage of LArTPCs is

greater cost and complexity; water detectors can be made very large for

a relatively low cost per kiloton and so often win in statistics. There are

many complementarities between the detector types, depending on the

physics topic. An especially notable complementarity is that for supernova

neutrinos; water is primarily sensitive to electron antineutrinos via inverse

beta decay on free protons, whereas LAr is primarily sensitive to electron
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neutrinos via charged-current absorption on 40Ar. Having both types of

detectors active during the next supernova burst will greatly enhance the

worldwide scientific reach.

8.7 Achievement of Cherenkov Neutrino Detectors

Large water Cherenkov detectors have accumulated many very high-

impact scientific achievements over the past decades. The first-generation

Kamiokande-II experiment made the first directional solar neutrino mea-

surement; Kamiokande-II and IMB were the first to observe hints of

atmospheric neutrino disappearance. Both Kamiokande-II and IMB made

the historic observation of a neutrino burst from SN 1987A in the

Large Magellanic Cloud. “For pioneering contributions to astrophysics, in

particular for the detection of cosmic neutrinos,” Masatoshi Koshiba was

awarded the Nobel Prize in Physics in 2002 [36]. The next generation

of water Cherenkov detectors brought precision solar-neutrino oscillation

information by Super-K and SNO, along with clear evidence of atmospheric

neutrino oscillation by Super-K. These measurements resulted in the

Nobel Prize to Takaaki Kajita and Arthur B. McDonald in 2015 [37].

Furthermore, Super-K was and is the far detector for the K2K and

T2K long-baseline experiments, which confirmed atmospheric neutrino

oscillations with artificial neutrino beams and improved knowledge of

oscillation parameters. In addition, IceCube has made the first observations

of cosmic neutrinos, both as a diffuse flux and from specific sources. Super-

K has also produced stringent limits on baryon number violation via

many channels — while baryon number violation has not been observed,

this lack of observation has been highly influential for constraining grand

unified theories. These achievements represent only a few highlights. Super-

K, SNO, and long-string neutrino telescopes have produced decades of

additional science, including indirect dark matter constraints, cosmic ray

measurements, astrophysical neutrino source searches, and diverse searches

for beyond-the-standard-model physics.

Appendix A: Event Reconstruction Algorithm in SK

This appendix describes the reconstructions of “fully contained” events

(Section 8.4.11) in the current SK physics analyses. For compari-

son with high-E physics event reconstruction, low-E physics event

reconstruction is also described. Some future prospects are mentioned in

Section 8.6.1.
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A.1 High-E Physics Analyses

In the high-E neutrino interactions (>∼100MeV), we reconstruct the

physics quantities of an event, such as vertex position, the number of

Cherenkov rings, momentum, particle type, and the number of Michel

electrons. The primary event fitter is called “APfit” [38]. We start from

the vertex fitter program to obtain the vertex position of events. With the

knowledge of the reconstructed vertex, the ring fitter identifies each ring.

After that, the particle identification program identifies the particle type for

each ring. The momentum for each ring is determined and Michel electrons

are identified.

A.1.1 Vertex

The principle of the vertex fitting is that the timing residual (i.e., (photon

arrival time) − (time of flight)) distribution should be most peaked with

the correct vertex position. In the timing distribution, the time resolution

of each hit PMT as a function of detected photoelectrons (Section 8.5.1.1)

and the track length of the charged particle (Section 8.2.2) are taken into

account.

The timing fit has worse vertex resolution in the direction of Cherenkov

ring, compared to that in the perpendicular direction. This is because the

time residual does not change along the line on which the distance from

all hit PMTs is the same. For single-ring events, the Cherenkov ring charge

pattern information in addition to the timing information is used to improve

the vertex reconstruction in the longitudinal direction. The expected and

observed photoelectrons are compared for each hit PMT to optimize the

reconstructed vertex. The result of the particle identification (A.1.4) is used

in the expectation.

A.1.2 Ring fitting

Possible Cherenkov rings are looked for and probable rings are

reconstructed in the ring fitter. We use a known technique for pattern

recognition, the Hough transformation [39], to search for possible ring

candidates. The Hough transformation transforms rings of an assumed

radius to peaks in Hough space (see Fig. 8.12). In the ring fitter, the

Hough space is made up of two-dimensional arrays divided by polar angle Θ

and azimuthal angle Φ. These angles are measured from the reconstructed

vertex. Detected photoelectrons in each hit PMT are mapped to the (Θ, Φ)
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Figure 8.12. Principle of the ring fitting [38] Suppose there are four hit PMTs on the
unknown ring (radius r) and we want to find the center of the ring (left figure). By
Hough transformation, the detected photoelectrons are mapped to a circle with radius
r centered on the PMT (right figure). By accumulating the mapped circles, we can find
the peak in the Hough space, giving the center of the unknown ring.

pixels. The number of photoelectrons is corrected (“corrected charge”) by

taking into account the distance from the vertex, the attenuation length of

Cherenkov light in water, time variation of the PMT gain (Section 8.5.1.3),

and acceptance of the PMT as a function of photon incident angle. Then,

we draw a circle of a fixed radius R corresponding to a 42◦ Cherenkov cone

from each hit PMT. By accumulating the mapped circles, we can find the

peak in the Hough space, giving the center of the unknown ring.

If the momentum of one of the reconstructed rings is too low, or if

the direction of the ring is too close to the other, this ring is discarded

as a fake ring by the ring correction program for the multi-ring candidate

events. This is to avoid double counting of the number of rings due to an

additional Cherenkov ring from scattering of a single charged particle, for

example.

A.1.3 Ring edge finding

The Cherenkov opening angle (Eq. (8.1)) is reconstructed for each ring by

using the photoelectron distribution as a function of the opening angle,

as shown in Fig. 8.13. As shown in the lower plot, the edge of the ring

is reconstructed at the second derivative = 0 above the peak angle in the

upper plot.
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Figure 8.13. Typical observed photoelectrons as a function of the opening angle in the
upper plot [38]. The second derivative from the upper distribution in the lower plot.

A.1.4 Particle identification

The primary particle identification (PID) classifies a particle as a showering

particle (e±, γ) or a non-showering particle (μ±, π±, etc.), using the photon

distribution of its Cherenkov ring (Fig. 8.3, for example). Showering (non-

showering) particles are called “electron-like” (“muon-like”). At first, the

expected photoelectron distributions are calculated with an assumption

of the particle type. Using the expected photoelectron distributions, the

likelihood is calculated for the electron and muon assumptions, respectively.

The calculation of the probability is performed for all of the PMTs for

which the opening angles toward the ring direction are within 1.5 times the

Cherenkov opening angle. The particle type (electron-like or muon-like)

with greater likelihood is chosen. Optimizations of the expected charges

are performed by changing the direction and the Cherenkov opening angle

of the ring, in order to get maximum-likelihood values.
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Additionally, another probability is defined using only the Cherenkov

opening angle to utilize the β dependence (Eq. (8.1)). The Cherenkov

angle of muons with lower momentum (<∼500 MeV/c) is smaller than

41◦. Depending on the needs of the physics analysis, the second likelihood

can be combined with the first one, or not. For example, the selection

of the π0 events (Fig. 8.4) does not use the second likelihood. This is

because the gamma radiation length in water is ∼36 cm (no Cherenkov light

emission), and the event vertex is reconstructed at the electron–positron

pair-production point instead of the π0 decay point.

The excellent PID performance (e/π0 separation) was experimentally

confirmed using a 1-kiloton water Cherenkov detector with electron and

muon beams from the 12 GeV proton synchrotron at KEK [40].

Some physics analyses use recoil protons (a mass of 938 MeV/c2) with

energies above the Cherenkov threshold (1.4GeV) [41, 42]. Muons and

protons both have sharp ring edges, whereas electrons produce fuzzy rings

and are relatively easy to distinguish. To distinguish protons from muons, a

proton fitter using the light pattern and ring topology has been developed

(see Ref. [41] for details). A characteristic of protons is that they tend to

have hadronic interactions in water and lose energy by producing secondary

particles. If both the secondary particles and the scattered proton are below

the Cherenkov threshold, the Cherenkov light emission is truncated and

leaves a narrow proton Cherenkov ring, for example.

A.1.5 Ring separation

The ring separation program determines the fraction of photoelectrons in

each PMT for each ring for multi-ring events. We need this separation for

the ring fitting and the particle identification of each ring as well as the

momentum reconstruction.

Given a vertex position and each ring direction, the expected photoelec-

tron distribution for each ring as a function of opening angle is calculated

assuming the flat distribution in azimuthal angle. The PID result is used

to calculate the expected charge. The charge fraction for each ring is

determined by comparing the expected and observed charges for different

fractions.

A.1.6 Momentum

The momentum is estimated from the total sum of the corrected charge

within a 70◦ half opening angle from the reconstructed ring direction. To
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reconstruct momentum from the corrected charge, conversion tables are

prepared based on the electron and muon particle gun MC events. The

PID results define electron-like or muon-like momentum, respectively. For

multi-ring events, the ring separation program is applied with each particle-

type assumption to determine the fraction of photoelectrons in each PMT

due to each ring. Then, the momentum for each ring is determined by the

same method used for single-ring events.

The energy (momentum) scale calibrations and checks dedicated for

each physics analysis using several control data samples are described in

Section 8.5.1.3.

A.1.7 Michel electron tagging

We identify Michel electrons, namely, the electrons produced when muons

decay, following the primary events. Michel electron candidates are detected

when the number of hits in the sliding timing window of a few 10 ns after

the primary event exceeds a certain threshold, the vertex is well recon-

structed, and the total number of photoelectrons does not exceed a certain

threshold.

A.1.8 Alternative fitter

Depending on the physics analyses, the other fitter called “fiTQun” can

be applied [13, 43, 44]. FiTQun employs a maximum likelihood method

to reconstruct particle types and determine kinematics in the detector

simultaneously. The algorithm is based on methods developed for the

MiniBooNE experiment [45] but has been developed from scratch for

SK with additional features, such as multi-ring reconstruction for events

with multiple final-state particles. Compared to APFit, fiTQun uses

more information, including information from PMT hits outside of the

expected Cherenkov cone and hit timing information, during the fitting

procedure. For a given event, fiTQun’s fit procedure will run multiple

times to determine the best kinematic parameters for each possible particle

configuration hypothesis, while APFit basically fits those parameters once.

Since fiTQun uses more information, the fitting process time is slower

and a better understanding of the detector parameters implemented in the

detector simulator (Section 8.5.1) is required with respect to APfit.

Unlike APfit, a charged pion hypothesis with a single track compatible

with a charged pion undergoing a hard scatter can be used [46].
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A.2 Low-E Physics Analyses

There are several differences in the reconstruction of “low-E” neutrino

interactions (�100MeV): particle identification is less important since

almost all resulting charged particles are electrons and gamma rays, and

remaining muons or pions are barely above the Cherenkov threshold,

so the ring opening angle is significantly smaller than 41◦. Also, events
with multiple rings typically cannot be separated, so the ring fitter is

replaced by cuts designed to suppress multi-ring events. Due to multiple

Coulomb scattering of electrons due to neutrino interactions or Compton

scattering of gamma rays, ring patterns are less clear than those resulting

from high-E interactions. Also, individual PMTs typically record only

single-photoelectrons. As a consequence, vertex reconstruction is based

almost exclusively on PMT timing. Recorded pulse heights only reflect the

single-photoelectron distribution, and the PMT hit pattern does not help

much.

The “BONSAI” (Branch Optimization Navigating Successive Annealing

Iterations) event reconstruction [47] compares the hit time residual dis-

tribution (assuming direct photon travel from that point to the PMT)

viewed from a single point in space-time (the 3D vertex combined with

the assumed time of light emission) with a likelihood. The point with

the largest likelihood is chosen as the reconstructed vertex. To find the

maximum, BONSAI uses a simple search tree, combined with an annealing

algorithm designed to avoid local maxima: instead of selecting a single,

best branch to continue, all branches within a range of likelihoods are

continued. This is particularly important for the lowest electron energies

since dark noise fluctuations combined with radioactive background from

the detector boundaries can result in several local maxima deep inside the

detector. The tree is started from multiple points calculated from sets of

“four-hit combinations.” A four-hit combination results in an analytical

exact solution to the four equations corresponding to the four-hit times.

The four-hit combinations are drawn from a subset of PMT hits. That

subset is constructed from the requirement that every hit pair has a time

difference smaller than their spatial separation, divided by the speed of

light in water.

Once a vertex is determined, another likelihood fit determines the event

direction after hits are selected within 20 ns in the time-of-flight subtracted

hit times. This likelihood is energy dependent. At first, an initial energy

estimate is used; after the full energy reconstruction is finished, the direction

likelihood fit is repeated.
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In addition to the direction reconstruction, three-hit combinations are

formed from the 20 ns hit selection and the Cherenkov angle distribution is

made from these (each three-hit combination gives an exact solution of the

opening angle). Multiple photon events result in a peak of this distribution

that is larger than 41◦, while muons and pions have a peak below this

angle. Electrons always have velocities close to the speed of light if they

emit Cherenkov light at all, so their opening angle is always near 41◦. The
amount of multiple Coulomb scattering is estimated from the “sharpness”

of the Cherenkov cone by forming event direction candidates from hit pairs

and comparing the length of the vector sum of these candidates to the

maximal possible length (number of such pairs). Electrons undergoing a

larger than usual amount of multiple Coulomb scattering are typically lower

in energy and are observed only due to an up-fluctuation in light yield.

An example is 210Bi beta decay (with an endpoint energy of ∼3MeV).

Also, beta-gamma decays such as 208Tl (endpoint ∼5MeV) look like single-

photoelectrons with a larger than usual amount of multiple Coulomb

scattering.

The energy is reconstructed by counting PMT hits within 50 ns after

time-of-flight subtraction. Multiple photon hits are corrected by PMT occu-

pancy. Additional corrections are made to account for water transparency,

late arrival photons, dark noise, number of dead PMTs, effective cathode

area of the PMT, and PMT gain variation.

Neutrons may be generated by neutrino interactions. To detect the

neutron signal, two independent approaches have been implemented. The

first approach is to detect the single 2.2MeV gamma released from neutron

capture on hydrogen. This approach requires a 500-μ s forced trigger

scheme following a normal trigger, in order to identify the 2.2MeV gamma

offline [48]. The second approach involves doping the water with a water-

soluble chemical compound of gadolinium (Section 8.4.9), neutron capture

on which yields a gamma cascade with a total energy of about 8 MeV. These

relatively high-energy gamma rays should be readily seen in SK-VI [3], SK-

VII [4], and SK-VIII.
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Cherenkov spectrum, 272

classification, 127
color center, 74, 75
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dose constant, 72
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downward-going muons, 269
DREAM, 26
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dropout, 143
dual-readout approach, 27
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Dynode directions, 266
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electromagnetic calorimeters, 7

electromagnetic fraction (fem), 13
electromagnetic showers, 255

electrons, 255
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EM showers, 221
energy resolution, 7

energy scale, 275
Equivalent Noise Charge, 57
event reconstruction algorithm, 280
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Förster mechanism, 82
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far detector, 259
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feedback (amplifier), 56
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function, 129
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gamma ray photons, 256
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generalization, 135
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geomagnetic field, 266
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hadronic scattering, 256
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particle flow approach, 30

particle identification, 97, 99, 100,
121, 122, 283

pattern recognition, 62
PbWO, 8
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