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Preface

In this textbook we cover the contents of an introductory statistics class, as typically
taught to undergraduate psychology, health or social science students. The book cov-
ers how to get started in jamovi as well as giving an introduction to data manipulation.
From a statistical perspective, the book discusses descriptive statistics and graphing
first, followed by chapters on probability theory, sampling and estimation, and null
hypothesis testing. After introducing the theory, the book covers the analysis of con-
tingency tables, correlation, t-tests, regression, ANOVA and factor analysis. Bayesian
statistics are touched on at the end of the book.

This book is an adaptation of DJ Navarro (2018). Learning statistics with R:
A tutorial for psychology students and other beginners. (Version 0.6). https:
//learningstatisticswithr.com/.

The jamovi version of this book was first released in 2018, as version 0.65. Versions
0.70 and 0.75 were released in subsequent years with corrections and additions; details
of the changes in earlier versions of the book can be found in the preface to version
0.75: https://github.com/user-attachments/files/18124061/learning-statistics-with-
jamovi-0.75.pdf. In that time, many people have contacted us asking for a hard copy
version of the book. To achieve this, and to preserve the open source attributes of the
book and materials, we have worked with Open Book Publishers in Cambridge, UK,
to release this updated version. Open Book Publishers are the leading independent
open access publisher of academic research in the Humanities and Social Sciences in
the UK. They are award-winning, not-for-profit, run by scholars, and committed to
making high-quality research freely available to readers around the world.

Note

A pdf version of the book is available for free download fromOpen Book Publish-
ers (https://www.openbookpublishers.com/books/10.11647/obp.0333). All the
data files you need can be accessed for free within jamovi via an add-on mod-
ule in the jamovi library. Or you can download the files from https://www.
learnstatswithjamovi.com.

If you spot any mistakes, or have any suggestions, please do let us know by raising an
issue at https://github.com/davidfoxcroft/lsj-book/issues.

David Foxcroft
January 1st, 2025
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Part I

Beginnings
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Chapter 1

Why do we learn statistics

Thou shalt not answer questionnaires
Or quizzes upon World Affairs,
Nor with compliance
Take any test. Thou shalt not sit
With statisticians nor commit
A social science
– W.H. Auden1

1.1 On the psychology of statistics

To the surprise of many students, statistics is a fairly significant part of a psychological
education. To the surprise of no-one, statistics is very rarely the favourite part of one’s
psychological education. After all, if you really loved the idea of doing statistics, you’d
probably be enrolled in a statistics class right now, not a psychology class. So, not sur-
prisingly, there’s a pretty large proportion of the student base that isn’t happy about
the fact that psychology has so much statistics in it. In view of this, I thought that the
right place to start might be to answer some of the more common questions that people
have about stats.

A big part of this issue at hand relates to the very idea of statistics. What is it? What’s
it there for? And why are scientists so bloody obsessed with it? These are all good
questions, when you think about it. So let’s start with the last one. As a group, scien-
tists seem to be bizarrely fixated on running statistical tests on everything. In fact, we
use statistics so often that we sometimes forget to explain to people why we do. It’s
a kind of article of faith among scientists – and especially social scientists – that your
findings can’t be trusted until you’ve done some stats. Undergraduate students might
be forgiven for thinking that we’re all completely mad, because no-one takes the time
to answer one very simple question:

Why do you do statistics? Why don’t scientists just use common sense?

5©2025 D.R. Foxcroft and D.J. Navarro,
CC BY-SA 4.0
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It’s a naive question in some ways, but most good questions are. There’s a lot of good
answers to it,2 but for my money, the best answer is a really simple one: we don’t trust
ourselves enough. We worry that we’re human, and susceptible to all of the biases,
temptations and frailties that humans suffer from. Much of statistics is basically a safe-
guard. Using “common sense” to evaluate evidence means trusting gut instincts, rely-
ing on verbal arguments and on using the raw power of human reason to come upwith
the right answer. Most scientists don’t think this approach is likely to work.

In fact, come to think of it, this sounds a lot like a psychological question to me, and
since I do work in a psychology department, it seems like a good idea to dig a little
deeper here. Is it really plausible to think that this “common sense” approach is very
trustworthy? Verbal arguments have to be constructed in language, and all languages
have biases – some things are harder to say than others, and not necessarily because
they’re false (e.g., quantum electrodynamics is a good theory, but hard to explain in
words). The instincts of our “gut” aren’t designed to solve scientific problems, they’re
designed to handle day-to-day inferences – and given that biological evolution is slower
than cultural change, we should say that they’re designed to solve the day-to-day prob-
lems for a different world than the one we live in. Most fundamentally, reasoning sensi-
bly requires people to engage in “induction”, making wise guesses and going beyond
the immediate evidence of the senses to make generalisations about the world. If you
think that you can do that without being influenced by various distractors, well, I have
a bridge in London I’d like to sell you. Heck, as the next section shows, we can’t even
solve “deductive” problems (ones where no guessing is required) without being influ-
enced by our pre-existing biases.

1.1.1 The curse of belief bias

People are mostly pretty smart. We’re smarter than the other species that we share
the planet with (though many people might disagree). Our minds are quite amazing
things, and we seem to be capable of the most incredible feats of thought and reason.
That doesn’t make us perfect though. And among the many things that psychologists
have shown over the years is that we really do find it hard to be neutral, to evaluate
evidence impartially andwithout being swayed by pre-existing biases. A good example
of this is thebelief bias effect in logical reasoning: if you ask people to decidewhether a
particular argument is logically valid (i.e., the conclusion would be true if the premises
were true), we tend to be influenced by the believability of the conclusion, even when
we shouldn’t. For instance, here’s a valid argument where the conclusion is believable:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And here’s a valid argument where the conclusion is not believable:

All addictive things are expensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)
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The logical structure of argument #2 is identical to the structure of argument #1, and
they’re both valid. However, in the second argument, there are good reasons to think
that premise 1 is incorrect, and as a result it’s probably the case that the conclusion is
also incorrect. But that’s entirely irrelevant to the topic at hand; an argument is deduc-
tively valid if the conclusion is a logical consequence of the premises. That is, a valid
argument doesn’t have to involve true statements.

On the other hand, here’s an invalid argument that has a believable conclusion:

All addictive things are expensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And finally, an invalid argument with an unbelievable conclusion:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

Now, suppose that people really are perfectly able to set aside their pre-existing biases
aboutwhat is true andwhat isn’t, and purely evaluate an argument on its logicalmerits.
We’d expect 100% of people to say that the valid arguments are valid, and 0% of people
to say that the invalid arguments are valid. So if you ran an experiment looking at this,
you’d expect to see data as in Table 1.1.

Table 1.1: Validity of arguments

conclusion feels
true conclusion feels false

argument is valid 100% say “valid” 100% say “valid”
argument is invalid 0% say “valid” 0% say “valid”

If the psychological data looked like this (or even a good approximation to this), we
might feel safe in just trusting our gut instincts. That is, it’d be perfectly okay just to
let scientists evaluate data based on their common sense, and not bother with all this
murky statistics stuff. However, you guys have taken psych classes, and by now you
probably know where this is going.

In a classic study, J. St. B. T. Evans et al. (1983) ran an experiment looking at exactly this.
What they found is that when pre-existing biases (i.e., beliefs) were in agreement with
the structure of the data, everything went the way you’d hope (Table 1.2). Not perfect,
but that’s pretty good. But look what happens when our intuitive feelings about the
truth of the conclusion run against the logical structure of the argument, see (Table 1.3).

Oh dear, that’s not as good. Apparently, when people are presented with a strong ar-
gument that contradicts our pre-existing beliefs, we find it pretty hard to even perceive
it to be a strong argument (people only did so 46% of the time). Even worse, when
people are presented with a weak argument that agrees with our pre-existing biases,
almost no-one can see that the argument is weak (people got that one wrong 92% of the
time!).3
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Table 1.2: Pre-existing biases and argument validity

conclusion feels
true conclusion feels false

argument is valid 92% say “valid”
argument is invalid 8% say “valid”

Table 1.3: Intuition and argument validity

conclusion feels
true conclusion feels false

argument is valid 92% say “valid” 46% say “valid”
argument is invalid 92% say “valid” 8% say “valid”

If you think about it, it’s not as if these data are horribly damning. Overall, people
did do better than chance at compensating for their prior biases, since about 60% of
people’s judgements were correct (you’d expect 50% by chance). Even so, if you were a
professional “evaluator of evidence”, and someone came along and offered you amagic
tool that improves your chances of making the right decision from 60% to (say) 95%,
you’d probably jump at it, right? Of course youwould. Thankfully, we actually do have
a tool that can do this. But it’s notmagic, it’s statistics. So that’s reason #1why scientists
love statistics. It’s just too easy for us to “believewhat wewant to believe”. So instead, if
we want to “believe in the data”, we’re going to need a bit of help to keep our personal
biases under control. That’s what statistics does, it helps keep us honest.

1.2 The cautionary tale of Simpson’s paradox

The following is a true story (I think!). In 1973, the University of California, Berkeley
had some worries about the admissions of students into their postgraduate courses.
Specifically, the thing that caused the problem was the gender breakdown of their ad-
missions (Table 1.4).

Table 1.4: Berkeley students by gender

Number of
applicants Percent admitted

Males 8442 44%
Females 4321 35%

Given this, they were worried about being sued!4 Given that there were nearly 13,000
applicants, a difference of 9% in admission rates between males and females is just way
too big to be a coincidence. Pretty compelling data, right? And if I were to say to you
that these data actually reflect a weak bias in favour of women (sort of!), you’d probably
think that I was either crazy or sexist.

Oddly, it’s actually sort of true. When people started looking more carefully at the
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admissions data they told a rather different story (Bickel et al., 1975). Specifically, when
they looked at it on a department by department basis, it turned out that most of the
departments actually had a slightly higher success rate for female applicants than for
male applicants. Table 1.5 shows the admission figures for the six largest departments
(with the names of the departments removed for privacy reasons):

Table 1.5: Berkeley students by gender for six largest departments

Males Females

Department Applicants
Percent
admitted Applicants

Percent
admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 7%

Remarkably, most departments had a higher rate of admissions for females than for
males! Yet the overall rate of admission across the university for females was lower
than for males. How can this be? How can both of these statements be true at the same
time?

Here’s what’s going on. Firstly, notice that the departments are not equal to one an-
other in terms of their admission percentages: some departments (e.g., A, B) tended
to admit a high percentage of the qualified applicants, whereas others (e.g., F) tended
to reject most of the candidates, even if they were high quality. So, among the six de-
partments shown above, notice that department A is the most generous, followed by
B, C, D, E and F in that order. Next, notice that males and females tended to apply to
different departments. If we rank the departments in terms of the total number of male
applicants, we getA>B>D>C>F>E (the “easy” departments are in bold). On thewhole,
males tended to apply to the departments that had high admission rates.

Now compare this to how the female applicants distributed themselves. Ranking the
departments in terms of the total number of female applicants produces a quite different
ordering C>E>D>F>A>B. In other words, what these data seem to be suggesting is that
the female applicants tended to apply to “harder” departments. And in fact, if we look
at Figure 1.1 we see that this trend is systematic, and quite striking. This effect is known
as Simpson’s paradox. It’s not common, but it does happen in real life, andmost people
are very surprised by it when they first encounter it, and many people refuse to even
believe that it’s real. It is very real. And while there are lots of very subtle statistical
lessons buried in there, I want to use it to make a much more important point: doing
research is hard, and there are lots of subtle, counter-intuitive traps lying in wait for
the unwary. That’s reason #2 why scientists love statistics, and why we teach research
methods. Because science is hard, and the truth is sometimes cunningly hidden in the
nooks and crannies of complicated data.
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Figure 1.1: The Berkeley 1973 college admissions data. This figure plots the admis-
sion rate for the 85 departments that had at least one female applicant, as a function
of the percentage of applicants that were female. The plot is a redrawing of Figure 1
from Bickel et al. (1975). Circles plot departments with more than 40 applicants; the
area of the circle is proportional to the total number of applicants. The crosses plot
departments with fewer than 40 applicants

Before leaving this topic entirely, I want to point out something else really critical that is
often overlooked in a research methods class. Statistics only solves part of the problem.
Remember that we started all this with the concern that Berkeley’s admissions pro-
cesses might be unfairly biased against female applicants. When we looked at the “ag-
gregated” data, it did seem like the university was discriminating against women, but
whenwe “disaggregate” and looked at the individual behaviour of all the departments,
it turned out that the actual departments were, if anything, slightly biased in favour of
women. The gender bias in total admissions was caused by the fact that women tended
to self-select for harder departments. From a legal perspective, thatwould probably put
the university in the clear. Postgraduate admissions are determined at the level of the
individual department, and there are good reasons to do that. At the level of individual
departments the decisions aremore or less unbiased (theweak bias in favour of females
at that level is small, and not consistent across departments). Since the university can’t
dictate which departments people choose to apply to, and the decision making takes
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place at the level of the department it can hardly be held accountable for any biases that
those choices produce.

That was the basis for my somewhat glib remarks earlier, but that’s not exactly the
whole story, is it? After all, if we’re interested in this from a more sociological and
psychological perspective, we might want to ask why there are such strong gender dif-
ferences in applications. Why domales tend to apply to engineeringmore often than fe-
males, and why is this reversed for the English department? Andwhy is it the case that
the departments that tend to have a female-application bias tend to have lower overall
admission rates than those departments that have a male-application bias? Might this
not still reflect a gender bias, even though every single department is itself unbiased?
It might. Suppose, hypothetically, that males preferred to apply to “hard sciences” and
females prefer “humanities”. And suppose further that the reason for why the human-
ities departments have low admission rates is because the government doesn’t want to
fund the humanities (Ph.D. places, for instance, are often tied to government funded
research projects). Does that constitute a gender bias? Or just an unenlightened view of
the value of the humanities? What if someone at a high level in the government cut the
humanities funds because they felt that the humanities are “useless chick stuff”. That
seems pretty blatantly gender biased. None of this falls within the purview of statis-
tics, but it matters to the research project. If you’re interested in the overall structural
effects of subtle gender biases, then you probably want to look at both the aggregated
and disaggregated data. If you’re interested in the decision making process at Berkeley
itself then you’re probably only interested in the disaggregated data.

In short there are a lot of critical questions that you can’t answer with statistics, but the
answers to those questions will have a huge impact on how you analyse and interpret
data. And this is the reason why you should always think of statistics as a tool to help
you learn about your data. No more and no less. It’s a powerful tool to that end, but
there’s no substitute for careful thought.

1.3 Statistics in psychology

I hope that the discussion above helped explain why science in general is so focused on
statistics. But I’m guessing that you have a lot more questions about what role statistics
plays in psychology, and specifically why psychology classes always devote so many
lectures to stats. So here’s my attempt to answer a few of them…

Why does psychology have so much statistics?

To be perfectly honest, there’s a few different reasons, some of which are better than
others. The most important reason is that psychology is a statistical science. What I
mean by that is that the “things” that we study are people. Real, complicated, gloriously
messy, infuriatingly perverse people. The “things” of physics include objects like elec-
trons, and while there are all sorts of complexities that arise in physics, electrons don’t
have minds of their own. They don’t have opinions, they don’t differ from each other
in weird and arbitrary ways, they don’t get bored in the middle of an experiment, and
they don’t get angry at the experimenter and then deliberately try to sabotage the data
set (not that I’ve ever done that!). At a fundamental level psychology is harder than
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physics.5 Basically, we teach statistics to you as psychologists because you need to be
better at stats than physicists. There’s actually a saying used sometimes in physics, to
the effect that “if your experiment needs statistics, you should have done a better ex-
periment”. They have the luxury of being able to say that because their objects of study
are pathetically simple in comparison to the vast mess that confronts social scientists.
And it’s not just psychology. Most social sciences are desperately reliant on statistics.
Not because we’re bad experimenters, but because we’ve picked a harder problem to
solve. We teach you stats because you really, really need it.

Can’t someone else do the statistics?

To some extent, but not completely. It’s true that you don’t need to become a fully
trained statistician just to do psychology, but you do need to reach a certain level of
statistical competence. In my view, there’s three reasons that every psychological re-
searcher ought to be able to do basic statistics:

• Firstly, there’s the fundamental reason: statistics is deeply intertwined with re-
search design. If you want to be good at designing psychological studies, you
need to at the very least understand the basics of stats.

• Secondly, if youwant to be good at the psychological side of the research, then you
need to be able to understand the psychological literature, right? But almost every
paper in the psychological literature reports the results of statistical analyses. So if
you really want to understand the psychology, you need to be able to understand
what other people did with their data. And that means understanding a certain
amount of statistics.

• Thirdly, there’s a big practical problem with being dependent on other people
to do all your statistics: statistical analysis is expensive. If you ever get bored and
want to look up howmuch the Australian government charges for university fees,
you’ll notice something interesting: statistics is designated as a “national priority”
category, and so the fees are much, much lower than for any other area of study.
This is because there’s a massive shortage of statisticians out there. So, from your
perspective as a psychological researcher, the laws of supply and demand aren’t
exactly on your side here! As a result, in almost any real-life situation where
you want to do psychological research, the cruel facts will be that you don’t have
enoughmoney to afford a statistician. So the economics of the situationmean that
you have to be pretty self-sufficient.

Note that a lot of these reasons generalise beyond researchers. If you want to be a prac-
ticing psychologist and stay on top of the field, it helps to be able to read the scientific
literature, which relies pretty heavily on statistics.

I don’t care about jobs, research or clinical work. Do I need statistics?

Okay, now you’re just messing with me. Still, I think it should matter to you too. Statis-
tics should matter to you in the same way that statistics should matter to everyone. We
live in the 21st century, and data are everywhere. Frankly, given the world in which we
live these days, a basic knowledge of statistics is pretty damn close to a survival tool!
Which is the topic of the next section.
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1.4 Statistics in everyday life

We are drowning in information,
but we are starved for knowledge
– Various authors, original probably John Naisbitt

When I startedwriting upmy lecture notes I took the 20most recent news articles posted
to the ABC News website. Of those articles, eight of them included a discussion of a
statistical topic and six of those made a mistake. The most common error was failing to
report baseline data (e.g., the articlementions that 5%of people in situationXhave some
characteristic Y, but doesn’t say how common the characteristic is for everyone else!).
The point I’m trying to make here isn’t that journalists are bad at statistics (though they
almost always are), it’s that a basic knowledge of statistics is very helpful for trying to
figure out when someone else is either making a mistake or even lying to you. In fact,
one of the biggest things that a knowledge of statistics does to you is cause you to get
angry at the newspaper or the internet on a far more frequent basis. You can find a
good example of this in Section 4.1.5 in Chapter 4. In later versions of this book I’ll try
to include more anecdotes along those lines.

1.5 There’s more to research methods than statistics

So far, most of what I’ve talked about is statistics, and so you’d be forgiven for thinking
that statistics is all I care about. To be fair, you wouldn’t be far wrong, but research
methodology is a broader concept than statistics. So most research methods courses
will cover topics that relate much more to the pragmatics of research design, and in
particular the issues that you encounterwhen trying to do researchwith humans. How-
ever, about 99% of student fears relate to the statistics part of the course, so I’ve focused
on the stats in this discussion, and hopefully I’ve convinced you that statistics matter,
and more importantly, should not to be feared. That said, it’s typical for introduc-
tory research methods classes to be very stats heavy. This is not (usually) because the
lecturers are evil people. Quite the contrary, in fact. Introductory classes focus a lot
on the statistics because you almost always find yourself needing statistics before you
need other research methods training. Why? Because almost all your assignments in
other classes will rely on statistical training, to a greater extent than they rely on other
methodological tools. It’s not common for undergraduate assignments to require you
to design your own study from the ground up (in which case you would need to know
a lot about research design), but it is common for assignments to ask you to analyse and
interpret data that were collected in a study that someone else designed (in which case
you need statistics). In that sense, from the perspective of enabling you to do well in all
your other classes, statistics is more urgent.

But note that “urgent” is different from “important” – they bothmatter. I really dowant
to stress that research design is just as important as data analysis, and this book does
spend some time on it. However, while statistics has a kind of universality, and provides
a set of core tools that are useful for most types of psychological and social research, the
research methods side isn’t quite so universal. There are some general principles that
everyone should think about, but a lot of research design is idiosyncratic and is specific
to the area of research that you want to engage in.
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Chapter 2

A brief introduction to research
design

To consult the statistician after an experiment is finished is often merely to ask him
to conduct a post mortem examination. He can perhaps say what the experiment
died of.
– Sir Ronald Fisher6

In this chapter, we’re going to start thinking about the basic ideas that go into design-
ing a study, collecting data, checking whether your data collection works, and so on. It
won’t give you enough information to allow you to design studies of your own, but it
will give you a lot of the basic tools that you need to assess the studies done by other
people. However, since the focus of this book is much more on data analysis than on
data collection, I’m only giving a very brief overview. Note that this chapter is “spe-
cial” in two ways. Firstly, it’s much more psychology specific than the later chapters.
Secondly, it focuses much more heavily on the scientific problem of research method-
ology, and much less on the statistical problem of data analysis. Nevertheless, the two
problems are related to one another, so it’s traditional for stats textbooks to discuss the
problem in a little detail. This chapter relies heavily on Campbell & Stanley (1963) and
Stevens (1946) for the discussion of scales of measurement.

2.1 Introduction to psychological measurement

The first thing to understand is data collection can be thought of as a kind of mea-
surement. That is, what we’re trying to do here is measure something about human
behaviour or the human mind. What do I mean by “measurement”?

2.1.1 Some thoughts about psychological measurement

Measurement itself is a subtle concept, but basically it comes down to finding some
way of assigning numbers, or labels, or some other kind of well-defined descriptions,
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to “stuff”. So, any of the following would count as a psychological measurement:

• My age is 33 years.
• I do not like anchovies.
• My chromosomal gender is male.
• My self-identified gender is female.

In the short list above, the bolded part is “the thing to be measured”, and the italicised
part is “the measurement itself”. In fact, we can expand on this a little bit, by thinking
about the set of possible measurements that could have arisen in each case:

• My age (in years) could have been 0, 1, 2, 3 …, etc. The upper bound on what my
age could possibly be is a bit fuzzy, but in practice you’d be safe in saying that the
largest possible age is 150, since no human has ever lived that long.

• When asked if I like anchovies, I might have said that I do, or I do not, or I have no
opinion, or I sometimes do.

• My chromosomal gender is almost certainly going to be male (𝑋𝑌 ) or female
(𝑋𝑋), but there are a few other possibilities. I could also haveKlinfelter’s syndrome
(𝑋𝑋𝑌 ), which is more similar to male than to female. And I imagine there are
other possibilities too.

• My self-identified gender is also very likely to be male or female, but it doesn’t
have to agree with my chromosomal gender. I may also choose to identify with
neither, or to explicitly call myself transgender.

As you can see, for some things (like age) it seems fairly obviouswhat the set of possible
measurements should be, whereas for other things it gets a bit tricky. But I want to
point out that even in the case of someone’s age it’s much more subtle than this. For
instance, in the example above I assumed that it was okay to measure age in years. But
if you’re a developmental psychologist, that’s way too crude, and so you often measure
age in years and months (if a child is 2 years and 11 months this is usually written as
“2;11”). If you’re interested in newborns you might want to measure age in days since
birth, maybe even hours since birth. In other words, the way in which you specify the
allowable measurement values is important.

Looking at this a bit more closely, you might also realise that the concept of “age” isn’t
actually all that precise. In general, when we say “age” we implicitly mean “the length
of time since birth”. But that’s not always the right way to do it. Suppose you’re in-
terested in how newborn babies control their eye movements. If you’re interested in
kids that young, you might also start to worry that “birth” is not the only meaningful
point in time to care about. If Baby Alice is born 3 weeks premature and Baby Bianca is
born 1 week late, would it really make sense to say that they are the “same age” if we
encountered them “2 hours after birth”? In one sense, yes. By social convention we use
birth as our reference point for talking about age in everyday life, since it defines the
amount of time the person has been operating as an independent entity in the world.
But from a scientific perspective that’s not the only thingwe care about. Whenwe think
about the biology of human beings, it’s often useful to think of ourselves as organisms
that have been growing andmaturing since conception, and from that perspectiveAlice
and Bianca aren’t the same age at all. So you might want to define the concept of “age”
in two different ways: the length of time since conception and the length of time since
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birth. When dealing with adults it won’t makemuch difference, but when dealing with
newborns it might.

Moving beyond these issues, there’s the question of methodology. What specific “mea-
surement method” are you going to use to find out someone’s age? As before, there are
lots of different possibilities:

• You could just ask people “how old are you?” The method of self-report is fast,
cheap and easy. But it only works with people old enough to understand the
question, and some people lie about their age.

• You could ask an authority (e.g., a parent) “how old is your child?” This method
is fast, and when dealing with kids it’s not all that hard since the parent is almost
always around. It doesn’t work as well if you want to know “age since concep-
tion”, since a lot of parents can’t say for sure when conception took place. For
that, you might need a different authority (e.g., an obstetrician).

• You could look up official records, for example birth or death certificates. This is
a time consuming and frustrating endeavour, but it has its uses (e.g., if the person
is now dead).

2.1.2 Operationalisation: defining your measurement

All of the ideas discussed in the previous section relate to the concept of operational-
isation. To be a bit more precise about the idea, operationalisation is the process by
which we take a meaningful but somewhat vague concept and turn it into a precise
measurement. The process of operationalisation can involve several different things:

• Being precise about what you are trying to measure. For instance, does “age”
mean “time since birth” or “time since conception” in the context of your re-
search?

• Determining what method you will use to measure it. Will you use self-report to
measure age, ask a parent, or look up an official record? If you’re using self-report,
how will you phrase the question?

• Defining the set of allowable values that the measurement can take. Note that
these values don’t always have to be numerical, though they often are. When
measuring age the values are numerical, but we still need to think carefully about
what numbers are allowed. Do we want age in years, years and months, days,
or hours? For other types of measurements (e.g., gender) the values aren’t nu-
merical. But, just as before, we need to think about what values are allowed. If
we’re asking people to self-report their gender, what options do we allow them
to choose between? Is it enough to allow only “male” or “female”? Do you need
an “other” option? Or should we not give people specific options and instead let
them answer in their own words? And if you open up the set of possible values
to include all verbal response, how will you interpret their answers?

Operationalisation is a tricky business, and there’s no “one, true way” to do it. The way
in which you choose to operationalise the informal concept of “age” or “gender” into
a formal measurement depends on what you need to use the measurement for. Often
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you’ll find that the community of scientists who work in your area have some fairly
well-established ideas for how to go about it. In other words, operationalisation needs
to be thought through on a case-by-case basis. Nevertheless, while there are a lot of
issues that are specific to each individual research project, there are some aspects to it
that are pretty general.

Before moving on I want to take a moment to clear up our terminology, and in the
process introduce one more term. Here are four different things that are closely related
to each other:

• A theoretical construct. This is the thing that you’re trying to take ameasurement
of, like “age”, “gender” or an “opinion”. A theoretical construct can’t be directly
observed, and often they’re actually a bit vague.

• A measure. The measure refers to the method or the tool that you use to make
your observations. A question in a survey, a behavioural observation or a brain
scan could all count as a measure.

• An operationalisation. The term “operationalisation” refers to the logical con-
nection between the measure and the theoretical construct, or to the process by
which we try to derive a measure from a theoretical construct.

• A variable. Finally, a new term. A variable is what we end up with when we
apply our measure to something in the world. That is, variables are the actual
“data” that we end up with in our data sets.

In practice, even scientists tend to blur the distinction between these things, but it’s very
helpful to try to understand the differences.

2.2 Scales of measurement

As the previous section indicates, the outcome of a psychologicalmeasurement is called
a variable. But not all variables are of the same qualitative type and so it’s useful to
understand what types there are. A very useful concept for distinguishing between
different types of variables is what’s known as scales of measurement.

2.2.1 Nominal scale

A nominal scale variable (also referred to as a categorical variable) is one in which
there is no particular relationship between the different possibilities. For these kinds of
variables it doesn’t make any sense to say that one of them is “bigger” or “better” than
any other one, and it absolutely doesn’t make any sense to average them. The classic
example for this is “eye colour”. Eyes can be blue, green or brown, amongst other
possibilities, but none of them is any “bigger” than any other one. As a result, it would
feel really weird to talk about an “average eye colour”. Similarly, gender is nominal too:
male isn’t better or worse than female. Neither does it make sense to try to talk about an
“average gender”. In short, nominal scale variables are those for which the only thing
you can say about the different possibilities is that they are different. That’s it.

Let’s take a slightly closer look at this. Suppose I was doing research on how people
commute to and fromwork. One variable I would have tomeasure would be what kind
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of transportation people use to get to work. This “transport type” variable could have
quite a few possible values, including: “train”, “bus”, “car”, “bicycle”. For now, let’s
suppose that these four are the only possibilities. Then imagine that I ask 100 people
how they got to work today, with this result (Table 2.1).

Table 2.1: How did 100 people get to work today

Transportation Number of people
(1) Train 12
(2) Bus 30
(3) Car 48

(4) Bicycle 10

So, what’s the average transportation type? Obviously, the answer here is that there
isn’t one. It’s a silly question to ask. You can say that travel by car is the most popular
method, and travel by train is the least popular method, but that’s about all. Similarly,
notice that the order inwhich I list the options isn’t very interesting. I could have chosen
to display the data like in Table 2.2.

Table 2.2: How did 100 people get to work today, a different view

Transportation Number of people
(3) Car 48
(1) Train 12
(4) Bicycle 10
(2) Bus 30

…and nothing really changes.

2.2.2 Ordinal scale

Ordinal scale variables have a bit more structure than nominal scale variables, but not
by a lot. An ordinal scale variable is one in which there is a natural, meaningful way
to order the different possibilities, but you can’t do anything else. The usual example
given of an ordinal variable is “finishing position in a race”. You can say that the person
who finished first was faster than the person who finished second, but you do not know
how much faster. As a consequence we know that 1st > 2nd, and we know that 2nd >
3rd, but the difference between 1st and 2nd might be much larger than the difference
between 2nd and 3rd.

Here’s a more psychologically interesting example. Suppose I’m interested in people’s
attitudes to climate change. I then go and ask some people to pick the statement (from
four listed statements) that most closely matches their beliefs:

1. Temperatures are rising because of human activity
2. Temperatures are rising but we don’t know why
3. Temperatures are rising but not because of humans
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4. Temperatures are not rising

Notice that these four statements actually do have a natural ordering, in terms of “the
extent to which they agree with the current science”. Statement 1 is a close match,
statement 2 is a reasonable match, statement 3 isn’t a very good match, and statement
4 is in strong opposition to current science. So, in terms of the thing I’m interested in
(the extent to which people endorse the science), I can order the items as 1 > 2 > 3 >
4. Since this ordering exists, it would be very weird to list the options like this…

1. Temperatures are rising but not because of humans
2. Temperatures are rising because of human activity
3. Temperatures are not rising
4. Temperatures are rising but we don’t know why

…because it seems to violate the natural “structure” to the question.

So, let’s suppose I asked 100 people these questions, and got the answers shown in
Table 2.3.

Table 2.3: Attitudes to climate change

Response Number
(1) Temperatures are rising because

of human activity 51
(2) Temperatures are rising but we

do not know why 20
(3) Temperatures are rising but not

because of humans 10
(4) Temperatures are not rising 19

When analysing these data it seems quite reasonable to try to group (1), (2) and (3)
together, and say that 81 out of 100 people were willing to at least partially endorse the
science. And it’s also quite reasonable to group (2), (3) and (4) together and say that
49 out of 100 people registered at least some disagreement with the dominant scientific
view. However, it would be entirely bizarre to try to group (1), (2) and (4) together and
say that 90 out of 100 people said… what? There’s nothing sensible that allows you to
group those responses together at all.

That said, notice that while we can use the natural ordering of these items to construct
sensible groupings, what we can’t do is average them. For instance, in my simple ex-
ample here, the “average” response to the question is 1.97. If you can tell me what that
means I’d love to know, because it seems like gibberish to me!

2.2.3 Interval scale

In contrast to nominal and ordinal scale variables, interval scale and ratio scale vari-
ables are variables for which the numerical value is genuinely meaningful. In the case
of interval scale variables the differences between the numbers are interpretable, but the
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variable doesn’t have a “natural” zero value. A good example of an interval scale vari-
able is measuring temperature in degrees celsius. For instance, if it was 15∘ yesterday
and 18∘ today, then the 3∘ difference between the two is genuinely meaningful. More-
over, that 3∘ difference is exactly the same as the 3∘ difference between 7∘ and 10∘. In
short, addition and subtraction are meaningful for interval scale variables.7

However, notice that the 0∘ does not mean “no temperature at all”. It actually means
“the temperature at which water freezes”, which is pretty arbitrary. As a consequence
it becomes pointless to try to multiply and divide temperatures. It is wrong to say that
20∘ is twice as hot as 10∘, just as it is weird and meaningless to try to claim that 20∘ is
negative two times as hot as -10∘.

Again, lets look at a more psychological example. Suppose I’m interested in looking at
how the attitudes of first-year university students have changed over time. Obviously,
I’m going to want to record the year in which each student started. This is an interval
scale variable. A student who started in 2003 did arrive 5 years before a student who
started in 2008. However, it would be completely daft for me to divide 2008 by 2003 and
say that the second student started “1.0024 times later” than the first one. That doesn’t
make any sense at all.

2.2.4 Ratio scale

The fourth and final type of variable to consider is a ratio scale variable, in which zero
really means zero, and it’s okay to multiply and divide. A good psychological example
of a ratio scale variable is response time (RT). In a lot of tasks it’s very common to record
the amount of time somebody takes to solve a problem or answer a question, because
it’s an indicator of how difficult the task is. Suppose that Alan takes 2.3 seconds to
respond to a question, whereas Ben takes 3.1 seconds. Aswith an interval scale variable,
addition and subtraction are both meaningful here. Ben really did take 3.1 - 2.3 = 0.8
seconds longer than Alan did. However, notice that multiplication and division also
make sense here too: Ben took 3.1/2.3 = 1.35 times as long as Alan did to answer the
question. And the reason why you can do this is that, for a ratio scale variable such as
RT, “zero seconds” really does mean “no time at all”.

2.2.5 Continuous versus discrete variables

There’s a second kind of distinction that you need to be aware of, regarding what types
of variables you can run into. This is the distinction between continuous variables and
discrete variables (Table 2.4). The difference between these is as follows:

• A continuous variable is one in which, for any two values that you can think of,
it’s always logically possible to have another value in between.

• A discrete variable is, in effect, a variable that isn’t continuous. For a discrete
variable it’s sometimes the case that there’s nothing in the middle.

These definitions probably seem a bit abstract, but they’re pretty simple once you see
some examples. For instance, response time is continuous. If Alan takes 3.1 seconds
and Ben takes 2.3 seconds to respond to a question, then Cameron’s response time will
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lie in between if he took 3.0 seconds. And of course it would also be possible for David
to take 3.031 seconds to respond, meaning that his RT would lie in between Cameron’s
and Alan’s. And while in practice it might be impossible to measure RT that precisely,
it’s certainly possible in principle. Because we can always find a new value for RT in
between any two other ones we regard RT as a continuous measure.

Table 2.4: The relationship between the scales of measurement and the dis-
crete/continuity distinction. Cells with a tick mark correspond to things that are pos-
sible

continuous discrete
nominal ✓
ordinal ✓
interval ✓ ✓
ratio ✓ ✓

Discrete variables occur when this rule is violated. For example, nominal scale vari-
ables are always discrete. There isn’t a type of transportation that falls “in between”
trains and bicycles, not in the strict mathematical way that 2.3 falls in between 2 and 3.
So transportation type is discrete. Similarly, ordinal scale variables are always discrete.
Although “2nd place” does fall between “1st place” and “3rd place”, there’s nothing
that can logically fall in between “1st place” and “2nd place”. Interval scale and ra-
tio scale variables can go either way. As we saw above, response time (a ratio scale
variable) is continuous. Temperature in degrees celsius (an interval scale variable) is
also continuous. However, the year you went to school (an interval scale variable) is
discrete. There’s no year in between 2002 and 2003. The number of questions you get
right on a true-or-false test (a ratio scale variable) is also discrete. Since a true-or-false
question doesn’t allow you to be “partially correct”, there’s nothing in between 5/10
and 6/10. Table 2.4 summarises the relationship between the scales of measurement
and the discrete/continuity distinction. Cells with a tick mark correspond to things
that are possible. I’m trying to hammer this point home, because (a) some textbooks
get this wrong, and (b) people very often say things like “discrete variable” when they
mean “nominal scale variable”. It’s very unfortunate.

2.2.6 Some complexities

Okay, I know you’re going to be shocked to hear this, but the real world is muchmessier
than this little classification scheme suggests. Very few variables in real life actually fall
into these nice neat categories, so you need to be kind of careful not to treat the scales
of measurement as if they were hard and fast rules. It doesn’t work like that. They’re
guidelines, intended to help you think about the situations in which you should treat
different variables differently. Nothing more.

So let’s take a classic example, maybe the classic example, of a psychological measure-
ment tool: the Likert scale. The humble Likert scale is the bread and butter tool of all
survey design. You yourself have filled out hundreds, maybe thousands, of them and
odds are you’ve even used one yourself. Suppose we have a survey question that looks
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like this:

Which of the following best describes your opinion of the statement that “all
pirates are freaking awesome”?

and then the options presented to the participant are these:

1. Strongly disagree
2. Disagree
3. Neither agree nor disagree
4. Agree
5. Strongly agree

This set of items is an example of a 5-point Likert scale, in which people are asked to
choose among one of several (in this case 5) clearly ordered possibilities, generally with
a verbal descriptor given in each case. However, it’s not necessary that all items are
explicitly described. This is a perfectly good example of a 5-point Likert scale too:

1. Strongly disagree
2.
3.
4.
5. Strongly agree

Likert scales are very handy, if somewhat limited, tools. The question is what kind of
variable are they? They’re obviously discrete, since you can’t give a response of 2.5.
They’re obviously not nominal scale, since the items are ordered; and they’re not ratio
scale either, since there’s no natural zero.

But are they ordinal scale or interval scale? One argument says that we can’t really
prove that the difference between “strongly agree” and “agree” is of the same size as
the difference between “agree” and “neither agree nor disagree”. In fact, in everyday
life it’s pretty obvious that they’re not the same at all. So this suggests that we ought to
treat Likert scales as ordinal variables. On the other hand, in practice most participants
do seem to take the whole “on a scale from 1 to 5” part fairly seriously, and they tend
to act as if the differences between the five response options were fairly similar to one
another. As a consequence, a lot of researchers treat Likert scale data as interval scale.8
It’s not interval scale, but in practice it’s close enough that we usually think of it as being
quasi-interval scale.

2.3 Assessing the reliability of a measurement

At this point we’ve thought a little bit about how to operationalise a theoretical con-
struct and thereby create a psychological measure. And we’ve seen that by applying
psychological measures we end up with variables, which can come in many different
types. At this point, we should start discussing the obvious question: is the measure-
ment any good? We’ll do this in terms of two related ideas: reliability and validity. Put
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simply, the reliability of a measure tells you how precisely you are measuring some-
thing, whereas the validity of a measure tells you how accurate the measure is. In this
section we’ll talk about reliability; we’ll talk about validity in the section on Assessing
the validity of a study.

Reliability is actually a very simple concept. It refers to the repeatability or consistency
of your measurement. The measurement of myweight by means of a “bathroom scale”
is very reliable. If I step on and off the scales over and over again, it’ll keep giving
me the same answer. Measuring my intelligence by means of “asking my mum” is
very unreliable. Some days she tells me I’m a bit thick, and other days she tells me
I’m a complete idiot. Notice that this concept of reliability is different to the question
of whether the measurements are correct (the correctness of a measurement relates to
it’s validity). If I’m holding a sack of potatoes when I step on and off the bathroom
scales the measurement will still be reliable: it will always give me the same answer.
However, this highly reliable answer doesn’tmatch up tomy trueweight at all, therefore
it’s wrong. In technical terms, this is a reliable but invalid measurement. Similarly,
whilst my mum’s estimate of my intelligence is a bit unreliable, she might be right.
Maybe I’m just not too bright, and so while her estimate of my intelligence fluctuates
pretty wildly from day to day, it’s basically right. That would be an unreliable but valid
measure. Of course, if my mum’s estimates are too unreliable it’s going to be very hard
to figure out which one of her many claims about my intelligence is actually the right
one. To some extent, then, a very unreliable measure tends to end up being invalid for
practical purposes; so much so that many people would say that reliability is necessary
(but not sufficient) to ensure validity.

Okay, now that we’re clear on the distinction between reliability and validity, let’s have
a think about the different ways in which we might measure reliability:

• Test-retest reliability. This relates to consistency over time. If we repeat the mea-
surement at a later date do we get the same answer?

• Inter-rater reliability. This relates to consistency across people. If someone else
repeats the measurement (e.g., someone else rates my intelligence) will they pro-
duce the same answer?

• Parallel forms reliability. This relates to consistency across theoretically-
equivalent measurements. If I use a different set of bathroom scales to measure
my weight does it give the same answer?

• Internal consistency reliability. If a measurement is constructed from lots of
different parts that perform similar functions (e.g., a personality questionnaire
result is added up across several questions) do the individual parts tend to give
similar answers. We’ll look at this particular form of reliability later in the book,
in Section 15.5.

Not all measurements need to possess all forms of reliability. For instance, educational
assessment can be thought of as a form of measurement. One of the subjects that I
teach, Computational Cognitive Science, has an assessment structure that has a research
component and an exam component (plus other things). The exam component is in-
tended to measure something different from the research component, so the assessment
as a whole has low internal consistency. However, within the exam there are several
questions that are intended to (approximately)measure the same things, and those tend
to produce similar outcomes. So the exam on its own has a fairly high internal consis-
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tency. Which is as it should be. You should only demand reliability in those situations
where you want to be measuring the same thing!

2.4 The “role” of variables: predictors and outcomes

I’ve got one last piece of terminology that I need to explain to you before moving away
from variables. Normally, when we do some research we end up with lots of different
variables. Then, when we analyse our data, we usually try to explain some of the vari-
ables in terms of some of the other variables. It’s important to keep the two roles “thing
doing the explaining” and “thing being explained” distinct. So let’s be clear about this
now. First, we might as well get used to the idea of using mathematical symbols to
describe variables, since it’s going to happen over and over again. Let’s denote the “to
be explained” variable 𝑌 , and denote the variables “doing the explaining” as 𝑋1, 𝑋2,
etc.

When we are doing an analysis we have different names for 𝑋 and 𝑌 , since they play
different roles in the analysis. The classical names for these roles are independent vari-
able (IV) and dependent variable (DV). The IV is the variable that you use to do the
explaining (i.e., 𝑋) and the DV is the variable being explained (i.e., 𝑌 ). The logic be-
hind these names goes like this: if there really is a relationship between 𝑋 and 𝑌 then
we can say that 𝑌 depends on 𝑋, and if we have designed our study “properly” then
𝑋 isn’t dependent on anything else. However, I personally find those names horrible.
They’re hard to remember and they’re highly misleading because (a) the IV is never ac-
tually “independent of everything else”, and (b) if there’s no relationship then the DV
doesn’t actually depend on the IV. And in fact, because I’m not the only person who
thinks that IV and DV are just awful names, there are a number of alternatives that I
find more appealing. The terms that I’ll use in this book are predictors and outcomes.
The idea here is that what you’re trying to do is use 𝑋 (the predictors) to make guesses
about 𝑌 (the outcomes).9 This is summarised in Table 2.5.

Table 2.5: Variable distinctions

role of the variable classical name modern name

“to be explained”
dependent variable

(DV) outcome

“to do the explaining”
independent
variable (IV) predictor

2.5 Experimental and non-experimental research

One of the big distinctions that you should be aware of is the distinction between “ex-
perimental research” and “non-experimental research”. When we make this distinc-
tion, what we’re really talking about is the degree of control that the researcher exer-
cises over the people and events in the study.
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2.5.1 Experimental research

The key feature of experimental research is that the researcher controls all aspects of
the study, especially what participants experience during the study. In particular, the
researcher manipulates or varies the predictor variables (IVs) but allows the outcome
variable (DV) to vary naturally. The idea here is to deliberately vary the predictors (IVs)
to see if they have any causal effects on the outcomes. Moreover, in order to ensure
that there’s no possibility that something other than the predictor variables is causing
the outcomes, everything else is kept constant or is in some other way “balanced”, to
ensure that they have no effect on the results. In practice, it’s almost impossible to
think of everything else that might have an influence on the outcome of an experiment,
much less keep it constant. The standard solution to this is randomisation. That is,
we randomly assign people to different groups, and then give each group a different
treatment (i.e., assign them different values of the predictor variables). We’ll talk more
about randomisation later, but for now it’s enough to say that what randomisation does
is minimise (but not eliminate) the possibility that there are any systematic difference
between groups.

Let’s consider a very simple, completely unrealistic and grossly unethical example.
Suppose you wanted to find out if smoking causes lung cancer. One way to do this
would be to find people who smoke and people who don’t smoke and look to see if
smokers have a higher rate of lung cancer. This is not a proper experiment, since the
researcher doesn’t have a lot of control over who is and isn’t a smoker. And this re-
ally matters. For instance, it might be that people who choose to smoke cigarettes also
tend to have poor diets, or maybe they tend to work in asbestos mines, or whatever.
The point here is that the groups (smokers and non-smokers) actually differ on lots of
things, not just smoking. So it might be that the higher incidence of lung cancer among
smokers is caused by something else, and not by smoking per se. In technical terms
these other things (e.g., diet) are called “confounders”, and we’ll talk about those in
just a moment.

In the meantime, let’s consider what a proper experiment might look like. Recall that
our concern was that smokers and non-smokers might differ in lots of ways. The solu-
tion, as long as you have no ethics, is to control who smokes and who doesn’t. Specif-
ically, if we randomly divide young non-smokers into two groups and force half of
them to become smokers, then it’s very unlikely that the groups will differ in any re-
spect other than the fact that half of them smoke. That way, if our smoking group gets
cancer at a higher rate than the non-smoking group, we can feel pretty confident that
(a) smoking does cause cancer and (b) we’re murderers.

2.5.2 Non-experimental research

Non-experimental research is a broad term that covers “any study in which the re-
searcher doesn’t have as much control as they do in an experiment”. Obviously, control
is something that scientists like to have, but as the previous example illustrates there
are lots of situations in which you can’t or shouldn’t try to obtain that control. Since
it’s grossly unethical (and almost certainly criminal) to force people to smoke in order
to find out if they get cancer, this is a good example of a situation in which you really
shouldn’t try to obtain experimental control. But there are other reasons too. Even leav-
ing aside the ethical issues, our “smoking experiment” does have a fewother issues. For
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instance, when I suggested that we “force” half of the people to become smokers, I was
talking about starting with a sample of non-smokers, and then forcing them to become
smokers. While this sounds like the kind of solid, evil experimental design that a mad
scientist would love, it might not be a very sound way of investigating the effect in the
real world. For instance, suppose that smoking only causes lung cancer when people
have poor diets, and suppose also that people who normally smoke do tend to have
poor diets. However, since the “smokers” in our experiment aren’t “natural” smokers
(i.e., we forced non-smokers to become smokers, but they didn’t take on all of the other
normal, real-life characteristics that smokers might tend to possess) they probably have
better diets. As such, in this silly example they wouldn’t get lung cancer and our ex-
periment will fail, because it violates the structure of the “natural” world (the technical
name for this is an “artefactual” result).

One distinction worth making between two types of non-experimental research is the
difference between quasi-experimental research and case studies. The example I dis-
cussed earlier, inwhichwewanted to examine incidence of lung cancer among smokers
and non-smokers without trying to control who smokes and who doesn’t, is a quasi-
experimental design. That is, it’s the same as an experiment but we don’t control the
predictors (IVs). We can still use statistics to analyse the results, but we have to be a lot
more careful and circumspect.

The alternative approach, case studies, aims to provide a very detailed description of
one or a few instances. In general, you can’t use statistics to analyse the results of case
studies and it’s usually very hard to draw any general conclusions about “people in
general” from a few isolated examples. However, case studies are very useful in some
situations. Firstly, there are situations where you don’t have any alternative. Neuropsy-
chology has this issue a lot. Sometimes, you just can’t find a lot of people with brain
damage in a specific brain area, so the only thing you can do is describe those cases that
you do have in as much detail and with as much care as you can. However, there’s also
some genuine advantages to case studies. Because you don’t have as many people to
study you have the ability to invest lots of time and effort trying to understand the spe-
cific factors at play in each case. This is a very valuable thing to do. As a consequence,
case studies can complement the more statistically-oriented approaches that you see in
experimental and quasi-experimental designs. We won’t talk much about case studies
in this book, but they are nevertheless very valuable tools!

2.6 Assessing the validity of a study

More than any other thing, a scientist wants their research to be “valid”. The conceptual
idea behind validity is very simple. Can you trust the results of your study? If not, the
study is invalid. However, whilst it’s easy to state, in practice it’s much harder to check
validity than it is to check reliability. And in all honesty, there’s no precise, clearly
agreed upon notion of what validity actually is. In fact, there are lots of different kinds
of validity, each of which raises its own issues. And not all forms of validity are relevant
to all studies. I’m going to talk about five different types of validity:

• Internal validity.
• External validity.
• Construct validity.
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• Face validity.
• Ecological validity.

First, a quick guide as to what matters here. (1) Internal and external validity are the
most important, since they tie directly to the fundamental question of whether your
study really works. (2) Construct validity asks whether you’re measuring what you
think you are. (3) Face validity isn’t terribly important except insofar as you care about
“appearances”. (4) Ecological validity is a special case of face validity that corresponds
to a kind of appearance that you might care about a lot.

2.6.1 Internal validity

Internal validity refers to the extent to which you are able to draw the correct conclu-
sions about the causal relationships between variables. It’s called “internal” because it
refers to the relationships between things “inside” the study. Let’s illustrate the concept
with a simple example. Suppose you’re interested in finding out whether a university
education makes you write better. To do so, you get a group of first year students, ask
them to write a 1000 word essay, and count the number of spelling and grammatical
errors they make. Then you find some third-year students, who obviously have had
more of a university education than the first-years, and repeat the exercise. And let’s
suppose it turns out that the third-year students produce fewer errors. And so you
conclude that a university education improves writing skills. Right? Except that the
big problem with this experiment is that the third-year students are older and they’ve
had more experience with writing things. So it’s hard to know for sure what the causal
relationship is. Do older people write better? Or people who have had more writing
experience? Or people who have had more education? Which of the above is the true
cause of the superior performance of the third-years? Age? Experience? Education?
You can’t tell. This is an example of a failure of internal validity, because your study
doesn’t properly tease apart the causal relationships between the different variables.

2.6.2 External validity

External validity relates to the generalisability or applicability of your findings. That
is, to what extent do you expect to see the same pattern of results in “real life” as you
saw in your study. To put it a bit more precisely, any study that you do in psychology
will involve a fairly specific set of questions or tasks, will occur in a specific environ-
ment, and will involve participants that are drawn from a particular subgroup (disap-
pointingly often it is college students!). So, if it turns out that the results don’t actually
generalise or apply to people and situations beyond the ones that you studied, then
what you’ve got is a lack of external validity.
The classic example of this issue is the fact that a very large proportion of studies in psy-
chology will use undergraduate psychology students as the participants. Obviously,
however, the researchers don’t care only about psychology students. They care about
people in general. Given that, a study that uses only psychology students as partic-
ipants always carries a risk of lacking external validity. That is, if there’s something
“special” about psychology students that makes them different to the general popu-
lation in some relevant respect, then we may start worrying about a lack of external
validity.
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That said, it is absolutely critical to realise that a study that uses only psychology stu-
dents does not necessarily have a problem with external validity. I’ll talk about this
again later, but it’s such a common mistake that I’m going to mention it here. The ex-
ternal validity of a study is threatened by the choice of population if (a) the population
from which you sample your participants is very narrow (e.g., psychology students),
and (b) the narrow population that you sampled from is systematically different from
the general population in some respect that is relevant to the psychological phenomenon
that you intend to study. The italicised part is the bit that lots of people forget. It is true
that psychology undergraduates differ from the general population in lots of ways, and
so a study that uses only psychology students may have problems with external valid-
ity. However, if those differences aren’t very relevant to the phenomenon that you’re
studying, then there’s nothing to worry about. To make this a bit more concrete here
are two extreme examples:

• You want to measure “attitudes of the general public towards psychotherapy”,
but all of your participants are psychology students. This study would almost
certainly have a problem with external validity.

• You want to measure the effectiveness of a visual illusion, and your participants
are all psychology students. This study is unlikely to have a problemwith external
validity.

Having just spent the last couple of paragraphs focusing on the choice of participants,
since that’s a big issue that everyone tends toworrymost about, it’s worth remembering
that external validity is a broader concept. The following are also examples of things
that might pose a threat to external validity, depending on what kind of study you’re
doing:

• People might answer a “psychology questionnaire” in a manner that doesn’t re-
flect what they would do in real life.

• Your lab experiment on (say) “human learning” has a different structure to the
learning problems people face in real life.

2.6.3 Construct validity

Construct validity is basically a question of whether you’re measuring what you want
to be measuring. Ameasurement has good construct validity if it is actually measuring
the correct theoretical construct, and bad construct validity if it doesn’t. To give a very
simple (if ridiculous) example, suppose I’m trying to investigate the rates with which
university students cheat on their exams. And the way I attempt to measure it is by
asking the cheating students to stand up in the lecture theatre so that I can count them.
When I do this with a class of 300 students 0 people claim to be cheaters. So I therefore
conclude that the proportion of cheaters inmy class is 0%. Clearly this is a bit ridiculous.
But the point here is not that this is a very deep methodological example, but rather to
explain what construct validity is. The problem with my measure is that while I’m
trying to measure “the proportion of people who cheat” what I’m actually measuring
is “the proportion of people stupid enough to own up to cheating, or bloody minded
enough to pretend that they do”. Obviously, these aren’t the same thing! So my study
has gone wrong, because my measurement has very poor construct validity.
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2.6.4 Face validity

Face validity simply refers to whether or not a measure “looks like” it’s doing what
it’s supposed to, nothing more. If I design a test of intelligence, and people look at it
and they say “no, that test doesn’t measure intelligence”, then the measure lacks face
validity. It’s as simple as that. Obviously, face validity isn’t very important from a
pure scientific perspective. After all, what we care about is whether or not the measure
actuallydoeswhat it’s supposed to do, notwhether it looks like it doeswhat it’s supposed
to do. As a consequence, we generally don’t care very much about face validity. That
said, the concept of face validity serves three useful pragmatic purposes:

• Sometimes, an experienced scientistwill have a “hunch” that a particularmeasure
won’t work. While these sorts of hunches have no strict evidentiary value, it’s
oftenworth paying attention to them. Because often times people have knowledge
that they can’t quite verbalise, there might be something to worry about even if
you can’t quite say why. In other words, when someone you trust criticises the
face validity of your study, it’s worth taking the time to thinkmore carefully about
your design to see if you can think of reasons why it might go awry. Mind you, if
you don’t find any reason for concern, then you should probably not worry. After
all, face validity really doesn’t matter very much.

• Often (very often), completely uninformed people will also have a “hunch” that
your research is crap. And they’ll criticise it on the internet or something. On
close inspection you may notice that these criticisms are actually focused entirely
on how the study “looks”, but not on anything deeper. The concept of face va-
lidity is useful for gently explaining to people that they need to substantiate their
arguments further.

• Expanding on the last point, if the beliefs of untrained people are critical (e.g.,
this is often the case for applied research where you actually want to convince
policy makers of something or other) then you have to care about face validity.
Simply because, whether you like it or not, a lot of people will use face validity as
a proxy for real validity. If you want the government to change a law on scientific
psychological grounds, then it won’t matter how good your studies “really” are.
If they lack face validity you’ll find that politicians ignore you. Of course, it’s
somewhat unfair that policy often depends more on appearance than fact, but
that’s how things go.

2.6.5 Ecological validity

Ecological validity is a different notion of validity, which is similar to external validity,
but less important. The idea is that, in order to be ecologically valid, the entire set up of
the study should closely approximate the real-world scenario that is being investigated.
In a sense, ecological validity is a kind of face validity. It relates mostly to whether
the study “looks” right, but with a bit more rigour to it. To be ecologically valid the
study has to look right in a fairly specific way. The idea behind it is the intuition that a
study that is ecologically valid is more likely to be externally valid. It’s no guarantee,
of course. But the nice thing about ecological validity is that it’s much easier to check
whether a study is ecologically valid than it is to check whether a study is externally
valid. A simple example would be eyewitness identification studies. Most of these
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studies tend to be done in a university setting, often with a fairly simple array of faces
to look at, rather than a line up. The length of time between seeing the “criminal” and
being asked to identify the suspect in the “line up” is usually shorter. The “crime” isn’t
real so there’s no chance of the witness being scared, and there are no police officers
present so there’s not as much chance of feeling pressured. These things all mean that
the study definitely lacks ecological validity. They might (but might not) mean that it
also lacks external validity.

2.7 Confounders, artefacts and other threats to validity

If we look at the issue of validity in the most general fashion the two biggest worries
that we have are confounders and artefacts. These two terms are defined in the following
way:

• Confounder: A confounder is an additional, often unmeasured variable10 that
turns out to be related to both the predictors and the outcome. The existence
of confounders threatens the internal validity of the study because you can’t tell
whether the predictor causes the outcome, or if the confounding variable causes
it.

• Artefact: A result is said to be “artefactual” if it only holds in the special situation
that you happened to test in your study. The possibility that your result is an
artefact poses a threat to your external validity, because it raises the possibility
that you can’t generalise or apply your results to the actual population that you
care about.

As a general rule confounders are a bigger concern for non-experimental studies, pre-
cisely because they’re not proper experiments. By definition, you’re leaving lots of
things uncontrolled, so there’s a lot of scope for confounders being present in your
study. Experimental research tends to be much less vulnerable to confounders. The
more control you have over what happens during the study, the more you can pre-
vent confounders from affecting the results. With random allocation, for example, con-
founders are distributed randomly, and evenly, between different groups.

However, there are always swings and roundabouts and when we start thinking about
artefacts rather than confounders the shoe is very firmly on the other foot. For the
most part, artefactual results tend to be more of a concern for experimental studies
than for non-experimental studies. To see this, it helps to realise that the reason that
a lot of studies are non-experimental is precisely because what the researcher is trying
to do is examine human behaviour in a more naturalistic context. By working in a
more real-world context you lose experimental control (making yourself vulnerable to
confounders), but because you tend to be studying human psychology “in the wild”
you reduce the chances of getting an artefactual result. Or, to put it another way, when
you take psychology out of the wild and bring it into the lab (which we usually have to
do to gain our experimental control), you always run the risk of accidentally studying
something different to what you wanted to study.

Be warned though. The above is a rough guide only. It’s absolutely possible to have
confounders in an experiment, and to get artefactual results with non-experimental
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studies. This can happen for all sorts of reasons, not least of which is experimenter or
researcher error. In practice, it’s really hard to think everything through ahead of time
and even very good researchers make mistakes.

Although there’s a sense in which almost any threat to validity can be characterised as
a confounder or an artefact, they’re pretty vague concepts. So let’s have a look at some
of the most common examples.

2.7.1 History effects

History effects refer to the possibility that specific events may occur during the study
that might influence the outcome measure. For instance, something might happen in
between a pretest and a post-test. Or in-between testing participant 23 and participant
24. Alternatively, it might be that you’re looking at a paper from an older study that
was perfectly valid for its time, but the world has changed enough since then that the
conclusions are no longer trustworthy. Examples of things that would count as history
effects are:

• You’re interested in how people think about risk and uncertainty. You started
your data collection in December 2010. But finding participants and collecting
data takes time, so you’re still finding new people in February 2011. Unfortu-
nately for you (and even more unfortunately for others), the Queensland floods
occurred in January 2011 causing billions of dollars of damage and killing many
people. Not surprisingly, the people tested in February 2011 express quite differ-
ent beliefs about handling risk than the people tested in December 2010. Which
(if any) of these reflects the “true” beliefs of participants? I think the answer is
probably both. The Queensland floods genuinely changed the beliefs of the Aus-
tralian public, though possibly only temporarily. The key thing here is that the
“history” of the people tested in February is quite different to people tested in
December.

• You’re testing the psychological effects of a newanti-anxiety drug. Sowhat youdo
is measure anxiety before administering the drug (e.g., by self-report, and taking
physiological measures). Then you administer the drug, and afterwards you take
the same measures. In the interim however, because your lab is in Los Angeles,
there’s an earthquake which increases the anxiety of the participants.

2.7.2 Maturation effects

Aswith history effects,maturational effects are fundamentally about change over time.
However, maturation effects aren’t in response to specific events. Rather, they relate to
how people change on their own over time. We get older, we get tired, we get bored,
etc. Some examples of maturation effects are:

• When doing developmental psychology research you need to be aware that chil-
dren grow up quite rapidly. So, suppose that you want to find out whether some
educational trick helps with vocabulary size among 3 year olds. One thing that
you need to be aware of is that the vocabulary size of children that age is growing
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at an incredible rate (multiple words per day) all on its own. If you design your
studywithout taking this maturational effect into account, then youwon’t be able
to tell if your educational trick works.

• When running a very long experiment in the lab (say, something that lasts for
three hours) it’s very likely that people will begin to get bored and tired, and that
this maturational effect will cause performance to decline regardless of anything
else going on in the experiment.

2.7.3 Repeated testing effects

An important type of history effect is the effect of repeated testing. Suppose I want
to take two measurements of some psychological construct (e.g., anxiety). One thing
I might be worried about is if the first measurement has an effect on the second mea-
surement. In other words, this is a history effect in which the “event” that influences
the second measurement is the first measurement itself! This is not at all uncommon.
Examples of this include:

• Learning and practice: e.g., “intelligence” at time 2 might appear to go up rel-
ative to time 1 because participants learned the general rules of how to solve
“intelligence-test-style” questions during the first testing session.

• Familiarity with the testing situation: e.g., if people are nervous at time 1, this
might make performance go down. But after sitting through the first testing situ-
ation they might calm down a lot precisely because they’ve seen what the testing
looks like.

• Auxiliary changes caused by testing: e.g., if a questionnaire assessing mood is
boring then mood rating at measurement time 2 is more likely to be “bored” pre-
cisely because of the boring measurement made at time 1.

2.7.4 Selection bias

Selection bias is a pretty broad term. Suppose that you’re running an experiment with
two groups of participants where each group gets a different “treatment”, and you
want to see if the different treatments lead to different outcomes. However, suppose
that, despite your best efforts, you’ve ended up with a gender imbalance across groups
(say, group A has 80% females and group B has 50% females). It might sound like this
could never happen but, trust me, it can. This is an example of a selection bias, in which
the people “selected into” the two groups have different characteristics. If any of those
characteristics turns out to be relevant (say, your treatmentworks better on females than
males) then you’re in a lot of trouble.

2.7.5 Differential attrition

When thinking about the effects of attrition, it is sometimes helpful to distinguish be-
tween two different types. The first is homogeneous attrition, in which the attrition
effect is the same for all groups, treatments or conditions. In the example I gave above,
the attrition would be homogeneous if (and only if) the easily bored participants are
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dropping out of all of the conditions in my experiment at about the same rate. In gen-
eral, the main effect of homogeneous attrition is likely to be that it makes your sample
unrepresentative. As such, the biggest worry that you’ll have is that the generalisability
of the results decreases. In other words, you lose external validity.

The second type of attrition is heterogeneous attrition, in which the attrition effect is
different for different groups. More often called differential attrition, this is a kind of
selection bias that is caused by the study itself. Suppose that, for the first time ever in
the history of psychology, I manage to find the perfectly balanced and representative
sample of people. I start running “Dani’s incredibly long and tedious experiment” on
my perfect sample but then, because my study is incredibly long and tedious, lots of
people start dropping out. I can’t stop this. Participants absolutely have the right to stop
doing any experiment, any time, for whatever reason they feel like, and as researchers
we are morally (and professionally) obliged to remind people that they do have this
right. So, suppose that “Dani’s incredibly long and tedious experiment” has a very high
drop out rate. What do you suppose the odds are that this drop out is random? Answer:
zero. Almost certainly the people who remain are more conscientious, more tolerant
of boredom, etc., than those who leave. To the extent that (say) conscientiousness is
relevant to the psychological phenomenon that I care about, this attrition can decrease
the validity of my results.

Here’s another example. Suppose I design my experiment with two conditions. In the
“treatment” condition, the experimenter insults the participant and then gives them a
questionnaire designed to measure obedience. In the “control” condition, the exper-
imenter engages in a bit of pointless chitchat and then gives them the questionnaire.
Leaving aside the questionable scientific merits and dubious ethics of such a study,
let’s have a think about what might go wrong here. As a general rule, when someone
insults me to my face I tend to get much less co-operative. So, there’s a pretty good
chance that a lot more people are going to drop out of the treatment condition than
the control condition. And this drop out isn’t going to be random. The people most
likely to drop out would probably be the people who don’t care all that much about
the importance of obediently sitting through the experiment. Since the most bloody
minded and disobedient people all left the treatment group but not the control group,
we’ve introduced a confounder: the people who actually took the questionnaire in the
treatment group were already more likely to be dutiful and obedient than the people
in the control group. In short, in this study insulting people doesn’t make them more
obedient. It makes the more disobedient people leave the experiment! The internal
validity of this experiment is completely shot.

2.7.6 Non-response bias

Non-response bias is closely related to selection bias and to differential attrition. The
simplest version of the problem goes like this. You mail out a survey to 1000 people
but only 300 of them reply. The 300 people who replied are almost certainly not a ran-
dom subsample. People who respond to surveys are systematically different to people
who don’t. This introduces a problem when trying to generalise from those 300 people
who replied to the population at large, since you now have a very non-random sample.
The issue of non-response bias is more general than this, though. Among the (say) 300
people that did respond to the survey, you might find that not everyone answers every
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question. If (say) 80 people chose not to answer one of your questions, does this intro-
duce problems? As always, the answer is maybe. If the question that wasn’t answered
was on the last page of the questionnaire, and those 80 surveys were returned with the
last page missing, there’s a good chance that the missing data isn’t a big deal; probably
the pages just fell off. However, if the question that 80 people didn’t answer was the
most confrontational or invasive personal question in the questionnaire, then almost
certainly you’ve got a problem. In essence, what you’re dealing with here is what’s
called the problem of missing data. If the data that is missing was “lost” randomly,
then it’s not a big problem. If it’s missing systematically, then it can be a big problem.

2.7.7 Regression to the mean

Regression to the mean refers to any situation where you select data based on an ex-
treme value on some measure. Because the variable has natural variation it almost
certainly means that when you take a subsequent measurement the later measurement
will be less extreme than the first one, purely by chance.

Here’s an example. Suppose I’m interested in whether a psychology education has
an adverse effect on very smart kids. To do this, I find the 20 Psychology I students
with the best high school grades and look at how well they’re doing at university. It
turns out that they’re doing a lot better than average, but they’re not topping the class
at university even though they did top their classes at high school. What’s going on?
The natural first thought is that this must mean that the psychology classes must be
having an adverse effect on those students. However, while that might very well be
the explanation, it’s more likely that what you’re seeing is an example of “regression
to the mean”. To see how it works, let’s take a moment to think about what is required
to get the best mark in a class, regardless of whether that class be at high school or at
university. When you’ve got a big class there are going to be lots of very smart people
enrolled. To get the best mark you have to be very smart, work very hard, and be a bit
lucky. The exam has to ask just the right questions for your idiosyncratic skills, and you
have to avoid making any dumb mistakes (we all do that sometimes) when answering
them. And that’s the thing, whilst intelligence and hard work are transferable from one
class to the next, luck isn’t. The people who got lucky in high school won’t be the same
as the people who get lucky at university. That’s the very definition of “luck”. The
consequence of this is that when you select people at the very extreme values of one
measurement (the top 20 students), you’re selecting for hard work, skill and luck. But
because the luck doesn’t transfer to the second measurement (only the skill and work),
these people will all be expected to drop a little bit when you measure them a second
time (at university). So their scores fall back a little bit, back towards everyone else.
This is regression to the mean.

Regression to the mean is surprisingly common. For instance, if two very tall people
have kids their children will tend to be taller than average but not as tall as the parents.
The reverse happens with very short parents. Two very short parents will tend to have
short children, but nevertheless those kids will tend to be taller than the parents. It can
also be extremely subtle. For instance, there have been studies done that suggested that
people learn better from negative feedback than from positive feedback. However, the
way that people tried to show this was to give people positive reinforcement whenever
they did good, and negative reinforcement when they did bad. And what you see is
that after the positive reinforcement people tended to do worse, but after the negative
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reinforcement they tended to do better. But notice that there’s a selection bias here!
When people do very well, you’re selecting for “high” values, and so you should ex-
pect, because of regression to the mean, that performance on the next trial should be
worse regardless of whether reinforcement is given. Similarly, after a bad trial, people
will tend to improve all on their own. The apparent superiority of negative feedback
is an artefact caused by regression to the mean (see Kahneman & Tversky (1973), for
discussion).

2.7.8 Experimenter bias

Experimenter bias can come inmultiple forms. The basic idea is that the experimenter,
despite the best of intentions, can accidentally end up influencing the results of the ex-
periment by subtly communicating the “right answer” or the “desired behaviour” to
the participants. Typically, this occurs because the experimenter has special knowledge
that the participant does not, for example the right answer to the questions being asked
or knowledge of the expected pattern of performance for the condition that the partic-
ipant is in. The classic example of this happening is the case study of “Clever Hans”,
which dates back to 1907 (Pfungst, 1911). Clever Hans was a horse that apparently was
able to read and count and perform other human like feats of intelligence. After Clever
Hans became famous, psychologists started examining his behaviour more closely. It
turned out that, not surprisingly, Hans didn’t know how to do maths. Rather, Hans
was responding to the human observers around him, because the humans did know
how to count and the horse had learned to change its behaviour when people changed
theirs.

The general solution to the problem of experimenter bias is to engage in double blind
studies, where neither the experimenter nor the participant knowswhich condition the
participant is in or knows what the desired behaviour is. This provides a very good so-
lution to the problem, but it’s important to recognise that it’s not quite ideal, and hard
to pull off perfectly. For instance, the obvious way that I could try to construct a double
blind study is to have one of my Ph.D. students (one who doesn’t know anything about
the experiment) run the study. That feels like it should be enough. The only person
(me) who knows all the details (e.g., correct answers to the questions, assignments of
participants to conditions) has no interactionwith the participants, and the personwho
does all the talking to people (the Ph.D. student) doesn’t know anything. Except for the
reality that the last part is very unlikely to be true. In order for the Ph.D. student to
run the study effectively they need to have been briefed by me, the researcher. And,
as it happens, the Ph.D. student also knows me and knows a bit about my general be-
liefs about people and psychology (e.g., I tend to think humans are much smarter than
psychologists give them credit for). As a result of all this, it’s almost impossible for the
experimenter to avoid knowing a little bit about what expectations I have. And even a
little bit of knowledge can have an effect. Suppose the experimenter accidentally con-
veys the fact that the participants are expected to do well in this task. Well, there’s a
thing called the “Pygmalion effect”, where if you expect great things of people they’ll
tend to rise to the occasion. But if you expect them to fail then they’ll do that too. In
other words, the expectations become a self-fulfilling prophecy.
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2.7.9 Demand effects and reactivity

When talking about experimenter bias, the worry is that the experimenter’s knowledge
or desires for the experiment are communicated to the participants, and that these can
change people’s behaviour (Rosenthal, 1966). However, even if youmanage to stop this
from happening, it’s almost impossible to stop people from knowing that they’re part
of a psychological study. And the mere fact of knowing that someone is watching or
studying you can have a pretty big effect on behaviour. This is generally referred to
as reactivity or demand effects. The basic idea is captured by the Hawthorne effect:
people alter their performance because of the attention that the study focuses on them.
The effect takes its name from a study that took place in the “HawthorneWorks” factory
outside of Chicago (see Adair (1984)). This study, from the 1920s, looked at the effects of
factory lighting on worker productivity. But, importantly, change in worker behaviour
occurred because the workers knew they were being studied, rather than any effect of
factory lighting.

To get a bit more specific about some of the ways in which the mere fact of being in a
study can change how people behave, it helps to think like a social psychologist and
look at some of the roles that people might adopt during an experiment but might not
adopt if the corresponding events were occurring in the real world:

• The good participant tries to be too helpful to the researcher. He or she seeks to
figure out the experimenter’s hypotheses and confirm them.

• The negative participant does the exact opposite of the good participant. He or she
seeks to break or destroy the study or the hypothesis in some way.

• The faithful participant is unnaturally obedient. He or she seeks to follow instruc-
tions perfectly, regardless ofwhatmight have happened in amore realistic setting.

• The apprehensive participant gets nervous about being tested or studied, somuch so
that his or her behaviour becomes highly unnatural, or overly socially desirable.

2.7.10 Placebo effects

The placebo effect is a specific type of demand effect that we worry a lot about. It
refers to the situation where the mere fact of being treated causes an improvement in
outcomes. The classic example comes from clinical trials. If you give people a com-
pletely chemically inert drug and tell them that it’s a cure for a disease, they will tend
to get better faster than people who aren’t treated at all. In other words, it is people’s
belief that they are being treated that causes the improved outcomes, not the drug.

However, the current consensus in medicine is that true placebo effects are quite rare
and most of what was previously considered placebo effect is in fact some combination
of natural healing (some people just get better on their own), regression to themean and
other quirks of study design. Of interest to psychology is that the strongest evidence
for at least some placebo effect is in self-reported outcomes, most notably in treatment
of pain (Hróbjartsson & Gøtzsche, 2010).
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2.7.11 Situation, measurement and sub-population effects

In some respects, these terms are a catch-all term for “all other threats to external va-
lidity”. They refer to the fact that the choice of sub-population from which you draw
your participants, the location, timing and manner in which you run your study (in-
cluding who collects the data) and the tools that you use to make your measurements
might all be influencing the results. Specifically, the worry is that these things might be
influencing the results in such a way that the results won’t generalise to a wider array
of people, places and measures.

2.7.12 Fraud, deception and self-deception

It is difficult to get a man to understand something, when his salary depends on his
not understanding it.
– Upton Sinclair

There’s one final thing I feel I should mention. While reading what the textbooks often
have to say about assessing the validity of a study I couldn’t help but notice that they
seem to make the assumption that the researcher is honest. I find this hilarious. While
the vast majority of scientists are honest, in my experience at least, some are not.11 Not
only that, as I mentioned earlier, scientists are not immune to belief bias. It’s easy for
a researcher to end up deceiving themselves into believing the wrong thing, and this
can lead them to conduct subtly flawed research and then hide those flaws when they
write it up. So you need to consider not only the (probably unlikely) possibility of
outright fraud, but also the (probably quite common) possibility that the research is
unintentionally “slanted”. I opened a few standard textbooks and didn’t find much of
a discussion of this problem, so here’s my own attempt to list a fewways in which these
issues can arise:

• Data fabrication. Sometimes, people just make up the data. This is occasionally
done with “good” intentions. For instance, the researcher believes that the fab-
ricated data do reflect the truth, and may actually reflect “slightly cleaned up”
versions of actual data. On other occasions, the fraud is deliberate and malicious.
Some high-profile examples where data fabrication has been alleged or shown
include Cyril Burt (a psychologist who is thought to have fabricated some of his
data), Andrew Wakefield (who has been accused of fabricating his data connect-
ing the MMR vaccine to autism) and Hwang Woo-suk (who falsified a lot of his
data on stem cell research).

• Hoaxes. Hoaxes share a lot of similarities with data fabrication, but they differ in
the intended purpose. A hoax is often a joke, and many of them are intended to
be (eventually) discovered. Often, the point of a hoax is to discredit someone or
some field. There’s quite a few well known scientific hoaxes that have occurred
over the years (e.g., Piltdownman) and somewere deliberate attempts to discredit
particular fields of research (e.g., the Sokal affair).

• Data misrepresentation. While fraud gets most of the headlines, it’s much more
common in my experience to see data being misrepresented. When I say this I’m
not referring to newspapers getting it wrong (which they do, almost always). I’m
referring to the fact that often the data don’t actually say what the researchers
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think they say. My guess is that, almost always, this isn’t the result of deliberate
dishonesty but instead is due to a lack of sophistication in the data analyses. For
instance, think back to the example of Simpson’s paradox that I discussed in the
beginning of this book. It’s very common to see people present “aggregated” data
of some kind and sometimes, when you dig deeper and find the raw data yourself
you find that the aggregated data tell a different story to the disaggregated data.
Alternatively, youmight find that some aspect of the data is being hidden, because
it tells an inconvenient story (e.g., the researcher might choose not to refer to a
particular variable). There’s a lot of variants on this, many of which are very hard
to detect.

• Study “misdesign”. Okay, this one is subtle. Basically, the issue here is that a re-
searcher designs a study that has built-in flaws and those flaws are never reported
in the paper. The data that are reported are completely real and are correctly anal-
ysed, but they are produced by a study that is actually quitewrongly put together.
The researcher really wants to find a particular effect and so the study is set up in
such a way as to make it “easy” to (artefactually) observe that effect. One sneaky
way to do this, in case you’re feeling like dabbling in a bit of fraud yourself, is to
design an experiment in which it’s obvious to the participants what they’re “sup-
posed” to be doing, and then let reactivity work its magic for you. If you want
you can add all the trappings of double blind experimentation but it won’t make
a difference since the study materials themselves are subtly telling people what
you want them to do. When you write up the results the fraud won’t be obvious
to the reader. What’s obvious to the participant when they’re in the experimental
context isn’t always obvious to the person reading the paper. Of course, the way
I’ve described this makes it sound like it’s always fraud. Probably there are cases
where this is done deliberately, but in my experience the bigger concern is with
unintentional misdesign. The researcher believes and so the study just happens
to end up with a built-in flaw, and that flaw then magically erases itself when the
study is written up for publication.

• Data mining and post hoc hypothesising. Another way in which the authors of
a study can more or less misrepresent the data is by engaging in what’s referred
to as “data mining” (see Gelman and Loken 2014, for a broader discussion of this
as part of the “garden of forking paths” in statistical analysis). As we’ll discuss
later, if you keep trying to analyse your data in lots of different ways, you’ll even-
tually find something that “looks” like a real effect but isn’t. This is referred to as
“data mining”. It used to be quite rare because data analysis used to take weeks,
but now that everyone has very powerful statistical software on their computers
it’s becoming very common. Data mining per se isn’t “wrong”, but the more that
you do it the bigger the risk you’re taking. The thing that is wrong, and I suspect
is very common, is unacknowledged data mining. That is, the researcher runs
every possible analysis known to humanity, finds the one that works, and then
pretends that this was the only analysis that they ever conducted. Worse yet, they
often “invent” a hypothesis after looking at the data to cover up the data mining.
To be clear. It’s not wrong to change your beliefs after looking at the data, and to
reanalyse your data using your new “post hoc” hypotheses. What is wrong (and
I suspect common) is failing to acknowledge what you’ve done. If you acknowl-
edge that you did it then other researchers are able to take your behaviour into
account. If you don’t, then they can’t. And that makes your behaviour deceptive.
Bad!
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• Publication bias and self-censoring. Finally, a pervasive bias is “non-reporting”
of negative results. This is almost impossible to prevent. Journals don’t pub-
lish every article that is submitted to them. They prefer to publish articles that
find “something”. So, if 20 people run an experiment looking at whether reading
Finnegans Wake causes insanity in humans, and 19 of them find that it doesn’t,
which one do you think is going to get published? Obviously, it’s the one study
that did find that Finnegans Wake causes insanity.12 This is an example of a pub-
lication bias. Since no-one ever published the 19 studies that didn’t find an effect,
a naive reader would never know that they existed. Worse yet, most researchers
“internalise” this bias and end up self-censoring their research. Knowing that
negative results aren’t going to be accepted for publication, they never even try to
report them. As a friend of mine says “for every experiment that you get pub-
lished, you also have 10 failures”. And she’s right. The catch is, while some
(maybe most) of those studies are failures for boring reasons (e.g., you stuffed
something up) others might be genuine “null” results that you ought to acknowl-
edge when you write up the “good” experiment. And telling which is which is
often hard to do. A good place to start is a paper by Ioannidis (2005) with the de-
pressing title “Why most published research findings are false”. I’d also suggest
taking a look at work by Kühberger et al. (2014) presenting statistical evidence
that this actually happens in psychology.

There’s probably a lot more issues like this to think about, but that’ll do to start with.
What I really want to point out is the blindingly obvious truth that real-world science
is conducted by actual humans, and only the most gullible of people automatically as-
sume that everyone else is honest and impartial. Actual scientists aren’t usually that
naive, but for some reason the world likes to pretend that we are, and the textbooks we
usually write seem to reinforce that stereotype.

2.8 Summary

This chapter isn’t really meant to provide a comprehensive discussion of psychologi-
cal research methods. It would require another volume just as long as this one to do
justice to the topic. However, in real life statistics and study design are so tightly in-
tertwined that it’s very handy to discuss some of the key topics. In this chapter, I’ve
briefly discussed the following topics:

• Introduction to psychological measurement. What does it mean to operationalise
a theoretical construct? What does it mean to have variables and take measure-
ments?

• Scales of measurement and types of variables. Remember that there are two dif-
ferent distinctions here. There’s the difference between discrete and continuous
data, and there’s the difference between the four different scale types (nominal,
ordinal, interval and ratio).

• Assessing the reliability of a measurement. If I measure the “same” thing twice,
should I expect to see the same result? Only if my measure is reliable. But what
does it mean to talk about doing the “same” thing? Well, that’s why we have
different types of reliability. Make sure you remember what they are.
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• The “role” of variables: predictors and outcomes. What roles do variables play in
an analysis? Can you remember the difference between predictors and outcomes?
Dependent and independent variables? Etc.

• Experimental and non-experimental research designs. What makes an experi-
ment an experiment? Is it a nice white lab coat, or does it have something to do
with researcher control over variables?

• Assessing the validity of a study. Does your study measure what you want it to?
How might things go wrong? And is it my imagination, or was that a very long
list of possible ways in which things can go wrong?

All this shouldmake clear to you that study design is a critical part of researchmethod-
ology. I built this chapter from the classic little book by Campbell & Stanley (1963), but
there are of course a large number of textbooks out there on research design. Spend a
few minutes with your favourite search engine and you’ll find dozens.
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Part II

An introduction to jamovi
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Chapter 3

Getting started with jamovi

Robots are nice to work with.
– Roger Zelazny13

In this chapter I’ll discuss how to get started in jamovi. I’ll briefly talk about how to
download and install jamovi, but most of the chapter will be focused on getting you
started with finding your way around the jamovi graphical user interface (GUI). Our
goal in this chapter is not to learn any statistical concepts: we’re just trying to learn the
basics of how jamovi works and get comfortable interacting with the system. To do
this we’ll spend a bit of time looking at data sets and variables. In doing so, you’ll get
something of a feel for what it’s like to work in jamovi.

However, before going into any of the specifics, it’s worth talking a little about why
youmight want to use jamovi at all. Given that you’re reading this you’ve probably got
your own reasons. However, if those reasons are “because that’s what my stats class
uses”, it might be worth explaining a little why your lecturer has chosen to use jamovi
for the class. Of course, I don’t really knowwhy other people choose jamovi so I’m really
talking about why I use it.

• It’s sort of obvious but worth saying anyway: doing your statistics on a computer
is faster, easier andmore powerful than doing statistics by hand. Computers excel
at mindless repetitive tasks, and a lot of statistical calculations are both mindless
and repetitive. For most people the only reason to ever do statistical calculations
with pencil and paper is for learning purposes. In my class I do occasionally sug-
gest doing some calculations that way, but the only real value to it is pedagogical.
It does help you to get a “feel” for statistics to do some calculations yourself, so
it’s worth doing it once. But only once!

• Doing statistics in a conventional spreadsheet (e.g., Microsoft Excel) is generally
a bad idea in the long run. Although many people likely feel more familiar with
them, spreadsheets are very limited in terms of what analyses they allow you do.
If you get into the habit of trying to do your real-life data analysis using spread-
sheets then you’ve dug yourself into a very deep hole.

• Avoiding proprietary software is a very good idea. There are a lot of commercial
packages out there that you can buy, some of which I like and some of which I
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don’t. They’re usually very glossy in their appearance, and generally very pow-
erful (much more powerful than spreadsheets). However, they’re also very ex-
pensive: usually, the company sells “student versions” (crippled versions of the
real thing) very cheaply; they sell full powered “educational versions” at a price
that makes me wince; and they sell commercial licences with a staggeringly high
price tag. The business model here is to suck you in during your student days
and then leave you dependent on their tools when you go out into the real world.
It’s hard to blame them for trying, but personally I’m not in favour of shelling out
thousands of dollars if I can avoid it. And you can avoid it. If you make use of
packages like jamovi that are open source and free you never get trapped having
to pay exorbitant licensing fees.

• Something that you might not appreciate now, but will love later on if you do
anything involving data analysis, is the fact that jamovi is basically a sophisticated
front end for the free R statistical programming language. When you download
and install R you get all the basic “packages” and those are very powerful on their
own. However, because R is so open and so widely used, it’s become something
of a standard tool in statistics and so lots of people write their own packages that
extend the system. And these are freely available too. One of the consequences
of this, I’ve noticed, is that if you look at recent advanced data analysis textbooks
then a lot of them use R.

Those are themain reasons I use jamovi. It’s notwithout its flaws, though. It’s relatively
new14 so there is not a huge set of textbooks and other resources to support it, and it has
a few annoying quirks that we’re all pretty much stuck with, but on the whole I think
the strengths outweigh the weakness; more so than any other option I’ve encountered
so far.

3.1 Installing jamovi

Okay, enough with the sales pitch. Let’s get started. Just as with any piece of software,
jamovi needs to be installed on a “computer”, which is a magical box that does cool
things and delivers free ponies. Or something along those lines; I may be confusing
computers with the iPad marketing campaigns. Anyway, jamovi is freely distributed
online and you can download it from the jamovi homepage, which is https://www.
jamovi.org/.

At the top of the page under the heading “Download”, you’ll see separate links for
Windows users, Mac users and Linux users. If you follow the relevant link you’ll see
that the online instructions are pretty self-explanatory. At the time of writing, the cur-
rent version of jamovi is 2.3, but they usually issue updates every fewmonths, so you’ll
probably have a newer version.15

3.1.1 Starting up jamovi

Oneway or another, regardless of what operating system you’re using, it’s time to open
jamovi and get started. When first starting jamovi you will be presented with a user
interface which looks something like Figure 3.1.
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Figure 3.1: jamovi starts up!

To the left is the spreadsheet view, and to the right is where the results of statistical tests
appear. Down the middle is a bar separating these two regions and this can be dragged
to the left or the right to change their sizes.

It is possible to simply begin typing values into the jamovi spreadsheet as you would
in any other spreadsheet software. Alternatively, existing data sets in the csv (.csv) file
format can be opened in jamovi. Additionally, you can easily import SPSS, SAS, STATA
and JASP files directly into jamovi. To open a file select the ‘File’16 tab (three horizontal
lines signify this tab) at the top left hand corner, select ‘Open’ and then choose from the
files listed on ‘Browse’ depending on whether you want to open an example or a file
stored on your computer.

3.2 Analyses

Analyses can be selected from the analysis ribbon or menu along the top. Selecting
an analysis will present an ‘Options panel’ for that particular analysis, allowing you to
assign different variables to different parts of the analysis, and select different options.
At the same time, the results for the analysis will appear in the right ‘Results panel’ and
will update in real time as you make changes to the options.

When you have the analysis set up correctly you can dismiss the analysis options by
clicking the arrow to the top right of the optional panel. If you wish to return to these
options, you can click on the results that were produced. In this way, you can return to
any analysis that you (or say, a colleague) created earlier.
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If you decide you no longer need a particular analysis, you can remove it with the re-
sults context menu. Right-clicking on the analysis results will bring up a menu and by
selecting ‘Analysis’ and then ‘Remove’ the analysis can be removed. But more on this
later. First, let’s take a more detailed look at the spreadsheet view.

3.3 The spreadsheet

In jamovi data is represented in a spreadsheet with each column representing a ‘vari-
able’ and each row representing a ‘case’ or ‘participant’.

3.3.1 Variables

Themost commonlyused variables in jamovi are ‘Data variables’, these variables simply
contain data either loaded from a data file, or ‘typed in’ by the user. Data variables can
be one of several measurement levels (Figure 3.2).

Figure 3.2: measurement levels

These levels are designated by the symbol in the header of the variable’s column. The ID
variable type is unique to jamovi. It’s intended for variables that contain identifiers that
youwould almost neverwant to analyse. For example, a person’s name, or a participant
ID. Specifying an ID variable type can improve performancewhen interactingwith very
large data sets.

Nominal variables are for categorical variables which are text labels, for example a col-
umn called ‘gender’ with the values ‘male’ and ‘female’ would be nominal. So would a
person’s name. Nominal variable values can also have a numeric value. These variables
are usedmost oftenwhen importing datawhich codes valueswith numbers rather than
text. For example, a column in a data set may contain the values 1 for males, and 2 for
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females. It is possible to add nice ‘human-readable’ labels to these values with the vari-
able editor (more on this later).

Ordinal variables are like nominal variables, except the values have a specific order. An
example is a Likert scale with 3 being ‘strongly agree’ and -3 being ‘strongly disagree’.

Continuous variables are variables which exist on a continuous scale. Examples might
be height or weight. This is also referred to as ‘Interval’ or ‘Ratio scale’.

In addition, you can also specify different data types: variables have a data type of
either ‘Text’, ‘Integer’ or ‘Decimal’.

When starting with a blank spreadsheet and typing values in the variable type will
change automatically depending on the data you enter. This is a good way to get a feel
for which variable types go with which sorts of data. Similarly, when opening a data
file jamovi will try and guess the variable type from the data in each column. In both
cases this automatic approach may not be correct, and it may be necessary to manually
specify the variable type with the variable editor.

The variable editor can be opened by selecting ‘Setup’ from the data tab or by double-
clicking on the variable column header. The variable editor allows you to change the
name of the variable and, for data variables, the variable type, the order of the levels,
and the label displayed for each level. Changes can be applied by clicking the ‘tick’ to
the top right. The variable editor can be dismissed by clicking the ‘Hide’ arrow.

New variables can be inserted or appended to the data set using the ‘Add’ button from
the data ribbon. The ‘Add’ button also allows the addition of computed variables.

3.3.2 Computed variables

Computed Variables are those which take their value by performing a computation on
other variables. Computed Variables can be used for a range of purposes, including log
transforms, z-scores, sum-scores, negative scoring and means.

Computed variables can be added to the data set with the ‘Add’ button available on
the data tab. This will produce a formula box where you can specify the formula. The
usual arithmetic operators are available. Some examples of formulas are:

A + B LOG10(len) MEAN(A, B) (len - VMEAN(len)) / VSTDEV(len)

In order, these are the sum of A and B, a log (base 10) transform of len, the mean of
A and B, and the z-score of the variable len.17 Figure 3.3 shows the jamovi screen for
the new variable computed as the z-score of len (from the ‘Tooth Growth’ example data
set).

3.3.2.1 V-functions

Several functions are already available in jamovi and available from the drop down
box labelled fx. A number of functions appear in pairs, one prefixed with a V and the
other not. V functions perform their calculation on a variable as a whole, where as
non-V functions perform their calculation row by row. For example, MEAN(A, B) will
produce the mean of A and B for each row. Where as VMEAN(A) gives the mean of all
the values in A.
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Figure 3.3: A newly computed variable, the z-score of ‘dose’

3.3.3 Copy and paste

jamovi produces nice American Psychological Association (APA) formatted tables and
attractive plots. It is often useful to be able to copy and paste these, perhaps into aWord
document, or into an email to a colleague. To copy results right click on the object of
interest and from the menu select exactly what you want to copy. The menu allows
you to choose to copy only the image or the entire analysis. Selecting ‘Copy’ copies the
content to the clipboard and this can be pasted into other programs in the usual way.
You can practice this later on when we do some analyses.

3.3.4 Syntax mode

jamovi also provides an ‘R Syntax mode’.18 In this mode jamovi produces equivalent
𝑅 code for each analysis. To change to syntax mode, select the ‘Application’ menu to
the top right of jamovi (a button with three vertical dots) and click the ‘Syntax mode’
checkbox there. You can turn off syntax mode by clicking this a second time.

In syntax mode analyses continue to operate as before but now they produce 𝑅 syntax,
and “ascii output” like an𝑅 session. Like all results objects in jamovi, you can right click
on these items (including the 𝑅 syntax) and copy and paste them, for example into an
𝑅 session. At present, the provided𝑅 syntax does not include the data import step and
so this must be performed manually in 𝑅. There are many resources explaining how
to import data into 𝑅 and if you are interested we recommend you take a look at these;
just search on the interweb.

50



3.4 Loading data in jamovi

There are several different types of files that are likely to be relevant to us when do-
ing data analysis. There are two in particular that are especially important from the
perspective of this book:

• jamovi files are those with a .omv file extension. This is the standard kind of file
that jamovi uses to store data, and variables and analyses.

• Comma separated value (csv) files are those with a .csv file extension. These are
just regular old text files and they can be opened with many different software
programs. It’s quite typical for people to store data in csv files, precisely because
they’re so simple.

There are also several other kinds of data file that youmight want to import into jamovi.
For instance, you might want to open Microsoft Excel spreadsheets (.xls files), or data
files that have been saved in the native file formats for other statistics software, such as
SPSS or SAS. Whichever file formats you are using, it’s a good idea to create a folder
or folders especially for your jamovi data sets and analyses and to make sure you keep
these backed up regularly.

3.4.1 Importing data from csv files

One quite commonly used data format is the humble “comma separated value” file,
also called a csv file, and usually bearing the file extension .csv. csv files are just plain
old-fashioned text files and what they store is basically just a table of data. This is
illustrated in Figure 3.4, which shows a file called booksales.csv that I’ve created. As you
can see, each row represents the book sales data for one month. The first row doesn’t
contain actual data though, it has the names of the variables.

It’s easy to open csv files in jamovi. From the top left menu (the button with three
parallel lines) choose ‘Open’ and browse to where you have stored the csv file on your
computer. If you’re on a Mac, it’ll look like the usual Finder window that you use to
choose a file; on Windows it looks like an Explorer window. An example of what it
looks like on a Mac is shown in Figure 3.5. I’m assuming that you’re familiar with your
own computer, so you should have no problem finding the csv file that you want to
import! Find the one you want, then click on the ‘Open’ button.

There are a few things that you can check to make sure that the data gets imported
correctly:

• Heading. Does the first row of the file contain the names for each variable – a
‘header’ row? The booksales.csv file has a header, so that’s a yes.

• Decimal. What character is used to specify the decimal point? In English-
speaking countries this is almost always a period (i.e., .). That’s not universally
true though, many European countries use a comma.

• Quote. What character is used to denote a block of text? That’s usually going to
be a double quote mark (“). It is for the booksales.csv file.
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Figure 3.4: The booksales.csv data file. On the left I have opened the file using a spread-
sheet program, which shows that the file is basically a table. On the right the same file
is open in a standard text editor (the TextEdit program on a Mac), which shows how
the file is formatted. The entries in the table are separated by commas

Figure 3.5: A dialog box on a Mac asking you to select the csv file jamovi should try
to import. Mac users will recognise this immediately, as it is the usual way in which a
Mac asks you to find a file. Windows users will not see this, instead they will see the
usual explorer window that Windows always gives you when it wants you to select a
file

3.5 Importing unusual data files

Throughout this book I’ve assumed that your data are stored as a jamovi .omv file or
as a “properly” formatted csv file. However, in real life that’s not a terribly plausible
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assumption to make so I’d better talk about some of the other possibilities that you
might run into.

3.5.1 Loading data from text files

The first thing I should point out is that if your data are saved as a text file but aren’t
quite in the proper csv format then there’s still a pretty good chance that jamovi will be
able to open it. You just need to try it and see if it works. Sometimes though you will
need to change some of the formatting. The ones that I’ve often found myself needing
to change are:

• header. A lot of the timewhen you’re storing data as a csv file the first row actually
contains the column names and not data. If that’s not true then it’s a good idea
to open up the csv file in a spreadsheet programme such as Open Office and add
the header row manually.

• sep. As the name “comma separated value” indicates, the values in a row of a csv
file are usually separated by commas. This isn’t universal, however. In Europe the
decimal point is typically written as , instead of . and as a consequence it would
be somewhat awkward to use , as the separator. Therefore it is not unusual to use
; instead of , as the separator. At other times, I’ve seen a TAB character used.

• quote. It’s conventional in csv files to include a quoting character for textual data.
As you can see by looking at the booksales.csv file, this is usually a double quote
character, “. But sometimes there is no quoting character at all, or you might see
a single quote mark ’ used instead.

• skip. It’s actually very common to receive csv files in which the first few rows
have nothing to do with the actual data. Instead, they provide a human readable
summary of where the data came from, or maybe they include some technical
info that doesn’t relate to the data.

• missing values. Often you’ll get given data with missing values. For one reason
or another, some entries in the table are missing. The data file needs to include a
“special” value to indicate that the entry is missing. By default jamovi assumes
that this value is 99,19 for both numeric and text data, so you should make sure
that, where necessary, all missing values in the csv file are replaced with 99 (or
-9999; whichever you choose) before opening / importing the file into jamovi.
Once you have opened / imported the file into jamovi all the missing values are
converted to blank or greyed out cells in the jamovi spreadsheet view. You can
also change the missing value for each variable as an option in the Data - Setup
view.

3.5.2 Loading data from SPSS (and other statistics packages)

The commands listed above are the main ones we’ll need for data files in this book.
But in real life we have many more possibilities. For example, you might want to read
data files in fromother statistics programs. Since SPSS is probably themostwidely used
statistics package in psychology, it’s worthmentioning that jamovi can also import SPSS
data files (file extension .sav). Just follow the instructions above for how to open a csv
file, but this time navigate to the .sav file youwant to import. For SPSS files, jamovi will
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regard all values as missing if they are regarded as “system missing” files in SPSS. The
‘Default missings’ value does not seem to work as expected when importing SPSS files,
so be aware of this – you might need another step: import the SPSS file into jamovi,
then export as a csv file before re-opening in jamovi.20

And that’s pretty much it, at least as far as SPSS goes. As far as other statistical software
goes, jamovi can also directly open / import SAS and STATA files.

3.5.3 Loading Excel files

A different problem is posed by Excel files. Despite years of yelling at people for send-
ing data to me encoded in a proprietary data format, I get sent a lot of Excel files. The
way to handle Excel files is to open them up first in Excel or another spreadsheet pro-
gramme that can handle Excel files, and then export the data as a csv file before opening
/ importing the csv file into jamovi.

3.6 Changing data from one level to another

Sometimes you want to change the variable level. This can happen for all sorts of rea-
sons. Sometimes when you import data from files, it can come to you in the wrong
format. Numbers sometimes get imported as nominal, text values. Dates may get im-
ported as text. Participant ID values can sometimes be read as continuous: nominal
values can sometimes be read as ordinal or even continuous. There’s a good chance
that sometimes you’ll want to convert a variable from one measurement level into an-
other one. Or, to use the correct term, you want to coerce the variable from one class
into another.

Earlier we saw how to specify different variable levels, and if youwant to change a vari-
able’s measurement level then you can do this in the jamovi data view for that variable.
Just click the check box for the measurement level you want – continuous, ordinal, or
nominal.

3.7 Installing add-on modules into jamovi

A really great feature of jamovi is the ability to install add-on modules from the jamovi
library. These add-on modules have been developed by the jamovi community, i.e.,
jamovi users and developers who have created special software add-ons that do other,
usually more advanced, analyses that go beyond the capabilities of the base jamovi
program.

To install add-on modules, just click on the large + in the top right of the jamovi win-
dow, select “jamovi-library” and then browse through the various add-onmodules that
are available. Choose the one(s) you want, and then install them, as in Figure 3.6. It’s
that easy. The newly installed modules can then be accessed from the “Analyses” but-
ton bar. Try it…useful add-on modules to install include “scatr” (added under “De-
scriptives”), 𝑅𝑗 and of course the data files for this book: “lsj-data”.
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Figure 3.6: Installing add-on modules in jamovi

3.8 Quitting jamovi

There’s one last thing I should cover in this chapter: how to quit jamovi. It’s not hard,
just close the program the same way you would any other program. However, what
you might want to do before you quit is save your work! There are two parts to this:
saving any changes to the data set, and saving the analyses that you ran.

It is good practice to save any changes to the data set as a new data set. That way you
can always go back to the original data. To save any changes in jamovi, select ‘Ex-
port’…‘Data’ from the main jamovi menu (button with three horizontal bars in the top
left) and create a new file name for the changed data set.

Alternatively, you can save both the changeddata and any analyses you have undertaken
by saving as a jamovi file. To do this, from the main jamovi menu select ‘Save as’ and
type in a file name for this ‘jamovi file (.omv)’. Remember to save the file in a location
where you can find it again later. I usually create a new folder for specific data sets and
analyses.

3.9 Summary

Every book that tries to teach a new statistical software program to novices has to cover
roughly the same topics, and in roughly the same order. Ours is no exception, and so
in the grand tradition of doing it just the same way everyone else did it, this chapter
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covered the following topics:

• Installing jamovi. We downloaded and installed jamovi, and started it up.
• Analyses. We very briefly oriented to the part of jamovi where analyses are done
and results appear, but then deferred this until later in the book.

• The spreadsheet. We spent more time looking at the spreadsheet part of jamovi,
and considered different variable types, and how to compute new variables.

• Loading data in jamovi. We also saw how to load data files in jamovi.
• Importing unusual data files. Then we figured out how to open other data files,
from different file types.

• Changing data from one level to another. And saw that sometimes we need to
coerce data from one type to another.

• Installing add-on modules into jamovi. Installing add-on modules from the
jamovi community really extends jamovi capabilities.

• Quitting jamovi. Finally, we looked at good practice in terms of saving your data
set and analyses when you have finished and are about to quit jamovi.

We still haven’t arrived at anything that resembles data analysis. Maybe the next chap-
ter will get us a bit closer!
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Part III

Working with data
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Chapter 4

Descriptive statistics

Any time that you get a new data set to look at one of the first tasks that you have to
do is find ways of summarising the data in a compact, easily understood fashion. This
is what descriptive statistics (as opposed to inferential statistics) is all about. In fact,
to many people the term “statistics” is synonymous with descriptive statistics. It is this
topic that we’ll consider in this chapter, but before going into any details, let’s take a
moment to get a sense of why we need descriptive statistics. To do this, let’s open the
aflsmall_margins.csv file and see what variables are stored in the file, see Figure 4.1.

Figure 4.1: A screenshot of jamovi showing the variables stored in the afls-
mall_margins.csv file

In fact, there is just one variable here, afl.margins. We’ll focus a bit on this variable in this
chapter, so I’d better tell you what it is. Unlike most of the data sets in this book, this
is actually real data, relating to the Australian Football League (AFL).21 The afl.margins
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variable contains the winning margin (number of points) for all 176 home and away
games played during the 2010 season.

This output doesn’t make it easy to get a sense of what the data are actually saying. Just
“looking at the data” isn’t a terribly effective way of understanding data. In order to get
some idea aboutwhat the data are actually sayingwe need to calculate some descriptive
statistics (this chapter) and draw some nice pictures (Chapter 5). Since the descriptive
statistics are the easier of the two topics I’ll start with those, but nevertheless I’ll show
you a histogram of the afl.margins data since it should help you get a sense of what the
data we’re trying to describe actually look like, see Figure 4.2. We’ll talk a lot more
about how to draw histograms in Section 5.1 in the next chapter. For now, it’s enough
to look at the histogram and note that it provides a fairly interpretable representation
of the afl.margins data.

Figure 4.2: Ahistogram of the AFL 2010 winningmargin data (the afl.margins variable).
As you might expect, the larger the winning margin the less frequently you tend to see
it

4.1 Measures of central tendency

Drawing pictures of the data, as I did in Figure 4.2, is an excellent way to convey the
“gist” of what the data is trying to tell you. It’s often extremely useful to try to condense
the data into a few simple “summary” statistics. In most situations, the first thing that
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you’ll want to calculate is a measure of central tendency. That is, you’d like to know
something about where the “average” or “middle” of your data lies. The three most
commonly used measures are the mean, median and mode. I’ll explain each of these
in turn, and then discuss when each of them is useful.

4.1.1 The mean

Themean of a set of observations is just a normal, old-fashioned average. Add all of the
values up, and then divide by the total number of values. The first five AFL winning
margins were 56, 31, 56, 8 and 32, so the mean of these observations is just:

56 + 31 + 56 + 8 + 32
5 = 183

5 = 36.60

Of course, this definition of the mean isn’t news to anyone. Averages (i.e., means) are
used so often in everyday life that this is pretty familiar stuff. However, since the con-
cept of amean is something that everyone already understands, I’ll use this as an excuse
to start introducing some of the mathematical notation that statisticians use to describe
this calculation, and talk about how the calculations would be done in jamovi.

The first piece of notation to introduce is 𝑁 , which we’ll use to refer to the number of
observations that we’re averaging (in this case 𝑁 = 5). Next, we need to attach a label
to the observations themselves. It’s traditional to use X for this, and to use subscripts to
indicate which observation we’re actually talking about. That is, we’ll use𝑋1 to refer to
the first observation, 𝑋2 to refer to the second observation, and so on all the way up to
𝑋𝑁 for the last one. Or, to say the same thing in a slightly more abstract way, we use𝑋𝑖
to refer to the i-th observation. Just to make sure we’re clear on the notation, Table 4.1
lists the 5 observations in the afl.margins variable, along with the mathematical symbol
used to refer to it and the actual value that the observation corresponds to.

Table 4.1: Observations in the afl.margins variable

the observation
its

symbol the observed value
winning margin, game 1 𝑋1 56 points
winning margin, game 2 𝑋2 31 points
winning margin, game 3 𝑋3 56 points
winning margin, game 4 𝑋4 8 points
winning margin, game 5 𝑋5 32 points

[Additional technical detail22]

4.1.2 Calculating the mean in jamovi

Okay, that’s the maths. So how do we get the magic computing box to do the work
for us? When the number of observations starts to become large it’s much easier to
do these sorts of calculations using a computer. To calculate the mean using all the
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data we can use jamovi. The first step is to click on the ‘Exploration’ button and then
click ‘Descriptives’. Then you can highlight the afl.margins variable and click the ‘Right
arrow’ to move it across into the ‘Variables box’. As soon as you do that a Table appears
on the right-hand side of the screen containing default ‘Descriptives’ information; see
Figure 4.3.

Figure 4.3: Default descriptives for the AFL 2010 winning margin data (the afl.margins
variable)

As you can see in Figure 4.3, the mean value for the afl.margins variable is 35.30. Other
information presented includes the total number of observations (N=176), the num-
ber of missing values (none), and the median, minimum and maximum values for the
variable.

4.1.3 The median

The second measure of central tendency that people use a lot is the median, and it’s
even easier to describe than the mean. The median of a set of observations is just the
middle value. As before let’s imaginewewere interested only in the first 5AFLwinning
margins: 56, 31, 56, 8 and 32. To figure out the median we sort these numbers into
ascending order: 8, 31, 32, 56, 56.

From inspection, it’s obvious that the median value of these 5 observations is 32 since
that’s the middle one in the sorted list (I’ve put it in bold tomake it evenmore obvious).
Easy stuff. But what should we do if we are interested in the first 6 games rather than
the first 5? Since the sixth game in the season had a winning margin of 14 points, our
sorted list is now 8, 14, 31, 32, 56, 56.
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And there are two middle numbers, 31 and 32. The median is defined as the average
of those two numbers, which is of course 31.5. As before, it’s very tedious to do this by
hand when you’ve got lots of numbers. In real life, of course, no-one actually calculates
themedian by sorting the data and then looking for themiddle value. In real life we use
a computer to do the heavy lifting for us, and jamovi has provided us with a median
value of 30.50 for the afl.margins variable (Figure 4.3).

4.1.4 Mean or median? What’s the difference?

Knowing how to calculate means andmedians is only a part of the story. You also need
to understand what each one is saying about the data, and what that implies for when
you should use each one. This is illustrated in Figure 4.4. The mean is kind of like the
“centre of gravity” of the data set, whereas the median is the “middle value” in the
data. What this implies, as far as which one you should use, depends a little on what
type of data you’ve got and what you’re trying to achieve. As a rough guide:

• If your data are nominal scale you probably shouldn’t be using either the mean
or the median. Both the mean and the median rely on the idea that the numbers
assigned to values are meaningful. If the numbering scheme is arbitrary then it’s
probably best to use the Mode instead.

• If your data are ordinal scale you’re more likely to want to use the median than
the mean. The median only makes use of the order information in your data (i.e.,
which numbers are bigger) but doesn’t depend on the precise numbers involved.
That’s exactly the situation that applies when your data are ordinal scale. The
mean, on the other hand, makes use of the precise numeric values assigned to the
observations, so it’s not really appropriate for ordinal data.

• For interval and ratio scale data either one is generally acceptable. Which one you
pick depends a bit on what you’re trying to achieve. The mean has the advantage
that it uses all the information in the data (which is useful when you don’t have a
lot of data). But it’s very sensitive to extreme, outlying values.

Let’s expand on that last part a little. One consequence is that there are systematic
differences between themean and themedianwhen the histogram is asymmetric (Skew
and kurtosis). This is illustrated in Figure 4.4. Notice that the median (right-hand side)
is located closer to the “body” of the histogram, whereas the mean (left-hand side) gets
dragged towards the “tail” (where the extreme values are). To give a concrete example,
suppose Bob (income $50,000), Kate (income $60,000) and Jane (income $65,000) are
sitting at a table. The average income at the table is $58,333 and the median income is
$60,000. Then Bill sits down with them (income $100,000,000). The average income has
now jumped to $25,043,750 but the median rises only to $62,500. If you’re interested in
looking at the overall income at the table the mean might be the right answer. But if
you’re interested in what counts as a typical income at the table the median would be
a better choice here.
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Figure 4.4: An illustration of the difference between how the mean and the median
should be interpreted. The mean is basically the ‘centre of gravity’ of the data set. If
you imagine that the histogram of the data is a solid object, then the point onwhich you
could balance it (as if on a see-saw) is the mean. In contrast, the median is the middle
observation, with half of the observations smaller and half of the observations larger

4.1.5 A real-life example

To try to get a sense of why you need to pay attention to the differences between the
mean and the median let’s consider a real life example. Since I tend to mock journalists
for their poor scientific and statistical knowledge, I should give credit where credit is
due. This is an excellent article byMichael Janda from the ABC news website23 from 24
September, 2010:

Senior Commonwealth Bank executives have travelled the world in the past
couple of weeks with a presentation showing how Australian house prices,
and the key price to income ratios, compare favourably with similar coun-
tries. “Housing affordability has actually been going sideways for the last
five to six years,” said Craig James, the chief economist of the bank’s trading
arm, CommSec.

This probably comes as a huge surprise to anyone with a mortgage, or who wants a
mortgage, or pays rent, or isn’t completely oblivious to what’s been going on in the
Australian housing market over the last several years. Back to the article:

CBA has waged its war against what it believes are housing doomsayers
with graphs, numbers and international comparisons. In its presentation,
the bank rejects arguments that Australia’s housing is relatively expensive
compared to incomes. It says Australia’s house price to household income
ratio of 5.6 in the major cities, and 4.3 nationwide, is comparable to many
other developed nations. It says San Francisco and New York have ratios of
7, Auckland’s is 6.7, and Vancouver comes in at 9.3.
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More excellent news! Except, the article goes on to make the observation that:

Many analysts say that has led the bank to use misleading figures and com-
parisons. If you go to page four of CBA’s presentation and read the source
information at the bottom of the graph and table, you would notice there
is an additional source on the international comparison – Demographia.
However, if the Commonwealth Bank had also used Demographia’s analy-
sis of Australia’s house price to income ratio, it would have come up with a
figure closer to 9 rather than 5.6 or 4.3.

That’s, um, a rather serious discrepancy. One group of people say 9, another says 4-
5. Should we just split the difference and say the truth lies somewhere in between?
Absolutely not! This is a situation where there is a right answer and a wrong answer.
Demographia is correct, and the Commonwealth Bank is wrong. As the article points
out:

[An] obvious problem with the Commonwealth Bank’s domestic price to
income figures is they compare average incomes with median house prices
(unlike the Demographia figures that compare median incomes to median
prices). The median is the mid-point, effectively cutting out the highs and
lows, and that means the average is generally higher when it comes to
incomes and asset prices, because it includes the earnings of Australia’s
wealthiest people. To put it another way: the Commonwealth Bank’s
figures count Ralph Norris’ multi-million dollar pay packet on the income
side, but not his (no doubt) very expensive house in the property price fig-
ures, thus understating the house price to income ratio for middle-income
Australians.

Couldn’t have put it better myself. The way that Demographia calculated the ratio is
correct. Theway that the Bankdid it is incorrect. As forwhy an extremely quantitatively
sophisticated organisation such as a major bank made such an elementary mistake,
well… I can’t say for sure since I have no special insight into their thinking. But the
article itself does happen to mention the following facts, which may or may not be
relevant:

[As] Australia’s largest home lender, the Commonwealth Bank has one of
the biggest vested interests in house prices rising. It effectively owns a mas-
sive swathe of Australian housing as security for its home loans as well as
many small business loans.

My, my.

4.1.6 Mode

Themode of a sample is very simple. It is the value that occurs most frequently. We can
illustrate the mode using a different AFL variable: who has played in the most finals?
Open the aflsmall finalists file and take a look at the afl.finalists variable, see Figure 4.5.
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Figure 4.5: A screenshot of jamovi showing the variables stored in the afls-
mall_finalists.csv file

Figure 4.6: A screenshot of jamovi showing the frequency table for the afl.finalists vari-
able
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This variable contains the names of all 400 teams that played in all 200 finals matches
played during the period 1987 to 2010. What we could do is read through all 400 en-
tries and count the number of occasions on which each team name appears in our list
of finalists, thereby producing a frequency table. However, that would be mindless
and boring: exactly the sort of task that computers are great at. So let’s use jamovi to
do this for us. Under ‘Exploration’ – ‘Descriptives’ click the small check box labelled
‘Frequency tables’ and you should get something like Figure 4.6.

Now that we have our frequency table we can just look at it and see that, over the 24
years for which we have data, Geelong has played in more finals than any other team.
Thus, the mode of the afl.finalists data is “Geelong”. We can see that Geelong (39 finals)
played in more finals than any other team during the 1987-2010 period. It’s also worth
noting that in the ‘Descriptives’ Table no results are calculated for mean, median, min-
imum or maximum. This is because the afl.finalists variable is a nominal text variable
so it makes no sense to calculate these values.

One last point to make regarding the mode. Whilst the mode is most often calculated
when you have nominal data, because means andmedians are useless for those sorts of
variables, there are some situations in which you really do want to know the mode of
an ordinal, interval or ratio scale variable. For instance, let’s go back to our afl.margins
variable. This variable is clearly ratio scale (if it’s not clear to you, it may help to re-
read Section 2.2), and so in most situations the mean or the median is the measure of
central tendency that you want. But consider this scenario: a friend of yours is offering
a bet and they pick a football game at random. Without knowing who is playing you
have to guess the exact winning margin. If you guess correctly you win $50. If you
don’t you lose $1. There are no consolation prizes for “almost” getting the right answer.
You have to guess exactly the right margin. For this bet, the mean and the median are
completely useless to you. It is the mode that you should bet on. To calculate the mode
for the afl.margins variable in jamovi, go back to that data set and on the ‘Exploration’ –
‘Descriptives’ screen you will see you can expand the section marked ‘Statistics’. Click
on the checkbox marked ‘Mode’ and you will see the modal value presented in the
‘Descriptives’ Table, as in Figure 4.7. So the 2010 data suggest you should bet on a 3
point margin.

4.2 Measures of variability

The statistics that we’ve discussed so far all relate to central tendency. That is, they
all talk about which values are “in the middle” or “popular” in the data. However,
central tendency is not the only type of summary statistic that wewant to calculate. The
second thing that we reallywant is ameasure of the variability of the data. That is, how
“spread out” are the data? How “far” away from the mean or median do the observed
values tend to be? For now, let’s assume that the data are interval or ratio scale, and
we’ll continue to use the afl.margins data. We’ll use this data to discuss several different
measures of spread, each with different strengths and weaknesses.
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Figure 4.7: A screenshot of jamovi showing the modal value for the afl.margins variable

4.2.1 Range

The range of a variable is very simple. It’s the biggest value minus the smallest value.
For the AFL winning margins data the maximum value is 116 and the minimum value
is 0. Although the range is the simplest way to quantify the notion of “variability”, it’s
one of the worst. Recall from our discussion of the mean that we want our summary
measure to be robust. If the data set has one or two extremely bad values in it we’d
like our statistics to not be unduly influenced by these cases. For example, in a variable
containing very extreme outliers

-100, 2, 3, 4, 5, 6, 7, 8, 9, 10

it is clear that the range is not robust. This variable has a range of 110 but if the outlier
were removed we would have a range of only 8.

4.2.2 Interquartile range

The interquartile range (IQR) is like the range, but instead of the difference between
the biggest and smallest value the difference between the 25th percentile and the 75th
percentile is taken. If you don’t already know what a percentile is, the 10th percentile
of a data set is the smallest number x such that 10% of the data is less than x. In fact,
we’ve already come across the idea. The median of a data set is its 50th percentile! In
jamovi you can easily specify the 25th, 50th and 75th percentiles by clicking the check-
box ‘Quartiles’ in the ‘Exploration’ – ‘Descriptives’ – ‘Statistics’ screen.

And not surprisingly, in Figure 4.8 the 50th percentile is the same as the median value.
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And, by noting that 50.50 − 12.75 = 37.75, we can see that the interquartile range for
the 2010 AFL winning margins data is 37.75. While it’s obvious how to interpret the
range it’s a little less obvious how to interpret the IQR. The simplest way to think about
it is like this: the interquartile range is the range spanned by the “middle half” of the
data. That is, one quarter of the data falls below the 25th percentile and one quarter
of the data is above the 75th percentile, leaving the “middle half” of the data lying in
between the two. And the IQR is the range covered by that middle half.

Figure 4.8: A screenshot of jamovi showing the Quartiles for the afl.margins variable

4.2.3 Mean absolute deviation

The two measures we’ve looked at so far, the range and the interquartile range, both
rely on the idea that we canmeasure the spread of the data by looking at the percentiles
of the data. However, this isn’t the only way to think about the problem. A different
approach is to select a meaningful reference point (usually the mean or the median)
and then report the “typical” deviations from that reference point. What do we mean
by “typical” deviation? Usually, this is themean ormedian value of these deviations. In
practice, this leads to two different measures: the “mean absolute deviation” (from the
mean) and the “median absolute deviation” (from the median). From what I’ve read,
the measure based on the median seems to be used in statistics and does seem to be the
better of the two. But to be honest I don’t think I’ve seen it used much in psychology.
The measure based on the mean does occasionally show up in psychology though. In
this section I’ll talk about the first one, and I’ll come back to talk about the second one
later.
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Since the previous paragraph might sound a little abstract, let’s go through the mean
absolute deviation from the mean a little more slowly. One useful thing about this
measure is that the name actually tells you exactly how to calculate it. Let’s think about
our AFL winning margins data, and once again we’ll start by pretending that there are
only 5 games in total, with winning margins of 56, 31, 56, 8 and 32. Since our calcula-
tions rely on an examination of the deviation from some reference point (in this case the
mean), the first thing we need to calculate is the mean, �̄�. For these five observations,
our mean is �̄� = 36.6. The next step is to convert each of our observations 𝑋𝑖 into a
deviation score. We do this by calculating the difference between the observation 𝑋𝑖
and themean �̄�. That is, the deviation score is defined to be𝑋𝑖 −�̄�. For the first obser-
vation in our sample, this is equal to 56−36.6 = 19.4. Okay, that’s simple enough. The
next step in the process is to convert these deviations to absolute deviations, and we
do this by converting any negative values to positive ones. Mathematically, we would
denote the absolute value of −3 as ∣ −3 ∣, and so we say that ∣ −3 ∣= 3. We use the
absolute value here because we don’t really care whether the value is higher than the
mean or lower than the mean, we’re just interested in how close it is to the mean. To
help make this process as obvious as possible, Table 4.2 shows these calculations for all
five observations.

Table 4.2: Measures of variability

English notation value

deviation
from
mean

absolute
deviation

notation: 𝑖 𝑋𝑖 𝑋𝑖 − �̄� ∣ 𝑋𝑖 − �̄� ∣
1 56 19.4 19.4
2 31 -5.6 5.6
3 56 19.4 19.4
4 8 -28.6 28.6
5 32 -4.6 4.6

Now that we have calculated the absolute deviation score for every observation in the
data set, all that we have to do to calculate the mean of these scores. Let’s do that:

19.4 + 5.6 + 19.4 + 28.6 + 4.6
5 = 15.52

And we’re done. The mean absolute deviation for these five scores is 15.52.

[Additional technical detail24]

4.2.4 Variance

Although the average absolute deviation measure has its uses, it’s not the best mea-
sure of variability to use. From a purely mathematical perspective there are some solid
reasons to prefer squared deviations rather than absolute deviations. If we do that we
obtain a measure called the variance, which has a lot of really nice statistical properties
that I’m going to ignore,25 and one massive psychological flaw that I’m going to make
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a big deal out of in a moment. The variance of a data set 𝑋 is sometimes written as
Var( 𝑋 ), but it’s more commonly denoted 𝑠2 (the reason for this will become clearer
shortly).

[Additional technical detail26]

Now that we’ve got the basic idea, let’s have a look at a concrete example. Once again,
let’s use the first five AFL games as our data. If we follow the same approach that we
took last time, we end up with the information shown in Table 4.3.

Table 4.3: Measures of variability for the first five AFL games

English maths: value

deviation
from
mean

absolute
deviation

notation: 𝑖 𝑋𝑖 𝑋𝑖 − �̄� (𝑋𝑖 − �̄�)2

1 56 19.4 376.36
2 31 -5.6 31.36
3 56 19.4 376.36
4 8 -28.6 817.96
5 32 -4.6 21.16

That last column contains all of our squared deviations, so all we have to do is average
them. If we do that by hand, using a calculator, we end up with a variance of 324.64.
For the moment, don’t worry about what a variance of 324.64 actually means. Instead
le’s talk a bit more about how to do the calculations in jamovi, because this will reveal
something very weird. Start a new jamovi session by clicking on the main menu button
(three horizontal lines in the top left corner and selecting ‘New’. Now type in the first
five values from the afl.margins data set in column A (56, 31, 56, 8, 32. Change the
variable type to ‘Continuous’ and under ‘Descriptives’ click the ‘Variance’ check box,
and you get the same values for variance as the one we calculated by hand (324.64).
No, wait, you get a completely different answer (405.80) – see Figure 4.9.
That’s just weird – is jamovi broken? As it happens, the answer is no.27 jamovi is not
making a mistake. In fact, it’s very simple to explain what jamovi is doing here, but
slightly trickier to explain why jamovi is doing it. So let’s start with the “what”. What
jamovi is doing is evaluating a slightly different formula to the one I showed you above.
Instead of averaging the squared deviations, which requires you to divide by the num-
ber of data points N, jamovi has chosen to divide by 𝑁 − 1.
[Additional technical detail28]

So that’s the what. The real question is why jamovi is dividing by 𝑁 − 1 and not by
𝑁 . After all, the variance is supposed to be the mean squared deviation, right? So
shouldn’t we be dividing by N, the actual number of observations in the sample? Well,
yes, we should. However, as we’ll discuss in Chapter 8, there’s a subtle distinction be-
tween “describing a sample” and “making guesses about the population from which
the sample came”. Up to this point, it’s been a distinction without a difference. Regard-
less of whether you’re describing a sample or drawing inferences about the population,
the mean is calculated exactly the same way. Not so for the variance, or the standard
deviation, or for many other measures.
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Figure 4.9: A screenshot of jamovi showing the Variance for the first 5 values of the
afl.margins variable

What I outlined to you initially (i.e., take the actual average, and thus divide by 𝑁 )
assumes that you literally intend to calculate the variance of the sample. Most of the
time, however, you’re not terribly interested in the sample in and of itself. Rather, the
sample exists to tell you something about the world. If so, you’re actually starting to
move away from calculating a “sample statistic” and towards the idea of estimating a
“population parameter”. However, I’m getting ahead of myself. For now, let’s just take
it on faith that jamovi knows what it’s doing, and we’ll revisit the question later on
when we talk about estimation in Chapter 8.

Okay, one last thing. This section so far has read a bit like a mystery novel. I’ve shown
you how to calculate the variance, described the weird “𝑁 − 1” thing that jamovi does
and hinted at the reason why it’s there, but I haven’t mentioned the single most impor-
tant thing. How do you interpret the variance? Descriptive statistics are supposed to
describe things, after all, and right now the variance is really just a gibberish number.
Unfortunately, the reason why I haven’t given you the human-friendly interpretation
of the variance is that there really isn’t one. This is the most serious problem with the
variance. Although it has some elegant mathematical properties that suggest that it
really is a fundamental quantity for expressing variation, it’s completely useless if you
want to communicate with an actual human. Variances are completely uninterpretable
in terms of the original variable! All the numbers have been squared and they don’t
mean anything anymore. This is a huge issue. For instance, according to Table 4.3, the
margin in game 1 was “376.36 points-squared higher than the average margin”. This
is exactly as stupid as it sounds, and so when we calculate a variance of 324.64 we’re in
the same situation. I’ve watched a lot of footy games, and at no time has anyone ever
referred to “points squared”. It’s not a real unit of measurement, and since the variance
is expressed in terms of this gibberish unit, it is totally meaningless to a human.
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4.2.5 Standard deviation

Okay, suppose that you like the idea of using the variance because of those nice mathe-
matical properties that I haven’t talked about, but since you’re a human and not a robot
you’d like to have a measure that is expressed in the same units as the data itself (i.e.,
points, not points squared). What should you do? The solution to the problem is obvi-
ous! Take the square root of the variance, known as the standard deviation, also called
the “root mean squared deviation”, or RMSD. This solves our problem fairly neatly.
Whilst nobody has a clue what “a variance of 324.68 points-squared” really means, it’s
much easier to understand “a standard deviation of 18.01 points” since it’s expressed
in the original units. It is traditional to refer to the standard deviation of a sample of
data as s, though “sd” and “std dev.” are also used at times.

[Additional technical detail29]

However, as you might have guessed from our discussion of the variance, what jamovi
actually calculates is slightly different to the formula given above. Just like we sawwith
the variance, what jamovi calculates is a version that divides by 𝑁 − 1 rather than 𝑁 .

[Additional technical detail30]

Interpreting standard deviations is slightly more complex. Because the standard devi-
ation is derived from the variance, and the variance is a quantity that has little to no
meaning that makes sense to us humans, the standard deviation doesn’t have a simple
interpretation. As a consequence, most of us just rely on a simple rule of thumb. In
general, you should expect 68% of the data to fall within 1 standard deviation of the
mean, 95% of the data to fall within 2 standard deviation of the mean, and 99.7% of the
data to fall within 3 standard deviations of the mean. This rule tends to work pretty
well most of the time, but it’s not exact. It’s actually calculated based on an assumption
that the histogram is symmetric and “bell shaped”. As you can tell from looking at the
AFL winning margins histogram in Figure 4.2, this isn’t exactly true of our data! Even
so, the rule is approximately correct. As it turns out, 65.3% of the afl.margins data fall
within one standard deviation of the mean. This is shown visually in Figure 4.10.

4.2.6 Which measure to use?

We’ve discussed quite a few measures of spread: range, IQR, mean absolute deviation,
variance and standard deviation; and hinted at their strengths and weaknesses. Here’s
a quick summary:

• Range. Gives you the full spread of the data. It’s very vulnerable to outliers and
as a consequence it isn’t often used unless you have good reasons to care about
the extremes in the data.

• Interquartile range. Tells you where the “middle half” of the data sits. It’s pretty
robust and complements the median nicely. This is used a lot.

• Mean absolute deviation. Tells you how far “on average” the observations are from
the mean. It’s very interpretable but has a few minor issues (not discussed here)
thatmake it less attractive to statisticians than the standard deviation. Used some-
times, but not often.
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Figure 4.10: An illustration of the standard deviation from the AFL winning margins
data. The shaded bars in the histogram show how much of the data fall within one
standard deviation of the mean. In this case, 65.3% of the data set lies within this range,
which is pretty consistentwith the “approximately 68% rule” discussed in themain text

• Variance. Tells you the average squared deviation from the mean. It’s mathemat-
ically elegant and is probably the “right” way to describe variation around the
mean, but it’s completely uninterpretable because it doesn’t use the same units as
the data. Almost never used except as a mathematical tool, but it’s buried “under
the hood” of a very large number of statistical tools.

• Standard deviation. This is the square root of the variance. It’s fairly elegant math-
ematically and it’s expressed in the same units as the data so it can be interpreted
pretty well. In situations where the mean is the measure of central tendency, this
is the default. This is by far the most popular measure of variation.

In short, the IQR and the standard deviation are easily the twomost commonmeasures
used to report the variability of the data. But there are situations in which the others
are used. I’ve described all of them in this book because there’s a fair chance you’ll run
into most of these somewhere.

4.3 Skew and kurtosis

There are two more descriptive statistics that you will sometimes see reported in the
psychological literature: skew and kurtosis. In practice, neither one is used anywhere
near as frequently as the measures of central tendency and variability that we’ve been
talking about. Skew is pretty important, so you do see it mentioned a fair bit, but I’ve
actually never seen kurtosis reported in a scientific article to date.
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Figure 4.11: An illustration of skewness. On the left we have a negatively skewed data
set, in the middle we have a data set with no skew, and on the right we have a positively
skewed data set

Figure 4.12: An illustration of kurtosis. On the left, we have a “platykurtic” distribution
(kurtosis = -.95) meaning that the distribution has “thin” or flat tails. In the middle we
have a “mesokurtic” distribution (kurtosis is almost exactly 0) which means that the
tails are neither thin or fat. Finally, on the right, we have a “leptokurtic” distribution
(kurtosis = 2.12) indicating that the distribution has “fat” tails. Note that kurtosis is
measured with respect to a normal curve (black line)

Since it’s the more interesting of the two, let’s start by talking about the skewness.
Skewness is basically a measure of asymmetry and the easiest way to explain it is by
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drawing some pictures. As Figure 4.11 illustrates, if the data tend to have a lot of ex-
treme small values (i.e., the lower tail is “longer” than the upper tail) and not so many
extremely large values (left panel) then we say that the data are negatively skewed. On
the other hand, if there are more extremely large values than extremely small ones
(right panel) we say that the data are positively skewed. That’s the qualitative idea be-
hind skewness. If there are relatively more values that are far greater than the mean,
the distribution is positively skewed or right skewed, with a tail stretching to the right.
Negative or left skew is the opposite. A symmetric distribution has a skewness of 0. The
skewness value for a positively skewed distribution is positive, and a negative value for
a negatively skewed distribution.

[Additional technical detail31]

Perhaps more helpfully, you can use jamovi to calculate skewness: it’s a check box in
the ‘Statistics’ options under ‘Exploration’ – ‘Descriptives’. For the afl.margins variable,
the skewness figure is 0.780. If you divide the skewness estimate by the Std. error for
skewness you have an indication of how skewed the data is. Especially in small samples
(N < 50), one rule of thumb suggests that a value of 2 or less can mean that the data
is not very skewed, and a value of over 2 that there is sufficient skew in the data to
possibly limit its use in some statistical analyses. Though there is no clear agreement
on this interpretation. That said, this does indicate that the AFL winning margins data
is somewhat skewed (0.780

0.183 = 4.262).
The final measure that is sometimes referred to, though very rarely in practice, is the
kurtosis of a data set. Put simply, kurtosis is a measure of how thin or fat the tails of a
distribution are, as illustrated in Figure 4.12. By convention, we say that the “normal
curve” (black lines) has zero kurtosis, so the degree of kurtosis is assessed relative to
this curve. In this Figure, the data on the left have a pretty flat distribution, with thin
tails, so the kurtosis is negative and we call the data platykurtic. The data on the right
have a distribution with fat tails, so the kurtosis is positive and we say that the data is
leptokurtic. But the data in the middle have neither thin or fat tails, so we say that it is
mesokurtic and has kurtosis zero. This is summarised in Table 4.4.

Table 4.4: Thin to fat tails to illustrate kurtosis

English informal term kurtosis value
“tails too thin” platykurtic negative

“tails neither thin or
fat” mesokurtic zero

“tails too fat” leptokurtic positive

[Additional technical detail32]

More to the point, jamovi has a check box for kurtosis just below the check box for
skewness, and this gives a value for kurtosis of 0.101 with a standard error of 0.364.
This means that the AFL winning margins data has only a small kurtosis, which is ok.
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4.4 Descriptive statistics separately for each group

It is very commonly the case that you find yourself needing to look at descriptive statis-
tics broken down by some grouping variable. This is pretty easy to do in jamovi. For
instance, let’s say I want to look at the descriptive statistics for some clinical trial data,
broken down separately by therapy type. This is a new data set, one that you’ve never
seen before. The data is stored in the clinicaltrial.csv file and we’ll use it a lot later on in
Chapter 13 (you can find a complete description of the data at the start of that chapter).
Let’s load it and see what we’ve got (Figure 4.13).

Figure 4.13: A screenshot of jamovi showing the variables stored in the clinicaltrial.csv
file

Evidently there were three drugs: a placebo, something called “anxifree” and some-
thing called “joyzepam”, and there were 6 people administered each drug. There were
9 people treated using cognitive behavioural therapy (CBT) and 9 people who received
no psychological treatment. And we can see from looking at the ‘Descriptives’ of the
mood.gain variable that most people did show a mood gain (𝑚𝑒𝑎𝑛 = 0.88), though
without knowing what the scale is here it’s hard to say much more than that. Still,
that’s not too bad. Overall I feel that I learned something from that.
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We can also go ahead and look at some other descriptive statistics, and this time sepa-
rately for each type of therapy. In jamovi, check Std. deviation, Skewness and Kurtosis
in the ‘Statistics’ options. At the same time, transfer the therapy variable into the ‘Split
by’ box, and you should get something like Figure 4.14.

Figure 4.14: A screenshot of jamovi showing Descriptives split by therapy type

What if you havemultiple grouping variables? Suppose youwant to look at the average
mood gain separately for all possible combinations of drug and therapy. It is possible
to do this by adding another variable, drug, into the ‘Split by’ box. Easy peasy, though
sometimes if you split toomuch there isn’t enoughdata in each breakdown combination
to makemeaningful calculations. In this case jamovi tells you this by stating something
like ‘NaN’ or ‘Inf’.33

4.5 Standard scores

Suppose my friend is putting together a new questionnaire intended to measure
“grumpiness”. The survey has 50 questions which you can answer in a grumpy way
or not. Across a big sample (hypothetically, let’s imagine a million people or so!) the
data are fairly normally distributed, with the mean grumpiness score being 17 out of
50 questions answered in a grumpy way, and the standard deviation is 5. In contrast,
when I take the questionnaire I answer 35 out of 50 questions in a grumpy way. So,
how grumpy am I? One way to think about it would be to say that I have grumpiness
of 35

50 , so you might say that I’m 70% grumpy. But that’s a bit weird, when you think
about it. If my friend had phrased her questions a bit differently people might have
answered them in a different way, so the overall distribution of answers could easily
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move up or down depending on the precise way in which the questions were asked.
So, I’m only 70% grumpy with respect to this set of survey questions. Even if it’s a very
good questionnaire this isn’t a very informative statement.

A simpler way around this is to describe my grumpiness by comparing me to other
people. Shockingly, out of my friend’s sample of 1, 000, 000 people, only 159 people
were as grumpy asme (that’s not at all unrealistic, frankly) suggesting that I’m in the top
0.016% of people for grumpiness. This makes muchmore sense than trying to interpret
the raw data. This idea, that we should describe my grumpiness in terms of the overall
distribution of the grumpiness of humans, is the qualitative idea that standardisation
attempts to get at. One way to do this is to do exactly what I just did and describe
everything in terms of percentiles. However, the problem with doing this is that “it’s
lonely at the top”. Suppose that my friend had only collected a sample of 1000 people
(still a pretty big sample for the purposes of testing a new questionnaire, I’d like to add),
and this time had gotten, let’s say, a mean of 16 out of 50 with a standard deviation of
5. The problem is that almost certainly not a single person in that sample would be as
grumpy as me.

However, all is not lost. A different approach is to convert my grumpiness score into a
standard score, also referred to as a z-score. The standard score is defined as the num-
ber of standard deviations above the mean that my grumpiness score lies. To phrase it
in “pseudomaths” the standard score is calculated like this:

standard score = raw score − 𝑚𝑒𝑎𝑛
standard deviation

[Additional technical detail34]

So, going back to the grumpiness data, we can now transform Dani’s raw grumpiness
into a standardised grumpiness score:

𝑧 = 35 − 17
5 = 3.6

To interpret this value, recall the roughheuristic that I provided in Section 4.2.5 inwhich
I noted that 99.7% of values are expected to liewithin 3 standard deviations of themean.
So the fact that my grumpiness corresponds to a z-score of 3.6 indicates that I’m very
grumpy indeed. In fact this suggests that I’m grumpier than 99.98% of people. Sounds
about right.

In addition to allowing you to interpret a raw score in relation to a larger population
(and thereby allowing you to make sense of variables that lie on arbitrary scales), stan-
dard scores serve a second useful function. Standard scores can be compared to one
another in situations where the raw scores can’t. Suppose, for instance, my friend also
had another questionnaire that measured extraversion using a 24 item questionnaire.
The overall mean for this measure turns out to be 13 with standard deviation 4, and
I scored a 2. As you can imagine, it doesn’t make a lot of sense to try to compare my
raw score of 2 on the extraversion questionnaire to my raw score of 35 on the grumpi-
ness questionnaire. The raw scores for the two variables are “about” fundamentally
different things, so this would be like comparing apples to oranges.

What about the standard scores? Well, this is a little different. If we calculate the stan-
dard scores we get (𝑧 = (35−17)

5 = 3.6) for grumpiness and (𝑧 = (2−13)
4 = −2.75)
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for extraversion. These two numbers can be compared to each other.35 I’m much less
extraverted than most people (𝑧 = −2.75) and much grumpier than most people (𝑧 =
3.6). But the extent of my unusualness is much more extreme for grumpiness, since
3.6 is a bigger number than 2.75. Because each standardised score is a statement about
where an observation falls relative to its own population, it is possible to compare stan-
dardised scores across completely different variables.

4.6 Summary

Calculating some basic descriptive statistics is one of the very first things you do when
analysing real data, and descriptive statistics are much simpler to understand than in-
ferential statistics, so like every other statistics textbook I’ve started with descriptives.
In this chapter, we talked about the following topics:

• Measures of central tendency. Broadly speaking, central tendency measures tell
you where the data are. There’s three measures that are typically reported in the
literature: the mean, median and mode.

• Measures of variability. In contrast, measures of variability tell you about how
“spread out” the data are. The key measures are: range, standard deviation, and
interquartile range.

• Skewand kurtosis. We also looked at assymetry in a variable’s distribution (skew)
and thin or fat tailed distributions (kurtosis).

• Descriptive statistics separately for each group. Since this book focuses on do-
ing data analysis in jamovi, we spent a bit of time talking about how descriptive
statistics are computed for different subgroups.

• Standard scores. The z-score is a slightly unusual beast. It’s not quite a descriptive
statistic, and not quite an inference. Make sure you understand this section. It’ll
come up again later.

In the next chapter we’ll move on to a discussion of how to draw pictures! Everyone
loves a pretty picture, right? But before we do, I want to end on an important point.
A traditional first course in statistics spends only a small proportion of the class on
descriptive statistics, maybe one or two lectures at most. The vast majority of the lec-
turer’s time is spent on inferential statistics because that’s where all the hard stuff is.
That makes sense, but it hides the practical everyday importance of choosing good de-
scriptives.
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Chapter 5

Drawing graphs

Above all else show the data.
– Edward Tufte36

Visualising data is one of the most important tasks facing the data analyst. It’s impor-
tant for two reasons. First, for drawing “presentation graphics” – displaying data in
a clean, visually appealing way makes it easier for readers to understand what you’re
trying to tell them. Second, and perhaps more important, is that drawing graphs helps
you to understand the data. To that end it’s important that “exploratory graphics” help
you learn about the data as part of your analysis.

To give a sense of the importance of this chapter, I’ll start with a classic illustration of
just how powerful a good graph can be. Figure 5.1 is a redrawing of one of the most
famous data visualisations of all time – John Snow’s 1854 map of cholera deaths. The
map is elegant in its simplicity. A street map helps orient the viewer, overlayed with
a large number of small squares, each one representing the location of a cholera case.
The larger dots show the location of water pumps, labelled by name. Even the most
casual inspection of the graph makes it clear that the source of the outbreak is almost
certainly the Broad Street pump. Upon viewing this graph Dr Snow arranged to have
the handle removed from the pump, thus ending the outbreak that had killed over 500
people. Such is the power of a good data visualisation.

There are two goals in this chapter. First, to discuss several fairly standard graphs that
we use a lot when analysing and presenting data, and second to show you how to create
these graphs in jamovi. The graphs themselves tend to be pretty straightforward, so in
one respect this chapter is pretty simple. Where people usually struggle is learning how
to produce graphs, and especially learning how to produce good graphs. Fortunately,
learning how to draw graphs in jamovi is reasonably simple as long as you’re not too
picky about what your graph looks like. What I mean when I say this is that jamovi
has a lot of very good default graphs, or plots, that most of the time produce a clean,
high-quality graphic. However, on those occasions when you do want to do something
non-standard, or if you need to make highly specific changes to the figure, then the
graphics functionality in jamovi is not yet capable of supporting advanced work or
detail editing.
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Figure 5.1: A stylised redrawing of John Snow’s original cholera map of London. Each
small orange square represents the location of a cholera death and each blue circle
shows the location of a water pump. As the plot makes clear, the cholera outbreak
is centred very closely on the Broad St pump

5.1 Histograms

Let’s begin with the humble histogram. Histograms are one of the simplest and most
useful ways of visualising data. They make most sense when you have an interval or
ratio scale variable (e.g., the afl.margins data from Chapter 4) and you want to get an
overall impression of the variable. Most of you probably know how histograms work,
since they’re sowidely used, but for the sake of completeness I’ll describe them. All you
do is divide up the possible values into bins and then count the number of observations
that fall within each bin. This count is referred to as the frequency or density of the bin
and is displayed as a vertical bar. In the AFL winning margins data there are 33 games

82



in which the winning margin was less than 10 points and it is this fact that is repre-
sented by the height of the leftmost bar that we showed earlier in Chapter 4, Figure 4.2.
With these earlier graphs we used an advanced plotting package in Rwhich, for now, is
beyond the capability of jamovi. But jamovi gets us close, and drawing this histogram
in jamovi is pretty straightforward. Open up the ‘plots’ options under ‘Exploration’ –
‘Descriptives’ and click the ‘histogram’ check box, as in Figure 5.2. jamovi defaults to
labelling the y-axis as ‘density’ and the x-axis with the variable name. The bins are
selected automatically, and there is no scale, or count, information on the y-axis unlike
the previous Figure 4.2. But this does not matter too much because after all what we
are really interested in is our impression of the shape of the distribution: is it normally
distributed or is there a skew or kurtosis? Our first impressions of these characteristics
come from drawing a histogram.

Figure 5.2: jamovi screen showing the histogram check box

One additional feature that jamovi provides is the ability to plot a ‘Density’ curve. You
cando this by clicking the ‘Density’ check boxunder the ‘Plots’ options (andunchecking
‘Histogram’), and this gives us the plot shown in Figure 5.3. A density plot visualises
the distribution of data over a continuous interval or time period. This chart is a vari-
ation of a histogram that uses kernel smoothing to plot values, allowing for smoother
distributions by smoothing out the noise. The peaks of a density plot help display
where values are concentrated over the interval. An advantage density plots have over
histograms is that they are better at determining the distribution shape because they’re
not affected by the number of bins used (each bar used in a typical histogram). A his-
togram comprising of only 4 bins wouldn’t produce a distinguishable enough shape
of distribution as a 20-bin histogram would. However, with density plots, this isn’t an
issue.
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Figure 5.3: A density plot of the afl.margins variable plotted in jamovi

Although this image would need a lot of cleaning up in order to make a good presen-
tation graphic (i.e., one you’d include in a report), it nevertheless does a pretty good
job of describing the data. In fact, the big strength of a histogram or density plot is that
(properly used) it does show the entire spread of the data, so you can get a pretty good
sense about what it looks like. The downside to histograms is that they aren’t very com-
pact. Unlike some of the other plots I’ll talk about it’s hard to cram 20-30 histograms
into a single image without overwhelming the viewer. And of course, if your data are
nominal scale then histograms are useless.

5.2 Boxplots

Another alternative to histograms is a boxplot, sometimes called a “box and whiskers”
plot. Like histograms they’remost suited to interval or ratio scale data. The idea behind
a boxplot is to provide a simple visual depiction of the median, the interquartile range,
and the range of the data. And because they do so in a fairly compact way boxplots
have become a very popular statistical graphic, especially during the exploratory stage
of data analysis when you’re trying to understand the data yourself. Let’s have a look
at how they work, again using the afl.margins data as our example.

The easiest way to describe what a boxplot looks like is just to draw one. Click on the
‘Box plot’ check box and you will get the plot shown in Figure 5.4. jamovi has drawn
the most basic boxplot possible.
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Figure 5.4: A box plot of the afl.margins variable plotted in jamovi

When you look at this plot this is how you should interpret it: the thick line in the mid-
dle of the box is themedian; the box itself spans the range from the 25th percentile to the
75th percentile; and the “whiskers” go out to the most extreme data point that doesn’t
exceed a certain bound. By default, this value is 1.5 times the interquartile range (IQR),
calculated as 25th percentile−(1.5×𝐼𝑄𝑅) for the lower boundary, and 75th percentile
+(1.5 × 𝐼𝑄𝑅) for the upper boundary. Any observation whose value falls outside this
range is plotted as a circle or dot instead of being covered by the whiskers, and is com-
monly referred to as an outlier. For our afl.margins data there are two observations that
fall outside this range, and these observations are plotted as dots (the upper boundary
is 107, and looking over the data column in the spreadsheet there are two observations
with values higher than this, 46 and 163, so these are the dots).

5.2.1 Violin plots

A variation to the traditional box plot is the violin plot. Violin plots are similar to box
plots except that they also show the kernel probability density of the data at different
values. Typically, violin plots will include amarker for themedian of the data and a box
indicating the interquartile range, as in standard box plots. In jamovi you can achieve
this sort of functionality by checking both the ‘Violin’ and the ‘Box plot’ check boxes.
See Figure 5.5, which also has the ‘Data’ check box turned on to show the actual data
points on the plot. This does tend to make the graph a bit too busy though, in my
opinion. Clarity is simplicity, so in practice it might be better to just use a simple box
plot.
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Figure 5.5: A violin plot of the afl.margins variable plotted in jamovi, also showing a
box plot and data points

Figure 5.6: jamovi screen shot showing the ‘Split by’ window
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5.2.2 Drawing multiple boxplots

One last thing. What if you want to draw multiple boxplots at once? Suppose, for
instance, I wanted separate boxplots showing the afl.margins not just for 2010 but for
every year between 1987 and 2010. To do that the first thing we’ll have to do is find the
data. These are stored in the aflmarginbyyear.csv file. So let’s load it into jamovi and
see what is in it. You will see that it is a pretty big data set. It contains 4296 games and
the variables that we’re interested in. What wewant to do is have jamovi draw boxplots
for the margin variable, but plotted separately for each year. The way to do this is to
move the year variable across into the ‘Split by’ box, as in Figure 5.6.

The result is shown in Figure 5.7. This version of the box plot, split by year, gives a
sense of why it’s sometimes useful to choose box plots instead of histograms. It’s pos-
sible to get a good sense of what the data look like from year to year without getting
overwhelmed with too much detail. Now imagine what would have happened if I’d
tried to cram 24 histograms into this space: no chance at all that the reader is going to
learn anything useful.

Figure 5.7: Multiple boxplots plotted in jamovi, for the margin by year variables

5.2.3 Using box plots to detect outliers

As the boxplot automatically separates out observations that lie outside a certain range,
depicting them with a dot in jamovi, people often use them as an informal method for
detecting outliers: observations that are “suspiciously” distant from the rest of the data.
Here’s an example. Suppose that I’d drawn the boxplot for the afl.margins data and it
came up looking like Figure 5.8. It’s pretty clear that something funny is going on with
two of the observations. Apparently, there were two games in which the margin was
over 300 points!37 That doesn’t sound right to me. Now that I’ve become suspicious it’s
time to look a bit more closely at the data. In jamovi you can quickly find out which of
these observations are suspicious and then you can go back to the rawdata to see if there
has been amistake in data entry. Oneway to do this is to tell jamovi to label the outliers,
by checking the box next to the ‘Box plot’ check box. This adds a row number label next
to the outlier in the boxplot, so you can go look at that row and find the extreme value.
Another, more flexible way, is to set up a filter so that only those observations with
values over a certain threshold are included. In our example, the threshold is over 300,
so that is the filter we will create. First, click on the ‘Filters’ button at the top of the
jamovi window, and then type ‘margin > 300’ into the filter field, as in Figure 5.9.
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Figure 5.8: A boxplot showing two very suspicious outliers!

Figure 5.9: The jamovi filter screen

This filter creates a new column in the spreadsheet viewwhere only those observations
that pass the filter are included. One neat way to quickly identify which observations
these are is to tell jamovi to produce a ‘Frequency table’ (in the ‘Exploration’ – ‘De-
scriptives’ window) for the ID variable (which must be a nominal variable otherwise
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the Frequency table is not produced). In Figure 5.10 you can see that the ID values for
the observations where the margin was over 300 are 176 and 202. These are suspicious
cases, or observations, where you should go back to the original data source to find out
what is going on.

Figure 5.10: Frequency table for ID showing the ID numbers for the two suspicious
outliers, 176 and 202

Usually you find that someone has just typed in the wrong number. Whilst this might
seem like a silly example, I should stress that this kind of thing actually happens a lot.
Real world data sets are often riddled with stupid errors, especially when someone had
to type something into a computer at some point. In fact, there’s actually a name for
this phase of data analysis and in practice it can take up a huge chunk of our time: data
cleaning. It involves searching for typing mistakes (“typos”), missing data and all sorts
of other obnoxious errors in raw data files.

For less extreme values, even if they are flagged in a a boxplot as outliers, the decision
about whether to include outliers or exclude them in any analysis depends heavily on
why you think the data look they way they do and what you want to use the data for.
You really need to exercise good judgement here. If the outlier looks legitimate to you,
then keep it. In any case, I’ll return to the topic again in Section 12.10 in Chapter 12.

5.3 Bar graphs

Another form of graph that you often want to plot is the bar graph. Let’s use the
afl.finalists data set with the afl.finalists variable that I introduced in Section 4.1.6. What
I want to do is draw a bar graph that displays the number of finals that each team has
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played in over the time spanned by the afl.finalists data set. There are lots of teams, but I
am particularly interested in just four: Brisbane, Carlton, Fremantle and Richmond. So
the first step is to set up a filter so just those four teams are included in the bar graph.
This is straightforward in jamovi and you can do it by using the ‘Filters’ function that
we used previously. Open up the ‘Filters’ screen and type in the following exactly as
written – including the single quote marks:

afl.finalists == ‘Brisbane’ or afl.finalists == ‘Carlton’ or afl.finalists ==
‘Fremantle’ or afl.finalists == ‘Richmond’ 38

When you have done this youwill see, in the ‘Data’ view, that jamovi has filtered out all
values apart from those we have specified. Next, open up the ‘Exploration’ – ‘Descrip-
tives’ window and click on the ‘Bar plot’ check box (remember to move the ‘afl.finalists’
variable across into the ‘Variables’ box so that jamovi knowswhich variable to use). You
should then get a bar graph, something like that shown in Figure 5.11.

Figure 5.11: Filtering to include just four AFL teams, and drawing a bar plot in jamovi

5.4 Saving image files using jamovi

Hold on, you might be thinking. What’s the good of being able to draw pretty pictures
in jamovi if I can’t save them and send them to friends to brag about how awesome
my data is? How do I save the picture? Simples. Just right click on the plot image
and export it to a file, either as ‘png’, ‘eps’, ‘svg’ or ‘pdf’. These formats all produce
nice images that you can then send to your friends, or include in your assignments or
papers.
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5.5 Summary

Perhaps I’m a simple-minded person, but I love pictures. Every time I write a new
scientific paper one of the first things I do is sit down and think about what the pictures
will be. In my head an article is really just a sequence of pictures linked together by a
story. All the rest of it is just window dressing. What I’m really trying to say here is that
the human visual system is a very powerful data analysis tool. Give it the right kind of
information and it will supply a human reader with a massive amount of knowledge
very quickly. Not for nothing do we have the saying “a picture is worth a thousand
words”. With that in mind, I think that this is one of the most important chapters in the
book. The topics covered were:

• Common plots. Much of the chapter was focused on standard graphs that statisti-
cians like to produce: Histograms, Boxplots and Bar graphs.

• Saving image files using jamovi. Importantly, we also covered how to export your
pictures.

One final thing to point out. Whilst jamovi produces some really neat default graphics,
editing the plots is currently not possible. For more advanced graphics and plotting ca-
pability the packages available in R are much more powerful. One of the most popular
graphics systems is provided by the ggplot2 package (see https://ggplot2.tidyverse.
org/), which is loosely based on The grammar of graphics (Wilkinson et al., 2006). It’s not
for novices. You need to have a pretty good grasp of R before you can start using it,
and even then it takes a while to really get the hang of it. But when you’re ready it’s
worth taking the time to teach yourself, because it’s a much more powerful and cleaner
system.
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Chapter 6

Pragmatic matters

The garden of life never seems to confine itself to the plots philosophers have laid out
for its convenience. Maybe a few more tractors would do the trick.
– Roger Zelazny39

This is a somewhat strange chapter, even by my standards. My goal in this chapter is
to talk a bit more honestly about the realities of working with data than you’ll see any-
where else in the book. The problem with real world data sets is that they are messy.
Very often the data file that you start out with doesn’t have the variables stored in the
right format for the analysis you want to do. Sometimes there might be a lot of miss-
ing values in your data set. Sometimes you only want to analyse a subset of the data.
Et cetera. In other words, there’s a lot of data manipulation that you need to do just
to get the variables in your data set into the format that you need it. The purpose of
this chapter is to provide a basic introduction to these pragmatic topics. Although the
chapter is motivated by the kinds of practical issues that arise when manipulating real
data, I’ll stick with the practice that I’ve adopted throughout most of the book and rely
on very small, toy data sets that illustrate the underlying issue. Because this chapter is
essentially a collection of techniques and doesn’t tell a single coherent story, it may be
useful to start with a list of topics:

• Tabulating and cross-tabulating data.
• Logical expressions in jamovi.
• Transforming and recoding a variable.
• A few more mathematical functions and operations.
• Extracting a subset of the data.

As you can see, the list of topics that the chapter covers is pretty broad, and there’s
a lot of content there. Even though this is one of the longest and hardest chapters in
the book, I’m really only scratching the surface of several fairly different and important
topics. My advice, as usual, is to read through the chapter once and try to follow as
much of it as you can. Don’t worry too much if you can’t grasp it all at once, especially
the later sections. The rest of the book is only lightly reliant on this chapter so you can
get away with just understanding the basics. However, what you’ll probably find is
that later on you’ll need to flick back to this chapter in order to understand some of the
concepts that I refer to here.
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6.1 Tabulating and cross-tabulating data

A very common task when analysing data is the construction of frequency tables, or
crosstabulation of one variable against another. These tasks can be achieved in jamovi
and I’ll show you how in this section.

6.1.1 Creating tables for single variables

Let’s start with a simple example. As the father of a small child I naturally spend a
lot of time watching TV shows like In the Night Garden. In the nightgarden.csv file, I’ve
transcribed a short section of the dialogue. The file contains two variables of interest,
speaker and utterance. Open up this data set in jamovi and take a look at the data in
the ‘spreadsheet’ view. You will see that the data looks something like this:

‘speaker’ variable: upsy-daisy upsy-daisy upsy-daisy upsy-daisy tombliboo tombliboo
makka-pakka makka-pakka makka-pakka makka-pakka ‘utterance’ variable: pip pip
onk onk ee oo pip pip onk onk

Looking at this it becomes very clear what happened to my sanity! With these as my
data, one task I might find myself needing to do is construct a frequency count of the
number of words each character speaks during the show. The jamovi ‘Descriptives’
screen has a check box called ‘Frequency tables’ which does just this, see Table 6.1.

Table 6.1: Frequency table for the speaker variable

levels Counts % of Total Cumulative %
makka-pakka 4 40% 40%
tombliboo 2 20% 60%
upsy-daisy 4 40% 100%

The output here tells us on the first line that what we’re looking at is a tabulation of the
speaker variable. In the ‘Levels’ column it lists all the different speakers that exist in
the data, and in the ‘Counts’ column it tells you how many times that speaker appears
in the data. In other words, it’s a frequency table.

In jamovi, the ‘Frequency tables’ check box will only produce a table for single vari-
ables. For a table of two variables, for example combining speaker and utterance so
that we can see how many times each speaker said a particular utterance, we need a
cross-tabulation or contingency table. In jamovi you can do this by selecting the ‘Fre-
quencies’ – ‘Contingency Tables’ – ‘Independent Samples’ analysis, and moving the
speaker variable into the ‘Rows’ box, and the utterances variable into the ‘Columns’
box. You then should have a contingency table like the one shown in Figure 6.1.

Don’t worry about the “𝜒2 Tests” table that is produced. We are going to cover this
later on in Chapter 10. When interpreting the contingency table remember that these
are counts, so the fact that the first row and second column of numbers corresponds
to a value of 2 indicates that Makka-Pakka (row 1) says “onk” (column 2) twice in this
data set.
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Figure 6.1: Contingency table for the speaker and utterances variables

6.1.2 Adding percentages to a contingency table

The contingency table shown in Figure 6.1 shows a table of raw frequencies. That is, a
count of the total number of cases for different combinations of levels of the specified
variables. However, often youwant your data to be organised in terms of percentages as
well as counts. You can find the check boxes for different percentages under the ‘Cells’
option in the ‘Contingency Tables’ window. First, click on the ‘Row’ check box and the
Contingency Table in the output window will change to the one in Figure 6.2.

What we’re looking at here is the percentage of utterances made by each character. In
other words, 50% of Makka-Pakka’s utterances are “pip”, and the other 50% are “onk”.
Let’s contrast thiswith the tablewe getwhenwe calculate columnpercentages (uncheck
‘Row’ and check ‘Column’ in the Cells options window), see Figure 6.3. In this version,
what we’re seeing is the percentage of characters associated with each utterance. For
instance, whenever the utterance “ee” is made (in this data set), 100% of the time it’s a
Tombliboo saying it.

6.2 Logical expressions in jamovi

A key concept that a lot of data transformations in jamovi rely on is the idea of a logical
value. A logical value is an assertion about whether something is true or false. This is
implemented in jamovi in a pretty straightforward way. There are two logical values,
namely TRUE and FALSE. Despite the simplicity, logical values are very useful things.
Let’s see how they work.
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Figure 6.2: Contingency table for the speaker and utterances variables, with row per-
centages

Figure 6.3: Contingency table for the speaker and utterances variables, with column
percentages
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6.2.1 Assessing mathematical truths

In George Orwell’s classic book 1984 one of the slogans used by the totalitarian Party
was “two plus two equals five”. The idea being that the political domination of human
freedom becomes complete when it is possible to subvert even the most basic of truths.
It’s a terrifying thought, especially when the protagonist Winston Smith finally breaks
down under torture and agrees to the proposition. “Man is infinitely malleable”, the
book says. I’m pretty sure that this isn’t true of humans40 and it’s definitely not true
of jamovi. jamovi is not infinitely malleable, it has rather firm opinions on the topic
of what is and isn’t true, at least as regards basic mathematics. If I ask it to calculate
2 + 2,41 it always gives the same answer, and it’s not 5!
Of course, so far jamovi is just doing the calculations. I haven’t asked it to explicitly
assert that 2+2 = 4 is a true statement. If I want jamovi to make an explicit judgement,
I can use a command like this: 2 + 2 == 4.
What I’ve done here is use the equality operator, ==, to force jamovi to make a “true
or false” judgement.42 Okay, let’s see what jamovi thinks of the Party slogan, so type
this into the compute new variable ‘formula’ box:

2 + 2 == 5

And what do you get? It should be a whole set of ‘false’ values in the spreadsheet
column for your newly computed variable. It was worth having a look at what happens
if I try to force jamovi to believe that two plus two is five by making a statement like
2 + 2 = 5. I know that if I do this in another program, say R, then it throws up an error
message. But wait, if you do this in jamovi you get a whole set of ‘false’ values. So what
is going on? Well, it seems that jamovi is being pretty smart and realises that you are
testing whether it is TRUE or FALSE that 2 + 2 = 5, regardless of whether you use the
correct equality operator ==, or the equals sign =.

6.2.2 Logical operations

So now we’ve seen logical operations at work. But so far we’ve only seen the simplest
possible example. You probably won’t be surprised to discover that we can combine
logical operations with other operations and functions in a more complicated way, like
this: 3 × 3 + 4 × 4 == 5 × 5 or this 𝑆𝑄𝑅𝑇 (25) == 5
Not only that, but as Table 6.2 illustrates, there are several other logical operators that
you can use corresponding to some basic mathematical concepts. Hopefully these are
all pretty self-explanatory. For example, the less than operator < checks to see if the
number on the left is less than the number on the right. If it’s less, then jamovi returns
an answer of TRUE, but if the two numbers are equal, or if the one on the right is smaller,
then jamovi returns an answer of FALSE.

In contrast, the less than or equal to operator<=will do exactly what it says. It returns
a value of TRUE if the number on the left-hand side is less than or equal to the number
on the right-hand side. At this point I hope it’s pretty obvious what the greater than
operator > and the greater than or equal to operator >= do!
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Table 6.2: Some logical operators

operation operator
example

input answer
less than < 2 < 3 TRUE
less than or
equal to < = 2 < = 2 TRUE

greater than > 2 > 3 FALSE
greater than or

equal to > = 2 > = 2 TRUE
equal to = = 2 = = 3 FALSE

not equal to != 2 != 3 TRUE

Next on the list of logical operators is the not equal to operator ! = which, as with all
the others, does what it says it does. It returns a value of TRUE when things on either
side are not identical to each other. Therefore, since 2 + 2 isn’t equal to 5, we would get
“true” as the value for our newly computed variable. Try it and see:

2 + 2 != 5

We’re not quite done yet. There are three more logical operations that are worth know-
ing about, listed in Table 6.3. These are the not operator !, the and operator 𝑎𝑛𝑑, and
the or operator 𝑜𝑟. Like the other logical operators, their behaviour is more or less ex-
actly what you’d expect given their names. For instance, if I ask you to assess the claim
that “either 2 + 2 = 4 or 2 + 2 = 5” you’d say that it’s true. Since it’s an “either-or”
statement, all we need is for one of the two parts to be true. That’s what the 𝑜𝑟 operator
does.43

Table 6.3: Some more logical operators

operation operator
example

input answer
not NOT NOT(1==1) FALSE

or or
(1==1) or
(2==3) TRUE

and and
(1==1) and
(2==3) FALSE

On the other hand, if I ask you to assess the claim that “both 2 + 2 = 4 and 2 + 2 = 5”
you’d say that it’s false. Since this is an and statement we need both parts to be true.
And that’s what the 𝑎𝑛𝑑 operator does:

(2 + 2 == 4) and (2 + 2 == 5)

Finally, there’s the not operator, which is simple but annoying to describe in English. If
I ask you to assess my claim that “it is not true that 2 + 2 = 5” then you would say that
my claim is true, because actually my claim is that “2 + 2 = 5 is false”. And I’m right.
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If we write this in jamovi we use this:

𝑁𝑂𝑇 (2 + 2 == 5)

In otherwords, since 2+2 == 5 is a FALSE statement, it must be the case that𝑁𝑂𝑇 (2+
2 == 5) is a TRUE one. Essentially, what we’ve really done is claim that “not false” is
the same thing as “true”. Obviously, this isn’t really quite right in real life. But jamovi
lives in a muchmore black or white world. For jamovi everything is either true or false.
No shades of grey are allowed. Of course, in our 2 + 2 = 5 example, we didn’t really
need to use the “not” operator 𝑁𝑂𝑇 and the “equals to” operator == as two separate
operators. We could have just used the “not equals to” operator ! = like this:

2 + 2 != 5

6.2.3 Applying logical operation to text

I also want to briefly point out that you can apply these logical operators to text as well
as to logical data. It’s just that we need to be a bit more careful in understanding how
jamovi interprets the different operations. In this section I’ll talk about how the equal
to operator == applies to text, since this is the most important one. Obviously, the not
equal to operator != gives the exact opposite answers to == so I’m implicitly talking
about that one too, but I won’t give specific commands showing the use of ! =.
Okay, let’s see how it works. In one sense, it’s very simple. For instance, I can ask jamovi
if the word “cat” is the same as the word “dog”, like this:

“cat” == “dog”

That’s pretty obvious, and it’s good to know that even jamovi can figure that out. Sim-
ilarly, jamovi does recognise that a “cat” is a “cat”:

“cat” == “cat”

Again, that’s exactly what we’d expect. However, what you need to keep inmind is that
jamovi is not at all tolerant when it comes to grammar and spacing. If two strings differ
in any way whatsoever, jamovi will say that they’re not equal to each other, as with the
following:

” cat” == “cat” “cat” == “CAT” “cat” == “c a t”

You can also use other logical operators too. For instance jamovi also allows you to use
the > and < operators to determinewhich of two text ‘strings’ comes first, alphabetically
speaking. Sort of. Actually, it’s a bit more complicated than that, but let’s start with a
simple example:

“cat” < “dog”
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In jamovi, this example evaluates to ‘true’. This is because “cat” does does come before
“dog” alphabetically, so jamovi judges the statement to be true. However, if we ask
jamovi to tell us if “cat” comes before “anteater” then it will evaluate the expression
as false. So far, so good. But text data is a bit more complicated than the dictionary
suggests. What about “cat” and “CAT”? Which of these comes first? Try it and find
out:

“CAT” < “cat”

This in fact evaluates to ‘true’. In other words, jamovi assumes that uppercase letters
come before lowercase ones. Fair enough. No-one is likely to be surprised by that.
What you might find surprising is that jamovi assumes that all uppercase letters come
before all lowercase ones. That is, while “anteater” < “zebra” is a true statement, and
the uppercase equivalent “ANTEATER” < “ZEBRA” is also true, it is not true to say
that “anteater” < “ZEBRA”, as the following extract illustrates. Try this:

“anteater” < “ZEBRA”

This evaluates to ‘false’, and thismay seem slightly counter-intuitive. With that inmind,
it may help to have a quick look at Table 6.4 which lists various text characters in the
order that jamovi processes them.

Table 6.4: Text characters in the order that jamovi processes them

! “ # $ % & ’ (
) * + , - . / 0
1 2 3 4 5 6 7 8
9 : ; < = > ? @
A B C D E F G H
I J K L M N O P
Q R S T U V W X
Y Z [ \ ] ̂ _ ‘
a b c d e g h i
j k l m n o p q
r s t u v w x y
z { | }

6.3 Transforming and recoding a variable

It’s not uncommon in real-world data analysis to find that one of your variables isn’t
quite equivalent to the variable that you really want. For instance, it’s often convenient
to take a continuous-valued variable (e.g., age) and break it up into a smallish number
of categories (e.g., younger, middle, older). At other times, you may need to convert a
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numeric variable into a different numeric variable (e.g., you may want to analyse at the
absolute value of the original variable). In this section I’ll describe a few key ways you
can do these things in jamovi.

6.3.1 Creating a transformed variable

The first trick to discuss is the idea of transforming a variable. Taken literally, anything
you do to a variable is a transformation, but in practice what it usually means is that
you apply a relatively simple mathematical function to the original variable in order to
create a new variable that either (a) provides a better way of describing the thing you’re
actually interested in, or (b) is more closely in agreement with the assumptions of the
statistical tests you want to do. Since, at this stage, I haven’t talked about statistical tests
or their assumptions, I’ll show you an example based on the first case.

Suppose I’ve run a short study in which I ask 10 people a single question: On a scale
of 1 (strongly disagree) to 7 (strongly agree), to what extent do you agree with the
proposition that “Dinosaurs are awesome”?

Now let’s load and look at the data. The data file likert.omv contains a single variable that
contains raw Likert-scale responses for these 10 people. However, if you think about
it, this isn’t the best way to represent these responses. Because of the fairly symmetric
way that we set up the response scale, there’s a sense in which the midpoint of the
scale should have been coded as 0 (no opinion), and the two endpoints should be “3
(strongly agree)” and “3 (strongly disagree)”. By recoding the data in this way it’s a
bit more reflective of how we really think about the responses. The recoding here is
pretty straightforward, we just subtract 4 from the raw scores. In jamovi you can do
this by computing a new variable: click on the ‘Data’ – ‘Compute’ button and you will
see that a new variable has been added to the spreadsheet. Let’s call this new variable
‘likert.centred’ (go ahead and type that in) and then add the following in the formula
box, like in Figure 6.4: ‘likert.raw - 4’.

One reason why it might be useful to have the data in this format is that there are a
lot of situations where you might prefer to analyse the strength of the opinion sepa-
rately from the direction of the opinion. We can do two different transformations on
this likert.centred variable in order to distinguish between these two different concepts.
First, to compute an opinion.strength variable, wewant to take the absolute value of the
centred data (using the ‘ABS’ function).44 In jamovi, create another new variable using
the ‘Compute’ button. Name the variable opinion.strength and this time click on the
fx button next to the ‘Formula’ box. This shows the different ‘Functions’ and ‘Vari-
ables’ that you can add to the ‘Formula’ box, so double click on ‘ABS’ and then dou-
ble click on “likert.centred’ and you will see that the ‘Formula’ box is populated with
‘ABS(likert.centred)’ and a new variable has been created in the spreadsheet view, as
in Figure 6.5.

Second, to compute a variable that contains only the direction of the opinion and ig-
nores the strength, wewant to calculate the “sign” of the variable. In jamovi we can use
the ‘IF’ function to do this. Create another new variable using the ‘Compute’ button,
name this one ‘opinion.sign’, and then type the following into the function box:

IF(likert.centred == 0, 0, likert.centred / opinion.strength)
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Figure 6.4: Creating a new computed variable in jamovi

Figure 6.5: Using the 𝑓𝑥 button to select functions and variables
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When done, you’ll see that all negative numbers from the ‘likert.centred’ variable are
converted to -1, all positive numbers are converted to 1 and zero stays as 0, like so:

-1 1 -1 0 0 0 -1 1 1 1

Let’s break downwhat this ‘IF’ command is doing. In jamovi there are three parts to an
‘IF’ statement, written as ‘IF(expression, value, else)’. The first part, ‘expression’ can be
a logical or mathematical statement. In our example, we have specified ‘likert.centred
== 0’, which is TRUE for values where ‘likert.centred’ is zero. The next part, ‘value’,
is the new value where the expression in part one is TRUE. In our example, we have
said that for all those values where ‘likert.centred’ is zero, keep them zero. In the next
part, ‘else’, we can enter another logical or mathematical statement to be used if part
one evaluates to FALSE, i.e. where ‘likert.centred’ is not zero. In our example we have
divided ‘likert.centred’ by ‘opinion.strength’ to give ‘-1’ or ‘+1’ depending of the sign
of the original value in ‘likert.centred’.45

And we’re done. We now have three shiny new variables, all of which are useful trans-
formations of the original ‘likert.raw’ data.

6.3.2 Collapsing a variable into a smaller number of discrete levels
or categories

One pragmatic task that comes up quite often is the problem of collapsing a variable
into a smaller number of discrete levels or categories. For instance, suppose I’m inter-
ested in looking at the age distribution of people at a social gathering:

60,58,24,26,34,42,31,30,33,2,9

In some situations it can be quite helpful to group these into a smallish number of
categories. For example, we could group the data into three broad categories: young
(0-20), adult (21-40) and older (41-60). This is a quite coarse-grained classification, and
the labels that I’ve attached only make sense in the context of this data set (e.g., viewed
more generally, a 42 year old wouldn’t consider themselves as “older”). We can slice
this variable up quite easily using the jamovi ‘IF’ function that we have already used.
This time we have to specify nested ‘IF’ statements, meaning simply that IF the first
logical expression is TRUE, insert a first value, but IF a second logical expression is
TRUE, insert a second value, but IF a third logical expression is TRUE, then insert a
third value. This can be written as:

IF(Age >= 0 and Age <= 20, 1, IF(Age >= 21 and Age <= 40, 2, IF(Age >= 41
and Age <= 60, 3 )))

Note that there are three left parentheses used during the nesting, so the whole state-
ment has to end with three right parentheses otherwise you will get an error message.
The jamovi screenshot for this data manipulation, along with an accompanying fre-
quency table, is shown in Figure 6.6.

It’s important to take the time to figure out whether or not the resulting categories
make any sense at all in terms of your research project. If they don’t make any sense
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to you as meaningful categories, then any data analysis that uses those categories is
likely to be just as meaningless. More generally, in practice I’ve noticed that people
have a very strong desire to carve their (continuous andmessy) data into a few (discrete
and simple) categories, and then run analyses using the categorised data instead of the
original data.46 I wouldn’t go so far as to say that this is an inherently bad idea, but it
does have some fairly serious drawbacks at times, so I would advise some caution if
you are thinking about doing it.

Figure 6.6: Collapsing a variable into a smaller number of discrete levels using the
jamovi ‘IF’ function

6.3.3 Creating a transformation that can be applied to multiple vari-
ables

Sometimes you want to apply the same transformation to more than one variable, for
example when you havemultiple questionnaire items that all need to be recalculated or
recoded in the same way. And one of the neat features in jamovi is that you can create
a transformation, using the ‘Data’ – ‘Transform’ button, that can then be saved and ap-
plied to multiple variables. Let’s go back to the first example above, using the data file
likert.omv that contains a single variable with raw Likert-scale responses for 10 people.
To create a transformation that you can save and then apply across multiple variables
(assuming you had more variables like this in your data file), first in the spreadsheet
editor select (i.e., click) the variable you want to use to initially create the transforma-
tion. In our example this is likert.raw. Next click the ‘Transform’ button in the jamovi
‘Data’ ribbon, and you’ll see something like Figure 6.7.
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Figure 6.7: Creating a new variable transformation using the jamovi ‘Transform’ com-
mand

Figure 6.8: Specifying a transformation in jamovi, to be saved as the imaginatively
named ‘Transform 1’
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Give your new variable a name, let’s call it ‘opinion.strength’, and then click on the ‘us-
ing transform’ selection box and select ‘Create New Transform…’. This is where you
will create, and name, the transformation that can be re-applied to as many variables as
you like. The transformation is automatically named for us as ‘Transform 1’ (imagina-
tive, huh. You can change this if you like). Then type the expression “ABS($source - 4)”
into the function text box, as in Figure 6.8, press Enter or Return on your keyboard and,
hey presto, you have created a new transformation and applied it to the likert.raw vari-
able! Good, eh. Note that instead of using the variable label in the expression, we have
instead used ‘$source’. This is so that we can then use the same transformation with
as many different variables as we like – jamovi requires you to use ‘$source’ to refer
to the source variable you are transforming. Your transformation has also been saved
and can be re-used any time you like (providing you save the data set as an ‘.omv’ file,
otherwise you’ll lose it!).

Figure 6.9: jamovi transformation into three age categories, using the ‘Add condition’
button

You can also create a transformation with the second example we looked at, the age
distribution of people at a social gathering. Go on, you know you want to! Remember
that we collapsed this variable into three groups: younger, adult and older. This time
we will achieve the same thing, but using the jamovi ‘Transform’ – ‘Add condition’ but-
ton. With this data set (go back to it or create it again if you didn’t save it) set up a new
variable transformation. Call the transformed variable ‘AgeCats’ and the transforma-
tion you will create ‘Agegroupings’. Then click on the big “+” sign next to the function
box. This is the ‘Add condition’ button and I’ve stuck a big red arrow onto Figure 6.9 so
you can see exactly where this is. Re-create the transformation shown in Figure 6.9 and
when you are done, you will see the new values appear in the spreadsheet window.
What’s more, the age groupings transformation has been saved and can be re-applied
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any time you like. Ok, so I know that it’s unlikely you will have more than one ‘Age’
variable, but you get the idea now of how to set up transformations in jamovi, so you
can follow this idea with other sorts of variables. A typical scenario for this is when you
have a questionnaire scale with, say, 20 items (variables) and each item was originally
scored from 1 to 6 but, for some reason or quirk of the data you decide to recode all the
items as 1 to 3. You can easily do this in jamovi by creating and then re-applying your
transformation for each variable that you want to recode.

6.4 A few more mathematical functions and operations

In the section on Transforming and recoding a variable I discussed the ideas behind
variable transformations and showed that a lot of the transformations that you might
want to apply to your data are based on fairly simple mathematical functions and op-
erations. In this section I want to return to that discussion and mention several other
mathematical functions and arithmetic operations that are actually quite useful for a lot
of real world data analysis. Table 6.5 gives a brief overview of the variousmathematical
functions I want to talk about here, or later.47 Obviously this doesn’t even come close
to cataloguing the range of possibilities available, but it does cover a range of functions
that are used regularly in data analysis and that are available in jamovi.

Table 6.5: Some mathematical operators

function
example

input (answer)
square root SQRT(x) SQRT(25) 5

absolute value ABS(x) ABS(-23) 23
logarithm (base

10) LOG10(x) LOG10(1000) 3
logarithm (base

e) LN(x) LN(1000) 6.91
exponentiation EXP(x) EXP(6.908) 1e+03

box-cox
BOXCOX(x,
lamda)

BOXCOX(6.908,
3) 110

6.4.1 Logarithms and exponentials

As I’ve mentioned earlier, jamovi has a useful range of mathematical functions built
into it and there really wouldn’t be much point in trying to describe or even list all of
them. For the most part, I’ve focused only on those functions that are strictly necessary
for this book. However I do want to make an exception for logarithms and exponen-
tials. Although they aren’t needed anywhere else in this book, they are everywhere in
statistics more broadly. And not only that, there are a lot of situations in which it is
convenient to analyse the logarithm of a variable (i.e., to take a “log-transform” of the
variable). I suspect that many (maybe most) readers of this book will have encoun-
tered logarithms and exponentials before, but from past experience I know that there’s
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a substantial proportion of studentswho take a social science statistics classwhohaven’t
touched logarithms since high school, and would appreciate a bit of a refresher.
In order to understand logarithms and exponentials, the easiest thing to do is to actually
calculate them and see how they relate to other simple calculations. There are three
jamovi functions in particular that I want to talk about, namely LN(), LOG10() and
EXP(). To start with, let’s consider LOG10(), which is known as the “logarithm in base
10”. The trick to understanding a logarithm is to understand that it’s basically the
“opposite” of taking a power. Specifically, the logarithm in base 10 is closely related
to the powers of 10. So let’s start by noting that 10-cubed is 1000. Mathematically, we
would write this:

103 = 1000
The trick to understanding a logarithm is to recognise that the statement that “10 to the
power of 3 is equal to 1000” is equivalent to the statement that “the logarithm (in base
10) of 1000 is equal to 3”. Mathematically, we write this as:

log10(1000) = 3

Okay, since the LOG10() function is related to the powers of 10, you might expect that
there are other logarithms (in bases other than 10) that are related to other powers
too. And of course that’s true: there’s not really anything mathematically special about
the number 10. You and I happen to find it useful because decimal numbers are built
around the number 10, but the big badworld ofmathematics scoffs at our decimal num-
bers. Sadly, the universe doesn’t actually care how we write down numbers. Anyway,
the consequence of this cosmic indifference is that there’s nothing particularly special
about calculating logarithms in base 10. You could, for instance, calculate your loga-
rithms in base 2. Alternatively, a third type of logarithm, and onewe see a lot more of in
statistics than either base 10 or base 2, is called the natural logarithm, and corresponds
to the logarithm in base 𝑒. Since you might one day run into it, I’d better explain what
𝑒 is. The number 𝑒, known as Euler’s number, is one of those annoying “irrational”
numbers whose decimal expansion is infinitely long, and is considered one of the most
important numbers in mathematics. The first few digits of 𝑒 are:

𝑒 ≈ 2.718282

There are quite a few situations in statistics that require us to calculate powers of 𝑒,
though none of them appear in this book. Raising 𝑒 to the power 𝑥 is called the ex-
ponential of 𝑥, and so it’s very common to see 𝑒𝑥 written as exp(𝑥). And so it’s no
surprise that jamovi has a function that calculates exponentials, called EXP(). Because
the number 𝑒 crops up so often in statistics, the natural logarithm (i.e., logarithm in
base 𝑒) also tends to turn up. Mathematicians often write it as log𝑒(𝑥) or ln(𝑥). In fact,
jamovi works the same way: the LN() function corresponds to the natural logarithm.
And with that, I think we’ve had quite enough exponentials and logarithms for this
book!

6.5 Extracting a subset of the data

One very important kind of data handling is being able to extract a particular subset
of the data. For instance, you might be interested only in analysing the data from one
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experimental condition, or you may want to look closely at the data from people over
50 years in age. To do this, the first step is getting jamovi to filter the subset of the data
corresponding to the observations that you’re interested in.

This section returns to the nightgarden.csv data set. If you’re reading this whole chapter
in one sitting, then you should already have this data set loaded into a jamovi window.
For this section, let’s focus on the two variables speaker and utterance (see Tabulating
and cross-tabulating data if you’ve forgotten what those variables look like). Suppose
that what I want to do is pull out only those utterances that were made by Makka-
Pakka. To that end, we need to specify a filter in jamovi. First open up a filter window
by clicking on ‘Filters’ on the main jamovi ‘Data’ toolbar. Then, in the ‘Filter 1’ text box,
next to the ‘=’ sign, type the following, including the single quote marks:

speaker == ‘makka-pakka’

Figure 6.10: Creating a subset of the nightgarden data using the jamovi ‘Filters’ option

When you have done this, youwill see that a new column has been added to the spread-
sheet window (see Figure 6.10), labelled ‘Filter 1’, with the cases where speaker is not
‘makka-pakka’ greyed-out (i.e., filtered out) and, conversely, the cases where speaker is
‘makka-pakka’ have a green checkmark indicating they are filtered in. You can test this
by running ‘Exploration’ – ‘Descriptives’ – ‘Frequency tables’ for the speaker variable
and seeing what that shows. Go on, try it!

Following on from this simple example, you can also build up more complex filters
using logical expressions in jamovi. For instance, suppose I wanted to keep only those
cases when the utterance is either “pip” or “oo”. In this case in the ‘Filter 1’ text box,
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next to the ‘=’ sign, you would type the following:

utterance == ‘pip’ or utterance == ‘oo’

6.6 Summary

Obviously, there’s no real coherence to this chapter. It’s just a grab bag of topics and
tricks that can be handy to know about, so the best wrap up I can give here is just to
repeat this list:

• Tabulating and cross-tabulating data.
• Logical expressions in jamovi.
• Transforming and recoding a variable.
• A few more mathematical functions and operations.
• Extracting a subset of the data.
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Part IV

Statistical theory
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Prelude

Part IV of the book is by far the most theoretical, focusing as it does on the theory of
statistical inference. Over the next three chapters my goal is to give you an introduction
to probability theory, sampling and estimation in Chapter 8 and statistical hypothesis
testing inChapter 9. Beforewe get started though, Iwant to say something about the big
picture. Statistical inference is primarily about learning fromdata. The goal is no longer
merely to describe our data but to use the data to draw conclusions about the world.
To motivate the discussion I want to spend a bit of time talking about a philosophical
puzzle known as the riddle of induction, because it speaks to an issue that will pop up
over and over again throughout the book: statistical inference relies on assumptions.
This sounds like a bad thing. In everyday life people say things like “you should never
make assumptions”, and psychology classes often talk about assumptions and biases as
bad things that we should try to avoid. From personal experience I have learned never
to say such things around philosophers!

On the limits of logical reasoning

The whole art of war consists in getting at what is on the other side of the hill, or, in
other words, in learning what we do not know from what we do.
– Arthur Wellesley, 1st Duke of Wellington

This quote (https://www.bartleby.com/lit-hub/samuel-arthur-bent/duke-of-
wellington/quote) came about as a consequence of a carriage ride across the country-
side. Wellesley and his companion, J. W. Croker, were playing a guessing game, each
trying to predict what would be on the other side of each hill. In every case it turned
out that Wellesley was right and Croker was wrong. Many years later when Wellesley
was asked about the game he explained that “the whole art of war consists in getting
at what is on the other side of the hill”. Indeed, war is not special in this respect. All
of life is a guessing game of one form or another, and getting by on a day-to-day basis
requires us to make good guesses. So let’s play a guessing game of our own.
Suppose you and I are observing the Wellesley-Croker competition and after every
three hills you and I have to predict who will win the next one, Wellesley or Croker.
Let’s say that W refers to a Wellesley victory and C refers to a Croker victory. After
three hills, our data set looks like this: 𝑊𝑊𝑊
Our conversation goes like this:

you: Three in a rowdoesn’tmeanmuch. I supposeWellesleymight be better
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at this than Croker, but it might just be luck. Still, I’m a bit of a gambler. I’ll
bet on Wellesley.

me: I agree that three in a row isn’t informative and I see no reason to prefer
Wellesley’s guesses over Croker’s. I can’t justify betting at this stage. Sorry.
No bet for me.

Your gamble paid off: three more hills go by and Wellesley wins all three. Going into
the next round of our game the score is 1-0 in favour of you and our data set looks like
this: 𝑊𝑊𝑊 𝑊𝑊𝑊 . I’ve organised the data into blocks of three so that you can see
which batch corresponds to the observations that we had available at each step in our
little side game. After seeing this new batch, our conversation continues:

you: Six wins in a row for Duke Wellesley. This is starting to feel a bit sus-
picious. I’m still not certain, but I reckon that he’s going to win the next one
too.

me: I guess I don’t see that. Sure, I agree that Wellesley has won six in a
row, but I don’t see any logical reason why that means he’ll win the seventh
one. No bet. you: Do you really think so? Fair enough, but my bet worked
out last time and I’m okay with my choice.

For a second time you were right, and for a second time I was wrong. Wellesley wins
the next three hills, extending his winning record against Croker to 9-0. The data set
available to us is now this: 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 . And our conversation goes like
this:

you: Okay, this is pretty obvious. Wellesley is way better at this game. We
both agree he’s going to win the next hill, right?

me: Is there really any logical evidence for that? Beforewe started this game,
there were lots of possibilities for the first 10 outcomes, and I had no idea
which one to expect. 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊 was one possibility, but so
was 𝑊𝐶𝐶 𝐶𝑊𝐶 𝑊𝑊𝐶 𝐶 and 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝐶 or even 𝐶𝐶𝐶
𝐶𝐶𝐶 𝐶𝐶𝐶 𝐶 . Because I had no idea what would happen so I’d have said
they were all equally likely. I assume you would have too, right? I mean,
that’s what it means to say you have “no idea”, isn’t it?

you: I suppose so.

me: Well then, the observations we’ve made logically rule out all possibil-
ities except two: 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝐶 or 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊 .
Both of these are perfectly consistent with the evidence we’ve encountered
so far, aren’t they?

you: Yes, of course they are. Where are you going with this?
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me: So what’s changed then? At the start of our game, you’d have agreed
withme that these are equally plausible and none of the evidence that we’ve
encountered has discriminated between these two possibilities. Therefore,
both of these possibilities remain equally plausible and I see no logical rea-
son to prefer one over the other. So yes, while I agree with you that Welles-
ley’s run of 9 wins in a row is remarkable, I can’t think of a good reason to
think he’ll win the 10th hill. No bet.

you: I see your point, but I’m still willing to chance it. I’m betting onWelles-
ley.

Wellesley’s winning streak continues for the next three hills. The score in theWellesley-
Croker game is now 12-0, and the score in our game is now 3-0. As we approach the
fourth round of our game, our data set is this: 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 . And
the conversation continues:

you: Oh yeah! Three more wins for Wellesley and another victory for me.
Admit it, I was right about him! I guess we’re both betting onWellesley this
time around, right?

me: I don’t know what to think. I feel like we’re in the same situation we
were in last round, and nothing much has changed. There are only two
legitimate possibilities for a sequence of 13 hills that haven’t already been
ruled out, 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝐶 and 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊
𝑊𝑊𝑊 𝑊 . It’s just like I said last time. If all possible outcomeswere equally
sensible before the game started, shouldn’t these two be equally sensible
now given that our observations don’t rule out either one? I agree that it
feels likeWellesley is on an amazing winning streak, but where’s the logical
evidence that the streak will continue?

you: I think you’re being unreasonable. Why not take a look at our score-
card, if you need evidence? You’re the expert on statistics and you’ve been
using this fancy logical analysis, but the fact is you’re losing. I’m just relying
on common sense and I’m winning. Maybe you should switch strategies.

me: Hmm, that is a good point and I don’t want to lose the game, but I’m
afraid I don’t see any logical evidence that your strategy is better than mine.
It seems to me that if there were someone else watching our game, what
they’d have observed is a run of three wins to you. Their data would look
like this: 𝑌 𝑌 𝑌 . Logically, I don’t see that this is any different to our first
round of watching Wellesley and Croker. Three wins to you doesn’t seem
like a lot of evidence, and I see no reason to think that your strategy is work-
ing out any better than mine. If I didn’t think that 𝑊𝑊𝑊 was good ev-
idence then for Wellesley being better than Croker at their game, surely I
have no reason now to think that YYY is good evidence that you’re better at
ours?

you: Okay, now I think you’re being a jerk.

me: I don’t see the logical evidence for that.
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Learning without making assumptions is a myth

There are lots of different ways in which we could dissect this dialogue, but since this
is a statistics book pitched at psychologists and not an introduction to the philosophy
and psychology of reasoning, I’ll keep it brief. What I’ve described above is sometimes
referred to as the riddle of induction. It seems entirely reasonable to think that a 12-0
winning record by Wellesley is pretty strong evidence that he will win the 13th game,
but it is not easy to provide a proper logical justification for this belief. On the con-
trary, despite the obviousness of the answer, it’s not actually possible to justify betting
on Wellesley without relying on some assumption that you don’t have any logical jus-
tification for.

The riddle of induction is most associated with the philosophical work of David Hume
and more recently Nelson Goodman, but you can find examples of the problem pop-
ping up in fields as diverse as literature (Lewis Carroll) and machine learning (the “no
free lunch” theorem). There really is something weird about trying to “learn what we
do not know fromwhat we do know”. The critical point is that assumptions and biases
are unavoidable if you want to learn anything about the world. There is no escape from
this, and it is just as true for statistical inference as it is for human reasoning. In the di-
alogue I was taking aim at your perfectly sensible inferences as a human being, but the
common sense reasoning that you relied on is no different to what a statistician would
have done. Your “common sense” half of the dialog relied on an implicit assumption
that there exists some difference in skill between Wellesley and Croker, and what you
were doingwas trying towork outwhat that difference in skill level would be. My “log-
ical analysis” rejects that assumption entirely. All I was willing to accept is that there
are sequences of wins and losses and that I did not know which sequences would be
observed. Throughout the dialogue I kept insisting that all logically possible data sets
were equally plausible at the start of the Wellesely-Croker game, and the only way in
which I ever revised my beliefs was to eliminate those possibilities that were factually
inconsistent with the observations.

That sounds perfectly sensible on its own terms. In fact, it even sounds like the hall-
mark of good deductive reasoning. Like Sherlock Holmes, my approach was to rule
out that which is impossible in the hope that what would be left is the truth. Yet as we
saw, ruling out the impossible never led me to make a prediction. On its own terms
everything I said in my half of the dialogue was entirely correct. An inability to make
any predictions is the logical consequence of making “no assumptions”. In the end I
lost our game because you did make some assumptions and those assumptions turned
out to be right. Skill is a real thing, and because you believed in the existence of skill
you were able to learn that Wellesley had more of it than Croker. Had you relied on a
less sensible assumption to drive your learning you might not have won the game.

Ultimately there are two things you should take away from this. First, as I’ve said, you
cannot avoid making assumptions if you want to learn anything from your data. But
second, once you realise that assumptions are necessary it becomes important to make
sure you make the right ones! A data analysis that relies on few assumptions is not
necessarily better than one that makes many assumptions, it all depends on whether
those assumptions are good ones for your data. As we go through the rest of this book
I’ll often point out the assumptions that underpin a particular statistical technique, and
how you can check whether those assumptions are sensible.
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Chapter 7

Introduction to probability

[God] has afforded us only the twilight … of Probability.
– John Locke

Up to this point in the book we’ve discussed some of the key ideas in experimental
design, and we’ve talked a little about how you can summarise a data set. To a lot of
people this is all there is to statistics: collecting all the numbers, calculating averages,
drawing pictures, and putting them all in a report somewhere. Kind of like stamp col-
lecting but with numbers. However, statistics covers much more than that. In fact,
descriptive statistics is one of the smallest parts of statistics and one of the least pow-
erful. The bigger and more useful part of statistics is that it provides information that
lets you make inferences about data.

Once you start thinking about statistics in these terms, that statistics is there to help us
draw inferences from data, you start seeing examples of it everywhere. For instance,
here’s a tiny extract from a newspaper article in the Sydney Morning Herald (30Oct 2010):

“I have a tough job,” the Premier said in response to a poll which found her gov-
ernment is now the most unpopular Labor administration in polling history, with
a primary vote of just 23 per cent.

This kind of remark is entirely unremarkable in the papers or in everyday life, but let’s
have a think about what it entails. A polling company has conducted a survey, usually
a pretty big one because they can afford it. I’m too lazy to track down the original
survey so let’s just imagine that they called 1000 New South Wales (NSW) voters at
random, and 230 (23%) of those claimed that they intended to vote for the Australian
Labor Party (ALP). For the 2010 Federal election the Australian Electoral Commission
reported 4,610,795 enrolled voters in NSW, so the opinions of the remaining 4,609,795
voters (about 99.98% of voters) remain unknown to us. Even assuming that no-one
lied to the polling company the only thing we can say with 100% confidence is that
the true ALP primary vote is somewhere between 230/4,610,795 (about 0.005%) and
4,610,025/4,610,795 (about 99.83%). So, on what basis is it legitimate for the polling
company, the newspaper, and the readership to conclude that the ALP primary vote is
only about 23%?
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The answer to the question is pretty obvious. If I call 1000 people at random, and 230
of them say they intend to vote for the ALP, then it seems very unlikely that these are
the only 230 people out of the entire voting public who actually intend to vote ALP. In
other words, we assume that the data collected by the polling company is pretty repre-
sentative of the population at large. But how representative? Would we be surprised
to discover that the true ALP primary vote is actually 24%? 29%? 37%? At this point
everyday intuition starts to break down a bit. No-one would be surprised by 24%, and
everybody would be surprised by 37%, but it’s a bit hard to say whether 29% is plausi-
ble. We need somemore powerful tools than just looking at the numbers and guessing.

Inferential statistics provides the tools that we need to answer these sorts of ques-
tions, and since these kinds of questions lie at the heart of the scientific enterprise, they
take up the lions share of every introductory course on statistics and research methods.
However, the theory of statistical inference is built on top of probability theory. And
it is to probability theory that we must now turn. This discussion of probability theory
is basically background detail. There’s not a lot of statistics per se in this chapter, and
you don’t need to understand this material in as much depth as the other chapters in
this part of the book. Nevertheless, because probability theory does underpin so much
of statistics, it’s worth covering some of the basics.

7.1 How are probability and statistics different?

Before we start talking about probability theory, it’s helpful to spend a moment think-
ing about the relationship between probability and statistics. The two disciplines are
closely related but they’re not identical. Probability theory is “the doctrine of chances”.
It’s a branch of mathematics that tells you how often different kinds of events will hap-
pen. For example, all of these questions are things you can answer using probability
theory:

• What are the chances of a fair coin coming up heads 10 times in a row?
• If I roll a six-sided dice twice, how likely is it that I’ll roll two sixes?
• How likely is it that five cards drawn from a perfectly shuffled deck will all be
hearts?

• What are the chances that I’ll win the lottery?

Notice that all of these questions have something in common. In each case the “truth of
the world” is known and my question relates to “what kind of events” will happen. In
the first question I know that the coin is fair so there’s a 50% chance that any individual
coin flip will come up heads. In the second question I know that the chance of rolling a
6 on a single die is 1 in 6. In the third question I know that the deck is shuffled properly.
And in the fourth question I know that the lottery follows specific rules. You get the
idea. The critical point is that probabilistic questions start with a known model of the
world, and we use that model to do some calculations. The underlying model can be
quite simple. For instance, in the coin flipping example we can write down the model
like this:

𝑃(ℎ𝑒𝑎𝑑) = 0.5

which you can read as “the probability of heads is 0.5”. As we’ll see later, in the same
way that percentages are numbers that range from 0% to 100%, probabilities are just
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numbers that range from 0 to 1. When using this probability model to answer the first
question I don’t actually know exactly what’s going to happen. Maybe I’ll get 10 heads,
like the question says. But maybe I’ll get three heads. That’s the key thing. In proba-
bility theory the model is known but the data are not.

So that’s probability. What about statistics? Statistical questions work the other way
around. In statistics we do not know the truth about the world. All we have is the
data and it is from the data that we want to learn the truth about the world. Statistical
questions tend to look more like these:

• If my friend flips a coin 10 times and gets 10 heads are they playing a trick onme?
• If five cards off the top of the deck are all hearts how likely is it that the deck was
shuffled?

• If the lottery commissioner’s spouse wins the lottery how likely is it that the lot-
tery was rigged?

This time around the only thing we have are data. What I know is that I saw my friend
flip the coin 10 times and it came up heads every time. And what I want to infer is
whether or not I should conclude that what I just saw was actually a fair coin being
flipped 10 times in a row, or whether I should suspect that my friend is playing a trick
on me. The data I have look like this:

H H H H H H H H H H H

andwhat I’m trying to do is work out which “model of theworld” I should putmy trust
in. If the coin is fair then the model I should adopt is one that says that the probability
of heads is 0.5, that is P(heads) = 0.5. If the coin is not fair then I should conclude that
the probability of heads is not 0.5, which we would write as 𝑃(ℎ𝑒𝑎𝑑𝑠) ≠ 0.5. In other
words, the statistical inference problem is to figure out which of these probability mod-
els is right. Clearly, the statistical question isn’t the same as the probability question,
but they’re deeply connected to one another. Because of this, a good introduction to
statistical theory will start with a discussion of what probability is and how it works.

7.2 What does probability mean?

Let’s start with the first of these questions. What is “probability”? It might seem sur-
prising to you but while statisticians and mathematicians (mostly) agree on what the
rules of probability are, there’smuch less of a consensus onwhat theword reallymeans.
It seems weird because we’re all very comfortable using words like “chance”, “likely”,
“possible” and “probable”, and it doesn’t seem like it should be a very difficult question
to answer. But if you’ve ever had that experience in real life you might walk away from
the conversation feeling like you didn’t quite get it right, and that (like many everyday
concepts) it turns out that you don’t really know what it’s all about.

So I’ll have a go at it. Let’s suppose I want to bet on a soccer game between two teams
of robots, Arduino Arsenal and C Milan. After thinking about it, I decide that there is
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an 80% probability of Arduino Arsenal winning. What do I mean by that? Here are
three possibilities:

• They’re robot teams so I canmake them play over and over again, and if I did that
Arduino Arsenal would win 8 out of every 10 games on average.

• For any given game, I would agree that betting on this game is only “fair” if a $1
bet on C Milan gives a $5 payoff (i.e. I get my $1 back plus a $4 reward for being
correct), as would a $4 bet on Arduino Arsenal (i.e., my $4 bet plus a $1 reward).

• My subjective “belief” or “confidence” in anArduinoArsenal victory is four times
as strong as my belief in a C Milan victory.

Each of these seems sensible. However, they’re not identical and not every statistician
would endorse all of them. The reason is that there are different statistical ideologies
(yes, really!) and depending onwhich one you subscribe to, youmight say that some of
those statements aremeaningless or irrelevant. In this section I give a brief introduction
the two main approaches that exist in the literature. These are by no means the only
approaches, but they’re the two big ones.

7.2.1 The frequentist view

The first of the two major approaches to probability, and the more dominant one in
statistics, is referred to as the frequentist view and it defines probability as a long-
run frequency. Suppose we were to try flipping a fair coin over and over again. By
definition this is a coin that has 𝑃(𝐻) = 0.5. What might we observe? One possibility
is that the first 20 flips might look like this:

T,H,H,H,H,T,T,H,H,H,H,T,H,H,T,T,T,T,T,H

In this case 11 of these 20 coin flips (55%) came up heads. Now suppose that I’d been
keeping a running tally of the number of heads (which I’ll call𝑁𝐻) that I’ve seen, across
the first 𝑁 flips, and calculate the proportion of heads 𝑁𝐻

𝑁 every time. Table 7.1 shows
what I’d get (I did literally flip coins to produce this!).

Notice that at the start of the sequence the proportion of heads fluctuates wildly, start-
ing at .00 and rising as high as .80. Later on, one gets the impression that it dampens
out a bit, with more and more of the values actually being pretty close to the “right”
answer of .50. This is the frequentist definition of probability in a nutshell. Flip a fair
coin over and over again, and as𝑁 grows large (approaches infinity, denoted𝑁 → ∞ )
the proportion of heads will converge to 50%. There are some subtle technicalities that
the mathematicians care about, but qualitatively speaking that’s how the frequentists
define probability. Unfortunately, I don’t have an infinite number of coins or the infi-
nite patience required to flip a coin an infinite number of times. However, I do have a
computer and computers excel at mindless repetitive tasks. So I asked my computer
to simulate flipping a coin 1000 times and then drew a picture of what happens to the
proportion 𝑁𝐻

𝑁 as 𝑁 increases. Actually, I did it four times just to make sure it wasn’t
a fluke. The results are shown in Figure 7.1. As you can see, the proportion of ob-
served heads eventually stops fluctuating and settles down. When it does, the number
at which it finally settles is the true probability of heads.
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Table 7.1: Coin flips and proportion of heads

number of flips number of heads proportion
1 0 0.00
2 1 0.50
3 2 0.67
4 3 0.75
5 4 0.80
6 4 0.67
7 4 0.57
8 5 0.63
9 6 0.67
10 7 0.70
11 8 0.73
12 8 0.67
13 9 0.69
14 10 0.71
15 10 0.67
16 10 0.63
17 10 0.59
18 10 0.56
19 10 0.53
20 11 0.55

The frequentist definition of probability has some desirable characteristics. First, it is
objective. The probability of an event is necessarily grounded in the world. The only
way that probability statements can make sense is if they refer to (a sequence of) events
that occur in the physical universe.48 Secondly, it is unambiguous. Any two people
watching the same sequence of events unfold, trying to calculate the probability of an
event, must inevitably come up with the same answer.

However, it also has undesirable characteristics. Infinite sequences don’t really exist in
the physical world. Suppose you picked up a coin from your pocket and started to flip
it. Every time it lands it impacts on the ground and each impact wears the coin down
a bit. Eventually the coin will be destroyed. So, one might ask whether it really makes
sense to pretend that an “infinite” sequence of coin flips is even a meaningful concept,
or an objective one. We can’t say that an “infinite sequence” of events is a real thing
in the physical universe, because the physical universe doesn’t allow infinite anything.
More seriously, the frequentist definition has a narrow scope. There are lots of things
out there that human beings are happy to assign probability to in everyday language,
but cannot (even in theory) be mapped onto a hypothetical sequence of events. For
instance, if a meteorologist comes on TV and says “the probability of rain in Adelaide
on 2 November 2048 is 60%” we humans are happy to accept this. But it’s not clear how
to define this in frequentist terms. There’s only one city of Adelaide, and only one 2
November 2048. There’s no infinite sequence of events here, just a one-off thing.
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Figure 7.1: An illustration of how frequentist probability works. If you flip a fair coin
over and over again the proportion of heads that you have seen eventually settles down
and converges to the true probability of 0.5. Each panel shows four different simulated
experiments. In each case we pretendwe flipped a coin 1000 times and kept track of the
proportion of flips thatwere heads aswewent along. Although none of these sequences
actually ended up with an exact value of .5, if we had extended the experiment for an
infinite number of coin flips they would have

Frequentist probability genuinely forbids us from making probability statements about
a single event. From the frequentist perspective it will either rain tomorrow or it will
not. There is no “probability” that attaches to a single non-repeatable event. Now, it
should be said that there are some very clever tricks that frequentists can use to get
around this. One possibility is that what the meteorologist means is something like
“There is a category of days for which I predict a 60% chance of rain, and if we look
only across those days for which I make this prediction, then on 60% of those days it
will actually rain”. It’s very weird and counter-intuitive to think of it this way, but you
do see frequentists do this sometimes. And it will come up later in this book (e.g. in
Section 8.5).
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7.2.2 The Bayesian view

The Bayesian view of probability is often called the subjectivist view, and although it
has been a minority view among statisticians it has been steadily gaining traction for
the last several decades. There are many flavours of Bayesianism, making it hard to say
exactly what “the” Bayesian view is. The most common way of thinking about sub-
jective probability is to define the probability of an event as the degree of belief that
an intelligent and rational agent assigns to that truth of that event. From that perspec-
tive, probabilities don’t exist in the world but rather in the thoughts and assumptions
of people and other intelligent beings.

However, in order for this approach to work we need some way of operationalising
“degree of belief”. One way that you can do this is to formalise it in terms of “rational
gambling”, though there aremany other ways. Suppose that I believe that there’s a 60%
probability of rain tomorrow. If someone offers me a bet that if it rains tomorrow then I
win $5, but if it doesn’t rain I lose $5. Clearly, frommy perspective, this is a pretty good
bet. On the other hand, if I think that the probability of rain is only 40% then it’s a bad
bet to take. So we can operationalise the notion of a “subjective probability” in terms
of what bets I’m willing to accept.

What are the advantages and disadvantages to the Bayesian approach? The main ad-
vantage is that it allows you to assign probabilities to any event you want to. You don’t
need to be limited to those events that are repeatable. The main disadvantage (to many
people) is that we can’t be purely objective. Specifying a probability requires us to spec-
ify an entity that has the relevant degree of belief. This entity might be a human, an
alien, a robot, or even a statistician. But there has to be an intelligent agent out there
that believes in things. To many people this is uncomfortable, it seems to make prob-
ability arbitrary. Whilst the Bayesian approach requires that the agent in question be
rational (i.e., obey the rules of probability), it does allow everyone to have their own
beliefs. I can believe the coin is fair and you don’t have to, even though we’re both
rational. The frequentist view doesn’t allow any two observers to attribute different
probabilities to the same event. When that happens then at least one of them must be
wrong. The Bayesian view does not prevent this from occurring. Two observers with
different background knowledge can legitimately hold different beliefs about the same
event. In short, where the frequentist view is sometimes considered to be too narrow
(forbids lots of things that that we want to assign probabilities to), the Bayesian view is
sometimes thought to be too broad (allows too many differences between observers).

7.2.3 What’s the difference? And who is right?

Now that you’ve seen each of these two views independently it’s useful to make sure
you can compare the two. Go back to the hypothetical robot soccer game at the start
of the section. What do you think a frequentist and a Bayesian would say about these
three statements? Which statement would a frequentist say is the correct definition of
probability? Which one would a Bayesian opt for? Would some of these statements be
meaningless to a frequentist or a Bayesian? If you’ve understood the two perspectives
you should have some sense of how to answer those questions.

Okay, assuming you understand the difference then you might be wondering which
of them is right? Honestly, I don’t know that there is a right answer. As far as I can
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tell there’s nothing mathematically incorrect about the way frequentists think about
sequences of events, and there’s nothing mathematically incorrect about the way that
Bayesians define the beliefs of a rational agent. In fact, when you dig down into the
details Bayesians and frequentists actually agree about a lot of things. Many frequentist
methods lead to decisions that Bayesians agree a rational agent would make. Many
Bayesian methods have very good frequentist properties.

For the most part, I’m a pragmatist so I’ll use any statistical method that I trust. As
it turns out, that makes me prefer Bayesian methods for reasons I’ll explain towards
the end of the book. But I’m not fundamentally opposed to frequentist methods. Not
everyone is quite so relaxed. For instance, consider Sir Ronald Fisher, one of the tow-
ering figures of 20th century statistics and a vehement opponent to all things Bayesian,
whose paper on the mathematical foundations of statistics referred to Bayesian proba-
bility as “an impenetrable jungle [that] arrests progress towards precision of statistical
concepts” (Fisher, 1922b, p. 311). Or the psychologist Paul Meehl, who suggests that
relying on frequentistmethods could turn you into “a potent but sterile intellectual rake
who leaves in his merry path a long train of ravished maidens but no viable scientific
offspring” (Meehl, 1967, p. 114). The history of statistics, as you might gather, is not
devoid of entertainment.

In any case, whilst I personally prefer the Bayesian view, the majority of statistical anal-
yses are based on the frequentist approach. My reasoning is pragmatic. The goal of this
book is to cover roughly the same territory as a typical undergraduate stats class in psy-
chology, and if you want to understand the statistical tools used by most psychologists
you’ll need a good grasp of frequentist methods. I promise you that this isn’t wasted
effort. Even if you end up wanting to switch to the Bayesian perspective, you really
should read through at least one book on the “orthodox” frequentist view. Besides, I
won’t completely ignore the Bayesian perspective. Every now and then I’ll add some
commentary from a Bayesian point of view, and I’ll revisit the topic in more depth in
Chapter 16.

7.3 Basic probability theory

Ideological arguments between Bayesians and frequentists notwithstanding, it turns
out that people mostly agree on the rules that probabilities should obey. There are lots
of different ways of arriving at these rules. Themost commonly used approach is based
on the work of Andrey Kolmogorov, one of the great Soviet mathematicians of the 20th
century. I won’t go into a lot of detail, but I’ll try to give you a bit of a sense of how it
works. And in order to do so I’m going to have to talk about my trousers.

7.3.1 Introducing probability distributions

One of the disturbing truths about my life is that I only own five pairs of trousers. Even
sadder, I’ve given them names: I call them 𝑋1, 𝑋2, 𝑋3, 𝑋4 and 𝑋5. Now, on any given
day, I pick out exactly one pair of trousers to wear. If I were to describe this situation
using the language of probability theory, I would refer to each pair of trousers (i.e.,
each 𝑋) as an elementary event. The key characteristic of elementary events is that
every time we make an observation (e.g., every time I put on a pair of trousers) then
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the outcome will be one and only one of these events. I always wear exactly one pair
of trousers so my trousers satisfy this constraint. Similarly, the set of all possible events
is called a sample space. Granted, some people would call it a “wardrobe”, but that’s
because they’re refusing to think about my trousers in probabilistic terms.

Okay, now thatwe have a sample space (awardrobe), which is built from lots of possible
elementary events (trousers), what wewant to do is assign a probability of one of these
elementary events. For an event 𝑋, the probability of that event 𝑃(𝑋) is a number that
lies between 0 and 1. The bigger the value of 𝑃(𝑋), themore likely the event is to occur.
So, for example, if 𝑃(𝑋) = 0 it means the event𝑋 is impossible (i.e., I never wear those
trousers). On the other hand, if 𝑃(𝑋) = 1 it means that event 𝑋 is certain to occur
(i.e., I always wear those trousers). For probability values in the middle it means that I
sometimes wear those trousers. For instance, if 𝑃 (𝑋) = 0.5 it means that I wear those
trousers half of the time.

At this point, we’re almost done. The last thingwe need to recognise is that “something
always happens”. Every time I put on trousers, I really do end up wearing trousers.
What this somewhat trite statement means, in probabilistic terms, is that the probabil-
ities of the elementary events need to add up to 1. This is known as the law of total
probability. More importantly, if these requirements are satisfied then what we have
is a probability distribution. For example, Table 7.2 shows an example of a probability
distribution. Each of the events has a probability that lies between 0 and 1, and if we
add up the probability of all events they sum to 1. Awesome. We can even draw a nice
bar graph (see Section 5.3) to visualise this distribution, as shown in Figure 7.2.

Table 7.2: A probability distribution for trouser wearing

Which trousers? Label Probability
Blue jeans 𝑋1 𝑃(𝑋1) = .5
Grey jeans 𝑋2 𝑃(𝑋2) = .3
Black jeans 𝑋3 𝑃(𝑋3) = .1
Black suit 𝑋4 𝑃(𝑋4) = 0

Blue tracksuit 𝑋5 𝑃(𝑋5) = .1

And, at this point, we’ve all achieved something. You’ve learned what a probability
distribution is, and I’ve finally managed to find a way to create a graph that focuses
entirely on my trousers. Everyone wins! The only other thing that I need to point out
is that probability theory allows you to talk about non elementary events as well as
elementary ones. The easiest way to illustrate the concept is with an example. In the
trousers example it’s perfectly legitimate to refer to the probability that I wear jeans. In
this scenario, the “Dani wears jeans” event is said to have happened as long as the ele-
mentary event that actually did occur is one of the appropriate ones. In this case “blue
jeans”, “black jeans” or “grey jeans”. In mathematical terms we defined the “jeans”
event 𝐸 to correspond to the set of elementary events (𝑋1, 𝑋2, 𝑋3). If any of these
elementary events occurs then𝐸 is also said to have occurred. Having decided to write
down the definition of the E this way, it’s pretty straightforward to state what the prob-
ability P(E) and, since the probabilities of blue, grey and black jeans respectively are .5,
.3 and .1, the probability that I wear jeans is equal to .9. is: we just add everything up.
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Figure 7.2: A visual depiction of the “trousers” probability distribution. There are five
“elementary events”, corresponding to the five pairs of trousers that I own. Each event
has some probability of occurring – this probability is a number between 0 to 1. The
sum of these probabilities is 1

In this particular case:

𝑃(𝐸) = 𝑃 (𝑋1) + 𝑃(𝑋2) + 𝑃(𝑋3)

You might be thinking that this is all terribly obvious and simple and you’d be right.
All we’ve really done is wrap some basic mathematics around a few common sense
intuitions. However, from these simple beginnings it’s possible to construct some ex-
tremely powerful mathematical tools. I’m definitely not going to go into the details in
this book, but what I will do is list, in Table 7.3, some of the other rules that probabili-
ties satisfy. These rules can be derived from the simple assumptions that I’ve outlined
above, but since we don’t actually use these rules for anything in this book I won’t do
so here.

Table 7.3: Some rules that probabilities satisfy

English Notation Formula
not A 𝑃 (¬𝐴) 1 − 𝑃(𝐴)

A or B 𝑃 (𝐴 ∪ 𝐵)
𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩

𝐵)
A and B 𝑃 (𝐴 ∩ 𝐵) 𝑃(𝐴|𝐵)𝑃(𝐵)
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7.4 The binomial distribution

As youmight imagine, probability distributions vary enormously. However, they aren’t
all equally important. In fact, the vast majority of the content in this book relies on just
five distributions: the binomial distribution, the normal distribution, the 𝑡-distribution,
the 𝜒2 (“chi-square”) distribution and the 𝐹 -distribution. Given this, what I’ll do over
the next few sections is provide a brief introduction to all five of these, paying special
attention to the binomial and the normal. I’ll start with the binomial distribution since
it’s the simplest of the five.

7.4.1 Introducing the binomial

The theory of probability originated in the attempt to describe how games of chance
work, so it seems fitting that our discussion of thebinomial distribution should involve
a discussion of rolling dice and flipping coins. Let’s imagine a simple “experiment”. In
my hot little hand I’m holding 20 identical six-sided dice. On one face of each die there’s
a picture of a skull, the other five faces are all blank. If I proceed to roll all 20 dice, what’s
the probability that I’ll get exactly 4 skulls? Assuming that the dice are fair, we know
that the chance of any one die coming up skulls is 1 in 6. To say this another way, the
skull probability for a single die is approximately .167. This is enough information to
answer our question, so let’s have a look at how it’s done.

As usual, we’llwant to introduce somenames and somenotation. We’ll let𝑁 denote the
number of dice rolls in our experiment, which is often referred to as the size parameter
of our binomial distribution. We’ll also use 𝜃 to refer to the the probability that a single
die comes up skulls, a quantity that is usually called the success probability of the
binomial.49 Finally, we’ll use 𝑋 to refer to the results of our experiment, namely the
number of skulls I get when I roll the dice. Since the actual value of 𝑋 is due to chance
we refer to it as a random variable. In any case, now that we have all this terminology
and notation we can use it to state the problem a little more precisely. The quantity that
wewant to calculate is the probability that𝑋 = 4 given that we know that 𝜃 = .167 and
𝑁 = 20. The general “form” of the thing I’m interested in calculating could be written
as:

𝑃 (𝑋|𝜃, 𝑁)

and we’re interested in the special case where 𝑋 = 4, 𝜃 = .167 and 𝑁 = 20.
[Additional technical detail50]

Yeah, yeah. I know what you’re thinking: notation, notation, notation. Really, who
cares? Very few readers of this book are here for the notation, so I should probably
move on and talk about how to use the binomial distribution. I’ve included the formula
for the binomial distribution in a note,51 since some readers may want to play with it
themselves, but since most people probably don’t care that much and because we don’t
need the formula in this book, I won’t talk about it in any detail. Instead, I just want to
show you what the binomial distribution looks like.

To that end, Figure 7.3 plots the binomial probabilities for all possible values of 𝑋 for
our dice rolling experiment, from𝑋 = 0 (no skulls) all theway up to𝑋 = 20 (all skulls).
Note that this is basically a bar chart, and is no different to the “trousers probability”

127



plot I drew in Figure 7.2. On the horizontal axis we have all the possible events, and
on the vertical axis we can read off the probability of each of those events. So, the
probability of rolling 4 skulls out of 20 is about 0.20 (the actual answer is 0.2022036, as
we’ll see in a moment). In other words, you’d expect that to happen about 20% of the
times you repeated this experiment.

Figure 7.3: The binomial distributionwith size parameter of𝑁 = 20 and an underlying
success probability of 𝜃 = 1

6 . Each vertical bar depicts the probability of one specific
outcome (i.e., one possible value of 𝑋). Because this is a probability distribution, each
of the probabilities must be a number between 0 and 1, and the heights of the bars must
sum to 1 as well

To give you a feel for how the binomial distribution changes when we alter the values
of 𝜃 and 𝑁 , let’s suppose that instead of rolling dice I’m actually flipping coins. This
time around, my experiment involves flipping a fair coin repeatedly and the outcome
that I’m interested in is the number of heads that I observe. In this scenario, the success
probability is now 𝜃 = 1

2 . Suppose I were to flip the coin𝑁 = 20 times. In this example,
I’ve changed the success probability but kept the size of the experiment the same. What
does this do to our binomial distribution? Well, as Figure 7.4 shows, the main effect of
this is to shift the whole distribution, as you’d expect. Okay, what if we flipped a coin
𝑁 = 100 times? Well, in that case we get Figure 7.4 (b). The distribution stays roughly
in the middle but there’s a bit more variability in the possible outcomes.
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Figure 7.4: Two binomial distributions, involving a scenario in which I flip a fair coin
so the underlying success probability is 𝜃 = 1

2 . In panel (a), I flipped the coin 𝑁 = 20
times. In panel (b) the coin was flipped 𝑁 = 100 times

7.5 The normal distribution

While the binomial distribution is conceptually the simplest distribution to understand,
it’s not the most important one. That particular honour goes to the normal distribution,
also referred to as “the bell curve” or a “Gaussian distribution”. A normal distribution
is described using two parameters: the mean of the distribution 𝜇 and the standard
deviation of the distribution𝜎. The notation thatwe sometimes use to say that a variable
𝑋 is normally distributed is as follows:

𝑋 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)

[Additional technical detail52]
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Let’s try to get a sense for what it means for a variable to be normally distributed. To
that end, have a look at Figure 7.5 which plots a normal distribution with mean 𝜇 = 0
and standard deviation 𝜎 = 1.

Figure 7.5: The normal distribution with mean 𝜇 = 0 and standard deviation 𝜎 = 1.
The x-axis corresponds to the value of some variable, and the y-axis tells us something
about how likelywe are to observe that value. However, notice that the y-axis is labelled
Probability Density and not Probability

You can see where the name “bell curve” comes from; it looks a bit like a bell. Notice
that, unlike the plots that I drew to illustrate the binomial distribution, the picture of
the normal distribution in Figure 7.5 shows a smooth curve instead of “histogram-like”
bars. This isn’t an arbitrary choice, the normal distribution is continuous whereas the
binomial is discrete.53 For instance, in the die rolling example from the last section it
was possible to get 3 skulls or 4 skulls, but impossible to get 3.9 skulls. The figures
that I drew in the previous section reflected this fact. In Figure 7.3, for instance, there’s
a bar located at 𝑋 = 3 and another one at 𝑋 = 4 but there’s nothing in between.
Continuous quantities don’t have this constraint. For instance, suppose we’re talking
about the weather. The temperature on a pleasant Spring day could be 23 degrees,
24 degrees, 23.9 degrees, or anything in between since temperature is a continuous
variable. And so a normal distributionmight be quite appropriate for describing Spring
temperatures.54

With this in mind, let’s see if we can’t get an intuition for how the normal distribu-
tion works. First, let’s have a look at what happens when we play around with the
parameters of the distribution. To that end, Figure 7.6 plots normal distributions that
have different means but have the same standard deviation. As you might expect, all
of these distributions have the same “width”. The only difference between them is that
they’ve been shifted to the left or to the right. In every other respect they’re identical.
In contrast, if we increase the standard deviation while keeping the mean constant, the
peak of the distribution stays in the same place but the distribution gets wider, as you
can see in Figure 7.7. Notice, though, that when we widen the distribution the height
of the peak shrinks. This has to happen, in the same way that the heights of the bars
that we used to draw a discrete binomial distribution have to sum to 1, the total area
under the curve for the normal distribution must equal 1.
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Figure 7.6: An illustration of what happens when you change the mean of a normal
distribution. The solid line depicts a normal distribution with a mean of 𝜇 = 4. The
dashed line shows a normal distribution with a mean of 𝜇 = 7. In both cases, the
standard deviation is 𝜎 = 1. Not surprisingly, the two distributions have the same
shape, but the dashed line is shifted to the right

Figure 7.7: An illustration of what happens when you change the the standard devia-
tion of a normal distribution. Both distributions plotted in this figure have a mean of
𝜇 = 5, but they have different standard deviations. The solid line plots a distribution
with standard deviation 𝜎 = 1, and the dashed line shows a distribution with standard
deviation 𝜎 = 2. As a consequence, both distributions are “centred” on the same spot,
but the dashed line is wider than the solid one
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Figure 7.8: The area under the curve tells you the probability that an observation falls
within a particular range. The solid lines plot normal distributions with mean 𝜇 = 0
and standard deviation 𝜎 = 1. The shaded areas illustrate “areas under the curve”
for two important cases. In panel (a), we can see that there is a 68.3% chance that an
observation will fall within one standard deviation of the mean. In panel (b), we see
that there is a 95.4% chance that an observationwill fall within two standard deviations
of the mean

Figure 7.9: Two more examples of the “area under the curve idea”. There is a 15.9%
chance that an observation is one standard deviation below the mean or smaller (panel
(a)), and a 34.1% chance that the observation is somewhere between one standard de-
viation below the mean and the mean (panel (b)). Notice that if you add these two
numbers together you get 15.9% + 34.1% = 50%. For normally distributed data, there is
a 50% chance that an observation falls below the mean. And of course that also implies
that there is a 50% chance that it falls above the mean
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Before moving on, I want to point out one important characteristic of the normal distri-
bution. Irrespective of what the actual mean and standard deviation are, 68.3% of the
area falls within 1 standard deviation of the mean. Similarly, 95.4% of the distribution
falls within 2 standard deviations of themean, and (99.7%) of the distribution is within
3 standard deviations. This idea is illustrated in Figure 7.8; see also Figure 7.9.

7.5.1 Probability density

There’s something I’ve been trying to hide throughout my discussion of the normal
distribution, something that some introductory textbooks omit completely. Theymight
be right to do so. This “thing” that I’m hiding is weird and counter-intuitive even by the
admittedly distorted standards that apply in statistics. Fortunately, it’s not something
that you need to understand at a deep level in order to do basic statistics. Rather, it’s
something that starts to become important later on when you move beyond the basics.
So, if it doesn’t make complete sense, don’t worry too much, but try to make sure that
you follow the gist of it.

Throughout my discussion of the normal distribution there’s been one or two things
that don’t quite make sense. Perhaps you noticed that the y-axis in these figures is
labelled “Probability Density” rather than density. Maybe you noticed that I used 𝑝(𝑋)
instead of 𝑃 (𝑋) when giving the formula for the normal distribution.
As it turns out, what is presented here isn’t actually a probability, it’s something else.
To understand what that something is you have to spend a little time thinking about
what it reallymeans to say that𝑋 is a continuous variable. Let’s saywe’re talking about
the temperature outside. The thermometer tells me it’s 23 degrees, but I know that’s
not really true. It’s not exactly 23 degrees. Maybe it’s 23.1 degrees, I think to myself.
But I know that that’s not really true either because it might actually be 23.09 degrees.
But I know that… well, you get the idea. The tricky thing with genuinely continuous
quantities is that you never really know exactly what they are.

Now think about what this implies when we talk about probabilities. Suppose that
tomorrow’s maximum temperature is sampled from a normal distribution with mean
23 and standard deviation 1. What’s the probability that the temperaturewill be exactly
23 degrees? The answer is “zero”, or possibly “a number so close to zero that it might
as well be zero”. Why is this? It’s like trying to throw a dart at an infinitely small dart
board. No matter how good your aim, you’ll never hit it. In real life you’ll never get a
value of exactly 23. It’ll always be something like 23.1 or 22.99998 or suchlike. In other
words, it’s completely meaningless to talk about the probability that the temperature is
exactly 23 degrees. However, in everyday language if I told you that it was 23 degrees
outside and it turned out to be 22.9998 degrees you probably wouldn’t call me a liar.
Because in everyday language “23 degrees” usuallymeans something like “somewhere
between 22.5 and 23.5 degrees”. Andwhile it doesn’t feel verymeaningful to ask about
the probability that the temperature is exactly 23 degrees, it does seem sensible to ask
about the probability that the temperature lies between 22.5 and 23.5, or between 20
and 30, or any other range of temperatures.
The point of this discussion is to make clear that when we’re talking about continuous
distributions it’s not meaningful to talk about the probability of a specific value. How-
ever, what we can talk about is the probability that the value lies within a particular
range of values. To find out the probability associated with a particular range what you
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need to do is calculate the “area under the curve”. We’ve seen this concept already, in
Figure 7.8 the shaded areas shown depict genuine probabilities (e.g., in Figure 7.8) it
shows the probability of observing a value that falls within 1 standard deviation of the
mean).

Okay, so that explains part of the story. I’ve explained a little bit about how continu-
ous probability distributions should be interpreted (i.e., area under the curve is the key
thing). But what does the formula for 𝑝(𝑥) that I described earlier actually mean? Ob-
viously, 𝑃(𝑥) doesn’t describe a probability, but what is it? The name for this quantity
𝑃(𝑥) is a probability density, and in terms of the plots we’ve been drawing it corre-
sponds to the height of the curve. The densities themselves aren’t meaningful in and
of themselves, but they’re “rigged” to ensure that the area under the curve is always
interpretable as genuine probabilities. To be honest, that’s about as much as you really
need to know for now.55

7.6 Other useful distributions

The normal distribution is the distribution that statistics makes most use of (for reasons
to be discussed shortly), and the binomial distribution is a very useful one for lots of
purposes. But the world of statistics is filled with probability distributions, some of
which we’ll run into in passing. In particular, the three that will appear in this book are
the 𝑡-distribution, the 𝜒2 distribution and the 𝐹 -distribution. I won’t give formulas for
any of these, or talk about them in too much detail, but I will show you some pictures:
Figure 7.10, Figure 7.11 and Figure 7.12.

Figure 7.10: A 𝑡-distribution with 3 degrees of freedom (solid line). It looks similar
to a normal distribution, but it is not quite the same. For comparison purposes I have
plotted a standard normal distribution as the dashed line
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Figure 7.11: 𝜒2 distribution with 3 degrees of freedom. Notice that the observed values
must always be greater than zero, and that the distribution is pretty skewed. These are
the key features of a chi-square distribution

Figure 7.12: An 𝐹 -distribution with 3 and 5 degrees of freedom. Qualitatively speak-
ing, it looks pretty similar to a chi-square distribution, but they are not quite the same
in general
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The 𝑡-distribution is a continuous distribution that looks very similar to a normal dis-
tribution, see Figure 7.10. Note that the “tails” of the 𝑡-distribution are “heavier” (i.e.,
extend further outwards) than the tails of the normal distribution). That’s the impor-
tant difference between the two. This distribution tends to arise in situations where you
think that the data actually follow a normal distribution, but you don’t know the mean
or standard deviation. We’ll run into this distribution again in Chapter 11.

The 𝜒2 distribution is another distribution that turns up in lots of different places. The
situation in which we’ll see it is when doing categorical data analysis in Chapter 10, but
it’s one of those things that actually pops up all over the place. When you dig into the
maths (and who doesn’t love doing that?), it turns out that the main reason why the 𝜒2

distribution turns up all over the place is that if you have a bunch of variables that are
normally distributed, square their values and then add them up (a procedure referred
to as taking a “sum of squares”), this sum has a 𝜒2 distribution. You’d be amazed how
often this fact turns out to be useful. Anyway, here’s what a 𝜒2 distribution looks like:
Figure 7.11.

The 𝐹 -distribution looks a bit like a 𝜒2 distribution, and it arises whenever you need to
compare two 𝜒2 distributions to one another. Admittedly, this doesn’t exactly sound
like something that any sane person would want to do, but it turns out to be very im-
portant in real-world data analysis. Remember when I said that 𝜒2 turns out to be the
key distribution when we’re taking a “sum of squares”? Well, what that means is if
you want to compare two different “sums of squares”, you’re probably talking about
something that has an 𝐹 -distribution. Of course, as of yet I still haven’t given you an
example of anything that involves a sum of squares, but I will in Chapter 13. And that’s
where we’ll run into the 𝐹 -distribution. Oh, and there’s a picture in Figure 7.12.
Okay, time to wrap this section up. We’ve seen three new distributions: 𝜒2, 𝑡 and 𝐹 .
They’re all continuous distributions, and they’re all closely related to the normal dis-
tribution. The main thing for our purposes is that you grasp the basic idea that these
distributions are all deeply related to one another, and to the normal distribution. Later
on in this book we’re going to run into data that are normally distributed, or at least
assumed to be normally distributed. What I want you to understand right now is that,
if you make the assumption that your data are normally distributed, you shouldn’t be
surprised to see 𝜒2, 𝑡 and 𝐹 -distributions popping up all over the place when you start
trying to do your data analysis.

7.7 Summary

In this chapter we’ve talked about probability. We’ve talked about what probability
means andwhy statisticians can’t agree onwhat itmeans. We talked about the rules that
probabilities have to obey. Andwe introduced the idea of a probability distribution and
spent a good chunk of the chapter talking about some of themore important probability
distributions that statisticians work with. The section-by-section breakdown looks like
this:

• Probability theory versus statistics: How are probability and statistics different?
• The frequentist view versus The Bayesian view of probability.
• Basic probability theory.

136



• The binomial distribution, The normal distribution, and Other useful distribu-
tions.

As you’d expect, my coverage is by no means exhaustive. Probability theory is a large
branch ofmathematics in its own right, entirely separate from its application to statistics
and data analysis. As such, there are thousands of books written on the subject and
universities generally offermultiple classes devoted entirely to probability theory. Even
the “simpler” task of documenting standard probability distributions is a big topic.
I’ve described five standard probability distributions in this chapter, but sitting on my
bookshelf I have a 45-chapter book called “Statistical Distributions” (M. Evans et al.,
2011) that lists a lot more than that. Fortunately for you, very little of this is necessary.
You’re unlikely to need to know dozens of statistical distributions when you go out and
do real-world data analysis, and you definitely won’t need them for this book, but it
never hurts to know that there’s other possibilities out there.

Picking up on that last point, there’s a sense in which this whole chapter is something
of a digression. Many undergraduate psychology classes on statistics skim over this
content very quickly (I know mine did), and even the more advanced classes will of-
ten “forget” to revisit the basic foundations of the field. Most academic psychologists
would not know the difference between probability and density, and until recently very
few would have been aware of the difference between Bayesian and frequentist proba-
bility. However, I think it’s important to understand these things before moving onto
the applications. For example, there are a lot of rules about what you’re “allowed” to
say when doing statistical inference and many of these can seem arbitrary and weird.
However, they start to make sense if you understand that there is this Bayesian vs. fre-
quentist distinction. Similarly, in Chapter 11 we’re going to talk about something called
the 𝑡-test, and if you really want to have a grasp of the mechanics of the 𝑡-test it really
helps to have a sense of what a 𝑡-distribution actually looks like. You get the idea, I
hope.
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Chapter 8

Estimating unknown quantities
from a sample

At the start of the last chapter I highlighted the critical distinction between descrip-
tive statistics and inferential statistics. As discussed in Chapter 4, the role of descriptive
statistics is to concisely summarise what we do know. In contrast, the purpose of infer-
ential statistics is to “learn what we do not know fromwhat we do”. Now that we have
a foundation in probability theory we are in a good position to think about the problem
of statistical inference. What kinds of things wouldwe like to learn about? And how do
we learn them? These are the questions that lie at the heart of inferential statistics, and
they are traditionally divided into two “big ideas”: estimation and hypothesis testing.
The goal in this chapter is to introduce the first of these big ideas, estimation theory, but
I’m going to witter on about sampling theory first because estimation theory doesn’t
make sense until you understand sampling. As a consequence, this chapter divides nat-
urally into two parts, the first three sections are focused on sampling theory, and the
last two sections make use of sampling theory to discuss how statisticians think about
estimation.

8.1 Samples, populations and sampling

In the Prelude to part IV I discussed the riddle of induction and highlighted the fact that
all learning requires you to make assumptions. Accepting that this is true, our first task
is to come up with some fairly general assumptions about data that make sense. This is
where sampling theory comes in. If probability theory is the foundation uponwhich all
statistical theory builds, sampling theory is the frame around which you can build the
rest of the house. Sampling theory plays a huge role in specifying the assumptions upon
which your statistical inferences rely. And in order to talk about “making inferences”
the way statisticians think about it we need to be a bit more explicit about what it is that
we’re drawing inferences from (the sample) andwhat it is that we’re drawing inferences
about (the population).

In almost every situation of interest what we have available to us as researchers is a
sample of data. We might have run an experiment with some number of participants,
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a polling company might have phoned some number of people to ask questions about
voting intentions, and so on. In this way the data set available to us is finite and in-
complete. We can’t possibly get every person in the world to do our experiment, for
example a polling company doesn’t have the time or the money to ring up every voter
in the country. In our earlier discussion of descriptive statistics in Chapter 4 this sample
was the only thing we were interested in. Our only goal was to find ways of describing,
summarising and graphing that sample. This is about to change.

8.1.1 Defining a population

A sample is a concrete thing. You can open up a data file and there’s the data from your
sample. A population, on the other hand, is a more abstract idea. It refers to the set
of all possible people, or all possible observations, that you want to draw conclusions
about and is generally much bigger than the sample. In an ideal world the researcher
would begin the study with a clear idea of what the population of interest is, since the
process of designing a study and testing hypotheses with the data does depend on the
population about which you want to make statements.

Sometimes it’s easy to state the population of interest. For instance, in the “polling com-
pany” example that opened the chapter the population consisted of all voters enrolled
at the time of the study, millions of people. The sample was a set of 1000 people who all
belong to that population. Inmost studies the situation ismuch less straightforward. In
a typical psychological experiment determining the population of interest is a bit more
complicated. Suppose I run an experiment using 100 undergraduate students as my
participants. My goal, as a cognitive scientist, is to try to learn something about how
the mind works. So, which of the following would count as “the population”:

• All of the undergraduate psychology students at the University of Adelaide?
• Undergraduate psychology students in general, anywhere in the world?
• Australians currently living?
• Australians of similar ages to my sample?
• Anyone currently alive?
• Any human being, past, present or future?
• Any intelligent being?

Each of these defines a real group of mind-possessing entities, all of which might be of
interest to me as a cognitive scientist, and it’s not at all clear which one ought to be the
true population of interest. As another example, consider the Wellesley-Croker game
that we discussed in the Prelude to Part IV. The sample here is a specific sequence of 12
wins and 0 losses for Wellesley. What is the population? Again, it’s not obvious what
the population is.

• All outcomes until Wellesley and Croker arrived at their destination?
• All outcomes if Wellesley and Croker had played the game for the rest of their
lives?

• All outcomes if Wellseley and Croker lived forever and played the game until the
world ran out of hills?

• All outcomes if we created an infinite set of parallel universes and the Welle-
sely/Croker pair made guesses about the same 12 hills in each universe?
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8.1.2 Simple random samples

Irrespective of how I define the population, the critical point is that the sample is a
subset of the population and our goal is to use our knowledge of the sample to draw
inferences about the properties of the population. The relationship between the two
depends on the procedure bywhich the samplewas selected. This procedure is referred
to as a sampling method and it is important to understand why it matters.

To keep things simple, let’s imagine that we have a bag containing 10 chips. Each chip
has a unique letter printed on it so we can distinguish between the 10 chips. The chips
come in two colours, black and white. This set of chips is the population of interest
and it is depicted graphically on the left of Figure 8.1. As you can see from looking
at the picture there are 4 black chips and 6 white chips, but of course in real life we
wouldn’t know that unless we looked in the bag. Now imagine you run the following
“experiment”: you shake up the bag, close your eyes, and pull out 4 chips without
putting any of them back into the bag. First out comes the 𝑎 chip (black), then the 𝑐
chip (white), then 𝑗 (white) and then finally 𝑏 (black). If you wanted you could then put
all the chips back in the bag and repeat the experiment, as depicted on the right-hand
side of Figure 8.1. Each time you get different results but the procedure is identical
in each case. The fact that the same procedure can lead to different results each time
is what we refer to as a random process.56 However, because we shook the bag before
pulling any chips out, it seems reasonable to think that every chip has the same chance
of being selected. A procedure in which every member of the population has the same
chance of being selected is called a simple random sample. The fact that we did not put
the chips back in the bag after pulling them out means that you can’t observe the same
thing twice, and in such cases the observations are said to have been sampled without
replacement.

Figure 8.1: Simple random sampling without replacement from a finite population
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Figure 8.2: Biased sampling without replacement from a finite population

Figure 8.3: Simple random sampling with replacement from a finite population

To help make sure you understand the importance of the sampling procedure, con-
sider an alternative way in which the experiment could have been run. Suppose that
my five-year old son had opened the bag and decided to pull out four black chips with-
out putting any of them back in the bag. This biased sampling scheme is depicted in
Figure 8.2. Now consider the evidential value of seeing 4 black chips and 0 white chips.
Clearly it depends on the sampling scheme, does it not? If you know that the sam-
pling scheme is biased to select only black chips then a sample that consists of only
black chips doesn’t tell you very much about the population! For this reason statisti-
cians really like it when a data set can be considered a simple random sample, because
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it makes the data analysis much easier. A third procedure is worth mentioning. This
time around we close our eyes, shake the bag, and pull out a chip. This time, however,
we record the observation and then put the chip back in the bag. Again we close our
eyes, shake the bag, and pull out a chip. We then repeat this procedure until we have
4 chips. Data sets generated in this way are still simple random samples, but because
we put the chips back in the bag immediately after drawing them it is referred to as
a sample with replacement. The difference between this situation and the first one is
that it is possible to observe the same population member multiple times, as illustrated
in Figure 8.3.

In my experience, most psychology experiments tend to be sampling without replace-
ment, because the same person is not allowed to participate in the experiment twice.
However, most statistical theory is based on the assumption that the data arise from a
simple random sample with replacement. In real life this very rarely matters. If the
population of interest is large (e.g., has more than 10 entities!) the difference between
sampling with and without replacement is too small to be concerned with. The differ-
ence between simple random samples and biased samples, on the other hand, is not
such an easy thing to dismiss.

8.1.3 Most samples are not simple random samples

As you can see from looking at the list of possible populations that I showed above, it is
almost impossible to obtain a simple random sample frommost populations of interest.
When I run experiments I’d consider it a minor miracle if my participants turned out to
be a random sampling of the undergraduate psychology students at Adelaide univer-
sity, even though this is by far the narrowest population that I might want to generalise
to. A thorough discussion of other types of sampling schemes is beyond the scope of
this book, but to give you a sense of what’s out there I’ll list a few of the more important
ones.

• Stratified sampling. Suppose your population is (or can be) divided into several
different sub-populations, or strata. Perhaps you’re running a study at several
different sites, for example. Instead of trying to sample randomly from the popu-
lation as awhole, you instead try to collect a separate random sample from each of
the strata. Stratified sampling is sometimes easier to do than simple random sam-
pling, especially when the population is already divided into the distinct strata. It
can also bemore efficient than simple random sampling, especially when some of
the sub-populations are rare. For instance, when studying schizophrenia it would
be much better to divide the population into two57 strata (schizophrenic and not-
schizophrenic) and then sample an equal number of people from each group.
If you selected people randomly you would get so few schizophrenic people in
the sample that your study would be useless. This specific kind of of stratified
sampling is referred to as oversampling because it makes a deliberate attempt to
over-represent rare groups

• Snowball sampling is a technique that is especially useful when sampling from a
“hidden” or hard to access population and is especially common in social sci-
ences. For instance, suppose the researchers want to conduct an opinion poll
among transgender people. The research team might only have contact details
for a few trans folks, so the survey starts by asking them to participate (stage 1).
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At the end of the survey the participants are asked to provide contact details for
other peoplewhomight want to participate. In stage 2 those new contacts are sur-
veyed. The process continues until the researchers have sufficient data. The big
advantage to snowball sampling is that it gets you data in situations that might
otherwise be impossible to get any. On the statistical side, the main disadvan-
tage is that the sample is highly non-random, and non-random in ways that are
difficult to address. On the real life side, the disadvantage is that the procedure
can be unethical if not handled well, because hidden populations are often hid-
den for a reason. I chose transgender people as an example here to highlight this
issue. If you weren’t careful you might end up outing people who don’t want to
be outed (very, very bad form), and even if you don’t make that mistake it can
still be intrusive to use people’s social networks to study them. It’s certainly very
hard to get people’s informed consent before contacting them, yet in many cases
the simple act of contacting them and saying “hey we want to study you” can be
hurtful. Social networks are complex things, and just because you can use them
to get data doesn’t always mean you should.

• Convenience sampling is more or less what it sounds like. The samples are chosen
in a way that is convenient to the researcher, and not selected at random from the
population of interest. Snowball sampling is one type of convenience sampling,
but there are many others. A common example in psychology are studies that
rely on undergraduate psychology students. These samples are generally non-
random in two respects. First, reliance on undergraduate psychology students
automatically means that your data are restricted to a single sub-population. Sec-
ond, the students usually get to pickwhich studies they participate in, so the sam-
ple is a self selected subset of psychology students and not a randomly selected
subset. In real life most studies are convenience samples of one form or another.
This is sometimes a severe limitation, but not always.

8.1.4 How much does it matter if you don’t have a simple random
sample?

Okay, so real world data collection tends not to involve nice simple random samples.
Does that matter? A little thought should make it clear to you that it can matter if your
data are not a simple random sample. Just think about the difference between Figure 8.1
andFigure 8.2. However, it’s not quite as bad as it sounds. Some types of biased samples
are entirely unproblematic. For instance, when using a stratified sampling technique
you actually know what the bias is because you created it deliberately, often to increase
the effectiveness of your study, and there are statistical techniques that you can use to
adjust for the biases you’ve introduced (not covered in this book!). So in those situations
it’s not a problem.

More generally though, it’s important to remember that random sampling is ameans to
an end, and not the end in itself. Let’s assume you’ve relied on a convenience sample,
and as such you can assume it’s biased. A bias in your sampling method is only a prob-
lem if it causes you to draw thewrong conclusions. When viewed from that perspective,
I’d argue that we don’t need the sample to be randomly generated in every respect, we
only need it to be random with respect to the psychologically-relevant phenomenon of
interest. Suppose I’m doing a study looking at working memory capacity. In study 1,
I actually have the ability to sample randomly from all human beings currently alive,
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with one exception: I can only sample people born on a Monday. In study 2, I am able
to sample randomly from the Australian population. I want to generalise my results
to the population of all living humans. Which study is better? The answer, obviously,
is study 1. Why? Because we have no reason to think that being “born on a Monday”
has any interesting relationship to working memory capacity. In contrast, I can think
of several reasons why “being Australian” might matter. Australia is a wealthy, indus-
trialised country with a very well-developed education system. People growing up in
that system will have had life experiences much more similar to the experiences of the
people who designed the tests for working memory capacity. This shared experience
might easily translate into similar beliefs about how to “take a test”, a shared assump-
tion about how psychological experimentation works, and so on. These things might
actually matter. For instance, “test taking” style might have taught the Australian par-
ticipants how to direct their attention exclusively on fairly abstract test materials much
more than peoplewho haven’t grown up in a similar environment. This could therefore
lead to a misleading picture of what working memory capacity is.

There are two points hidden in this discussion. First, when designing your own studies,
it’s important to think about what population you care about and try hard to sample
in a way that is appropriate to that population. In practice, you’re usually forced to
put up with a “sample of convenience” (e.g., psychology lecturers sample psychology
students because that’s the least expensive way to collect data, and our coffers aren’t
exactly overflowing with gold), but if so you should at least spend some time thinking
about what the dangers of this practice might be. Second, if you’re going to criticise
someone else’s study because they’ve used a sample of convenience rather than labori-
ously sampling randomly from the entire human population, at least have the courtesy
to offer a specific theory as to how this might have distorted the results.

8.1.5 Population parameters and sample statistics

Okay. Setting aside the thorny methodological issues associated with obtaining a ran-
dom sample, let’s consider a slightly different issue. Up to this point we have been
talking about populations the way a scientist might. To a psychologist a population
might be a group of people. To an ecologist a population might be a group of bears. In
most cases the populations that scientists care about are concrete things that actually
exist in the real world. Statisticians, however, are a funny lot. On the one hand, they
are interested in real-world data and real science in the sameway that scientists are. On
the other hand, they also operate in the realm of pure abstraction in the way that math-
ematicians do. As a consequence, statistical theory tends to be a bit abstract in how
a population is defined. In much the same way that psychological researchers opera-
tionalise our abstract theoretical ideas in terms of concrete measurements (Section 2.1),
statisticians operationalise the concept of a “population” in terms of mathematical ob-
jects that they know how to work with. You’ve already come across these objects in
Chapter 7. They’re called probability distributions.

The idea is quite simple. Let’s say we’re talking about IQ scores. To a psychologist the
population of interest is a group of actual humans who have IQ scores. A statistician
“simplifies” this by operationally defining the population as the probability distribu-
tion depicted in Figure 8.4 (a). IQ tests are designed so that the average IQ is 100, the
standard deviation of IQ scores is 15, and the distribution of IQ scores is normal. These
values are referred to as the population parameters because they are characteristics

145



of the entire population. That is, we say that the population mean 𝜇 is 100 and the
population standard deviation 𝜎 is 15.

Figure 8.4: The population distribution of IQ scores (panel (a)) and two samples drawn
randomly from it. In panel (b) we have a sample of 100 observations, and panel (c) we
have a sample of 10,000 observations

Now suppose I run an experiment. I select 100 people at random and administer an
IQ test, giving me a simple random sample from the population. My sample would
consist of a collection of numbers like this:

106 101 98 80 74 … 107 72 100

Each of these IQ scores is sampled from a normal distribution with mean 100 and stan-
dard deviation 15. So if I plot a histogram of the sample I get something like the one
shown in Figure 8.4 (b). As you can see, the histogram is roughly the right shape but
it’s a very crude approximation to the true population distribution shown in Figure 8.4
(a). When I calculate the mean of my sample, I get a number that is fairly close to the
population mean 100 but not identical. In this case, it turns out that the people in my
sample have a mean IQ of 98.5, and the standard deviation of their IQ scores is 15.9.
These sample statistics are properties of my data set, and although they are fairly sim-
ilar to the true population values they are not the same. In general, sample statistics
are the things you can calculate from your data set and the population parameters are
the things you want to learn about. Later on in this chapter I’ll talk about Estimating
population parameters using your sample statistics and also Estimating a confidence
interval but before we get to that there’s a few more ideas in sampling theory that you
need to know about
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8.2 The law of large numbers

In the previous section I showed you the results of one fictitious IQ experiment with a
sample size of𝑁 = 100. The resultswere somewhat encouraging as the true population
mean is 100 and the sample mean of 98.5 is a pretty reasonable approximation to it.
In many scientific studies that level of precision is perfectly acceptable, but in other
situations you need to be a lot more precise. If wewant our sample statistics to bemuch
closer to the population parameters, what can we do about it? The obvious answer is to
collect more data. Suppose that we ran a much larger experiment, this time measuring
the IQs of 10,000 people. We can simulate the results of this experiment using jamovi.
The IQsim.omv file is a jamovi data file. In this file I have generated 10,000 random
numbers sampled from a normal distribution for a population with 𝑚𝑒𝑎𝑛 = 100 and
𝑠𝑑 = 15. This was done by computing a new variable using the ‘= NORM(100,15)’
function. In Figure 8.5 a histogram and density plot shows that this larger sample is a
better approximation to the true population distribution than the smaller one. This is
reflected in the sample statistics. The mean IQ for the larger sample is 99.68 and the
standard deviation is 14.90. These values are now very close to the true population.

I feel a bit silly saying this, but the thing I want you to take away from this is that
large samples generally give you better information. I feel silly saying it because it’s so
obvious that it shouldn’t need to be said. In fact, it’s such an obvious point that when
Jacob Bernoulli, one of the founders of probability theory, formalised this idea back in
1713 he was kind of a jerk about it. Here’s how he described the fact that we all share
this intuition:

For even the most stupid of men, by some instinct of nature, by himself and without
any instruction (which is a remarkable thing), is convinced that the more observa-
tions have been made, the less danger there is of wandering from one’s goal (Stigler,
1986, p. 65).

Okay, so the passage comes across as a bit condescending (not to mention sexist), but
his main point is correct. It really does feel obvious that more data will give you better
answers. The question is, why is this so? Not surprisingly, this intuition that we all
share turns out to be correct, and statisticians refer to it as the law of large numbers.
The law of large numbers is a mathematical law that applies to many different sample
statistics but the simplest way to think about it is as a law about averages. The sam-
ple mean is the most obvious example of a statistic that relies on averaging (because
that’s what the mean is… an average), so let’s look at that. When applied to the sample
mean what the law of large numbers states is that as the sample gets larger, the sam-
ple mean tends to get closer to the true population mean. Or, to say it a little bit more
precisely, as the sample size “approaches” infinity (written as 𝑁 ⟶ ∞), the sample
mean approaches the population mean �̄� ⟶ 𝜇)58

I don’t intend to subject you to a proof that the law of large numbers is true, but it’s one
of the most important tools for statistical theory. The law of large numbers is the thing
we can use to justify our belief that collecting more and more data will eventually lead
us to the truth. For any particular data set the sample statistics that we calculate from
it will be wrong, but the law of large numbers tells us that if we keep collecting more
data those sample statistics will tend to get closer and closer to the true population
parameters.
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Figure 8.5: A random sample drawn from a normal distribution using jamovi

8.3 Sampling distributions and the central limit theorem

The law of large numbers is a very powerful tool but it’s not going to be good enough to
answer all our questions. Among other things, all it gives us is a “long run guarantee”.
In the long run, if we were somehow able to collect an infinite amount of data, then the
law of large numbers guarantees that our sample statistics will be correct. But as John
Maynard Keynes famously argued in economics, a long run guarantee is of little use in
real life.

[The] long run is a misleading guide to current affairs. In the long run we are
all dead. Economists set themselves too easy, too useless a task, if in tempestuous
seasons they can only tell us, that when the storm is long past, the ocean is flat
again. (Keynes, 1923, p. 80).
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As in economics, so too in psychology and statistics. It is not enough to know that we
will eventually arrive at the right answer when calculating the sample mean. Knowing
that an infinitely large data set will tell me the exact value of the population mean is
cold comfort when my actual data set has a sample size of 𝑁 = 100. In real life, then,
wemust know something about the behaviour of the samplemeanwhen it is calculated
from a more modest data set!

8.3.1 Sampling distribution of the mean

With this in mind, let’s abandon the idea that our studies will have sample sizes of
10,000 and consider instead a very modest experiment indeed. This time around we’ll
sample 𝑁 = 5 people and measure their IQ scores. As before, I can simulate this
experiment in jamovi = NORM(100,15) function, but I only need 5 participant IDs this
time, not 10,000. These are the five numbers that jamovi generated:

90 82 94 99 110

The mean IQ in this sample turns out to be exactly 95. Not surprisingly, this is much
less accurate than the previous experiment. Now imagine that I decided to replicate
the experiment. That is, I repeat the procedure as closely as possible and I randomly
sample 5 new people and measure their IQ. Again, jamovi allows me to simulate the
results of this procedure, and generates these five numbers:

78 88 111 111 117

This time around, the mean IQ in my sample is 101. If I repeat the experiment 10 times
I obtain the results shown in Table 8.1, and as you can see the sample mean varies from
one replication to the next.

Table 8.1: Ten replications of the IQ experiment, each with a sample size of (𝑁 = 5)

Person
1

Person
2

Person
3

Person
4

Person
5

Sample
Mean

Rep. 1 90 82 94 99 110 95.0
Rep. 2 78 88 111 111 117 101.0
Rep. 3 111 122 91 98 86 101.6
Rep. 4 98 96 119 99 107 103.8
Rep. 5 105 113 103 103 98 104.4
Rep. 6 81 89 93 85 114 92.4
Rep. 7 100 93 108 98 133 106.4
Rep. 8 107 100 105 117 85 102.8
Rep. 9 86 119 108 73 116 100.4
Rep. 10 95 126 112 120 76 105.8
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Now suppose that I decided to keep going in this fashion, replicating this “five IQ
scores” experiment over and over again. Every time I replicate the experiment I write
down the sample mean. Over time, I’d be amassing a new data set, in which every ex-
periment generates a single data point. The first 10 observations from my data set are
the sample means listed in Table 8.1, so my data set starts out like this:

95.0 101.0 101.6 103.8 104.4 …

What if I continued like this for 10,000 replications, and then drew a histogram. Well
that’s exactly what I did, and you can see the results in Figure 8.6. As this picture illus-
trates, the average of 5 IQ scores is usually between 90 and 110. But more importantly,
what it highlights is that if we replicate an experiment over and over again, whatwe end
up with is a distribution of sample means! (Table 8.1). This distribution has a special
name in statistics, it’s called the sampling distribution of the mean.

Sampling distributions are another important theoretical idea in statistics, and they’re
crucial for understanding the behaviour of small samples. For instance, when I ran the
very first “five IQ scores” experiment, the sample mean turned out to be 95. What the
sampling distribution in Figure 8.6 tells us, though, is that the “five IQ scores” experi-
ment is not very accurate. If I repeat the experiment, the sampling distribution tells me
that I can expect to see a sample mean anywhere between 80 and 120.

Figure 8.6: The sampling distribution of themean for the “five IQ scores experiment”. If
you sample 5 people at random and calculate their average IQ youwill almost certainly
get a number between 80 and 120, even though there are quite a lot of individuals who
have IQs above 120 or below 80. For comparison, the black line plots the population
distribution of IQ scores
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8.3.2 Sampling distributions exist for any sample statistic!

One thing to keep inmindwhen thinking about sampling distributions is that any sam-
ple statistic you might care to calculate has a sampling distribution. For example, sup-
pose that each time I replicated the “five IQ scores” experiment Iwrote down the largest
IQ score in the experiment. This would give me a data set that started out like this:

110 117 122 119 113 …

Doing this over and over again would give me a very different sampling distribution,
namely the sampling distribution of the maximum. The sampling distribution of the
maximum of 5 IQ scores is shown in Figure 8.7. Not surprisingly, if you pick 5 people
at random and then find the person with the highest IQ score, they’re going to have an
above average IQ. Most of the time you’ll end up with someone whose IQ is measured
in the 100 to 140 range.

Figure 8.7: The sampling distribution of the maximum for the “five IQ scores experi-
ment”. If you sample 5 people at random and select the one with the highest IQ score
you will probably see someone with an IQ between 100 and 140

8.3.3 The central limit theorem

At this point I hope you have a pretty good sense of what sampling distributions
are, and in particular what the sampling distribution of the mean is. In this section I
want to talk about how the sampling distribution of the mean changes as a function
of sample size. Intuitively, you already know part of the answer. If you only have a
few observations, the sample mean is likely to be quite inaccurate. If you replicate a
small experiment and recalculate the mean you’ll get a very different answer. In other
words, the sampling distribution is quite wide. If you replicate a large experiment
and recalculate the sample mean you’ll probably get the same answer you got last
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time, so the sampling distribution will be very narrow. You can see this visually
in Figure 8.8, showing that the bigger the sample size, the narrower the sampling
distribution gets: in panel (a), each data set contained only a single observation, so
the mean of each sample is the IQ score of just one person. As a consequence, the
sampling distribution of the mean is of course identical to the population distribution
of IQ scores. However, when we raise the sample size to 2 the mean of any one
sample tends to be closer to the population mean than the IQ score of any one person,
and so the histogram (i.e., the sampling distribution) is a bit narrower than the
population distribution. By the time we raise the sample size to 10 (panel (c)), we can
see that the distribution of sample means tend to be fairly tightly clustered around
the true population mean. We can quantify this effect by calculating the standard
deviation of the sampling distribution, which is referred to as the standard error. The
standard error of a statistic is often denoted SE, and since we’re usually interested
in the standard error of the sample mean, we often use the acronym SEM. As you
can see just by looking at the picture, as the sample size𝑁 increases, the SEMdecreases.

Figure 8.8: An illustration of the how sampling distribution of the mean depends on
sample size. In each panel I generated 10,000 samples of IQ data and calculated the
mean IQ observed within each of these data sets. The histograms in these plots show
the distribution of these means (i.e., the sampling distribution of the mean). Each in-
dividual IQ score was drawn from a normal distribution with mean 100 and standard
deviation 15, which is shown as the solid black line.

Okay, so that’s one part of the story. However, there’s something I’ve been glossing
over so far. All my examples up to this point have been based on the “IQ scores” ex-
periments, and because IQ scores are roughly normally distributed I’ve assumed that
the population distribution is normal. What if it isn’t normal? What happens to the
sampling distribution of the mean? The remarkable thing is this, no matter what shape
your population distribution is, as 𝑁 increases the sampling distribution of the mean
starts to look more like a normal distribution. To give you a sense of this I ran some
simulations. To do this, I started with the “ramped” distribution shown in the his-
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togram in Figure 8.9. As you can see by comparing the triangular shaped histogram to
the bell curve plotted by the black line, the population distribution doesn’t look very
much like a normal distribution at all. Next, I simulated the results of a large number
of experiments. In each experiment I took 𝑁 = 2 samples from this distribution, and
then calculated the sample mean. Figure 8.9 (b) plots the histogram of these sample
means (i.e., the sampling distribution of the mean for 𝑁 = 2). This time, the histogram
produces a 𝜒2-shaped distribution. It’s still not normal, but it’s a lot closer to the black
line than the population distribution in Figure 8.9 (a). When I increase the sample size
to 𝑁 = 4, the sampling distribution of the mean is very close to normal (Figure 8.9 (c)),
and by the time we reach a sample size of 𝑁 = 8 it’s almost perfectly normal. In other
words, as long as your sample size isn’t tiny, the sampling distribution of the mean will
be approximately normal no matter what your population distribution looks like!

On the basis of these figures, it seems like we have evidence for all of the following
claims about the sampling distribution of the mean.

• The mean of the sampling distribution is the same as the mean of the population.
• The standard deviation of the sampling distribution (i.e., the standard error) gets
smaller as the sample size increases.

• The shape of the sampling distribution becomes normal as the sample size in-
creases.

As it happens, not only are all of these statements true, there is a very famous theorem
in statistics that proves all three of them, known as the central limit theorem. Among
other things, the central limit theorem tells us that if the population distribution has
mean 𝜇 and standard deviation 𝜎, then the sampling distribution of the mean also has
mean 𝜇 and the standard error of the mean is:

𝑆𝐸𝑀 = 𝜎√
𝑁

Becausewe divide the population standard deviation 𝜎 by the square root of the sample
size 𝑁 , the SEM gets smaller as the sample size increases. It also tells us that the shape
of the sampling distribution becomes normal.59

This result is useful for all sorts of things. It tells us why large experiments are more
reliable than small ones, and because it gives us an explicit formula for the standard er-
ror it tells us how much more reliable a large experiment is. It tells us why the normal
distribution is, well, normal. In real experiments, many of the things that we want to
measure are actually averages of lots of different quantities (e.g., arguably, “general”
intelligence as measured by IQ is an average of a large number of “specific” skills and
abilities), and when that happens, the averaged quantity should follow a normal dis-
tribution. Because of this mathematical law, the normal distribution pops up over and
over again in real data.
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Figure 8.9: A demonstration of the central limit theorem. In panel (a), we have a non-
normal population distribution, and panels (b)-(d) show the sampling distribution of
the mean for samples of size 2,4 and 8 for data drawn from the distribution in panel
(a). As you can see, even though the original population distribution is non-normal the
sampling distribution of the mean becomes pretty close to normal by the time you have
a sample of even four observations

8.4 Estimating population parameters

In all the IQ examples in the previous sections we actually knew the population param-
eters ahead of time. As every undergraduate gets taught in their very first lecture on
the measurement of intelligence, IQ scores are defined to have mean 100 and standard
deviation 15. However, this is a bit of a lie. How do we know that IQ scores have a
true populationmean of 100? Well, we know this because the people who designed the
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tests have administered them to very large samples, and have then “rigged” the scoring
rules so that their sample has mean 100. That’s not a bad thing of course; it’s an impor-
tant part of designing a psychological measurement. However, it’s important to keep
in mind that this theoretical mean of 100 only attaches to the population that the test
designers used to design the tests. Good test designers will actually go to some lengths
to provide “test norms” that can apply to lots of different populations (e.g., different
age groups, nationalities etc).

This is very handy, but of course almost every research project of interest involves look-
ing at a different population of people to those used in the test norms. For instance,
suppose youwanted tomeasure the effect of low level lead poisoning on cognitive func-
tioning in Port Pirie, a South Australian industrial town with a lead smelter. Perhaps
you decide that you want to compare IQ scores among people in Port Pirie to a com-
parable sample in Whyalla, a South Australian industrial town with a steel refinery.60
Regardless of which town you’re thinking about, it doesn’t make a lot of sense sim-
ply to assume that the true population mean IQ is 100. No-one has, to my knowledge,
produced sensible norming data that can automatically be applied to South Australian
industrial towns. We’re going to have to estimate the population parameters from a
sample of data. So how do we do this?

8.4.1 Estimating the population mean

Suppose we go to Port Pirie and 100 of the locals are kind enough to sit through an
IQ test. The average IQ score among these people turns out to be �̄� = 98.5. So what
is the true mean IQ for the entire population of Port Pirie? Obviously, we don’t know
the answer to that question. It could be 97.2, but it could also be 103.5. Our sampling
isn’t exhaustive so we cannot give a definitive answer. Nevertheless, if I was forced at
gunpoint to give a “best guess” I’d have to say 98.5. That’s the essence of statistical
estimation: giving a best guess.

In this example estimating the unknown population parameter is straightforward. I
calculate the sample mean and I use that as my estimate of the population mean. It’s
pretty simple, and in the next section I’ll explain the statistical justification for this in-
tuitive answer. However, for the moment what I want to do is make sure you recognise
that the sample statistic and the estimate of the population parameter are conceptually
different things. A sample statistic is a description of your data, whereas the estimate
is a guess about the population. With that in mind, statisticians often use different no-
tation to refer to them. For instance, if the true population mean is denoted 𝜇, then we
would use ̂𝜇 to refer to our estimate of the population mean. In contrast, the sample
mean is denoted �̄� or sometimes m. However, in simple random samples the estimate
of the population mean is identical to the sample mean. If I observe a sample mean of
�̄� = 98.5 then my estimate of the population mean is also ̂𝜇 = 98.5. To help keep the
notation clear, here’s a handy table (Table 8.2).
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Table 8.2: Notation for the mean

Symbol What is it?
Do we know what it

is?

�̂� Sample mean
Yes, calculated from

the raw data

𝜇
True population

mean
Almost never known

for sure

̂𝜇
Estimate of the
population mean

Yes, identical to the
sample mean in simple

random samples

8.4.2 Estimating the population standard deviation

So far, estimation seems pretty simple, and youmight bewonderingwhy I forced you to
read through all that stuff about sampling theory. In the case of the mean our estimate
of the population parameter (i.e. ̂𝜇) turned out to be identical to the corresponding
sample statistic (i.e. �̄�). However, that’s not always true. To see this, let’s have a think
about how to construct an estimate of the population standard deviation, which we’ll
denote �̂�. What shall we use as our estimate in this case? Your first thought might be
that we could do the same thing we did when estimating the mean, and just use the
sample statistic as our estimate. That’s almost the right thing to do, but not quite.

Here’s why. Suppose I have a sample that contains a single observation. For this ex-
ample, it helps to consider a sample where you have no intuitions at all about what the
true population values might be, so let’s use something completely fictitious. Suppose
the observation in question measures the cromulence of my shoes. It turns out that my
shoes have a cromulence of 20. So here’s my sample:

20

This is a perfectly legitimate sample, even if it does have a sample size of 𝑁 = 1. It
has a sample mean of 20 and because every observation in this sample is equal to the
sample mean (obviously!) it has a sample standard deviation of 0. As a description of
the sample this seems quite right, the sample contains a single observation and therefore
there is no variation observedwithin the sample. A sample standard deviation of 𝑠 = 0
is the right answer here. But as an estimate of the population standard deviation it feels
completely insane, right? Admittedly, you and I don’t know anything at all about what
“cromulence” is, but we know something about data. The only reason that we don’t
see any variability in the sample is that the sample is too small to display any variation!
So, if you have a sample size of 𝑁 = 1 it feels like the right answer is just to say “no
idea at all”.

Notice that you don’t have the same intuitionwhen it comes to the samplemean and the
population mean. If forced to make a best guess about the population mean it doesn’t
feel completely insane to guess that the population mean is 20. Sure, you probably
wouldn’t feel very confident in that guess because you have only the one observation
to work with, but it’s still the best guess you can make.
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Let’s extend this example a little. My data set now has 𝑁 = 2 observations of the
cromulence of shoes, and the complete sample now looks like this:

20, 22

This time around, our sample is just large enough for us to be able to observe some
variability: two observations is the bare minimum number needed for any variability
to be observed! For our new data set, the sample mean is �̄� = 21, and the sample
standard deviation is 𝑠 = 1. What intuitions do we have about the population? Again,
as far as the population mean goes, the best guess we can possibly make is the sample
mean. If forced to guess we’d probably guess that the population mean cromulence is
21. What about the standard deviation? This is a little more complicated. The sam-
ple standard deviation is only based on two observations, and if you’re at all like me
you probably have the intuition that, with only two observations we haven’t given the
population “enough of a chance” to reveal its true variability to us. It’s not just that we
suspect that the estimate is wrong, after all with only two observations we expect it to
be wrong to some degree. The worry is that the error is systematic. Specifically, we
suspect that the sample standard deviation is likely to be smaller than the population
standard deviation.

This intuition feels right, but it would be nice to demonstrate this somehow. There
are in fact mathematical proofs that confirm this intuition, but unless you have the
right mathematical background they don’t help very much. Instead, what I’ll do is
simulate the results of some experiments. With that in mind, let’s return to our IQ
studies. Suppose the true population mean IQ is 100 and the standard deviation is 15.
First I’ll conduct an experiment in which I measure 𝑁 = 2 IQ scores and I’ll calculate
the sample standard deviation. If I do this over and over again, and plot a histogram
of these sample standard deviations, what I have is the sampling distribution of the
standard deviation. I’ve plotted this distribution in Figure 8.10. Even though the true
population standard deviation is 15 this experiment would, on average, produce an
estimated standard deviation of only 8.4 – well below the true value! In other words,
the sample standard deviation is a biased estimate of the population standard deviation
Notice that this is a very different result to what we found in Figure 8.8 (b) when we
plotted the sampling distribution of the mean, where the population mean is 100 and
the average of the sample means is also 100.
Now let’s extend the simulation. Instead of restricting ourselves to the situation where
𝑁 = 2, let’s repeat the exercise for sample sizes from 1 to 10. If we plot the average
sample mean and average sample standard deviation as a function of sample size, you
get the results shown in Figure 8.11. For the figure I generated 10, 000 simulated data
sets with 1 observation each, 10, 000 more with 2 observations, and so on up to a sam-
ple size of 10. Each data set consisted of fake IQ data, that is the data were normally
distributed with a true population mean of 100 and standard deviation 15. On average,
the sample means turn out to be 100, regardless of sample size (panel a), and is equal to
the population mean. It is an unbiased estimator, which is essentially the reason why
your best estimate for the population mean is the sample mean.61 The plot on the right
(panel b) is quite different: on average, the sample standard deviation 𝑠 is smaller than
the population standard deviation 𝜎, especially for small sample sizes. It is a biased
estimator. In other words, if we want to make a “best guess” �̂� about the value of the
population standard deviation �̂� we should make sure our guess is a little bit larger
than the sample standard deviation 𝑠.
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Figure 8.10: The sampling distribution of the sample standard deviation for a “two IQ
scores” experiment. The true population standard deviation is 15 (dashed line), but as
you can see from the histogram the vast majority of experiments will produce a much
smaller sample standard deviation than this

Figure 8.11: An illustration of the fact that the sample mean is an unbiased estimator of
the population mean (panel a), but the sample standard deviation is a biased estimator
of the population standard deviation (panel b)
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The fix to this systematic bias turns out to be very simple. Here’s how it works. Before
tackling the standard deviation let’s look at the variance. If you recall from the section
on Estimating population parameters, the sample variance is defined to be the average
of the squared deviations from the sample mean. That is:

𝑠2 = 1
𝑁

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)2

The sample variance 𝑠2 is a biased estimator of the population variance 𝜎2. But as
it turns out, we only need to make a tiny tweak to transform this into an unbiased
estimator. All we have to do is divide by 𝑁 − 1 rather than by 𝑁 .

This is an unbiased estimator of the population variance 𝜎. Moreover, this finally an-
swers the question we raised in Estimating population parameters. Why did jamovi
give us slightly different answers for variance? It’s because jamovi calculates �̂�2 not 𝑠2,
that’s why. A similar story applies for the standard deviation. If we divide by 𝑁 − 1
rather than𝑁 our estimate of the population standard deviation is unbiased, andwhen
we use jamovi’s built in standard deviation function, what it’s doing is calculating �̂� not
𝑠.62

One final point. In practice, a lot of people tend to refer to �̂� (i.e., the formula where we
divide by 𝑁 − 1) as the sample standard deviation. Technically, this is incorrect. The
sample standard deviation should be equal to 𝑠 (i.e., the formula where we divide by
𝑁 ). These aren’t the same thing, either conceptually or numerically. One is a property
of the sample, the other is an estimated characteristic of the population. However, in
almost every real life application what we actually care about is the estimate of the
population parameter, and so people always report �̂� rather than 𝑠. This is the right
number to report, of course. It’s just that people tend to get a little bit imprecise about
terminology when they write it up, because “sample standard deviation” is shorter
than “estimated population standard deviation”. It’s no big deal, and in practice I do
the same thing everyone else does. Nevertheless, I think it’s important to keep the
two concepts separate. It’s never a good idea to confuse “known properties of your
sample” with “guesses about the population from which it came”. The moment you
start thinking that 𝑠 and �̂� are the same thing, you start doing exactly that.

To finish this section off, here’s another couple of tables to help keep things clear (Ta-
ble 8.3 and Table 8.4).

Table 8.3: Notation for standard deviation

Symbol What is it?
Do we know what it

is?

𝑠
Sample standard

deviation
Yes, calculated from

the raw data

𝜎
Population

standard deviation
Almost never known

for sure

�̂�

Estimate of the
population

standard deviation

Yes, but not the same
as the sample standard

deviation
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Table 8.4: Notation for variance

Symbol What is it?
Do we know what it

is?

𝑠2 Sample variance
Yes, calculated from

the raw data

𝜎2 Population variance
Almost never known

for sure

�̂�2
Estimate of the

population variance
Yes, but not the same
as the sample variance

8.5 Estimating a confidence interval

Statistics means never having to say you’re certain
– Unknown origin63

Up to this point in this chapter, I’ve outlined the basics of sampling theory which statis-
ticians rely on to make guesses about population parameters on the basis of a sample
of data. As this discussion illustrates, one of the reasons we need all this sampling the-
ory is that every data set leaves us with some uncertainty, so our estimates are never
going to be perfectly accurate. The thing that has been missing from this discussion is
an attempt to quantify the amount of uncertainty that attaches to our estimate. It’s not
enough to be able guess that, say, the mean IQ of undergraduate psychology students
is 115 (yes, I just made that number up). We also want to be able to say something that
expresses the degree of certainty that we have in our guess. For example, it would be
nice to be able to say that there is a 95% chance that the true mean lies between 109 and
121. The name for this is a confidence interval for the mean.

Armed with an understanding of sampling distributions, constructing a confidence in-
terval for the mean is actually pretty easy. Here’s how it works. Suppose the true
population mean is 𝜇 and the standard deviation is 𝜎. I’ve just finished running my
study that has 𝑁 participants, and the mean IQ among those participants is �̄�. We
know from our discussion of The central limit theorem that the sampling distribution
of the mean is approximately normal. We also know from our discussion of the nor-
mal distribution in Section 7.5 that there is a 95% chance that a normally-distributed
quantity will fall within about two standard deviations of the true mean.

To be more precise, the more correct answer is that there is a 95% chance that a nor-
mally distributed quantity will fall within 1.96 standard deviations of the true mean.
Next, recall that the standard deviation of the sampling distribution is referred to as the
standard error, and the standard error of the mean is written as SEM. When we put all
these pieces together, we learn that there is a 95% probability that the sample mean �̄�
that we have actually observed lies within 1.96 standard errors of the populationmean.
Of course, there’s nothing special about the number 1.96. It just happens to be the
multiplier you need to use if you want a 95% confidence interval. If I’d wanted a 70%
confidence interval, I would have used 1.04 as the magic number rather than 1.96.
[Additional technical detail64]
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8.5.1 Interpreting a confidence interval

The hardest thing about confidence intervals is understanding what theymean. When-
ever people first encounter confidence intervals, the first instinct is almost always to say
that “there is a 95% probability that the true mean lies inside the confidence interval”.
It’s simple and it seems to capture the common sense idea of what it means to say that
I am “95% confident”. Unfortunately, it’s not quite right. The intuitive definition relies
very heavily on your own personal beliefs about the value of the populationmean. I say
that I am 95% confident because those are my beliefs. In everyday life that’s perfectly
okay, but if you remember back to the the section What does probability mean?, you’ll
notice that talking about personal belief and confidence is a Bayesian idea. However,
confidence intervals are not Bayesian tools. Like everything else in this chapter, con-
fidence intervals are frequentist tools, and if you are going to use frequentist methods
then it’s not appropriate to attach a Bayesian interpretation to them. If you use frequen-
tist methods, youmust adopt frequentist interpretations! Okay, so if that’s not the right
answer, what is? Remember what we said about frequentist probability. The only way
we are allowed to make “probability statements” is to talk about a sequence of events,
and to count up the frequencies of different kinds of events. From that perspective, the
interpretation of a 95% confidence interval must have something to dowith replication.
Specifically, if we replicated the experiment over and over again and computed a 95%
confidence interval for each replication, then 95% of those intervals would contain the
true mean. More generally, 95% of all confidence intervals constructed using this pro-
cedure should contain the true population mean. This idea is illustrated in Figure 8.12,
which shows 50 confidence intervals constructed for a “measure 10 IQ scores” experi-
ment (top panel) and another 50 confidence intervals for a “measure 25 IQ scores” ex-
periment (bottom panel). We’d expect that around 95 of our confidence intervals would
contain the true population mean, and that’s what we found in Figure 8.12. The criti-
cal difference here is that the Bayesian claim makes a probability statement about the
population mean (i.e., it refers to our uncertainty about the population mean), which is
not allowed under the frequentist interpretation of probability because you can’t “repli-
cate” a population! In the frequentist claim, the population mean is fixed and no prob-
abilistic claims can be made about it. Confidence intervals, however, are repeatable so
we can replicate experiments. Therefore a frequentist is allowed to talk about the prob-
ability that the confidence interval (a random variable) contains the true mean, but is
not allowed to talk about the probability that the true population mean (not a repeatable
event) falls within the confidence interval I know that this seems a little pedantic, but
it does matter. It matters because the difference in interpretation leads to a difference
in the mathematics. There is a Bayesian alternative to confidence intervals, known as
credible intervals. In most situations credible intervals are quite similar to confidence
intervals, but in other cases they are drastically different. As promised, though, I’ll talk
more about the Bayesian perspective in Chapter 16.
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Figure 8.12: 95% confidence intervals. The top panel (a) shows 50 simulated replica-
tions of an experiment in which we measure the IQs of 10 people. The dot marks the
location of the sample mean and the line shows the 95% confidence interval. Most of
the 50 confidence intervals do contain the true mean (i.e., 100), but a few – in blue and
marked with asterisks – do not. The lower graph (panel b) shows a similar simulation,
but this time we simulate replications of an experiment that measures the IQs of 25
people
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8.5.2 Calculating confidence intervals in jamovi

jamovi includes a simple way to calculate confidence intervals for the mean as part of
the ‘Descriptives’ functionality. Under ‘Descriptives’ – ‘Statistics’ there is a check box for
both the ‘Std. error of Mean’ and ‘Confidence interval for the mean’, so you can use this
to find out the 95% confidence interval (which is the default). So, for example, if I load
the IQsim.omv file, check ‘Confidence interval for the mean’, I can see the confidence
interval associated with the simulated mean IQ: Lower 95% CI = 99.39 and Upper 95%
CI = 99.97 So, in our simulated large sample data with 𝑁 = 10, 000, the mean IQ score
is 99.68 with a 95% CI from 99.39 to 99.97.

When it comes to plotting confidence intervals in jamovi, you can specify that the mean
is included as an option in a box plot. Moreover, when we get onto learning about
specific statistical tests, for example in Chapter 13, we will see that we can also plot
confidence intervals as part of the data analysis. That’s pretty cool, so we’ll show you
how to do that later on.

8.6 Summary

In this chapter I’ve covered two main topics. The first half of the chapter talks about
sampling theory, and the second half talks about how we can use sampling theory to
construct estimates of the population parameters. The section breakdown looks like
this:

• Basic ideas about Samples, populations and sampling.
• Statistical theory of sampling: The law of large numbers and Sampling distribu-
tions and the central limit theorem.

• Estimating population parameters. Means and standard deviations.
• Estimating a confidence interval.

As always, there’s a lot of topics related to sampling and estimation that aren’t covered
in this chapter, but for an introductory psychology class this is fairly comprehensive I
think. For most applied researchers you won’t need much more theory than this. One
big question that I haven’t touched on in this chapter is what you do when you don’t
have a simple random sample. There is a lot of statistical theory you can draw on to
handle this situation, but it’s well beyond the scope of this book.
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Chapter 9

Hypothesis testing

The process of induction is the process of assuming the simplest law that can be made
to harmonize with our experience. This process, however, has no logical foundation
but only a psychological one. It is clear that there are no grounds for believing that
the simplest course of events will really happen. It is an hypothesis that the sun will
rise tomorrow: and this means that we do not know whether it will rise.
– Ludwig Wittgenstein65

In the last chapter I discussed the ideas behind estimation, which is one of the two “big
ideas” in inferential statistics. It’s now time to turn our attention to the other big idea,
which is hypothesis testing. In its most abstract form, hypothesis testing is really a very
simple idea. The researcher has some theory about the world and wants to determine
whether or not the data actually support that theory. However, the details are messy
and most people find the theory of hypothesis testing to be the most frustrating part of
statistics. The structure of the chapter is as follows. First, I’ll describe how hypothesis
testing works in a fair amount of detail, using a simple running example to show you
how a hypothesis test is “built”. I’ll try to avoid being too dogmatic while doing so,
and focus instead on the underlying logic of the testing procedure.66 Afterwards, I’ll
spend a bit of time talking about the various dogmas, rules and heresies that surround
the theory of hypothesis testing.

9.1 A menagerie of hypotheses

Eventually we all succumb to madness. For me, that day will arrive once I’m finally
promoted to full professor. Safely ensconced in my ivory tower, happily protected by
tenure, I will finally be able to take leave of my senses (so to speak) and indulge in that
most thoroughly unproductive line of psychological research, the search for extrasen-
sory perception (ESP).67

Let’s suppose that this glorious day has come. My first study is a simple one in which
I seek to test whether clairvoyance exists. Each participant sits down at a table and
is shown a card by an experimenter. The card is black on one side and white on the
other. The experimenter takes the card away and places it on a table in an adjacent
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room. The card is placed black side up or white side up completely at random, with
the randomisation occurring only after the experimenter has left the room with the
participant. A second experimenter comes in and asks the participant which side of the
card is now facing upwards. It’s purely a one-shot experiment. Each person sees only
one card and gives only one answer, and at no stage is the participant actually in contact
with someone who knows the right answer. My data set, therefore, is very simple. I
have asked the question of 𝑁 people and some number 𝑋 of these people have given
the correct response. To make things concrete, let’s suppose that I have tested𝑁 = 100
people and 𝑋 = 62 of these got the answer right. A surprisingly large number, sure,
but is it large enough for me to feel safe in claiming I’ve found evidence for ESP? This is
the situation where hypothesis testing comes in useful. However, before we talk about
how to test hypotheses, we need to be clear about what we mean by hypotheses.

9.1.1 Research hypotheses versus statistical hypotheses

The first distinction that you need to keep clear in your mind is between research hy-
potheses and statistical hypotheses. In my ESP study my overall scientific goal is to
demonstrate that clairvoyance exists. In this situation I have a clear research goal: I am
hoping to discover evidence for ESP. In other situations I might actually be a lot more
neutral than that, so I might say that my research goal is to determine whether or not
clairvoyance exists. Regardless of how I want to portray myself, the basic point that
I’m trying to convey here is that a research hypothesis involves making a substantive,
testable scientific claim. If you are a psychologist then your research hypotheses are
fundamentally about psychological constructs. Any of the following would count as
research hypotheses:

• Listening to music reduces your ability to pay attention to other things. This is a claim
about the causal relationship between two psychologically meaningful concepts
(listening to music and paying attention to things), so it’s a perfectly reasonable
research hypothesis.

• Intelligence is related to personality. Like the last one, this is a relational claim
about two psychological constructs (intelligence and personality), but the claim
is weaker: correlational not causal.

• Intelligence is speed of information processing. This hypothesis has a quite different
character. It’s not actually a relational claim at all. It’s an ontological claim about
the fundamental character of intelligence. It’s usually easier to think about how
to construct experiments to test research hypotheses of the form “does 𝑋 affect
𝑌 ?” than it is to address claims like “what is 𝑋?” And in practice what usually
happens is that you find ways of testing relational claims that follow from your
ontological ones. For instance, if I believe that intelligence is speed of information
processing in the brain, my experiments will often involve looking for relation-
ships betweenmeasures of intelligence andmeasures of speed. As a consequence
most everyday research questions do tend to be relational in nature, but they’re
almost always motivated by deeper ontological questions about the state of na-
ture.

Notice that in practice, my research hypotheses could overlap a lot. My ultimate goal
in the ESP experiment might be to test an ontological claim like “ESP exists”, but I
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might operationally restrict myself to a narrower hypothesis like “Some people can ‘see’
objects in a clairvoyant fashion”. That said, there are some things that really don’t count
as proper research hypotheses in any meaningful sense:

• Love is a battlefield. This is too vague to be testable. Whilst it’s okay for a research
hypothesis to have a degree of vagueness to it, it has to be possible to opera-
tionalise your theoretical ideas. Maybe I’m just not creative enough to see it, but
I can’t see how this can be converted into any concrete research design. If that’s
true then this isn’t a scientific research hypothesis, it’s a pop song. That doesn’t
mean it’s not interesting. A lot of deep questions that humans have fall into this
category. Maybe one day science will be able to construct testable theories of love,
or to test to see if God exists, and so on. But right now we can’t, and I wouldn’t
bet on ever seeing a satisfying scientific approach to either.

• The first rule of tautology club is the first rule of tautology club. This is not a substan-
tive claim of any kind. It’s true by definition. No conceivable state of nature could
possibly be inconsistent with this claim. We say that this is an unfalsifiable hy-
pothesis, and as such it is outside the domain of science. Whatever else you do in
science your claims must have the possibility of being wrong.

• More people in my experiment will say “yes” than “no”. This one fails as a research
hypothesis because it’s a claim about the data set, not about the psychology (un-
less of course your actual research question is whether people have some kind of
“yes” bias!). Actually, this hypothesis is starting to sound more like a statistical
hypothesis than a research hypothesis.

As you can see, research hypotheses can be somewhat messy at times and ultimately
they are scientific claims. Statistical hypotheses are neither of these two things. Statis-
tical hypotheses must be mathematically precise and they must correspond to specific
claims about the characteristics of the data generating mechanism (i.e., the “popula-
tion”). Even so, the intent is that statistical hypotheses bear a clear relationship to the
substantive research hypotheses that you care about! For instance, in my ESP study
my research hypothesis is that some people are able to see through walls or whatever.
What I want to do is to “map” this onto a statement about how the data were generated.
So let’s think about what that statement would be. The quantity that I’m interested in
within the experiment is𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡), the true-but-unknown probability withwhich the
participants in my experiment answer the question correctly. Let’s use the Greek letter
𝜃 (theta) to refer to this probability. Here are four different statistical hypotheses:

• If ESP doesn’t exist and if my experiment is well designed then my participants
are just guessing. So I should expect them to get it right half of the time and somy
statistical hypothesis is that the true probability of choosing correctly is 𝜃 = 0.5 .

• Alternatively, suppose ESP does exist and participants can see the card. If that’s
true people will perform better than chance and the statistical hypothesis is that
𝜃 > 0.5.

• A third possibility is that ESP does exist, but the colours are all reversed and
people don’t realise it (okay, that’s wacky, but you never know). If that’s how it
works then you’d expect people’s performance to be below chance. This would
correspond to a statistical hypothesis that 𝜃 < 0.5.

• Finally, suppose ESP exists but I have no idea whether people are seeing the right
colour or the wrong one. In that case the only claim I could make about the data
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would be that the probability of making the correct answer is not equal to 0.5.
This corresponds to the statistical hypothesis that 𝜃 ≠ 0.5.

All of these are legitimate examples of a statistical hypothesis because they are state-
ments about a population parameter and are meaningfully related to my experiment.

What this discussionmakes clear, I hope, is that when attempting to construct a statisti-
cal hypothesis test the researcher actually has two quite distinct hypotheses to consider.
First, he or she has a research hypothesis (a claim about psychology), and this then cor-
responds to a statistical hypothesis (a claim about the data generating population). In
my ESP example these might be as shown in Table 9.1.

Table 9.1: Research and statistical hypotheses

Dani’s research hypothesis: “ESP exists”
Dani’s statistical hypothesis: 𝜃 ≠ 0.5

And a key thing to recognise is this. A statistical hypothesis test is a test of the statistical
hypothesis, not the research hypothesis. If your study is badly designed then the link
between your research hypothesis and your statistical hypothesis is broken. To give
a silly example, suppose that my ESP study was conducted in a situation where the
participant can actually see the card reflected in a window. If that happens I would
be able to find very strong evidence that 𝜃 ≠ 0.5, but this would tell us nothing about
whether “ESP exists”.

9.1.2 Null hypotheses and alternative hypotheses

So far, so good. I have a research hypothesis that corresponds to what I want to believe
about the world, and I can map it onto a statistical hypothesis that corresponds to what
I want to believe about how the data were generated. It’s at this point that things get
somewhat counter-intuitive for a lot of people. Because what I’m about to do is invent
a new statistical hypothesis (the “null” hypothesis, 𝐻0 ) that corresponds to the exact
opposite of what I want to believe, and then focus exclusively on that almost to the
neglect of the thing I’m actually interested in (which is now called the “alternative”
hypothesis, H1). In our ESP example, the null hypothesis is that 𝜃 = 0.5, since that’s
what we’d expect if ESP didn’t exist. My hope, of course, is that ESP is totally real and
so the alternative to this null hypothesis is 𝜃 ≠ 0.5. In essence, what we’re doing here
is dividing up the possible values of 𝜃 into two groups: those values that I really hope
aren’t true (the null), and those values that I’d be happy with if they turn out to be right
(the alternative). Having done so, the important thing to recognise is that the goal of
a hypothesis test is not to show that the alternative hypothesis is (probably) true. The
goal is to show that the null hypothesis is (probably) false. Most people find this pretty
weird.

The best way to think about it, in my experience, is to imagine that a hypothesis test is a
criminal trial,68 the trial of the null hypothesis. The null hypothesis is the defendant,
the researcher is the prosecutor, and the statistical test itself is the judge. Just like a
criminal trial, there is a presumption of innocence. The null hypothesis is deemed to be
true unless you, the researcher, can prove beyond a reasonable doubt that it is false. You
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are free to design your experiment however you like (within reason, obviously!) and
your goal when doing so is to maximise the chance that the data will yield a conviction
for the crime of being false. The catch is that the statistical test sets the rules of the trial
and those rules are designed to protect the null hypothesis, specifically to ensure that
if the null hypothesis is actually true the chances of a false conviction are guaranteed
to be low. This is pretty important. After all, the null hypothesis doesn’t get a lawyer,
and given that the researcher is trying desperately to prove it to be false someone has
to protect it.

9.2 Two types of errors

Before going into details about how a statistical test is constructed it’s useful to under-
stand the philosophy behind it. I hinted at it when pointing out the similarity between
a null hypothesis test and a criminal trial, but I should now be explicit. Ideally, we
would like to construct our test so that we never make any errors. Unfortunately, since
the world is messy, this is never possible. Sometimes you’re just really unlucky. For
instance, suppose you flip a coin 10 times in a row and it comes up heads all 10 times.
That feels like very strong evidence for a conclusion that the coin is biased, but of course
there’s a 1 in 1024 chance that this would happen even if the coin was totally fair. In
other words, in real life we always have to accept that there’s a chance that we made a
mistake. As a consequence the goal behind statistical hypothesis testing is not to elim-
inate errors, but to minimise them.

At this point, we need to be a bit more precise about what we mean by “errors”. First,
let’s state the obvious. It is either the case that the null hypothesis is true or that it is
false, and our test will either retain the null hypothesis or reject it.69 So, as Table 9.2
illustrates, after we run the test and make our choice one of four things might have
happened:

Table 9.2: Null hypothesis statistical testing (NHST)

retain 𝐻0 reject 𝐻0
𝐻0 is true correct decision error (type I)
𝐻0 is false error (type II) correct decision

As a consequence there are actually two different types of error here. If we reject a null
hypothesis that is actually true then we have made a type I error. On the other hand, if
we retain the null hypothesis when it is in fact false then we have made a type II error.

Remember how I said that statistical testing was kind of like a criminal trial? Well, I
meant it. A criminal trial requires that you establish “beyond a reasonable doubt” that
the defendant did it. All of the evidential rules are (in theory, at least) designed to en-
sure that there’s (almost) no chance of wrongfully convicting an innocent defendant.
The trial is designed to protect the rights of a defendant, as the English jurist William
Blackstone famously said, it is “better that ten guilty persons escape than that one in-
nocent suffer.” In other words, a criminal trial doesn’t treat the two types of error in the
same way. Punishing the innocent is deemed to be much worse than letting the guilty
go free. A statistical test is pretty much the same. The single most important design
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principle of the test is to control the probability of a type I error, to keep it below some
fixed probability. This probability, which is denoted 𝛼, is called the significance level
of the test. And I’ll say it again, because it is so central to the whole set-up, a hypothesis
test is said to have significance level 𝛼 if the type I error rate is no larger than 𝛼.
So, what about the type II error rate? Well, we’d also like to keep those under control
too, and we denote this probability by 𝛽. However, it’s much more common to refer
to the power of the test, that is the probability with which we reject a null hypothesis
when it really is false, which is 1 − 𝛽. To help keep this straight, here’s the same table
again but with the relevant numbers added (Table 9.3):

Table 9.3: Null hypothesis statistical testing (NHST) – additional detail

retain 𝐻0 reject 𝐻0

𝐻0 is true
1 − 𝛼 (probability of
correct retention) 𝛼 (type I error rate)

𝐻0 is false 𝛽 (type II error rate)
1 − 𝛽 (power of the

test)

A “powerful” hypothesis test is one that has a small value of 𝛽, while still keeping 𝛼
fixed at some (small) desired level. By convention, scientists make use of three different
𝛼 levels: .05, .01 and .001. Notice the asymmetry here; the tests are designed to ensure
that the 𝛼 level is kept small but there’s no corresponding guarantee regarding 𝛽. We’d
certainly like the type II error rate to be small and we try to design tests that keep it
small, but this is typically secondary to the overwhelming need to control the type I
error rate. As Blackstone might have said if he were a statistician, it is “better to retain
10 false null hypotheses than to reject a single true one”. To be honest, I don’t know
that I agree with this philosophy. There are situations where I think it makes sense,
and situations where I think it doesn’t, but that’s neither here nor there. It’s how the
tests are built.

9.3 Test statistics and sampling distributions

At this point we need to start talking specifics about how a hypothesis test is con-
structed. To that end, let’s return to the ESP example. Let’s ignore the actual data
that we obtained, for the moment, and think about the structure of the experiment.
Regardless of what the actual numbers are, the form of the data is that 𝑋 out of 𝑁
people correctly identified the colour of the hidden card. Moreover, let’s suppose for
the moment that the null hypothesis really is true, that ESP doesn’t exist and the true
probability that anyone picks the correct colour is exactly 𝜃 = 0.5. What would we
expect the data to look like? Well, obviously we’d expect the proportion of people who
make the correct response to be pretty close to 50%. Or, to phrase this in more math-
ematical terms, we’d say that 𝑋

𝑁 is approximately 0.5. Of course, we wouldn’t expect
this fraction to be exactly 0.5. If, for example, we tested𝑁 = 100 people and𝑋 = 53 of
them got the question right, we’d probably be forced to concede that the data are quite
consistent with the null hypothesis. On the other hand, if 𝑋 = 99 of our participants
got the question right then we’d feel pretty confident that the null hypothesis is wrong.
Similarly, if only 𝑋 = 3 people got the answer right we’d be similarly confident that
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the null was wrong. Let’s be a little more technical about this. We have a quantity 𝑋
that we can calculate by looking at our data. After looking at the value of 𝑋 we make
a decision about whether to believe that the null hypothesis is correct, or to reject the
null hypothesis in favour of the alternative. The name for this thing that we calculate
to guide our choices is a test statistic.

Having chosen a test statistic, the next step is to state precisely which values of the test
statistic would cause is to reject the null hypothesis, and which values would cause us
to keep it. In order to do so we need to determine what the sampling distribution of
the test statistic would be if the null hypothesis were actually true (we talked about
sampling distributions earlier in Section 8.3.1. Why do we need this? Because this dis-
tribution tells us exactly what values of X our null hypothesis would lead us to expect.
And, therefore, we can use this distribution as a tool for assessing how closely the null
hypothesis agrees with our data.

How do we actually determine the sampling distribution of the test statistic? For a lot
of hypothesis tests this step is actually quite complicated, and later on in the book you’ll
see me being slightly evasive about it for some of the tests (some of them I don’t even
understand myself). However, sometimes it’s very easy. And, fortunately for us, our
ESP example provides us with one of the easiest cases. Our population parameter 𝜃 is
just the overall probability that people respond correctly when asked the question, and
our test statistic 𝑋 is the count of the number of people who did so out of a sample
size of 𝑁 . We’ve seen a distribution like this before, in Section 7.4, and that’s exactly
what the binomial distribution describes! So, to use the notation and terminology that
I introduced in that section, we would say that the null hypothesis predicts that 𝑋 is
binomially distributed, which is written:

𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃, 𝑁)

Since the null hypothesis states that 𝜃 = 0.5 and our experiment has 𝑁 = 100 people,
we have the sampling distribution we need. This sampling distribution is plotted in
Figure 9.1. No surprises really, the null hypothesis says that 𝑋 = 50 is the most likely
outcome, and it says that we’re almost certain to see somewhere between 40 and 60
correct responses.

9.4 Making decisions

Okay, we’re very close to being finished. We’ve constructed a test statistic (𝑋) and we
chose this test statistic in such a way that we’re pretty confident that if 𝑋 is close to
𝑁
2 then we should retain the null, and if not we should reject it. The question that
remains is this. Exactly which values of the test statistic should we associate with the
null hypothesis, and exactly which values go with the alternative hypothesis? In my
ESP study, for example, I’ve observed a value of𝑋 = 62. What decision should I make?
Should I choose to believe the null hypothesis or the alternative hypothesis?
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Figure 9.1: The sampling distribution for our test statistic 𝑋 when the null hypothesis
is true. For our ESP scenario this is a binomial distribution. Not surprisingly, since the
null hypothesis says that the probability of a correct response is 𝜃 = .5, the sampling
distribution says that the most likely value is 50 (out of 100) correct responses. Most of
the probability mass lies between 40 and 60

9.4.1 Critical regions and critical values

To answer this questionwe need to introduce the concept of a critical region for the test
statistic 𝑋. The critical region of the test corresponds to those values of 𝑋 that would
lead us to reject null hypothesis (which is why the critical region is also sometimes
called the rejection region). How do we find this critical region? Well, let’s consider
what we know:

• 𝑋 should be very big or very small in order to reject the null hypothesis.
• If the null hypothesis is true, the sampling distribution of𝑋 is𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(0.5, 𝑁).
• If 𝛼 = .05, the critical region must cover 5% of this sampling distribution.

It’s important to make sure you understand this last point. The critical region corre-
sponds to those values of 𝑋 for which we would reject the null hypothesis, and the
sampling distribution in question describes the probability that we would obtain a par-
ticular value of 𝑋 if the null hypothesis were actually true. Now, let’s suppose that we
chose a critical region that covers 20% of the sampling distribution, and suppose that
the null hypothesis is actually true. What would be the probability of incorrectly re-
jecting the null? The answer is of course 20%. And, therefore, we would have built a
test that had an 𝛼 level of 0.2. If we want 𝛼 = .05, the critical region is only allowed to
cover 5% of the sampling distribution of our test statistic.
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As it turns out those three things uniquely solve the problem. Our critical region con-
sists of themost extreme values, known as the tails of the distribution. This is illustrated
in Figure 9.2. If we want 𝛼 = .05 then our critical regions correspond to 𝑋 ≤ 40 and
𝑋 ≥ 60.70 That is, if the number of people saying “true” is between 41 and 59, then
we should retain the null hypothesis. If the number is between 0 to 40, or between 60
to 100, then we should reject the null hypothesis. The numbers 40 and 60 are often
referred to as the critical values since they define the edges of the critical region.

Figure 9.2: The critical region associated with the hypothesis test for the ESP study, for
a hypothesis test with a significance level of 𝛼 = .05. The plot shows the sampling
distribution of 𝑋 under the null hypothesis (i.e., same as Figure 9.1) . The grey bars
correspond to those values of 𝑋 for which we would retain the null hypothesis. The
blue (darker shaded) bars show the critical region, those values of 𝑋 for which we
would reject the null. Because the alternative hypothesis is two-sided (i.e., allows both
𝜃 < .5 and 𝜃 > .5), the critical region covers both tails of the distribution. To ensure an
𝛼 level of .05, we need to ensure that each of the two regions encompasses 2.5% of the
sampling distribution

At this point, our hypothesis test is essentially complete:

1. We choose an 𝛼 level (e.g., 𝛼 = .05);
2. Come up with some test statistic (e.g., 𝑋) that does a good job (in some meaning-

ful sense) of comparing 𝐻0 to 𝐻1;
3. Figure out the sampling distribution of the test statistic on the assumption that

the null hypothesis is true (in this case, binomial); and then
4. Calculate the critical region that produces an appropriate 𝛼 level (0-40 and 60-

100).
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All that we have to do now is calculate the value of the test statistic for the real data
(e.g.,𝑋 = 62) and then compare it to the critical values to make our decision. Since 62 is
greater than the critical value of 60 we would reject the null hypothesis. Or, to phrase
it slightly differently, we say that the test has produced a statistically significant result.

9.4.2 A note on statistical “significance”

Like other occult techniques of divination, the statistical method has a private jargon
deliberately contrived to obscure its methods from non-practitioners.
– Attributed to G. O. Ashley71

A very brief digression is in order at this point, regarding the word “significant”. The
concept of statistical significance is actually a very simple one, but has a very unfor-
tunate name. If the data allow us to reject the null hypothesis, we say that “the re-
sult is statistically significant”, which is often shortened to “the result is significant”.
This terminology is rather old and dates back to a time when “significant” just meant
something like “indicated”, rather than its modern meaning which is much closer to
“important”. As a result, a lot of modern readers get very confused when they start
learning statistics because they think that a “significant result” must be an important
one. It doesn’t mean that at all. All that “statistically significant” means is that the data
allowed us to reject a null hypothesis. Whether or not the result is actually important
in the real world is a very different question, and depends on all sorts of other things.

9.4.3 The difference between one-sided and two-sided tests

There’s one more thing I want to point out about the hypothesis test that I’ve just con-
structed. If we take a moment to think about the statistical hypotheses I’ve been using:

𝐻0 ∶ 𝜃 = 0.5

𝐻1 ∶ 𝜃 ≠ 0.5
we notice that the alternative hypothesis covers both the possibility that 𝜃 < .5 and
the possibility that 𝜃 .5. This makes sense if I really think that ESP could produce ei-
ther better-than chance performance or worse-than-chance performance (and there are
some people who think that). In statistical language this is an example of a two-sided
test. It’s called this because the alternative hypothesis covers the area on both “sides”
of the null hypothesis, and as a consequence the critical region of the test covers both
tails of the sampling distribution (2.5% on either side if 𝛼 = .05), as illustrated earlier in
Figure 9.2. However, that’s not the only possibility. I might only be willing to believe in
ESP if it produces better than chance performance. If so, thenmy alternative hypothesis
would only covers the possibility that 𝜃 > .5, and as a consequence the null hypothesis
now becomes:

𝐻0 ∶ 𝜃 ≤ 0.5
𝐻1 ∶ 𝜃 > 0.5

When this happens, we have what’s called a one-sided test and the critical region only
covers one tail of the sampling distribution. This is illustrated in Figure 9.3.
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Figure 9.3: The critical region for a one-sided test. In this case, the alternative hypothe-
sis is that 𝜃 ≥ .5 so we would only reject the null hypothesis for large values of 𝑋. As a
consequence, the critical region only covers the upper tail of the sampling distribution,
specifically the upper 5% of the distribution. Contrast this to the two-sided version in
Figure 9.2

9.5 The 𝑝-value of a test

In one sense, our hypothesis test is complete. We’ve constructed a test statistic, figured
out its sampling distribution if the null hypothesis is true, and then constructed the crit-
ical region for the test. Nevertheless, I’ve actually omitted the most important number
of all, the 𝑝-value. It is to this topic that we now turn. There are two somewhat differ-
ent ways of interpreting a 𝑝-value, one proposed by Sir Ronald Fisher and the other by
Jerzy Neyman. Both versions are legitimate, though they reflect very different ways of
thinking about hypothesis tests. Most introductory textbooks tend to give Fisher’s ver-
sion only, but I think that’s a bit of a shame. To my mind, Neyman’s version is cleaner
and actually better reflects the logic of the null hypothesis test. You might disagree
though, so I’ve included both. I’ll start with Neyman’s version.

9.5.1 A softer view of decision making

One problem with the hypothesis testing procedure that I’ve described is that it makes
no distinction at all between a result that is “barely significant” and those that are
“highly significant”. For instance, in my ESP study the data I obtained only just fell
inside the critical region, so I did get a significant effect but it was a pretty near thing.
In contrast, suppose that I’d run a study in which 𝑋 = 97 out of my 𝑁 = 100 partic-
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ipants got the answer right. This would obviously be significant too but my a much
larger margin, such that there’s really no ambiguity about this at all. The procedure
that I have already described makes no distinction between the two. If I adopt the stan-
dard convention of allowing 𝛼 = .05 as my acceptable type I error rate, then both of
these are significant results.

This is where the 𝑝-value comes in handy. To understand how it works, let’s suppose
that we ran lots of hypothesis tests on the same data set, but with a different value of
𝛼 in each case. When we do that for my original ESP data what we’d get is something
like Table 9.4.

Table 9.4: Rejecting the null hypothesis at different levels of alpha

Value of
𝛼 0.05 0.04 0.03 0.02 0.01

Reject the
null? Yes Yes Yes No No

When we test the ESP data (𝑋 = 62 successes out of 𝑁 = 100 observations), using 𝛼
levels of .03 and above, we’d always find ourselves rejecting the null hypothesis. For
𝛼 levels of .02 and below we always end up retaining the null hypothesis. Therefore,
somewhere between .02 and .03 there must be a smallest value of 𝛼 that would allow
us to reject the null hypothesis for this data. This is the 𝑝-value. As it turns out the ESP
data has 𝑝 = .021. In short, 𝑝 is defined to be the smallest type I error rate (𝛼) that you
have to be willing to tolerate if you want to reject the null hypothesis.

If it turns out that 𝑝 describes an error rate that you find intolerable, then you must
retain the null. If you’re comfortable with an error rate equal to 𝑝, then it’s okay to
reject the null hypothesis in favour of your preferred alternative.

In effect, 𝑝 is a summary of all the possible hypothesis tests that you could have run,
taken across all possible 𝛼 values. And as a consequence it has the effect of “softening”
our decision process. For those tests in which p ď 𝛼 you would have rejected the null
hypothesis, whereas for those tests in which p ą 𝛼 you would have retained the null. In
my ESP study I obtained𝑋 = 62 and as a consequence I’ve ended upwith 𝑝 = .021. So
the error rate I have to tolerate is 2.1%. In contrast, supposemy experiment had yielded
𝑋 = 97. What happens to my 𝑝-value now? This time it’s shrunk to 𝑝 = 1.36 x 10−25,
which is a tiny, tiny72 type I error rate. For this second case I would be able to reject
the null hypothesis with a lot more confidence, because I only have to be “willing” to
tolerate a type I error rate of about 1 in 10 trillion trillion in order to justify my decision
to reject.

9.5.2 The probability of extreme data

The second definition of the 𝑝-value comes from Sir Ronald Fisher, and it’s actually this
one that you tend to see in most introductory statistics textbooks. Notice how, when
I constructed the critical region, it corresponded to the tails (i.e., extreme values) of
the sampling distribution? That’s not a coincidence, almost all “good” tests have this
characteristic (good in the sense of minimising our type II error rate, 𝛽). The reason for
that is that a good critical region almost always corresponds to those values of the test
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statistic that are least likely to be observed if the null hypothesis is true. If this rule is
true, then we can define the 𝑝-value as the probability that we would have observed a
test statistic that is at least as extreme as the one we actually did get. In other words,
if the data are extremely implausible according to the null hypothesis, then the null
hypothesis is probably wrong.

9.5.3 A common mistake

Okay, so you can see that there are two rather different but legitimate ways to inter-
pret the 𝑝-value, one based on Neyman’s approach to hypothesis testing and the other
based on Fisher’s. Unfortunately, there is a third explanation that people sometimes
give, especially when they’re first learning statistics, and it is absolutely and completely
wrong. This mistaken approach is to refer to the 𝑝-value as “the probability that the null
hypothesis is true”. It’s an intuitively appealing way to think, but it’s wrong in two key
respects. First, null hypothesis testing is a frequentist tool and the frequentist approach
to probability does not allow you to assign probabilities to the null hypothesis. Accord-
ing to this view of probability, the null hypothesis is either true or it is not, it cannot
have a “5% chance” of being true. Second, even within the Bayesian approach, which
does let you assign probabilities to hypotheses, the 𝑝-value would not correspond to
the probability that the null is true. This interpretation is entirely inconsistent with the
mathematics of how the 𝑝-value is calculated. Put bluntly, despite the intuitive appeal
of thinking this way, there is no justification for interpreting a 𝑝-value this way. Never
do it.

9.6 Reporting the results of a hypothesis test

When writing up the results of a hypothesis test there’s usually several pieces of infor-
mation that you need to report, but it varies a fair bit from test to test. Throughout the
rest of the book I’ll spend a little time talking about how to report the results of different
tests (see Section 10.1.9 for a particularly detailed example), so that you can get a feel
for how it’s usually done. However, regardless of what test you’re doing, the one thing
that you always have to do is say something about the 𝑝-value and whether or not the
outcome was significant.

The fact that you have to do this is unsurprising, it’s the whole point of doing the test.
What might be surprising is the fact that there is some contention over exactly how
you’re supposed to do it. Leaving aside those people who completely disagree with
the entire framework underpinning null hypothesis testing, there’s a certain amount
of tension that exists regarding whether or not to report the exact 𝑝-value that you ob-
tained, or if you should state only that 𝑝 < 𝛼 for a significance level that you chose in
advance (e.g., 𝑝 < .05).

9.6.1 The issue

To see why this is an issue, the key thing to recognise is that 𝑝-values are terribly conve-
nient. In practice, the fact that we can compute a 𝑝-value means that we don’t actually
have to specify any 𝛼 level at all in order to run the test. Instead, what you can do is
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calculate your 𝑝-value and interpret it directly. If you get 𝑝 = .062, then it means that
you’d have to be willing to tolerate a type I error rate of 6.2% to justify rejecting the
null. If you personally find 6.2% intolerable then you retain the null. Therefore, the
argument goes, why don’t we just report the actual 𝑝-value and let the reader make
up their own minds about what an acceptable type I error rate is? This approach has
the big advantage of “softening” the decision making process. In fact, if you accept the
Neyman definition of the 𝑝-value, that’s the whole point of the 𝑝-value. We no longer
have a fixed significance level of 𝛼 = .05 as a bright line separating “accept” from “re-
ject” decisions, and this removes the rather pathological problem of being forced to
treat 𝑝 = .051 in a fundamentally different way to 𝑝 = .049.
This flexibility is both the advantage and the disadvantage to the 𝑝-value. The reason
why a lot of people don’t like the idea of reporting an exact 𝑝-value is that it gives
the researcher a bit too much freedom. In particular, it lets you change your mind
about what error tolerance you’re willing to put up with after you look at the data. For
instance, consider my ESP experiment. Suppose I ran my test and ended up with a
𝑝-value of .09. Should I accept or reject? Now, to be honest, I haven’t yet bothered to
think about what level of type I error I’m “really” willing to accept. I don’t have an
opinion on that topic. But I do have an opinion about whether or not ESP exists, and I
definitelyhave an opinion aboutwhethermy research should be published in a reputable
scientific journal. And amazingly, now that I’ve looked at the data I’m starting to think
that a 9% error rate isn’t so bad, especially when compared to how annoying it would
be to have to admit to the world that my experiment has failed. So, to avoid looking
like I just made it up after the fact, I now say that my 𝛼 is .1, with the argument that a
10% type I error rate isn’t too bad and at that level my test is significant! I win.

In otherwords, theworry here is that Imight have the best of intentions, and be themost
honest of people, but the temptation to just “shade” things a little bit here and there is
really, really strong. As anyone who has ever run an experiment can attest, it’s a long
and difficult process and you often get very attached to your hypotheses. It’s hard to
let go and admit the experiment didn’t find what you wanted it to find. And that’s the
danger here. If we use the “raw” 𝑝-value, peoplewill start interpreting the data in terms
of what theywant to believe, not what the data are actually saying and, if we allow that,
why are we even bothering to do science at all? Why not let everyone believe whatever
they like about anything, regardless of what the facts are? Okay, that’s a bit extreme,
but that’s where the worry comes from. According to this view, you really must specify
your 𝛼 value in advance and then only report whether the test was significant or not.
It’s the only way to keep ourselves honest.

9.6.2 Two proposed solutions

In practice, it’s pretty rare for a researcher to specify a single 𝛼 level ahead of time. In-
stead, the convention is that scientists rely on three standard significance levels: .05, .01
and .001. When reporting your results, you indicate which (if any) of these significance
levels allow you to reject the null hypothesis. This is summarised in Table 9.5. This
allows us to soften the decision rule a little bit, since 𝑝 < .01 implies that the data meet
a stronger evidential standard than 𝑝 < .05 would. Nevertheless, since these levels
are fixed in advance by convention, it does prevent people choosing their 𝛼 level after
looking at the data.
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Table 9.5: Typical translations of 𝑝-value levels

Usual notation Signif. stars
English

translation The null is...

𝑝 > .05

The test
wasn’t

significant Retained

𝑝 < .05 *

The test was
significant at
𝛼 = .05 but
not at 𝛼 = .01
or 𝛼 = .001. Rejected

𝑝 < .01 **

The test was
significant at
𝛼 = .05 and 𝛼
= .01 but not
at 𝛼 = .001. Rejected

𝑝 < .001 ***

The test was
significant at
all levels Rejected

Nevertheless, quite a lot of people still prefer to report exact 𝑝-values. To many people,
the advantage of allowing the reader to make up their own mind about how to inter-
pret 𝑝 = .06 outweighs any disadvantages. In practice, however, even among those
researchers who prefer exact 𝑝-values it is quite common to just write 𝑝 < .001 instead
of reporting an exact value for small 𝑝. This is in part because a lot of software doesn’t
actually print out the 𝑝-value when it’s that small (e.g., SPSS just writes 𝑝 = .000when-
ever 𝑝 < .001), and in part because a very small 𝑝-value can be kind of misleading. The
human mind sees a number like .0000000001 and it’s hard to suppress the gut feeling
that the evidence in favour of the alternative hypothesis is a near certainty. In practice
however, this is usually wrong. Life is a big, messy, complicated thing, and every statis-
tical test ever invented relies on simplifications, approximations and assumptions. As
a consequence, it’s probably not reasonable to walk away from any statistical analysis
with a feeling of confidence stronger than 𝑝 < .001 implies. In other words, 𝑝 < .001
is really code for “as far as this test is concerned, the evidence is overwhelming.”

In light of all this, youmight bewondering exactlywhat you should do. There’s a fair bit
of contradictory advice on the topic, with some people arguing that you should report
the exact 𝑝-value, and other people arguing that you should use the tiered approach
illustrated in Table 9.1. As a result, the best advice I can give is to suggest that you look
at papers/reports written in your field and see what the convention seems to be. If
there doesn’t seem to be any consistent pattern, then use whichever method you prefer.

9.7 Running the hypothesis test in practice

At this point some of you might be wondering if this is a “real” hypothesis test, or
just a toy example that I made up. It’s real. In the previous discussion I built the test

179



from first principles, thinking that it was the simplest possible problem that you might
ever encounter in real life. However, this test already exists. It’s called the binomial test,
and it’s implemented by jamovi as one of the statistical analyses available when you
hit the ‘Frequencies’ button. To test the null hypothesis that the response probability
is one-half 𝑝 = .5,73 and using data in which 𝑥 = 62 of 𝑁 = 100 people made the
correct response, available in the binomialtest.omv data file, we get the results shown in
Figure 9.4.

Figure 9.4: Binomial test analysis and results in jamovi

Right now, this output looks pretty unfamiliar to you, but you can see that it’s telling
you more or less the right things. Specifically, the 𝑝-value of 0.02 is less than the usual
choice of 𝛼 = .05, so you can reject the null. We’ll talk a lot more about how to read
this sort of output as we go along, and after a while you’ll hopefully find it quite easy
to read and understand.

9.8 Effect size, sample size and power

In previous sections I’ve emphasised the fact that the major design principle behind
statistical hypothesis testing is that we try to control our type I error rate. When we fix
𝛼 = .05we are attempting to ensure that only 5% of true null hypotheses are incorrectly
rejected. However, this doesn’t mean that we don’t care about type II errors. In fact,
from the researcher’s perspective, the error of failing to reject the null when it is actually
false is an extremely annoying one. With that in mind, a secondary goal of hypothesis
testing is to try to minimise 𝛽, the type II error rate, although we don’t usually talk in
terms of minimising type II errors. Instead, we talk about maximising the power of the
test. Since power is defined as 1 − 𝛽, this is the same thing.
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9.8.1 The power function

Figure 9.5: Sampling distribution under the alternative hypothesis for a population
parameter value of 𝜃 = 0.55. A reasonable proportion of the distribution lies in the
rejection region

Let’s take a moment to think about what a type II error actually is. A type II error oc-
curs when the alternative hypothesis is true, but we are nevertheless unable to reject
the null hypothesis. Ideally, we’d be able to calculate a single number 𝛽 that tells us
the type II error rate, in the same way that we can set 𝛼 = .05 for the type I error rate.
Unfortunately, this is a lot trickier to do. To see this, notice that in my ESP study the
alternative hypothesis actually corresponds to lots of possible values of 𝜃. In fact, the
alternative hypothesis corresponds to every value of 𝜃 except 0.5. Let’s suppose that the
true probability of someone choosing the correct response is 55% (i.e., 𝜃 = .55). If so,
then the true sampling distribution for 𝑋 is not the same one that the null hypothesis
predicts, as the most likely value for 𝑋 is now 55 out of 100. Not only that, the whole
sampling distribution has now shifted, as shown in Figure 9.5. The critical regions, of
course, do not change. By definition the critical regions are based on what the null
hypothesis predicts, but when the null hypothesis is wrong, a much larger proportion
of the sampling distribution distribution falls in the critical region. The probability of
rejecting the null hypothesis is larger when the null hypothesis is actually false! How-
ever 𝜃 = .55 is not the only possibility consistent with the alternative hypothesis. Let’s
instead suppose that the true value of 𝜃 is actually 0.7. What happens to the sampling
distribution when this occurs? The answer, shown in Figure 9.6, is that almost the en-
tirety of the sampling distribution has nowmoved into the critical region. Therefore, if
𝜃 = 0.7, the probability of us correctly rejecting the null hypothesis (i.e., the power of
the test) is much larger than if 𝜃 = 0.55. In short, while 𝜃 = .55 and 𝜃 = .70 are both
part of the alternative hypothesis, the type II error rate is different.
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Figure 9.6: Sampling distribution under the alternative hypothesis for a population pa-
rameter value of 𝜃 = 0.70. Almost all of the distribution lies in the rejection region

Figure 9.7: The probability that we will reject the null hypothesis, plotted as a function
of the true value of 𝜃. Obviously, the test is more powerful (greater chance of correct
rejection) if the true value of 𝜃 is very different from the value that the null hypothesis
specifies (i.e., 𝜃 = .5 ). Notice that when 𝜃 actually is equal to .5 (plotted as a black
dot), the null hypothesis is in fact true and rejecting the null hypothesis in this instance
would be a type I error
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What all this means is that the power of a test (i.e., 1−𝛽) depends on the true value of 𝜃.
To illustrate this, I’ve calculated the expected probability of rejecting the null hypothesis
for all values of 𝜃, and plotted it in Figure 9.7. This plot describes what is usually called
the power function of the test. It’s a nice summary of how good the test is, because it
actually tells you the power (1−𝛽) for all possible values of 𝜃. As you can see, when the
true value of 𝜃 is very close to 0.5, the power of the test drops very sharply, but when it
is further away, the power is large.

9.8.2 The power function

Since all models are wrong the scientist must be alert to what is importantly wrong.
It is inappropriate to be concerned with mice when there are tigers abroad.
– George Box (Box, 1976, p. 792).

The plot shown in Figure 9.7 captures a fairly basic point about hypothesis testing. If
the true state of the world is very different from what the null hypothesis predicts then
your power will be very high, but if the true state of the world is similar to the null (but
not identical) then the power of the test is going to be very low. Therefore, it’s useful
to be able to have some way of quantifying how “similar” the true state of the world
is to the null hypothesis. A statistic that does this is called a measure of effect size
(e.g., Cohen (1988); Ellis (2010)). Effect size is defined slightly differently in different
contexts (and so this section just talks in general terms) but the qualitative idea that it
tries to capture is always the same (see e.g. Table 9.6). Howbig is the difference between
the true population parameters and the parameter values that are assumed by the null
hypothesis? In our ESP example, if we let 𝜃0 = 0.5 denote the value assumed by the
null hypothesis and let 𝜃 denote the true value, then a simple measure of effect size
could be something like the difference between the true value and null (i.e., 𝜃 − 𝜃0), or
possibly just the magnitude of this difference, 𝑎𝑏𝑠(𝜃 − 𝜃0).

Table 9.6: A crude guide to understanding the relationship between statistical signifi-
cance and effect sizes. Basically, if you don’t have a significant result then the effect size
is pretty meaningless because you don’t have any evidence that it’s even real. On the
other hand, if you do have a significant effect but your effect size is small then there’s
a pretty good chance that your result (although real) isn’t all that interesting. It does
depend a lot on what exactly you’re studying; small effects can be of massive practical
importance in some situations. So don’t take this table too seriously – it’s a rough guide
at best

big effect size small effect size

significant result

difference is real,
and of practical
importance

difference is real, but
might not be
interesting

non-significant result no effect observed no effect observed

Why calculate effect size? Let’s assume that you’ve run your experiment, collected the
data, and gotten a significant effect when you ran your hypothesis test. Isn’t it enough
just to say that you’ve gotten a significant effect? Surely that’s the point of hypothesis
testing? Well, sort of. Yes, the point of doing a hypothesis test is to try to demonstrate
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that the null hypothesis is wrong, but that’s hardly the only thing we’re interested in.
If the null hypothesis claimed that 𝜃 = .5 and we show that it’s wrong, we’ve only
really told half of the story. Rejecting the null hypothesis implies that we believe that
𝜃 ≠ .5, but there’s a big difference between 𝜃 = .51 and 𝜃 = .8. If we find that 𝜃 = .8,
then not only have we found that the null hypothesis is wrong, it appears to be very
wrong. On the other hand, suppose we’ve successfully rejected the null hypothesis,
but it looks like the true value of 𝜃 is only .51 (this would only be possible with a very
large study). Sure, the null hypothesis is wrong but it’s not at all clear that we actually
care because the effect size is so small. In the context ofmy ESP studywemight still care
since any demonstration of real psychic powers would actually be pretty cool,74 but in
other contexts a 1% difference usually isn’t very interesting, even if it is a real difference.
For instance, suppose we’re looking at differences in high school exam scores between
males and females and it turns out that the female scores are 1% higher on average
than the males. If I’ve got data from thousands of students then this difference will
almost certainly be statistically significant, but regardless of how small the 𝑝-value is
it’s just not very interesting. You’d hardly want to go around proclaiming a crisis in
boys education on the basis of such a tiny difference would you? It’s for this reason
that it is becoming more standard (slowly, but surely) to report some kind of standard
measure of effect size along with the the results of the hypothesis test. The hypothesis
test itself tells you whether you should believe that the effect you have observed is real
(i.e., not just due to chance), whereas the effect size tells you whether or not you should
care.

9.8.3 Increasing the power of your study

Not surprisingly, scientists are fairly obsessed with maximising the power of their ex-
periments. We want our experiments to work and so we want to maximise the chance
of rejecting the null hypothesis if it is false. As we’ve seen, one factor that influences
power is the effect size. So the first thing you can do to increase your power is to in-
crease the effect size. In practice, what this means is that youwant to design your study
in such a way that the effect size gets magnified. For instance, in my ESP study I might
believe that psychic powers work best in a quiet, darkened room with fewer distrac-
tions to cloud the mind. Therefore I would try to conduct my experiments in just such
an environment. If I can strengthen people’s ESP abilities somehow then the true value
of 𝜃will go up75 and thereforemy effect size will be larger. In short, clever experimental
design is one way to boost power, because it can alter the effect size.

Unfortunately, it’s often the case that even with the best of experimental designs you
may have only a small effect. Perhaps, for example, ESP really does exist but even un-
der the best of conditions it’s very, very weak. Under those circumstances your best bet
for increasing power is to increase the sample size. In general, the more observations
that you have, the more likely it is that you can discriminate between two hypotheses.
If I ran my ESP experiment with 10 participants and 7 of them correctly guessed the
colour of the hidden card you wouldn’t be terribly impressed. But if I ran it with 10,000
participants, and 7,000 of them got the answer right, you would be much more likely
to think I had discovered something. In other words, power increases with the sample
size. This is illustrated in Figure 9.8, which shows the power of the test for a true pa-
rameter of 𝜃 = 0.7 for all sample sizes 𝑁 from 1 to 100, where I’m assuming that the
null hypothesis predicts that 𝜃0 = 0.5.
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Figure 9.8: The power of our test plotted as a function of the sample size 𝑁 . In this
case, the true value of 𝜃 is 0.7 but the null hypothesis is that 𝜃 = 0.5. Overall, larger 𝑁
means greater power. (The small zig-zags in this function occur because of some odd
interactions between 𝜃, 𝛼 and the fact that the binomial distribution is discrete, it does
not matter for any serious purpose)

Because power is important, whenever you’re contemplating running an experiment
it would be pretty useful to know how much power you’re likely to have. It’s never
possible to know for sure since you can’t possibly know what your real effect size is.
However, it’s often (well, sometimes) possible to guess how big it should be. If so, you
can guess what sample size you need! This idea is called power analysis, and if it’s fea-
sible to do it then it’s very helpful. It can tell you something about whether you have
enough time or money to be able to run the experiment successfully. It’s increasingly
common to see people arguing that power analysis should be a required part of experi-
mental design, so it’s worth knowing about. I don’t discuss power analysis in this book,
however. This is partly for a boring reason and partly for a substantive one. The boring
reason is that I haven’t had time to write about power analysis yet. The substantive one
is that I’m still a little suspicious of power analysis. Speaking as a researcher, I have
very rarely found myself in a position to be able to do one. It’s either the case that (a)
my experiment is a bit non-standard and I don’t know how to define effect size prop-
erly, or (b) I literally have so little idea about what the effect size will be that I wouldn’t
know how to interpret the answers. Not only that, after extensive conversations with
someone who does stats consulting for a living (mywife, as it happens), I can’t help but
notice that in practice the only time anyone ever asks her for a power analysis is when
she’s helping someone write a grant application. In other words, the only time any sci-
entist ever seems to want a power analysis in real life is when they’re being forced to
do it by bureaucratic process. It’s not part of anyone’s day to day work. In short, I’ve
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always been of the view that whilst power is an important concept, power analysis is
not as useful as people make it sound, except in the rare cases where (a) someone has
figured out how to calculate power for your actual experimental design and (b) you
have a pretty good idea what the effect size is likely to be.76 Maybe other people have
had better experiences thanme, but I’ve personally never been in a situationwhere both
(a) and (b) were true. Maybe I’ll be convinced otherwise in the future, and probably a
future version of this bookwould include amore detailed discussion of power analysis,
but for now this is about as much as I’m comfortable saying about the topic.

9.9 Some issues to consider

What I’ve described to you in this chapter is the orthodox framework for null hypothesis
significance testing (NHST). Understanding how NHST works is an absolute necessity
because it has been the dominant approach to inferential statistics ever since it came to
prominence in the early 20th century. It’s what the vast majority of working scientists
rely on for their data analysis, so even if you hate it you need to know it. However,
the approach is not without problems. There are a number of quirks in the framework,
historical oddities in how it came to be, theoretical disputes over whether or not the
framework is right, and a lot of practical traps for the unwary. I’m not going to go into
a lot of detail on this topic, but I think it’s worth briefly discussing a few of these issues.

9.9.1 Neyman versus Fisher

The first thing you should be aware of is that orthodox NHST is actually a mash-up
of two rather different approaches to hypothesis testing, one proposed by Sir Ronald
Fisher and the other proposed by Jerzy Neyman (see Lehmann (2011) for a historical
summary). The history is messy because Fisher and Neyman were real people whose
opinions changed over time, and at no point did either of them offer “the definitive
statement” of howwe should interpret their workmany decades later. That said, here’s
a quick summary of what I take these two approaches to be.

First, let’s talk about Fisher’s approach. As far as I can tell, Fisher assumed that you
only had the one hypothesis (the null) and that what you want to do is find out if the
null hypothesis is inconsistent with the data. From his perspective, what you should
do is check to see if the data are “sufficiently unlikely” according to the null. In fact,
if you remember back to our earlier discussion, that’s how Fisher defines the 𝑝-value.
According to Fisher, if the null hypothesis provided a very poor account of the data then
you could safely reject it. But, since you don’t have any other hypotheses to compare it
to, there’s no way of “accepting the alternative” because you don’t necessarily have an
explicitly stated alternative. That’s more or less all there is to it.

In contrast, Neyman thought that the point of hypothesis testingwas as a guide to action
and his approach was somewhat more formal than Fisher’s. His view was that there
are multiple things that you could do (accept the null or accept the alternative) and the
point of the test was to tell you which one the data support. From this perspective,
it is critical to specify your alternative hypothesis properly. If you don’t know what
the alternative hypothesis is, then you don’t know how powerful the test is, or even
which action makes sense. His framework genuinely requires a competition between
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different hypotheses. For Neyman, the 𝑝-value didn’t directly measure the probability
of the data (or datamore extreme) under the null, it wasmore of an abstract description
about which “possible tests” were telling you to accept the null, and which “possible
tests” were telling you to accept the alternative.

As you can see, what we have today is an odd mishmash of the two. We talk about
having both a null hypothesis and an alternative (Neyman), but usually77 define the
𝑝-value in terms of extreme data (Fisher), but we still have 𝛼 values (Neyman). Some of
the statistical tests have explicitly specified alternatives (Neyman) but others are quite
vague about it (Fisher). And, according to some people at least, we’re not allowed to
talk about accepting the alternative (Fisher). It’s a mess, but I hope this at least explains
why it’s a mess.

9.9.2 Bayesians versus frequentists

Earlier on in this chapter I was quite emphatic about the fact that you cannot interpret
the 𝑝-value as the probability that the null hypothesis is true. NHST is fundamentally a
frequentist tool (see Chapter 7) and as such it does not allow you to assign probabilities
to hypotheses. The null hypothesis is either true or it is not. The Bayesian approach to
statistics interprets probability as a degree of belief, so it’s totally okay to say that there
is a 10% chance that the null hypothesis is true. That’s just a reflection of the degree
of confidence that you have in this hypothesis. You aren’t allowed to do this within
the frequentist approach. Remember, if you’re a frequentist, a probability can only be
defined in terms of what happens after a large number of independent replications (i.e.,
a long run frequency). If this is your interpretation of probability, talking about the
“probability” that the null hypothesis is true is complete gibberish: a null hypothesis
is either true or it is false. There’s no way you can talk about a long run frequency for
this statement. To talk about “the probability of the null hypothesis” is as meaningless
as “the colour of freedom”. It doesn’t have one!

Most importantly, this isn’t a purely ideological matter. If you decide that you are a
Bayesian and that you’re okay with making probability statements about hypotheses,
you have to follow the Bayesian rules for calculating those probabilities. I’ll talk more
about this in Chapter 16, but for now what I want to point out to you is the 𝑝-value is a
terrible approximation to the probability that 𝐻0 is true. If what you want to know is
the probability of the null, then the 𝑝-value is not what you’re looking for!

9.9.3 Traps

As you can see, the theory behind hypothesis testing is a mess, and even now there are
arguments in statistics about how it “should” work. However, disagreements among
statisticians are not our real concern here. Our real concern is practical data analysis.
And while the “orthodox” approach to null hypothesis significance testing has many
drawbacks, even an unrepentant Bayesian likemyself would agree that they can be use-
ful if used responsibly. Most of the time they give sensible answers and you can use
them to learn interesting things. Setting aside the various ideologies and historical con-
fusions that we’ve discussed, the fact remains that the biggest danger in all of statistics
is thoughtlessness. I don’t mean stupidity, I literally mean thoughtlessness. The rush to
interpret a result without spending time thinking through what each test actually says
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about the data, and checking whether that’s consistent with how you’ve interpreted it.
That’s where the biggest trap lies.

To give an example of this, consider the following example (see Gelman& Stern (2006)).
Suppose I’m running my ESP study and I’ve decided to analyse the data separately for
the male participants and the female participants. Of the male participants, 33 out of
50 guessed the colour of the card correctly. This is a significant effect (𝑝 = .03). Of
the female participants, 29 out of 50 guessed correctly. This is not a significant effect
(𝑝 = .32). Upon observing this, it is extremely tempting for people to start wondering
why there is a difference between males and females in terms of their psychic abili-
ties. However, this is wrong. If you think about it, we haven’t actually run a test that
explicitly compares males to females. All we have done is compare males to chance
(binomial test was significant) and compared females to chance (binomial test was non
significant). If wewant to argue that there is a real difference between themales and the
females, we should probably run a test of the null hypothesis that there is no difference!
We can do that using a different hypothesis test,78 but when we do that it turns out that
we have no evidence that males and females are significantly different (𝑝 = .54). Now
do you think that there’s anything fundamentally different between the two groups?
Of course not. What’s happened here is that the data from both groups (male and fe-
male) are pretty borderline. By pure chance one of them happened to end up on the
magic side of the 𝑝 = .05 line, and the other one didn’t. That doesn’t actually imply that
males and females are different. This mistake is so common that you should always be
wary of it. The difference between significant and not-significant is not evidence of a
real difference. If you want to say that there’s a difference between two groups, then
you have to test for that difference!

The example above is just that, an example. I’ve singled it out because it’s such a com-
mon one, but the bigger picture is that data analysis can be tricky to get right. Think
aboutwhat it is youwant to test, why youwant to test it, andwhether or not the answers
that your test gives could possibly make any sense in the real world.

9.10 Summary

Null hypothesis testing is one of the most ubiquitous elements to statistical theory. The
vast majority of scientific papers report the results of some hypothesis test or another.
As a consequence it is almost impossible to get by in science without having at least a
cursory understanding of what a 𝑝-valuemeans, making this one of themost important
chapters in the book. As usual, I’ll end the chapter with a quick recap of the key ideas
that we’ve talked about:

• Amenagerie of hypotheses. Research hypotheses and statistical hypotheses. Null
and alternative hypotheses.

• Two types of errors. Type I and type II.
• Test statistics and sampling distributions.
• Hypothesis testing for Making decisions.
• The 𝑝-value of a test. 𝑝-values as “soft” decisions.
• Reporting the results of a hypothesis test.
• Running the hypothesis test in practice.
• Effect size, sample size and power.
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• Some issues to consider regarding hypothesis testing.

Later in the book, in Chapter 16, I’ll revisit the theory of null hypothesis tests from a
Bayesian perspective and introduce a number of new tools that you can use if you aren’t
particularly fond of the orthodox approach. But for now, though, we’re done with the
abstract statistical theory, and we can start discussing specific data analysis tools.
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Part V

Statistical tools
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Chapter 10

Categorical data analysis

Now that we’ve covered the basic theory behind hypothesis testing it’s time to start
looking at specific tests that are commonly used in psychology. So where should we
start? Not every textbook agrees on where to start, but I’m going to start with 𝜒2 tests
(this chapter, pronounced “chi-square”79 and 𝑡-tests in Chapter 11). Both of these tools
are very frequently used in scientific practice, and whilst they’re not as powerful as
“regression” and “analysis of variance” which we cover in later chapters, they’re much
easier to understand.

The term “categorical data” is just another name for “nominal scale data”. It’s nothing
that we haven’t already discussed, it’s just that in the context of data analysis people
tend to use the term “categorical data” rather than “nominal scale data”. I don’t know
why. In any case, categorical data analysis refers to a collection of tools that you can
use when your data are nominal scale. However, there are a lot of different tools that
can be used for categorical data analysis, and this chapter covers only a few of the more
common ones.

10.1 The 𝜒2 (chi-square) goodness-of-fit test

The 𝜒2 goodness-of-fit test is one of the oldest hypothesis tests around. It was invented
by Karl Pearson around the turn of the century (Pearson, 1900), with some corrections
made later by Sir Ronald Fisher (Fisher, 1922a). It tests whether an observed frequency
distribution of a nominal variable matches an expected frequency distribution. For
example, suppose a group of patients has been undergoing an experimental treatment
and have had their health assessed to see whether their condition has improved, stayed
the same or worsened. A goodness-of-fit test could be used to determine whether the
numbers in each category – improved, no change, worsened – match the numbers that
would be expected given the standard treatment option. Let’s think about this some
more, with some psychology.
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10.1.1 The cards data

Over the years there have been many studies showing that humans find it difficult to
simulate randomness. Try as we might to “act” random, we think in terms of patterns
and structure and so, when asked to “do something at random”, what people actually
do is anything but random. As a consequence, the study of human randomness (or
non-randomness, as the case may be) opens up a lot of deep psychological questions
about how we think about the world.

With this in mind, let’s consider a very simple study. Suppose I asked people to imag-
ine a shuffled deck of cards, and mentally pick one card from this imaginary deck “at
random”. After they’ve chosen one card I ask them tomentally select a second one. For
both choices what we’re going to look at is the suit (hearts, clubs, spades or diamonds)
that people chose. After asking, say, 𝑁 = 200 people to do this, I’d like to look at
the data and figure out whether or not the cards that people pretended to select were
really random. The data are contained in the randomness.csv file in which, when you
open it up in jamovi and take a look at the spreadsheet view, you will see three vari-
ables. These are: an id variable that assigns a unique identifier to each participant, and
the two variables choice_1 and choice_2 that indicate the card suits that people chose.

For the moment, let’s just focus on the first choice that people made. We’ll use the
Frequency tables option under ‘Exploration’ – ‘Descriptives’ to count the number of
times that we observed people choosing each suit. This is what we get: (Table 10.1).

Table 10.1: Number of times each suit was chosen

clubs diamonds hearts spades
35 51 64 50

That little frequency table is quite helpful. Looking at it, there’s a bit of a hint that
people might be more likely to select hearts than clubs, but it’s not completely obvious
just from looking at it whether that’s really true, or if this is just due to chance. So we’ll
probably have to do some kind of statistical analysis to find out, which iswhat I’m going
to talk about in the next section.

Excellent. From this point on, we’ll treat this table as the data that we’re looking to
analyse. However, since I’m going to have to talk about this data inmathematical terms
(sorry!) it might be a good idea to be clear about what the notation is. In mathematical
notation, we shorten the human-readable word “observed” to the letter 𝑂, and we use
subscripts to denote the position of the observation. So the second observation in our
table is written as 𝑂2 in maths. The relationship between the English descriptions and
the mathematical symbols are illustrated in Table 10.2.

Hopefully that’s pretty clear. It’s also worth noting that mathematicians prefer to talk
about general rather than specific things, so you’ll also see the notation𝑂𝑖, which refers
to the number of observations that fall within the i-th category (where i could be 1, 2,
3 or 4). Finally, if we want to refer to the set of all observed frequencies, statisticians
group all observed values into a vector,80 which I’ll refer to as 𝑂.

𝑂 = (𝑂1, 𝑂2, 𝑂3, 𝑂4)
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Table 10.2: Relationship between English descriptions and mathematical symbols

label index, i
math.

symbol the value
clubs, ♣ 1 𝑂1 35

diamonds, ♢ 2 𝑂2 51
hearts, ♡ 3 𝑂3 64
spades, ♠ 4 𝑂4 50

Again, this is nothing new or interesting. It’s just notation. If I say that 𝑂 =
(35, 51, 64, 50) all I’m doing is describing the table of observed frequencies (i.e.,
observed), but I’m referring to it using mathematical notation.

10.1.2 The null hypothesis and the alternative hypothesis

As the last section indicated, our research hypothesis is that “people don’t choose cards
randomly”. What we’re going to want to do now is translate this into some statistical
hypotheses and then construct a statistical test of those hypotheses. The test that I’m
going to describe to you is Pearson’s 𝜒2 (chi-square) goodness-of-fit test, and as is so
often the case we have to begin by carefully constructing our null hypothesis. In this
case, it’s pretty easy. First, let’s state the null hypothesis in words:

𝐻0 ∶ All four suits are chosen with equal probability

Now, let’s say this in a mathematical way. To do this, let’s use the notation 𝑃𝑗 to refer to
the true probability that the j-th suit is chosen. If the null hypothesis is true, then each
of the four suits has a 25% chance of being selected. In other words, our null hypothesis
claims that 𝑃1 = .25, 𝑃2 = .25, 𝑃3 = .25 and finally that 𝑃4 = .25 . However, in the
same way that we can group our observed frequencies into a vector O that summarises
the entire data set, we can use P to refer to the probabilities that correspond to our
null hypothesis. So if I let the vector 𝑃 = (𝑃1, 𝑃2, 𝑃3, 𝑃4) refer to the collection of
probabilities that describe our null hypothesis, then we have:

𝐻0 ∶ 𝑃 = (.25, .25, .25, .25)

In this instance, our null hypothesis corresponds to a vector of probabilities 𝑃 in which
all of the probabilities are equal to one another. But this doesn’t have to be the case: if
the experimental task was for people to imagine they were drawing from a deck that
had twice as many clubs as any other suit, then the null hypothesis would be 𝑃 =
(.4, .2, .2, .2). As long as the probabilities are all positive numbers, and they all sum to
1, then it’s a perfectly legitimate choice for the null hypothesis. However, the typical
use of the goodness-of-fit test is with a null hypothesis that all the categories are equally
likely, so we’ll stick to that for our example.

What about our alternative hypothesis,𝐻1? All we’re really interested in is demonstrat-
ing that the probabilities involved aren’t all identical (that is, people’s choices weren’t
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completely random). As a consequence, the “human friendly” versions of our hypothe-
ses look like this:

𝐻0 ∶ All four suits are chosen with equal probability
𝐻1 ∶ At least one of the suit-choice probabilities isn’t 0.25

…and the “mathematician friendly” version is:

𝐻0 ∶ 𝑃 = (.25, .25, .25, .25)
𝐻1 ∶ 𝑃 ≠ (.25, .25, .25, .25)

10.1.3 The “goodness-of-fit” test statistic

At this point, we have our observed frequencies O and a collection of probabilities P
corresponding to the null hypothesis that we want to test. What we now want to do
is construct a test of the null hypothesis. As always, if we want to test 𝐻0 against 𝐻1,
we’re going to need a test statistic. The basic trick that a goodness-of-fit test uses is to
construct a test statistic that measures how “close” the data are to the null hypothesis.
If the data don’t resemble what you’d “expect” to see if the null hypothesis were true,
then it probably isn’t true. Okay, if the null hypothesis were true, whatwouldwe expect
to see? Or, to use the correct terminology, what are the expected frequencies. There
are 𝑁 = 200 observations, and (if the null is true) the probability of any one of them
choosing a heart is 𝑃3 = .25, so I guess we’re expecting 200 × .25 = 50 hearts, right?
Or, more specifically, if we let𝐸𝑖 refer to “the number of category 𝑖 responses that we’re
expecting if the null is true”, then:

𝐸𝑖 = 𝑁 × 𝑃𝑖

This is pretty easy to calculate. If there are 200 observations that can fall into four cat-
egories, and we think that all four categories are equally likely, then on average we’d
expect to see 50 observations in each category, right?

Now, how do we translate this into a test statistic? Clearly, what we want to do is
compare the expected number of observations in each category (𝐸𝑖) with the observed
number of observations in that category (𝑂𝑖). And on the basis of this comparison we
ought to be able to come up with a good test statistic. To start with, let’s calculate the
difference between what the null hypothesis expected us to find and what we actually
did find. That is, we calculate the “observedminus expected” difference score,𝑂𝑖 −𝐸𝑖.
This is illustrated in Table 10.3.

So, based on our calculations, it’s clear that people chose more hearts and fewer clubs
than the null hypothesis predicted. However, a moment’s thought suggests that these
raw differences aren’t quite what we’re looking for. Intuitively, it feels like it’s just as
bad when the null hypothesis predicts too few observations (which is what happened
with hearts) as it is when it predicts too many (which is what happened with clubs).
So it’s a bit weird that we have a negative number for clubs and a positive number for
hearts. One easy way to fix this is to square everything, so that we now calculate the
squared differences, (𝐸𝑖 − 𝑂𝑖)2 . As before, we can do this by hand (Table 10.4).
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Table 10.3: Expected and observed frequencies

♣ ♢ ♡ ♠
expected
frequency

𝐸𝑖 50 50 50 50
observed
frequency

𝑂𝑖 35 51 64 50
difference
score

𝑂𝑖 − 𝐸𝑖 -15 1 14 0

Table 10.4: Squaring the difference scores

♣ ♢ ♡ ♠
225 1 196 0

Now we’re making progress. What we’ve got now is a collection of numbers that are
big whenever the null hypothesis makes a bad prediction (clubs and hearts), but are
small whenever it makes a good one (diamonds and spades). Next, for some technical
reasons that I’ll explain in amoment, let’s also divide all these numbers by the expected
frequency𝐸𝑖, so we’re actually calculating

(𝐸𝑖−𝑂𝑖)2

𝐸𝑖
. Since 𝐸𝑖 = 50 for all categories in

our example, it’s not a very interesting calculation, but let’s do it anyway (Table 10.5).

Table 10.5: Dividing the squared difference scores by the expected frequency to provide
an “error” score

♣ ♢ ♡ ♠
4.50 0.02 3.92 0.00

In effect, what we’ve got here are four different “error” scores, each one telling us how
big a “mistake” the null hypothesis made when we tried to use it to predict our ob-
served frequencies. So, in order to convert this into a useful test statistic, one thing we
could do is just add these numbers up. The result is called the goodness-of-fit statistic,
conventionally referred to either as 𝜒2 (chi-square) or GOF. We can calculate it as:

∑((𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2/𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)

This gives us a value of 8.44.

[Additional technical detail81]

As we’ve seen from our calculations, in our cards data set we’ve got a value of 𝜒2 = 8.44.
So now the question becomes is this a big enough value to reject the null?

197



10.1.4 The sampling distribution of the GOF statistic

To determine whether or not a particular value of 𝜒2 is large enough to justify rejecting
the null hypothesis, we’re going to need to figure out what the sampling distribution
for 𝜒2 would be if the null hypothesis were true. So that’s what I’m going to do in
this section. I’ll show you in a fair amount of detail how this sampling distribution is
constructed, and then, in the next section, use it to build up a hypothesis test. If you
want to cut to the chase and are willing to take it on faith that the sampling distribution
is a 𝜒2 (chi-square) distribution with 𝑘 − 1 degrees of freedom, you can skip the rest
of this section. However, if you want to understand why the goodness-of-fit test works
the way it does, read on.

Okay, let’s suppose that the null hypothesis is actually true. If so, then the true prob-
ability that an observation falls in the 𝑖-th category is 𝑃𝑖 . After all, that’s pretty much
the definition of our null hypothesis. Let’s think about what this actually means. This
is kind of like saying that “nature” makes the decision about whether or not the obser-
vation ends up in category 𝑖 by flipping a weighted coin (i.e., one where the probability
of getting a head is 𝑃𝑗). And therefore we can think of our observed frequency 𝑂𝑖 by
imagining that nature flipped𝑁 of these coins (one for each observation in the data set),
and exactly 𝑂𝑖 of them came up heads. Obviously, this is a pretty weird way to think
about the experiment. But what it does (I hope) is remind you that we’ve actually seen
this scenario before. It’s exactly the same set up that gave rise to Section 7.4 in Chap-
ter 7. In other words, if the null hypothesis is true, then it follows that our observed
frequencies were generated by sampling from a binomial distribution:

𝑂𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃𝑖, 𝑁)

Now, if you remember from our discussion of Section 8.3.3 the binomial distribution
starts to look pretty much identical to the normal distribution, especially when 𝑁 is
large andwhen𝑃𝑖 isn’t too close to 0 or 1. In other words as long as𝑁𝑃

𝑖 is large enough.
Or, to put it another way, when the expected frequency 𝐸𝑖 is large enough then the
theoretical distribution of 𝑂𝑖 is approximately normal. Better yet, if 𝑂𝑖 is normally
distributed, then so is (𝑂𝑖−𝐸𝑖)/√(𝐸𝑖) . Since𝐸𝑖 is a fixed value, subtracting off𝐸𝑖 and
dividing by√(𝐸𝑖) changes themean and standard deviation of the normal distribution
but that’s all it does. Okay, so now let’s have a look at what our goodness-of-fit statistic
actually is. What we’re doing is taking a bunch of things that are normally-distributed,
squaring them, and adding themup. Wait. We’ve seen that before too! Aswe discussed
in the section on Section 7.6, when you take a bunch of things that have a standard
normal distribution (i.e., mean 0 and standard deviation 1), square them and then add
them up, the resulting quantity has a chi-square distribution. So nowwe know that the
null hypothesis predicts that the sampling distribution of the goodness-of-fit statistic is
a chi-square distribution. Cool.

There’s one last detail to talk about, namely the degrees of freedom. If you remember
back to Section 7.6, I said that if the number of things you’re adding up is 𝑘, then the
degrees of freedom for the resulting chi-square distribution is 𝑘. Yet, what I said at the
start of this section is that the actual degrees of freedom for the chi-square goodness-
of-fit test is 𝑘 − 1. What’s up with that? The answer here is that what we’re supposed
to be looking at is the number of genuinely independent things that are getting added
together. And, as I’ll go on to talk about in the next section, even though there are 𝑘
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things that we’re adding only 𝑘 − 1 of them are truly independent, and so the degrees
of freedom is actually only 𝑘 − 1. That’s the topic of the next section.82

10.1.5 Degrees of freedom

Figure 10.1: 𝜒2 (chi-square) distributions with different values for the “degrees of free-
dom”

When I introduced the chi-square distribution in Section 7.6, I was a bit vague about
what “degrees of freedom” actually means. Obviously, it matters. Looking at Fig-
ure 10.1, you can see that if we change the degrees of freedom then the chi-square
distribution changes shape quite substantially. But what exactly is it? Again, when I
introduced the distribution and explained its relationship to the normal distribution, I
did offer an answer: it’s the number of “normally distributed variables” that I’m squar-
ing and adding together. But, for most people, that’s kind of abstract and not entirely
helpful. What we really need to do is try to understand degrees of freedom in terms of
our data. So here goes.

The basic idea behind degrees of freedom is quite simple. You calculate it by counting
up the number of distinct “quantities” that are used to describe your data and then
subtracting off all of the “constraints” that those data must satisfy.83 This is a bit vague,
so let’s use our cards data as a concrete example. We describe our data using four num-
bers,𝑂1, 𝑂2, 𝑂3 and𝑂4 corresponding to the observed frequencies of the four different
categories (hearts, clubs, diamonds, spades). These four numbers are the random out-
comes of our experiment. But my experiment actually has a fixed constraint built into
it: the sample size 𝑁 .84 That is, if we know.

Howmanypeople chose hearts, howmany chose diamonds and howmany chose clubs,
then we’d be able to figure out exactly how many chose spades. In other words, al-
though our data are described using four numbers, they only actually correspond to
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4 − 1 = 3 degrees of freedom. A slightly different way of thinking about it is to no-
tice that there are four probabilities that we’re interested in (again, corresponding to the
four different categories), but these probabilitiesmust sum to one, which imposes a con-
straint. Therefore the degrees of freedom is 4 − 1 = 3. Regardless of whether you want
to think about it in terms of the observed frequencies or in terms of the probabilities,
the answer is the same. In general, when running the 𝜒2(chi-square) goodness-of-fit
test for an experiment involving 𝑘 groups, then the degrees of freedom will be 𝑘 − 1.

10.1.6 Testing the null hypothesis

The final step in the process of constructing our hypothesis test is to figure out what
the rejection region is. That is, what values of 𝜒2 would lead us to reject the null
hypothesis. As we saw earlier, large values of 𝜒2 imply that the null hypothesis
has done a poor job of predicting the data from our experiment, whereas small
values of 𝜒2 imply that it’s actually done pretty well. Therefore, a pretty sensible
strategy would be to say there is some critical value such that if 𝜒2 is bigger than
the critical value we reject the null, but if 𝜒2 is smaller than this value we retain the
null. In other words, to use the language we introduced in Chapter 9 the chi-square
goodness-of-fit test is always a one-sided test. Right, so all we have to do is figure
out what this critical value is. And it’s pretty straightforward. If we want our test to
have significance level of 𝛼 = .05 (that is, we are willing to tolerate a type I error rate
of 5), then we have to choose our critical value so that there is only a 5% chance that
𝜒2 could get to be that big if the null hypothesis is true. This is illustrated in Figure 10.2.

Figure 10.2: Illustration of how the hypothesis testing works for the 𝜒2 (chi-square)
goodness of-fit test
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Ah but, I hear you ask, how do I find the critical value of a chi-square distribution with
𝑘−1 degrees of freedom? Manymany years agowhen I first took a psychology statistics
class we used to look up these critical values in a book of critical value tables, like the
one in Table 10.6. Looking at this Figure, we can see that the critical value for a 𝜒2

distribution with 3 degrees of freedom and 𝑝 = 0.05 is 7.815.

Table 10.6: Table of critical values for the chi-square distribution

Probability
Degrees of
freedom 0.95 0.9 0.7 0.5 0.1 0.05 0.01 0.001

1 0.004 0.016 0.148 0.455 2.706 3.841 6.635 10.828
2 0.103 0.211 0.713 1.386 4.605 5.991 9.210 13.816
3 0.352 0.584 1.424 2.366 6.251 7.815 11.345 16.266
4 0.711 1.064 2.195 3.357 7.779 9.488 13.277 18.467
5 1.145 1.610 3.000 4.351 9.236 11.070 15.086 20.515
6 1.635 2.204 3.828 5.348 10.645 12.592 16.812 22.458
7 2.167 2.833 4.671 6.346 12.017 14.067 18.475 24.322
8 2.733 3.490 5.527 7.344 13.362 15.507 20.090 26.124
9 3.325 4.168 6.393 8.343 14.684 16.919 21.666 27.877
10 3.940 4.865 7.267 9.342 15.987 18.307 23.209 29.588

Non-significant Significant

So, if our calculated 𝜒2 statistic is bigger than the critical value of 7.815, then we can
reject the null hypothesis (remember that the null hypothesis, 𝐻0, is that all four suits
are chosen with equal probability). Since we actually already calculated that before
(i.e., 𝜒2 = 8.44) we can reject the null hypothesis. And that’s it, basically. You now
know “Pearson’s 𝜒2 test for the goodness-of-fit”. Lucky you.

10.1.7 Doing the test in jamovi

Not surprisingly, jamovi provides an analysis that will do these calculations for you.
Let’s use the Randomness.omv file. From themain ‘Analyses’ toolbar select ‘Frequencies’
– ‘One Sample Proportion Tests’ – ‘𝑁 Outcomes’. Then in the analysis window that
appears move the variable you want to analyse (choice 1 across into the ‘Variable’ box.
Also, click on the ‘Expected counts’ check box so that these are shown on the results
table. When you have done all this, you should see the analysis results in jamovi as
in Figure 10.3. No surprise then that jamovi provides the same expected counts and
statistics that we calculated by hand above, with a 𝜒2 value of (8.44 with 3 df and 𝑝 =
0.038. Note that we don’t need to look up a critical 𝑝-value threshold value any more,
as jamovi gives us the actual 𝑝-value of the calculated 𝜒2 for 3 𝑑𝑓 .
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Figure 10.3: A 𝜒2 One Sample Proportion Test in jamovi, with table showing both ob-
served and expected frequencies and proportions

10.1.8 Specifying a different null hypothesis

At this point you might be wondering what to do if you want to run a goodness-of-fit
test but your null hypothesis is not that all categories are equally likely. For instance,
let’s suppose that someone had made the theoretical prediction that people should
choose red cards 60% of the time, and black cards 40% of the time (I’ve no idea why
you’d predict that), but had no other preferences. If that were the case, the null hypoth-
esis would be to expect 30% of the choices to be hearts, 30% to be diamonds, 20% to be
spades and 20% to be clubs. In other words we would expect hearts and diamonds to
appear 1.5 times more often than spades and clubs (the ratio 30% : 20% is the same as
1.5 : 1). The expected counts are now shown in Table 10.7.

Table 10.7: Expected counts for a different null hypothesis

♣ ♢ ♡ ♠
expected
frequency

𝐸𝑖 40 60 60 40

This seems like a silly theory to me, and it’s pretty easy to test this explicitly specified
null hypothesis with the data in our jamovi analysis. In the analysis window (labelled
‘Proportion Test (NOutcomes)’ in Figure 10.3 you can expand the options for ‘Expected
Proportions’. When you do this, there are options for entering different ratio values for
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the variable you have selected, in our case this is choice 1. Change the ratio to reflect
the new null hypothesis, as in Figure 10.4, and check the results.

Figure 10.4: Changing the expected proportions in the 𝜒2 One Sample Proportion Test
in jamovi

You can see that the 𝜒2 statistic is 4.74, 3 df, 𝑝 = 0.192. Now, the results of our up-
dated hypotheses and the expected frequencies are different from what they were last
time. As a consequence our 𝜒2 test statistic is different, and our 𝑝-value is different
too. Annoyingly, the 𝑝-value is .192, so we can’t reject the null hypothesis (look back
at Section 9.5 to remind yourself why). Sadly, despite the fact that the null hypothesis
corresponds to a very silly theory, these data don’t provide enough evidence against it.

10.1.9 How to report the results of the test

So now you know how the test works, and you know how to do the test using a won-
derful jamovi flavouredmagic computing box. The next thing you need to know is how
to write up the results. After all, there’s no point in designing and running an exper-
iment and then analysing the data if you don’t tell anyone about it! So let’s now talk
about what you need to do when reporting your analysis. Let’s stick with our card-
suits example. If I wanted to write this result up for a paper or something, then the
conventional way to report this would be to write something like this:

Of the 200 participants in the experiment, 64 selected hearts for their first
choice, 51 selected diamonds, 50 selected spades, and 35 selected clubs. A
chi-square goodness-of-fit test was conducted to test whether the choice
probabilities were identical for all four suits. The results were significant
(𝜒2(3) = 8.44, 𝑝 < .05), suggesting that people did not select suits purely
at random.

This is pretty straightforward and hopefully it seems pretty unremarkable. That said,
there’s a few things that you should note about this description:

• The statistical test is preceded by the descriptive statistics. That is, I told the reader
something about what the data look like before going on to do the test. In general,

203



this is good practice. Always remember that your reader doesn’t know your data
anywhere near as well as you do. So, unless you describe it to them properly, the
statistical tests won’t make any sense to them and they’ll get frustrated and cry.

• The description tells you what the null hypothesis being tested is. To be honest, writ-
ers don’t always do this but it’s often a good idea in those situations where some
ambiguity exists, or when you can’t rely on your readership being intimately fa-
miliar with the statistical tools that you’re using. Quite often the reader might
not know (or remember) all the details of the test that your using, so it’s a kind
of politeness to “remind” them! As far as the goodness-of-fit test goes, you can
usually rely on a scientific audience knowing how it works (since it’s covered
in most intro stats classes). However, it’s still a good idea to be explicit about
stating the null hypothesis (briefly!) because the null hypothesis can be differ-
ent depending on what you’re using the test for. For instance, in the cards ex-
ample my null hypothesis was that all the four suit probabilities were identical
(i.e., 𝑃1 = 𝑃2 = 𝑃3 = 𝑃4 = 0.25), but there’s nothing special about that hy-
pothesis. I could just as easily have tested the null hypothesis that 𝑃1 = 0.7 and
𝑃2 = 𝑃3 = 𝑃4 = 0.1 using a goodness-of-fit test. So it’s helpful to the reader if
you explain to them what your null hypothesis was. Also, notice that I described
the null hypothesis in words, not in maths. That’s perfectly acceptable. You can
describe it in maths if you like, but since most readers find words easier to read
than symbols, most writers tend to describe the null using words if they can.

• A “stat block” is included. When reporting the results of the test itself, I didn’t
just say that the result was significant, I included a “stat block” (i.e., the dense
mathematical looking part in the parentheses) which reports all the “key” sta-
tistical information. For the chi-square goodness-of-fit test, the information that
gets reported is the test statistic (that the goodness-of-fit statistic was 8.44), the
information about the distribution used in the test (𝜒2 with 3 degrees of freedom
which is usually shortened to 𝜒2(3)), and then the information about whether the
result was significant (in this case 𝑝 < .05). The particular information that needs
to go into the stat block is different for every test, and so each time I introduce a
new test I’ll show you what the stat block should look like.85 However the gen-
eral principle is that you should always provide enough information so that the
reader could check the test results themselves if they really wanted to.

• The results are interpreted. In addition to indicating that the result was significant, I
provided an interpretation of the result (i.e., that people didn’t choose randomly).
This is also a kindness to the reader, because it tells them something about what
they should believe about what’s going on in your data. If you don’t include
something like this, it’s really hard for your reader to understand what’s going
on.86

As with everything else, your overriding concern should be that you explain things to
your reader. Always remember that the point of reporting your results is to commu-
nicate to another human being. I cannot tell you just how many times I’ve seen the
results section of a report or a thesis or even a scientific article that is just gibberish,
because the writer has focused solely on making sure they’ve included all the numbers
and forgotten to actually communicate with the human reader.

Satan delights equally in statistics and in quoting scripture87
– H.G. Wells
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10.2 The 𝜒2 test of independence (or association)

GUARDBOT 1: Halt!
GUARDBOT 2: Be you robot or human?
LEELA: Robot…we be.
FRY: Uh, yup! Just two robots out roboting it up! Eh?
GUARDBOT 1: Administer the test.
GUARDBOT 2: Which of the following would you most prefer? A: A puppy, B: A
pretty flower from your sweetie, or C: A large properly-formatted data file?
GUARDBOT 1: Choose!
– Futurama, Fear of a Bot Planet

The other day I waswatching an animated documentary examining the quaint customs
of the natives of the planet Chapek 9. Apparently, in order to gain access to their cap-
ital city a visitor must prove that they’re a robot, not a human. In order to determine
whether or not a visitor is human, the natives ask whether the visitor prefers puppies,
flowers, or large, properly formatted data files. “Pretty clever,” I thought to myself “but
what if humans and robots have the same preferences? That probably wouldn’t be a
very good test then, would it?” As it happens, I got my hands on the testing data that
the civil authorities of Chapek 9 used to check this. It turns out that what they did was
very simple. They found a bunch of robots and a bunch of humans and asked them
what they preferred. I saved their data in a file called chapek9.omv, which we can now
load into jamovi. As well as the ID variable that identifies individual people, there are
two nominal text variables, species and choice. In total there are 180 entries in the data
set, one for each person (counting both robots and humans as “people”) whowas asked
to make a choice. Specifically, there are 93 humans and 87 robots, and overwhelmingly
the preferred choice is the data file. You can check this yourself by asking jamovi for
Frequency Tables, under the ‘Exploration’ – ‘Descriptives’ button. However, this sum-
mary does not address the question we’re interested in. To do that, we need a more
detailed description of the data. What wewant to do is look at the choices broken down
by species. That is, we need to cross-tabulate the data (see Section 6.1). In jamovi we do
this using the ‘Frequencies’ – ‘Contingency Tables’ – ‘Independent Samples’ analysis,
and we should get a table something like Table 10.8.

Table 10.8: Cross-tabulating the data

Robot Human Total
Puppy 13 15 28
Flower 30 13 43
Data 44 65 109
Total 87 93 180

From this, it’s quite clear that the vast majority of the humans chose the data file,
whereas the robots tended to be a lot more even in their preferences. Leaving aside
the question of why the humans might be more likely to choose the data file for the
moment (which does seem quite odd, admittedly), our first order of business is to de-
termine if the discrepancy between human choices and robot choices in the data set is
statistically significant.
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10.2.1 Constructing our hypothesis test

How do we analyse this data? Specifically, since my research hypothesis is that “hu-
mans and robots answer the question in different ways”, how can I construct a test of
the null hypothesis that “humans and robots answer the question the same way”? As
before, we begin by establishing some notation to describe the data (Table 10.9).

Table 10.9: Notation to describe the data

Robot Human Total
Puppy 𝑂11 𝑂12 𝑅1
Flower 𝑂21 𝑂22 𝑅2
Data 𝑂31 𝑂32 𝑅3
Total 𝐶1 𝐶2 𝑁

In this notation we say that 𝑂𝑖𝑗 is a count (observed frequency) of the number of re-
spondents that are of species 𝑗 (robots or human) who gave answer 𝑖 (puppy, flower
or data) when asked to make a choice. The total number of observations is written 𝑁 ,
as usual. Finally, I’ve used 𝑅𝑖 to denote the row totals (e.g., 𝑅1 is the total number of
people who chose the flower), and 𝐶𝑗 to denote the column totals (e.g., 𝐶1 is the total
number of robots).88

So now let’s think about what the null hypothesis says. If robots and humans are re-
sponding in the same way to the question, it means that the probability that “a robot
says puppy” is the same as the probability that “a human says puppy”, and so on for
the other two possibilities. So, if we use 𝑃𝑖𝑗 to denote “the probability that a member
of species 𝑗 gives response 𝑖” then our null hypothesis is that:

𝐻0 ∶ All of the following are true:
𝑃11 = 𝑃12 (same probability of saying “puppy”),
𝑃21 = 𝑃22 (same probability of saying “flower”), and
𝑃31 = 𝑃32 (same probability of saying “data”).

And actually, since the null hypothesis is claiming that the true choice probabilities
don’t depend on the species of the person making the choice, we can let Pi refer to this
probability, e.g., 𝑃1 is the true probability of choosing the puppy.
Next, in much the same way that we did with the goodness-of-fit test, what we need
to do is calculate the expected frequencies. That is, for each of the observed counts 𝑂𝑖𝑗
we need to figure out what the null hypothesis would tell us to expect. Let’s denote
this expected frequency by 𝐸𝑖𝑗. This time, it’s a little bit trickier. If there are a total
of 𝐶𝑗 people that belong to species 𝑗, and the true probability of anyone (regardless of
species) choosing option 𝑖 is 𝑃𝑖, then the expected frequency is just:

𝐸𝑖𝑗 = 𝐶𝑗 × 𝑃𝑖

Now, this is all very well and good, but we have a problem. Unlike the situation we had
with the goodness-of-fit test, the null hypothesis doesn’t actually specify a particular
value for Pi .
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It’s something we have to estimate (see Chapter 8) from the data! Fortunately, this is
pretty easy to do. If 28 out of 180 people selected the flowers, then a natural estimate
for the probability of choosing flowers is 28

180 , which is approximately .16. If we phrase
this in mathematical terms, what we’re saying is that our estimate for the probability
of choosing option 𝑖 is just the row total divided by the total sample size:

̂𝑃𝑖 = 𝑅𝑖
𝑁

Therefore, our expected frequency can be written as the product (i.e. multiplication) of
the row total and the column total, divided by the total number of observations:

𝐸𝑖𝑗 = 𝑅𝑖 × 𝐶𝑗
𝑁

[Additional technical detail89]

As before, large values of 𝑋2 indicate that the null hypothesis provides a poor descrip-
tion of the data, whereas small values of𝑋2 suggest that it does a good job of accounting
for the data. Therefore, just like last time, we want to reject the null hypothesis if 𝑋2 is
too large.

Not surprisingly, this statistic is 𝜒2 distributed. All we need to do is figure out how
many degrees of freedom are involved, which actually isn’t too hard. As I mentioned
before, you can (usually) think of the degrees of freedom as being equal to the number
of data points that you’re analysing, minus the number of constraints. A contingency
table with r rows and c columns contains a total of 𝑟𝑐 observed frequencies, so that’s the
total number of observations. What about the constraints? Here, it’s slightly trickier.
The answer is always the same:

𝑑𝑓 = (𝑟 − 1)(𝑐 − 1)

But the explanation forwhy the degrees of freedom takes this value is different depend-
ing on the experimental design. For the sake of argument, let’s suppose that we had
honestly intended to survey exactly 87 robots and 93 humans (column totals fixed by
the experimenter), but left the row totals free to vary (row totals are random variables).
Let’s think about the constraints that apply here. Well, since we deliberately fixed the
column totals by Act of Experimenter, we have 𝑐 constraints right there. But, there’s
actually more to it than that.

Remember how our null hypothesis had some free parameters (i.e., we had to estimate
the Pi values)? Those matter too. I won’t explain why in this book, but every free
parameter in the null hypothesis is rather like an additional constraint. So, how many
of those are there? Well, since these probabilities have to sum to 1, there’s only 𝑟 − 1 of
these.

So our total degrees of freedom is:
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𝑑𝑓 = (number of observations) - (number of constraints)

= (𝑟 × 𝑐) − (𝑐 + (𝑟 − 1))

= 𝑟𝑐 − 𝑐 − 𝑟 + 1

= (𝑟 − 1)(𝑐 − 1)

Alternatively, suppose that the only thing that the experimenter fixed was the total
sample size N. That is, we quizzed the first 180 people that we saw and it just turned
out that 87 were robots and 93 were humans. This time around our reasoning would be
slightly different, but would still lead us to the same answer. Our null hypothesis still
has 𝑟 − 1 free parameters corresponding to the choice probabilities, but it now also has
𝑐−1 free parameters corresponding to the species probabilities, because we’d also have
to estimate the probability that a randomly sampled person turns out to be a robot.90

Finally, since we did actually fix the total number of observations N, that’s one more
constraint. So, nowwe have 𝑟𝑐 observations, and (𝑐 − 1) + (𝑟 − 1) + 1 constraints. And
that gives:

𝑑𝑓 = (number of observations) - (number of constraints)

= (𝑟 × 𝑐) − ((𝑐 − 1) + (𝑟 − 1) + 1)

= (𝑟 − 1)(𝑐 − 1)

Amazing.

10.2.2 Doing the test in jamovi

Okay, now that we know how the test works let’s have a look at how it’s done in jamovi.
As tempting as it is to lead you through the tedious calculations so that you’re forced to
learn it the longway, I figure there’s no point. I already showedyouhow todo it the long
way for the goodness-of-fit test in the last section, and since the test of independence
isn’t conceptually any different, you won’t learn anything new by doing it the long way.
So instead I’ll go straight to showing you the easy way.

After you have run the test in jamovi (‘Frequencies’ – ‘Contingency Tables’ – ‘Inde-
pendent Samples’), all you have to do is look underneath the contingency table in the
jamovi results window and there is the 𝜒2 statistic for you. This shows a 𝜒2 statistic
value of 10.72, with 2 df and 𝑝-value = 0.005.
That was easy, wasn’t it! You can also ask jamovi to show you the expected counts - just
click on the check box for ‘Counts’ – ‘Expected’ in the ‘Cells’ options and the expected
counts will appear in the contingency table. And whilst you are doing that, an effect
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size measure would be helpful. We’ll choose Cramér’s 𝑉 , and you can specify this from
a check box in the ‘Statistics’ options, and it gives a value for Cramér’s 𝑉 of 0.24. See
Figure 10.5. We will talk about this some more in just a moment.

Figure 10.5: Independent samples 𝜒2 test in jamovi using the Chapek 9 data

This output gives us enough information to write up the result:

Pearson’s 𝜒2 revealed a significant association between species and choice
(𝜒2(2) = 10.7, 𝑝 < .01). Robots appeared to be more likely to say that they
prefer flowers, but the humans were more likely to say they prefer data.

Notice that, once again, I provided a little bit of interpretation to help the human reader
understandwhat’s going onwith the data. Later on inmydiscussion section I’d provide
a bit more context. To illustrate the difference, here’s what I’d probably say later on:

The fact that humans appeared to have a stronger preference for raw data
files than robots is somewhat counter-intuitive. However, in context it
makes some sense, as the civil authority on Chapek 9 has an unfortunate
tendency to kill and dissect humans when they are identified. As such it
seems most likely that the human participants did not respond honestly
to the question, so as to avoid potentially undesirable consequences. This
should be considered to be a substantial methodological weakness.

This could be classified as a rather extreme example of a reactivity effect, I suppose.
Obviously, in this case the problem is severe enough that the study is more or less
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worthless as a tool for understanding the difference preferences among humans and
robots. However, I hope this illustrates the difference between getting a statistically
significant result (our null hypothesis is rejected in favour of the alternative), and find-
ing something of scientific value (the data tell us nothing of interest about our research
hypothesis due to a big methodological flaw).

10.3 The continuity correction

Okay, time for a little bit of a digression. I’ve been lying to you a little bit so far. There’s
a tiny change that you need to make to your calculations whenever you only have 1
degree of freedom. It’s called the “continuity correction”, or sometimes the Yates cor-
rection. Rememberwhat I pointed out earlier: the𝜒2 test is based on an approximation,
specifically on the assumption that the binomial distribution starts to look like a nor-
mal distribution for large 𝑁 . One problem with this is that it often doesn’t quite work,
especially when you’ve only got 1 degree of freedom (e.g., when you’re doing a test of
independence on a 2 × 2 contingency table). The main reason for this is that the true
sampling distribution for the 𝑋2 statistic is actually discrete (because you’re dealing
with categorical data!) but the 𝜒2 distribution is continuous. This can introduce sys-
tematic problems. Specifically, when 𝑁 is small and when 𝑑𝑓 = 1, the goodness-of-fit
statistic tends to be “too big”, meaning that you actually have a bigger 𝛼 value than you
think (or, equivalently, the 𝑝-values are a bit too small).
As far as I can tell from reading Yates’ paper,91 the correction is basically a hack. It’s
not derived from any principled theory. Rather, it’s based on an examination of the
behaviour of the test, and observing that the corrected version seems to work better.
You can specify this correction in jamovi from a check box in the ‘Statistics’ options,
where it is called ‘𝜒2 continuity correction’.

10.4 Effect size

As we discussed earlier in Section 9.8, it’s becoming commonplace to ask researchers
to report some measure of effect size. So, let’s suppose that you’ve run your chi-square
test, which turns out to be significant. So you now know that there is some association
between your variables (independence test) or some deviation from the specified prob-
abilities (goodness-of-fit test). Now you want to report a measure of effect size. That is,
given that there is an association or deviation, how strong is it?

There are several different measures that you can choose to report, and several different
tools that you can use to calculate them. Iwon’t discuss all of thembutwill instead focus
on the most commonly reported measures of effect size.

By default, the twomeasures that people tend to report most frequently are the 𝜙 statis-
tic and the somewhat superior version, known as Cramér’s 𝑉 .
[Additional technical detail92]

And you’re done. This seems to be a fairly popular measure, presumably because it’s
easy to calculate, and it gives answers that aren’t completely silly. With Cramér’s 𝑉 ,
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you know that the value really does range from 0 (no association at all) to 1 (perfect
association).

10.5 Assumptions of the test(s)

All statistical tests make assumptions, and it’s usually a good idea to check that those
assumptions are met. For the chi-square tests discussed so far in this chapter, the as-
sumptions are:

• Expected frequencies are sufficiently large. Remember how in the previous sectionwe
saw that the 𝜒2 sampling distribution emerges because the binomial distribution
is pretty similar to a normal distribution? Well, like we discussed in Chapter 7
this is only true when the number of observations is sufficiently large. What that
means in practice is that all of the expected frequencies need to be reasonably big.
How big is reasonably big? Opinions differ, but the default assumption seems to
be that you generally would like to see all your expected frequencies larger than
about 5, though for larger tables you would probably be okay if at least 80% of
the the expected frequencies are above 5 and none of them are below 1. However,
fromwhat I’ve been able to discover (e.g., Cochran, 1954) these seem to have been
proposed as rough guidelines, not hard and fast rules, and they seem to be some-
what conservative (Larntz, 1978).

• Data are independent of one another. One somewhat hidden assumption of the chi-
square test is that you have to genuinely believe that the observations are indepen-
dent. Here’s what I mean. Suppose I’m interested in proportion of babies born
at a particular hospital that are boys. I walk around the maternity wards and ob-
serve 20 girls and only 10 boys. Seems like a pretty convincing difference, right?
But later on, it turns out that I’d actually walked into the same ward 10 times and
in fact I’d only seen 2 girls and 1 boy. Not as convincing, is it? My original 30
observations were massively non-independent, and were only in fact equivalent
to 3 independent observations. Obviously this is an extreme (and extremely silly)
example, but it illustrates the basic issue. Non-independence “stuffs things up”.
Sometimes it causes you to falsely reject the null, as the silly hospital example
illustrates, but it can go the other way too. To give a slightly less stupid exam-
ple, let’s consider what would happen if I’d done the cards experiment slightly
differently Instead of asking 200 people to try to imagine sampling one card at ran-
dom, suppose I asked 50 people to select 4 cards. One possibility would be that
everyone selects one heart, one club, one diamond and one spade (in keeping with
the “representativeness heuristic” (Tversky & Kahneman, 1974)). This is highly
non-random behaviour from people, but in this case I would get an observed fre-
quency of 50 for all four suits. For this example the fact that the observations
are non-independent (because the four cards that you pick will be related to each
other) actually leads to the opposite effect, falsely retaining the null.

If you happen to find yourself in a situation where independence is violated, it may be
possible to use the McNemar test (which we’ll discuss) or the Cochran test (which we
won’t). Similarly, if your expected cell counts are too small, check out the Fisher exact
test. It is to these topics that we now turn.
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10.6 The Fisher exact test

What should you do if your cell counts are too small, but you’d still like to test the null
hypothesis that the two variables are independent? One answerwould be “collect more
data”, but that’s far too glib There are a lot of situations inwhich itwould be either infea-
sible or unethical do that. If so, statisticians have a kind of moral obligation to provide
scientists with better tests. In this instance, Fisher (1922a) kindly provided the right
answer to the question. To illustrate the basic idea let’s suppose that we’re analysing
data from a field experiment looking at the emotional status of people who have been
accused of Witchcraft, some of whom are currently being burned at the stake.93 Unfor-
tunately for the scientist (but rather fortunately for the general populace), it’s actually
quite hard to find people in the process of being set on fire, so the cell counts are aw-
fully small in some cases. A contingency table of the salem.csv data illustrates the point
(Table 10.10).

Table 10.10: Contingency table of the salem.csv data

happy FALSE TRUE
on.fire FALSE 3 10

TRUE 3 0

Looking at this data, you’d be hard pressed not to suspect that people not on fire are
more likely to be happy than people on fire. However, the chi-square test makes this
very hard to test because of the small sample size. So, speaking as someonewho doesn’t
want to be set on fire, I’d really like to be able to get a better answer than this. This is
where Fisher’s exact test (Fisher, 1922a) comes in very handy.

The Fisher exact test works somewhat differently to the chi-square test (or in fact any of
the other hypothesis tests that I talk about in this book) insofar as it doesn’t have a test
statistic, but it calculates the 𝑝-value “directly”. I’ll explain the basics of how the test
works for a 2 × 2 contingency table. As before, let’s have some notation (Table 10.11).

Table 10.11: Notation for the Fisher exact test

Happy Sad Total
Set on fire 𝑂11 𝑂12 𝑅1

Not set on fire 𝑂21 𝑂22 𝑅2
Total 𝐶1 𝐶2 𝑁

In order to construct the test Fisher treats both the row and column totals
(𝑅1, 𝑅2, 𝐶1 and 𝐶2) as known, fixed quantities and then calculates the probability that
we would have obtained the observed frequencies that we did (𝑂11, 𝑂12, 𝑂21 and 𝑂22)
given those totals. In the notation that we developed in Chapter 7 this is written:

𝑃(𝑂11, 𝑂12, 𝑂21, 𝑂22 | 𝑅1, 𝑅2, 𝐶1, 𝐶2)

and as youmight imagine, it’s a slightly tricky exercise to figure out what this probabil-
ity is. But it turns out that this probability is described by a distribution known as the
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hypergeometric distribution. What we have to do to calculate our 𝑝-value is calculate
the probability of observing this particular table or a table that is “more extreme”.94 Back
in the 1920s, computing this sum was daunting even in the simplest of situations, but
these days it’s pretty easy as long as the tables aren’t too big and the sample size isn’t
too large. The conceptually tricky issue is to figure out what it means to say that one
contingency table is more “extreme” than another. The easiest solution is to say that the
table with the lowest probability is the most extreme. This then gives us the 𝑝-value.
You can specify this test in jamovi from a check box in the ‘Statistics’ options of the
‘Contingency Tables’ analysis. When you do this with the data from the salem.csv file,
the Fisher exact test statistic is shown in the results. The main thing we’re interested
in here is the 𝑝-value, which in this case is small enough (p = .036) to justify rejecting
the null hypothesis that people on fire are just as happy as people not on fire. See
Figure 10.6.

Figure 10.6: Fisher exact test analysis in jamovi

10.7 The McNemar test

Suppose you’ve been hired to work for theAustralian Generic Political Party (AGPP), and
part of your job is to find out how effective the AGPP political advertisements are. So
you decide to put together a sample of 𝑁 = 100 people and ask them to watch the
AGPP ads. Before they see anything, you ask them if they intend to vote for the AGPP,
and then after showing the ads you ask them again to see if anyone has changed their
minds. Obviously, if you’re any good at your job, you’d also do a whole lot of other
things too, but let’s consider just this one simple experiment. One way to describe your
data is via the contingency table shown in Table 10.12.
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Table 10.12: Contingency table with data on AGPP political advertisements

Before After Total
Yes 30 10 40
No 70 90 160
Total 100 100 200

At first pass, you might think that this situation lends itself to the Pearson 𝜒2 test of
independence (as per The 𝜒2 test of independence (or association)). However, a little
bit of thought reveals that we’ve got a problem. We have 100 participants but 200 obser-
vations. This is because each person has provided us with an answer in both the before
column and the after column. What this means is that the 200 observations aren’t in-
dependent of each other. If voter A says “yes” the first time and voter B says “no”,
then you’d expect that voter A is more likely to say “yes” the second time than voter B!
The consequence of this is that the usual 𝜒2 test won’t give trustworthy answers due
to the violation of the independence assumption. Now, if this were a really uncom-
mon situation, I wouldn’t be bothering to waste your time talking about it. But it’s not
uncommon at all. This is a standard repeated measures design, and none of the tests
we’ve considered so far can handle it.

The solution to the problem was published by McNemar (1947). The trick is to start by
tabulating your data in a slightly different way (Table 10.13).

Table 10.13: Tabulate the data in a different way when you have repeated measures
data

After: No After: Yes Total
Before: No 65 5 70
Before: Yes 25 5 30

Total 90 10 100

Next, let’s think about what our null hypothesis is: it’s that the “before” test and the
“after” test have the same proportion of people saying “Yes, I will vote for AGPP”.
Because of the way that we have rewritten the data, it means that we’re now testing
the hypothesis that the row totals and column totals come from the same distribution.
Thus, the null hypothesis in McNemar’s test is that we have “marginal homogeneity”.
That is, the row totals and column totals have the same distribution: 𝑃𝑎 +𝑃𝑏 = 𝑃𝑎 +𝑃𝑐
and similarly that 𝑃𝑐 + 𝑃𝑑 = 𝑃𝑏 + 𝑃𝑑. Notice that this means that the null hypothesis
actually simplifies to𝑃𝑏 = 𝑃𝑐. In other words, as far as theMcNemar test is concerned,
it’s only the off-diagonal entries in this table (i.e., 𝑏 and 𝑐) that matter! After noticing
this, the McNemar test of marginal homogeneity is no different to a usual 𝜒2 test.

After applying the Yates correction, our test statistic becomes:

𝜒2 = (|𝑏 − 𝑐| − 0.5)2

𝑏 + 𝑐
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or, to revert to the notation that we used earlier in this chapter:

𝜒2 = (|𝑂12 − 𝑂21| − 0.5)2

𝑂12 + 𝑂21

and this statistic has a 𝜒2 distribution (approximately) with 𝑑𝑓 = 1. However, re-
member that just like the other 𝜒2 tests it’s only an approximation, so you need to have
reasonably large expected cell counts for it to work.

10.7.1 Doing the McNemar test in jamovi

Figure 10.7: McNemar test output in jamovi

Now that you know what the McNemar test is all about, lets actually run one. The
agpp.csv file contains the raw data that I discussed previously. The agpp data set con-
tains three variables, an id variable that labels each participant in the data set (we’ll
see why that’s useful in a moment), a response_before variable that records the per-
son’s answer when they were asked the question the first time, and a response_after
variable that shows the answer that they gave when asked the same question a second
time. Notice that each participant appears only once in this data set. Go to the ‘Anal-
yses’ – ‘Frequencies’ – ‘Contingency Tables’ – ‘Paired Samples’ analysis in jamovi, and
move response_before into the ‘Rows’ box, and response_after into the ‘Columns’ box.
You will then get a contingency table in the results window, with the statistic for the
McNemar test just below it, see Figure 10.7.

And we’re done. We’ve just run a McNemar’s test to determine if people were just as
likely to vote AGPP after the ads as they were beforehand. The test was significant
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(𝜒2(1) = 12.03, 𝑝 < .001), suggesting that they were not. And, in fact it looks like
the ads had a negative effect: people were less likely to vote AGPP after seeing the
ads. Which makes a lot of sense when you consider the quality of a typical political
advertisement.

10.8 What’s the difference between McNemar and inde-
pendence?

Let’s go all the way back to the beginning of the chapter and look at the cards data
set again. If you recall, the actual experimental design that I described involved people
making two choices. Becausewe have information about the first choice and the second
choice that everyonemade, we can construct the following contingency table that cross-
tabulates the first choice against the second choice (Table 10.14).

Table 10.14: Cross-tabulating first against second choice with the Randomness.omv
(cards) data

Before: Yes Before: No Total
After: Yes 𝑎 𝑏 𝑎 + 𝑏
After: No 𝑐 𝑑 𝑐 + 𝑑
Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑛

Suppose I wanted to know whether the choice you make the second time is dependent
on the choice youmade the first time. This iswhere a test of independence is useful, and
whatwe’re trying to do is see if there’s some relationship between the rows and columns
of this table. Alternatively, suppose I wanted to know if on average, the frequencies of
suit choices were different the second time than the first time. In that situation, what
I’m really trying to see is if the row totals are different from the column totals. That’s
when you use the McNemar test.

The different statistics produced by these different analyses are shown in Figure 10.8.
Notice that the results are different! These aren’t the same test.
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Figure 10.8: Independent vs. Paired (McNemar) with the Randomness.omv (cards) data
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10.9 Summary

The key ideas discussed in this chapter are:

• The 𝜒2 (chi-square) goodness-of-fit test is usedwhen you have a table of observed
frequencies of different categories, and the null hypothesis gives you a set of
“known” probabilities to compare them to.

• The 𝜒2 test of independence (or association) is usedwhen you have a contingency
table (cross-tabulation) of two categorical variables. The null hypothesis is that
there is no relationship or association between the variables.

• Effect size for a contingency table can be measured in several ways. In particular
we noted the Cramér’s 𝑉 statistic.

• Both versions of the Pearson test rely on two assumptions: that the expected fre-
quencies are sufficiently large, and that the observations are independent (As-
sumptions of the test(s). The Fisher exact test can be used when the expected fre-
quencies are small. The McNemar test can be used for some kinds of violations
of independence.

If you’re interested in learning more about categorical data analysis a good first choice
would be Agresti (1996) which, as the title suggests, provides an Introduction to Cate-
gorical Data Analysis. If the introductory book isn’t enough for you (or can’t solve the
problem you’re working on) you could consider Agresti (2002), Categorical Data Analy-
sis. The latter is a more advanced text, so it’s probably not wise to jump straight from
this book to that one.
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Chapter 11

Comparing two means

In Chapter 10 we covered the situation when your outcome variable is nominal scale
and your predictor variable is also nominal scale. Lots of real-world situations have
that character, and so you’ll find that chi-square tests in particular are quite widely
used. However, you’re much more likely to find yourself in a situation where your
outcome variable is interval scale or higher, andwhat you’re interested in iswhether the
average value of the outcome variable is higher in one group or another. For instance,
a psychologist might want to know if anxiety levels are higher among parents than
non-parents, or if working memory capacity is reduced by listening to music (relative
to not listening to music). In a medical context we might want to know if a new drug
increases or decreases blood pressure. An agricultural scientist might want to know
whether adding phosphorus to Australian native plants will kill them.95 In all these
situations our outcome variable is a fairly continuous, interval or ratio scale variable,
and our predictor is a binary “grouping” variable. In other words, we want to compare
the means of the two groups.

The standard answer to the problem of comparing means is to use a 𝑡-test, of which
there are several varieties depending on exactly what question you want to solve. As
a consequence, the majority of this chapter focuses on different types of 𝑡-test: one
sample 𝑡-tests, independent samples 𝑡-tests and paired samples 𝑡-tests. We’ll then talk
about one-sided tests and, after that, we’ll talk a bit about Cohen’s 𝑑, which is the stan-
dard measure of effect size for a 𝑡-test. The later sections of the chapter focus on the
assumptions of the 𝑡-tests, and possible remedies if they are violated. However, before
discussing any of these useful things, we’ll start with a discussion of the z-test.

11.1 The one-sample z-test

In this section I’ll describe one of the most useless tests in all of statistics: the z-test.
Seriously – this test is almost never used in real life. Its only real purpose is that, when
teaching statistics, it’s a very convenient stepping stone along theway towards the 𝑡-test,
which is probably the most (over)used tool in all statistics.
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11.1.1 The inference problem that the test addresses

To introduce the idea behind the z-test, let’s use a simple example. A friend of mine, Dr
Zeppo, grades his introductory statistics class on a curve. Let’s suppose that the aver-
age grade in his class is 67.5, and the standard deviation is 9.5. Of his many hundreds
of students, it turns out that 20 of them also take psychology classes. Out of curiosity,
I find myself wondering if the psychology students tend to get the same grades as ev-
eryone else (i.e., mean 67.5) or do they tend to score higher or lower? He emails me the
zeppo.csv file, which I use to look at the grades of those students, in the jamovi spread-
sheet view,and then calculate the mean in ‘Exploration’ – ‘Descriptives’.96 The mean
value is 72.3.

50 60 60 64 66 66 67 69 70 74 76 76 77 79 79 79 81 82 82 89

Hmm. It might be that the psychology students are scoring a bit higher than normal.
That sample mean of �̄� = 72.3 is a fair bit higher than the hypothesised population
mean of 𝜇 = 67.5 but, on the other hand, a sample size of 𝑁 = 20 isn’t all that big.
Maybe it’s pure chance.

To answer the question, it helps to be able to write down what it is that I think I know.
Firstly, I know that the sample mean is �̄� = 72.3. If I’m willing to assume that the
psychology students have the same standard deviation as the rest of the class then I can
say that the population standard deviation is 𝜎 = 9.5. I’ll also assume that since Dr
Zeppo is grading to a curve, the psychology student grades are normally distributed.

Figure 11.1: The theoretical distribution (solid line) fromwhich the psychology student
grades (bars) are supposed to have been generated

Next, it helps to be clear about what I want to learn from the data. In this case my
research hypothesis relates to the populationmean𝜇 for the psychology student grades,
which is unknown. Specifically, I want to know if 𝜇 = 67.5 or not. Given that this is
what I know, can we devise a hypothesis test to solve our problem? The data, along
with the hypothesised distribution from which they are thought to arise, are shown in
Figure 11.1. Not entirely obvious what the right answer is, is it? For this, we are going
to need some statistics.
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11.1.2 Constructing the hypothesis test

The first step in constructing a hypothesis test is to be clear about what the null and
alternative hypotheses are. This isn’t too hard to do. Our null hypothesis, 𝐻0, is that
the true populationmean 𝜇 for psychology student grades is 67.5%, and our alternative
hypothesis is that the population mean isn’t 67.5%. If we write this in mathematical
notation, these hypotheses become:

𝐻0 ∶ 𝜇 = 67.5
𝐻1 ∶ 𝜇 ≠ 67.5

though to be honest this notation doesn’t add much to our understanding of the prob-
lem, it’s just a compact way of writing down what we’re trying to learn from the data.
The null hypotheses 𝐻0 and the alternative hypothesis 𝐻1 for our test are both illus-
trated in Figure 11.2. In addition to providing us with these hypotheses, the scenario
outlined above provides us with a fair amount of background knowledge that might
be useful. Specifically, there are two special pieces of information that we can add:

1. The psychology grades are normally distributed.
2. The true standard deviation of these scores 𝜎 is known to be 9.5.

For the moment, we’ll act as if these are absolutely trustworthy facts. In real life, this
kind of absolutely trustworthy background knowledge doesn’t exist, and so if we want
to rely on these facts we’ll just have make the assumption that these things are true.
However, since these assumptions may or may not be warranted, we might need to
check them. For now though, we’ll keep things simple.

The next step is to figure out what would be a good choice for a diagnostic test statistic,
something that would help us discriminate between 𝐻0 and 𝐻1. Given that the hy-
potheses all refer to the population mean 𝜇, you’d feel pretty confident that the sample
mean �̄� would be a pretty useful place to start. What we could do is look at the differ-
ence between the sample mean �̄� and the value that the null hypothesis predicts for
the population mean. In our example that would mean we calculate �̄� − 67.5. More
generally, if we let 𝜇0 refer to the value that the null hypothesis claims is our population
mean, then we’d want to calculate:

�̄� − 𝜇0

If this quantity equals or is very close to 0, things are looking good for the null hypoth-
esis. If this quantity is a long way away from 0, then it’s looking less likely that the null
hypothesis is worth retaining. But how far away from zero should it be for us to reject
𝐻0?

To figure that out we need to be a bit more sneaky, and we’ll need to rely on those two
pieces of background knowledge that I wrote down previously; namely that the raw
data are normally distributed and that we know the value of the population standard
deviation 𝜎. If the null hypothesis is actually true, and the true mean is 𝜇0, then these
facts together mean that we know the complete population distribution of the data: a
normal distribution with mean 𝜇0 and standard deviation 𝜎.97
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Figure 11.2: Graphical illustration of the null and alternate hypotheses assumed by the
one sample 𝑧-test (the two-sided version, that is). The null and alternate hypotheses
both assume that the population distribution is normal, and additionally assumes that
the population standard deviation is known (fixed at some value 𝜎0). The null hypoth-
esis (left) is that the population mean 𝜇 is equal to some specified value 𝜇0. The alter-
native hypothesis (right) is that the population mean differs from this value, 𝜇 ≠ 𝜇0

Okay, if that’s true, then what can we say about the distribution of �̄�? Well, as we
discussed earlier (see Section 8.3.3), the sampling distribution of the mean �̄� is also
normal, and has mean 𝜇. But the standard deviation of this sampling distribution 𝑠𝑒�̄�,
which is called the standard error of the mean, is:98

𝑠𝑒(�̄� = 𝜎√
𝑁

)

Now comes the trick. What we can do is convert the sample mean �̄� into a standard
score (see Section 4.5). This is conventionally written as 𝑧, but for now I’m going to refer
to it as 𝑧�̄�. The reason for using this expanded notation is to help you remember that
we’re calculating a standardised version of a sample mean, not a standardised version
of a single observation, which is what a z-score usually refers to. When we do so the
z-score for our sample mean is:

𝑧�̄� = �̄� − 𝜇0
𝑆𝐸(�̄�)

or, equivalently:

𝑧�̄� = �̄� − 𝜇0
𝜎√
𝑁
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This z-score is our test statistic. The nice thing about using this as our test statistic is
that like all z-scores, it has a standard normal distribution:99

In other words, regardless of what scale the original data are on, the 𝑧-statistic itself
always has the same interpretation: it’s equal to the number of standard errors that
separate the observed sample mean �̄� from the population mean 𝜇0 predicted by
the null hypothesis. Better yet, regardless of what the population parameters for the
raw scores actually are, the 5% critical regions for the z-test are always the same, as
illustrated in Figure 11.3. And what this meant, way back in the days where people
did all their statistics by hand, is that someone could publish a table like Table 11.1.
This, in turn, meant that researchers could calculate their z-statistic by hand and then
look up the critical value in a textbook.

Figure 11.3: Rejection regions for the two-sided z-test (a) and the one-sided z-test (b)

Table 11.1: Critical values for different alpha levels

critical 𝑧-value
desired 𝛼 level two-sided test one-sided test

.1 1.644854 1.281552
.05 1.959964 1.644854
.01 2.575829 2.326348
.001 3.290527 3.090232
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11.1.3 A worked example, by hand

Now, as I mentioned earlier, the z-test is almost never used in practice. It’s so rarely
used in real life that the basic installation of jamovi doesn’t have a built in function for
it. However, the test is so incredibly simple that it’s really easy to do one manually.
Let’s go back to the data from Dr Zeppo’s class. Having loaded the grades data, the
first thing I need to do is calculate the sample mean, which I’ve already done (72.3).
We already have the known population standard deviation (𝜎 = 9.5), and the value of
the population mean that the null hypothesis specifies (𝜇0 = 67.5), and we know the
sample size (𝑁 = 20).
Next, let’s calculate the (true) standard error of themean (easily donewith a calculator):

𝑠𝑒𝑚.𝑡𝑟𝑢𝑒 = 𝑠𝑑.𝑡𝑟𝑢𝑒√
𝑁

= 9.5√
20

= 2.124265

And finally, we calculate our z-score:

𝑧.𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒.𝑚𝑒𝑎𝑛 − 𝑚𝑢.𝑛𝑢𝑙𝑙
𝑠𝑒𝑚.𝑡𝑟𝑢𝑒

= (72.3 − 67.5)
2.124265

= 2.259606

At this point, we would traditionally look up the value 2.26 in our table of critical val-
ues. Our original hypothesis was two-sided (we didn’t really have any theory about
whether psych students would be better or worse at statistics than other students) so
our hypothesis test is two-sided (or two-tailed) also. Looking at the little table that I
showed earlier, we can see that 2.26 is bigger than the critical value of 1.96 that would
be required to be significant at 𝛼 = .05, but smaller than the value of 2.58 that would
be required to be significant at a level of 𝛼 = .01. Therefore, we can conclude that we
have a significant effect, which we might write up by saying something like this:

With a mean grade of 73.2 in the sample of psychology students, and assum-
ing a true population standard deviation of 9.5, we can conclude that the
psychology students have significantly different statistics scores to the class
average (𝑧 = 2.26, 𝑁 = 20, 𝑝 < .05).
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11.1.4 Assumptions of the z-test

As I’ve said before, all statistical tests make assumptions. Some tests make reasonable
assumptions, while other tests do not. The test I’ve just described, the one sample z-test,
makes three basic assumptions. These are:

• Normality. As usually described, the z-test assumes that the true population dis-
tribution is normal.100 This is often a pretty reasonable assumption, and it’s also
an assumption that we can check if we feel worried about it (see Section on Check-
ing the normality of a sample).

• Independence. The second assumption of the test is that the observations in your
data set are not correlated with each other, or related to each other in some funny
way. This isn’t as easy to check statistically, it relies a bit on good experimental
design. An obvious (and stupid) example of something that violates this assump-
tion is a data set where you “copy” the same observation over and over again in
your data file so that you end up with a massive “sample size”, which consists
of only one genuine observation. More realistically, you have to ask yourself if
it’s really plausible to imagine that each observation is a completely random sam-
ple from the population that you’re interested in. In practice this assumption is
never met, but we try our best to design studies that minimise the problems of
correlated data.

• Known standard deviation. The third assumption of the z-test is that the true stan-
dard deviation of the population is known to the researcher. This is just stupid.
In no real world data analysis problem do you know the standard deviation σ of
some population but are completely ignorant about the mean 𝜇. In other words,
this assumption is always wrong.

In view of the stupidity of assuming that 𝛼 is known, let’s see if we can live without it.
This takes us out of the dreary domain of the z-test, and into the magical kingdom of
the 𝑡-test, with unicorns and fairies and leprechauns!

11.2 The one-sample 𝑡-test

After some thought, I decided that it might not be safe to assume that the psychology
student grades necessarily have the same standard deviation as the other students in
Dr Zeppo’s class (Figure 11.4). After all, if I’m entertaining the hypothesis that they
don’t have the same mean, then why should I believe that they absolutely have the
same standard deviation? In view of this, I should really stop assuming that I know the
true value of 𝜎. This violates the assumptions of my z-test, so in one sense I’m back to
square one. However, it’s not like I’m completely bereft of options. After all, I’ve still
got my raw data, and those raw data give me an estimate of the population standard
deviation, which is 9.52. In other words, while I can’t say that I know that 𝜎 = 9.5, I
can say that �̂� = 9.52.

Okay, cool. The obvious thing that you might think to do is run a z-test, but using the
estimated standard deviation of 9.52 instead of relying on my assumption that the true
standard deviation is 9.5. And you probably wouldn’t be surprised to hear that this
would still give us a significant result. This approach is close, but it’s not quite correct.
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Because we are now relying on an estimate of the population standard deviation we
need to make some adjustment for the fact that we have some uncertainty about what
the true population standard deviation actually is. Maybe our data are just a fluke…
maybe the true population standard deviation is 11, for instance. But if that were actu-
ally true, and we ran the z-test assuming 𝜎 = 11, then the result would end up being
non-significant. That’s a problem, and it’s one we’re going to have to address.

Figure 11.4: Graphical illustration of the null and alternative hypotheses assumed by
the (two-sided) one sample 𝑡-test. Note the similarity to the z-test (Figure 11.2). The
null hypothesis is that the population mean 𝜇 is equal to some specified value 𝜇0, and
the alternative hypothesis is that it is not. Like the z-test, we assume that the data are
normally distributed, but we do not assume that the population standard deviation 𝜎
is known in advance

11.2.1 Introducing the 𝑡-test

This ambiguity is annoying, and it was resolved in 1908 by a guy called William Sealy
Gosset (Student, 1908), who was working as a chemist for the Guinness brewery at
the time (see J. F. Box (1987)). Because Guinness took a dim view of its employees
publishing statistical analysis (apparently they felt it was a trade secret), he published
the work under the pseudonym “A Student” and, to this day, the full name of the 𝑡-test
is actually Student’s 𝑡-test. The key thing that Gosset figured out is how we should
accommodate the fact that we aren’t completely sure what the true standard deviation
is.101 The answer is that it subtly changes the sampling distribution. In the 𝑡-test our
test statistic, now called a 𝑡-statistic, is calculated in exactly the same way I mentioned
above. If our null hypothesis is that the true mean is 𝜇, but our sample has mean �̄� and
our estimate of the population standard deviation is �̂�, then our 𝑡-statistic is:

𝑡 = �̄� − 𝜇
�̂�√
𝑁
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The only thing that has changed in the equation is that instead of using the known
true value 𝜎, we use the estimate �̂�. And if this estimate has been constructed from
𝑁 observations, then the sampling distribution turns into a 𝑡-distribution with 𝑁 − 1
degrees of freedom (𝑑𝑓). The 𝑡-distribution is very similar to the normal distribution,
but has “heavier” tails, as discussed earlier in Section 7.6 and illustrated in Figure 11.5.
Notice, though, that as 𝑑𝑓 gets larger, the 𝑡-distribution starts to look identical to the
standard normal distribution. This is as it should be: if you have a sample size of
𝑁 = 70, 000, 000 then your “estimate” of the standard deviation would be pretty much
perfect, right? So, you should expect that for large 𝑁 , the 𝑡-test would behave exactly
the same way as a z-test. And that’s exactly what happens!

Figure 11.5: The 𝑡-distribution with 2 degrees of freedom (left) and 10 degrees of free-
dom (right), with a standard normal distribution (i.e., mean 0 and std dev 1) plotted as
dotted lines for comparison purposes. Notice that the 𝑡-distribution has heavier tails
(leptokurtic, higher kurtosis) than the normal distribution; this effect is quite exagger-
ated when the degrees of freedom are very small, but negligible for larger values. In
other words, for large 𝑑𝑓 the 𝑡-distribution is essentially identical to a normal distribu-
tion

11.2.2 Doing the test in jamovi

As youmight expect, themechanics of the 𝑡-test are almost identical to themechanics of
the z-test. So there’s not much point in going through the tedious exercise of showing
you how to do the calculations using low level commands. It’s pretty much identical to
the calculations that we did earlier, except that we use the estimated standard deviation
and then we test our hypothesis using the 𝑡-distribution rather than the normal distri-
bution. And so instead of going through the calculations in tedious detail for a second
time, I’ll jump straight to showing you how 𝑡-tests are actually done. jamovi comeswith
a dedicated analysis for 𝑡-tests that is very flexible (it can run lots of different kinds of
𝑡-tests). It’s pretty straightforward to use; all you need to do is specify ‘Analyses’ –
‘T-Tests’ – ‘One Sample T-Test’, move the variable you are interested in (𝑋) across into
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the ‘Variables’ box, and type in the mean value for the null hypothesis (‘67.5’) in the
‘Hypothesis’ – ‘Test value’ box. Easy enough. See Figure 11.6, which, amongst other
things that we will get to in a moment, gives you a 𝑡-test statistic = 2.25, with 19 degrees
of freedom and an associated 𝑝-value of 0.036.

Figure 11.6: jamovi does the one-sample 𝑡-test

Also reported are two other things you might care about: the 95% confidence interval
and a measure of effect size (we’ll talk more about effect sizes later). So that seems
straightforward enough. Now what do we do with this output? Well, since we’re pre-
tending that we actually care about my toy example, we’re overjoyed to discover that
the result is statistically significant (i.e. 𝑝-value below .05). We could report the result
by saying something like this:

With a mean grade of 72.3, the psychology students scored slightly higher than the
average grade of 67.5 (𝑡(19) = 2.25, 𝑝 = .036); the mean difference was 4.80 and
the 95% confidence interval was from 0.34 to 9.26.

…where 𝑡(19) is shorthand notation for a t statistic that has 19 degrees of freedom. That
said, it’s often the case that people don’t report the confidence interval, or do so using
a much more compressed form than I’ve done here. For instance, it’s not uncommon to
see the confidence interval included as part of the stat block after reporting the mean
difference, like this:

𝑡(19) = 2.25, 𝑝 = .036, 𝐶𝐼95 = [0.34, 9.26]

With that much jargon crammed into half a line, you know it must be really smart.102
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11.2.3 Assumptions of the one sample 𝑡-test

Okay, so what assumptions does the one-sample 𝑡-test make? Well, since the 𝑡-test
is basically a z-test with the assumption of known standard deviation removed, you
shouldn’t be surprised to see that it makes the same assumptions as the z-test, minus
the one about the known standard deviation. That is:

• Normality. We’re still assuming that the population distribution is normal,103 and
as noted earlier, there are standard tools that you can use to check to see if this
assumption is met (Checking the normality of a sample), and other tests you can
do in its place if this assumption is violated (Testing non-normal data).

• Independence. Once again, we have to assume that the observations in our sam-
ple are generated independently of one another. See the earlier discussion about
the z-test for specifics (Assumptions of the z-test).

Overall, these two assumptions aren’t terribly unreasonable, and as a consequence the
one sample 𝑡-test is prettywidely used in practice as away of comparing a samplemean
against a hypothesised population mean.

11.3 The independent samples 𝑡-test (Student test)

Although the one sample 𝑡-test has its uses, it’s not the most typical example of a 𝑡-
test.104 Amuch more common situation arises when you’ve got two different groups of
observations. In psychology, this tends to correspond to two different groups of partic-
ipants, where each group corresponds to a different condition in your study. For each
person in the study you measure some outcome variable of interest, and the research
question that you’re asking is whether or not the two groups have the same population
mean. This is the situation that the independent samples 𝑡-test is designed for.

11.3.1 The data

Suppose we have 33 students taking Dr Harpo’s statistics lectures, and Dr Harpo
doesn’t grade to a curve. Actually, Dr Harpo’s grading is a bit of a mystery, so we don’t
really know anything about what the average grade is for the class as a whole. There
are two tutors for the class, Anastasia and Bernadette. There are 𝑁1 = 15 students in
Anastasia’s tutorials, and 𝑁2 = 18 in Bernadette’s tutorials. The research question I’m
interested in is whether Anastasia or Bernadette is a better tutor, or if it doesn’t make
much of a difference. Dr Harpo emails me the course grades, in the harpo.csv file. As
usual, I’ll load the file into jamovi and have a look at what variables it contains - there
are three variables, ID, grade and tutor. The grade variable contains each student’s
grade, but it is not imported into jamovi with the correct measurement level attribute,
so I need to change this so it is regarded as a continuous variable (see Section 3.6). The
tutor variable is a factor that indicates who each student’s tutor was - either Anastasia
or Bernadette.

We can calculatemeans and standarddeviations, using the ‘Exploration’ – ‘descriptives’
analysis, and here’s a nice little summary table (Table 11.2).
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Table 11.2: Descriptives summary table

mean std dev 𝑁
Anastasia’s
students 74.53 9.00 15

Bernadette’s
students 69.06 5.77 18

To give you a more detailed sense of what’s going on here, I’ve plotted box and violin
plots in jamovi, with mean scores added to the plot with a small solid square. These
plots show the distribution of grades for both tutors (Figure 11.7),

Figure 11.7: Box and violin plots from jamovi showing the distribution of grades for
students in the classes of Anastasia and Bernadette. Visually, these suggest that stu-
dents in the class of Anastasia may be getting slightly better grades on average, though
they also seem a bit more variable

11.3.2 Introducing the test

The independent samples 𝑡-test comes in two different forms, Student’s and Welch’s.
The original Student 𝑡-test, which is the one I’ll describe in this section, is the simpler
of the two but relies on much more restrictive assumptions than the Welch 𝑡-test. As-
suming for the moment that you want to run a two-sided test, the goal is to determine
whether two “independent samples” of data are drawn frompopulationswith the same
mean (the null hypothesis) or different means (the alternative hypothesis). When we
say “independent” samples, what we really mean here is that there’s no special rela-
tionship between observations in the two samples. This probably doesn’t make a lot of
sense right now, but it will be clearer when we come to talk about the paired samples 𝑡-
test later on. For now, let’s just point out that if we have an experimental design where
participants are randomly allocated to one of two groups, and we want to compare
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the two groups’ mean performance on some outcome measure, then an independent
samples 𝑡-test (rather than a paired samples 𝑡-test) is what we’re after.
Okay, so let’s let 𝜇1 denote the true population mean for group 1 (e.g., Anastasia’s stu-
dents), and 𝜇2 will be the true population mean for group 2 (e.g., Bernadette’s stu-
dents),105 and as usual we’ll let ̄𝑋1 and ̄𝑋2 denote the observed sample means for both
of these groups. Our null hypothesis states that the two populationmeans are identical
(𝜇1 = 𝜇2) and the alternative to this is that they are not (𝜇1 ≠ 𝜇2) (Figure 11.8). Written
in mathematical-ese, this is:

𝐻0 ∶ 𝜇1 = 𝜇2

𝐻0 ∶ 𝜇1 ≠ 𝜇2

To construct a hypothesis test that handles this scenario we start by noting that if the
null hypothesis is true, then the difference between the populationmeans is exactly zero,
𝜇1 −𝜇2 = 0. As a consequence, a diagnostic test statistic will be based on the difference
between the two sample means. Because if the null hypothesis is true, then we’d expect
�̄�1 − �̄�2 to be pretty close to zero. However, just like we saw with our one-sample
tests (i.e., the one-sample z-test and the one-sample 𝑡-test) we have to be precise about
exactly how close to zero this difference should be. And the solution to the problem
is more or less the same one. We calculate a standard error estimate (SE), just like last
time, and then divide the difference between means by this estimate. So our t-statistic
will be of the form:

𝑡 =
̄𝑋1 − ̄𝑋2
𝑆𝐸

We just need to figure out what this standard error estimate actually is. This is a bit
trickier than was the case for either of the two tests we’ve looked at so far, so we need
to go through it a lot more carefully to understand how it works.

11.3.3 A “pooled estimate” of the standard deviation

In the original “Student 𝑡-test”, we make the assumption that the two groups have the
same population standard deviation. That is, regardless of whether the population
means are the same, we assume that the population standard deviations are identical,
𝜎1 = 𝜎2. Since we’re assuming that the two standard deviations are the same, we drop
the subscripts and refer to both of themas𝜎. How shouldwe estimate this? Howshould
we construct a single estimate of a standard deviation when we have two samples? The
answer is, basically, we average them. Well, sort of. Actually, what we do is take a
weighted average of the variance estimates, which we use as our pooled estimate of the
variance. The weight assigned to each sample is equal to the number of observations
in that sample, minus 1.

[Additional technical detail106]
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Figure 11.8: Graphical illustration of the null and alternative hypotheses assumed by
the Student 𝑡-test. The null hypothesis assumes that both groups have the same mean
𝜇, whereas the alternative assumes that they have different means 𝜇1 and 𝜇2. Notice
that it is assumed that the population distributions are normal, and that, although the
alternative hypothesis allows the group to have different means, it assumes they have
the same standard deviation

11.4 Completing the test

Regardless of which way you want to think about it, we now have our pooled estimate
of the standard deviation. From now on, I’ll drop the silly p subscript, and just refer to
this estimate as �̂�. Great. Let’s now go back to thinking about the bloody hypothesis
test, shall we? Our whole reason for calculating this pooled estimate was that we knew
it would be helpful when calculating our standard error estimate. But standard error of
what? In the one-sample 𝑡-test it was the standard error of the samplemean, 𝑠𝑒(�̄�), and
since 𝑠𝑒(�̄�) = 𝜎√

𝑁 that’s what the denominator of our 𝑡-statistic looked like. This time
around, however, we have two sample means. And what we’re interested in, specifi-
cally, is the the difference between the two �̄�1 − �̄�2 As a consequence, the standard
error that we need to divide by is in fact the standard error of the difference between
means.

[Additional technical detail107]

Just as we saw with our one-sample test, the sampling distribution of this 𝑡-statistic
is a 𝑡-distribution (shocking, isn’t it?) as long as the null hypothesis is true and all
of the assumptions of the test are met. The degrees of freedom, however, is slightly
different. As usual, we can think of the degrees of freedom to be equal to the number
of data points minus the number of constraints. In this case, we have 𝑁 observations
(𝑁1 in sample 1, and𝑁2 in sample 2), and 2 constraints (the sample means). So the total
degrees of freedom for this test are 𝑁 − 2.
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11.4.1 Doing the test in jamovi

Not surprisingly, you can run an independent samples 𝑡-test easily in jamovi. The out-
come variable for our test is the student grade, and the groups are defined in terms of
the tutor for each class. So you probably won’t be too surprised that all you have to do
in jamovi is go to the relevant analysis (‘Analyses’ – ‘T-Tests’ – ‘Independent Samples
T-Test’) and move the grade variable across to the ‘Dependent Variables’ box, and the
tutor variable across into the ‘Grouping Variable’ box, as shown in Figure 11.9.

Figure 11.9: Independent 𝑡-test in jamovi, with options checked for useful results

The output has a very familiar form. First, it tells you what test was run, and it tells
you the name of the dependent variable that you used. It then reports the test results.
Just like last time the test results consist of a 𝑡-statistic, the degrees of freedom, and the
𝑝-value. The final section reports two things: it gives you a confidence interval and an
effect size. I’ll talk about effect sizes later. The confidence interval, however, I should
talk about now.

It’s pretty important to be clear on what this confidence interval actually refers to. It
is a confidence interval for the difference between the group means. In our example,
Anastasia’s students had an average grade of 74.53, and Bernadette’s students had an
average grade of 69.06, so the difference between the two sample means is 5.48. But of
course the difference between population means might be bigger or smaller than this.
The confidence interval reported in Figure 11.10 tells you that if we replicated this study
again and again, then 95% of the time the true difference in means would lie between
0.20 and 10.76. Look back at Section 8.5 for a reminder about what confidence intervals
mean.

In any case, the difference between the two groups is significant (just barely), so we
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might write up the result using text like this:

The mean grade in Anastasia’s class was 74.5% (std dev = 9.0), whereas
the mean in Bernadette’s class was 69.1% (std dev = 5.8). A Student’s in-
dependent samples 𝑡-test showed that this 5.4% difference was significant
(𝑡(31) = 2.1, 𝑝 < .05, 𝐶𝐼95 = [0.2, 10.8], 𝑑 = .74), suggesting that a gen-
uine difference in learning outcomes has occurred.

Notice that I’ve included the confidence interval and the effect size in the stat block.
People don’t always do this. At a bare minimum, you’d expect to see the 𝑡-statistic, the
degrees of freedom and the 𝑝-value. So you should include something like this at a
minimum: 𝑡(31) = 2.1, 𝑝 < .05. If statisticians had their way, everyone would also
report the confidence interval and probably the effect size measure too, because they
are useful things to know. But real life doesn’t always work the way statisticians want
it to so you should make a judgement based on whether you think it will help your
readers and, if you’re writing a scientific paper, the editorial standard for the journal
in question. Some journals expect you to report effect sizes, others don’t. Within some
scientific communities it is standard practice to report confidence intervals, in others it
is not. You’ll need to figure out what your audience expects. But, just for the sake of
clarity, if you’re taking my class, my default position is that it’s usually worth including
both the effect size and the confidence interval.

11.4.2 Positive and negative 𝑡-values

Before moving on to talk about the assumptions of the 𝑡-test, there’s one additional
point I want to make about the use of 𝑡-tests in practice. The first one relates to the sign
of the 𝑡-statistic (that is, whether it is a positive number or a negative one). One very
common worry that students have when they start running their first 𝑡-test is that they
often end up with negative values for the 𝑡-statistic and don’t know how to interpret
it. In fact, it’s not at all uncommon for two people working independently to end up
with results that are almost identical, except that one person has a negative 𝑡-values
and the other one has a positive 𝑡 value. Assuming that you’re running a two-sided test
then the 𝑝-values will be identical. On closer inspection, the students will notice that
the confidence intervals also have the opposite signs. This is perfectly okay. Whenever
this happens, what you’ll find is that the two versions of the results arise from slightly
different ways of running the 𝑡-test. What’s happening here is very simple. The 𝑡-
statistic that we calculate here is always of the form:

𝑡 = mean 1-mean 2
𝑆𝐸

If “mean 1” is larger than “mean 2” the 𝑡-statistic will be positive, whereas if “mean 2” is
larger then the 𝑡-statistic will be negative. Similarly, the confidence interval that jamovi
reports is the confidence interval for the difference “(mean 1) minus (mean 2)”, which
will be the reverse of what you’d get if you were calculating the confidence interval for
the difference “(mean 2) minus (mean 1)”.

Okay, that’s pretty straightforwardwhen you think about it, but now consider our 𝑡-test
comparing Anastasia’s class to Bernadette’s class. Which one should we call “mean 1”
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and which one should we call “mean 2”. It’s arbitrary. However, you really do need to
designate one of them as “mean 1” and the other one as “mean 2”. Not surprisingly,
the way that jamovi handles this is also pretty arbitrary. In earlier versions of the book
I used to try to explain it, but after a while I gave up, because it’s not really all that
important and to be honest I can never remember myself. Whenever I get a significant
𝑡-test result, and I want to figure out whichmean is the larger one, I don’t try to figure it
out by looking at the 𝑡-statistic. Why would I bother doing that? It’s foolish. It’s easier
just to look at the actual group means since the jamovi output actually shows them!

Here’s the important thing. Because it really doesn’t matter what jamovi shows you,
I usually try to report the 𝑡-statistic in such a way that the numbers match up with
the text. Suppose that what I want to write in my report is: Anastasia’s class had higher
grades than Bernadette’s class. The phrasing here implies that Anastasia’s group comes
first, so it makes sense to report the 𝑡-statistic as if Anastasia’s class corresponded to
group 1. If so, I would write Anastasia’s class had higher grades than Bernadette’s class
(𝑡(31) = 2.1, 𝑝 = .04).
(I wouldn’t actually underline the word “higher” in real life, I’m just doing it to em-
phasise the point that “higher” corresponds to positive 𝑡-values). On the other hand,
suppose the phrasing I wanted to use has Bernadette’s class listed first. If so, it makes
more sense to treat her class as group 1, and if so, thewrite up looks like this: Bernadette’s
class had lower grades than Anastasia’s class (𝑡(31) = −2.1, 𝑝 = .04).
Because I’m talking about one group having “lower” scores this time around, it is more
sensible to use the negative form of the 𝑡-statistic. It just makes it read more cleanly.
One last thing: please note that you can’t do this for other types of test statistics. It
works for 𝑡-tests, but it wouldn’t be meaningful for chi-square tests, 𝐹 -tests or indeed
for most of the tests I talk about in this book. So don’t over-generalise this advice! I’m
really just talking about 𝑡-tests here and nothing else!

11.4.3 Assumptions of the Student 𝑡-test

As always, our hypothesis test relies on some assumptions. So what are they? For the
Student 𝑡-test there are three assumptions, some of which we saw previously in the
context of the one sample 𝑡-test (see Assumptions of the one sample 𝑡-test):

• Normality. Like the one-sample 𝑡-test, it is assumed that the data are normally
distributed. Specifically, we assume that both groups are normally distributed.108
In the section on Checking the normality of a sample we’ll discuss how to test for
normality, and in Testing non-normal data we’ll discuss possible solutions.

• Independence. Once again, it is assumed that the observations are independently
sampled. In the context of the Student test this has two aspects to it. Firstly, we
assume that the observations within each sample are independent of one another
(exactly the same as for the one-sample test). However, we also assume that there
are no cross-sample dependencies. If, for instance, it turns out that you included
some participants in both experimental conditions of your study (e.g., by acciden-
tally allowing the same person to sign up to different conditions), then there are
some cross sample dependencies that you’d need to take into account.

• Homogeneity of variance (also called “homoscedasticity”). The third assumption is
that the population standard deviation is the same in both groups. You can test
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this assumption using the Levene test, which I’ll talk about later on in the book
(in Section 13.6.1). However, there’s a very simple remedy for this assumption if
you are worried, which I’ll talk about in the next section.

11.5 The independent samples 𝑡-test (Welch test)

The biggest problem with using the Student test in practice is the third assumption
listed in the previous section. It assumes that both groups have the same standard
deviation. This is rarely true in real life. If two samples don’t have the same means,
why should we expect them to have the same standard deviation? There’s really no
reason to expect this assumption to be true. We’ll talk a little bit about how you can
check this assumption later on because it does crop up in a few different places, not
just the 𝑡-test. But right now I’ll talk about a different form of the 𝑡-test (Welch, 1947)
that does not rely on this assumption. A graphical illustration of what the Welch 𝑡-
test assumes about the data is shown in Figure 11.10, to provide a contrast with the
Student test version in Figure 11.8. I’ll admit it’s a bit odd to talk about the cure before
talking about the diagnosis, but as it happens the Welch test can be specified as one of
the ‘Independent Samples T-Test’ options in jamovi, so this is probably the best place
to discuss it.

Figure 11.10: Graphical illustration of the null and alternative hypotheses assumed by
the Welch 𝑡-test. Like the Student test (Figure 11.9) we assume that both samples are
drawn from a normal population; but the alternative hypothesis no longer requires the
two populations to have equal variance

The Welch test is very similar to the Student test. For example, the 𝑡-statistic that we
use in the Welch test is calculated in much the same way as it is for the Student test.
That is, we take the difference between the sample means and then divide it by some
estimate of the standard error of that difference:
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𝑡 = �̄�1 − �̄�2
𝑆𝐸(�̄�1 − �̄�2)

The main difference is that the standard error calculations are different. If the two
populations have different standard deviations, then it’s complete nonsense to try to
calculate a pooled standard deviation estimate, because you’re averaging apples and
oranges.109

[Additional technical detail110]

The second difference between Welch and Student is that the degrees of freedom are
calculated in a very different way. In the Welch test, the “degrees of freedom” doesn’t
have to be a whole number any more, and it doesn’t correspond all that closely to the
“number of data points minus the number of constraints” heuristic that I’ve been using
up to this point.

11.5.1 Doing the Welch test in jamovi

If you tick the check box for the Welch test in the analysis we did above, then this is
what it gives you (Figure 11.11).

Figure 11.11: Results showing the Welch test alongside the default Students 𝑡-test in
jamovi

The interpretation of this output should be fairly obvious. You read the output for the
Welch’s test in the same way that you would for the Student’s test. You’ve got your
descriptive statistics, the test results and some other information. So that’s all pretty
easy.

Except, except…our result isn’t significant anymore. When we ran the Student test we
did get a significant effect, but the Welch test on the same data set is not (𝑡(23.02) =
2.03, 𝑝 = .054). What does this mean? Should we panic? Is the sky burning? Probably
not. The fact that one test is significant and the other isn’t doesn’t itselfmean verymuch,
especially since I kind of rigged the data so that this would happen. As a general rule,
it’s not a good idea to go out of your way to try to interpret or explain the difference
between a 𝑝-value of .049 and a 𝑝-value of .051. If this sort of thing happens in real
life, the difference in these 𝑝-values is almost certainly due to chance. What does matter
is that you take a little bit of care in thinking about what test you use. The Student
test and theWelch test have different strengths and weaknesses. If the two populations
really do have equal variances, then the Student test is slightly more powerful (lower
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type II error rate) than the Welch test. However, if they don’t have the same variances,
then the assumptions of the Student test are violated and you may not be able to trust
it; you might end up with a higher type I error rate. So it’s a trade off. However, in
real life I tend to prefer the Welch test, because almost no-one actually believes that the
population variances are identical.

11.5.2 Assumptions of the Welch test

The assumptions of the Welch test are very similar to those made by the Student 𝑡-test
(see Assumptions of the Student 𝑡-test, except that the Welch test does not assume ho-
mogeneity of variance. This leaves only the assumption of normality and the assump-
tion of independence. The specifics of these assumptions are the same for the Welch
test as for the Student test.

11.6 The paired-samples 𝑡-test

Regardless of whether we’re talking about the Student test or the Welch test, an inde-
pendent samples 𝑡-test is intended to be used in a situationwhere you have two samples
that are, well, independent of one another. This situation arises naturally when partic-
ipants are assigned randomly to one of two experimental conditions, but it provides a
very poor approximation to other sorts of research designs. In particular, a repeated
measures design, in which each participant is measured (with respect to the same out-
come variable) in both experimental conditions, is not suited for analysis using inde-
pendent samples 𝑡-tests. For example, we might be interested in whether listening to
music reduces people’s workingmemory capacity. To that end, we could measure each
person’s working memory capacity in two conditions: with music, and without music.
In an experimental design such as this one, 111 each participant appears in both groups.
This requires us to approach the problem in a different way, by using the paired sam-
ples 𝑡-test.

11.6.1 The data

The data set that we’ll use this time comes fromDr Chico’s class.112 In her class students
take twomajor tests, one early in the semester and one later in the semester. To hear her
tell it, she runs a very hard class, one that most students find very challenging. But she
argues that by setting hard assessments students are encouraged to work harder. Her
theory is that the first test is a bit of a “wake up call” for students. When they realise
how hard her class really is, they’ll work harder for the second test and get a better
mark. Is she right? To test this, let’s import the chico.csv file into jamovi. This time
jamovi does a good job during the import of attributing measurement levels correctly.
The chico data set contains three variables: an id variable that identifies each student in
the class, the grade_test1 variable that records the student grade for the first test, and
the grade_test2 variable that has the grades for the second test.

If we look at the jamovi spreadsheet it does seem like the class is a hard one (most
grades are between 50% and 60%), but it does look like there’s an improvement from
the first test to the second one.
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If we take a quick look at the descriptive statistics, in Figure 11.12, we see that this im-
pression seems to be supported. Across all 20 students the mean grade for the first test
is 57%, but this rises to 58% for the second test. Although, given that the standard devi-
ations are 6.6% and 6.4% respectively, it’s starting to feel like maybe the improvement
is just illusory; maybe just random variation. This impression is reinforced when you
see the means and confidence intervals plotted in Figure 11.13a. If we were to rely on
this plot alone, looking at how wide those confidence intervals are, we’d be tempted to
think that the apparent improvement in student performance is pure chance.

Figure 11.12: Descriptives for the two grade test variables in the chico data set

Nevertheless, this impression is wrong. To see why, take a look at the scatterplot of
the grades for test 1 against the grades for test 2, shown in Figure 11.13b. In this plot
each dot corresponds to the two grades for a given student. If their grade for test 1
(x co-ordinate) equals their grade for test 2 (y co-ordinate), then the dot falls on the
line. Points falling above the line are the students that performed better on the second
test. Critically, almost all of the data points fall above the diagonal line: almost all of
the students do seem to have improved their grade, if only by a small amount. This
suggests that we should be looking at the improvement made by each student from
one test to the next and treating that as our raw data. To do this, we’ll need to create
a new variable for the improvement that each student makes, and add it to the chico
data set. The easiest way to do this is to compute a new variable, with the expression
grade_test2 - grade_test1.

Once we have computed this new improvement variable we can draw a histogram
showing the distribution of these improvement scores, shown in Figure 11.14. When
we look at the histogram, it’s very clear that there is a real improvement here. The vast
majority of the students scored higher on test 2 than on test 1, reflected in the fact that
almost the entire histogram is above zero.
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(a) (b)

Figure 11.13: Mean grade for test 1 and test 2, with associated 95% confidence intervals
(a). Scatterplot showing the individual grades for test 1 and test 2 (b)

Figure 11.14: Histogram from jamovi showing the improvement made by each student
in Dr Chico’s class. Notice that almost the entire distribution is above zero – the vast
majority of students did improve their performance from the first test to the second one

11.6.2 What is the paired samples 𝑡-test?

In light of the previous exploration, let’s think about how to construct an appropri-
ate 𝑡-test. One possibility would be to try to run an independent samples 𝑡-test using
grade_test1 and grade_test2 as the variables of interest. However, this is clearly the
wrong thing to do as the independent samples 𝑡-test assumes that there is no particu-
lar relationship between the two samples. Yet clearly that’s not true in this case because
of the repeated measures structure in the data. To use the language that I introduced in
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the last section, if we were to try to do an independent samples 𝑡-test, we would be con-
flating the within subject differences (which is what we’re interested in testing) with
the between subject variability (which we are not).

The solution to the problem is obvious, I hope, since we already did all the hardwork in
the previous section. Instead of running an independent samples 𝑡-test on grade_test1
and grade_test2, we run a one-sample 𝑡-test on the within-subject difference variable,
improvement. To formalise this slightly, if 𝑋𝑖1 is the score that the i-th participant ob-
tained on the first variable, and 𝑋𝑖2 is the score that the same person obtained on the
second one, then the difference score is:

𝐷𝑖 = 𝑋𝑖1 − 𝑋𝑖2

Notice that the difference scores is variable 1 minus variable 2 and not the other way
around, so if we want improvement to correspond to a positive valued difference, we
actuallywant “test 2” to be our “variable 1”. Equally, wewould say that 𝜇𝐷 = 𝜇1−𝜇2 is
the population mean for this difference variable. So, to convert this to a hypothesis test,
our null hypothesis is that this mean difference is zero and the alternative hypothesis
is that it is not:

𝐻0 ∶ 𝜇𝐷 = 0
𝐻1 ∶ 𝜇𝐷 ≠ 0

This is assumingwe’re talking about a two-sided test here. This is more or less identical
to the way we described the hypotheses for the one-sample 𝑡-test. The only difference
is that the specific value that the null hypothesis predicts is 0. And so our 𝑡-statistic is
defined in more or less the same way too. If we let �̄� denote the mean of the difference
scores, then:

𝑡 = �̄�
𝑆𝐸(�̄�)

which is:

𝑡 = �̄�
�̂�𝐷√

𝑁

where �̂�𝐷 is the standarddeviation of the difference scores. Since this is just an ordinary,
one-sample 𝑡-test, with nothing special about it, the degrees of freedom are still 𝑁 − 1.
And that’s it. The paired samples 𝑡-test really isn’t a new test at all. It’s a one-sample
𝑡-test, but applied to the difference between two variables. It’s actually very simple.
The only reason it merits a discussion as long as the one we’ve just gone through is
that you need to be able to recognise when a paired samples test is appropriate, and to
understand why it’s better than an independent samples 𝑡-test.
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11.6.3 Doing the test in jamovi

How do you do a paired samples 𝑡-test in jamovi? One possibility is to follow the pro-
cess I outlined above. That is, create a “difference” variable and then run a one sample
𝑡-test on that. Since we’ve already created a variable called “improvement”, let’s do
that and see what we get, Figure 11.15.

Figure 11.15: Results showing a one sample 𝑡-test on paired difference scores

The output shown in Figure 11.15 is (obviously) formatted exactly the same was as it
was the last time we used the one-sample 𝑡-test analysis (Section 11.2), and it confirms
our intuition. There’s an average improvement of 1.4% from test 1 to test 2, and this is
significantly different from 0 (𝑡(19) = 6.48, 𝑝 < .001).
However, suppose you’re lazy and you don’t want to go to all the effort of creating a
new variable. Or perhaps you just want to keep the difference between one-sample and
paired samples tests clear in your head. If so, you can use the jamovi ‘Paired Samples
T-Test’ analysis, getting the results shown in Figure 11.16.

Figure 11.16: Results showing a paired sample 𝑡-test. Compare with Figure 11.15

The numbers are identical to those that come from the one sample test, which of course
they have to be given that the paired samples 𝑡-test is just a one sample test under the
hood.

11.7 One-sided tests

When introducing the theory of null hypothesis tests, I mentioned that there are some
situations when it’s appropriate to specify a one-sided test (see Section 9.4.3). So far all
of the 𝑡-tests have been two-sided tests. For instance, when we specified a one sample
𝑡-test for the grades in Dr Zeppo’s class the null hypothesis was that the true mean
was 67.5%. The alternative hypothesis was that the true mean was greater than or less
than 67.5%. Suppose we were only interested in finding out if the true mean is greater
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than 67.5%, and have no interest whatsoever in testing to find out if the true mean is
lower than 67.5%. If so, our null hypothesis would be that the true mean is 67.5% or
less, and the alternative hypothesis would be that the true mean is greater than 67.5%.
In jamovi, for the ‘One Sample T-Test’ analysis, you can specify this by clicking on the
‘> Test Value’ option, under ‘Hypothesis’. When you have done this, you will get the
results as shown in Figure 11.17.

Figure 11.17: jamovi results showing a ‘One Sample T-Test’ where the actual hypothesis
is one-sided, i.e. that the true mean is greater than 67.5%

Notice that there are a few changes from the output that we saw last time. Most im-
portant is the fact that the actual hypothesis has changed, to reflect the different test.
The second thing to note is that although the 𝑡-statistic and degrees of freedom have
not changed, the 𝑝-value has. This is because the one-sided test has a different rejec-
tion region from the two-sided test. If you’ve forgotten why this is and what it means,
you may find it helpful to read back over Chapter 9, and Section 9.4.3 in particular.
The third thing to note is that the confidence interval is different too: it now reports a
one-sided confidence interval rather than a two-sided one. In a two-sided confidence
interval we’re trying to find numbers 𝑎 and 𝑏 such that we’re confident that, if we were
to repeat the study many times, then 95% of the time the mean would lie between 𝑎
and 𝑏. In a one-sided confidence interval, we’re trying to find a single number 𝑎 such
that we’re confident that 95% of the time the true mean would be greater than 𝑎 (or less
than 𝑎 if you selected Measure 1 < Measure 2 in the ‘Hypothesis’ section).

So that’s how to do a one-sided one sample 𝑡-test. However, all versions of the 𝑡-test
can be one-sided. For an independent samples 𝑡-test, you could have a one-sided test if
you’re only interested in testing to see if group A has higher scores than group B, but
have no interest in finding out if group B has higher scores than group A. Let’s suppose
that, for Dr Harpo’s class, you wanted to see if Anastasia’s students had higher grades
than Bernadette’s. For this analysis, in the ‘Hypothesis’ options, specify that ‘Group 1
> Group2’. You should get the results shown in Figure 11.18.

Again, the output changes in a predictable way. The definition of the alternative hy-
pothesis has changed, the 𝑝-value has changed, and it now reports a one-sided confi-
dence interval rather than a two-sided one.

243



Figure 11.18: jamovi results showing an ‘Independent Samples T-Test’ where the ac-
tual hypothesis is one-sided, i.e. that Anastasia’s students had higher grades than
Bernadette’s

What about the paired samples 𝑡-test? Suppose we wanted to test the hypothesis that
grades go up from test 1 to test 2 in Dr Zeppo’s class, and are not prepared to consider
the idea that the grades go down. In jamovi youwould do this by specifying, under the
‘Hypotheses’ option, that grade_test2 (‘Measure 1’ in jamovi, because we copied this
first into the paired variables box) > grade_test1 (‘Measure 2’ in jamovi). You should
get the results shown in Figure 11.19.

Figure 11.19: jamovi results showing a ‘Paired Samples T-Test’ where the actual hy-
pothesis is one-sided, i.e. that grade_test2 (‘Measure 1’) > grade_test1 (‘Measure 2’)

Yet again, the output changes in a predictable way. The hypothesis has changed, the
𝑝-value has changed, and the confidence interval is now one-sided.

11.8 Effect size

The most commonly used measure of effect size for a 𝑡-test is Cohen’s d (Cohen, 1988).
It’s a very simple measure in principle, with quite a few wrinkles when you start dig-
ging into the details. Cohen himself defined it primarily in the context of an inde-
pendent samples 𝑡-test, specifically the Student test. In that context, a natural way of
defining the effect size is to divide the difference between the means by an estimate of
the standard deviation. In other words, we’re looking to calculate something along the
lines of this:

𝑑 = (mean 1) − (mean 2)
std dev

and he suggested a rough guide for interpreting 𝑑 in Table 11.3.
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Table 11.3: A (very) rough guide to interpreting Cohen’s 𝑑. My personal recommen-
dation is to not use these blindly. The 𝑑 statistic has a natural interpretation in and of
itself. It re-describes the difference in means as the number of standard deviations that
separates those means. So it’s generally a good idea to think about what that means in
practical terms. In some contexts a “small” effect could be of big practical importance.
In other situations a “large” effect may not be all that interesting

𝑑-value rough interpretation
about 0.2 “small” effect
about 0.5 “moderate” effect
about 0.8 “large” effect

You’d think that this would be pretty unambiguous, but it’s not. This is largely because
Cohen wasn’t too specific on what he thought should be used as the measure of the
standard deviation (in his defence he was trying to make a broader point in his book,
not nitpick about tiny details). As discussed by McGrath & Meyer (2006), there are
several different versions in common usage, and each author tends to adopt slightly
different notation. For the sake of simplicity (as opposed to accuracy), I’ll use 𝑑 to refer
to any statistic that you calculate from the sample, and use 𝛿 to refer to a theoretical
population effect. Obviously, that does mean that there are several different things all
called 𝑑.
My suspicion is that the only time that you would want Cohen’s 𝑑 is when you’re run-
ning a 𝑡-test, and jamovi has an option to calculate the effect size for all the different
flavours of 𝑡-test it provides.

11.8.1 Cohen’s 𝑑 from one sample

The simplest situation to consider is the one corresponding to a one-sample 𝑡-test. In
this case, this is the one sample mean �̄� and one (hypothesised) population mean 𝜇0
to compare it to. Not only that, there’s really only one sensible way to estimate the
population standard deviation. We just use our usual estimate �̂�. Therefore, we end up
with the following as the only way to calculate 𝑑:

𝑑 = �̄� − 𝜇0
�̂�

When we look back at the results in Figure 11.6, the effect size value is Cohen’s 𝑑 =
0.50. Overall, then, the psychology students in Dr Zeppo’s class are achieving grades
(𝑚𝑒𝑎𝑛 = 72.3%) that are about .5 standard deviations higher than the level that you’d
expect (67.5%) if they were performing at the same level as other students. Judged
against Cohen’s rough guide, this is a moderate effect size.

11.8.2 Cohen’s 𝑑 from a Student’s 𝑡-test

The majority of discussions of Cohen’s 𝑑 focus on a situation that is analogous to
Student’s independent samples 𝑡-test, and it’s in this context that the story becomes
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messier, since there are several different versions of 𝑑 that you might want to use in
this situation. To understand why there are multiple versions of 𝑑, it helps to take the
time to write down a formula that corresponds to the true population effect size 𝛿. It’s
pretty straightforward:

𝛿 = 𝜇1 − 𝜇2
𝜎

where, as usual, 𝜇1 and 𝜇2 are the population means corresponding to group 1 and
group 2 respectively, and 𝜎 is the standard deviation (the same for both populations).
The obvious way to estimate 𝛿 is to do exactly the same thing that we did in the 𝑡-test
itself, i.e., use the samplemeans as the top line and a pooled standarddeviation estimate
for the bottom line:

𝑑 = �̄�1 − �̄�2
�̂�𝑝

where �̂�𝑝 is the exact samepooled standard deviationmeasure that appears in the 𝑡-test.
This is the most commonly used version of Cohen’s 𝑑 when applied to the outcome of a
Student 𝑡-test, and is the one provided in jamovi. It is sometimes referred to as Hedges’
𝑔 statistic (Hedges, 1981).
However, there are other possibilities which I’ll briefly describe. Firstly, you may have
reason towant to use only one of the two groups as the basis for calculating the standard
deviation. This approach (often called Glass’ △, pronounced delta) only makes most
sense when you have good reason to treat one of the two groups as a purer reflection
of “natural variation” than the other. This can happen if, for instance, one of the two
groups is a control group. Secondly, recall that in the usual calculation of the pooled
standard deviation we divide by 𝑁 − 2 to correct for the bias in the sample variance.
In one version of Cohen’s 𝑑 this correction is omitted, and instead we divide by 𝑁 .
This versionmakes sense primarily when you’re trying to calculate the effect size in the
sample rather than estimating an effect size in the population. Finally, there is a version
called Hedge’s 𝑔, based on Hedges & Olkin (1985), who point out there is a small bias
in the usual (pooled) estimation for Cohen’s 𝑑.113

In any case, ignoring all those variations that you could make use of if you wanted,
let’s have a look at the default version in jamovi. In Figure 11.10 Cohen’s 𝑑 = 0.74,
indicating that the grade scores for students in Anastasia’s class are, on average, 0.74
standard deviations higher than the grade scores for students in Bernadette’s class. For
a Welch test, the estimated effect size is the same (Figure 11.12).

11.8.3 Cohen’s 𝑑 from a paired-samples test

Finally, what shouldwe do for a paired samples 𝑡-test? In this case, the answer depends
on what it is you’re trying to do. jamovi assumes that you want to measure your effect
sizes relative to the distribution of difference scores, and the measure of 𝑑 that you
calculate is:

𝑑 = �̄�
�̂�𝐷
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where �̂�𝐷 is the estimate of the standard deviation of the differences. In Figure 11.16
Cohen’s 𝑑 = 1.45, indicating that the time 2 grade scores are, on average, 1.45 standard
deviations higher than the time 1 grade scores.

This is the version of Cohen’s 𝑑 that gets reported by the jamovi ‘Paired Samples T-Test’
analysis. The only wrinkle is figuring out whether this is the measure you want or not.
To the extent that you care about the practical consequences of your research, you often
want to measure the effect size relative to the original variables, not the difference scores
(e.g., the 1% improvement in Dr Chico’s class over time is pretty small when measured
against the amount of between-student variation in grades), in which case you use the
same versions of Cohen’s 𝑑 that you would use for a Student or Welch test. It’s not so
straightforward to do this in jamovi; essentially you have to change the structure of the
data in the spreadsheet view so I won’t go into that here,114 but the Cohen’s 𝑑 for this
perspective is quite different: it is 0.22 which is quite small when assessed on the scale
of the original variables.

11.9 Checking the normality of a sample

All of the tests that we have discussed so far in this chapter have assumed that the data
are normally distributed. This assumption is often quite reasonable, because the central
limit theorem (see Section 8.3.3) does tend to ensure that many real world quantities
are normally distributed. Any time that you suspect that your variable is actually an
average of lots of different things, there’s a pretty good chance that it will be normally
distributed, or at least close enough to normal that you can get away with using 𝑡-tests.
However, life doesn’t comewith guarantees, and besides there are lots of ways inwhich
you can end up with variables that are highly non-normal. For example, any time you
think that your variable is actually the minimum of lots of different things, there’s a
very good chance it will end up quite skewed. In psychology, response time (RT) data
is a good example of this. If you suppose that there are lots of things that could trigger
a response from a human participant, then the actual response will occur the first time
one of these trigger events occurs.115 This means that RT data are systematically non-
normal. Okay, so if normality is assumed by all the tests, and is mostly but not always
satisfied (at least approximately) by real world data, how can we check the normality
of a sample? In this section I discuss twomethods: QQ plots and the Shapiro-Wilk test.

11.9.1 QQ plots

Oneway to checkwhether a sample violates the normality assumption is to draw a “QQ
plot” (Quantile-Quantile plot). This allows you to visually check whether you’re seeing
any systematic violations. In a QQ plot, each observation is plotted as a single dot. The
x co-ordinate is the theoretical quantile that the observation should fall in if the data
were normally distributed (with mean and variance estimated from the sample), and
on the y co-ordinate is the actual quantile of the data within the sample. If the data are
normal, the dots should form a straight line. For instance, lets see what happens if we
generate data by sampling from a normal distribution, and then drawing a QQ plot.
The results are shown in Figure 11.20.
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Figure 11.20: Histogram (panel (a)) and normal QQ plot (panel (b)) of normal.data,
a normally distributed sample with 100 observations. The Shapiro-Wilk statistic as-
sociated with these data is 𝑊 = .99, indicating that no significant departures from
normality were detected (𝑝 = .54)

As you can see, these data form a pretty straight line; which is no surprise given that we
sampled them from a normal distribution! In contrast, have a look at the two data sets
shown in Figure 11.21. The top panels show the histogram and a QQ plot for a data set
that is highly skewed: the QQ plot curves upwards. The lower panels show the same
plots for a heavy tailed (i.e., high kurtosis) data set: in this case the QQ plot flattens in
the middle and curves sharply at either end.

11.9.2 QQ plots for independent and paired 𝑡-tests

In our previous analyses we showed how to conduct in jamovi an independent 𝑡-test
(Figure 11.10) and a paired samples 𝑡-test (Figure 11.16). And for these analyses jamovi
provides an option to show a QQ plot for the difference scores (which jamovi calls the
‘residuals’), which is a better way of checking the normality assumption. When we
select this option for these analyses, we get the QQ plots shown in Figure 11.22 and
Figure 11.23, respectively. My interpretation is that these plots both show that the dif-
ference scores are reasonably normally distributed, so we are good to go!

11.9.3 Shapiro-Wilk tests

QQ plots provide a nice way to informally check the normality of your data, but some-
times you’ll want to do something a bitmore formal and theShapiro-Wilk test (Shapiro
& Wilk, 1965) is probably what you’re looking for.116 As you’d expect, the null hypoth-
esis being tested is that a set of 𝑁 observations is normally distributed.

[Additional technical detail117]
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Figure 11.21: In the top row, a histogram and a normal QQ plot of the 100 observations
in a skewed data set. The skewness of the data here is 1.88, and is reflected in a QQ
plot that curves upwards. As a consequence, the Shapiro-Wilk statistic is 𝑊 = .80,
reflecting a significant departure from normality (𝑝 < .001). The bottom row shows
the same plots for a heavy tailed data set, again consisting of 100 observations. In this
case the heavy tails in the data produce a high kurtosis (6.57), and cause the QQ plot
to flatten in the middle, and curve away sharply on either side. The resulting Shapiro-
Wilk statistic is 𝑊 = .75, again reflecting significant non-normality (𝑝 < .001)

To get the Shapiro-Wilk statistic in jamovi 𝑡-tests, check the option for ‘Normality’ listed
under ‘Assumptions’. In the randomly sampled data (𝑁 = 100) we used for the QQ
plot, the value for the Shapiro-Wilk normality test statistic was𝑊 = 0.99with a 𝑝-value
of 0.54. So, not surprisingly, we have no evidence that these data depart fromnormality.
When reporting the results for a Shapiro-Wilk test, you should (as usual) make sure to
include the test statistic𝑊 and the 𝑝-value, though given that the sampling distribution
depends so heavily on 𝑁 it would probably be a politeness to include 𝑁 as well.
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Figure 11.22: jamovi QQ plot for the independent 𝑡-test analysis shown in Figure 11.10

Figure 11.23: jamovi QQ plot for the paired samples 𝑡-test analysis shown in Fig-
ure 11.16
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11.9.4 Example

In the meantime, it’s probably worth showing you an example of what happens to the
QQ plot and the Shapiro-Wilk test when the data turn out to be non-normal. For that,
let’s look at the distribution of our AFL winning margins data, which if you remember
back to Chapter 4 it didn’t look like they came from a normal distribution at all. Here’s
what happens to the QQ plot (Figure 11.24).

Figure 11.24: jamovi QQ plot showing non-normality from the AFL winning margins
data

And when we run the Shapiro-Wilk test on the afl.margins data, we get a value for the
Shapiro-Wilk normality test statistic of𝑊 = 0.94, and 𝑝−𝑣𝑎𝑙𝑢𝑒 = 9.481𝑥10−07. Clearly
a significant effect!

11.10 Testing non-normal data

Okay, suppose your data turn out to be pretty substantially non-normal, but you still
want to run something like a 𝑡-test? This situation occurs a lot in real life. For the AFL
winning margins data, for instance, the Shapiro-Wilk test made it very clear that the
normality assumption is violated. This is the situation where youwant to useWilcoxon
tests.

Like the 𝑡-test, the Wilcoxon test comes in two forms, one-sample and two-sample, and
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they’re used in more or less the exact same situations as the corresponding 𝑡-tests. Un-
like the 𝑡-test, the Wilcoxon test doesn’t assume normality, which is nice. In fact, they
don’t make any assumptions about what kind of distribution is involved. In statistical
jargon, this makes them nonparametric tests. While avoiding the normality assump-
tion is nice, there’s a drawback: theWilcoxon test is usually less powerful than the 𝑡-test
(i.e., higher type II error rate). I won’t discuss the Wilcoxon tests in as much detail as
the 𝑡-tests, but I’ll give you a brief overview.

11.10.1 Two sample Mann-Whitney 𝑈 test

I’ll start by describing theMann-Whitney𝑈 test, since it’s actually simpler than the one
sample version. Suppose we’re looking at the scores of 10 people on some test. Since
my imagination has now failed me completely, let’s pretend it’s a “test of awesome-
ness” and there are two groups of people, “A” and “B”. I’m curious to know which
group is more awesome. The data are included in the file awesome.csv, and there are
two variables apart from the usual ID variable: scores and group.

As long as there are no ties (i.e., people with the exact same awesomeness score) then
the test that we want to do is surprisingly simple. All we have to do is construct a
table that compares every observation in group A against every observation in group
B.Whenever the groupAdatum is larger, weplace a checkmark in the table (Table 11.4).

Table 11.4: Comparing observations by group for a two-sample Mann-Whitney U test

group B
14.5 10.4 12.4 11.7 13.0

6.4 . . . . .
10.7 . ✓ . . .
11.9 . ✓ . ✓ .
7.3 . . . . .

group
A

10 . . . . .

We then count up the number of checkmarks. This is our test statistic, 𝑊 .118 The actual
sampling distribution for𝑊 is somewhat complicated, and I’ll skip the details. For our
purposes, it’s sufficient to note that the interpretation of 𝑊 is qualitatively the same
as the interpretation of 𝑡 or 𝑧. That is, if we want a two-sided test then we reject the
null hypothesis when 𝑊 is very large or very small, but if we have a directional (i.e.,
one-sided) hypothesis then we only use one or the other.

In jamovi, if we run an ‘Independent Samples T-Test’ with scores as the dependent vari-
able. and group as the grouping variable, and then under the options for ‘tests’ check
the option for ‘Mann-Whitney U’, we will get results showing that 𝑈 = 3 (i.e., the same
number of checkmarks as shown above), and a 𝑝-value = 0.05556. See Figure 11.25.
Counting up the tick marks this time we get a test statistic of 𝑊 = 7. As before, if our
test is two-sided, then we reject the null hypothesis whenW is very large or very small.
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Figure 11.25: jamovi screen showing results for the Mann-Whitney 𝑈 test

11.10.2 One sample Wilcoxon test

What about the one sample Wilcoxon test (or equivalently, the paired samples
Wilcoxon test)? Suppose I’m interested in finding out whether taking a statistics class
has any effect on the happiness of students. My data is in the happiness.csv file. What
I’ve measured here is the happiness of each student before taking the class and after
taking the class, and the change score is the difference between the two. Just like we
saw with the 𝑡-test, there’s no fundamental difference between doing a paired-samples
test using before and after, versus doing a one-sample test using the change scores. As
before, the simplest way to think about the test is to construct a tabulation. The way to
do it this time is to take those change scores that are positive differences, and tabulate
them against all the complete sample. What you end up with is a table that looks like
Table 11.5.

Table 11.5: Comparing observations by group for a one-sample Wilcoxon 𝑈 test

all differences
−24 −14 −10 7 −6 −38 2 −35 −30 5

7 . . . ✓ ✓ . ✓ . . ✓
2 . . . . . . ✓ . . .

positive
differ-
ences

5 . . . . . . ✓ . . ✓

As far as running it in jamovi goes, it’s pretty much what you’d expect. For the one
sample version, you specify the ‘Wilcoxon rank’ option under ‘Tests’ in the ‘One Sample
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T-Test’ analysis window. This gives you Wilcoxon 𝑊 = 7, 𝑝-value = 0.03711. As this
shows, we have a significant effect. Evidently, taking a statistics class does have an effect
on your happiness. Switching to a paired samples version of the test won’t give us a
different answer, of course; see Figure 11.26.

Figure 11.26: jamovi screen showing results for one-sample and paired sample
Wilcoxon nonparametric tests

11.11 Summary

• The one-sample 𝑡-test is used to compare a single sample mean against a hypoth-
esised value for the population mean.

• An independent samples 𝑡-test is used to compare the means of two groups, and
tests the null hypothesis that they have the same mean. It comes in two forms:
The independent samples 𝑡-test (Student test) assumes that the groups have the
same standard deviation, The independent samples 𝑡-test (Welch test) does not.

• The paired-samples 𝑡-test is used when you have two scores from each person,
and you want to test the null hypothesis that the two scores have the same mean.
It is equivalent to taking the difference between the two scores for each person,
and then running a one sample 𝑡-test on the difference scores.

• One-sided tests are perfectly legitimate as long as they are pre-planned (like all
tests!).

• Effect size calculations for the difference between means can be calculated via the
Cohen’s 𝑑 statistic.

• Checking the normality of a sample using QQ plots and the Shapiro-Wilk test.
• If your data are non-normal, you can useMann-Whitney orWilcoxon tests instead
of 𝑡-tests for Testing non-normal data.
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Chapter 12

Correlation and linear regression

The goal in this chapter is to introduce correlation and linear regression. These are
the standard tools that statisticians rely on when analysing the relationship between
continuous predictors and continuous outcomes.

12.1 Correlations

In this section we’ll talk about how to describe the relationships between variables in
the data. To do that, we want to talk mostly about the correlation between variables.
But first, we need some data (Table 12.1).

12.1.1 The data

Table 12.1: Data for correlation analysis – descriptive statistics for the parenthood data

variable min max mean median
std.
dev IQR

Dani’s
grumpiness 41 91 63.71 62 10.05 14
Dani’s hours

slept 4.84 9.00 6.97 7.03 1.02 1.45
Dani’s son’s
hours slept 3.25 12.07 8.05 7.95 2.07 3.21

Let’s turn to a topic close to every parent’s heart: sleep. The data set we’ll use is
fictitious, but based on real events. Suppose I’m curious to find out how much my
infant son’s sleeping habits affect my mood. Let’s say that I can rate my grumpiness
very precisely, on a scale from 0 (not at all grumpy) to 100 (grumpy as a very, very
grumpy old man or woman). And lets also assume that I’ve been measuring my
grumpiness, my sleeping patterns and my son’s sleeping patterns for quite some time
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now. Let’s say, for 100 days. And, being a nerd, I’ve saved the data as a file called
parenthood.csv. If we load the data we can see that the file contains four variables
dani.sleep, baby.sleep, dani.grump and day. Note that when you first load this data
set jamovi may not have guessed the data type for each variable correctly, in which
case you should fix it: dani.sleep, baby.sleep, dani.grump and day can be specified as
continuous variables, and ID is a nominal(integer) variable.119

Next, I’ll take a look at some basic descriptive statistics and, to give a graphical depiction
of what each of the three interesting variables looks like, Figure 12.1 plots histograms.
One thing to note: just because jamovi can calculate dozens of different statistics doesn’t
mean you should report all of them. If I were writing this up for a report, I’d probably
pick out those statistics that are of most interest to me (and to my readership), and then
put them into a nice, simple table like the one in Table 12.1.120 Notice that when I put it
into a table, I gave everything “human readable” names. This is always good practice.
Notice also that I’m not getting enough sleep. This isn’t good practice, but other parents
tell me that it’s pretty standard.

(a) (b) (c)

Figure 12.1: Histograms from jamovi for the three interesting variables in the parenthood
data set

12.1.2 The strength and direction of a relationship

We can draw scatterplots to give us a general sense of how closely related two variables
are. Ideally though, we might want to say a bit more about it than that. For instance,
let’s compare the relationship between baby.sleep and dani.grump (Figure 12.2a), left,
with that between dani.sleep and dani.grump (Figure 12.2b), right. When looking at
these two plots side by side, it’s clear that the relationship is qualitatively the same
in both cases: more sleep equals less grump! However, it’s also pretty obvious that
the relationship between dani.sleep and dani.grump is stronger than the relationship
between baby.sleep and dani.grump. The plot on the right is “neater” than the one on
the left. What it feels like is that if you want to predict what mymood is, it’d help you a
little bit to know how many hours my son slept, but it’d be more helpful to know how
many hours I slept.
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(a) (b)

Figure 12.2: Scatterplots from jamovi showing the relationship between baby.sleep and
dani.grump (left) and the relationship between dani.sleep and dani.grump (right)

In contrast, let’s consider the two scatterplots shown in Figure 12.3. If we compare
the scatterplot of “baby.sleep v dani.grump” (left) to the scatterplot of “baby.sleep v
dani.sleep” (right), the overall strength of the relationship is the same, but the direction
is different. That is, if my son sleeps more, I get more sleep (positive relationship, right-
hand side), but if he sleepsmore then I get less grumpy (negative relationship, left-hand
side).

(a) (b)

Figure 12.3: Scatterplots from jamovi showing the relationship between baby.sleep and
dani.grump (left), as compared to the relationship between baby.sleep and dani.sleep
(right)
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12.1.3 The correlation coefficient

We can make these ideas a bit more explicit by introducing the idea of a correlation co-
efficient (or, more specifically, Pearson’s correlation coefficient), which is traditionally
denoted as r. The correlation coefficient between two variables 𝑋 and 𝑌 (sometimes
denoted 𝑟𝑋𝑌 ), which we’ll define more precisely in the next section, is a measure that
varies from -1 to 1. When 𝑟 = −1 it means that we have a perfect negative relationship,
and when 𝑟 = 1 it means we have a perfect positive relationship. When 𝑟 = 0, there’s
no relationship at all. If you look at Figure 12.4, you can see several plots showing what
different correlations look like.

[Additional technical detail121]

By standardising the covariance, not only do we keep all of the nice properties of the
covariance discussed earlier, but the actual values of r are on a meaningful scale: r =
1 implies a perfect positive relationship and 𝑟 = −1 implies a perfect negative rela-
tionship. I’ll expand a little more on this point later, in the section on Interpreting a
correlation. But before I do, let’s look at how to calculate correlations in jamovi.

12.1.4 Calculating correlations in jamovi

Calculating correlations in jamovi can be done by clicking on the ‘Regression’ – ‘Corre-
lation Matrix’ button. Transfer all four continuous variables across into the box on the
right to get the output in Figure 12.5.

12.1.5 Interpreting a correlation

Naturally, in real life you don’t see many correlations of 1. So how should you interpret
a correlation of, say, r = .4? The honest answer is that it really depends onwhat youwant
to use the data for, and on how strong the correlations in your field tend to be. A friend
of mine in engineering once argued that any correlation less than .95 is completely
useless (I think hewas exaggerating, even for engineering). On the other hand, there are
real cases, even in psychology, where you should really expect correlations that strong.
For instance, one of the benchmark data sets used to test theories of how people judge
similarities is so clean that any theory that can’t achieve a correlation of at least .9 really
isn’t deemed to be successful. However, when looking for (say) elementary correlates
of intelligence (e.g., inspection time, response time), if you get a correlation above .3
you’re doing very very well. In short, the interpretation of a correlation depends a lot
on the context. That said, the rough guide in Table 12.2 is pretty typical.

However, something that can never be stressed enough is that you should always look at
the scatterplot before attaching any interpretation to the data. A correlation might not
mean what you think it means. The classic illustration of this is “Anscombe’s Quartet”
(Anscombe, 1973), a collection of four data sets. Each data set has two variables, an 𝑋
and a 𝑌 . For all four data sets the mean value for 𝑋 is 9 and the mean for 𝑌 is 7.5.
The standard deviations for all 𝑋 variables are almost identical, as are those for the Y
variables. And in each case the correlation between 𝑋 and 𝑌 is 𝑟 = 0.816. You can
verify this yourself, since I happen to have saved it in a file called anscombe.csv.
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Figure 12.4: Illustration of the effect of varying the strength and direction of a correla-
tion. In the left-hand column, the correlations are 0, .33, .66 and 1. In the right-hand
column, the correlations are 0, −.33, −.66 and −1

You’d think that these four data sets would look pretty similar to one another. They do
not. If we draw scatterplots of𝑋 against𝑌 for all four variables, as shown in Figure 12.6,
we see that all four of these are spectacularly different to each other. The lesson here,
which so very many people seem to forget in real life, is “always graph your raw data”
(see Chapter 5).
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Figure 12.5: Correlations between variables in the parenthood.csv file

Table 12.2: A rough guide to interpreting correlations

Correlation Strength Direction
-1.00 to -0.90 Very strong Negative
-0.90 to -0.70 Strong Negative
-0.70 to -0.40 Moderate Negative
-0.40 to -0.20 Weak Negative
-0.20 to 0.00 Negligible Negative
0.00 to 0.20 Negligible Positive
0.20 to 0.40 Weak Positive
0.40 to 0.70 Moderate Positive
0.70 to 0.90 Strong Positive
0.90 to 1.00 Very strong Positive

Note that I say a rough guide. There aren’t hard and fast rules for what counts as strong or weak
relationships. It depends on the context

12.1.6 Spearman’s rank correlations

The Pearson correlation coefficient is pretty useful, but it does have shortcomings. One
issue stands out: what it actually measures is the strength of the linear relationship
between two variables. In other words, what it gives you is a measure of the extent to
which the data all tend to fall on a single, perfectly straight line. Often, this is a pretty
good approximation to what we mean when we say “relationship”, and so the Pearson
correlation is a good thing to calculate. Sometimes though, it isn’t.
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Figure 12.6: Anscombe’s quartet scatterplots. All four of these data sets have a Pearson
correlation of 𝑟 = .816, but they are qualitatively different from one another

One very common situation where the Pearson correlation isn’t quite the right thing to
use ariseswhen an increase in one variable𝑋 really is reflected in an increase in another
variable Y , but the nature of the relationship isn’t necessarily linear. An example of this
might be the relationship between effort and rewardwhen studying for an exam. If you
put zero effort (𝑋) into learning a subject then you should expect a grade of 0% (𝑌 ).
However, a little bit of effort will cause a massive improvement. Just turning up to
lectures means that you learn a fair bit, and if you just turn up to classes and scribble a
few things down your grade might rise to 35%, all without a lot of effort. However, you
just don’t get the same effect at the other end of the scale. As everyone knows, it takes
a lot more effort to get a grade of 90% than it takes to get a grade of 55%. What this
means is that, if I’ve got data looking at study effort and grades, there’s a pretty good
chance that Pearson correlations will be misleading.
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To illustrate, consider the data plotted in Figure 12.7, showing the relationship between
hours worked and grade received for 10 students taking some class. The curious thing
about this (highly fictitious) data set is that increasing your effort always increases your
grade. It might be by a lot or it might be by a little, but increasing effort will never de-
crease your grade. If we run a standard Pearson correlation, it shows a strong relation-
ship between hours worked and grade received, with a correlation coefficient of 0.91.
However, this doesn’t actually capture the observation that increasing hours worked
always increases the grade. There’s a sense here in which we want to be able to say that
the correlation is perfect but for a somewhat different notion of what a “relationship”
is. What we’re looking for is something that captures the fact that there is a perfect
ordinal relationship here. That is, if student 1 works more hours than student 2, then
we can guarantee that student 1 will get the better grade. That’s not what a correlation
of 𝑟 = .91 says at all.

Figure 12.7: jamovi plot showing the relationship between hours worked and grade
received for a toy data set consisting of only 10 students (each dot corresponds to one
student). The line through the middle shows the linear relationship between the two
variables. This produces a strong Pearson correlation of 𝑟 = .91. However, the interest-
ing thing to note here is that there’s actually a perfect monotonic relationship between
the two variables. In this toy example, increasing the hours worked always increases
the grade received, as illustrated by the solid line. This is reflected in a Spearman cor-
relation of 𝜌 = 1. With such a small data set, however, it’s an open question as to which
version better describes the actual relationship involved

How should we address this? Actually, it’s really easy. If we’re looking for ordinal
relationships all we have to do is treat the data as if it were ordinal scale! So, instead of
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measuring effort in terms of “hours worked”, lets rank all 10 of our students in order
of hours worked. That is, student 1 did the least work out of anyone (2 hours) so they
get the lowest rank (rank = 1). Student 4 was the next laziest, putting in only 6 hours
of work over the whole semester, so they get the next lowest rank (rank = 2). Notice
that I’m using “rank =1” to mean “low rank”. Sometimes in everyday language we talk
about “rank = 1” to mean “top rank” rather than “bottom rank”. So be careful, you can
rank “from smallest value to largest value” (i.e., small equals rank 1) or you can rank
“from largest value to smallest value” (i.e., large equals rank 1). In this case, I’m ranking
from smallest to largest, but as it’s really easy to forget whichway you set things up you
have to put a bit of effort into remembering!

Okay, so let’s have a look at our studentswhenwe rank them fromworst to best in terms
of effort and reward Table 12.3.

Table 12.3: Students ranked in terms of effort and reward

rank (hours
worked) rank (grade received)

student 1 1 1
student 2 10 10
student 3 6 6
student 4 2 2
student 5 3 3
student 6 5 5
student 7 4 4
student 8 8 8
student 9 7 7
student 10 9 9

Hmm. These are identical. The student who put in the most effort got the best grade,
the studentwith the least effort got theworst grade, etc. As the table above shows, these
two rankings are identical, so if we now correlate them we get a perfect relationship,
with a correlation of 1.0.

What we’ve just re-invented is Spearman’s rank order correlation, usually denoted 𝜌
to distinguish it from the Pearson correlation r. We can calculate Spearman’s 𝜌 using
jamovi simply by clicking the ‘Spearman’ check box in the ‘Correlation Matrix’ screen.

12.2 Scatterplots

Scatterplots are a simple but effective tool for visualising the relationship between two
variables, like we saw with the figures in the section on Correlations. It’s this latter
application that we usually have in mind when we use the term “scatterplot”. In this
kind of plot each observation corresponds to one dot. The horizontal location of the
dot plots the value of the observation on one variable, and the vertical location displays
its value on the other variable. In many situations you don’t really have a clear opinion
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about what the causal relationship is (e.g., does A cause B, or does B cause A, or does
some other variable C control both A and B). If that’s the case, it doesn’t really matter
which variable you plot on the x-axis and which one you plot on the y-axis. However,
in many situations you do have a pretty strong idea which variable you think is most
likely to be causal, or at least you have some suspicions in that direction. If so, then
it’s conventional to plot the cause variable on the x-axis, and the effect variable on the
y-axis. With that in mind, let’s look at how to draw scatterplots in jamovi, using the
same parenthooddata set (i.e. parenthood.csv) that I used when introducing correlations.

Suppose my goal is to draw a scatterplot displaying the relationship between
the amount of sleep that I get (dani.sleep) and how grumpy I am the next day
(dani.grump). There are two different ways in which we can use jamovi to get the
plot that we’re after. The first way is to use the ‘Plot’ option under the ‘Regression’
– ‘Correlation Matrix’ button, giving us the output shown in Figure 12.8. Note that
jamovi draws a line through the points, we’ll come onto this a bit later in the section
on What is a linear regression model?. Plotting a scatterplot in this way also allows
you to specify ‘Densities for variables’ and this option adds a density curve showing
how the data in each variable is distributed.

Figure 12.8: Scatterplot via the ‘Correlation Matrix’ command in jamovi

The second way do to it is to use one of the jamovi add-on modules. This module is
called ‘scatr’ and you can install it by clicking on the large ‘+’ icon in the top right of
the jamovi screen, opening the jamovi library, scrolling down until you find ‘scatr’ and
clicking ‘install’. When you have done this, you will find a new ‘Scatterplot’ command
available under the ‘Exploration’ button. This plot is a bit different than the first way,
see Figure 12.9, but the important information is the same.
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Figure 12.9: Scatterplot via the ‘scatr’ add-on module in jamovi

12.2.1 More elaborate options

Often youwill want to look at the relationships between several variables at once, using
a scatterplot matrix (in jamovi via the ‘CorrelationMatrix’ – ‘Plot’ command). Just add
another variable, for example baby.sleep to the list of variables to be correlated, and
jamovi will create a scatterplot matrix for you, just like the one in Figure 12.10.

12.3 What is a linear regression model?

Stripped to its bare essentials, linear regression models are basically a slightly fancier
version of the Pearson correlation (see Correlations), but they are actually much more
powerful tools. We’ll return to the parenthood.csvfile thatwewere using to illustrate how
correlations work. Recall that, in this data set we were trying to find out why Dani is so
very grumpy all the time and our working hypothesis was that I’m not getting enough
sleep. We drew a scatterplots to help us examine the relationship between the amount
of sleep I get and my grumpiness the following day, as in Figure 12.9, and as we saw
that this corresponded to a correlation of 𝑟 = −.90, but what we find ourselves secretly
imagining is something that looks closer to Figure 12.11(a). That is, we mentally draw
a straight line through the middle of the data. In statistics, this line that we’re drawing
is called a regression line. Notice that, since we’re not idiots, the regression line goes
through the middle of the data. We don’t find ourselves imagining anything like the
rather silly plot shown in Figure 12.11(b).
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Figure 12.10: A matrix of scatterplots produced using jamovi

This is not highly surprising. The line that I’ve drawn in Figure 12.11(b) doesn’t “fit” the
data very well, so it doesn’t make a lot of sense to propose it as a way of summarising
the data, right? This is a very simple observation to make, but it turns out to be very
powerful when we start trying to wrap just a little bit of maths around it. To do so,
let’s start with a refresher of some high school maths. The formula for a straight line is
usually written like this:

𝑦 = 𝑎 + 𝑏𝑥
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Figure 12.11: Panel (a) shows the sleep-grumpiness scatterplot from Figure 12.9 with
the best fitting regression line drawn over the top. Not surprisingly, the line goes
through the middle of the data. In contrast, panel (b) shows the same data, but with a
very poor choice of regression line drawn over the top

The two variables are 𝑥 and 𝑦, and we have two coefficients, 𝑎 and 𝑏.122 The coefficient
𝑎 represents the y-intercept of the line, and coefficient 𝑏 represents the slope of the line.
The intercept is interpreted as “the value of y that you get when 𝑥 = 0”. Similarly, a
slope of bmeans that if you increase the x-value by 1 unit, then the y-value goes up by b
units, and a negative slope means that the y-value would go down rather than up. We
use the exact same formula for a regression line. If 𝑌 is the outcome variable (the DV)
and𝑋 is the predictor variable (the 𝐼𝑉 ), then the formula that describes our regression
is written like this:

̂𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖
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Hmm. Looks like the same formula, but there’s some extra frilly bits in this version.
Let’s make sure we understand them. Firstly, notice that I’ve written 𝑋𝑖 and 𝑌𝑖 rather
than just plain old 𝑋 and 𝑌 . This is because we want to remember that we’re dealing
with actual data. In this equation,𝑋𝑖 is the value of predictor variable for the ith obser-
vation (i.e., the number of hours of sleep that I got on day i of my little study), and 𝑌𝑖
is the corresponding value of the outcome variable (i.e., my grumpiness on that day).
And although I haven’t said so explicitly in the equation, what we’re assuming is that
this formula works for all observations in the data set (i.e., for all i). Secondly, notice
that I wrote ̂𝑌𝑖 and not 𝑌𝑖 . This is because we want to make the distinction between
the actual data 𝑌𝑖, and the estimate ̂𝑌𝑖 (i.e., the prediction that our regression line is
making). Thirdly, I changed the letters used to describe the coefficients from a and 𝑏
to 𝑏0 and 𝑏1. That’s just the way that statisticians like to refer to the coefficients in a
regression model. I’ve no idea why they chose b, but that’s what they did. In any case
𝑏0 always refers to the intercept term, and 𝑏1 refers to the slope.

Excellent, excellent. Next, I can’t help but notice that, regardless of whether we’re talk-
ing about the good regression line or the bad one, the data don’t fall perfectly on the
line. Or, to say it another way, the data 𝑌𝑖 are not identical to the predictions of the
regression model ̂𝑌𝑖. Since statisticians love to attach letters, names and numbers to
everything, let’s refer to the difference between the model prediction and that actual
data point as a residual, and we’ll refer to it as 𝜖𝑖.123 Written using mathematics, the
residuals are defined as

12.4 Estimating a linear regression model

Okay, now let’s redraw our pictures but this time I’ll add some lines to show the size of
the residual for all observations. When the regression line is good, our residuals (the
lengths of the solid black lines) all look pretty small, as shown in Figure 12.12(a), but
when the regression line is a bad one the residuals are a lot larger, as you can see from
looking at Figure 12.12(b). Hmm. Maybewhat we “want” in a regressionmodel is small
residuals. Yes, that does seem to make sense. In fact, I think I’ll go so far as to say that
the “best fitting” regression line is the one that has the smallest residuals. Or, better
yet, since statisticians seem to like to take squares of everything why not say that:

The estimated regression coefficients, �̂�0 and ̂𝑏1, are those that minimise the
sum of the squared residuals, which we could either write as ∑𝑖(𝑌𝑖 − ̂𝑌𝑖)2

or as ∑𝑖 𝜖2
𝑖 .

Yes, yes that sounds even better. And since I’ve indented it like that, it probably means
that this is the right answer. And since this is the right answer, it’s probably worth
making a note of the fact that our regression coefficients are estimates (we’re trying to
guess the parameters that describe a population!), which is why I’ve added the little
hats, so that we get ̂𝑏0 and ̂𝑏1 rather than 𝑏0 and 𝑏1. Finally, I should also note that, since
there’s actually more than one way to estimate a regression model, the more technical
name for this estimation process is ordinary least squares (OLS) regression.
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Figure 12.12: A depiction of the residuals associated with the best fitting regression
line (panel a), and the residuals associated with a poor regression line (panel b). The
residuals aremuch smaller for the good regression line. Again, this is no surprise given
that the good line is the one that goes right through the middle of the data

At this point, we now have a concrete definition for what counts as our “best” choice
of regression coefficients, ̂𝑏0 and �̂�1. The natural question to ask next is, if our optimal
regression coefficients are those that minimise the sum squared residuals, how do we
find these wonderful numbers? The actual answer to this question is complicated and
doesn’t help you understand the logic of regression.124 This time I’m going to let you off
the hook. Instead of showing you the long and tedious way first and then “revealing”
the wonderful shortcut that jamovi provides, let’s cut straight to the chase and just use
jamovi to do all the heavy lifting.
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12.4.1 Linear regression in jamovi

To run my linear regression, open up the ‘Regression’ – ‘Linear Regression’ analysis in
jamovi, using the parenthood.csv data file. Then specify dani.grump as the ‘Dependent
Variable’ and dani.sleep as the variable entered in the ‘Covariates’ box. This gives the
results shown in Figure 12.13, showing an intercept ̂𝑏0 = 125.96 and the slope ̂𝑏1 =
−8.94. In other words, the best fitting regression line that I plotted in Figure 12.12 has
this formula:

̂𝑌𝑖 = 125.96 + (−8.94𝑋𝑖)

Figure 12.13: A jamovi screenshot showing a simple linear regression analysis

12.4.2 Interpreting the estimated model

Themost important thing to be able to understand is how to interpret these coefficients.
Let’s start with ̂𝑏1, the slope. If we remember the definition of the slope, a regression
coefficient of �̂�1 = −8.94 means that if I increase 𝑋𝑖 by 1, then I’m decreasing 𝑌𝑖 by
8.94. That is, each additional hour of sleep that I gain will improve my mood, reducing
my grumpiness by 8.94 grumpiness points. What about the intercept? Well, since �̂�0
corresponds to “the expected value of 𝑌𝑖 when𝑋𝑖 equals 0”, it’s pretty straightforward.
It implies that if I get zero hours of sleep (𝑋𝑖 = 0) then my grumpiness will go off the
scale, to an insane value of (𝑌𝑖 = 125.96). Best to be avoided, I think.
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12.5 Multiple linear regression

The simple linear regression model that we’ve discussed up to this point assumes that
there’s a single predictor variable that you’re interested in, in this case dani.sleep. In
fact, up to this point every statistical tool that we’ve talked about has assumed that
your analysis uses one predictor variable and one outcome variable. However, in many
(perhaps most) research projects you actually have multiple predictors that you want
to examine. If so, it would be nice to be able to extend the linear regression framework
to be able to include multiple predictors. Perhaps some kind of multiple regression
model would be in order?

Multiple regression is conceptually very simple. All we do is add more terms to our
regression equation. Let’s suppose that we’ve got two variables that we’re interested
in; perhaps we want to use both dani.sleep and baby.sleep to predict the dani.grump
variable. As before, we let 𝑌𝑖 refer to my grumpiness on the i-th day. But now we have
two $ X $ variables: the first corresponding to the amount of sleep I got and the second
corresponding to the amount of sleep my son got. So we’ll let 𝑋𝑖1 refer to the hours I
slept on the i-th day and 𝑋𝑖2 refers to the hours that the baby slept on that day. If so,
then we can write our regression model like this:

𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + 𝜖𝑖

As before, 𝜖𝑖 is the residual associated with the i-th observation, 𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖. In this
model, we now have three coefficients that need to be estimated: 𝑏0 is the intercept, 𝑏1
is the coefficient associated with my sleep, and 𝑏2 is the coefficient associated with my
son’s sleep. However, although the number of coefficients that need to be estimated
has changed, the basic idea of how the estimation works is unchanged: our estimated
coefficients ̂𝑏0, �̂�1 and ̂𝑏2 are those that minimise the sum squared residuals.

12.5.1 Doing it in jamovi

Multiple regression in jamovi is no different to simple regression. All we have to do
is add additional variables to the ‘Covariates’ box in jamovi. For example, if we want
to use both dani.sleep and baby.sleep as predictors in our attempt to explain why I’m
so grumpy, then move baby.sleep across into the ‘Covariates’ box alongside dani.sleep.
By default, jamovi assumes that themodel should include an intercept. The coefficients
we get this time are shown in Table 12.4.

Table 12.4: Adding multiple variables as predictors in a regression

(Intercept) dani.sleep baby.sleep
125.97 -8.95 0.01

The coefficient associated with dani.sleep is quite large, suggesting that every hour of
sleep I lose makes me a lot grumpier. However, the coefficient for baby.sleep is very
small, suggesting that it doesn’t really matter how much sleep my son gets. What mat-
ters as far as my grumpiness goes is how much sleep I get. To get a sense of what this
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multiple regression model looks like, Figure 12.14 shows a 3D plot that plots all three
variables, along with the regression model itself.

[Additional technical detail125]

Figure 12.14: A 3D visualisation of a multiple regression model. There are two predic-
tors in the model, dani.sleep and baby.sleep and the outcome variable is dani.grump.
Together, these three variables form a 3D space. Each observation (dot) is a point in
this space. In much the same way that a simple linear regression model forms a line in
2D space, this multiple regression model forms a plane in 3D space. When we estimate
the regression coefficients what we’re trying to do is find a plane that is as close to all
the blue dots as possible
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12.6 Quantifying the fit of the regression model

So we now know how to estimate the coefficients of a linear regression model. The
problem is, we don’t yet know if this regression model is any good. For example, the
regression.1 model claims that every hour of sleep will improve my mood by quite
a lot, but it might just be rubbish. Remember, the regression model only produces a
prediction ̂𝑌𝑖 about what my mood is like, but my actual mood is 𝑌𝑖 . If these two are
very close, then the regression model has done a good job. If they are very different,
then it has done a bad job.

12.6.1 The 𝑅2 value

Once again, let’s wrap a little bit of mathematics around this. Firstly, we’ve got the sum
of the squared residuals:

𝑆𝑆𝑟𝑒𝑠 = ∑
𝑖

(𝑌𝑖 − ̂𝑌𝑖)2

which we would hope to be pretty small. Specifically, what we’d like is for it to be very
small in comparison to the total variability in the outcome variable:

𝑆𝑆𝑡𝑜𝑡 = ∑
𝑖

(𝑌𝑖 − ̄𝑌 )2

While we’re here, let’s calculate these values ourselves, not by hand though. Let’s use
something like Excel or another standard spreadsheet programme. I have done this by
opening up the parenthood.csv file in Excel and saving it as parenthood rsquared.xls so
that I can work on it. The first thing to do is calculate the ̂𝑌 values, and for the simple
model that uses only a single predictor we would do the following:

1. Create a new column called ’ Y.pred ’ using the formula ’ = 125.97 + (-8.94 ×
dani.sleep) ’.

2. Calculate the 𝑆𝑆𝑟𝑒𝑠𝑖𝑑 by creating a new column called ’ (Y-Y.pred)^2 ’ using the
formula ’ = (dani.grump - Y.pred)^2 ’.

3. Then, at the bottom of this column calculate the sum of these values, i.e. ’ sum( (
Y-Y.pred)^2 ) ’.

4. At the bottom of the dani.grump column, calculate the mean value for
dani.grump (NB Excel uses the word ’ AVERAGE ’ rather than ’ mean ’ in
its function).

5. Then create a new column, called ’ (Y - mean(Y))^2 ) ’ using the formula ’ =
(dani.grump - AVERAGE(dani.grump))^2 ’.

6. Then, at the bottom of this column calculate the sum of these values, i.e. ‘sum( (Y
- mean(Y))^2 )’.

7. Calculate𝑅2 by typing into a blank cell the following: ‘= 1 - (SS(resid) / SS(tot) )’.

This gives a value for 𝑅2 of ‘0.8161018’. The 𝑅2 value, sometimes called the coefficient
of determination126 has a simple interpretation: it is the proportion of the variance in
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the outcome variable that can be accounted for by the predictor. So, in this case the fact
that we have obtained 𝑅2 = .816 means that the predictor (my.sleep) explains 81.6%
of the variance in the outcome (my.grump).

Naturally, you don’t actually need to type all these commands into Excel yourself if you
want to obtain the 𝑅2 value for your regression model. As we’ll see later on in the
section on Running the hypothesis tests in jamovi, all you need to do is specify this as
an option in jamovi. However, let’s put that to one side for themoment. There’s another
property of 𝑅2 that I want to point out.

12.6.2 The relationship between regression and correlation

At this pointwe can revisitmy earlier claim that regression, in this very simple form that
I’ve discussed so far, is basically the same thing as a correlation. Previously, we used the
symbol 𝑟 to denote a Pearson correlation. Might there be some relationship between the
value of the correlation coefficient 𝑟 and the𝑅2 value from linear regression? Of course
there is: the squared correlation 𝑟2 is identical to the 𝑅2 value for a linear regression
with only a single predictor. In other words, running a Pearson correlation is more
or less equivalent to running a linear regression model that uses only one predictor
variable.

12.6.3 The adjusted 𝑅2 value

One final thing to point out before moving on. It’s quite common for people to report
a slightly different measure of model performance, known as “adjusted 𝑅2”. The mo-
tivation behind calculating the adjusted 𝑅2 value is the observation that adding more
predictors into the model will always cause the 𝑅2 value to increase (or at least not
decrease).

[Additional technical detail127]

This adjustment is an attempt to take the degrees of freedom into account. The big ad-
vantage of the adjusted 𝑅2 value is that when you add more predictors to the model,
the adjusted 𝑅2 value will only increase if the new variables improve the model per-
formance more than you’d expect by chance. The big disadvantage is that the adjusted
𝑅2 value can’t be interpreted in the elegant way that 𝑅2 can. 𝑅2 has a simple inter-
pretation as the proportion of variance in the outcome variable that is explained by the
regression model. To my knowledge, no equivalent interpretation exists for adjusted
𝑅2.

An obvious question then is whether you should report 𝑅2 or adjusted 𝑅2. This is
probably a matter of personal preference. If you care more about interpretability, then
𝑅2 is better. If you care more about correcting for bias, then adjusted 𝑅2 is probably
better. Speaking just for myself, I prefer 𝑅2. My feeling is that it’s more important
to be able to interpret your measure of model performance. Besides, as we’ll see in
Hypothesis tests for regression models, if you’re worried that the improvement in 𝑅2

that you get by adding a predictor is just due to chance and not because it’s a better
model, well we’ve got hypothesis tests for that.
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12.7 Hypothesis tests for regression models

So farwe’ve talked aboutwhat a regressionmodel is, how the coefficients of a regression
model are estimated, and how we quantify the performance of the model (the last of
these, incidentally, is basically our measure of effect size). The next thing we need to
talk about is hypothesis tests. There are two different (but related) kinds of hypothesis
tests that we need to talk about: those in which we test whether the regression model
as a whole is performing significantly better than a null model, and those in which we
test whether a particular regression coefficient is significantly different from zero.

12.7.1 Testing the model as a whole

Okay, suppose you’ve estimated your regression model. The first hypothesis test you
might try is the null hypothesis that there is no relationship between the predictors and
the outcome, and the alternative hypothesis that the data are distributed in exactly the
way that the regression model predicts.

[Additional technical detail128]

We’ll see much more of the 𝐹 -statistic in Chapter 13, but for now just know that we can
interpret large 𝐹 -values as indicating that the null hypothesis is performing poorly in
comparison to the alternative hypothesis. In a moment I’ll show you how to do the test
in jamovi the easyway, but first let’s have a look at the tests for the individual regression
coefficients.

12.7.2 Tests for individual coefficients

The 𝐹 -test that we’ve just introduced is useful for checking that the model as a whole is
performing better than chance. If your regression model doesn’t produce a significant
result for the 𝐹 -test then you probably don’t have a very good regression model (or,
quite possibly, you don’t have very good data). However, while failing this test is a
pretty strong indicator that the model has problems, passing the test (i.e., rejecting the
null) doesn’t imply that the model is good! Why is that, you might be wondering?
The answer to that can be found by looking at the coefficients for the Multiple linear
regression model we have already looked at (Table 12.4)

I can’t help but notice that the estimated regression coefficient for the baby.sleep vari-
able is tiny (0.01), relative to the value that we get for dani.sleep (−8.95). Given that
these two variables are absolutely on the same scale (they’re both measured in “hours
slept”), I find this illuminating. In fact, I’m beginning to suspect that it’s really only the
amount of sleep that I get that matters in order to predict my grumpiness. We can re-
use a hypothesis test that we discussed earlier, the 𝑡-test. The test that we’re interested
in has a null hypothesis that the true regression coefficient is zero (𝑏 = 0), which is to
be tested against the alternative hypothesis that it isn’t (𝑏 ≠ 0). That is:

𝐻0 ∶ 𝑏 = 0
𝐻1 ∶ 𝑏 ≠ 0
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How can we test this? Well, if the central limit theorem is kind to us we might be able
to guess that the sampling distribution of �̂�, the estimated regression coefficient, is a
normal distribution with mean centred on 𝑏. What that would mean is that if the null
hypothesis were true, then the sampling distribution of �̂� has mean zero and unknown
standard deviation. Assuming that we can come up with a good estimate for the stan-
dard error of the regression coefficient, 𝑠𝑒(�̂�), then we’re in luck. That’s exactly the
situation for which we introduced the one-sample 𝑡-test back in Chapter 11. So let’s
define a 𝑡-statistic like this:

𝑡 =
̂𝑏

𝑆𝐸( ̂𝑏)

I’ll skip over the reasons why, but our degrees of freedom in this case are 𝑑𝑓 = 𝑁 −
𝐾 −1. Irritatingly, the estimate of the standard error of the regression coefficient, 𝑠𝑒( ̂𝑏),
is not as easy to calculate as the standard error of the mean that we used for the simpler
𝑡-tests in Chapter 11. In fact, the formula is somewhat ugly, and not terribly helpful
to look at.129 For our purposes it’s sufficient to point out that the standard error of the
estimated regression coefficient depends on both the predictor and outcome variables,
and it is somewhat sensitive to violations of the homogeneity of variance assumption
(discussed shortly).

In any case, this 𝑡-statistic can be interpreted in the same way as the 𝑡-statistics that
we discussed in Chapter 11. Assuming that you have a two-sided alternative (i.e., you
don’t really care if b > 0 or b < 0), then it’s the extreme values of t (i.e., a lot less than
zero or a lot greater than zero) that suggest that you should reject the null hypothesis.

12.7.3 Running the hypothesis tests in jamovi

To compute all of the statistics that we have talked about so far, all you need to do is
make sure the relevant options are checked in jamovi and then run the regression. If
we do that, as in Figure 12.15, we get a whole bunch of useful output.

The ‘Model Coefficients’ at the bottom of the jamovi analysis results shown in Fig-
ure 12.15 provides the coefficients of the regressionmodel. Each row in this table refers
to one of the coefficients in the regressionmodel. The first row is the intercept term, and
the later ones look at each of the predictors. The columns give you all of the relevant
information. The first column is the actual estimate of 𝑏 (e.g., 125.97 for the intercept,
and -8.95 for the dani.sleep predictor). The second column is the standard error esti-
mate �̂�𝑏. The third and fourth columns provide the lower and upper values for the 95%
confidence interval around the 𝑏 estimate (more on this later). The fifth column gives
you the 𝑡-statistic, and it’s worth noticing that in this table 𝑡 = �̂�

𝑠𝑒(�̂�) every time. Finally,
the last column gives you the actual 𝑝-value for each of these tests.130
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Figure 12.15: A jamovi screenshot showing a multiple linear regression analysis, with
some useful options checked

The only thing that the coefficients table itself doesn’t list is the degrees of freedom
used in the 𝑡-test, which is always 𝑁 − 𝐾 − 1 and is listed in the table at the top of
the output, labelled ‘Model Fit Measures’. We can see from this table that the model
performs significantly better than you’d expect by chance (𝐹(2, 97) = 215.24, 𝑝 < .001),
which isn’t all that surprising: the 𝑅2 = .81 value indicate that the regression model
accounts for 81% of the variability in the outcomemeasure (and 82% for the adjusted𝑅2

). However, when we look back up at the 𝑡-tests for each of the individual coefficients,
we have pretty strong evidence that the baby.sleep variable has no significant effect. All
the work in this model is being done by the dani.sleep variable. Taken together, these
results suggest that this regression model is actually the wrong model for the data.
You’d probably be better off dropping the baby.sleep predictor entirely. In other words,
the simple regression model that we started with is the better model.

12.8 Regarding regression coefficients

Before moving on to discuss the assumptions underlying linear regression and what
you can do to check if they’re being met, there’s two more topics I want to briefly dis-
cuss, both of which relate to the regression coefficients. The first thing to talk about
is calculating confidence intervals for the coefficients. After that, I’ll discuss the some-
what murky question of how to determine which predictor is most important.
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12.8.1 Confidence intervals for the coefficients

Like any population parameter, the regression coefficients 𝑏 cannot be estimated with
complete precision from a sample of data; that’s part of why we need hypothesis tests.
Given this, it’s quite useful to be able to report confidence intervals that capture our un-
certainty about the true value of 𝑏. This is especially useful when the research question
focuses heavily on an attempt to find out how strongly variable 𝑋 is related to variable
𝑌 , since in those situations the interest is primarily in the regression weight 𝑏.
[Additional technical detail131]

In jamovi we had already specified the ‘95% Confidence interval’ as shown in Fig-
ure 12.15, although we could easily have chosen another value, say a ‘99% Confidence
interval’ if that is what we decided on.

12.8.2 Calculating standardised regression coefficients

One more thing that you might want to do is to calculate “standardised” regression
coefficients, often denoted 𝛽. The rationale behind standardised coefficients goes like
this. In a lot of situations, your variables are on fundamentally different scales. Sup-
pose, for example, my regression model aims to predict people’s 𝐼𝑄 scores using their
educational attainment (number of years of education) and their income as predictors.
Obviously, educational attainment and income are not on the same scales. The num-
ber of years of schooling might only vary by 10s of years, whereas income can vary by
10,000s of dollars (or more). The units of measurement have a big influence on the re-
gression coefficients. The 𝑏 coefficients onlymake sensewhen interpreted in light of the
units, both of the predictor variables and the outcome variable. This makes it very dif-
ficult to compare the coefficients of different predictors. Yet there are situations where
you really do want to make comparisons between different coefficients. Specifically,
you might want some kind of standard measure of which predictors have the strongest
relationship to the outcome. This is what standardised coefficients aim to do.

The basic idea is quite simple; the standardised coefficients are the coefficients that you
would have obtained if you’d converted all the variables to z-scores before running the
regression.132 The idea here is that, by converting all the predictors to z-scores, they all
go into the regression on the same scale, thereby removing the problem of having vari-
ables on different scales. Regardless of what the original variables were, a 𝛽 value of
1 means that an increase in the predictor of 1 standard deviation will produce a corre-
sponding 1 standard deviation increase in the outcome variable. Therefore, if variable
𝐴 has a larger absolute value of 𝛽 than variable 𝐵, it is deemed to have a stronger rela-
tionship with the outcome. Or at least that’s the idea. It’s worth being a little cautious
here, since this does rely very heavily on the assumption that “a 1 standard deviation
change” is fundamentally the same kind of thing for all variables. It’s not always obvi-
ous that this is true.

[Additional technical detail133]

To make things even simpler, jamovi has an option that computes the 𝛽 coefficients for
you using the ‘Standardized estimate’ checkbox in the ‘Model Coefficients’ options, see
results in Figure 12.16.
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Figure 12.16: Standardised coefficients, with 95% confidence intervals, for multiple lin-
ear regression

These results clearly show that the dani.sleep variable has a much stronger effect than
the baby.sleep variable. However, this is a perfect example of a situationwhere it would
probably make sense to use the original coefficients b rather than the standardised co-
efficients 𝛽. After all, my sleep and the baby’s sleep are already on the same scale:
number of hours slept. Why complicate matters by converting these to z-scores?

12.9 Assumptions of regression

The linear regression model that I’ve been discussing relies on several assumptions. In
Model checking we’ll talk a lot more about how to check that these assumptions are
being met, but first let’s have a look at each of them.

• Linearity. A pretty fundamental assumption of the linear regressionmodel is that
the relationship between 𝑋 and 𝑌 actually is linear! Regardless of whether it’s
a simple regression or a multiple regression, we assume that the relationships
involved are linear.

• Independence: residuals are independent of each other. This is really just a “catch
all” assumption, to the effect that “there’s nothing else funny going on in the resid-
uals”. If there is something weird (e.g., the residuals all depend heavily on some
other unmeasured variable) going on, it might screw things up. Independence
isn’t something that you can check directly and specifically with diagnostic tools,
but if your regression diagnostics are messed up then think carefully about the
independence of your observations and residuals.

279



• Normality. Like many of the models in statistics, basic simple or multiple linear
regression relies on an assumption of normality. Specifically, it assumes that the
residuals are normally distributed. It’s actually okay if the predictors 𝑋 and the
outcome 𝑌 variables are non-normal, so long as the residuals 𝜖 are normal. See
the Checking the normality of the residuals section.

• Equality (or “homogeneity”) of variance. Strictly speaking, the regression model
assumes that each residual 𝜖𝑖 is generated from a normal distribution with mean
0, and (more importantly for the current purposes) with a standard deviation 𝜎
that is the same for every single residual. In practice, it’s impossible to test the
assumption that every residual is identically distributed. Instead, what we care
about is that the standard deviation of the residual is the same for all values of

̂𝑌 , and (if we’re being especially diligent) all values of every predictor 𝑋 in the
model.

So, we have four main assumptions for linear regression (that neatly form the acronym
LINE). And there are also a couple of other things we should also check for:

• Uncorrelated predictors. The idea here is that, in a multiple regression model,
you don’t want your predictors to be too strongly correlated with each other. This
isn’t “technically” an assumption of the regression model, but in practice it’s re-
quired. Predictors that are too strongly correlated with each other (referred to as
“collinearity”) can cause problems when evaluating the model. See Checking for
collinearity section.

• No “bad” outliers. Again, not actually a technical assumption of the model (or
rather, it’s sort of implied by all the others), but there is an implicit assump-
tion that your regression model isn’t being too strongly influenced by one or two
anomalous data points because this raises questions about the adequacy of the
model and the trustworthiness of the data in some cases. See the section on Out-
liers and anomalous data.

12.10 Model checking

The main focus of this section is regression diagnostics, a term that refers to the art
of checking that the assumptions of your regression model have been met, figuring out
how to fix themodel if the assumptions are violated, and generally to check that nothing
“funny” is going on. I refer to this as the “art” of model checking with good reason. It’s
not easy, and while there are a lot of easily available tools that you can use to diagnose
andmaybe even cure the problems that affect your model (if there are any, that is!), you
really do need to exercise a certain amount of judgement when doing this.

In this section I describe several different things you cando to check that your regression
model is doing what it’s supposed to. It doesn’t cover the full space of things you could
do, but it’s still muchmore detailed thanwhat is often done in practice – unfortunately!
But it’s important that you get a sense of what tools are at your disposal, so I’ll try to
introduce a bunch of them here. Finally, I should note that this section draws quite
heavily from Fox &Weisberg (2011), the book associated with the “car” package that is
used to conduct regression analysis in 𝑅. The “car” package is notable for providing
some excellent tools for regression diagnostics, and the book itself talks about them in
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an admirably clear fashion. I don’t want to sound too gushy about it, but I do think that
Fox & Weisberg (2011) is well worth reading, even if some of the advanced diagnostic
techniques are only available in “R” and not jamovi.

12.10.1 Three kinds of residuals

The majority of regression diagnostics revolve around looking at the residuals, and
there are several different kinds of residual that we might consider. In particular, the
following three kinds of residuals are referred to in this section: “ordinary residu-
als”, “standardised residuals”, and “Studentised residuals”. There is a fourth kind
that you’ll see referred to in some of the Figures, and that’s the “Pearson residual”.
However, for the models that we’re talking about in this chapter the Pearson residual
is identical to the ordinary residual.

The first and simplest kind of residuals thatwe care about are ordinary residuals. These
are the actual raw residuals that I’ve been talking about throughout this chapter so
far. The ordinary residual is just the difference between the predicted value ̂𝑌𝑖 and the
observed value 𝑌𝑖. I’ve been using the notation 𝜖𝑖 to refer to the i-th ordinary residual
and so, with this in mind, we have the very simple equation:

𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖

This is of course what we saw earlier, and unless I specifically refer to some other kind
of residual, this is the one I’m talking about. So there’s nothing new here. I just wanted
to repeat myself. One drawback to using ordinary residuals is that they’re always on a
different scale, depending onwhat the outcomevariable is andhowgood the regression
model is. That is, unless you’ve decided to run a regression model without an intercept
term, the ordinary residuals will have mean 0 but the variance is different for every
regression. In a lot of contexts, especially where you’re only interested in the pattern of
the residuals and not their actual values, it’s convenient to estimate the standardised
residuals, which are normalised in such a way as to have a standard deviation of 1.

[Additional technical detail134]

The third kind of residuals are Studentised residuals (also called “jackknifed residu-
als”) and they’re even fancier than standardised residuals. Again, the idea is to take the
ordinary residual and divide it by some quantity in order to estimate some standard-
ised notion of the residual.135

Beforemoving on, I should point out that you don’t often need to obtain these residuals
yourself, even though they are at the heart of almost all regression diagnostics. Most
of the time the various options that provide the diagnostics, or assumption checks, will
take care of these calculations for you. Even so, it’s always nice to know how to actually
get hold of these things yourself in case you ever need to do something non-standard.

12.10.2 Checking the linearity of the relationship

We should check for the linearity of the relationships between the predictors and the
outcomes. There’s a few different things that you might want to do in order to check
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this. Firstly, it never hurts to just plot the relationship between the predicted values
̂𝑌𝑖 and the observed values 𝑌𝑖 for the outcome variable, as illustrated in Figure 12.17.

To draw this in jamovi we saved the predicted values to the data set, and then drew a
scatterplot of the observed against the predicted (fitted) values. This gives you a kind
of “big picture view” – if this plot looks approximately linear, then we’re probably not
doing too badly (though that’s not to say that there aren’t problems). However, if you
can see big departures from linearity here, then it strongly suggests that you need to
make some changes.

Figure 12.17: jamovi plot of the predicted values against the observed values of the
outcome variable. A straight(-ish) line is what we are hoping to see here. This looks
pretty good, suggesting that there is nothing grossly wrong

In any case, in order to get a more detailed picture it’s often more informative to look
at the relationship between the predicted values and the residuals themselves. Again,
in jamovi you can save the residuals to the data set and then draw a scatterplot of the
predicted values against the residual values, as in Figure 12.18. As you can see, not
only does it draw the scatterplot showing the predicted value against the residuals,
you can also plot a line through the data that shows the relationship between the two.
Ideally, this should be a straight, perfectly horizontal line. In practice, we’re looking for
a reasonably straight or flat line. This is a matter of judgement.

More advanced versions of the same plot are produced by checking ‘Residuals plots’ in
the regression analysis ‘Assumption checks’ options in jamovi. These are useful for
checking linearity, normality and equality of variance assumptions, and we look at
these in more detail in Section 12.10.3. This option not only draws plots comparing
the predicted values to the residuals, it does so for each individual predictor.
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Figure 12.18: jamovi plot of the predicted values against the residuals, with a line show-
ing the relationship between the two. If this is horizontal and straight(-ish), thenwe can
feel reasonably confident that the “average residual” for all “predicted values” is more
or less the same.

12.10.3 Checking the normality of the residuals

Like many of the statistical tools we’ve discussed in this book, regression models rely
on a normality assumption. In this case, we assume that the residuals are normally
distributed. The first thing we can do is draw a QQ-plot via the ‘Assumption Checks’
– ‘Assumption Checks’ – ‘Q-Q plot of residuals’ option. The output is shown in Fig-
ure 12.19, showing the standardised residuals plotted as a function of their theoretical
quantiles according to the regression model.

Another thing we should check is the relationship between the predicted (fitted) values
and the residuals themselves. We can get jamovi to do this using the ‘Residuals Plots’
option, which provides a scatterplot for each predictor variable, the outcome variable,
and the predicted values against residuals, see Figure 12.20. In these plots we are look-
ing for a fairly uniform distribution of dots, with no clear bunching or patterning of the
dots. Looking at these plots, there is nothing particularly worrying as the dots are fairly
evenly spread across the whole plot. There may be a little bit of non-uniformity in plot
(b), but it is not a strong deviation and probably not worth worrying about.
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Figure 12.19: Plot of the theoretical quantiles according to the model, against the quan-
tiles of the standardised residuals, produced in jamovi

Figure 12.20: Residuals plots produced in jamovi
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If we were worried, then in a lot of cases the solution to this problem (and many oth-
ers) is to transform one or more of the variables. We discussed the basics of variable
transformation in Section 6.3, but I do want to make special note of one additional pos-
sibility that I didn’t explain fully earlier: the Box-Cox transform. The Box-Cox function
is a fairly simple one and it’s very widely used.136

You can calculate it using the BOXCOX function in the ‘Compute’ variables screen in
jamovi.

12.10.4 Checking equality of variance

The regression models that we’ve talked about all make an equality (i.e.homogeneity)
of variance assumption: the variance of the residuals is assumed to be constant. To
plot this in jamovi first we need to calculate the square root of the (absolute) size of
the residual137 and then plot this against the predicted values, as in Figure 12.21. Note
that this plot actually uses the standardised residuals rather than the raw ones, but
it’s immaterial from our point of view. What we’re looking to see here is a straight,
horizontal line running through the middle of the plot.138

Figure 12.21: jamovi plot of the predicted values (model predictions) against the square
root of the absolute standardised residuals. This plot is used to diagnose violations of
homogeneity of variance. If the variance is really constant, then the line through the
middle should be horizontal and flat(-ish).
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12.10.5 Checking for collinearity

Another regression diagnostic is provided by variance inflation factors (VIFs), which
are useful for determining whether or not the predictors in your regression model are
too highly correlated with each other. There is a variance inflation factor associated
with each predictor 𝑋𝑘 in the model.139

If you’ve only got two predictors, the VIF values are always going to be the same, as
we can see if we click on the ‘Collinearity’ checkbox in the ‘Regression’ – ‘Assumptions’
options in jamovi. For both dani.sleep and baby.sleep the VIF is 1.65. And since the
square root of 1.65 is 1.28, we see that the correlation between our two predictors isn’t
causing much of a problem.

To give a sense of howwe could end up with a model that has bigger collinearity prob-
lems, suppose I were to run a much less interesting regression model, in which I tried
to predict the day on which the data were collected, as a function of all the other vari-
ables in the data set. To see why this would be a bit of a problem, let’s have a look at
the correlation matrix for all four variables (Figure 12.22).

Figure 12.22: Correlation matrix in jamovi for all four variables

We have some fairly large correlations between some of our predictor variables! When
we run the regression model and look at the VIF values, we see that the collinearity
is causing a lot of uncertainty about the coefficients. First, run the regression, as in
Figure 12.23 and you can see from the VIF values that, yep, that’s some mighty fine
collinearity there.

12.10.6 Outliers and anomalous data

One danger that you can run into with linear regression models is that your analysis
might be disproportionately sensitive to a smallish number of “unusual” or “anoma-
lous” observations. I discussed this idea previously in Section 5.2.3 in the context of
discussing the outliers that get automatically identified by the boxplot option under
‘Exploration’ – ‘Descriptives’, but this time we need to be much more precise. In the
context of linear regression, there are three conceptually distinct ways in which an ob-
servation might be called “anomalous”. All three are interesting, but they have rather
different implications for your analysis.
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Figure 12.23: Collinearity statistics for multiple regression, produced in jamovi

Figure 12.24: An illustration of outliers. The solid line shows the regression line with
the anomalous outlier observation included. The dashed line plots the regression line
estimated without the anomalous outlier observation included. The vertical line from
the outlier point to the dashed regression line illustrates the large residual error for the
outlier
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The first kind of unusual observation is an outlier. The definition of an outlier (in this
context) is an observation that is very different from what the regression model pre-
dicts. An example is shown in Figure 12.24, the outlier has an unusual value on the
outcome (y-axis location), but not the predictor (x-axis location) and lies a long way
from the regression line. In practice, we operationalise this concept by saying that an
outlier is an observation that has a very large residual, 𝜖∗

𝑖 . Also see the lower left plot
of Anscombe’s quartet, Figure 12.6.

Outliers are interesting: a big outlier might correspond to junk data, e.g., the variables
might have been recorded incorrectly in the data set, or some other defect may be de-
tectable. Note that you shouldn’t throw an observation away just because it’s an outlier.
But the fact that it’s an outlier is often a cue to look more closely at that case and try to
find out why it’s so different.

Figure 12.25: An illustration of high leverage points. The anomalous observation in
this case is unusual both in terms of the predictor (x-axis) and the outcome (y-axis), but
this unusualness is highly consistent with the pattern of correlations that exists among
the other observations. The observation falls very close to the regression line and does
not distort it by very much

The secondway inwhich an observation can be unusual is if it has high leverage, which
happens when the observation is very different from all the other observations. This
doesn’t necessarily have to correspond to a large residual. If the observation happens
to be unusual on all variables in precisely the same way, it can actually lie very close
to the regression line. An example of this is shown in Figure 12.25. The leverage of an
observation is operationalised in terms of its hat value, usually written ℎ𝑖. The formula
for the hat value is rather complicated140 but its interpretation is not: ℎ𝑖 is a measure
of the extent to which the i-th observation is “in control” of where the regression line
ends up going.

In general, if an observation lies far away from the other ones in terms of the predictor
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variables, it will have a large hat value (as a rough guide, high leverage is when the
hat value is more than 2-3 times the average; and note that the sum of the hat values
is constrained to be equal to 𝐾 + 1). High leverage points are also worth looking at in
more detail, but they’re much less likely to be a cause for concern unless they are also
outliers.

This brings us to our third measure of unusualness, the influence of an observation. A
high influence observation is an outlier that has high leverage. That is, it is an obser-
vation that is very different to all the other ones in some respect, and also lies a long
way from the regression line. This is illustrated in Figure 12.26. Notice the contrast
to the previous two figures. Outliers don’t move the regression line much and neither
do high leverage points. But something that is both an outlier and has high leverage,
well that has a big effect on the regression line. That’s why we call these points high
influence, and it’s why they’re the biggest worry. We operationalise influence in terms
of a measure known as Cook’s distance.141

Figure 12.26: An illustration of high influence points. In this case, the anomalous obser-
vation is highly unusual on the predictor variable (x-axis), and falls a longway from the
regression line. As a consequence, the regression line is highly distorted, even though
(in this case) the anomalous observation is entirely typical in terms of the outcome vari-
able (y-axis)

In order to have a large Cook’s distance an observation must be a fairly substantial
outlier and have high leverage. As a rough guide, Cook’s distance greater than 1 is
often considered large (that’s what I typically use as a quick and dirty rule).

In jamovi, information about Cook’s distance can be calculated by clicking on the
‘Cook’s Distance’ checkbox in the ‘Assumption Checks’ – ‘Data Summary’ options.
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When you do this, for the multiple regressionmodel we have been using as an example
in this chapter, you get the results as shown in Figure 12.27.

Figure 12.27: jamovi output showing the table for the Cooks distance statistics

You can see that, in this example, the mean Cook’s distance value is 0.01, and the range
is from 0.00 to 0.11, so this is some way off the rule of thumb figure mentioned above
that a Cook’s distance greater than 1 is considered large.

An obvious question to ask next is, if you do have large values of Cook’s distance what
should you do? As always, there’s no hard and fast rule. Probably the first thing to
do is to try running the regression with the outlier with the greatest Cook’s distance142
excluded and see what happens to the model performance and to the regression coeffi-
cients. If they really are substantially different, it’s time to start digging into your data
set and your notes that you no doubt were scribbling as your ran your study. Try to
figure out why the point is so different. If you start to become convinced that this one
data point is badly distorting your results then you might consider excluding it, but
that’s less than ideal unless you have a solid explanation for why this particular case is
qualitatively different from the others and therefore deserves to be handled separately.

12.11 Model selection

One fairly major problem that remains is the problem of “model selection”. That is,
if we have a data set that contains several variables, which ones should we include as
predictors, and which ones should we not include? In other words, we have a problem
of variable selection. In general, model selection is a complex business but it’s made
somewhat simpler if we restrict ourselves to the problem of choosing a subset of the
variables that ought to be included in the model. Nevertheless, I’m not going to try
covering even this reduced topic in a lot of detail. Instead, I’ll talk about two broad
principles that you need to think about, and then discuss one concrete tool that jamovi
provides to help you select a subset of variables to include in your model. First, the two
principles:

• It’s nice to have an actual substantive basis for your choices. That is, in a lot of
situations you the researcher have good reasons to pick out a smallish number
of possible regression models that are of theoretical interest. These models will
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have a sensible interpretation in the context of your field. Never discount the im-
portance of this. Statistics serves the scientific process, not the other way around.

• To the extent that your choices rely on statistical inference, there is a trade off
between simplicity and goodness of fit. As you add more predictors to the model
you make it more complex. Each predictor adds a new free parameter (i.e., a new
regression coefficient), and each new parameter increases the model’s capacity to
“absorb” random variations. So the goodness of fit (e.g., 𝑅2) continues to rise,
sometimes trivially or by chance, as you add more predictors no matter what. If
you want your model to be able to generalise well to new observations you need
to avoid throwing in too many variables.

This latter principle is often referred to as Ockham’s razor and is often summarised in
terms of the following pithy saying: do not multiply entities beyond necessity. In this
context, it means don’t chuck in a bunch of largely irrelevant predictors just to boost
your 𝑅2. Hmm. Yeah, the original was better.

In any case, what we need is an actual mathematical criterion that will implement the
qualitative principle behind Ockham’s razor in the context of selecting a regression
model. As it turns out there are several possibilities. The one that I’ll talk about is the
Akaike information criterion (AIC) (Akaike, 1974) simply because it’s available as an
option in jamovi.143

The smaller the AIC value, the better themodel performance. If we ignore the low level
details it’s fairly obviouswhat the AIC does. On the left we have a term that increases as
themodel predictions getworse; on the rightwe have a term that increases as themodel
complexity increases. The best model is the one that fits the data well (low residuals,
left-hand side) using as few predictors as possible (low K, right-hand side). In short,
this is a simple implementation of Ockham’s razor.

AIC can be added to the ‘Model Fit Measures’ output Table when the ‘AIC’ checkbox is
clicked, and a rather clunkyway of assessing different models is seeing if the AIC value
is lower if you remove one or more of the predictors in the regression model. This is
the only way currently implemented in jamovi, but there are alternatives in other more
powerful programmes, such as R. These alternative methods can automate the process
of selectively removing (or adding) predictor variables to find the best AIC. Although
these methods are not implemented in jamovi, I will mention them briefly below just
so you know about them.

12.11.1 Backward elimination

In backward elimination you start with the complete regression model, including all
possible predictors. Then, at each “step” we try all possible ways of removing one of
the variables, and whichever of these is best (in terms of lowest AIC value) is accepted.
This becomes our new regressionmodel, andwe then try all possible deletions from the
newmodel, again choosing the optionwith lowest AIC. This process continues until we
end up with a model that has a lower AIC value than any of the other possible models
that you could produce by deleting one of its predictors.
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12.11.2 Forward selection

As an alternative, you can also try forward selection. This time around we start with
the smallest possible model as our start point, and only consider the possible additions
to the model. However, there’s one complication. You also need to specify what the
largest possible model you’re willing to entertain is.

Although backward and forward selection can lead to the same conclusion, they don’t
always.

12.11.3 A caveat

Automated variable selection methods are seductive things, especially when they’re
bundled up in (fairly) simple functions in powerful statistical programmes. They pro-
vide an element of objectivity to your model selection, and that’s kind of nice. Unfor-
tunately, they’re sometimes used as an excuse for thoughtlessness. No longer do you
have to think carefully about which predictors to add to the model and what the theo-
retical basis for their inclusionmight be. Everything is solved by themagic of AIC. And
if we start throwing around phrases like Ockham’s razor, well it sounds like everything
is wrapped up in a nice neat little package that no-one can argue with.

Or, perhaps not. Firstly, there’s very little agreement on what counts as an appropriate
model selection criterion. When I was taught backward elimination as an undergradu-
ate, we used 𝐹 -tests to do it, because that was the default method used by the software.
I’ve described using AIC, and since this is an introductory text that’s the only method
I’ve described, but the AIC is hardly the Word of the Gods of Statistics. It’s an ap-
proximation, derived under certain assumptions, and it’s guaranteed to work only for
large samples when those assumptions are met. Alter those assumptions and you get a
different criterion, like the Bayesian Information Criterion (BIC) for instance (also avail-
able in jamovi). Take a different approach again and you get the normalised maximum
likelihood (NML) criterion. Decide that you’re a Bayesian and you get model selection
based on posterior odds ratios. Then there are a bunch of regression specific tools that
I haven’t mentioned. And so on. All of these different methods have strengths and
weaknesses, and some are easier to calculate than others (AIC is probably the easiest of
the lot, which might account for its popularity). Almost all of them produce the same
answers when the answer is “obvious” but there’s a fair amount of disagreement when
the model selection problem becomes hard.

What does this mean in practice? Well, you could go and spend several years teaching
yourself the theory of model selection, learning all the ins and outs of it so that you
could finally decide on what you personally think the right thing to do is. Speaking
as someone who actually did that, I wouldn’t recommend it. You’ll probably come out
the other side even more confused than when you started. A better strategy is to show
a bit of common sense. If you’re staring at the results of an automated backwards or
forwards selection procedure, and the model that makes sense is close to having the
smallest AIC but is narrowly defeated by a model that doesn’t make any sense, then
trust your instincts. Statistical model selection is an inexact tool, and as I said at the
beginning, interpretability matters.

292



12.11.4 Comparing two regression models

An alternative to using automated model selection procedures is for the researcher to
explicitly select two or more regression models to compare to each other. You can do
this in a few different ways, depending on what research question you’re trying to an-
swer. Suppose we want to know whether or not the amount of sleep that my son got
has any relationship to my grumpiness, over and above what wemight expect from the
amount of sleep that I got. We also want to make sure that the day on which we took
the measurement has no influence on the relationship. That is, we’re interested in the
relationship between baby.sleep and dani.grump, and from that perspective dani.sleep
and day are nuisance variable or covariates that we want to control for. In this situ-
ation, what we would like to know is whether dani.grump ~ dani.sleep + day + baby
.sleep (which I’ll call Model 2, or M2) is a better regression model for these data than
dani.grump ~ dani.sleep + day (which I’ll call Model 1, or M1). There are two different
ways we can compare these two models, one based on a model selection criterion like
AIC, and the other based on an explicit hypothesis test. I’ll show you the AIC based
approach first because it’s simpler, and follows naturally from discussion in the last
section. The first thing I need to do is actually run the two regressions, note the AIC for
each one, and then select the model with the smaller AIC value as it is judged to be the
better model for these data. Actually, don’t do this just yet. Read on because there is an
easy way in jamovi to get the AIC values for different models included in one table.144

A somewhat different approach to the problem comes out of the hypothesis testing
framework. Suppose you have two regression models, where one of them (Model 1)
contains a subset of the predictors from the other one (Model 2). That is, Model 2 con-
tains all of the predictors included in Model 1, plus one or more additional predictors.
When this happenswe say thatModel 1 is nestedwithinModel 2, or possibly thatModel
1 is a submodel of Model 2. Regardless of the terminology, what this means is that we
can think of Model 1 as a null hypothesis and Model 2 as an alternative hypothesis.
And in fact we can construct an 𝐹 -test for this in a fairly straightforward fashion.145

Okay, so that’s the hypothesis test that we use to compare two regressionmodels to one
another. Now, how do we do it in jamovi? The answer is to use the ‘Model Builder’
option and specify the Model 1 predictors dani.sleep and day in ‘Block 1’ and then add
the additional predictor from Model 2 (baby.sleep) in ‘Block 2’, as in Figure 12.28. This
shows, in the ‘Model Comparisons’ Table, that for the comparisons between Model 1
and Model 2, 𝐹(1, 96) = 0.00, 𝑝 = 0.954. Since we have p > .05 we retain the null
hypothesis (M1). This approach to regression, in which we add all of our covariates
into a null model, then add the variables of interest into an alternative model, and then
compare the two models in a hypothesis testing framework, is often referred to as hi-
erarchical regression.

We can also use this ‘Model Comparison’ option to display a table that shows the AIC
and BIC for each model, making it easy to compare and identify which model has the
lowest value, as in Figure 12.28.
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Figure 12.28: Model comparison in jamovi using the ‘Model Builder’ option

12.12 Summary

• Want to know how strong the relationship is between two variables? Calculate
Correlations.

• Drawing Scatterplots.
• Basic ideas about What is a linear regression model? and Estimating a linear
regression model.

• Multiple linear regression.
• Quantifying the fit of the regression model using 𝑅2.
• Hypothesis tests for regression models.
• In Regarding regression coefficients we talked about calculating Confidence in-
tervals for the coefficients and Calculating standardised regression coefficients.

• The Assumptions of regression and Model checking.
• Regression Model selection.
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Chapter 13

Comparing several means
(one-way ANOVA)

This chapter introduces one of the most widely used tools in psychological statistics,
known as “the analysis of variance”, but usually referred to as ANOVA. The basic tech-
nique was developed by Sir Ronald Fisher in the early 20th century and it is to him that
we owe the rather unfortunate terminology. The term ANOVA is a little misleading, in
two respects. Firstly, although the name of the technique refers to variances, ANOVA
is concerned with investigating differences in means. Secondly, there are several dif-
ferent things out there that are all referred to as ANOVAs, some of which have only a
very tenuous connection to one another. Later on in the bookwe’ll encounter a range of
different ANOVAmethods that apply in quite different situations, but for the purposes
of this chapter we’ll only consider the simplest form of ANOVA, in which we have sev-
eral different groups of observations, and we’re interested in finding out whether those
groups differ in terms of some outcome variable of interest. This is the question that is
addressed by a one-way ANOVA.

The structure of this chapter is as follows: first I’ll introduce a fictitious data set that
we’ll use as a running example throughout the chapter. After introducing the data, I’ll
describe the mechanics of how a one-way ANOVA actually works How ANOVAworks
and then focus on how you can run one in jamovi Running an ANOVA in jamovi. These
two sections are the core of the chapter.

The remainder of the chapter discusses a range of important topics that inevitably arise
when running an ANOVA, namely how to calculate effect sizes, post hoc tests and cor-
rections for multiple comparisons and the assumptions that ANOVA relies upon. We’ll
also talk about how to check those assumptions and some of the things you can do if
the assumptions are violated. Then we’ll cover repeated measures ANOVA.

13.1 An illustrative data set

Suppose you’ve become involved in a clinical trial in which you are testing a new an-
tidepressant drug called Joyzepam. In order to construct a fair test of the drug’s effective-
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ness, the study involves three separate drugs to be administered. One is a placebo, and
the other is an existing antidepressant / anti-anxiety drug called Anxifree. A collection
of 18 participants with moderate to severe depression are recruited for your initial test-
ing. Because the drugs are sometimes administered in conjunction with psychological
therapy, your study includes 9 people undergoing cognitive behavioural therapy (CBT)
and 9 who are not. Participants are randomly assigned (doubly blinded, of course) a
treatment, such that there are 3 CBT people and 3 no-therapy people assigned to each
of the 3 drugs. A psychologist assesses the mood of each person after a 3-month run
with each drug, and the overall improvement in each person’s mood is assessed on a
scale ranging from −5 to +5. With that as the study design, let’s now load up the data
file in clinicaltrial.csv . We can see that this data set contains the three variables drug,
therapy and mood.gain.

For the purposes of this chapter, what we’re really interested in is the effect of drug
on mood.gain. The first thing to do is calculate some descriptive statistics and draw
some graphs. In the Chapter 4 chapter we showed you how to do this, and some of the
descriptive statistics we can calculate in jamovi are shown in Figure 13.1. As the plot
makes clear, there is a larger improvement in mood for participants in the Joyzepam
group than for either the Anxifree group or the placebo group. The Anxifree group
shows a larger mood gain than the control group, but the difference isn’t as large. The
question that we want to answer is are these difference “real”, or are they just due to
chance?

Figure 13.1: Descriptives for mood gain, and box plots by drug administered
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13.2 How ANOVA works

In order to answer the question posed by our clinical trial data we’re going to run a one-
way ANOVA. I’m going to start by showing you how to do it the hard way, building
the statistical tool from the ground up and showing you how you could do it if you
didn’t have access to any of the cool built-in ANOVA functions in jamovi. And I hope
you’ll read it carefully, try to do it the long way once or twice to make sure you really
understand how ANOVA works.

The experimental design that I described in the previous section strongly suggests that
we’re interested in comparing the average mood change for the three different drugs.
In that sense, we’re talking about an analysis similar to the 𝑡-test (see Chapter 11) but in-
volving more than two groups. If we let 𝜇𝑃 denote the population mean for the mood
change induced by the placebo, and let 𝜇𝐴 and 𝜇𝐽 denote the corresponding means
for our two drugs, Anxifree and Joyzepam, then the (somewhat pessimistic) null hy-
pothesis that we want to test is that all three population means are identical. That is,
neither of the two drugs is anymore effective than a placebo. We can write out this null
hypothesis as:

𝐻0 ∶ it is true that 𝜇𝑃 = 𝜇𝐴 = 𝜇𝐽

As a consequence, our alternative hypothesis is that at least one of the three different
treatments is different from the others. It’s a bit tricky to write this mathematically, be-
cause (as we’ll discuss) there are quite a few different ways inwhich the null hypothesis
can be false. So for now we’ll just write the alternative hypothesis like this:

𝐻1 ∶ it 𝑖𝑠 𝑛𝑜𝑡 true that 𝜇𝑃 = 𝜇𝐴 = 𝜇𝐽

This null hypothesis is a lot trickier to test than any of the ones we’ve seen previously.
Given the title of this chapter, a sensible guess for how to test this would be to “do an
ANOVA”, but it’s not particularly clear why “analysis of variances” will help us learn
anything useful about themeans. In fact, this is one of the biggest conceptual difficulties
that people have when first encountering ANOVA. To see how this works, let’s start
by talking about variances, specifically between group variability and within-group
variability (Figure 13.2).

13.2.1 Two formulas for the variance of 𝑌
First, let’s start by introducing some notation. We’ll use 𝐺 to refer to the total number
of groups. For our data set there are three drugs, so there are𝐺 = 3 groups. Next, we’ll
use 𝑁 to refer to the total sample size; there are a total of 𝑁 = 18 people in our data
set. Similarly, let’s use𝑁𝑘 to denote the number of people in the 𝑘-th group. In our fake
clinical trial, the sample size is 𝑁𝑘 = 6 for all three groups.146 Finally, we’ll use 𝑌 to
denote the outcome variable. In our case, 𝑌 refers to mood change. Specifically, we’ll
use 𝑌𝑖𝑘 to refer to the mood change experienced by the 𝑖-th member of the 𝑘-th group.
Similarly, we’ll use ̄𝑌 to be the average mood change, taken across all 18 people in the
experiment, and ̄𝑌𝑘 to refer to the average mood change experienced by the 6 people in
group 𝑘.
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Figure 13.2: Graphical illustration of “between groups” variation (panel (a)) and
“within groups” variation (panel (b)). On the left the arrows show the differences in
the group means. On the right the arrows highlight the variability within each group

Now thatwe’ve got our notation sorted outwe can startwriting down formulas. To start
with, let’s recall the formula for the variance that we used in Section 4.2, way back in
those kinder days when we were just doing descriptive statistics. The sample variance
of 𝑌 is defined as follows:

𝑉 𝑎𝑟(𝑌 ) = 1
𝑁

𝐺
∑
𝑘=1

𝑁𝑘

∑
𝑖=1

(𝑌𝑖𝑘 − ̄𝑌 )2

This formula looks pretty much identical to the formula for the variance in Section 4.2.
The only difference is that this time around I’ve got two summations here: I’m summing
over groups (i.e., values for 𝑘) and over the people within the groups (i.e., values for 𝑖).
This is purely a cosmetic detail. If I’d instead used the notation 𝑌𝑝 to refer to the value of
the outcome variable for person 𝑝 in the sample, then I’d only have a single summation.
The only reason that we have a double summation here is that I’ve classified people into
groups, and then assigned numbers to people within groups.

A concrete example might be useful here. Let’s consider Table 13.1, in which we have
a total of 𝑁 = 5 people sorted into 𝐺 = 2 groups. Arbitrarily, let’s say that the “cool”
people are group 1 and the “uncool” people are group 2. It turns out that we have three
cool people (𝑁1 = 3) and two uncool people (𝑁2 = 2).
Notice that I’ve constructed two different labelling schemes here. We have a “person”
variable 𝑝 so it would be perfectly sensible to refer to 𝑌𝑝 as the grumpiness of the 𝑝-th
person in the sample. For instance, the table shows that Tim is the fourth so we’d say
𝑝 = 4. So, when talking about the grumpiness 𝑌 of this “Tim” person, whoever he
might be, we could refer to his grumpiness by saying that 𝑌𝑝 = 91, for person 𝑝 = 4.
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Table 13.1: Grumpiness for people in cool and uncool groups

name
person

𝑃 group
group
num. 𝑘

index
in

group
grumpiness
𝑌𝑖𝑘 or 𝑌𝑝

Ann 1 cool 1 1 20
Ben 2 cool 1 2 55
Cat 3 cool 1 3 21
Tim 4 uncool 2 1 91
Egg 5 uncool 2 2 22

However, that’s not the onlywaywe could refer to Tim. As an alternative we could note
that Tim belongs to the “uncool” group (𝑘 = 2), and is in fact the first person listed in
the uncool group (𝑖 = 1). So it’s equally valid to refer to Tim’s grumpiness by saying
that 𝑌𝑖𝑘 = 91, where 𝑘 = 2 and 𝑖 = 1. In other words, each person 𝑝 corresponds to a
unique 𝑖𝑘 combination, and so the formula that I gave above is actually identical to our
original formula for the variance, which would be:

𝑉 𝑎𝑟(𝑌 ) = 1
𝑁

𝑁
∑
𝑝=1

(𝑌𝑝 − ̄𝑌 )2

In both formulas, all we’re doing is summing over all of the observations in the sample.
Most of the time we would just use the simpler 𝑌𝑝 notation; the equation using 𝑌𝑝 is
clearly the simpler of the two. However, when doing an ANOVA it’s important to keep
track of which participants belong inwhich groups, andwe need to use the 𝑌𝑖𝑘 notation
to do this.

13.2.2 From variances to sums of squares

Okay, now that we’ve got a good grasp on how the variance is calculated, let’s define
something called the total sum of squares, which is denoted𝑆𝑆𝑡𝑜𝑡. This is very simple.
Instead of averaging the squared deviations, which is what we do when calculating the
variance, we just add them up.147

When we talk about analysing variances in the context of ANOVA, what we’re really
doing is working with the total sums of squares rather than the actual variance.148

Next, we can define a third notion of variation which captures only the differences be-
tween groups. We do this by looking at the differences between the group means ̄𝑌𝑘
and grand mean ̄𝑌 .149

It’s not too difficult to show that the total variation among people in the experiment
𝑆𝑆𝑡𝑜𝑡 is actually the sum of the differences between the groups 𝑆𝑆𝑏 and the variation
inside the groups 𝑆𝑆𝑤. That is:

𝑆𝑆𝑤 + 𝑆𝑆𝑏 = 𝑆𝑆𝑡𝑜𝑡
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Okay, sowhat havewe found out? We’ve discovered that the total variability associated
with the outcome variable (𝑆𝑆𝑡𝑜𝑡) can bemathematically carved up into the sumof “the
variation due to the differences in the samplemeans for the different groups” (𝑆𝑆𝑏) plus
“all the rest of the variation” (𝑆𝑆𝑤).150

How does that help me find out whether the groups have different population means?
Um. Wait. Hold on a second. Now that I think about it, this is exactly what we were
looking for. If the null hypothesis is true then you’d expect all the sample means to be
pretty similar to each other, right? And that would imply that you’d expect 𝑆𝑆𝑏 to be
really small, or at least you’d expect it to be a lot smaller than “the variation associated
with everything else”, 𝑆𝑆𝑤. Hmm. I detect a hypothesis test coming on.

13.2.3 From sums of squares to the 𝐹 -test

Aswe saw in the last section, the qualitative idea behind ANOVA is to compare the two
sums of squares values 𝑆𝑆𝑏 and 𝑆𝑆𝑤 to each other. If the between-group variation 𝑆𝑆𝑏
is large relative to the within-group variation 𝑆𝑆𝑤 then we have reason to suspect that
the population means for the different groups aren’t identical to each other. In order
to convert this into a workable hypothesis test, there’s a little bit of “fiddling around”
needed. What I’ll do is first show you what we do to calculate our test statistic, the
𝐹 -ratio, and then try to give you a feel for why we do it this way.

In order to convert our 𝑆𝑆 values into an 𝐹 -ratio the first thing we need to calculate is
the degrees of freedom associated with the 𝑆𝑆𝑏 and 𝑆𝑆𝑤 values. As usual, the degrees
of freedom corresponds to the number of unique “data points” that contribute to a
particular calculation, minus the number of “constraints” that they need to satisfy. For
the within groups variability what we’re calculating is the variation of the individual
observations (𝑁 data points) around the group means (𝐺 constraints). In contrast, for
the between groups variability we’re interested in the variation of the group means (𝐺
data points) around the grand mean (1 constraint). Therefore, the degrees of freedom
here are:

𝑑𝑓𝑏 = 𝐺 − 1
𝑑𝑓𝑤 = 𝑁 − 𝐺

Okay, that seems simple enough. Whatwedonext is convert our summed squares value
into a “mean squares” value, which we do by dividing by the degrees of freedom:

𝑀𝑆𝑏 = 𝑆𝑆𝑏
𝑑𝑓𝑏

𝑀𝑆𝑤 = 𝑆𝑆𝑤
𝑑𝑓𝑤

Finally, we calculate the 𝐹 -ratio by dividing the between groups 𝑀𝑆 by the within
groups 𝑀𝑆:

𝐹 = 𝑀𝑆𝑏
𝑀𝑆𝑤
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At a very general level, the intuition behind the 𝐹 -statistic is straightforward. Bigger
values of 𝐹 means that the between groups variation is large relative to the within
groups variation. As a consequence, the larger the value of 𝐹 the more evidence we
have against the null hypothesis. But how large does 𝐹 have to be in order to actually
reject 𝐻0? In order to understand this, you need a slightly deeper understanding of
what ANOVA is and what the mean squares values actually are.

The next section discusses that in a bit of detail, but for readers that aren’t interested
in the details of what the test is actually measuring I’ll cut to the chase. In order to
complete our hypothesis test we need to know the sampling distribution for 𝐹 if the
null hypothesis is true. Not surprisingly, the sampling distribution for the 𝐹 -statistic
under the null hypothesis is an 𝐹 -distribution. If you recall our discussion of the 𝐹 -
distribution in Chapter 7, the 𝐹 -distribution has two parameters, corresponding to the
two degrees of freedom involved. The first one 𝑑𝑓1 is the between groups degrees of
freedom 𝑑𝑓𝑏, and the second one 𝑑𝑓2 is the within groups degrees of freedom 𝑑𝑓𝑤.

A summary of all the key quantities involved in a one-way ANOVA, including the for-
mulas showing how they are calculated, is shown in Table 13.2.

Table 13.2: All of the key quantities involved in anANOVA organised into a “standard”
ANOVA table. The formulas for all quantities (except the 𝑝-value which has a very ugly
formula and would be nightmarishly hard to calculate without a computer) are shown

between groups within groups
𝑑𝑓 𝑑𝑓𝑏 = 𝐺 − 1 𝑑𝑓𝑤 = 𝑁 − 𝐺

sum of squares
𝑆𝑆𝑏 =

∑𝐺
𝑘=1 𝑁𝑘( ̄𝑌𝑘 − ̄𝑌 )2

𝑆𝑆𝑤 =
∑𝐺

𝑘=1 ∑𝑁𝑘
𝑖=1(𝑌𝑖𝑘 − ̄𝑌𝑘)2

mean squares 𝑀𝑆𝑏 = 𝑆𝑆𝑏
𝑑𝑓𝑏

𝑀𝑆𝑤 = 𝑆𝑆𝑤
𝑑𝑓𝑤

𝐹 -statistic 𝐹 = 𝑀𝑆𝑏
𝑑𝑓𝑏

-
𝑝-value [complicated] -

[Additional technical detail151]

13.2.4 A worked example

The previous discussion was fairly abstract and a little on the technical side, so I think
that at this point it might be useful to see aworked example. For that, let’s go back to the
clinical trial data that I introduced at the start of the chapter. The descriptive statistics
that we calculated at the beginning tell us our group means: an average mood gain of
0.45 for the placebo, 0.72 for Anxifree, and 1.48 for Joyzepam. With that in mind, let’s
party like it’s 1899152 and start doing some pencil and paper calculations. I’ll only do
this for the first 5 observations because it’s not bloody 1899 and I’m very lazy. Let’s
start by calculating 𝑆𝑆𝑤, the within-group sums of squares. First, let’s draw up a nice
table to help us with our calculations (Table 13.3).
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Table 13.3: A worked example…1

group 𝑘 outcome 𝑌𝑖𝑘
placebo 0.5
placebo 0.3
placebo 0.1
anxifree 0.6
anxifree 0.4

At this stage, the only thing I’ve included in the table is the raw data itself. That is, the
grouping variable (i.e., drug) and outcome variable (i.e. mood.gain) for each person.
Note that the outcome variable here corresponds to the ̄𝑌𝑖𝑘 value in our equation previ-
ously. The next step in the calculation is to write down, for each person in the study, the
corresponding group mean, ̄𝑌𝑘. This is slightly repetitive but not particularly difficult
since we already calculated those group means when doing our descriptive statistics,
see Table 13.4.

Table 13.4: A worked example…2

group 𝑘 outcome 𝑌𝑖𝑘 group mean ̄𝑌𝑘
placebo 0.5 0.45
placebo 0.3 0.45
placebo 0.1 0.45
anxifree 0.6 0.72
anxifree 0.4 0.72

Now that we’ve written those down, we need to calculate, again for every person, the
deviation from the corresponding group mean. That is, we want to subtract 𝑌𝑖𝑘 − ̄𝑌𝑘.
After we’ve done that, we need to square everything. When we do that, here’s what we
get (Table 13.5).

Table 13.5: A worked example…3

group 𝑘
outcome

𝑌𝑖𝑘
group

mean ̄𝑌𝑘

dev. from
group
mean

𝑌𝑖𝑘 − ̄𝑌𝑘

squared
deviation

(𝑌𝑖𝑘 − ̄𝑌𝑘)2

placebo 0.5 0.45 0.05 0.0025
placebo 0.3 0.45 -0.15 0.0225
placebo 0.1 0.45 -0.35 0.1225
anxifree 0.6 0.72 -0.12 0.0136
anxifree 0.4 0.72 -0.32 0.1003
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The last step is equally straightforward. In order to calculate the within-group sum of
squares we just add up the squared deviations across all observations:

𝑆𝑆𝑤 = 0.0025 + 0.0225 + 0.1225 + 0.0136 + 0.1003
= 0.2614

Of course, if we actually wanted to get the right answer we’d need to do this for all 18
observations in the data set, not just the first five. We could continue with the pencil
and paper calculations if we wanted to, but it’s pretty tedious. Alternatively, it’s not
too hard to do this in a dedicated spreadsheet programme such as OpenOffice or Excel.
Try and do it yourself. The one that I did, in Excel, is in the file clinicaltrial_anova.xls.
When you do it you should end up with a within-group sum of squares value of 1.39.
Okay. Now that we’ve calculated the within groups variation, 𝑆𝑆𝑤, it’s time to turn our
attention to the between-group sum of squares, 𝑆𝑆𝑏. The calculations for this case are
very similar. The main difference is that instead of calculating the differences between
an observation Yik and a group mean ̄𝑌𝑘 for all of the observations, we calculate the
differences between the group means ̄𝑌𝑘 and the grand mean ̄𝑌 (in this case 0.88) for
all of the groups (Table 13.6).

Table 13.6: A worked example…4

group 𝑘
group

mean ̄𝑌𝑘
grand

mean ̄𝑌
deviation

̄𝑌𝑘 − ̄𝑌

squared
deviation
( ̄𝑌𝑘 − ̄𝑌 )2

placebo 0.45 0.88 -0.43 0.19
anxifree 0.72 0.88 -0.16 0.03
joyzepam 1.48 0.88 0.60 0.36

However, for the between group calculations we need tomultiply each of these squared
deviations by 𝑁𝑘, the number of observations in the group. We do this because every
observation in the group (all𝑁𝑘 of them) is associatedwith a between group difference.
So if there are six people in the placebo group and the placebo groupmean differs from
the grand mean by 0.19, then the total between group variation associated with these
six people is 6 × 0.19 = 1.14. So we have to extend our little table of calculations
(Table 13.7).

Table 13.7: A worked example…5

group 𝑘 ...

squared
devia-
tions

( ̄𝑌𝑘 − ̄𝑌 )2
sample
size 𝑁𝑘

weighted
squared dev
𝑁𝑘( ̄𝑌𝑘 − ̄𝑌 )2

placebo ... 0.19 6 1.14
anxifree ... 0.03 6 0.18
joyzepam ... 0.36 6 2.16
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And so now our between group sum of squares is obtained by summing these
“weighted squared deviations” over all three groups in the study:

𝑆𝑆𝑏 = 1.14 + 0.18 + 2.16
= 3.48

As you can see, the between group calculations are a lot shorter.153 Now that we’ve
calculated our sums of squares values, 𝑆𝑆𝑏 and 𝑆𝑆𝑤, the rest of the ANOVA is pretty
painless. The next step is to calculate the degrees of freedom. Since we have 𝐺 = 3
groups and 𝑁 = 18 observations in total our degrees of freedom can be calculated by
simple subtraction:

𝑑𝑓𝑏 = 𝐺 − 1 = 2
𝑑𝑓𝑤 = 𝑁 − 𝐺 = 15

Next, since we’ve now calculated the values for the sums of squares and the degrees of
freedom, for both the within groups variability and the between groups variability, we
can obtain the mean square values by dividing one by the other:

𝑀𝑆𝑏 = 𝑆𝑆𝑏
𝑑𝑓𝑏

= 3.48
2 = 1.74

𝑀𝑆𝑤 = 𝑆𝑆𝑤
𝑑𝑓𝑤

= 1.39
15 = 0.09

We’re almost done. Themean square values can be used to calculate the𝐹 -value, which
is the test statistic that we’re interested in. We do this by dividing the between groups
𝑀𝑆 value by the within groups 𝑀𝑆 value:

𝐹 = 𝑀𝑆𝑏
𝑀𝑆𝑤

= 1.74
0.09

= 19.3

Woohooo! Now that we have our test statistic, the last step is to find out whether the
test itself gives us a significant result. As discussed in Chapter 9 what we’d do in the
old days is open up a statistics textbook and in a huge lookup table we would find the
threshold 𝐹 -value corresponding to a particular value of alpha (the null hypothesis
rejection region), e.g. 0.05, 0.01 or 0.001, for 2 and 15 degrees of freedom. Doing it this
way would give us a threshold 𝐹 -value for an alpha of 0.001 of 11.34. As this is less
than our calculated 𝐹 -value we say that 𝑝 < 0.001. But nowadays fancy stats software
calculates the exact 𝑝-value for you, which is 0.000071. So, unless we’re being extremely
conservative about our type I error rate, we’re pretty much guaranteed to reject the null
hypothesis.

At this point, we’re basically done. Having completed our calculations, it’s traditional
to organise all these numbers into an ANOVA table like the one in Table 13.1. For our
clinical trial data, the ANOVA table would look like Table 13.8.
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Table 13.8: The ANOVA results table

𝑑𝑓
sum of
squares

mean
squares

𝐹 -
statistic 𝑝-value

between
groups 2 3.48 1.74 19.3 0.000071
within
groups 15 1.39 0.09 - -

These days, you’ll probably never have much reason to want to construct one of these
tables yourself, but you will find that almost all statistical software (jamovi included)
tends to organise the output of an ANOVA into a table like this, so it’s a good idea to get
used to reading them. However, although the software will output a full ANOVA table,
there’s almost never a good reason to include thewhole table in yourwrite up. A pretty
standard way of reporting the stats block for this result would be to write something
like this:

One-way ANOVA showed a significant effect of drug on mood gain
(𝐹(2, 15) = 19.3, 𝑝 < .001).

Sigh. So much work for one short sentence.

13.3 Running an ANOVA in jamovi

I’m pretty sure I know what you’re thinking after reading the last section, especially if
you followed my advice and did all of that by pencil and paper (i.e., in a spreadsheet)
yourself. Doing the ANOVA calculations yourself sucks. There’s quite a lot of calcula-
tions that we needed to do along the way, and it would be tedious to have to do this
over and over again every time you wanted to do an ANOVA.

13.3.1 Using jamovi to specify your ANOVA

To make life easier for you, jamovi can do ANOVA…hurrah! Go to the ‘ANOVA’ –
‘ANOVA’ analysis, and move the mood.gain variable across so it is in the ‘Dependent
Variable’ box, and then move the drug variable across so it is in the ‘Fixed Factors’ box.
This should give the results as shown in Figure 13.3.154 Note I have also checked the
𝜂2 checkbox, pronounced “eta” squared, under the ‘Effect Size’ option and this is also
shown on the results table. We will come back to effect sizes a bit later.

The jamovi results table shows you the sums of squares values, the degrees of freedom,
and a couple of other quantities that we’re not really interested in right now. Notice,
however, that jamovi doesn’t use the names “between group” and “within group”. In-
stead, it tries to assignmoremeaningful names. In our particular example, the between
groups variance corresponds to the effect that the drug has on the outcome variable,
and the within groups variance corresponds to the “leftover” variability so it calls that
the residuals.

305



Figure 13.3: jamovi results table for ANOVA of mood gain by drug administered

If we compare these numbers to the numbers that I calculated by hand in A worked
example, you can see that they’re more or less the same, apart from rounding errors.
The between groups sums of squares is 𝑆𝑆𝑏 = 3.45, the within groups sums of squares
is 𝑆𝑆𝑤 = 1.39, and the degrees of freedom are 2 and 15 respectively. We also get the 𝐹 -
value and the 𝑝-value and, again, these are more or less the same, give or take rounding
errors, to the numbers that we calculated ourselves when doing it the long and tedious
way.

13.4 Effect size

There’s a few different ways you could measure the effect size in an ANOVA, but the
most commonly usedmeasures are 𝜂2 (eta squared) and partial 𝜂2. For a one-way anal-
ysis of variance they’re identical to each other, so for the moment I’ll just explain 𝜂2.
The definition of 𝜂2 is actually really simple:

𝜂2 = 𝑆𝑆𝑏
𝑆𝑆𝑡𝑜𝑡

That’s all it is. So when I look at the ANOVA table in Figure 13.3, I see that 𝑆𝑆𝑏 = 3.45
and 𝑆𝑆𝑡𝑜𝑡 = 3.45 + 1.39 = 4.84. Thus we get an 𝜂2 value of:

𝜂2 = 3.45
4.84 = 0.71

The interpretation of 𝜂2 is equally straightforward. It refers to the proportion of the
variability in the outcome variable (mood.gain) that can be explained in terms of the
predictor (drug). A value of 𝜂2 = 0 means that there is no relationship at all between
the two, whereas a value of 𝜂2 = 1 means that the relationship is perfect. Better yet,
the 𝜂2 value is very closely related to 𝑅2, as discussed previously in Section 12.6.1,
and has an equivalent interpretation. Although many statistics textbooks suggest 𝜂2 as
the default effect size measure in ANOVA, there’s an interesting blog post155 by Daniel
Lakens suggesting that eta-squared is perhaps not the best measure of effect size in
real-world data analysis, because it can be a biased estimator. Usefully, there is also
an option in jamovi to specify omega-squared (𝜔2), which is less biased, alongside eta-
squared.
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13.5 Multiple comparisons and post hoc tests

Any time you run an ANOVA with more than two groups and you end up with a sig-
nificant effect, the first thing you’ll probably want to ask is which groups are actually
different from one another. In our drugs example, our null hypothesis was that all three
drugs (placebo, Anxifree and Joyzepam) have the exact same effect onmood. But if you
think about it, the null hypothesis is actually claiming three different things all at once
here. Specifically, it claims that:

• Your competitor’s drug (Anxifree) is no better than a placebo (i.e., 𝜇𝐴 = 𝜇𝑃 )
• Your drug (Joyzepam) is no better than a placebo (i.e., 𝜇𝐽 = 𝜇𝑃 )
• Anxifree and Joyzepam are equally effective (i.e., 𝜇𝐽 = 𝜇𝐴)

If any one of those three claims is false, then the null hypothesis is also false. So, now
that we’ve rejected our null hypothesis, we’re thinking that at least one of those things
isn’t true. But which ones? All three of these propositions are of interest. Since you
certainly want to know if your new drug Joyzepam is better than a placebo, it would
be nice to know how well it stacks up against an existing commercial alternative (i.e.,
Anxifree). It would even be useful to check the performance of Anxifree against the
placebo. Even if Anxifree has already been extensively tested against placebos by other
researchers, it can still be very useful to check that your study is producing similar
results to earlier work.

When we characterise the null hypothesis in terms of these three distinct propositions,
it becomes clear that there are eight possible “states of the world” that we need to dis-
tinguish between (Table 13.9).

Table 13.9: The null hypothesis and eight possible “states of the world”

possibility:
is 𝜇𝑃 =

𝜇𝐴?
is

𝜇𝑃 = 𝜇𝐽?
is

𝜇𝐴 = 𝜇𝐽?
which

hypothesis?
1 ✓ ✓ ✓ null
2 ✓ ✓ alternative
3 ✓ ✓ alternative
4 ✓ alternative
5 ✓ ✓ ✓ alternative
6 ✓ alternative
7 ✓ alternative
8 alternative

By rejecting the null hypothesis, we’ve decided that we don’t believe that #1 is the true
state of the world. The next question to ask is, which of the other seven possibilities
do we think is right? When faced with this situation, it’s usually helps to look at the
data. For instance, if we look at the plots in Figure 13.1, it’s tempting to conclude that
Joyzepam is better than the placebo and better than Anxifree, but there’s no real differ-
ence between Anxifree and the placebo. However, if we want to get a clearer answer
about this, it might help to run some tests.
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13.5.1 Running “pairwise” 𝑡-tests

How might we go about solving our problem? Given that we’ve got three separate
pairs ofmeans (placebo versusAnxifree, placebo versus Joyzepam, andAnxifree versus
Joyzepam) to compare, what we could do is run three separate 𝑡-tests and see what
happens. This is easy to do in jamovi. Go to the ANOVA ‘Post Hoc Tests’ options,
move the ‘drug’ variable across into the active box on the right, and then click on the
‘No correction’ checkbox. This will produce a neat table showing all the pairwise 𝑡-test
comparisons amongst the three levels of the drug variable, as in Figure 13.4.

Figure 13.4: Uncorrected pairwise 𝑡-tests as post hoc comparisons in jamovi

13.5.2 Corrections for multiple testing

In the previous section I hinted that there’s a problemwith just running lots and lots of
𝑡-tests. The concern is that, when running these analyses, what we’re doing is going on
a “fishing expedition”. We’re running lots and lots of tests without much theoretical
guidance in the hope that some of them come up significant. This kind of theory-free
search for group differences is referred to as post hoc analysis (“post hoc” being Latin
for “after this”).156

It’s okay to run post hoc analyses, but a lot of care is required. For instance, the analysis
that I ran in the previous section should be avoided, as each individual 𝑡-test is designed
to have a 5% type I error rate (i.e., 𝛼 = .05) and I ran three of these tests. Imagine what
would have happened if my ANOVA involved 10 different groups, and I had decided
to run 45 “post hoc” 𝑡-tests to try to find out which ones were significantly different
from each other, you’d expect 2 or 3 of them to come up significant by chance alone. As
we saw in Chapter 9, the central organising principle behind null hypothesis testing is
that we seek to control our type I error rate, but now that I’m running lots of 𝑡-tests at
once in order to determine the source of my ANOVA results, my actual type I error rate
across this whole family of tests has gotten completely out of control.

The usual solution to this problem is to introduce an adjustment to the 𝑝-value, which
aims to control the total error rate across the family of tests (see Shaffer (1995)). An
adjustment of this form, which is usually (but not always) applied because one is doing
post hoc analysis, is often referred to as a correction for multiple comparisons, though
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it is sometimes referred to as “simultaneous inference”. In any case, there are quite a
few different ways of doing this adjustment. I’ll discuss a few of them in this section
and in Section 14.8 in the next chapter, but you should be aware that there are many
other methods out there (see, e.g., Hsu (1996)).

13.5.3 Bonferroni corrections

The simplest of these adjustments is called theBonferroni correction (Dunn, 1961), and
it’s very very simple indeed. Suppose that my post hoc analysis consists of 𝑚 separate
tests, and I want to ensure that the total probability of making any type I errors at all
is at most 𝛼.157 If so, then the Bonferroni correction just says “multiply all your raw 𝑝-
values by 𝑚”. If we let 𝑝 denote the original 𝑝-value, and let 𝑝′

𝑗 be the corrected value,
then the Bonferroni correction tells that:

𝑝′
𝑗 = 𝑚 × 𝑝

And therefore, if you’re using the Bonferroni correction, you would reject the null hy-
pothesis if 𝑝′

𝑗 < 𝛼. The logic behind this correction is very straightforward. We’re doing
m different tests, so if we arrange it so that each test has a type I error rate of at most 𝛼

𝑚 ,
then the total type I error rate across these tests cannot be larger than 𝛼. That’s pretty
simple, so much so that in the original paper, the author writes:

The method given here is so simple and so general that I am sure it must have been
used before this. I do not find it, however, so can only conclude that perhaps its very
simplicity has kept statisticians from realizing that it is a very good method in some
situations (Dunn (1961), pp. 52-53).

To use the Bonferroni correction in jamovi, just click on the ‘Bonferroni’ checkbox in
the ‘Correction’ options, and you will see another column added to the ANOVA results
table showing the adjusted 𝑝-values for the Bonferroni correction (Table 13.8). If we
compare these three 𝑝-values to those for the uncorrected, pairwise 𝑡-tests, it is clear
that the only thing that jamovi has done is multiply them by 3.

13.5.4 Holm corrections

Although the Bonferroni correction is the simplest adjustment out there, it’s not usually
the best one to use. One method that is often used instead is the Holm correction
(Holm, 1979). The idea behind the Holm correction is to pretend that you’re doing the
tests sequentially, starting with the smallest (raw) 𝑝-value and moving onto the largest
one. For the 𝑗-th largest of the 𝑝-values, the adjustment is either:

𝑝′
𝑗 = 𝑗 × 𝑝𝑗
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(i.e., the biggest 𝑝-value remains unchanged, the second biggest 𝑝-value is doubled, the
third biggest 𝑝-value is tripled, and so on), or:

𝑝′
𝑗 = 𝑝′

𝑗+1

whichever one is larger. This might sound a little confusing, so let’s go through it a
little more slowly. Here’s what the Holm correction does. First, you sort all of your 𝑝-
values in order, from smallest to largest. For the smallest 𝑝-value all you do is multiply
it by 𝑚, and you’re done. However, for all the other ones it’s a two-stage process. For
instance, when you move to the second smallest 𝑝-value, you first multiply it by 𝑚 − 1.
If this produces a number that is bigger than the adjusted 𝑝-value that you got last time,
then you keep it. But if it’s smaller than the last one, then you copy the last 𝑝-value. To
illustrate how this works, consider Table 13.10 which shows the calculations of a Holm
correction for a collection of five 𝑝-values.
Hopefully that makes things clear.

Although it’s a little harder to calculate, the Holm correction has some very nice prop-
erties. It’s more powerful than Bonferroni (i.e., it has a lower type II error rate) but,
counter-intuitive as it might seem, it has the same type I error rate. As a consequence,
in practice there’s never any reason to use the simpler Bonferroni correction since it is
always outperformed by the slightly more elaborate Holm correction. Because of this,
the Holm correction should be your go to multiple comparison correction.

Table 13.10: Holm corrected 𝑝-values

raw 𝑝 rank 𝑗 𝑝 × 𝑗 Holm 𝑝
.001 5 .005 .005
.005 4 .020 .020
.019 3 .057 .057
.022 2 .044 .057
.103 1 .103 .103

Figure 13.4 also shows the Holm corrected 𝑝-values and, as you can see, the biggest
𝑝-value (corresponding to the comparison between Anxifree and the placebo) is unal-
tered. At a value of .15, it is exactly the same as the value we got originally when we
applied no correction at all. In contrast, the smallest 𝑝-value (Joyzepam versus placebo)
has been multiplied by three.

13.5.5 Writing up the post hoc test

Finally, having run the post hoc analysis to determine which groups are significantly
different to one another, you might write up the result like this:

Post hoc tests (using the Holm correction to adjust 𝑝) indicated that
Joyzepam produced a significantly larger mood change than both Anxifree
(𝑝 = .001) and the placebo ((𝑝 = 9.0 × 10−5). We found no evidence that
Anxifree performed better than the placebo (𝑝 = .15).
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Or, if you don’t like the idea of reporting exact 𝑝-values, then you’d change those num-
bers to 𝑝 < .01, 𝑝 < .001 and 𝑝 > .05 respectively. Either way, the key thing is that
you indicate that you used Holm’s correction to adjust the 𝑝-values. And of course,
I’m assuming that elsewhere in the write up you’ve included the relevant descriptive
statistics (i.e., the group means and standard deviations), since these 𝑝-values on their
own aren’t terribly informative.

13.6 The assumptions of one-way ANOVA

Like any statistical test, analysis of variance relies on some assumptions about the data,
specifically the residuals. There are three key assumptions that you need to be aware
of: normality, homogeneity of variance and independence.

[Additional technical detail158]

So, how do we check whether the assumption about the residuals is accurate? Well, as
I indicated above, there are three distinct claims buried in this one statement, and we’ll
consider them separately.

• Homogeneity of variance. Notice that we’ve only got the one value for the pop-
ulation standard deviation (i.e., 𝜎), rather than allowing each group to have it’s
own value (i.e., 𝜎𝑘). This is referred to as the homogeneity of variance (sometimes
called homoscedasticity) assumption. ANOVA assumes that the population stan-
dard deviation is the same for all groups. We’ll talk about this extensively in the
Checking the homogeneity of variance assumption section.

• Normality. The residuals are assumed to be normally distributed. As we saw in
Section 11.9, we can assess this by looking at QQ plots (or running a Shapiro-Wilk
test. I’ll talk about this more in an ANOVA context in the Checking the normality
assumption section.

• Independence. The independence assumption is a little trickier. What it basically
means is that, knowing one residual tells you nothing about any other residual.
All of the 𝜖𝑖𝑘 values are assumed to have been generated without any “regard
for” or “relationship to” any of the other ones. There’s not an obvious or simple
way to test for this, but there are some situations that are clear violations of this.
For instance, if you have a repeated measures design, where each participant in
your study appears in more than one condition, then independence doesn’t hold.
There’s a special relationship between some observations, namely those that cor-
respond to the same person! When that happens, you need to use something like
a Repeated measures one-way ANOVA.

13.6.1 Checking the homogeneity of variance assumption

To make the preliminary test on variances is rather like putting to sea in a rowing
boat to find out whether conditions are sufficiently calm for an ocean liner to leave
port!
– George Box (Box, 1953)
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There’s more than one way to skin a cat, as the saying goes, and more than one way
to test the homogeneity of variance assumption, too (though for some reason no-one
made a saying out of that). The most commonly used test for this that I’ve seen in the
literature is the Levene test (Levene, 1960), and the closely related Brown-Forsythe test
(Brown & Forsythe, 1974).

Regardless of whether you’re doing the standard Levene test or the Brown-Forsythe
test, the test statistic, which is sometimes denoted 𝐹 but also sometimes written as
𝑊 , is calculated in exactly the same way that the 𝐹 -statistic for the regular ANOVA is
calculated, just using a 𝑍𝑖𝑘 rather than 𝑌𝑖𝑘. With that in mind, we can go on to look at
how to run the test in jamovi.

[Additional technical detail159]

13.6.2 Running the Levene test in jamovi

Okay, so how do we run the Levene test? Simple really – under the ANOVA ‘Assump-
tion Checks’ option, just click on the ‘Homogeneity tests’ checkbox. If we look at the
output, shown in Figure 13.5, we see that the test is non-significant (𝐹2,15 = 1.45, 𝑝 =
.266), so it looks like the homogeneity of variance assumption is fine. However, looks
can be deceptive! If your sample size is pretty big, then the Levene test could show up
a significant effect (i.e. p < .05) even when the homogeneity of variance assumption is
not violated to an extent which troubles the robustness of ANOVA. This was the point
George Boxwasmaking in the quote above. Similarly, if your sample size is quite small,
then the homogeneity of variance assumption might not be satisfied and yet a Levene
test could be non-significant (i.e. p > .05). What this means is that, alongside any statis-
tical test of the assumption being met, you should always plot the standard deviation
around the means for each group / category in the analysis…just to see if they look
fairly similar (i.e. homogeneity of variance) or not.

Figure 13.5: Levene test output for one-way ANOVA in jamovi

13.6.3 Removing the homogeneity of variance assumption

In our example, the homogeneity of variance assumption turned out to be a pretty safe
one: the Levene test came back non-significant (notwithstanding that we should also
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look at the plot of standard deviations), so we probably don’t need to worry. How-
ever, in real life we aren’t always that lucky. How do we save our ANOVA when the
homogeneity of variance assumption is violated? If you recall from our discussion of
𝑡-tests, we’ve seen this problem before. The Student 𝑡-test assumes equal variances,
so the solution was to use the Welch 𝑡-test, which does not. In fact, Welch (1951) also
showed how we can solve this problem for ANOVA too (the Welch one-way test). It’s
implemented in jamovi using the One-Way ANOVA analysis. This is a specific anal-
ysis approach just for one-way ANOVA, and to run the Welch one-way ANOVA for
our example, we would re-run the analysis as previously, but this time use the jamovi
ANOVA - one-way ANOVA analysis command, and check the option for Welch’s test
(see Figure 13.6). To understand what’s happening here, let’s compare these numbers
to what we got earlier when Running an ANOVA in jamovi originally. To save you the
trouble of flicking back, this is what we got last time: 𝐹(2, 15) = 18.611, 𝑝 = .00009,
also shown as the Fisher’s test in the One-Way ANOVA shown in Figure 13.6.

Figure 13.6: Welch test as part of the one-way ANOVA analysis in jamovi

Okay, so originally our ANOVA gave us the result 𝐹(2, 15) = 18.6, whereas the Welch
one-way test gave us 𝐹(2, 9.49) = 26.32. In other words, the Welch test has reduced
the within groups degrees of freedom from 15 to 9.49, and the 𝐹 -value has increased
from 18.6 to 26.32.

13.6.4 Checking the normality assumption

Testing the normality assumption is relatively straightforward. We covered most of
what you need to know in Section 11.9. The only thing we really need to do is draw
a QQ plot and, in addition if it is available, run the Shapiro-Wilk test. The QQ plot is
shown in Figure 13.7 and it looks pretty normal to me.
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Figure 13.7: QQ plot in the one-way ANOVA analysis in jamovi

If the Shapiro-Wilk test is not significant (i.e. 𝑝 > .05) then this indicates that the as-
sumption of normality is not violated. However, as with Levene’s test, if the sample
size is large then a significant Shapiro-Wilk test may in fact be a false positive, where
the assumption of normality is not violated in any substantive problematic sense for
the analysis. And, similarly, a very small sample can produce false negatives. That’s
why a visual inspection of the QQ plot is important.

Alongside inspecting the QQ plot for any deviations from normality, the Shapiro-Wilk
test for our data does show a non-significant effect, with 𝑝 = 0.6053 (see Figure 13.6).
This therefore supports the QQ plot assessment; both checks find no indication that
normality is violated.

13.6.5 Removing the normality assumption

Now that we’ve seen how to check for normality, we are led naturally to ask what we
can do to address violations of normality. In the context of a one-way ANOVA, the
easiest solution is probably to switch to a non-parametric test (i.e., one that doesn’t
rely on any particular assumption about the kind of distribution involved). We’ve seen
non-parametric tests before, in Chapter 11. When you only have two groups, theMann-
Whitney or the Wilcoxon test provides the non-parametric alternative that you need.
When you’ve got three or more groups, you can use the Kruskal-Wallis rank sum test
(Kruskal & Wallis, 1952). So that’s the test we’ll talk about next.
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13.6.6 The logic behind the Kruskal-Wallis test

The Kruskal-Wallis test is surprisingly similar to ANOVA, in some ways. In ANOVA
we started with 𝑌𝑖𝑘, the value of the outcome variable for the ith person in the kth
group. For the Kruskal-Wallis test what we’ll do is rank order all of these 𝑌𝑖𝑘 values
and conduct our analysis on the ranked data.160

13.6.7 Additional details

The description in the previous section illustrates the logic behind the Kruskal-Wallis
test. At a conceptual level, this is the right way to think about how the test works.161

But wait, there’s more! Dear lord, why is there always more? The story I’ve told so
far is only actually true when there are no ties in the raw data. That is, if there are
no two observations that have exactly the same value. If there are ties, then we have
to introduce a correction factor to these calculations. At this point I’m assuming that
even the most diligent reader has stopped caring (or at least formed the opinion that
the tie-correction factor is something that doesn’t require their immediate attention).
So I’ll very quickly tell you how it’s calculated, and omit the tedious details about why
it’s done this way. Suppose we construct a frequency table for the raw data, and let fj
be the number of observations that have the j-th unique value. This might sound a bit
abstract, so here’s a concrete example from the frequency table of mood.gain from the
clinicaltrials.csv data set (Table 13.11).

Table 13.11: Frequency table of mood gain from the clinicaltrials.csv data

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.1 1.2 1.3 1.4 1.7 1.8
1 1 2 1 1 2 1 1 1 1 2 2 1 1

Looking at this table, notice that the third entry in the frequency table has a value of
2. Since this corresponds to a mood.gain of 0.3, this table is telling us that two people’s
mood increased by 0.3.162

And so jamovi uses a tie-correction factor to calculate the tie-corrected Kruskall-Wallis
statistic. And at long last, we’re actually finished with the theory of the Kruskal-Wallis
test. I’m sure you’re all terribly relieved that I’ve cured you of the existential anxiety
that naturally arises when you realise that you don’t know how to calculate the tie-
correction factor for the Kruskal-Wallis test. Right?

13.6.8 How to run the Kruskal-Wallis test in jamovi

Despite the horror that we’ve gone through in trying to understand what the Kruskal-
Wallis test actually does, it turns out that running the test is pretty painless, since jamovi
has an analysis as part of the ANOVA analysis set called ‘Non-Parametric’ – ‘one-way
ANOVA (Kruskal-Wallis)’ Most of the time you’ll have data like the clinicaltrial.csv data
set, in which you have your outcome variable mood.gain and a grouping variable drug.
If so, you can just go ahead and run the analysis in jamovi. What this gives us is a
Kruskal-Wallis 𝜒2 = 12.076, 𝑑𝑓 = 2, 𝑝 = 0.00239, as in Figure 13.8.
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Figure 13.8: Kruskal-Wallis one-way non-parametric ANOVA in jamovi

13.7 Repeated measures one-way ANOVA

The one-way repeated measures ANOVA is a statistical test for significant differences
between three or more groups where the same participants are in each group (or each
participant is closely matched with participants in other experimental groups). For
this reason, there should always be an equal number of scores (data points) in each
experimental group. This type of design and analysis can also be called a “related
ANOVA” or a “within subjects ANOVA”.

The logic behind a repeatedmeasures ANOVA is very similar to that of an independent
ANOVA (sometimes called a “between subjects” ANOVA). You’ll remember that ear-
lier we showed that in a between subjects ANOVA total variability is partitioned into
between groups variability (𝑆𝑆𝑏) and within groups variability (𝑆𝑆𝑤), then divided by
the respective degrees of freedom to give 𝑀𝑆𝑏 and 𝑀𝑆𝑤 (see Table 13.1), whereupon
the 𝐹 -ratio is calculated as:

𝐹 = 𝑀𝑆𝑏
𝑀𝑆𝑤

In a repeated measures ANOVA, the 𝐹 -ratio is calculated in a similar way, but whereas
in an independent ANOVA the within-group variability (𝑆𝑆𝑤) is used as the basis for
the 𝑀𝑆𝑤 denominator, in a repeated measures ANOVA the 𝑆𝑆𝑤 is partioned into two
parts. As we are using the same subjects in each group, we can remove the variability
due to the individual differences between subjects (referred to as 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠) from the
within groups variability.

We won’t go into too much technical detail about how this is done, but essentially each
subject becomes a level of a factor called subjects. The variability in this within subjects
factor is then calculated in the same way as any between subjects factor.
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And then we can subtract 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 from 𝑆𝑆𝑤 to provide a smaller 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 term:

Independent ANOVA: 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = 𝑆𝑆𝑤

Repeated Measures ANOVA: 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = 𝑆𝑆𝑤 − 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

This change in 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 term often leads to a more powerful statistical test, but this
does depend on whether the reduction in the 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 more than compensates for the
reduction in degrees of freedom for the error term (as degrees of freedom go from
(𝑛−𝑘)163 to (𝑛−1)(𝑘−1) (remembering that there aremore subjects in the independent
ANOVA design).

13.7.1 Repeated measures ANOVA in jamovi

First, we need some data. Geschwind (1972) has suggested that the exact nature of a
patient’s language deficit following a stroke can be used to diagnose the specific region
of the brain that has been damaged. A researcher is concerned with identifying the
specific communication difficulties experienced by six patients suffering from Broca’s
Aphasia (a language deficit commonly experienced following a stroke) (Table 13.12).

Table 13.12: Word recognition task scores in stroke patients

Participant Speech Conceptual Syntax
1 8 7 6
2 7 8 6
3 9 5 3
4 5 4 5
5 6 6 2
6 8 7 4

The patients were required to complete three word recognition tasks. On the first
(speech production) task, patients were required to repeat single words read out aloud
by the researcher. On the second (conceptual) task, designed to test word comprehen-
sion, patients were required to match a series of pictures with their correct name. On
the third (syntax) task, designed to test knowledge of correct word order, patients were
asked to reorder syntactically incorrect sentences. Each patient completed all three
tasks. The order in which patients attempted the tasks was counterbalanced between
participants. Each task consisted of a series of 10 attempts. The number of attempts
successfully completed by each patient are shown in Table 13.11. Enter these data into
jamovi ready for analysis (or take a short-cut and load up the broca.csv file).

To perform a one-way related ANOVA in jamovi, open the one-way repeated measures
ANOVA dialogue box, as in Figure 13.9, via ‘ANOVA - Repeated Measures ANOVA’.
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Figure 13.9: Repeated measures ANOVA dialogue box in jamovi

Then:

• Enter a ‘Repeated Measures’ factor name. This should be a label that you choose
to describe the conditions repeated by all participants. For example, to describe
the speech, conceptual and syntax tasks completed by all participants a suitable
label would be ‘Task’. Note that this new factor name represents the independent
variable in the analysis.

• Add a third level in the ‘Repeated Measures Factors’ text box, as there are three
levels representing the three tasks: speech, conceptual and syntax. Change the
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labels of the levels accordingly.
• Then move each of the levels variables across to the ‘Repeated Measures’ Cells
text box.

• Finally, under the ‘Assumption Checks’ option, tick the ‘Sphericity checks’ text
box.

jamovi output for a one-way repeated measures ANOVA is produced as shown in Fig-
ure 13.10 to Figure 13.13. The first outputwe should look at isMauchly’s Test of Spheric-
ity, which tests the hypothesis that the variances of the differences between the condi-
tions are equal (meaning that the spread of difference scores between the study con-
ditions is approximately the same). In Figure 13.10 the significance level in Mauchly’s
test is 𝑝 = .720. If Mauchly’s test is non-significant (i.e. 𝑝 > .05, as is the case in this
analysis) then it is reasonable to conclude that the variances of the differences are not
significantly different (i.e. they are roughly equal and sphericity can be assumed).

Figure 13.10: One-way repeatedmeasures ANOVAoutput –Mauchly Test of Sphericity

If, on the other hand, Mauchly’s test had been significant (𝑝 < .05) then we would con-
clude that there are significant differences between the variance of the differences, and
the requirement of sphericity has not been met. In this case, we should apply a correc-
tion to the 𝐹 -value obtained in the one-way related ANOVA analysis:

• If the Greenhouse-Geisser value in the ‘Tests of Sphericity’ table is > .75 then you
should use the Huynh-Feldt correction

• But if the Greenhouse-Geisser value is < .75, then you should use theGreenhouse-
Geisser correction.

Both these corrected 𝐹 -values can be specified in the ‘Sphericity Corrections’ check
boxes under the ‘Assumption Checks’ options, and the corrected 𝐹 -values are then
shown in the results table, as in Figure 13.11.

In our analysis, we saw that the significance of Mauchly’s Test of Sphericity was 𝑝 =
.720 (i.e., 𝑝 > 0.05). So, this means we can assume that the requirement of sphericity
has been met so no correction to the 𝐹 -value is needed. Therefore, we can use the
‘None’ Sphericity Correction output values for the repeated measure ‘Task’: 𝐹 = 6.93,
𝑑𝑓 = 2, 𝑝 = .013, and we can conclude that the number of tests successfully completed
on each language task did vary significantly depending onwhether the taskwas speech,
comprehension or syntax based (𝐹(2, 10) = 6.93, 𝑝 = .013).
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Figure 13.11: One-way repeated measures ANOVA output – Tests of Within Subjects
Effects

Post hoc tests can also be specified in jamovi for repeatedmeasures ANOVA in the same
way as for independent ANOVA. The results are shown in Figure 13.12. These indicate
that there is a significant difference between Speech and Syntax, but not between other
levels.

Figure 13.12: Post hoc tests in repeated measures ANOVA in jamovi

Descriptive statistics (marginal means) can be reviewed to help interpret the results,
produced in the jamovi output as in Figure 13.13. Comparison of the mean number of
trials successfully completed by participants shows that Broca’s Aphasics perform rea-
sonably well on speech production (mean = 7.17) and language comprehension (mean
= 6.17) tasks. However, their performance was considerably worse on the syntax task
(mean = 4.33), with a significant difference in post hoc tests between Speech and Syntax
task performance.
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Figure 13.13: One-way repeated measures ANOVA output – Descriptive Statistics

13.8 The Friedman non-parametric repeated measures
ANOVA test

The Friedman test is a non-parametric version of a repeated measures ANOVA and can
be used instead of the Kruskal-Wallis test when testing for differences between three
or more groups where the same participants are in each group, or each participant
is closely matched with participants in other conditions. If the dependent variable is
ordinal, or if the assumption of normality is not met, then the Friedman test can be
used.

As with the Kruskal-Wallis test, the underlying mathematics is complicated, and won’t
be presented here. For the purpose of this book, it is sufficient to note that jamovi
calculates the tie-corrected version of the Friedman test, and in Figure 13.14 there is an
example using the Broca’s Aphasia data we have already looked at.

Figure 13.14: The ‘Repeated Measures ANOVA (Non-parametric)’ dialogue box and
results in jamovi
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It’s pretty straightforward to run a Friedman test in jamovi. Just select ‘Analyses -
ANOVA -RepeatedMeasuresANOVA (Non-parametric)’ as in Figure 13.14. Then high-
light and transfer the names of the repeated measures variables you wish to compare
(Speech, Conceptual, Syntax) into the ‘Measures:’ text box. To produce descriptive
statistics (means and medians) for the three repeated measures variables, click on the
‘Descriptives’ button.

The jamovi results show descriptive statistics, chi-square value, degrees of freedom,
and the 𝑝-value (Figure 13.14). Since the 𝑝-value is less than the level conventionally
used to determine significance (𝑝 < .05), we can conclude that Broca’s Aphasics per-
form reasonably well on speech production (median = 7.5) and language comprehen-
sion (median = 6.5) tasks. However, their performance was considerably worse on the
syntax task (median = 4.5), with a significant difference in post hoc tests between Speech
and Syntax task performance.

13.9 On the relationship between ANOVA and the Stu-
dent 𝑡-test

There’s one last thing I want to point out before finishing. It’s something that a lot of
people find kind of surprising, but it’s worth knowing about. An ANOVA with two
groups is identical to the Student 𝑡-test. No, really. It’s not just that they are similar, but
they are actually equivalent in every meaningful way. I won’t try to prove that this is
always true, but I will show you a single concrete demonstration. Suppose that, instead
of running anANOVAon ourmood.gain ~ drugmodel, let’s instead do it using therapy
as the predictor. If we run this ANOVA we get an 𝐹 -statistic of 𝐹(1, 16) = 1.71, and
a 𝑝-value = 0.21. Since we only have two groups, I didn’t actually need to resort to
an ANOVA, I could have just decided to run a Student 𝑡-test. So let’s see what happens
when I do that: I get a 𝑡-statistic of 𝑡(16) = −1.3068 and a 𝑝-value = 0.21. Curiously, the
𝑝-values are identical. Once again we obtain a value of 𝑝 = .21. But what about the test
statistic? Having run a 𝑡-test instead of anANOVA,we get a somewhat different answer,
namely 𝑡(16) = −1.3068. However, there is a fairly straightforward relationship here.
If we square the 𝑡-statistic then we get the 𝐹 -statistic from before: −1.30682 = 1.7077.

13.10 Summary

There’s a fair bit covered in this chapter, but there’s still a lot missing.164Most obviously,
I haven’t discussed how to run an ANOVA when you are interested in more than one
grouping variable, but that will be discussed in a lot of detail in Chapter 14. In terms
of what we have discussed, the key topics were:

• The basic logic behind How ANOVA works and Running an ANOVA in jamovi.
• How to compute an Effect size for an ANOVA.
• Multiple comparisons and post hoc tests for multiple testing.
• The assumptions of one-way ANOVA.
• Checking the homogeneity of variance assumption andwhat to do if it is violated:
Removing the homogeneity of variance assumption.

322



• Checking the normality assumption and what to do if it is violated: Removing
the normality assumption.

• Repeated measures one-way ANOVA and the non-parametric equivalent, The
Friedman non-parametric repeated measures ANOVA test.
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Chapter 14

Factorial ANOVA

Over the course of the last few chapters we have done quite a lot. We have looked at
statistical tests you can use when you have one nominal predictor variable with two
groups (e.g., the 𝑡-test in Chapter 11) or with three or more groups (Chapter 13). Chap-
ter 12 introduced a powerful new idea, that is building statistical models with multiple
continuous predictor variables used to explain a single outcome variable. For instance,
a regression model could be used to predict the number of errors a student makes in
a reading comprehension test based on the number of hours they studied for the test
and their score on a standardised IQ test.

The goal in this chapter is to extend the idea of using multiple predictors into the
ANOVA framework. For instance, suppose we were interested in using the reading
comprehension test to measure student achievements in three different schools, andwe
suspect that girls and boys are developing at different rates (and so would be expected
to have different performance on average). Each student is classified in two different
ways: on the basis of their gender and on the basis of their school. What we’d like to do
is analyse the reading comprehension scores in terms of both of these grouping vari-
ables. The tool for doing so is generically referred to as factorial ANOVA. However,
since we have two grouping variables, we sometimes refer to the analysis as a two-way
ANOVA, in contrast to the one-way ANOVAs that we ran in Chapter 13.

14.1 Factorial ANOVA 1: balanced designs, focus on main
effects

When we discussed analysis of variance in Chapter 13, we assumed a fairly simple
experimental design. Each person is in one of several groups and we want to know
whether these groups have different mean scores on some outcome variable. In this
section, I’ll discuss a broader class of experimental designs known as factorial designs,
in which we have more than one grouping variable. I gave one example of how this
kind of design might arise above. Another example appears in Chapter 13 in which
we were looking at the effect of different drugs on the mood.gain experienced by each
person. In that chapter we did find a significant effect of drug, but at the end of the
chapter we also ran an analysis to see if there was an effect of therapy. We didn’t find
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one, but there’s something a bit worrying about trying to run two separate analyses
trying to predict the same outcome. Maybe there actually is an effect of therapy on
mood gain, but we couldn’t find it because it was being “hidden” by the effect of drug?
In other words, we’re going to want to run a single analysis that includes both drug
and therapy as predictors. For this analysis each person is cross-classified by the drug
they were given (a factor with 3 levels) and what therapy they received (a factor with 2
levels). We refer to this as a 3 × 2 factorial design.
If we cross-tabulate drug by therapy, using the ‘Frequencies’ – ‘Contingency Tables’
analysis in jamovi (see Section 6.1), we get the table shown in Figure 14.1.

Figure 14.1: jamovi contingency table of drug by therapy

As you can see, not only do we have participants corresponding to all possible com-
binations of the two factors, indicating that our design is completely crossed, it turns
out that there are an equal number of people in each group. In other words, we have a
balanced design. In this section I’ll talk about how to analyse data from balanced de-
signs, since this is the simplest case. The story for unbalanced designs is quite tedious,
so we’ll put it to one side for the moment.

14.1.1 What hypotheses are we testing?

Like one-way ANOVA, factorial ANOVA is a tool for testing certain types of hypothe-
ses about population means. So a sensible place to start would be to be explicit about
what our hypotheses actually are. However, before we can even get to that point, it’s
really useful to have some clean and simple notation to describe the population means.
Because of the fact that observations are cross-classified in terms of two different fac-
tors, there are quite a lot of different means that one might be interested in. To see this,
let’s start by thinking about all the different sample means that we can calculate for this
kind of design. Firstly, there’s the obvious idea that we might be interested in this list
of group means (Table 14.1).

Now, the next Table (Table 14.2) shows a list of the group means for all possible com-
binations of the two factors (e.g., people who received the placebo and no therapy,
people who received the placebo while getting CBT, etc.). It is helpful to organise all
these numbers, plus the marginal and grand means, into a single table.
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Table 14.1: Group means for drug and therapy groups in the clinicaltrial.csv data

drug therapy mood.gain
placebo no.therapy 0.30
anxifree no.therapy 0.40
joyzepam no.therapy 1.47
placebo CBT 0.60
anxifree CBT 1.03
joyzepam CBT 1.50

Table 14.2: Group and total means for drug and therapy groups in the clinicaltrial.csv
data

no therapy CBT total
placebo 0.30 0.60 0.45
anxifree 0.40 1.03 0.72
joyzepam 1.47 1.50 1.48
total 0.72 1.04 0.88

Now, each of these different means is of course a sample statistic. It’s a quantity that
pertains to the specific observations that we’ve made during our study. What we want
to make inferences about are the corresponding population parameters. That is, the
true means as they exist within some broader population. Those population means
can also be organised into a similar table, but we’ll need a little mathematical notation
to do so (Table 14.3). As usual, I’ll use the symbol 𝜇 to denote a populationmean. How-
ever, because there are lots of different means, I’ll need to use subscripts to distinguish
between them.

Table 14.3: Notation for population means in a factorial table

no therapy CBT total
placebo 𝜇11 𝜇12
anxifree 𝜇21 𝜇22
joyzepam 𝜇31 𝜇32
total

Here’s how the notation works. Our table is defined in terms of two factors. Each
row corresponds to a different level of Factor A (in this case drug), and each column
corresponds to a different level of Factor B (in this case therapy). If we let 𝑅 denote the
number of rows in the table, and 𝐶 denote the number of columns, we can refer to this
as an𝑅 ×𝐶 factorial ANOVA. In this case𝑅 = 3 and𝐶 = 2. We’ll use lowercase letters
to refer to specific rows and columns, so 𝜇𝑟𝑐 refers to the population mean associated
with the 𝑟-th level of Factor A (i.e. row number 𝑟) and the 𝑐-th level of Factor B (column
number c).165
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Okay, what about the remaining entries? For instance, how should we describe the
average mood gain across the entire (hypothetical) population of people who might be
given Joyzepam in an experiment like this, regardless of whether theywere in CBT?We
use the “dot” notation to express this. In the case of Joyzepam, notice that we’re talking
about the mean associated with the third row in the table. That is, we’re averaging
across two cell means (i.e., 𝜇31 and 𝜇32). The result of this averaging is referred to as
a marginal mean, and would be denoted 𝜇3. in this case. The marginal mean for CBT
corresponds to the population mean associated with the second column in the table,
so we use the notation because it is the mean obtained by averaging (marginalising)166
over both. So our full table of population means can be written down like in Table 14.4.

Table 14.4: Notation for population and total means in a factorial table

no therapy CBT total
placebo 𝜇11 𝜇12 𝜇1.
anxifree 𝜇21 𝜇22 𝜇2.
joyzepam 𝜇31 𝜇32 𝜇3.
total 𝜇.1 𝜇.2 𝜇..

Now that we have this notation, it is straightforward to formulate and express some
hypotheses. Let’s suppose that the goal is to find out two things. First, does the choice of
drug have any effect on mood? And second, does CBT have any effect on mood? These
aren’t the only hypotheses that we could formulate of course, and we’ll see a really
important example of a different kind of hypothesis in the section Factorial ANOVA 2:
balanced designs, interpreting interactions, but these are the two simplest hypotheses
to test, and so we’ll start there. Consider the first test. If the drug has no effect then we
would expect all of the row means to be identical, right? So that’s our null hypothesis.
On the other hand, if the drug does matter then we should expect these row means to
be different. Formally, we write down our null and alternative hypotheses in terms of
the equality of marginal means:

Null hypothesis, 𝐻0: row means are the same, i.e., 𝜇1. = 𝜇2. = 𝜇3.

Alternative hypothesis, 𝐻1: at least one row mean is different

It’s worth noting that these are exactly the same statistical hypotheses that we formed
when we ran a one-way ANOVA on these data in Chapter 13. Back then I used the
notation 𝜇 × 𝑃 to refer to the mean mood gain for the placebo group, with 𝜇𝐴 and
𝜇×𝐽 corresponding to the groupmeans for the two drugs, and the null hypothesis was
𝜇𝑃 = 𝜇𝐴 = 𝜇𝐽 . So we’re actually talking about the same hypothesis, it’s just that the
more complicated ANOVA requires more careful notation due to the presence of mul-
tiple grouping variables, so we’re now referring to this hypothesis as 𝜇1. = 𝜇2. = 𝜇3.
. However, as we’ll see shortly, although the hypothesis is identical the test of that hy-
pothesis is subtly different due to the fact that we’re now acknowledging the existence
of the second grouping variable.

Speaking of the other grouping variable, you won’t be surprised to discover that our
second hypothesis test is formulated the same way. However, since we’re talking about
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the psychological therapy rather than drugs our null hypothesis now corresponds to
the equality of the column means:

Null hypothesis, 𝐻0: column means are the same, i.e., 𝜇.1 = 𝜇.2

Alternative hypothesis, 𝐻1: column means are different, i.e., 𝜇.1 ≠ 𝜇.2

14.1.2 Running the analysis in jamovi

The null and alternative hypotheses that I described in the last section should seem
awfully familiar. They’re basically the same as the hypotheses that we were testing in
our simpler oneway ANOVAs in Chapter 13. So you’re probably expecting that the
hypothesis tests that are used in factorial ANOVAwill be essentially the same as the 𝐹 -
test from Chapter 13. You’re expecting to see references to sums of squares (𝑆𝑆), mean
squares (𝑀𝑆), degrees of freedom (𝑑𝑓), and finally an 𝐹 -statistic that we can convert
into a 𝑝-value, right? Well, you’re absolutely and completely right. So much so that I’m
going to depart from my usual approach. Throughout this book, I’ve generally taken
the approach of describing the logic (and to an extent the mathematics) that underpins
a particular analysis first and only then introducing the analysis in jamovi. This time
I’m going to do it the other way around and show you how to do it in jamovi first. The
reason for doing this is that I want to highlight the similarities between the simple one-
way ANOVA tool that we discussed in Chapter 13, and the more complicated approach
that we’re going to use in this chapter.

If the data you’re trying to analyse correspond to a balanced factorial design then run-
ning your analysis of variance is easy. To see how easy it is, let’s start by reproducing the
original analysis from Chapter 13. In case you’ve forgotten, for that analysis we were
using only a single factor (i.e., drug) to predict our outcome variable (i.e., mood.gain),
and we got the results shown in Figure 14.2.

Figure 14.2: jamovi one-way ANOVA of mood.gain by drug

Now, suppose I’m also curious to find out if therapy has a relationship tomood.gain. In
light of what we’ve seen from our discussion of multiple regression in Chapter 12, you
probably won’t be surprised that all we have to do is add therapy as a second ‘Fixed
Factor’ in the analysis, see Figure 14.3.
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Figure 14.3: jamovi two-way anova of mood.gain by drug and therapy

This output is pretty simple to read too. The first row of the table reports a between-
group sum of squares (𝑆𝑆) value associated with the drug factor, along with a corre-
sponding between-group 𝑑𝑓 value. It also calculates a mean square value (𝑀𝑆), an
𝐹 -statistic and a 𝑝-value. There is also a row corresponding to the therapy factor, a row
corresponding to the interaction between the drug factor and the therapy factor (which
we won’t cover just yet – more on interactions later), and a row corresponding to the
residuals (i.e., the within groups variation).

Not only are all of the individual quantities pretty familiar, the relationships between
these different quantities have remained unchanged, just like we saw with the original
one-way ANOVA. Note that the mean square value is calculated by dividing 𝑆𝑆 by the
corresponding 𝑑𝑓 . That is, it’s still true that:

𝑀𝑆 = 𝑆𝑆
𝑑𝑓

regardless of whether we’re talking about drug, therapy or the residuals. To see this,
let’s not worry about how the sums of squares values are calculated. Instead, let’s take
it on faith that jamovi has calculated the 𝑆𝑆 values correctly, and try to verify that all
the rest of the numbers make sense. First, note that for the drug factor, we divide 3.45
by 2 and end up with a mean square value of 1.73. For the therapy factor, there’s only
1 degree of freedom, so our calculations are even simpler: dividing 0.47 (the 𝑆𝑆 value)
by 1 gives us an answer of 0.47 (the 𝑀𝑆 value).

Turning to the 𝐹 -statistics and the 𝑝-values, notice that we have one corresponding
to the drug factor and one corresponding to the therapy factor. Regardless of which
one we’re talking about, the 𝐹 -statistic is calculated by dividing the mean square value
associated with the factor by the mean square value associated with the residuals. If
we use “A” as shorthand notation to refer to the first factor (Factor A; in this case drug)
and “R” as shorthand notation to refer to the residuals, then the 𝐹 -statistic associated
with Factor A is denoted 𝐹𝐴, and is calculated as:

𝐹𝐴 = 𝑀𝑆𝐴
𝑀𝑆𝑅

and an equivalent formula exists for Factor B (i.e., therapy). Note that this use of “R” to
refer to residuals is a bit awkward, since we also used the letter R to refer to the number

330



of rows in the table, but I’m only going to use “R” to mean residuals in the context
of 𝑆𝑆𝑅 and 𝑀𝑆𝑅, so hopefully this shouldn’t be confusing. Anyway, to apply this
formula to the drugs factorwe take themean square of 1.73 and divide it by the residual
mean square value of 0.05, which gives us an 𝐹 -statistic of 31.71.167 The corresponding
calculation for the therapy variable would be to divide 0.47 by 0.05which gives 8.58 as
the 𝐹 -statistic. Not surprisingly, of course, these are the same values that jamovi has
reported in the ANOVA table above.

Also in the ANOVA table is the calculation of the 𝑝-values. Once again, there is nothing
new here. For each of our two factors what we’re trying to do is test the null hypothesis
that there is no relationship between the factor and the outcome variable (I’ll be a bit
more precise about this later on). To that end, we’ve (apparently) followed a similar
strategy to what we did in the one-way ANOVA and have calculated an 𝐹 -statistic for
each of these hypotheses. To convert these to 𝑝-values, all we need to do is note that the
sampling distribution for the 𝐹 -statistic under the null hypothesis (that the factor in
question is irrelevant) is an 𝐹 -distribution. Also note that the two degrees of freedom
values are those corresponding to the factor and those corresponding to the residuals.
For the drug factor we’re talking about an 𝐹 -distribution with 2 and 12 degrees of free-
dom (I’ll discuss degrees of freedom in more detail later). In contrast, for the therapy
factor the sampling distribution is 𝐹 with 1 and 12 degrees of freedom.

At this point, I hope you can see that the ANOVA table for this more complicated facto-
rial analysis should be read in much the same way as the ANOVA table for the simpler
one way analysis. In short, it’s telling us that the factorial ANOVA for our 3 × 2 design
found a significant effect of drug (𝐹2,12 = 31.71, 𝑝 < .001) as well as a significant effect
of therapy (𝐹1,12 = 8.58, 𝑝 = .013). Or, to use the more technically correct terminology,
we would say that there are two main effects of drug and therapy. At the moment, it
probably seems a bit redundant to refer to these as “main” effects, but it actually does
make sense. Later on, we’re going to cover “interactions” between the two factors, and
so we generally make a distinction between main effects and interaction effects.

14.1.3 How are the sum of squares calculated?

In the previous section I had two goals. Firstly, to show you that the jamovi method
needed to do factorial ANOVA is pretty much the same as what we used for a one-way
ANOVA. The only difference is the addition of a second factor. Secondly, I wanted to
show you what the ANOVA table looks like in this case, so that you can see from the
outset that the basic logic and structure behind factorial ANOVA is the same as that
which underpins one-way ANOVA. Try to hold onto that feeling. It’s genuinely true,
insofar as factorial ANOVA is built in more or less the sameway as the simpler one-way
ANOVAmodel. It’s just that this feeling of familiarity starts to evaporate once you start
digging into the details. Traditionally, this comforting sensation is replaced by an urge
to hurl abuse at the authors of statistics textbooks.

Okay, let’s start by looking at some of those details. The explanation that I gave in the
last section illustrates the fact that the hypothesis tests for the main effects (of drug and
therapy in this case) are 𝐹 -tests, but what it doesn’t do is show you how the sum of
squares (𝑆𝑆) values are calculated. Nor does it tell you explicitly how to calculate de-
grees of freedom (𝑑𝑓 values) though that’s a simple thing by comparison. Let’s assume
for now that we have only two predictor variables, Factor A and Factor B. If we use 𝑌 to
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refer to the outcome variable, then we would use 𝑌 𝑟𝑐𝑖 to refer to the outcome associ-
atedwith the 𝑖-thmember of group 𝑟𝑐 (i.e., level/row 𝑟 for Factor A and level/column 𝑐
for Factor B). Thus, if we use ̄𝑌 to refer to a sample mean, we can use the same notation
as before to refer to group means, marginal means and grand means. That is, ̄𝑌𝑟𝑐 is the
sample mean associated with the 𝑟th level of Factor A and the 𝑐th level of Factor B, ̄𝑌𝑟.
would be the marginal mean for the 𝑟th level of Factor A, ̄𝑌.𝑐 would be the marginal
mean for the 𝑐th level of Factor B, and ̄𝑌.. is the grandmean. In other words, our sample
means can be organised into the same table as the population means. For our clinical
trial data, that table is shown in Table 14.5.

Table 14.5: Notation for sample means for the clinical trial data

no therapy CBT total
placebo ̄𝑌11 ̄𝑌12 ̄𝑌1.
anxifree ̄𝑌21 ̄𝑌22 ̄𝑌2.
joyzepam ̄𝑌31 ̄𝑌32 ̄𝑌3.
total ̄𝑌.1 ̄𝑌.2 ̄𝑌..

And if we look at the sample means that I showed earlier, we have ̄𝑌11 = 0.30, ̄𝑌12 =
0.60 etc. In our clinical trial example, the drugs factor has 3 levels and the therapy factor
has 2 levels, and so what we’re trying to run is a 3 × 2 factorial ANOVA. However, we’ll
be a little more general and say that Factor A (the row factor) has 𝑟 levels and Factor
B (the column factor) has 𝑐 levels, and so what we’re running here is an 𝑟 × 𝑐 factorial
ANOVA.

[Additional technical detail168]

14.1.4 What are our degrees of freedom?

The degrees of freedom are calculated in much the same way as for one-way ANOVA.
For any given factor, the degrees of freedom is equal to the number of levels minus 1
(i.e., 𝑅 − 1 for the row variable Factor A, and 𝐶 − 1 for the column variable Factor
B). So, for the drugs factor we obtain 𝑑𝑓 = 2, and for the therapy factor we obtain
𝑑𝑓 = 1. Later on, when we discuss the interpretation of ANOVA as a regression model
(see Section 14.6), I’ll give a clearer statement of how we arrive at this number. But
for the moment we can use the simple definition of degrees of freedom, namely that
the degrees of freedom equals the number of quantities that are observed, minus the
number of constraints. So, for the drugs factor, we observe 3 separate groupmeans, but
these are constrained by 1 grand mean, and therefore the degrees of freedom is 2.

14.1.5 Factorial ANOVA versus one-way ANOVAs

Now that we’ve seen how a factorial ANOVA works, it’s worth taking a moment to
compare it to the results of the one way analyses, because this will give us a really good
sense of why it’s a good idea to run the factorial ANOVA. In Chapter 13 I ran a one-way
ANOVA that looked to see if there are any differences between drugs, and a second
one-way ANOVA to see if there were any differences between therapies. As we saw
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in the section Section 14.1.1, the null and alternative hypotheses tested by the one-way
ANOVAs are in fact identical to the hypotheses tested by the factorial ANOVA. Looking
evenmore carefully at the ANOVA tables, we can see that the sum of squares associated
with the factors are identical in the two different analyses (3.45 for drug and 0.92 for
therapy), as are the degrees of freedom (2 for drug, 1 for therapy). But they don’t give
the same answers! Most notably, when we ran the one-way ANOVA for therapy in
Section 13.9 we didn’t find a significant effect (the 𝑝-value was .21). However, when we
look at the main effect of therapy within the context of the two-way ANOVA, we do get
a significant effect (𝑝 = .019). The two analyses are clearly not the same.
Why does that happen? The answer lies in understanding how the residuals are cal-
culated. Recall that the whole idea behind an 𝐹 -test is to compare the variability that
can be attributed to a particular factor with the variability that cannot be accounted for
(the residuals). If you run a one-way ANOVA for therapy, and therefore ignore the ef-
fect of drug, the ANOVA will end up dumping all of the drug-induced variability into
the residuals! This has the effect of making the data look more noisy than they really
are, and the effect of therapy which is correctly found to be significant in the two-way
ANOVA now becomes non-significant. If we ignore something that actually matters
(e.g., drug) when trying to assess the contribution of something else (e.g., therapy) then
our analysis will be distorted. Of course, it’s perfectly okay to ignore variables that are
genuinely irrelevant to the phenomenon of interest. If we had recorded the colour of
the walls, and that turned out to be a non-significant factor in a three-way ANOVA, it
would be perfectly okay to disregard it and just report the simpler two-way ANOVA
that doesn’t include this irrelevant factor. What you shouldn’t do is drop variables that
actually make a difference!

14.1.6 What kinds of outcomes does this analysis capture?

The ANOVA model that we’ve been talking about so far covers a range of different
patterns that we might observe in our data. For instance, in a two-way ANOVA design
there are four possibilities: (a) only Factor A matters, (b) only Factor B matters, (c) both
A and B matter, and (d) neither A nor B matters. An example of each of these four
possibilities is plotted in Figure 14.4.

14.2 Factorial ANOVA 2: balanced designs, interpreting
interactions

The four patterns of data shown in Figure 14.4 are all quite realistic. There are many
data sets that produce exactly those patterns. However, they are not the whole story
and the ANOVAmodel that we have been talking about up to this point is not sufficient
to fully account for a table of group means. Why not? Well, so far we have the ability
to talk about the idea that drugs can influence mood, and therapy can influence mood,
but no way of talking about the possibility of an interaction between the two.

An interaction between A and B is said to occur whenever the effect of Factor 𝐴 is dif-
ferent, depending on which level of Factor 𝐵 we’re talking about. Several examples of
an interaction effect with the context of a 2 × 2 ANOVA are shown in Figure 14.5.
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Figure 14.4: The four different outcomes for a 2 × 2 ANOVA when no interactions are
present. In panel (a) we see a main effect of Factor A and no effect of Factor B. Panel (b)
shows a main effect of Factor B but no effect of Factor A. Panel (c) shows main effects of
both Factor A and Factor B. Finally, panel (d) shows no effect of either factor

To give amore concrete example, suppose that the operation of Anxifree and Joyzepam
is governed by quite different physiological mechanisms. One consequence of this is
that while Joyzepam has more or less the same effect on mood regardless of whether
one is in therapy, Anxifree is actually much more effective when administered in con-
junction with CBT. The ANOVA that we developed in the previous section does not
capture this idea. To get some idea of whether an interaction is actually happening it
helps to plot the various group means. In jamovi this is done via the ANOVA ‘Esti-
mated Marginal Means’ option – just move drug and therapy across into the ‘Marginal
Means’ box under ‘Term 1’. This should look something like Figure 14.6.
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Figure 14.5: Qualitatively different interactions for a 2 × 2 ANOVA

Our main concern relates to the fact that the two lines aren’t parallel. The effect of CBT
(difference between solid line and dotted line) when the drug is Joyzepam (right side)
appears to be near zero, even smaller than the effect of CBT when a placebo is used
(left side). However, when Anxifree is administered, the effect of CBT is larger than the
placebo (middle). Is this effect real, or is this just random variation due to chance? Our
original ANOVA cannot answer this question, because we make no allowances for the
idea that interactions even exist! In this section, we’ll fix this problem.
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Figure 14.6: jamovi screen showing how to generate a descriptive interaction plot in
ANOVA using the clinical trial data

14.2.1 What exactly is an interaction effect?

The key idea that we’re going to introduce in this section is that of an interaction effect.
In the ANOVA model we have looked at so far there are only two factors involved in
our model (i.e., drug and therapy). But whenwe add an interaction we add a new com-
ponent to the model: the combination of drug and therapy. Intuitively, the idea behind
an interaction effect is fairly simple. It just means that the effect of Factor A is different,
depending on which level of Factor B we’re talking about. But what does that actually
mean in terms of our data? The plot in Figure 14.5 depicts several different patterns
that, although quite different to each other, would all count as an interaction effect. So
it’s not entirely straightforward to translate this qualitative idea into something math-
ematical that a statistician can work with.

[Additional technical detail169]

14.2.2 Degrees of freedom for the interaction

Calculating the degrees of freedom for the interaction is slightly trickier than the cor-
responding calculation for the main effects. Let’s start by thinking about the ANOVA
model as a whole. Once we include interaction effects in the model we’re allowing ev-
ery single group to have a unique mean, 𝑚𝑢𝑟𝑐. For an 𝑅 × 𝐶 factorial ANOVA, this
means that there are 𝑅 × 𝐶 quantities of interest in the model and only the one con-
straint: all of the group means need to average out to the grand mean. So the model as
a whole needs to have (𝑅 × 𝐶) − 1 degrees of freedom. But the main effect of Factor
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A has 𝑅 − 1 degrees of freedom, and the main effect of Factor B has 𝐶 − 1 degrees of
freedom. Therefore the degrees of freedom for the interaction is:

𝑑𝑓𝐴∶𝐵 = (𝑅 × 𝐶 − 1) − (𝑅 − 1) − (𝐶 − 1)
= 𝑅𝐶 − 𝑅 − 𝐶 + 1
= (𝑅 − 1)(𝐶 − 1)

which is just the product of the degrees of freedom associated with the row factor and
the column factor.

What about the residual degrees of freedom? Because we’ve added interaction terms
which absorb some degrees of freedom, there are fewer residual degrees of freedom
left over. Specifically, note that if the model with interaction has a total of (𝑅 × 𝐶) − 1,
and there are 𝑁 observations in your data set that are constrained to satisfy 1 grand
mean, your residual degrees of freedom now become 𝑁 − (𝑅 × 𝐶) − 1 + 1, or just
𝑁 − (𝑅 × 𝐶).

14.2.3 Running the ANOVA in jamovi

Adding interaction terms to the ANOVA model in jamovi is straightforward. In fact it
is more than straightforward because it is the default option for ANOVA. This means
that when you specify an ANOVA with two factors, e.g., drug and therapy then the
interaction component – drug× therapy – is added automatically to themodel.170When
we run the ANOVA with the interaction term included, then we get the results shown
in Figure 14.7.

Figure 14.7: Results for the full factorial model, including the interaction component
drug × therapy

As it turns out, while we do have a significant main effect of drug (𝐹2,12 = 31.7, 𝑝 <
.001) and therapy type (𝐹1,12 = 8.6, 𝑝 = .013), there is no significant interaction be-
tween the two (𝐹2,12 = 2.5, 𝑝 = 0.125).

14.2.4 Interpreting the results

There’s a couple of very important things to consider when interpreting the results
of factorial ANOVA. First, there’s the same issue that we had with one-way ANOVA,
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which is that if you obtain a significant main effect of (say) drug, it doesn’t tell you any-
thing about which drugs are different to one another. To find that out, you need to run
additional analyses. We’ll talk about some analyses that you can run in later Sections:
Different ways to specify contrasts and Post hoc tests. The same is true for interaction
effects. Knowing that there’s a significant interaction doesn’t tell you anything about
what kind of interaction exists. Again, you’ll need to run additional analyses.

Secondly, there’s a very peculiar interpretation issue that arises when you obtain a sig-
nificant interaction effect but no corresponding main effect. This happens sometimes.
For instance, in the crossover interaction shown in Figure 14.5(a), this is exactly what
you’d find. In this case, neither of the main effects would be significant, but the inter-
action effect would be. This is a difficult situation to interpret, and people often get
a bit confused about it. The general advice that statisticians like to give in this situa-
tion is that you shouldn’t pay much attention to the main effects when an interaction is
present. The reason they say this is that, although the tests of the main effects are per-
fectly valid from a mathematical point of view, when there is a significant interaction
effect the main effects rarely test interesting hypotheses. Recall from Section 14.1.1 that
the null hypothesis for a main effect is that the marginal means are equal to each other,
and that a marginal mean is formed by averaging across several different groups. But
if you have a significant interaction effect then you know that the groups that comprise
the marginal mean aren’t homogeneous, so it’s not really obvious why you would even
care about those marginal means.

Here’s what I mean. Again, let’s stick with a clinical example. Suppose that we had
a 2 × 2 design comparing two different treatments for phobias (e.g., systematic de-
sensitisation vs flooding), and two different anxiety reducing drugs (e.g., Anxifree vs
Joyzepam). Now, suppose what we found was that Anxifree had no effect when desen-
sitisation was the treatment, and Joyzepam had no effect when flooding was the treat-
ment. But both were pretty effective for the other treatment. This is a classic crossover
interaction, and what we’d find when running the ANOVA is that there is no main ef-
fect of drug, but a significant interaction. Now, what does it actually mean to say that
there’s no main effect? Well, it means that if we average over the two different psycho-
logical treatments, then the average effect of Anxifree and Joyzepam is the same. But
why would anyone care about that? When treating someone for phobias it is never the
case that a person can be treated using an “average” of flooding and desensitisation.
That doesn’t make a lot of sense. You either get one or the other. For one treatment one
drug is effective, and for the other treatment the other drug is effective. The interaction
is the important thing and the main effect is kind of irrelevant.

This sort of thing happens a lot. The main effect are tests of marginal means, and when
an interaction is presentwe often find ourselves not being terribly interested inmarginal
means because they imply averaging over things that the interaction tells us shouldn’t
be averaged! Of course, it’s not always the case that a main effect is meaningless when
an interaction is present. Often you can get a big main effect and a very small inter-
action, in which case you can still say things like “drug A is generally more effective
than drug B” (because there was a big effect of drug), but you’d need to modify it a bit
by adding that “the difference in effectiveness was different for different psychological
treatments”. In any case, the main point here is that whenever you get a significant in-
teraction you should stop and think about what the main effect actually means in this
context. Don’t automatically assume that the main effect is interesting.
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14.3 Effect size

The effect size calculation for a factorial ANOVA is pretty similar to those used in one-
way ANOVA (see Effect size section). Specifically, we can use 𝜂2 (eta-squared) as a
simple way to measure how big the overall effect is for any particular term. As before,
𝜂2 is defined by dividing the sum of squares associated with that term by the total sum
of squares. For instance, to determine the size of the main effect of Factor A, we would
use the following formula:

𝜂2
𝐴 = 𝑆𝑆𝐴

𝑆𝑆𝑇

As before, this can be interpreted in much the same way as 𝑅2 in regression.171 It tells
you the proportion of variance in the outcome variable that can be accounted for by
the main effect of Factor A. It is therefore a number that ranges from 0 (no effect at all)
to 1 (accounts for all of the variability in the outcome). Moreover, the sum of all the
𝜂2 values, taken across all the terms in the model, will sum to the the total 𝑅2 for the
ANOVAmodel. If, for instance, the ANOVAmodel fits perfectly (i.e., there is no within
groups variability at all!), the 𝜂2 values will sum to 1. Of course, that rarely if ever
happens in real life.

However, when doing a factorial ANOVA, there is a second measure of effect size that
people like to report, known as partial 𝜂2. The idea behind partial 𝜂2 (which is some-
times denoted 𝑝𝜂2 or 𝜂2

𝑝) is that, when measuring the effect size for a particular term
(say, the main effect of Factor A), you want to deliberately ignore the other effects in
the model (e.g., the main effect of Factor B). That is, you would pretend that the effect
of all these other terms is zero, and then calculate what the 𝜂2 value would have been.
This is actually pretty easy to calculate. All you have to do is remove the sum of squares
associated with the other terms from the denominator. In other words, if you want the
partial 𝜂2 for the main effect of Factor A, the denominator is just the sum of the 𝑆𝑆
values for Factor A and the residuals:

partial 𝜂2
𝐴 = 𝑆𝑆𝐴

𝑆𝑆𝐴 + 𝑆𝑆𝑅

This will always give you a larger number than 𝜂2, which the cynic in me suspects
accounts for the popularity of partial 𝜂2. And once again you get a number between
0 and 1, where 0 represents no effect. However, it’s slightly trickier to interpret what
a large partial 𝜂2 value means. In particular, you can’t actually compare the partial 𝜂2

values across terms! Suppose, for instance, there is no within groups variability at all:
if so, 𝑆𝑆𝑅 = 0. What that means is that every term has a partial 𝜂2 value of 1. But that
doesn’t mean that all terms in your model are equally important, or indeed that they
are equally large. All it mean is that all terms in your model have effect sizes that are
large relative to the residual variation. It is not comparable across terms.

To see what I mean by this, it’s useful to see a concrete example. First, let’s have a look
at the effect sizes for the original ANOVA (Table 14.6) without the interaction term from
Figure 14.3.
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Table 14.6: Effect sizes when the interaction term is not included in the ANOVAmodel

eta.sq partial.eta.sq
drug 0.71 0.79

therapy 0.10 0.34

Looking at the 𝜂2 values first, we see that drug accounts for 71%of the variance (i.e. 𝜂2 =
0.71) in mood.gain, whereas therapy only accounts for 10%. This leaves a total of 19%
of the variation unaccounted for (i.e., the residuals constitute 19% of the variation in the
outcome). Overall, this implies that we have a very large effect172 of drug and a modest
effect of therapy.

Now let’s look at the partial 𝜂2 values, shown in Figure 14.3. Because the effect of ther-
apy isn’t all that large, controlling for it doesn’t makemuch of a difference, so the partial
𝜂2 for drug doesn’t increase verymuch, andwe obtain a value of 𝑝𝜂2 = 0.79. In contrast,
because the effect of drug was very large, controlling for it makes a big difference, and
so when we calculate the partial 𝜂2 for therapy you can see that it rises to 𝑝𝜂2 = 0.34.
The question that we have to ask ourselves is, what do these partial 𝜂2 values actually
mean? The way I generally interpret the partial 𝜂2 for the main effect of Factor A is to
interpret it as a statement about a hypothetical experiment in which only Factor A was
being varied. So, even though in this experiment we varied both A and B, we can easily
imagine an experiment in which only Factor A was varied, and the partial 𝜂2 statistic
tells you how much of the variance in the outcome variable you would expect to see
accounted for in that experiment. However, it should be noted that this interpretation,
like many things associated with main effects, doesn’t make a lot of sense when there
is a large and significant interaction effect.

Speaking of interaction effects, Table 14.7 shows what we get when we calculate the
effect sizes for the model that includes the interaction term, as in Figure 14.7. As you
can see, the 𝜂2 values for the main effects don’t change, but the partial 𝜂2 values do:

Table 14.7: Effect sizes when the interaction term is included in the ANOVA model

eta.sq partial.eta.sq
drug 0.71 0.84

therapy 0.10 0.42
drug*therapy 0.06 0.29

14.3.1 Estimated group means

In many situations you will want to report estimates of all the group means from the
results of your ANOVA, as well as confidence intervals. You can use the ‘Estimated
Marginal Means’ option in the jamovi ANOVA analysis to do this, as in Figure 14.8.
If the ANOVA that you have run is a saturated model (i.e., contains all possible main
effects and all possible interaction effects) then the estimates of the groupmeans are ac-
tually identical to the sample means, though the confidence intervals will use a pooled
estimate of the standard errors rather than use a separate one for each group.
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Figure 14.8: jamovi screenshot showing the marginal means for the saturated model,
i.e. including the interaction component, with the clinical trial data set

In the output we see that the estimated mean mood gain for the placebo group with no
therapy was 0.300, with a 95% confidence interval from 0.006 to 0.594. Note that these
are not the same confidence intervals that you would get if you calculated them sepa-
rately for each group, because of the fact that the ANOVAmodel assumes homogeneity
of variance and therefore uses a pooled estimate of the standard deviation.

When the model doesn’t contain the interaction term then the estimated group means
will differ from the sample means. Instead of reporting the sample mean, jamovi calcu-
lates the value of the group means that would be expected on the basis of the marginal
means (i.e., assuming no interaction).

Using the notation we developed earlier, the estimate for 𝜇𝑟𝑐, the mean for level 𝑟 on
the (row) Factor A and level 𝑐 on the (column) Factor B would be 𝜇.. + 𝛼𝑟 + 𝛽𝑐. If there
are genuinely no interactions between the two factors, this is actually a better estimate
of the population mean than the raw sample mean. Removing the interaction term
from the model, via the ‘Model’ options in the jamovi ANOVA analysis, provides the
marginal means for the analysis shown in Figure 14.9.
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Figure 14.9: jamovi screenshot showing themarginal means for the unsaturatedmodel,
i.e. without the interaction component, with the clinical trial data set

14.4 Assumption checking

As with one-way ANOVA, the key assumptions of factorial ANOVA are homogeneity
of variance (all groups have the same standard deviation), normality of the residuals,
and independence of the observations. The first two are things we can check for. The
third is something that you need to assess yourself by asking if there are any special re-
lationships between different observations, for example repeated measures where the
independent variable is time so there is a relationship between the observations at time
one and time two: observations at different time points are from the same people. Ad-
ditionally, if you aren’t using a saturated model (e.g., if you’ve omitted the interaction
terms) then you’re also assuming that the omitted terms aren’t important. Of course,
you can check this last one by running an ANOVA with the omitted terms included
and see if they’re significant, so that’s pretty easy. What about homogeneity of vari-
ance and normality of the residuals? As it turns out, these are pretty easy to check. It’s
no different to the checks we did for a one-way ANOVA.
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14.4.1 Homogeneity of variance

As mentioned in Section 13.6.1 in the last chapter, it’s a good idea to visually inspect a
plot of the standard deviations compared across different groups / categories, and also
see if the Levene test is consistent with the visual inspection. The theory behind the
Levene test was discussed in Section 13.6.1, so I won’t discuss it again. This test expects
that you have a saturated model (i.e., including all of the relevant terms), because the
test is primarily concerned with the within-group variance, and it doesn’t really make
a lot of sense to calculate this any way other than with respect to the full model. The
Levene test can be specified under the ANOVA ‘Assumption Checks’ – ‘Homogeneity
Tests’ option in jamovi, with the result shown as in Figure 14.10. The fact that the Levene
test is non-significant means that, providing it is consistent with a visual inspection of
the plot of standard deviations, we can safely assume that the homogeneity of variance
assumption is not violated.

14.4.2 Normality of residuals

As with one-way ANOVA we can test for the normality of residuals is straightforward
(see Section 13.6.4). Primarily it’s a good idea to examine the residuals graphically using
a QQ plot. See Figure 14.10.

14.5 Analysis of covariance (ANCOVA)

A variation in ANOVA is when you have an additional continuous variable that you
thinkmight be related to the dependent variable. This additional variable can be added
to the analysis as a covariate, in the aptly named analysis of covariance (ANCOVA).

In ANCOVA the values of the dependent variable are “adjusted” for the influence of the
covariate, and then the “adjusted” score means are tested between groups in the usual
way. This technique can increase the precision of an experiment and provide a more
“powerful” test of the equality of group means in the dependent variable. How does
ANCOVA do this? Although the covariate itself is typically not of any experimental
interest, adjustment for the covariate can decrease the estimate of experimental error.
By reducing error variance precision is increased. This means that a false rejection of
the null hypothesis (false negative or type II error) is less likely.

Despite this advantage, ANCOVA runs the risk of undoing real differences between
groups and this should be avoided. Look at Figure 14.11 for example, which shows
a plot of Statistics anxiety against age and shows two distinct groups – students who
have either an Arts or Science background. ANCOVA with age as a covariate might
lead to the conclusion that statistics anxiety does not differ in the two groups. Would
this conclusion be reasonable – probably not because the ages of the two groups do
not overlap and analysis of variance has essentially “extrapolated into a region with no
data” (Everitt (1996), p. 68). Clearly, careful thought needs to be given to an analysis of
covariance with distinct groups. This applies to both one-way and factorial designs, as
ANCOVA can be used with both.
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Figure 14.10: Checking assumptions in an ANOVA model
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Figure 14.11: Plot of Statistics anxiety against age for two distinct groups

14.5.1 Running ANCOVA in jamovi

Ahealth psychologist was interested in the effect of routine cycling and stress on happi-
ness levels, with age as a covariate. You can find the data set in the file ancova.csv. Open
this file in jamovi and then, to undertake an ANCOVA, select Analyses - ANOVA - AN-
COVA to open the ANCOVA analysis window (Figure 14.12). Highlight the dependent
variable ‘happiness’ and transfer it into the ‘Dependent Variable’ text box. Highlight
the independent variables ‘stress’ and ‘commute’ and transfer them into the ‘Fixed Fac-
tors’ text box. Highlight the covariate ‘age’ and transfer it into the ‘Covariates’ text box.
Then click on Estimated Marginal Means to bring up the plots and tables options.

An ANCOVA table showing ‘Tests of Between Subjects Effects’ is produced in the
jamovi results window (Figure 14.13). The 𝐹 -value for the covariate ‘age’ is significant
at 𝑝 = .023, suggesting that age is an important predictor of the dependent variable,
happiness. When we look at the estimated marginal mean scores (Figure 14.14),
adjustments have been made (compared to an analysis without the covariate) because
of the inclusion of the covariate ‘age’ in this ANCOVA. A plot (Figure 14.15) is a good
way of visualising and interpreting the significant effects.
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Figure 14.12: The jamovi ANCOVA analysis window

Figure 14.13: jamovi ANCOVA output for happiness as a function of stress and com-
muting method, with age as a covariate

Figure 14.14: Table of mean happiness level as a function of stress and commuting
method (adjusted for the covariate age) with 95% confidence intervals
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Figure 14.15: Plot of mean happiness level as a function of stress and commuting
method

The 𝐹 -value for the main effect ‘stress’ (52.61) has an associated probability of 𝑝 <
.001. The 𝐹 -value for the main effect ‘commute’ (42.33) has an associated probability
of 𝑝 < .001. Since both of these are less than the probability that is typically used to
decide if a statistical result is significant (𝑝 < .05) we can conclude that there was a
significant main effect of stress (𝐹(1, 15) = 52.61, 𝑝 < .001) and a significant main
effect of commuting method (𝐹(1, 15) = 42.33, 𝑝 < .001). A significant interaction
between stress and commuting method was also found (𝐹(1, 15) = 14.15, 𝑝 = .002).
In Figure 14.15 we can see the adjusted, marginal, mean happiness scores when age
is a covariate in an ANCOVA. In this analysis there is a significant interaction effect,
whereby people with low stress who cycle to work are happier than people with low
stresswho drive and peoplewith high stress regardless ofwhether they cycle or drive to
work. There is also a significantmain effect of stress – peoplewith low stress are happier
than those with high stress. And there is also a significant main effect of commuting
behaviour – people who cycle are happier, on average, than those who drive to work.

One thing to be aware of is that, if you are thinking of including a covariate in your
ANOVA, there is an additional assumption: the relationship between the covariate and
the dependent variable should be similar for all levels of the independent variable. This
can be checked by adding an interaction term between the covariate and each indepen-
dent variable in the jamovi ‘Model - Model’ terms option. If the interaction effect is not
significant it can be removed. If it is significant then a different and more advanced
statistical technique might be appropriate (which is beyond the scope of this book so
you might want to consult a friendly statistician).
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14.6 ANOVA as a linear model

One of the most important things to understand about ANOVA and regression is that
they’re basically the same thing. On the surface of it, you maybe wouldn’t think this is
true. After all, the way that I’ve described them so far suggests that ANOVA is primar-
ily concerned with testing for group differences, and regression is primarily concerned
with understanding the correlations between variables. And, as far as it goes that’s per-
fectly true. But when you look under the hood, so to speak, the underlying mechanics
of ANOVA and regression are awfully similar. In fact, if you think about it, you’ve
already seen evidence of this. ANOVA and regression both rely heavily on sums of
squares (𝑆𝑆), both make use of 𝐹 -tests, and so on. Looking back, it’s hard to escape the
feeling that Chapter 12 and Chapter 13 were a bit repetitive.

The reason for this is that ANOVA and regression are both kinds of linear models. In
the case of regression, this is kind of obvious. The regression equation that we use to
define the relationship between predictors and outcomes is the equation for a straight
line, so it’s quite obviously a linear model, with the equation:

𝑌𝑝 = 𝑏0 + 𝑏1𝑋1𝑝 + 𝑏2𝑋2𝑝 + 𝜖𝑝

where 𝑌𝑝 is the outcome value for the 𝑝-th observation (e.g., 𝑝-th person), 𝑋1𝑝 is the
value of the first predictor for the 𝑝-th observation, 𝑋2𝑝 is the value of the second pre-
dictor for the 𝑝-th observation, the 𝑏0, 𝑏1, and 𝑏2 terms are our regression coefficients,
and 𝜖𝑝 is the 𝑝-th residual. If we ignore the residuals 𝜖𝑝 and just focus on the regression
line itself, we get the following formula:

̂𝑌𝑝 = 𝑏0 + 𝑏1𝑋1𝑝 + 𝑏2𝑋2𝑝

where ̂𝑌𝑝 is the value of Y that the regression line predicts for person p, as opposed to
the actually-observed value 𝑌𝑝. The thing that isn’t immediately obvious is that we can
write ANOVA as a linear model as well. However, it’s actually pretty straightforward
to do this. Let’s start with a really simple example, rewriting a 2 × 2 factorial ANOVA
as a linear model.

14.6.1 Some data

To make things concrete, let’s suppose that our outcome variable is the grade that a
student receives in my class, a ratio-scale variable corresponding to a mark from 0 to
100. There are two predictor variables of interest: whether or not the student turned
up to lectures (the attend variable) and whether or not the student actually read the
textbook (the reading variable). We’ll say that attend = 1 if the student attended class,
and attend = 0 if they did not. Similarly, we’ll say that reading = 1 if the student read
the textbook, and reading = 0 if they did not.

Okay, so far that’s simple enough. The next thing we need to do is to wrap some maths
around this (sorry!). For the purposes of this example, let 𝑌𝑝 denote the grade of the
𝑝-th student in the class. This is not quite the same notation that we used earlier in this
chapter. Previously, we’ve used the notation 𝑌𝑟𝑐𝑖 to refer to the 𝑖-th person in the 𝑟-th
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group for predictor 1 (the row factor) and the 𝑐-th group for predictor 2 (the column
factor). This extended notation was really handy for describing how the 𝑆𝑆 values are
calculated, but it’s a pain in the current context, so I’ll switch notation here. Now, the 𝑌𝑝
notation is visually simpler than 𝑌𝑟𝑐𝑖, but it has the shortcoming that it doesn’t actually
keep track of the group memberships! That is, if I told you that 𝑌0,0,3 = 35, you’d
immediately know thatwe’re talking about a student (the 3rd such student, in fact) who
didn’t attend the lectures (i.e., attend = 0) and didn’t read the textbook (i.e. reading =
0), andwho ended up failing the class (grade = 35). But if I tell you that 𝑌𝑝 = 35, all you
know is that the 𝑝-th student didn’t get a good grade. We’ve lost some key information
here. Of course, it doesn’t take a lot of thought to figure out how to fix this. What
we’ll do instead is introduce two new variables 𝑋1𝑝 and 𝑋2𝑝 that keep track of this
information. In the case of our hypothetical student, we know that𝑋1𝑝 = 0 (i.e., attend
= 0) and 𝑋2𝑝 = 0 (i.e., reading = 0). So the data might look like Table 14.8.

Table 14.8: Data for grade, attendance and reading the textbook

person, 𝑝 grade, 𝑌𝑝
attendance,

𝑋1𝑝 reading, 𝑋2𝑝
1 90 1 1
2 87 1 1
3 75 0 1
4 60 1 0
5 35 0 0
6 50 0 0
7 65 1 0
8 70 0 1

This isn’t anything particularly special, of course. It’s exactly the format in which we
expect to see our data! See the data file rtfm.csv. We can use the jamovi ‘Descriptives’
analysis to confirm that this data set corresponds to a balanced design, with 2 observa-
tions for each combination of attend and reading. In the samewaywe can also calculate
the mean grade for each combination. This is shown in Figure 14.16. Looking at the
mean scores, one gets the strong impression that reading the text and attending the
class both matter a lot.

14.6.2 ANOVA with binary factors as a regression model

Okay, let’s get back to talking about the mathematics. We now have our data expressed
in terms of three numeric variables: the continuous variable 𝑌 and the two binary vari-
ables 𝑋1 and 𝑋2. What I want you to recognise is that our 2 × 2 factorial ANOVA is
exactly equivalent to the regression model:

𝑌𝑝 = 𝑏0 + 𝑏1𝑋1𝑝 + 𝑏2𝑋2𝑝 + 𝜖𝑝
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Figure 14.16: jamovi descriptives for the rtfm.csv data set

This is, of course, the exact same equation that I used earlier to describe a two-predictor
regression model! The only difference is that 𝑋1 and 𝑋2 are now binary variables (i.e.,
values can only be 0 or 1), whereas in a regression analysis we expect that 𝑋1 and 𝑋2
will be continuous. There’s a couple of ways I could try to convince you of this. One
possibility would be to do a lengthy mathematical exercise proving that the two are
identical. However, I’m going to go out on a limb and guess that most of the readership
of this book will find that annoying rather than helpful. Instead, I’ll explain the basic
ideas and then rely on jamovi to show that ANOVA analyses and regression analyses
aren’t just similar, they’re identical for all intents and purposes. Let’s start by running
this as an ANOVA. To do this, we’ll use the rtfm data set, and Figure 14.17 shows what
we get when we run the analysis in jamovi.

Figure 14.17: ANOVA of the rtfm.csv data set in jamovi, without the interaction term
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So, by reading the key numbers off the ANOVA table and the mean scores that we
presented earlier, we can see that the students obtained a higher grade if they attended
class (𝐹1,5 = 21.6, 𝑝 = .0056) and if they read the textbook (𝐹1,5 = 52.3, 𝑝 = .0008).
Let’s make a note of those 𝑝-values and those 𝐹 -statistics.
Now let’s think about the same analysis from a linear regression perspective. In the
rtfm.csv data set, we have encoded attend and reading as if they were numeric predic-
tors. In this case, this is perfectly acceptable. There really is a sense in which a student
who turns up to class (i.e. attend = 1) has in fact done “more attendance” than a student
who does not (i.e. attend = 0). So it’s not at all unreasonable to include it as a predic-
tor in a regression model. It’s a little unusual, because the predictor only takes on two
possible values, but it doesn’t violate any of the assumptions of linear regression. And
it’s easy to interpret. If the regression coefficient for attend is greater than 0 it means
that students that attend lectures get higher grades. If it’s less than zero then students
attending lectures get lower grades. The same is true for our reading variable.

Wait a second though. Why is this true? It’s something that is intuitively obvious to
everyone who has taken a few stats classes and is comfortable with the maths, but it
isn’t clear to everyone else at first pass. To see why this is true, it helps to look closely at
a few specific students. Let’s start by considering the 6th and 7th students in our data
set (i.e. 𝑝 = 6 and 𝑝 = 7). Neither one has read the textbook, so in both cases we can
set reading = 0. Or, to say the same thing in our mathematical notation, we observe
𝑋2,6 = 0 and 𝑋2,7 = 0. However, student number 7 did turn up to lectures (i.e., attend
= 1, 𝑋1,7 = 1) whereas student number 6 did not (i.e., attend = 0, 𝑋1,6 = 0). Now let’s
look at what happens when we insert these numbers into the general formula for our
regression line. For student number 6, the regression predicts that:

̂𝑌6 = 𝑏0 + 𝑏1𝑋1,6 + 𝑏2𝑋2,6
= 𝑏0 + (𝑏1 × 0) + (𝑏2 × 0)
= 𝑏0

So we’re expecting that this student will obtain a grade corresponding to the value of
the intercept term 𝑏0. What about student 7? This time when we insert the numbers
into the formula for the regression line, we obtain the following:

̂𝑌7 = 𝑏0 + 𝑏1𝑋1,7 + 𝑏2𝑋2,7
= 𝑏0 + (𝑏1 × 1) + (𝑏2 × 0)
= 𝑏0 + 𝑏1

Because this student attended class, the predicted grade is equal to the intercept termb0
plus the coefficient associated with the attend variable, 𝑏1. So, if 𝑏1 is greater than zero,
we’re expecting that the students who turn up to lectures will get higher grades than
those students who don’t. If this coefficient is negative we’re expecting the opposite:
students who turn up at class end up performing much worse.
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In fact, we can push this a little bit further. What about student number 1, who turned
up to class (𝑋1,1 = 1) and read the textbook (𝑋2,1 = 1)? If we plug these numbers into
the regression we get:

̂𝑌1 = 𝑏0 + 𝑏1𝑋1,1 + 𝑏2𝑋2,1
= 𝑏0 + (𝑏1 × 1) + (𝑏2 × 1)
= 𝑏0 + 𝑏1 + 𝑏2

So if we assume that attending class helps you get a good grade (i.e., 𝑏1 > 0) and if we
assume that reading the textbook also helps you get a good grade (i.e., 𝑏2 > 0), then
our expectation is that student 1 will get a grade that that is higher than student 6 and
student 7.

And at this point youwon’t be at all suprised to learn that the regressionmodel predicts
that student 3, who read the book but didn’t attend lectures, will obtain a grade of
𝑏2 + 𝑏0. I won’t bore you with yet another regression formula. Instead, what I’ll do is
show you is Table 14.9 with the expected grades.

Table 14.9: Expected grades from the regression model

read
textbook

no yes
attended? no 𝛽0 𝛽0 + 𝛽2

yes 𝛽0 + 𝛽1 𝛽0 + 𝛽1 + 𝛽2

As you can see, the intercept term 𝑏0 acts like a kind of “baseline” grade that youwould
expect from those students who don’t take the time to attend class or read the textbook.
Similarly, 𝑏1 represents the boost that you’re expected to get if you come to class, and
𝑏2 represents the boost that comes from reading the textbook. In fact, if this were an
ANOVA you might very well want to characterise 𝑏1 as the main effect of attendance,
and 𝑏2 as the main effect of reading! In fact, for a simple 2 × 2 ANOVA that’s exactly
how it plays out.

Okay, now that we’re really starting to see why ANOVA and regression are basically
the same thing, let’s actually run our regression using the rtfm data and the jamovi
regression analysis to convince ourselves that this is really true. Running the regression
in the usual way gives the results shown in Figure 14.18.

There’s a few interesting things to note here. First, notice that the intercept term is 43.5
which is close to the “group” mean of 42.5 observed for those two students who didn’t
read the text or attend class. Second, notice that we have the regression coefficient of
𝑏1 = 18.0 for the attendance variable, suggesting that those students that attended
class scored 18% higher than those who didn’t. So our expectation would be that those
students who turned up to class but didn’t read the textbook would obtain a grade of
𝑏0 + 𝑏1, which is equal to 43.5 + 18.0 = 61.5. You can verify for yourself that the same
thing happens when we look at the students that read the textbook.
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Figure 14.18: Regression analysis of the rtfm.csv data set in jamovi, without the inter-
action term

Actually, we can push a little further in establishing the equivalence of our ANOVA and
our regression. Look at the 𝑝-values associatedwith the attend variable and the reading
variable in the regression output. They’re identical to the ones we encountered earlier
when running theANOVA. Thismight seem a little surprising, since the test usedwhen
running our regression model calculates a 𝑡-statistic and the ANOVA calculates an 𝐹 -
statistic. However, if you can remember all the way back to Chapter 7, I mentioned
that there’s a relationship between the 𝑡-distribution and the 𝐹 -distribution. If you
have some quantity that is distributed according to a 𝑡-distribution with 𝑘 degrees of
freedom and you square it, then this new squared quantity follows an 𝐹 -distribution
whose degrees of freedom are 1 and 𝑘. We can check this with respect to the 𝑡-statistics
in our regression model. For the attend variable we get a 𝑡-value of 4.65. If we square
this number we end up with 21.6, which matches the corresponding 𝐹 -statistic in our
ANOVA.

Finally, one last thing you should know. Because jamovi understands the fact that
ANOVA and regression are both examples of linear models, it lets you extract the clas-
sic ANOVA table from your regression model using the ‘Linear Regression’ – ‘Model
Coefficients’ – ‘Omnibus Test’ – ‘ANOVA Test’, and this will give you the table shown
in Figure 14.19.

Figure 14.19: Omnibus ANOVA Test results from the jamovi regression analysis

14.6.3 How to encode non binary factors as contrasts

At this point, I’ve shown you how we can view a 2 × 2 ANOVA into a linear model.
And it’s pretty easy to see how this generalises to a 2 × 2 × 2 ANOVA or a 2 × 2 × 2 × 2
ANOVA. It’s the same thing, really. You just add a new binary variable for each of your
factors. Where it begins to get trickier is when we consider factors that have more than
two levels. Consider, for instance, the 3 × 2 ANOVA that we ran earlier in this chapter
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using the clinicaltrial.csv data. How can we convert the three-level drug factor into a
numerical form that is appropriate for a regression?

The answer to this question is pretty simple, actually. All we have to do is realise that
a three-level factor can be redescribed as two binary variables. Suppose, for instance, I
were to create a new binary variable called druganxifree. Whenever the drug variable
is equal to “anxifree” we set druganxifree = 1. Otherwise, we set druganxifree = 0.
This variable sets up a contrast, in this case between anxifree and the other two drugs.
By itself, of course, the druganxifree contrast isn’t enough to fully capture all of the
information in our drug variable. We need a second contrast, one that allows us to
distinguish between joyzepam and the placebo. To do this, we can create a second
binary contrast, called drugjoyzepam, which equals 1 if the drug is joyzepam and 0 if it
is not. Taken together, these two contrasts allows us to perfectly discriminate between
all three possible drugs. Table 14.10 illustrates this.

Table 14.10: Binary contrasts to discriminate between all three possible drugs

drug druganxifree drugjoyzepam
𝑝𝑙𝑎𝑐𝑒𝑏𝑜 0 0

𝑎𝑛𝑥𝑖𝑓𝑟𝑒𝑒 1 0
𝑗𝑜𝑦𝑧𝑒𝑝𝑎𝑚 0 1

If the drug administered to a patient is a placebo then both of the two contrast variables
will equal 0. If the drug is Anxifree then the druganxifree variable will equal 1, and
drugjoyzepam will be 0. The reverse is true for Joyzepam: drugjoyzepam is 1 and
druganxifree is 0.

Creating contrast variables is not too difficult to do using the jamovi compute new vari-
able command. For example, to create the druganxifree variable, write this logical ex-
pression in the compute new variable formula box:

IF(drug == ‘anxifree’, 1, 0)

Similarly, to create the new variable drugjoyzepam use this logical expression:

IF(drug == ‘joyzepam’, 1, 0)

Likewise for CBTtherapy:

IF(therapy == ‘CBT’, 1, 0)

You can see these new variables, and the corresponding logical expressions, in the
jamovi data file clinicaltrial2.omv .

We have now recoded our three-level factor in terms of two binary variables, and we’ve
already seen that ANOVA and regression behave the same way for binary variables.
However, there are some additional complexities that arise in this case, which we’ll
discuss in the next section.
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14.6.4 The equivalence between ANOVA and regression for non-
binary factors

Nowwe have two different versions of the same data set. Our original data inwhich the
drug variable from the clinicaltrial.csv file is expressed as a single three-level factor, and
the expanded data clinicaltrial2.omv in which it is expanded into two binary contrasts.
Once again, the thing that we want to demonstrate is that our original 3 × 2 factorial
ANOVA is equivalent to a regressionmodel applied to the contrast variables. Let’s start
by re-running the ANOVA, with results shown in Figure 14.20.

Figure 14.20: jamovi ANOVA results, without interaction component

Obviously, there are no surprises here. That’s the exact same ANOVA that we ran ear-
lier. Next, let’s run a regression using druganxifree, drugjoyzepam and CBTtherapy as
the predictors. The results are shown in Figure 14.21.

Figure 14.21: jamovi regression results, with contrast variables druganxifree and
drugjoyzepam

Hmm. This isn’t the same output that we got last time. Not surprisingly, the regression
output prints out the results for each of the three predictors separately, just like it did
every other time we conducted a regression analysis. On the one hand we can see that
the 𝑝-value for the CBTtherapy variable is exactly the same as the one for the therapy
factor in our original ANOVA, sowe can be reassured that the regressionmodel is doing
the same thing as the ANOVA did. On the other hand, this regression model is testing
the druganxifree contrast and the drugjoyzepam contrast separately, as if they were two
completely unrelated variables. It’s not surprising of course, because the poor regres-
sion analysis has no way of knowing that drugjoyzepam and druganxifree are actually
the two different contrasts that we used to encode our three-level drug factor. As far
as it knows, drugjoyzepam and druganxifree are no more related to one another than
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drugjoyzepam and CBTtherapy. However, you and I know better. At this stage we’re
not at all interested in determining whether these two contrasts are individually signif-
icant. We just want to know if there’s an “overall” effect of drug. That is, what we want
jamovi to do is to run some kind of “model comparison” test, one in which the two
“drug related” contrasts are lumped together for the purpose of the test. Sound famil-
iar? All we need to do is specify our null model, which in this case would include the
CBTtherapy predictor, and omit both of the drug-related variables, as in Figure 14.22.

Figure 14.22: Model comparison in jamovi regression, null model 1 versus contrasts
model 2

Ah, that’s better. Our 𝐹 -statistic is 26.15, the degrees of freedom are 2 and 14, and the
𝑝-value is 0.00002. The numbers are identical to the ones we obtained for the main
effect of drug in our original ANOVA. Once again we see that ANOVA and regression
are essentially the same. They are both linear models, and the underlying statistical
machinery forANOVA is identical to themachinery used in regression. The importance
of this fact should not be understated. Throughout the rest of this chapter we’re going
to rely heavily on this idea.

Although we went through all the faff of computing new variables in jamovi for the
contrasts druganxifree and drugjoyzepam, just to show that ANOVA and regression
are essentially the same, in the jamovi linear regression analysis there is actually a nifty
shortcut to get these contrasts, see Figure 14.23. What jamovi is doing here is allowing
you to enter the predictor variables that are factors as, wait for it…factors! Smart, eh.
You can also specify which group to use as the reference level, via the ‘Reference Lev-
els’ option. We’ve changed this to ‘placebo’ and ‘no.therapy’, respectively, because this
makes most sense.
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Figure 14.23: Regression analysis with factors and contrasts in jamovi, including om-
nibus ANOVA test results

If you also click on the ‘ANOVA’ test checkbox under the ‘Model Coefficients’ – ‘Om-
nibus Test’ option, we see that the 𝐹 -statistic is 26.15, the degrees of freedom are 2 and
14, and the 𝑝-value is 0.00002 (Figure 14.23). The numbers are identical to those we
obtained for the main effect of drug in our original ANOVA. Once again we see that
ANOVA and regression are essentially the same. They are both linear models and the
underlying statistical machinery for ANOVA and for regression is identical.

14.6.5 Degrees of freedom as parameter counting!

At long last, I can finally give a definition of degrees of freedom that I am happy with.
Degrees of freedom are defined in terms of the number of parameters that have to be
estimated in a model. For a regression model or an ANOVA, the number of parame-
ters corresponds to the number of regression coefficients (i.e. 𝑏-values), including the
intercept. Keeping in mind that any 𝐹 -test is always a comparison between two mod-
els and the first df is the difference in the number of parameters. For example, in the
model comparison above, the null model (mood.gain ~ CBTtherapy) has two parame-
ters: there’s one regression coefficient for the CBTtherapy variable, and a second one
for the intercept. The alternative model (mood.gain ~ druganxifree + drugjoyzepam +
CBTtherapy) has four parameters: one regression coefficient for each of the three con-
trasts, and one more for the intercept. So the degrees of freedom associated with the
difference between these two models is 𝑑𝑓1 = 4 − 2 = 2.
What about the case when there doesn’t seem to be a null model? For instance, you
might be thinking of the𝐹 -test that shows upwhen you select ‘F Test’ under the ‘Linear
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Regression’ – ‘Model Fit’ options. I originally described that as a test of the regression
model as a whole. However, that is still a comparison between two models. The null
model is the trivial model that only includes 1 regression coefficient, for the intercept
term. The alternative model contains 𝐾 + 1 regression coefficients, one for each of the
𝐾 predictor variables and one more for the intercept. So the 𝑑𝑓 value that you see in
this 𝐹 -test is equal to 𝑑𝑓1 = 𝐾 + 1 − 1 = 𝐾.

What about the second 𝑑𝑓 value that appears in the 𝐹 -test? This always refers to the
degrees of freedom associated with the residuals. It is possible to think of this in terms
of parameters too, but in a slightly counter-intuitive way. Think of it like this. Suppose
that the total number of observations across the study as a whole is𝑁 . If youwanted to
perfectly describe each of these 𝑁 values, you need to do so using, well… 𝑁 numbers.
When you build a regression model, what you’re really doing is specifying that some
of the numbers need to perfectly describe the data. If your model has𝐾 predictors and
an intercept, then you’ve specified 𝐾 + 1 numbers. So, without bothering to figure out
exactly how this would be done, howmanymore numbers do you think are going to be
needed to transform a 𝐾 + 1 parameter regression model into a perfect re-description
of the raw data? If you found yourself thinking that (𝐾 +1)+(𝑁 −𝐾 −1) = 𝑁 , and so
the answerwould have to be𝑁 −𝐾−1, well done! That’s exactly right. In principle you
can imagine an absurdly complicated regression model that includes a parameter for
every single data point, and it would of course provide a perfect description of the data.
This model would contain 𝑁 parameters in total, but we’re interested in the difference
between the number of parameters required to describe this full model (i.e. 𝑁 ) and
the number of parameters used by the simpler regression model that you’re actually
interested in (i.e., 𝐾 + 1), and so the second degrees of freedom in the 𝐹 test is 𝑑𝑓2 =
𝑁−𝐾−1, where𝐾 is the number of predictors (in a regressionmodel) or the number of
contrasts (in an ANOVA). In the example I gave above, there are (𝑁 = 18 observations
in the data set and𝐾+1 = 4 regression coefficients associatedwith theANOVAmodel,
so the degrees of freedom for the residuals is 𝑑𝑓2 = 18 − 4 = 14.

14.7 Different ways to specify contrasts

In the previous section, I showed you a method for converting a factor into a collection
of contrasts. In the method I showed you we specify a set of binary variables in which
we defined a table like Table 14.11.

Table 14.11: Binary contrasts to discriminate between all three possible drugs

drug druganxifree drugjoyzepam
𝑝𝑙𝑎𝑐𝑒𝑏𝑜 0 0

𝑎𝑛𝑥𝑖𝑓𝑟𝑒𝑒 1 0
𝑗𝑜𝑦𝑧𝑒𝑝𝑎𝑚 0 1

Each row in the table corresponds to one of the factor levels, and each column cor-
responds to one of the contrasts. This table, which always has one more row than
columns, has a special name. It is called a contrast matrix. However, there are lots
of different ways to specify a contrast matrix. In this section I discuss a few of the stan-
dard contrast matrices that statisticians use and how you can use them in jamovi. If
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you’re planning to read the section on Factorial ANOVA 3: unbalanced designs later
on, it’s worth reading this section carefully. If not, you can get away with skimming it,
because the choice of contrasts doesn’t matter much for balanced designs.

14.7.1 Treatment contrasts

In the particular kind of contrasts that I’ve described above, one level of the factor is
special, and acts as a kind of “baseline” category (i.e., placebo in our example), against
which the other two are defined. The name for these kinds of contrasts is treatment
contrasts, also known as “dummy coding”. In this contrast each level of the factor is
compared to a base reference level, and the base reference level is the value of the in-
tercept.

The name reflects the fact that these contrasts are natural and sensible when one of the
categories in your factor really is special and actually does represent a baseline. That
makes sense in our clinical trial example. The placebo condition corresponds to the
situation where you don’t give people any real drugs, and so it’s special. The other two
conditions are defined in relation to the placebo. In one case you replace the placebo
with Anxifree, and in the other case your replace it with Joyzepam.

The table shown above is a matrix of treatment contrasts for a factor that has 3 levels.
But suppose I want amatrix of treatment contrasts for a factor with 5 levels? Youwould
set this out like Table 14.12.

Table 14.12: Matrix of treatment contrasts with 5 levels

Level 2 3 4 5
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1

In this example, the first contrast is level 2 compared with level 1, the second contrast
is level 3 compared with level 1, and so on. Notice that, by default, the first level of the
factor is always treated as the baseline category (i.e., it’s the one that has all zeros and
doesn’t have an explicit contrast associated with it). In jamovi you can change which
category is the first level of the factor by manipulating the order of the levels of the
variable shown in the ‘Data Variable’ window (double click on the name of the variable
in the spreadsheet column to bring up the ‘Data Variable’ view.

14.7.2 Helmert contrasts

Treatment contrasts are useful for a lot of situations. However, they make most sense
in the situation when there really is a baseline category, and you want to assess all
the other groups in relation to that one. In other situations, however, no such baseline
category exists, and it may make more sense to compare each group to the mean of
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the other groups. This is where we meet Helmert contrasts, generated by the ‘helmert’
option in the jamovi ‘ANOVA’ – ‘Contrasts’ selection box. The idea behind Helmert
contrasts is to compare each group to the mean of the “previous” ones. That is, the first
contrast represents the difference between group 2 and group 1, the second contrast
represents the difference between group 3 and the mean of groups 1 and 2, and so on.
This translates to a contrastmatrix that looks like Table 14.13 for a factorwith five levels.

Table 14.13: Matrix of helmert contrasts with 5 levels

1 -1 -1 -1 -1
2 1 -1 -1 -1
3 0 2 -1 -1
4 0 0 3 -1
5 0 0 0 4

With Helmert contrasts every contrast sums to zero (i.e., all the columns sum to zero).
This means that, when we interpret the ANOVA as a regression, the intercept term cor-
responds to the grand mean 𝜇.. if we are using Helmert contrasts. Compare this to
treatment contrasts, in which the intercept term corresponds to the group mean for the
baseline category. It doesn’t matter very much if you have a balanced design, which
we’ve assumed so far, but it will turn out to be important later when we consider Facto-
rial ANOVA 3: unbalanced designs. In fact, the main reason why I’ve included this sec-
tion is that contrasts become important if youwant to understand unbalanced ANOVA.

14.7.3 Sum to zero contrasts

The third option that I should briefly mention are “sum to zero” contrasts, called “Sim-
ple” contrasts in jamovi, which are used to construct pairwise comparisons between
groups. Specifically, each contrast encodes the difference between one of the groups
and a baseline category, which in this case corresponds to the first group (Table 14.14).

Table 14.14: Matrix of “sum to” zero contrasts with 5 levels

1 -1 -1 -1 -1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1

Much like Helmert contrasts, we see that each column sums to zero, which means that
the intercept term corresponds to the grand mean when ANOVA is treated as a regres-
sion model. When interpreting these contrasts, the thing to recognise is that each of
these contrasts is a pairwise comparison between group 1 and one of the other four
groups. Specifically, contrast 1 corresponds to a “group 2 minus group 1” comparison,
contrast 2 corresponds to a “group 3 minus group 1” comparison, and so on.173
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14.7.4 Optional contrasts in jamovi

There are options in jamovi that can generate different kinds of contrasts in ANOVA.
See the ‘Contrasts’ option in the main ANOVA analysis window; Table 14.15 lists these
contrast options.

Table 14.15: Contrasts available in the jamovi ANOVA analysis

Contrast type

Deviation
Compares the mean of each level (except a reference
category) to the mean of all of the levels (grand mean)

Simple

Like the treatment contrasts, the simple contrast
compares the mean of each level to the mean of a
specified level. This type of contrast is useful when
there is a control group. By default the first category is
the reference. However, with a simple contrast the
intercept is the grand mean of all the levels of the
factors.

Difference

Compares the mean of each level (except the first) to
the mean of previous levels. (Sometimes called reverse
Helmert contrasts)

Helmert
Compares the mean of each level of the factor (except
the last) to the mean of subsequent levels

Repeated
Compares the mean of each level (except the last) to the
mean of the subsequent level

Polynomial

Compares the linear effect and quadratic effect. The
first degree of freedom contains the linear effect across
all categories; the second degree of freedom, the
quadratic effect. These contrasts are often used to
estimate polynomial trends

14.8 Post hoc tests

Time to switch to a different topic. Rather than pre-planned comparisons that you have
tested using contrasts, let’s suppose you’ve done your ANOVA and it turns out that you
obtained some significant effects. Because of the fact that the 𝐹 -tests are “omnibus”
tests that only really test the null hypothesis that there are no differences among groups,
obtaining a significant effect doesn’t tell you which groups are different to which other
ones. We discussed this issue back in Chapter 13, and in that chapter our solution was
to run 𝑡-tests for all possible pairs of groups, making corrections for multiple compar-
isons (e.g., Bonferroni, Holm) to control the type I error rate across all comparisons.
The methods that we used back in Chapter 13 have the advantage of being relatively
simple and being the kind of tools that you can use in a lot of different situations where
you’re testing multiple hypotheses, but they’re not necessarily the best choices if you’re
interested in doing efficient post hoc testing in an ANOVA context. There are actually

361



quite a lot of different methods for performing multiple comparisons in the statistics
literature (Hsu, 1996), and it would be beyond the scope of an introductory text like
this one to discuss all of them in any detail.

That being said, there’s one tool that I dowant to drawyour attention to, namely Tukey’s
“Honestly Significant Difference”, or Tukey’s HSD for short. For once, I’ll spare you
the formulas and just stick to the qualitative ideas. The basic idea in Tukey’s HSD is
to examine all relevant pairwise comparisons between groups, and it’s only really ap-
propriate to use Tukey’s HSD if it is pairwise differences that you’re interested in.174
For instance, earlier we conducted a factorial ANOVA using the clinicaltrial.csv data set,
and where we specified a main effect for drug and a main effect of therapy we would
be interested in the following four comparisons:

• The difference in mood gain for people given Anxifree versus people given the
placebo.

• The difference in mood gain for people given Joyzepam versus people given the
placebo.

• The difference in mood gain for people given Anxifree versus people given
Joyzepam.

• The difference in mood gain for people treated with CBT and people given no
therapy.

For any one of these comparisons, we’re interested in the true difference between (pop-
ulation) group means. Tukey’s HSD constructs simultaneous confidence intervals for
all four of these comparisons. What we mean by 95% “simultaneous” confidence inter-
val is that, if we were to repeat this study many times, then in 95% of the study results
the confidence intervals would contain the relevant true value. Moreover, we can use
these confidence intervals to calculate an adjusted 𝑝-value for any specific comparison.
The TukeyHSD function in jamovi is pretty easy to use. You simply specify the ANOVA
model term that you want to run the post hoc tests for. For example, if we were looking
to run post hoc tests for the main effects but not the interaction, we would open up
the ‘Post Hoc Tests’ option in the ANOVA analysis screen, move the drug and therapy
variables across to the box on the right, and then select the ‘Tukey’ checkbox in the list of
possible post hoc corrections that could be applied. This, alongwith the corresponding
results table, is shown in Figure 14.24.

The output shown in the ‘Post Hoc Tests’ results table is (I hope) pretty straightforward.
The first comparison, for example, is the Anxifree versus placebo difference, and the
first part of the output indicates that the observed difference in groupmeans is .27. The
next number is the standard error for the difference, fromwhich we could calculate the
95% confidence interval if we wanted, though jamovi does not currently provide this
option. Then there is a columnwith the degrees of freedom, a columnwith the 𝑡-value,
and finally a column with the 𝑝-value. For the first comparison the adjusted 𝑝-value is
.21. In contrast, if you look at the next line, we see that the observed difference between
joyzepam and the placebo is 1.03, and this result is significant (𝑝 < .001).
So far, so good. What about the situationwhere yourmodel includes interaction terms?
For instance, the default option in jamovi is to allow for the possibility that there is an
interaction between drug and therapy. If that’s the case, the number of pairwise com-
parisons that we need to consider starts to increase. As before, we need to consider the
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three comparisons that are relevant to the main effect of drug and the one comparison
that is relevant to the main effect of therapy.

Figure 14.24: Tukey HSD post hoc test in jamovi factorial ANOVA, without an interac-
tion term

But, if we want to consider the possibility of a significant interaction (and try to find
the group differences that underpin that significant interaction), we need to include
comparisons such as the following:

• The difference in mood gain for people given Anxifree and treated with CBT, ver-
sus people given the placebo and treated with CBT.

• The difference in mood gain for people given Anxifree and given no therapy, ver-
sus people given the placebo and given no therapy.

• etc.

There are quite a lot of these comparisons that you need to consider. So, when we run
the Tukey post hoc analysis for this ANOVA model, we see that it has made a lot of
pairwise comparisons (19 in total), as shown in Figure 14.25. You can see that it looks
pretty similar to before, but with a lot more comparisons made.
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Figure 14.25: Tukey HSD post hoc test in jamovi factorial ANOVA with an interaction
term

14.9 The method of planned comparisons

Following on from the previous sections on contrasts and post hoc tests in ANOVA,
I think the method of planned comparisons is important enough to deserve a quick
discussion. In our discussions of multiple comparisons, in the previous section and
back in Chapter 13, I’ve been assuming that the tests you want to run are genuinely
post hoc. For instance, in our drugs example above, maybe you thought that the drugs
would all have different effects on mood (i.e., you hypothesised a main effect of drug),
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but you didn’t have any specific hypothesis about how they would be different, nor did
you have any real idea about which pairwise comparisons would be worth looking at.
If that is the case, then you really have to resort to something like Tukey’s HSD to do
your pairwise comparisons.

The situation is rather different, however, if you genuinely did have real, specific hy-
potheses about which comparisons are of interest, and you never ever have any inten-
tion to look at any other comparisons besides the ones that you specified ahead of time.
When this is true, and if you honestly and rigorously stick to your noble intentions to
not run any other comparisons (even when the data look like they’re showing you deli-
ciously significant effects for stuff you didn’t have a hypothesis test for), then it doesn’t
really make a lot of sense to run something like Tukey’s HSD, because it makes cor-
rections for a whole bunch of comparisons that you never cared about and never had
any intention of looking at. Under those circumstances, you can safely run a (limited)
number of hypothesis tests without making an adjustment for multiple testing. This
situation is known as the method of planned comparisons, and it is sometimes used
in clinical trials. However, further consideration is out of scope for this introductory
book, but at least you know that this method exists!

14.10 Factorial ANOVA 3: unbalanced designs

Factorial ANOVA is a very handy thing to know about. It’s been one of the standard
tools used to analyse experimental data formany decades, and you’ll find that you can’t
read more than two or three papers in psychology without running into an ANOVA in
there somewhere. However, there’s one huge difference between the ANOVAs that
you’ll see in a lot of real scientific articles and the ANOVAs that I’ve described so far. In
in real life we’re rarely lucky enough to have perfectly balanced designs. For one reason
or another, it’s typical to end up with more observations in some cells than in others.
Or, to put it another way, we have an unbalanced design.

Unbalanced designs need to be treated with a lot more care than balanced designs, and
the statistical theory that underpins them is a lot messier. It might be a consequence of
this messiness, or it might be a shortage of time, but my experience has been that un-
dergraduate research methods classes in psychology have a nasty tendency to ignore
this issue completely. A lot of stats textbooks tend to gloss over it too. The net result
of this, I think, is that a lot of active researchers in the field don’t actually know that
there’s several different “types” of unbalanced ANOVAs, and they produce quite dif-
ferent answers. In fact, reading the psychological literature, I’m kind of amazed at the
fact that most people who report the results of an unbalanced factorial ANOVA don’t
actually give you enough details to reproduce the analysis. I secretly suspect that most
people don’t even realise that their statistical software package is making a whole lot of
substantive data analysis decisions on their behalf. It’s actually a little terrifying when
you think about it. So, if you want to avoid handing control of your data analysis to
stupid software, read on.
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14.10.1 The coffee data

As usual, it will help us to work with some data. The coffee.csv file contains a hypotheti-
cal data set that produces an unbalanced 3 × 2 ANOVA. Suppose we were interested in
finding out whether or not the tendency of people to babble when they have too much
coffee is purely an effect of the coffee itself, or whether there’s some effect of the milk
and sugar that people add to the coffee. Suppose we took 18 people and gave them
some coffee to drink. The amount of coffee / caffeine was held constant, and we varied
whether or not milk was added, so milk is a binary factor with two levels, “yes” and
“no”. We also varied the kind of sugar involved. The coffee might contain “real” sugar
or it might contain “fake” sugar (i.e., artificial sweetener) or it might contain “none” at
all, so the sugar variable is a three level factor. Our outcome variable is a continuous
variable that presumably refers to some psychologically sensible measure of the extent
to which someone is “babbling”. The details don’t really matter for our purpose. Take
a look at the data in the jamovi spreadsheet view, as in Figure 14.26.

Figure 14.26: The coffee.csv data set in jamovi, with descriptive information aggregated
by factor levels

Looking at the table of means in Figure 14.26 we get a strong impression that there are
differences between the groups. This is especially true when we compare these means
to the standard deviations for the babble variable. Across groups, this standard de-
viation varies from .14 to .71, which is fairly small relative to the differences in group
means.175 Whilst this at first may seem like a straightforward factorial ANOVA, a prob-
lem arises when we look at how many observations we have in each group. See the
different 𝑁s for different groups shown in Figure 14.26. This violates one of our orig-
inal assumptions, namely that the number of people in each group is the same. We
haven’t really discussed how to handle this situation.
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14.10.2 “Standard ANOVA” does not exist for unbalanced designs

Unbalanced designs lead us to the somewhat unsettling discovery that there isn’t really
any one thing thatwemight refer to as a standardANOVA. In fact, it turns out that there
are three fundamentally differentways176 inwhich youmightwant to run anANOVA in
an unbalanced design. If you have a balanced design all three versions produce iden-
tical results, with the sums of squares, 𝐹 -values, etc., all conforming to the formulas
that I gave at the start of the chapter. However, when your design is unbalanced they
don’t give the same answers. Furthermore, they are not all equally appropriate to every
situation. Somemethods will be more appropriate to your situation than others. Given
all this, it’s important to understand what the different types of ANOVA are and how
they differ from one another.

The first kind of ANOVA is conventionally referred to as type I sum of squares. I’m
sure you can guess what the other two are called. The “sum of squares” part of the
namewas introduced by the SAS statistical software package and has become standard
nomenclature, but it’s a bit misleading in some ways. I think the logic for referring to
them as different types of sum of squares is that, when you look at the ANOVA tables
that they produce, the key difference in the numbers is the 𝑆𝑆 values. The degrees
of freedom don’t change, the 𝑀𝑆 values are still defined as 𝑆𝑆 divided by 𝑑𝑓 , etc.
However, what the terminology getswrong is that it hides the reasonwhy the𝑆𝑆 values
are different from one another. To that end, it’s a lot more helpful to think of the three
different kinds of ANOVA as three different hypothesis testing strategies. These different
strategies lead to different𝑆𝑆 values, to be sure, but it’s the strategy that is the important
thing here, not the 𝑆𝑆 values themselves. Recall from the section ANOVA as a linear
model that any particular 𝐹 -test is best thought of as a comparison between two linear
models. So, when you’re looking at an ANOVA table, it helps to remember that each of
those 𝐹 -tests corresponds to a pair of models that are being compared. Of course, this
leads naturally to the question of which pair of models is being compared. This is the
fundamental difference between ANOVA types I, II and III: each one corresponds to a
different way of choosing the model pairs for the tests.

14.10.3 Type I sum of squares

The type I method is sometimes referred to as the “sequential” sum of squares, because
it involves a process of adding terms to the model one at a time. Consider the coffee
data, for instance. Suppose we want to run the full 3 × 2 factorial ANOVA, including
interaction terms. The full model contains the outcome variable babble, the predictor
variables sugar and milk, and the interaction term sugar × milk. This can be written
as 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑚𝑖𝑙𝑘 + 𝑠𝑢𝑔𝑎𝑟×𝑚𝑖𝑙𝑘. The type I strategy builds this model up
sequentially, starting from the simplest possible model and gradually adding terms.

The simplest possible model for the data would be one in which neither milk nor sugar
is assumed to have any effect on babbling. The only term that would be included in
such a model is the intercept, written as babble ~ 1. This is our initial null hypothesis.
The next simplest model for the data would be one in which only one of the two main
effects is included. In the coffee data, there are two different possible choices here, be-
cause we could choose to add milk first or to add sugar first. The order actually turns
out to matter, as we’ll see later, but for now let’s just make a choice arbitrarily and pick
sugar. So, the second model in our sequence of models is babble ~ sugar, and it forms
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the alternative hypothesis for our first test. We now have our first hypothesis test (Ta-
ble 14.16).

Table 14.16: Null and alternative hypotheses with the outcome variable “babble”

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 1
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟

This comparison forms our hypothesis test of the main effect of sugar. The next step in
our model building exercise is to add the other main effect term, so the next model in
our sequence is babble ~ sugar + milk. The second hypothesis test is then formed by
comparing the following pair of models (Table 14.17).

Table 14.17: Further null and alternative hypotheses with the outcome variable “bab-
ble”

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑚𝑖𝑙𝑘

This comparison forms our hypothesis test of the main effect of milk. In one sense,
this approach is very elegant: the alternative hypothesis from the first test forms the
null hypothesis for the second one. It is in this sense that the type I method is strictly
sequential. Every test builds directly on the results of the last one. However, in another
sense it’s very inelegant, because there’s a strong asymmetry between the two tests. The
test of the main effect of sugar (the first test) completely ignores milk, whereas the test
of the main effect of milk (the second test) does take sugar into account. In any case,
the fourth model in our sequence is now the full model, babble ~ sugar + milk + sugar
× milk, and the corresponding hypothesis test is shown in Table 14.18.

Table 14.18: Andmore possible null and alternative hypotheses with the outcome vari-
able “babble”

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑚𝑖𝑙𝑘
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟+𝑚𝑖𝑙𝑘+𝑠𝑢𝑔𝑎𝑟∗𝑚𝑖𝑙𝑘

Type III sum of squares is the default hypothesis testing method used by jamovi
ANOVA, so to run a type I sum of squares analysis we have to select ‘Type 1’ in the
‘Sum of squares’ selection box in the jamovi ‘ANOVA’ – ‘Model’ options. This gives us
the ANOVA table shown in Figure 14.27.

The big problem with using type I sum of squares is the fact that it really does depend
on the order inwhich you enter the variables. Yet, inmany situations the researcher has
no reason to prefer one ordering over another. This is presumably the case for our milk
and sugar problem. Should we add milk first or sugar first? It feels exactly as arbitrary
as a data analysis question as it does as a coffee-making question. There may in fact be
some people with firm opinions about ordering, but it’s hard to imagine a principled
answer to the question. Yet, look what happens when we change the ordering, as in
Figure 14.28.
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Figure 14.27: ANOVA results table using type I sum of squares in jamovi

Figure 14.28: ANOVA results table using type I sum of squares in jamovi, but with
factors entered in a different order (milk first)

The 𝑝-values for both main effect terms have changed, and fairly dramatically. Among
other things, the effect of milk has become significant (though one should avoid draw-
ing any strong conclusions about this, as I’ve mentioned previously). Which of these
two ANOVAs should one report? It’s not immediately obvious.

When you look at the hypothesis tests that are used to define the “first” main effect
and the “second” one, it’s clear that they’re qualitatively different from one another. In
our initial example, we saw that the test for the main effect of sugar completely ignores
milk, whereas the test of the main effect of milk does take sugar into account. As such,
the type I testing strategy really does treat the first main effect as if it had a kind of
theoretical primacy over the second one. In my experience there is very rarely if ever
any theoretically primacy of this kind that would justify treating any two main effects
asymmetrically.

The consequence of all this is that type I tests are very rarely of much interest, and so
we should move on to discuss type II tests and type III tests.
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14.10.4 Type III sum of squares

Having just finished talking about type I tests, you might think that the natural thing
to do next would be to talk about type II tests. However, I think it’s actually a bit more
natural to discuss type III tests (which are simple and the default in jamovi ANOVA)
before talking about type II tests (which are trickier). The basic idea behind type III
tests is extremely simple. Regardless of which term you’re trying to evaluate, run the
𝐹 -test in which the alternative hypothesis corresponds to the full ANOVA model as
specified by the user, and the null model just deletes that one term that you’re testing.
For instance, in the coffee example, in which our full model was babble ~ sugar + milk
+ sugar × milk, the test for a main effect of sugar would correspond to a comparison
between the following two models (Table 14.19).

Table 14.19: Null and alternative hypotheses with the outcome variable “babble”, with
type III sum of squares

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑚𝑖𝑙𝑘 + 𝑠𝑢𝑔𝑎𝑟 ∗ 𝑚𝑖𝑙𝑘
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟+𝑚𝑖𝑙𝑘+𝑠𝑢𝑔𝑎𝑟∗𝑚𝑖𝑙𝑘

Similarly the main effect of milk is evaluated by testing the full model against a null
model that removes the milk term, like in Table 14.20.

Table 14.20: Further null and alternative hypotheseswith the outcomevariable ‘babble’,
with type III sum of squares

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑠𝑢𝑔𝑎𝑟 ∗ 𝑚𝑖𝑙𝑘
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟+𝑚𝑖𝑙𝑘+𝑠𝑢𝑔𝑎𝑟∗𝑚𝑖𝑙𝑘

Finally, the interaction term sugar × milk is evaluated in exactly the same way. Once
again, we test the full model against a null model that removes the sugar × milk inter-
action term, like in Table 14.21.

Table 14.21: Removing the interaction term fromhypotheseswith the outcome variable
‘babble’, with type III sum of squares

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑚𝑖𝑙𝑘
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟+𝑚𝑖𝑙𝑘+𝑠𝑢𝑔𝑎𝑟∗𝑚𝑖𝑙𝑘

The basic idea generalises to higher order ANOVAs. For instance, suppose that wewere
trying to run an ANOVA with three factors, A, B and C, and we wanted to consider all
possible main effects and all possible interactions, including the three way interaction
A × B × C. (Table 14.22) shows you what the Type III tests look like for this situation).

As ugly as that table looks, it’s pretty simple. In all cases, the alternative hypothesis
corresponds to the full model which contains three main effect terms (e.g., A), three
two-way interactions (e.g., A*B) and one three-way interaction (i.e., A*B*C). The null
model always contains 6 of these 7 terms, and the missing one is the one whose signif-
icance we’re trying to test.
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Table 14.22: Type III tests with three factors and all main effect and interaction term

Term being tested is
Null model is
outcome ...

Alternative model is
outcome ...

A
𝐵 + 𝐶 + 𝐴 ∗ 𝐵 + 𝐴 ∗
𝐶 +𝐵∗𝐶 +𝐴∗𝐵∗𝐶

𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

B
𝐴 + 𝐶 + 𝐴 ∗ 𝐵 + 𝐴 ∗
𝐶 +𝐵∗𝐶 +𝐴∗𝐵∗𝐶

𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

C
𝐴 + 𝐵 + 𝐴 ∗ 𝐵 + 𝐴 ∗
𝐶 +𝐵∗𝐶 +𝐴∗𝐵∗𝐶

𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

A*B
𝐴+𝐵 +𝐶 +𝐴∗𝐶 +
𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

A*C
𝐴+𝐵 +𝐶 +𝐴∗𝐵 +
𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

B*C
𝐴+𝐵 +𝐶 +𝐴∗𝐵 +
𝐴 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

A*B*C
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗

𝐵 + 𝐴 ∗ 𝐶 + 𝐵 ∗ 𝐶
𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

At first pass, type III tests seem like a nice idea. Firstly, we’ve removed the asymmetry
that caused us to have problems when running type I tests. And because we’re now
treating all terms the same way, the results of the hypothesis tests do not depend on
the order in which we specify them. This is definitely a good thing. However, there
is a big problem when interpreting the results of the tests, especially for main effect
terms. Consider the coffee data. Suppose it turns out that the main effect of milk is not
significant according to the type III tests. What this is telling us is that babble ~ sugar +
sugar*milk is a better model for the data than the full model. But what does that even
mean? If the interaction term sugar*milk was also non significant, we’d be tempted to
conclude that the data are telling us that the only thing that matters is sugar. But sup-
pose we have a significant interaction term, but a non-significant main effect of milk.
In this case, are we to assume that there really is an “effect of sugar”, an “interaction
between milk and sugar”, but no “effect of milk”? That seems crazy. The right answer
simply must be that it’s meaningless177 to talk about the main effect if the interaction
is significant. In general, this seems to be what most statisticians advise us to do, and I
think that’s the right advice. But if it really is meaningless to talk about non-significant
main effects in the presence of a significant interaction, then it’s not at all obvious why
type III tests should allow the null hypothesis to rely on a model that includes the in-
teraction but omits one of the main effects that make it up. When characterised in this
fashion, the null hypotheses really don’t make much sense at all.

Later on, we’ll see that type III tests can be redeemed in some contexts, but first let’s
take a look at the ANOVA results table using type III sum of squares, see Figure 14.29.

But be aware, one of the perverse features of the type III testing strategy is that typically
the results turn out to depend on the contrasts that you use to encode your factors (see
the Different ways to specify contrasts section if you’ve forgotten what the different
types of contrasts are).178
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Figure 14.29: ANOVA results table using type III sum of squares in jamovi

Okay, so if the 𝑝-values that typically come out of type III analyses (but not in jamovi)
are so sensitive to the choice of contrasts, does that mean that type III tests are essen-
tially arbitrary and not to be trusted? To some extent that’s true, and when we turn to
a discussion of type II tests we’ll see that type II analyses avoid this arbitrariness en-
tirely, but I think that’s too strong a conclusion. Firstly, it’s important to recognise that
some choices of contrasts will always produce the same answers (ah, so this is what is
happening in jamovi). Of particular importance is the fact that if the columns of our
contrast matrix are all constrained to sum to zero, then the type III analysis will always
give the same answers.

14.10.5 Type II sum of squares

Okay, so we’ve seen type I and III tests now, and both are pretty straightforward. Type I
tests are performed by gradually adding terms one at a time, whereas type III tests are
performed by taking the full model and looking to see what happens when you remove
each term. However, both can have some limitations. Type I tests are dependent on the
order in which you enter the terms, and type III tests are dependent on how you code
up your contrasts. Type II tests are a little harder to describe, but they avoid both of
these problems, and as a result they are a little easier to interpret.

Type II tests are broadly similar to type III tests. Start with a “full” model, and test a
particular term by deleting it from that model. However, type II tests are based on the
marginality principle which states that you should not omit a lower order term from
yourmodel if there are any higher order ones that depend on it. So, for instance, if your
model contains the two-way interaction A × B (a 2nd order term), then it really ought
to contain the main effects A and B (1st order terms). Similarly, if it contains a three-
way interaction term A × B × C, then the model must also include the main effects
A, B and C as well as the simpler interactions A × B, A × C and B × C. Type III tests
routinely violate the marginality principle. For instance, consider the test of the main
effect of A in the context of a three-way ANOVA that includes all possible interaction
terms. According to type III tests, our null and alternative models are in Table 14.23.
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Table 14.23: Type III tests for a main effect, A, in a three-way ANOVA with all possible
interaction terms

Null model:
𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ∼

𝐵+𝐶+𝐴∗𝐵+𝐴∗𝐶+𝐵∗𝐶+𝐴∗𝐵∗𝐶

Alternative model:
𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ∼ 𝐴 + 𝐵 + 𝐶 + 𝐴 ∗ 𝐵 +

𝐴 ∗ 𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

Notice that the null hypothesis omitsA, but includesA×B,A×CandA×B×Cas part
of the model. This, according to the type II tests, is not a good choice of null hypothesis.
What we should do instead, if we want to test the null hypothesis that A is not relevant
to our outcome, is to specify the null hypothesis that is the most complicated model
that does not rely on A in any form, even as an interaction. The alternative hypothesis
corresponds to this null model plus a main effect term of A. This is a lot closer to what
most peoplewould intuitively think of as a “main effect ofA”, and it yields the following
as our type II test of the main effect of A (Table 14.24).179

Table 14.24: Type II tests for a main effect, A, in a three-way ANOVA with all possible
interaction terms

Null model: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ∼ 𝐵 + 𝐶 + 𝐵 ∗ 𝐶
Alternative model: 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ∼ 𝐴 + 𝐵 + 𝐶 + 𝐵 ∗ 𝐶

Anyway, just to give you a sense of how the type II tests play out, see the full table
(Table 14.25) of tests that would be applied in a three-way factorial ANOVA.

Table 14.25: Type II tests for a three-way factorial model

Term being tested is
Null model is
outcome ...

Alternative model is
outcome ...

A 𝐵 + 𝐶 + 𝐵 ∗ 𝐶 𝐴 + 𝐵 + 𝐶 + 𝐵 ∗ 𝐶
B 𝐴 + 𝐶 + 𝐴 ∗ 𝐶 𝐴 + 𝐵 + 𝐶 + 𝐴 ∗ 𝐶
C 𝐴 + 𝐵 + 𝐴 ∗ 𝐵 𝐴 + 𝐵 + 𝐶 + 𝐴 ∗ 𝐵

A*B
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗

𝐶 + 𝐵 ∗ 𝐶
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗ 𝐵 +

𝐴 ∗ 𝐶 + 𝐵 ∗ 𝐶

A*C
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗

𝐵 + 𝐵 ∗ 𝐶
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗ 𝐵 +

𝐴 ∗ 𝐶 + 𝐵 ∗ 𝐶

B*C
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗

𝐵 + 𝐴 ∗ 𝐶
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗ 𝐵 +

𝐴 ∗ 𝐶 + 𝐵 ∗ 𝐶

A*B*C
𝐴 + 𝐵 + 𝐶 + 𝐴 ∗

𝐵 + 𝐴 ∗ 𝐶 + 𝐵 ∗ 𝐶
𝐴+𝐵+𝐶 +𝐴∗𝐵+𝐴∗
𝐶 + 𝐵 ∗ 𝐶 + 𝐴 ∗ 𝐵 ∗ 𝐶

In the context of the two way ANOVA that we’ve been using in the coffee data, the
hypothesis tests are even simpler. The main effect of sugar corresponds to an 𝐹 -test
comparing these two models (Table 14.26). The test for the main effect of milk is in
Table 14.27. Finally, the test for the interaction sugar × milk is in Table 14.28.
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Table 14.26: Type II tests for the main effect of sugar in the coffee data

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑚𝑖𝑙𝑘
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑚𝑖𝑙𝑘

Table 14.27: Type II tests for the main effect of milk in the coffee data

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑚𝑖𝑙𝑘

Table 14.28: Type II tests for the sugar × milk interaction term

Null model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟 + 𝑚𝑖𝑙𝑘
Alternative model: 𝑏𝑎𝑏𝑏𝑙𝑒 ∼ 𝑠𝑢𝑔𝑎𝑟+𝑚𝑖𝑙𝑘+𝑠𝑢𝑔𝑎𝑟∗𝑚𝑖𝑙𝑘

Running the tests are again straightforward. Just select ‘Type 2’ in the ‘Sum of squares’
selection box in the jamovi ‘ANOVA’ – ‘Model’ options, This gives us the ANOVA table
shown in Figure 14.30.

Figure 14.30: ANOVA results table using type II sum of squares in jamovi

Type II tests have some clear advantages over type I and type III tests. They don’t de-
pend on the order inwhich you specify factors (unlike type I), and they don’t depend on
the contrasts that you use to specify your factors (unlike type III). And although opin-
ions may differ on this last point, and it will definitely depend on what you’re trying to
do with your data, I do think that the hypothesis tests that they specify are more likely
to correspond to something that you actually care about. As a consequence, I find that
it’s usually easier to interpret the results of a type II test than the results of a type I or
type III test. For this reasonmy tentative advice is that, if you can’t think of any obvious
model comparisons that directly map onto your research questions but you still want
to run an ANOVA in an unbalanced design, type II tests are probably a better choice
than type I or type III.180
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14.10.6 Effect sizes (and non-additive sums of squares)

jamovi also provides the effect sizes 𝜂2 and partial 𝜂2 when you select these options, as
in Figure 14.30. However, when you’ve got an unbalanced design there’s a bit of extra
complexity involved.

If you remember back to our very early discussions of ANOVA, one of the key ideas
behind the sums of squares calculations is that if we add up all the 𝑆𝑆 terms associated
with the effects in the model, and add that to the residual 𝑆𝑆, they’re supposed to add
up to the total sum of squares. And, on top of that, the whole idea behind 𝜂2 is that,
because you’re dividing one of the 𝑆𝑆 terms by the total 𝑆𝑆 value, an 𝜂2 value can
be interpreted as the proportion of variance accounted for by a particular term. But
this is not so straightforward in unbalanced designs because some of the variance goes
“missing”.

This seems a bit odd at first, but here’s why. When you have unbalanced designs your
factors become correlatedwith one another, and it becomes difficult to tell the difference
between the effect of Factor A and the effect of Factor B. In the extreme case, suppose
that we’d run a 2 × 2 design in which the number of participants in each group had
been as in Table 14.29.

Table 14.29: 𝑁 participants in a 2 x 2 very (very!) unbalanced factorial design

sugar no sugar
milk 100 0

no milk 0 100

Here we have a spectacularly unbalanced design: 100 people have milk and sugar, 100
people have no milk and no sugar, and that’s all. There are 0 people with milk and no
sugar, and 0 people with sugar but no milk. Now suppose that, when we collected the
data, it turned out there is a large (and statistically significant) difference between the
“milk and sugar” group and the “no-milk and no-sugar” group. Is this a main effect
of sugar? A main effect of milk? Or an interaction? It’s impossible to tell, because the
presence of sugar has a perfect association with the presence of milk. Now suppose the
design had been a little more balanced (Table 14.30).

Table 14.30: 𝑁 participants in a 2 x 2 still very unbalanced factorial design

sugar no sugar
milk 100 5

no milk 5 100

This time around, it’s technically possible to distinguish between the effect of milk and
the effect of sugar, because we have a few people that have one but not the other. How-
ever, it will still be pretty difficult to do so, because the association between sugar and
milk is still extremely strong, and there are so few observations in two of the groups.
Again, we’re very likely to be in the situationwherewe know that the predictor variables
(milk and sugar) are related to the outcome (babbling), but we don’t know if the nature
of that relationship is a main effect of one or the other predictor, or the interaction.
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14.11 Summary

• Factorial ANOVA 1: balanced designs, focus onmain effects andwith interactions
considered.

• Effect size, estimated means, and confidence intervals in a factorial ANOVA.
• Assumption checking in ANOVA.
• Analysis of Covariance (ANCOVA).
• Understanding ANOVA as a linear model, including Different ways to specify
contrasts.

• Post hoc tests using Tukey’s HSD and a brief commentary on The method of
planned comparisons.

• Factorial ANOVA 3: unbalanced designs.
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Chapter 15

Factor Analysis

Previous chapters have covered statistical tests for differences between two or more
groups. However, sometimes when conducting research, wemaywish to examine how
multiple variables co-vary. That is, how they are related to each other and whether the
patterns of relatedness suggest anything interesting and meaningful. For example, we
are often interested in exploring whether there are any underlying unobserved latent
factors that are represented by the observed, directly measured, variables in our data
set. In statistics, latent factors are initially hidden variables that are not directly ob-
served but are rather inferred (through statistical analysis) from other variables that
are observed (directly measured). For a more technical and useful geometric explana-
tion of the essentials of Factor Analysis take a look at Child (1990). Kline (1994) also
provides a helpful introduction to the basic theory of Factor Analysis.

In this chapter we will cover how to undertake a number of different Factor Analy-
sis and related techniques, starting with Exploratory Factor Analysis (EFA). EFA is a
statistical technique for identifying underlying latent factors in a data set. Then we
will cover Principal Component Analysis (PCA) which is a data reduction technique
which, strictly speaking, does not identify underlying latent factors. Instead, PCA sim-
ply produces a linear combination of observed variables. Following this, the section on
Confirmatory Factor Analysis (CFA) shows that, unlike EFA, with CFA you start with
an idea – a model – of how the variables in your data are related to each other. You
then test your model against the observed data and assess how good a fit the model
is. A more sophisticated version of CFA is the so-called Multi-Trait Multi-Method CFA
approach in which both latent factor and method variance are included in the model.
This is useful when there are different methodological approaches used for measure-
ment and therefore method variance is an important consideration. Finally, we will
cover a related analysis: Internal consistency reliability analysis tests how consistently
a scale measures a psychological construct.

15.1 Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) is a statistical technique for revealing any hidden
latent factors that can be inferred from our observed data. This technique calculates
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to what extent a set of measured variables, for example 𝑉1, 𝑉2, 𝑉3, 𝑉4, and 𝑉5, can be
represented as measures of an underlying latent factor. This latent factor cannot be
measured through just one observed variable but instead is manifested in the relation-
ships it causes in a set of observed variables.

In Figure 15.1 each observed variable 𝑉 is ‘caused’ to some extent by the underlying
latent factor (𝐹 ), depicted by the coefficients 𝑏1 to 𝑏5 (also called factor loadings). Each
observed variable also has an associated error term, 𝑒1 to 𝑒5. Each error term is the
variance in the associated observed variable, 𝑉𝑖, that is unexplained by the underlying
latent factor.

Figure 15.1: Latent factor underlying the relationship between several observed vari-
ables

In Psychology, latent factors represent psychological phenomena or constructs that are
difficult to directly observe or measure. For example, personality, or intelligence, or
thinking style. In the example in Figure 15.1 we may have asked people five specific
questions about their behaviour or attitudes, and from that we are able to get a pic-
ture about a personality construct called, for example, extraversion. A different set of
specific questions may give us a picture about an individual’s introversion, or their
conscientiousness.

Here’s another example: we may not be able to directly measure statistics anxiety, but
we can measure whether statistics anxiety is high or low with a set of questions in a
questionnaire. For example, “𝑄1: Doing the assignment for a statistics course”, “𝑄2:
Trying to understand the statistics described in a journal article”, and “𝑄3: Asking the
lecturer for help in understanding something from the course”, etc., each rated from
low anxiety to high anxiety. People with high statistics anxiety will tend to give simi-
larly high responses on these observed variables because of their high statistics anxiety.
Likewise, people with low statistics anxiety will give similar low responses to these
variables because of their low statistics anxiety.
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In Exploratory Factor Analysis (EFA), we are essentially exploring the correlations be-
tween observed variables to uncover any interesting, important underlying (latent) fac-
tors that are identifiedwhen observed variables co-vary. We can use statistical software
to estimate any latent factors and to identify which of our variables have a high load-
ing181 (e.g., loading > 0.5) on each factor, suggesting they are a useful measure, or indi-
cator, of the latent factor. Part of this process includes a step called rotation, which to be
honest is a pretty weird idea but luckily we don’t have to worry about understanding
it; we just need to know that it is helpful because it makes the pattern of loadings on
different factors much clearer. As such, rotation helps with seeing more clearly which
variables are linked substantively to each factor. We also need to decide howmany fac-
tors are reasonable given our data, and helpful in this regard is something called Eigen
values. We’ll come back to this in a moment, after we have covered some of the main
assumptions of EFA.

15.1.1 Checking assumptions

There are a couple of assumptions that need to be checked as part of the analysis. The
first assumption is sphericity, which essentially checks that the variables in your data
set are correlated with each other to the extent that they can potentially be summarised
with a smaller set of factors. Bartlett’s test for sphericity checks whether the observed
correlation matrix diverges significantly from a zero (or null) correlation matrix. So, if
Bartlett’s test is significant (𝑝 < .05), this indicates that the observed correlation matrix
is significantly divergent from the null, and is therefore suitable for EFA.

The second assumption is sampling adequacy and is checked using the Kaiser-Meyer-
Olkin (KMO) Measure of Sampling Adequacy (MSA). The KMO index is a measure of
the proportion of variance among observed variables that might be common variance.
Using partial correlations, it checks for factors that load just two items. We seldom, if
ever, want EFA producing a lot of factors loading just two items each. KMO is about
sampling adequacy because partial correlations are typically seenwith inadequate sam-
ples. If the KMO index is high (≈ 1), the EFA is efficient whereas if KMO is low (≈ 0),
the EFA is not relevant. KMO values smaller than 0.5 indicates that EFA is not suitable
and a KMO value of 0.6 should be present before EFA is considered suitable. Values
between 0.5 and 0.7 are considered adequate, values between 0.7 and 0.9 are good and
values between 0.9 and 1.0 are excellent.

15.1.2 What is EFA good for?

If the EFA has provided a good solution (i.e. factormodel), thenwe need to decidewhat
to do with our shiny new factors. Researchers often use EFA during psychometric scale
development. They will develop a pool of questionnaire items that they think relate
to one or more psychological constructs, use EFA to see which items “go together” as
latent factors, and then theywill assesswhether some items should be removed because
they don’t usefully or distinctly measure one of the latent factors.182

In line with this approach, another consequence of EFA is to combine the variables that
load onto distinct factors into a factor score, sometimes known as a scale score. There
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are two options for combining variables into a scale score:

• Create a new variable with a score weighted by the factor loadings for each item
that contributes to the factor.

• Create a new variable based on each item that contributes to the factor, but
weighting them equally.

In the first option each item’s contribution to the combined score depends on how
strongly it relates to the factor. In the second option we typically just average across
all the items that contribute substantively to a factor to create the combined scale score
variable. Which to choose is amatter of preference, though a disadvantagewith the first
option is that loadings can vary quite a bit from sample to sample, and in behavioural
and health sciences we are often interested in developing and using composite ques-
tionnaire scale scores across different studies and different samples. In which case it is
reasonable to use a composite measure that is based on the substantive items contribut-
ing equally rather than weighting by sample specific loadings from a different sample.
In any case, understanding a combined variable measure as an average of items is sim-
pler and more intuitive than using a sample specific optimally-weighted combination.

But let’s not get ahead of ourselves; what we should really focus on now is how to do
an EFA in jamovi.

15.1.3 EFA in jamovi

First, we need some data. Twenty-five personality self-report items (see Table 15.1)
taken from the International Personality Item Pool (http://ipip.ori.org) were included
as part of the Synthetic Aperture Personality Assessment (SAPA) web-based personal-
ity assessment (http://sapa-project.org) project. The 25 items are organized by five
putative factors: Agreeableness, Conscientiousness, Extraversion, Neuroticism, and
Openness.

The item data were collected using a 6-point response scale:

1. Very Inaccurate
2. Moderately Inaccurate
3. Slightly Inaccurate
4. Slightly Accurate
5. Moderately Accurate
6. Very Accurate

A sample of 𝑁 = 250 responses is contained in the data set bfi_sample.csv. As re-
searchers, we are interested in exploring the data to see whether there are some un-
derlying latent factors that are measured reasonably well by the 25 observed variables
in the bfi_sample.csv data file. Open up the data set and check that the 25 variables are
coded as continuous variables (technically they are ordinal though for EFA in jamovi it
mostly doesn’t matter, except if you decide to calculate weighted factor scores in which
case continuous variables are needed).
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Table 15.1: Twenty-five observed variable items organised by five putative personality
factors in the data set bfi_sample.csv

Variable
name

Question / Item (short phrases that you
should respond to by indicating how

accurately the statement describes your
typical behaviour or attitudes)

Coding (R:
reverse)

A1 Am indifferent to the feelings of others R
A2 Inquire about others’ well-being
A3 Know how to comfort others
A4 Love children
A5 Make people feel at ease
C1 Am exacting in my work
C2 Continue until everything is perfect
C3 Do things according to a plan
C4 Do things in a half-way manner R
C5 Waste my time R
E1 Don’t talk a lot R
E2 Find it difficult to approach others R
E3 Know how to capitivate people
E4 Make friends easily
E5 Take charge
N1 Get angry easily
N2 Get irritated easily
N3 Have frequent mood swings
N4 Often feel blue
N5 Panic easily
O1 Am full of ideas
O2 Avoid difficult reading material R
O3 Carry the conversation to a higher level
O4 Spend time reflecting on things
O5 Will not probe deeply into a subject R

To perform EFA in jamovi:

• Select ‘Factor’ – ‘Exploratory Factor Analysis’ from the main jamovi button bar to
open the EFA analysis window (Figure 15.2).

• Select the 25 personality questions and transfer them into the ‘Variables’ box.

• Check appropriate options, including ‘Assumption Checks’, but also Rotation
‘Method’, ‘Number of Factors’ to extract, and ‘Additional Output’ options. See
Figure 15.2 for suggested options for this illustrative EFA, and please note that
the Rotation ‘Method’ and ‘Number of Factors’ extracted is typically adjusted by
the researcher during the analysis to find the best result, as described below.
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First, check the assumptions (Figure 15.3). You can see that (1) Bartlett’s test of
sphericity is significant, so this assumption is satisfied; and (2) the KMO measure of
sampling adequacy (MSA) is 0.81 overall, suggesting good sampling adequacy. No
problems here then!

Figure 15.2: The jamovi EFA analysis window
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Figure 15.3: jamovi EFA assumption checks for the personality questionnaire data
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The next thing to check is how many factors to use (or “extract” from the data). Three
different approaches are available:

• One convention is to choose all components with Eigen values greater than 1183.
This would give us four factors with our data (try it and see).

• Examination of the scree plot, as in Figure 15.4, lets you identify the “point of
inflection”. This is the point at which the slope of the scree curve clearly levels
off, below the “elbow”. Thiswould give us five factorswith our data. Interpreting
scree plots is a bit of an art: in Figure 15.4 there is a noticeable step from 5 to 6
factors, but in other scree plots you look at it will not be so clear cut.

• Using a parallel analysis technique, the obtained Eigen values are compared to
those that would be obtained from random data. The number of factors extracted
is the number with Eigen values greater than what would be found with random
data.

Figure 15.4: Scree plot of the personality data in jamovi EFA, showing a noticeable
inflection and levelling off after point 5 (the “elbow”)

The third approach is a good one according to Fabrigar et al. (1999), although in practice
researchers tend to look at all three and then make a judgement about the number of
factors that are most easily or helpfully interpreted. This can be understood as the
“meaningfulness criterion”, and researchers will typically examine, in addition to the
solution from one of the approaches above, solutions with one or two more or fewer
factors. They then adopt the solution which makes the most sense to them.

At the same time, we should also consider the best way to rotate the final solution.
There are twomain approaches to rotation: orthogonal (e.g., “varimax”) rotation forces
the selected factors to be uncorrelated, whereas oblique (e.g. “oblimin”) rotation al-
lows the selected factors to be correlated. Dimensions of interest to psychologists and
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behavioural scientists are not often dimensions we would expect to be orthogonal, so
oblique solutions are arguably more sensible.184

Practically, if in an oblique rotation the factors are found to be substantially correlated
(positive or negative, and > 0.3), as in Figure 15.5 where a correlation between two of
the extracted factors is 0.31, then this would confirm our intuition to prefer oblique
rotation. If the factors are, in fact, correlated, then an oblique rotation will produce a
better estimate of the true factors and a better simple structure than will an orthogo-
nal rotation. And, if the oblique rotation indicates that the factors have close to zero
correlations between one another, then the researcher can go ahead and conduct an
orthogonal rotation (which should then give about the same solution as the oblique
rotation).

On checking the correlation between the extracted factors at least one correlation was
greater than 0.3 (Figure 15.5), so an oblique (“oblimin”) rotation of the five extracted
factors is preferred. We can also see in Figure 15.5 that the proportion of overall variance
in the data that is accounted for by the five factors is 46%. Factor 1 accounts for around
10% of the variance, factors 2 to 4 around 9% each, and factor 5 just over 7%. This isn’t
great; it would have been better if the overall solution accounted for a more substantive
proportion of the variance in our data.

Figure 15.5: Factor summary statistics and correlations for a five factor solution in
jamovi EFA
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Figure 15.6: Factor loadings for a five factor solution in jamovi EFA

Be aware that in every EFA you could potentially have the same number of factors as
observed variables, but every additional factor you includewill add a smaller amount of
explained variance. If the first few factors explain a good amount of the variance in the
original 25 variables, then those factors are clearly a useful, simpler substitute for the 25
variables. You can drop the rest without losing too much of the original variability. But
if it takes 18 factors (for example) to explain most of the variance in those 25 variables,
you might as well just use the original 25.

Figure 15.6 shows the factor loadings. That is, how the 25 different personality items
load onto each of the five selected factors. We have hidden loadings less than 0.3 (set
in the options shown in Figure 15.2).
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For Factors 1, 2, 3 and 4 the pattern of factor loadings closely matches the putative fac-
tors specified in Table 15.1. Phew! And Factor 5 is pretty close, with four of the five
observed variables that putatively measure “openness” loading pretty well onto the
factor. Variable 04 doesn’t quite seem to fit though, as the factor solution in Figure 15.6
suggests that it loads onto Factor 4 (albeit with a relatively low loading) but not sub-
stantively onto Factor 5.
The other thing to note is that those variables that were denoted as “R: reverse coding”
in Table 15.1 are those that have negative factor loadings. Take a look at the items A1
(“Am indifferent to the feelings of others”) and A2 (“Inquire about others’ well-being”).
We can see that a high score on ‘A1’ indicates low Agreeableness, whereas a high score
on 𝐴2 (and all the other “A” variables for that matter) indicates high Agreeableness.
Therefore A1 will be negatively correlated with the other “A” variables, and this is why
it has a negative factor loading, as shown in Figure 15.6.

We can also see in Figure 15.6 the ‘uniqueness’ of each variable. Uniqueness is the pro-
portion of variance that is ‘unique’ to the variable and not explained by the factors.185
For example, 72% of the variance in ‘A1’ is not explained by the factors in the five factor
solution. In contrast, ‘N1’ has relatively low variance not accounted for by the factor
solution (35%). Note that the greater the ‘uniqueness’, the lower the relevance or con-
tribution of the variable in the factor model.

To be honest, it’s unusual to get such a neat solution in EFA. It’s typically quite a bitmore
messy than this, and often interpreting the meaning of the factors is more challenging.
It’s not often that you have such a clearly delineated item pool. More often you will
have a whole heap of observed variables that you think may be indicators of a few
underlying latent factors, but you don’t have such a strong sense of which variables are
going to go where!

So, we seem to have a pretty good five factor solution, albeit accounting for a relatively
low overall proportion of the observed variance. Let’s assume we are happy with this
solution andwant to use our factors in further analysis. The straightforward option is to
calculate an overall (average) score for each factor by adding together the score for each
variable that loads substantively onto the factor and then dividing by the number of
variables (in otherwords create a “mean score” for each person across the items for each
scale). For each person in our data set that entails, for example for the Agreeableness
factor, adding together𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5, and then dividing by 5.186 In essence,
the factor score we have calculated is based on equally weighted scores from each of
the included variables/items. We can do this in jamovi in two steps:

• Recode A1 into “A1R” by reverse scoring the values in the variable (i.e. 6 = 1;
5 = 2; 4 = 3; 3 = 4; 2 = 5; 1 = 6) using the jamovi transform variable command
(see Figure 15.7).

• Compute a new variable, called “Agreeableness’, by calculating the mean of A1R,
A2, A3, A4 and A5. Do this using the jamovi compute new variable command
(see Figure 15.8).
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Figure 15.7: Recode variable using the jamovi Transform command

Figure 15.8: Compute new scale score variable using the jamovi Computed variable
command
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Figure 15.9: jamovi option for factor scores for the five factor solution, using the
‘Bartlett’ optimal weighting method

Figure 15.10: Data sheet view showing the five newly created factor score variables

Another option is to create an optimally-weighted factor score index. To do this, save
the factor scores to the data set, using the ‘Save’ – ‘Factor scores’ checkbox. Once you
have done this you will see that five new variables (columns) have been added to the
data, one for each factor extracted. See Figure 15.9 and Figure 15.10.
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Now you can go ahead and undertake further analyses, using either the mean score
based factor scales (e.g., as in Figure 15.8) or using the optimally-weighted factor scores
calculated by jamovi. Your choice! For example, one thing you might like to do is see
whether there are any gender differences in each of our personality scales. We did
this for the Agreeableness score that we calculated using the mean score approach,
and although the 𝑡-test plot (Figure 15.11) showed that males were less agreeable than
females, this was not a significant difference (Mann-Whitney 𝑈 = 5768, 𝑝 = .075).

Figure 15.11: Comparing differences in Agreeableness factor-based scores between
males and females

15.1.4 Writing up an EFA

Hopefully, so far we have given you some sense of EFA and how to undertake EFA in
jamovi. So, once you have completed your EFA, how do you write it up? There is not a
formal standard way to write up an EFA, and examples tend to vary by discipline and
researcher. That said, there are some fairly standard pieces of information to include in
your write-up:

1. What are the theoretical underpinnings for the area you are studying, and specif-
ically for the constructs that you are interested in uncovering through EFA.

2. A description of the sample (e.g., demographic information, sample size, sam-
pling method).

3. A description of the type of data used (e.g., nominal, continuous) and descriptive
statistics.

4. Describe how you went about testing the assumptions for EFA. Details regarding
sphericity checks and measures of sampling adequacy should be reported.
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5. Explainwhat FA extractionmethod (e.g., ‘Minimum residuals’ or ‘Maximum like-
lihood’) was used.

6. Explain the criteria and process used for deciding how many factors were ex-
tracted in the final solution, and which items were selected. Clearly explain the
rationale for key decisions during the EFA process.

7. Explain what rotation methods were attempted, the reasons why, and the results.

8. Final factor loadings should be reported in the results, in a table. This table should
also report the uniqueness (or communality) for each variable (in the final col-
umn). Factor loadings should be reported with descriptive labels in addition to
item numbers. Correlations between the factors should also be included, either
at the bottom of this table, in a separate table.

9. Meaningful names for the extracted factors should be provided. You may like
to use previously selected factor names, but on examining the actual items and
factors you may think a different name is more appropriate.

15.2 Principal Component Analysis

In the previous section we saw that EFA works to identify underlying latent factors.
And, as we saw, in one scenario the smaller number of latent factors can be used in
further statistical analysis using some sort of combined factor scores.

In this way EFA is being used as a “data reduction” technique. Another type of data
reduction technique, sometimes seen as part of the EFA family, is Principal Component
Analysis (PCA) . However, PCA does not identify underlying latent factors. Instead it
creates a linear composite score from a larger set of measured variables.

PCA simply produces a mathematical transformation to the original data with no as-
sumptions about how the variables co-vary. The aim of PCA is to calculate a few linear
combinations (components) of the original variables that can be used to summarize the
observed data set without losing much information. However, if identification of un-
derlying structure is a goal of the analysis, then EFA is to be preferred. And, as we
saw, EFA produces factor scores that can be used for data reduction purposes just like
principal component scores (Fabrigar et al., 1999).

PCA has been popular in Psychology for a number of reasons, and therefore it’s worth
mentioning, although nowadays EFA is just as easy to do given the power of desktop
computers and can be less susceptible to bias than PCA, especially with a small number
of factors and variables. Much of the procedure is similar to EFA, so although there are
some conceptual differences, practically the steps are the same, and with large samples
and a sufficient number of factors and variables, the results from PCA and EFA should
be fairly similar.

To undertake PCA in jamovi, all you need to do is select ‘Factor’ – ‘Principal Component
Analysis’ from themain jamovi button bar to open the PCA analysis window. Then you
can follow the same steps from EFA in jamovi above.
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15.3 Confirmatory Factor Analysis

So, our attempt to identify underlying latent factors using EFA with carefully selected
questions from the personality item pool seemed to be pretty successful. The next step
in our quest to develop a useful measure of personality is to check the latent factors
we identified in the original EFA with a different sample. We want to see if the factors
hold up, if we can confirm their existence with different data. This is a more rigorous
check, as we will see. And it’s called Confirmatory Factor Analysis (CFA) as we will,
unsurprisingly, be seeking to confirm a pre-specified latent factor structure.187

In CFA, instead of doing an analysis where we see how the data goes together in an
exploratory sense, we instead impose a structure, like in Figure 15.12, on the data and
see how well the data fits our pre-specified structure. In this sense, we are undertak-
ing a confirmatory analysis, to see how well a pre-specified model is confirmed by the
observed data.

A straightforward Confirmatory Factor Analysis (CFA) of the personality items would
therefore specify five latent factors as shown in Figure 15.12, each measured by five
observed variables. Each variable is a measure of an underlying latent factor. For ex-
ample, A1 is predicted by the underlying latent factor Agreeableness. And because A1
is not a perfect measure of the Agreeableness factor, there is an error term, 𝑒, associated
with it. In other words, 𝑒 represents the variance in A1 that is not accounted for by the
Agreeableness factor. This is sometimes called measurement error.

The next step is to consider whether the latent factors should be allowed to correlate in
our model. As mentioned earlier, in the psychological and behavioural sciences con-
structs are often related to each other, and we also think that some of our personality
factors may be correlated with each other. So, in our model, we should allow these
latent factors to co-vary, as shown by the double-headed arrows in Figure 15.12.

At the same time, we should consider whether there is any good, systematic reason
for some of the error terms to be correlated with each other. One reason for this might
be that there is a shared methodological feature for particular sub-sets of the observed
variables such that the observed variables might be correlated for methodological
rather than substantive latent factor reasons. We’ll return to this possibility in a later
section but, for now, there are no clear reasons that we can see that would justify
correlating some of the error terms with each other.

Without any correlated error terms, the model we are testing to see how well it fits
with our observed data is just as specified in Figure 15.12. Only parameters that are
included in the model are expected to be found in the data, so in CFA all other possible
parameters (coefficients) are set to zero. So, if these other parameters are not zero (for
example there may be a substantial loading from A1 onto the latent factor Extraversion
in the observed data, but not in our model) then we may find a poor fit between our
model and the observed data.

Right, let’s take a look at how we set this CFA analysis up in jamovi.
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Figure 15.12: Initial pre-specification of latent factor structure for the five factor per-
sonality scales, for use in CFA
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15.3.1 CFA in jamovi

Open up the bfi_sample2.csv file, check that the 25 variables are coded as ordinal (or
continuous; it won’t make any difference for this analysis). To perform CFA in jamovi:

• Select ‘Factor - Confirmatory Factor Analysis’ from the main jamovi button bar to
open the CFA analysis window (Figure 15.13).

• Select the 5 A variables and transfer them into the ‘Factors’ box and give then the
label “Agreeableness”.

• Create a new Factor in the ‘Factors’ box and label it “Conscientiousness”. Select
the 5 C variables and transfer them into the ‘Factors’ box under the “Conscien-
tiousness” label.

• Create another new Factor in the ‘Factors’ box and label it “Extraversion”. Select
the 5 E variables and transfer them into the ‘Factors’ box under the “Extraversion”
label.

• Create another new Factor in the ‘Factors’ box and label it “Neuroticism”. Select
the 5 “N” variables and transfer them into the ‘Factors’ box under the “Neuroti-
cism” label.

• Create another new Factor in the ‘Factors’ box and label it “Openness”. Select the
5 O variables and transfer them into the ‘Factors’ box under the “Openness” label.

• Check other appropriate options, the defaults are ok for this initial work through,
though you might want to check the “Path diagram” option under ‘Plots’ to see
jamovi produce a (fairly) similar diagram to our Figure 15.12.

Oncewe have set up the analysiswe can turn our attention to the jamovi resultswindow
and see what’s what. The first thing to look at is model fit (Figure 15.14) as this tells us
howgood afit ourmodel is to the observeddata. NB in ourmodel only the pre-specified
covariances are estimated, including the factor correlations by default. Everything else
is set to zero.

There are several ways of assessing model fit. The first is a chi-square statistic that,
if small, indicates that the model is a good fit to the data. However, the chi-squared
statistic used for assessing model fit is pretty sensitive to sample size, meaning that
with a large sample a good enough fit between the model and the data almost always
produces a large and significant (𝑝 < .05) chi-square value.
So, we need some other ways of assessing model fit. In jamovi several are provided
by default. These are the Comparative Fit Index (CFI), the Tucker Lewis Index (TLI)
and the Root Mean Square Error of Approximation (RMSEA) together with the 90%
confidence interval for the RMSEA. Some useful rules of thumb are that a satisfactory
fit is indicated by CFI > 0.9, TLI > 0.9, and RMSEA of about 0.05 to 0.08. A good fit is
CFI > 0.95, TLI > 0.95, and RMSEA and upper CI for RMSEA < 0.05.
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Figure 15.13: The jamovi CFA analysis window
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Figure 15.14: The jamovi CFA Model Fit results for our CFA model

So, looking at Figure 15.14 we can see that the chi-square value is large and highly
significant. Our sample size is not too large, so this possibly indicates a poor fit. The
CFI is 0.762 and the TLI is 0.731, indicating poor fit between the model and the data.
The RMSEA is 0.085with a 90% confidence interval from 0.077 to 0.092, again this does
not indicate a good fit.

Pretty disappointing, huh? But perhaps not too surprising given that in the earlier
EFA, when we ran with a similar data set (see Exploratory Factor Analysis section),
only around half of the variance in the data was accounted for by the five factor model.

Let’s go on to look at the factor loadings and the factor covariance estimates, shown in
Figure 15.15 and Figure 15.16. The 𝑍-statistic and 𝑝-value for each of these parameters
indicates they make a reasonable contribution to the model (i.e. they are not zero) so
there doesn’t appear to be any reason to remove any of the specified variable-factor
paths, or factor-factor correlations from the model. Often the standardized estimates
are easier to interpret, and these can be specified under the ‘Estimates’ option. These
tables can usefully be incorporated into a written report or scientific article.

How could we improve the model? One option is to go back a few stages and think
again about the items / measures we are using and how they might be improved or
changed. Another option is to make some post hoc tweaks to the model to improve the
fit. One way of doing this is to use “modification indices” (Figure 15.17), specified as
an ‘Additional output’ option in jamovi.

What we are looking for is the highest modification index (MI) value. We would then
judge whether it makes sense to add that additional term into the model, using a post
hoc rationalisation. For example, we can see in Figure 15.17 that the largest MI for the
factor loadings that are not already in the model is a value of 28.786 for the loading
of N4 (“Often feel blue”) onto the latent factor Extraversion. This indicates that if we
add this path into the model then the chi-square value will reduce by around the same
amount.
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Figure 15.15: The jamovi CFA Factor Loadings table for our CFA model

But in our model adding this path arguably doesn’t really make any theoretical or
methodological sense, so it’s not a good idea (unless you can come up with a persua-
sive argument that “Often feel blue” measures both Neuroticism and Extraversion). I
can’t think of a good reason. But, for the sake of argument, let’s pretend it does make
some sense and add this path into the model. Go back to the CFA analysis window (see
Figure 15.13) and add N4 into the Extraversion factor. The results of the CFA will now
change (not shown); the chi-square has come down to around 709 (a drop of around
30, roughly similar to the size of the MI) and the other fit indices have also improved,
though only a bit. But it’s not enough: it’s still not a good fitting model.

If you do find yourself adding new parameters to a model using the MI values then
always re-check the MI tables after each new addition, as the MIs are refreshed each
time.
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Figure 15.16: The jamovi CFA Factor Covariances table for our CFA model

Figure 15.17: The jamovi CFA Factor Loadings Modification Indices
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There is also a Table of Residual Covariance Modification Indices produced by jamovi
(Figure 15.18). In other words, a table showing which correlated errors, if added to the
model, would improve the model fit the most. It’s a good idea to look across both MI
tables at the same time, spot the largest MI, think about whether the addition of the
suggested parameter can be reasonably justified and, if it can, add it to the model. And
then you can start again looking for the biggest MI in the re-calculated results.

Figure 15.18: Residual Covariance Modification Indices produced by jamovi
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You can keep going this way for as long as you like, adding parameters to the model
based on the largest MI, and eventually you will achieve a satisfactory fit. But there
will also be a strong possibility that in doing this you will have created a monster! A
model that is ugly and deformed and doesn’t have any theoretical sense or purity. In
other words, be very careful!

So far, we have checked out the factor structure obtained in the EFA using a second
sample and CFA. Unfortunately, we didn’t find that the factor structure from the EFA
was confirmed in the CFA, so it’s back to the drawing board as far as the development
of this personality scale goes.

Althoughwe could have tweaked theCFAusingmodification indexes, there reallywere
not any good reasons (that I could think of) for these suggested additional factor load-
ings or residual covariances to be included. However, sometimes there is a good reason
for residuals to be allowed to co-vary (or correlate), and a good example of this is shown
in the next section onMulti-Trait Multi-Method CFA. Before we do that, let’s cover how
to report the results of a CFA.

15.3.2 Reporting a CFA

There is not a formal standardway towrite up a CFA, and examples tend to vary by dis-
cipline and researcher. That said, there are some fairly standard pieces of information
to include in your write-up:

1. A theoretical and empirical justification for the hypothesized model.

2. A complete description of how the model was specified (e.g., the indicator vari-
ables for each latent factor, covariances between latent variables, and any corre-
lations between error terms). A path diagram, like the one in Figure 15.12 would
be good to include.

3. A description of the sample (e.g., demographic information, sample size, sam-
pling method).

4. A description of the type of data used (e.g.„ nominal, continuous) and descriptive
statistics.

5. Tests of assumptions and estimation method used.

6. A description of missing data and how the missing data were handled.

7. The software and version used to fit the model.

8. Measures, and the criteria used, to judge model fit.

9. Any alterations made to the original model based on model fit or modification
indices.

10. All parameter estimates (i.e., loadings, error variances, latent (co)variances) and
their standard errors, probably in a table.
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15.4 Multi-Trait Multi-Method CFA

In this section we’re going to consider how different measurement techniques or ques-
tions can be an important source of data variability, known as method variance. To do
this, we’ll use another psychological data set, one that contains data on “attributional
style”.

The Attributional Style Questionnaire (ASQ) was used (Hewitt et al., 2004) to collect
psychological wellbeing data from young people in the United Kingdom and New
Zealand. They measured attributional style for negative events, which is how people
habitually explain the cause of bad things that happen to them (Peterson & Seligman,
1984). The ASQ measures three aspects of attributional style:

• Internality is the extent to which a person believes that the cause of a bad event
is due to his/her own actions.

• Stability refers to the extent to which a person habitually believes the cause of a
bad event is stable across time.

• Globality refers to the extent to which a person habitually believes that the cause
of a bad event in one area will affect other areas of their lives.

There are six hypothetical scenarios and for each scenario respondents answer a ques-
tion aimed at (a) internality, (b) stability and (c) globality. So there are 6 × 3 = 18 items
overall. See Figure 15.19 for more details.

Figure 15.19: The Attributional Style Questionnaire (ASQ) for negative events
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Researchers are interested in checking their data to see whether there are some under-
lying latent factors that are measured reasonably well by the 18 observed variables in
the ASQ.

First, they try EFA with these 18 variables (not shown), but no matter how they extract
or rotate, they can’t find a good factor solution. Their attempt to identify underlying
latent factors in the Attributional Style Questionnaire (ASQ) proved fruitless. If you get
results like this then either your theory is wrong (there is no underlying latent factor
structure for attributional style, which is possible), the sample is not relevant (which
is unlikely given the size and characteristics of this sample of young adults from the
United Kingdom and New Zealand), or the analysis was not the right tool for the job.
We’re going to look at this third possibility.

Remember that therewere three dimensionsmeasured in the ASQ: Internality, Stability
and Globality, each measured by six questions as shown in Table 15.2.

What if, instead of doing an analysis where we see how the data goes together in an
exploratory sense, we instead impose a structure, like in Table 15.2, on the data and
see how well the data fits our pre-specified structure. In this sense, we are undertak-
ing a confirmatory analysis, to see how well a pre-specified model is confirmed by the
observed data.

A straightforward Confirmatory Factor Analysis (CFA) of the ASQ would therefore
specify three latent factors as shown in the columns of Figure 15.24, each measured
by six observed variables.

Table 15.2: Six questions on the ASQ for each of the Internality, Stability and Globality
dimensions

Internality Stability Globality
Q1a Q1b Q1c
Q2a Q2b Q2c
Q3a Q3b Q3c
Q4a Q4b Q4c
Q5a Q5b Q5c
Q6a Q6b Q6c

We could depict this as in the diagram in Figure 15.20, which shows that each vari-
able is a measure of an underlying latent factor. For example INT1 is predicted by the
underlying latent factor Internality. And because INT1 is not a perfect measure of the
Internality factor, there is an error term, 𝑒1, associated with it. In other words, 𝑒1 rep-
resents the variance in INT1 that is not accounted for by the Internality factor. This is
sometimes called “measurement error”.

The next step is to consider whether the latent factors should be allowed to correlate in
our model. As mentioned earlier, in the psychological and behavioural sciences con-
structs are often related to each other, and we also think that Internality, Stability, and
Globality might be correlated with each other, so in our model we should allow these
latent factors to co-vary, as shown in Figure 15.21.

402



Figure 15.20: Initial pre-specification of latent factor structure for the ASQ
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Figure 15.21: Final pre-specification of latent factor structure for the ASQ, including
latent factor correlations, and shared method error term correlations for the observed
variable INT1, STAB1 and GLOB1, in a CFA MTMM model. For clarity, other pre-
specified error term correlations are not shown
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At the same time, we should consider whether there is any good, systematic, reason
for some of the error terms to be correlated with each other. Thinking back to the ASQ
questions, there were three different sub-questions (a, b and c) for each main ques-
tion (1-6). Q1 was about unsuccessful job hunting and it is plausible that this question
has some distinctive artefactual or methodological aspects over and above the other
questions (2-5), something to do with job hunting perhaps. Similarly, Q2 was about
not helping a friend with a problem, and there may be some distinctive artefactual or
methodological aspects to do with not helping a friend that is not present in the other
questions (1, and 3-5).

So, as well as multiple factors, we also have multiple methodological features in the
ASQ,where each of Questions 1-6 has a slightly different “method”, but each “method”
is shared across the sub-questions a, b and c. In order to incorporate these different
methodological features into themodelwe can specify that certain error terms are corre-
latedwith each other. For example, the errors associatedwith INT1, STAB1 andGLOB1
should be correlated with each other to reflect the distinct and shared methodological
variance of Q1a, Q1b andQ1c. Looking at Table 1.2, this means that as well as the latent
factors represented by the columns, wewill have correlatedmeasurement errors for the
variables in each row of the Table.

Whilst a basic CFAmodel like the one shown in Figure 15.20 could be tested against our
observed data, we have in fact come up with a more sophisticated model, as shown in
the diagram in Figure 15.21. This more sophisticated CFA model is known as a Multi-
Trait Multi-Method (MTMM) model, and it is the one we will test in jamovi.

15.4.1 MTMM CFA in jamovi

Open up the ASQ.csv file and check that the 18 variables (six “Internality”, six “Stabil-
ity” and six “Globality” variables) are specified as continuous variables.

To perform MTMM CFA in jamovi:

• Select ‘Factor’ – ‘Confirmatory Factor Analysis’ from the main jamovi button bar
to open the CFA analysis window (Figure 15.22).

• Select the 6 INT variables and transfer them into the ‘Factors’ box and give them
the label “Internality”.

• Create a new Factor in the ‘Factors’ box and label it “Stability”. Select the 6 STAB
variables and transfer them into the ‘Factors’ box under the “Stability” label.

• Create another new Factor in the ‘Factors’ box and label it “Globality”. Select the
6 GLOB variables and transfer them into the ‘Factors’ box under the “Globality”
label.

• Open up the Residual Covariances options, and for each of our pre-specified cor-
relations move the associated variables across into the ‘Residual Covariances’ box
on the right. For example, highlight both INT1 and STAB1 and then click the ar-
row to move these across. Now do the same for INT1 and GLOB1, for STAB1 and
GLOB1, for INT2 and STAB2, for INT2 and GLOB2, for STAB2 and GLOB2, for
INT3 and STAB3, and so on.
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• Check other appropriate options. The defaults are ok for this initial work through,
though you might want to check the “Path diagram” option under ‘Plots’ to see
jamovi produce a (fairly) similar diagram to our Figure 15.21, and including all
the error term correlations that we have added above.

Figure 15.22: The jamovi CFA analysis window

Figure 15.23: The jamovi CFA Model Fit results for our CFA MTMMmodel
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Oncewe have set up the analysiswe can turn our attention to the jamovi resultswindow
and see what’s what. The first thing to look at is “Model fit” as this tells us how good
a fit our model is to the observed data (Figure 15.23). NB in our model only the pre-
specified covariances are estimated, everything else is set to zero, so model fit is testing
both whether the pre-specified “free” parameters are not zero, and conversely whether
the other relationships in the data – the ones we have not specified in the model – can
be held at zero.

Looking at Figure 15.23 we can see that the chi-square value is highly significant, which
is not a surprise given the large sample size (N = 2748). The CFI is 0.98 and the TLI is
also 0.98, indicating a very good fit. The RMSEA is 0.02 with a 90% confidence interval
from 0.02 to 0.02 – pretty tight!

Overall, I think we can be satisfied that our pre-specified model is a very good fit to the
observed data, lending support to our MTMMmodel for the ASQ.

We can now go on to look at the factor loadings and the factor covariance estimates,
as in Figure 15.24. Often the standardized estimates are easier to interpret, and these
can be specified under the ‘Estimates’ option. These tables can usefully be incorporated
into a written report or scientific article.

You can see from Figure 15.24 that all of our pre-specified factor loadings and factor
covariances are significantly different from zero. In other words, they all seem to be
making a useful contribution to the model.

We’ve been pretty lucky with this analysis, getting a very good fit on our first attempt!

15.5 Internal consistency reliability analysis

After you have been through the process of initial scale development using EFA and
CFA, you should have reached a stage where the scale holds up pretty well using CFA
with different samples. One thing that you might also be interested in at this stage
is to see how well the factors are measured using a scale that combines the observed
variables.

In psychometrics we use reliability analysis to provide information about how consis-
tently a scale measures a psychological construct (See earlier section on Section 2.3).
Internal consistency is what we are concerned with here, and that refers to the con-
sistency across all the individual items that make up a measurement scale. So, if we
have 𝑉 1, 𝑉 2, 𝑉 3, 𝑉 4 and 𝑉 5 as observed item variables, then we can calculate a statis-
tic that tells us how internally consistent these items are in measuring the underlying
construct.

A popular statistic used to check the internal consistency of a scale isCronbach’s alpha
(Chronbach, 1951). Cronbach’s alpha is a measure of equivalence (whether different
sets of scale items would give the same measurement outcomes). Equivalence is tested
by dividing the scale items into two groups (a “split-half”) and seeing whether analysis
of the two parts gives comparable results. Of course, there are manyways a set of items
could be split, but if all possible splits are made then it is possible to produce a statistic
that reflects the overall pattern of split-half coefficients. Cronbach’s alpha (𝛼) is such
a statistic: a function of all the split-half coefficients for a scale. If a set of items that
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Figure 15.24: The jamovi CFA Factor Loadings and Covariances tables for our CFA
MTMMmodel

measure a construct (e.g., an Extraversion scale) has an 𝛼 of 0.80, then the proportion
of error variance in the scale is 0.20. In other words, a scale with an 𝛼 of 0.80 includes
approximately 20% error.

BUT, and that’s a BIG “BUT”, Cronbach’s alpha is not a measure of unidimensional-
ity (i.e. an indicator that a scale is measuring a single factor or construct rather than
multiple related constructs). Scales that are multidimensional will cause alpha to be
under-estimated if not assessed separately for each dimension, but high values for al-
pha are not necessarily indicators of unidimensionality. So, an 𝛼 of 0.80 does not mean
that 80% of a single underlying construct is accounted for. It could be that the 80%
comes from more than one underlying construct. That’s why EFA and CFA are useful
to do first.

Further, another feature of𝛼 is that it tends to be sample specific: it is not a characteristic

408



of the scale, but rather a characteristic of the sample inwhich the scale has been used. A
biased, unrepresentative, or small sample could produce a very different 𝛼 coefficient
than a large, representative sample. 𝛼 can even vary from large sample to large sample.
Nevertheless, despite these limitations, Cronbach’s 𝛼 has been popular in Psychology
for estimating internal consistency reliability. It’s pretty easy to calculate, understand
and interpret, and therefore it can be a useful initial check on scale performance when
you administer a scale with a different sample, from a different setting or population,
for example.

An alternative is McDonald’s omega (𝜔), and jamovi also provides this statistic.
Whereas 𝛼 makes the following assumptions: (a) no residual correlations, (b) items
have identical loadings, and (c) the scale is unidimensional, 𝜔 does not and is therefore
a more robust reliability statistic. If these assumptions are not violated then 𝛼 and 𝜔
will be similar, but if they are then 𝜔 is to be preferred.

Sometimes a threshold for 𝛼 or 𝜔 is provided, suggesting a “good enough” value. This
might be something like 𝛼s of 0.70 or 0.80 representing “acceptable” and “good” reli-
ability, respectively. However, this does depend on what exactly the scale is supposed
to be measuring, so thresholds like this should be used cautiously. It could be better to
simply state that an 𝛼 or 𝜔 of 0.70 is associated with 30% error variance in a scale, and
an 𝛼 or 𝜔 of 0.80 is associated with 20%.
Can 𝛼 be too high? Probably: if you are getting an 𝛼 coefficient above 0.95 then this
indicates high inter-correlations between the items and that there might be too much
overly redundant specificity in the measurement, with a risk that the construct being
measured is perhaps overly narrow.

15.5.1 Reliability analysis in jamovi

We have a third sample of personality data to use to undertake reliability analysis: in
the bfi_sample3.csv file. Once again, check that the 25 personality item variables are
coded as continuous. To perform reliability analysis in jamovi:

• Select ‘Factor’ – ‘Reliability Analysis’ from themain jamovi button bar to open the
reliability analysis window (Figure 15.25).

• Select the 5 A variables and transfer them into the ‘Items’ box.

• Under the “Reverse Scaled Items” option, select variableA1 in the “Normal Scaled
Items” box and move it across to the “Reverse Scaled Items” box.

• Check other appropriate options, as in Figure 15.25.

Once done, look across at the jamovi results window. You should see something like
Figure 15.26. This tells us that the Cronbach’s𝛼 coefficient for theAgreeableness scale is
0.72. This means that just under 30% of the Agreeableness scale score is error variance.
McDonald’s 𝜔 is also given, and this is 0.74, not much different from 𝛼.
We can also check how 𝛼 or 𝜔 can be improved if a specific item is dropped from the
scale. For example, 𝛼 would increase to 0.74 and 𝜔 to 0.75 if we dropped item A1. This
isn’t a big increase, so probably not worth doing.
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Figure 15.25: The jamovi ‘Reliability Analysis’ window

The process of calculating and checking scale statistics (𝛼 and 𝜔) is the same for all the
other scales, and they all had similar reliability estimates apart from Openness. For
Openness, the amount of error variance in the Scale score is around 40%, which is high
and indicates that Openness is substantially less consistent as a reliable measure of a
personality attribute than the other personality scales.
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Figure 15.26: The jamovi Reliability Analysis results for the Agreeableness factor

15.6 Summary

In this chapter on Factor Analysis and related techniques we have introduced and
demonstrated statistical analyses that assess the pattern of relationships in a data set.
Specifically, we have covered:

• Exploratory Factor Analysis (EFA). EFA is a statistical technique for identifying
underlying latent factors in a data set. Each observed variable is conceptualised
as representing the latent factor to some extent, indicated by a factor loading.
Researchers also use EFA as a way of data reduction, i.e. identifying observed
variables than can be combined into new factor variables for subsequent analysis.

• Principal Component Analysis (PCA) is a data reduction techniquewhich, strictly
speaking, does not identify underlying latent factors. Instead, PCA simply pro-
duces a linear combination of observed variables.

• Confirmatory Factor Analysis (CFA). Unlike EFA, with CFA you start with an idea
– a model – of how the variables in your data are related to each other. You then
test your model against the observed data and assess how good a fit the model is
to the data.

• In Multi-Trait Multi-Method CFA (MTMM CFA), both latent factor and method
variance are included in the model in an approach that is useful when there are
different methodological approaches used and therefore method variance is an
important consideration.

• Internal consistency reliability analysis. This form of reliability analysis tests how
consistently a scale measures a measurement (psychological) construct.
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Part VI

Endings, alternatives and
prospects
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Chapter 16

Bayesian statistics

In our reasonings concerning matter of fact, there are all imaginable degrees of as-
surance, from the highest certainty to the lowest species of moral evidence. A wise
man, therefore, proportions his belief to the evidence.
– David Hume188

The ideas I’ve presented to you in this book describe inferential statistics from the fre-
quentist perspective. I’m not alone in doing this. In fact, almost every textbook given
to undergraduate psychology students presents the opinions of the frequentist statisti-
cian as the theory of inferential statistics, the one true way to do things. I have taught
this way for practical reasons. The frequentist view of statistics dominated the aca-
demic field of statistics for most of the 20th century, and this dominance is even more
extreme among applied scientists. It was and is current practice among psychologists
to use frequentist methods. Because frequentist methods are ubiquitous in scientific
papers, every student of statistics needs to understand those methods, otherwise they
will be unable to make sense of what those papers are saying! Unfortunately, in my
opinion at least, the current practice in psychology is often misguided, and the reliance
on frequentist methods is partly to blame. In this chapter I explain why I think this
and provide an introduction to Bayesian statistics, an approach that I think is generally
superior to the orthodox approach.

This chapter comes in two parts. In the first three sections I talk about what Bayesian
statistics are all about, covering the basic mathematical rules for how it works as well
as an explanation for why I think the Bayesian approach is so useful. Afterwards, I
provide a brief overview of how you can do Bayesian 𝑡-tests.

16.1 Probabilistic reasoning by rational agents

From a Bayesian perspective statistical inference is all about belief revision. I start out
with a set of candidate hypotheses, ℎ, about the world. I don’t know which of these
hypotheses is true, but do I have some beliefs about which hypotheses are plausible
and which are not. When I observe the data, 𝑑, I have to revise those beliefs. If the data
are consistentwith a hypothesis, my belief in that hypothesis is strengthened. If the data
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are inconsistent with the hypothesis, my belief in that hypothesis is weakened. That’s
it! At the end of this section I’ll give a precise description of how Bayesian reasoning
works, but first I want to work through a simple example in order to introduce the key
ideas. Consider the following reasoning problem:

I’m carrying an umbrella. Do you think it will rain?

In this problem I have presented you with a single piece of data (𝑑 = I’m carrying the
umbrella), and I’m asking you to tell me your belief or hypothesis about whether it’s
raining. You have two alternatives, ℎ: either it will rain today or it will not. How should
you solve this problem?

16.1.1 Priors: what you believed before

The first thing you need to do is ignore what I told you about the umbrella, and write
down your pre-existing beliefs about rain. This is important. If you want to be honest
about how your beliefs have been revised in the light of new evidence (data) then you
must say something about what you believed before those data appeared! So, what
might you believe about whether it will rain today? You probably know that I live in
Australia and that much of Australia is hot and dry. The city of Adelaide where I live
has a Mediterranean climate, very similar to southern California, southern Europe or
northern Africa. I’m writing this in January and so you can assume it’s the middle
of summer. In fact, you might have decided to take a quick look on Wikipedia189 and
discovered thatAdelaide gets an average of 4.4 days of rain across the 31 days of January.
Without knowing anything else, you might conclude that the probability of January
rain in Adelaide is about 15%, and the probability of a dry day is 85% (see Table 16.1).
If this is really what you believe about Adelaide rainfall (and now that I’ve told it to you
I’m betting that this really is what you believe) then what I have written here is your
prior distribution, written 𝑃(ℎ).

Table 16.1: How likely is it to rain inAdelaide – pre-existing beliefs based on knowledge
of average January rainfall

Hypothesis Degree of Belief
Rainy day 0.15
Dry day 0.85

16.1.2 Likelihoods: theories about the data

To solve the reasoning problem you need a theory about my behaviour. When does
Danielle carry an umbrella? You might guess that I’m not a complete idiot,190 and I try
to carry umbrellas only on rainy days. On the other hand, you also know that I have
young kids, and you wouldn’t be all that surprised to know that I’m pretty forgetful
about this sort of thing. Let’s suppose that on rainy days I remember my umbrella
about 30% of the time (I really am awful at this). But let’s say that on dry days I’m only
about 5% likely to be carrying an umbrella. So youmight write this out as in Table 16.2.
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Table 16.2: How likely am I to be carrying an umbrella on rainy and dry days

Data Data
Hypothesis Umbrella No umbrella
Rainy day 0.30 0.70
Dry day 0.05 0.95

It’s important to remember that each cell in this table describes your beliefs about what
data 𝑑 will be observed, given the truth of a particular hypothesis ℎ. This “conditional
probability” is written 𝑃(𝑑|ℎ), which you can read as “the probability of 𝑑 given ℎ”. In
Bayesian statistics, this is referred to as the likelihood of the data 𝑑 given the hypothesis
ℎ.191

16.1.3 The joint probability of data and hypothesis

At this point all the elements are in place. Having written down the priors and the like-
lihood, you have all the information you need to do Bayesian reasoning. The question
now becomes how do we use this information? As it turns out, there’s a very simple
equation that we can use here, but it’s important that you understand why we use it, so
I’m going to try to build it up from more basic ideas.

Let’s start outwith one of the rules of probability theory. I listed it way back in Table 7.1,
but I didn’t make a big deal out of it at the time, and you probably ignored it. The rule
in question is the one that talks about the probability that two things are true. In our
example, youmight want to calculate the probability that today is rainy (i.e., hypothesis
ℎ is true) and I’m carrying an umbrella (i.e., data 𝑑 is observed). The joint probability
of the hypothesis and the data iswritten𝑃(𝑑, ℎ), and you can calculate it bymultiplying
the prior 𝑃(ℎ) by the likelihood 𝑃(𝑑|ℎ). Mathematically, we say that:

𝑃(𝑑, ℎ) = 𝑃 (𝑑|ℎ)𝑃 (ℎ)

So, what is the probability that today is a rainy day and I remember to carry an umbrella?
As we discussed earlier, the prior tells us that the probability of a rainy day is 15%,
and the likelihood tells us that the probability of me remembering my umbrella on a
rainy day is 30%. So the probability that both of these things are true is calculated by
multiplying the two:

𝑃(𝑟𝑎𝑖𝑛𝑦, 𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎) = 𝑃(𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑟𝑎𝑖𝑛𝑦) × 𝑃(𝑟𝑎𝑖𝑛𝑦)
= 0.30 × 0.15
= 0.045

In other words, before being told anything about what actually happened, you think
that there is a 4.5%probability that todaywill be a rainy day and that Iwill remember an
umbrella. However, there are of course four possible things that could happen, right?
So let’s repeat the exercise for all four. If we do that, we end up with Table 16.3.

This table captures all the information about which of the four possibilities are likely.
To really get the full picture, though, it helps to add the row totals and column totals.
That gives us Table 16.4.
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Table 16.3: Four possibilities combining rain (or not) and umbrella carrying (or not)

Umbrella No-umbrella
Rainy 0.045 0.105
Dry 0.0425 0.807

Table 16.4: Four possibilities combining rain (or not) and umbrella carrying (or not),
with row and column totals

Umbrella No-umbrella Total
Rainy 0.045 0.105 0.15
Dry 0.0425 0.807 0.85
Total 0.0875 0.912 1

This is a very useful table, so it’s worth taking a moment to think about what all these
numbers are telling us. First, notice that the row sums aren’t telling us anything new at
all. For example, the first row tells us that if we ignore all this umbrella business, the
chance that today will be a rainy day is 15%. That’s not surprising, of course, as that’s
our prior.192 The important thing isn’t the number itself. Rather, the important thing is
that it gives us some confidence that our calculations are sensible! Now take a look at
the column sums and notice that they tell us something that we haven’t explicitly stated
yet. In the same way that the row sums tell us the probability of rain, the column sums
tell us the probability of me carrying an umbrella. Specifically, the first column tells
us that on average (i.e., ignoring whether it’s a rainy day or not) the probability of me
carrying an umbrella is 8.75%. Finally, notice thatwhenwe sumacross all four logically-
possible events, everything adds up to 1. In other words, what we have written down
is a proper probability distribution defined over all possible combinations of data and
hypothesis.

Now, because this table is so useful, I want to make sure you understand what all the
elements correspond to and how they written (Table 16.5).

Table 16.5: Four possibilities combining rain (or not) and umbrella carrying (or not),
expressed as conditional probabilities

Umbrella No-umbrella

Rainy
P(Umbrella,
Rainy)

P(No-
umbrella,
Rainy) P(Rainy)

Dry
P(Umbrella,

Dry)

P(No-
umbrella,
Dry) P(Dry)

P(Umbrella)
P(No-

umbrella)

Finally, let’s use “proper” statistical notation. In the rainy day problem, the data corre-
sponds to the observation that I do or do not have an umbrella. So we’ll let 𝑑1 refer to
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the possibility that you observe me carrying an umbrella, and 𝑑2 refers to you observ-
ing me not carrying one. Similarly, ℎ1 is your hypothesis that today is rainy, and ℎ2 is
the hypothesis that it is not. Using this notation, the table looks like Table 16.6.

Table 16.6: Four possibilities combining rain (or not) and umbrella carrying (or not),
expressed in hypothetical terms as conditional probabilities

𝑑1 𝑑2
ℎ1 𝑃(ℎ1, 𝑑1) 𝑃 (ℎ1, 𝑑2) 𝑃 (ℎ1)
ℎ2 𝑃(ℎ2, 𝑑1) 𝑃 (ℎ2, 𝑑2) 𝑃 (ℎ2)

𝑃 (𝑑1) 𝑃 (𝑑2)

16.1.4 Updating beliefs using Bayes’ rule

The table we laid out in the last section is a very powerful tool for solving the rainy
day problem, because it considers all four logical possibilities and states exactly how
confident you are in each of them before being given any data. It’s now time to con-
sider what happens to our beliefs when we are actually given the data. In the rainy
day problem, you are told that I really am carrying an umbrella. This is something of
a surprising event. According to our table, the probability of me carrying an umbrella
is only 8.75%. But that makes sense, right? A woman carrying an umbrella on a sum-
mer day in a hot dry city is pretty unusual, and so you really weren’t expecting that.
Nevertheless, the data tells you that it is true. No matter how unlikely you thought it
was, youmust now adjust your beliefs to accommodate the fact that you now know that
I have an umbrella.193 To reflect this new knowledge, our revised table must have the
following numbers. (see Table 16.7).

Table 16.7: Revising beliefs given new data about umbrella carrying

Umbrella No-umbrella
Rainy 0
Dry 0
Total 1 0

In other words, the facts have eliminated any possibility of “no umbrella”, so we have
to put zeros into any cell in the table that implies that I’m not carrying an umbrella.
Also, you know for a fact that I am carrying an umbrella, so the column sum on the left
must be 1 to correctly describe the fact that 𝑃 (𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎) = 1.
What two numbers should we put in the empty cells? Again, let’s not worry about
the maths, and instead think about our intuitions. When we wrote out our table the
first time, it turned out that those two cells had almost identical numbers, right? We
worked out that the joint probability of “rain and umbrella” was 4.5%, and the joint
probability of “dry and umbrella” was 4.25%. In other words, before I told you that
I am in fact carrying an umbrella, you’d have said that these two events were almost
identical in probability, yes? But notice that both of these possibilities are consistent
with the fact that I actually am carrying an umbrella. From the perspective of these
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two possibilities, very little has changed. I hope you’d agree that it’s still true that these
twopossibilities are equally plausible. Sowhatwe expect to see in our final table is some
numbers that preserve the fact that “rain and umbrella” is slightly more plausible than
“dry and umbrella”, while still ensuring that numbers in the table add up. Something
like Table 16.8, perhaps?

Table 16.8: Revising probabilities given new data about umbrella carrying

Umbrella No-umbrella
Rainy 0.514 0
Dry 0.486 0
Total 1 0

What this table is telling you is that, after being told that I’m carrying an umbrella, you
believe that there’s a 51.4% chance that todaywill be a rainy day, and a 48.6% chance that
it won’t. That’s the answer to our problem! The posterior probability of rain 𝑃(ℎ‖𝑑)
given that I am carrying an umbrella is 51.4%.

How did I calculate these numbers? You can probably guess. To work out that there
was a 0.514 probability of “rain”, all I did was take the 0.045 probability of “rain and
umbrella” and divide it by the 0.0875 chance of “umbrella”. This produces a table that
satisfies our need to have everything sum to 1, and our need not to interfere with the
relative plausibility of the two events that are actually consistent with the data. To say
the same thing using fancy statistical jargon, what I’ve done here is divide the joint
probability of the hypothesis and the data 𝑃(𝑑, ℎ) by the marginal probability of the
data 𝑃(𝑑), and this is what gives us the posterior probability of the hypothesis given
the data that have been observed. To write this as an equation:194

However, remember what I said at the start of the last section, namely that the joint
probability, 𝑃(𝑑, ℎ), is calculated by multiplying the prior, 𝑃(ℎ), by the likelihood,
𝑃(𝑑|ℎ). In real life, the things we actually know how to write down are the priors and
the likelihood, so let’s substitute those back into the equation. This gives us the follow-
ing formula for the posterior probability:

𝑃(ℎ|𝑑) = 𝑃(𝑑|ℎ)𝑃 (ℎ)
𝑃(𝑑)

And this formula, folks, is known as Bayes’ rule. It describes how a learner starts out
with prior beliefs about the plausibility of different hypotheses, and tells you how those
beliefs should be revised in the face of data. In the Bayesian paradigm, all statistical
inference flows from this one simple rule.

16.2 Bayesian hypothesis tests

In Chapter 9 I described the orthodox approach to hypothesis testing. It took an en-
tire chapter to describe, because null hypothesis testing is a very elaborate contraption
that people find very hard to make sense of. In contrast, the Bayesian approach to hy-
pothesis testing is incredibly simple. Let’s pick a setting that is closely analogous to the
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orthodox scenario. There are two hypotheses that we want to compare, a null hypoth-
esis, ℎ0, and an alternative hypothesis, ℎ1. Prior to running the experiment we have
some beliefs, 𝑃(ℎ), about which hypotheses are true. We run an experiment and ob-
tain data, 𝑑. Unlike frequentist statistics, Bayesian statistics does allow us to talk about
the probability that the null hypothesis is true. Better yet, it allows us to calculate the
posterior probability of the null hypothesis, using Bayes’ rule:

𝑃(ℎ0|𝑑) = 𝑃(𝑑|ℎ0)𝑃 (ℎ0)
𝑃 (𝑑)

This formula tells us exactly how much belief we should have in the null hypothesis
after having observed the data, 𝑑. Similarly, we can work out how much belief to place
in the alternative hypothesis using essentially the same equation. All we do is change
the subscript:

𝑃(ℎ1|𝑑) = 𝑃 (𝑑|ℎ1)𝑃 (ℎ1)
𝑃 (𝑑)

It’s all so simple that I feel like an idiot even bothering to write these equations down,
since all I’m doing is copying Bayes’ rule from the previous section.195

16.2.1 The Bayes factor

In practice, most Bayesian data analysts tend not to talk in terms of the raw posterior
probabilities 𝑃(ℎ0|𝑑) and 𝑃(ℎ1|𝑑). Instead, we tend to talk in terms of the posterior
odds ratio. Think of it like betting. Suppose, for instance, the posterior probability of
the null hypothesis is 25%, and the posterior probability of the alternative is 75%. The
alternative hypothesis is three times as probable as the null, so we say that the odds
are 3:1 in favour of the alternative. Mathematically, all we have to do to calculate the
posterior odds is divide one posterior probability by the other:

𝑃(ℎ1|𝑑)
𝑃 (ℎ0|𝑑) = 0.75

0.25 = 3

Or, to write the same thing in terms of the equations above:

𝑃(ℎ1|𝑑)
𝑃 (ℎ0|𝑑) = 𝑃 (𝑑|ℎ1)

𝑃 (𝑑|ℎ0) × 𝑃(ℎ1)
𝑃 (ℎ0)

Actually, this equation is worth expanding on. There are three different terms here that
you should know. On the left-hand side, we have the posterior odds, which tells you
what you believe about the relative plausibilty of the null hypothesis and the alternative
hypothesis after seeing the data. On the right-hand side, we have the prior odds, which
indicates what you thought before seeing the data. In the middle, we have the Bayes
factor, which describes the amount of evidence provided by the data (Table 16.9).

The Bayes factor (sometimes abbreviated as BF) has a special place in Bayesian hypothe-
sis testing, because it serves a similar role to the 𝑝-value in orthodox hypothesis testing.
The Bayes factor quantifies the strength of evidence provided by the data, and as such it
is the Bayes factor that people tend to report when running a Bayesian hypothesis test.
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Table 16.9: Posterior odds given the Bsyes factor and prior odds

𝑃(ℎ1|𝑑)
ℎ0|𝑑 = 𝑃(𝑑|ℎ1)

𝑑|ℎ0
× 𝑃(ℎ1)

ℎ0

⇑ ⇑ ⇑
Posterior
odds

Bayes
factor Prior odds

The reason for reporting Bayes factors rather than posterior odds is that different re-
searchers will have different priors. Some people might have a strong bias to believe
the null hypothesis is true, others might have a strong bias to believe it is false. Because
of this, the polite thing for an applied researcher to do is report the Bayes factor. That
way, anyone reading the paper can multiply the Bayes factor by their own personal
prior odds, and they can work out for themselves what the posterior odds would be.
In any case, by convention we like to pretend that we give equal consideration to both
the null hypothesis and the alternative, in which case the prior odds equals 1, and the
posterior odds becomes the same as the Bayes factor.

16.2.2 Interpreting Bayes factors

One of the really nice things about the Bayes factor is the numbers are inherently mean-
ingful. If you run an experiment and you compute a Bayes factor of 4, it means that the
evidence provided by your data corresponds to betting odds of 4:1 in favour of the alter-
native. However, there have been some attempts to quantify the standards of evidence
that would be considered meaningful in a scientific context. The twomost widely used
are from Jeffreys (1961) and Kass & Raftery (1995). Of the two, I tend to prefer the Kass
& Raftery (1995) table because it’s a bit more conservative. So here it is (Table 16.10).

Table 16.10: Bayes factors and strength of evidence

Bayes factor Interpretation
1 - 3 Negligible evidence
3-20 Positive evidence
20-150 Strong evidence
> 150 Very strong evidence

And to be perfectly honest, I think that even the Kass & Raftery (1995) standards are
being a bit charitable. If it were up to me, I’d have called the “positive evidence” cate-
gory “weak evidence”. To me, anything in the range 3:1 to 20:1 is “weak” or “modest”
evidence at best. But there are no hard and fast rules here. What counts as strong or
weak evidence depends entirely on how conservative you are and upon the standards
that your community insists upon before it is willing to label a finding as “true”.

In any case, note that all the numbers listed above make sense if the Bayes factor is
greater than 1 (i.e., the evidence favours the alternative hypothesis). However, one big
practical advantage of the Bayesian approach relative to the orthodox approach is that
it also allows you to quantify evidence for the null. When that happens, the Bayes factor
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will be less than 1. You can choose to report a Bayes factor less than 1, but to be honest
I find it confusing. For example, suppose that the likelihood of the data under the null
hypothesis 𝑃(𝑑|ℎ0) is equal to 0.2, and the corresponding likelihood 𝑃(𝑑|ℎ1) under the
alternative hypothesis is 0.1. Using the equations given above, Bayes factor here would
be:

𝐵𝐹 = 𝑃(𝑑|ℎ1)
𝑃 (𝑑|ℎ0) = 0.1

0.2 = 0.5

Read literally, this result tells is that the evidence in favour of the alternative is 0.5 to 1.
I find this hard to understand. To me, it makes a lot more sense to turn the equation
“upside down”, and report the amount op evidence in favour of the null. In other
words, what we calculate is this:

𝐵𝐹 ′ = 𝑃(𝑑|ℎ0)
𝑃 (𝑑|ℎ1) = 0.2

0.1 = 2

And what we would report is a Bayes factor of 2:1 in favour of the null. Much easier to
understand, and you can interpret this using the table above.

16.3 Why be a Bayesian?

Up to this point I’ve focused exclusively on the logic underpinning Bayesian statistics.
We’ve talked about the idea of “probability as a degree of belief”, and what it implies
about how a rational agent should reason about the world. The question that you have
to answer for yourself is this: how do you want to do your statistics? Do you want
to be an orthodox statistician, relying on sampling distributions and 𝑝-values to guide
your decisions? Or do you want to be a Bayesian, relying on things like prior beliefs,
Bayes factors and the rules for rational belief revision? And to be perfectly honest, I
can’t answer this question for you. Ultimately it depends on what you think is right.
It’s your call and your call alone. That being said, I can talk a little about why I prefer
the Bayesian approach.

16.3.1 Statistics that mean what you think they mean

You keep using that word. I do not think it means what you think it means
– Inigo Montoya, The Princess Bride196

To me, one of the biggest advantages to the Bayesian approach is that it answers the
right questions. Within the Bayesian framework, it is perfectly sensible and allowable
to refer to “the probability that a hypothesis is true”. You can even try to calculate this
probability. Ultimately, isn’t that what you want your statistical tests to tell you? To
an actual human being, this would seem to be the whole point of doing statistics, i.e.,
to determine what is true and what isn’t. Any time that you aren’t exactly sure about
what the truth is, you should use the language of probability theory to say things like
“there is an 80% chance that Theory A is true, but a 20% chance that Theory B is true
instead”.

This seems so obvious to a human, yet it is explicitly forbidden within the orthodox
framework. To a frequentist, such statements are a nonsense because “the theory is
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true” is not a repeatable event. A theory is true or it is not, and no probabilistic state-
ments are allowed, no matter how much you might want to make them. There’s a rea-
son why, back in Section 9.5, I repeatedly warned you not to interpret the 𝑝-value as the
probability that the null hypothesis is true. There’s a reasonwhy almost every textbook
on statistics is forced to repeat that warning. It’s because people desperately want that
to be the correct interpretation. Frequentist dogma notwithstanding, a lifetime of expe-
rience of teaching undergraduates and of doing data analysis on a daily basis suggests
to me that most actual humans think that “the probability that the hypothesis is true”
is not only meaningful, it’s the thing we care most about. It’s such an appealing idea
that even trained statisticians fall prey to themistake of trying to interpret a 𝑝-value this
way. For example, here is a quote from an official Newspoll report in 2013, explaining
how to interpret their (frequentist) data analysis:197

Throughout the report, where relevant, statistically significant changes have been
noted. All significance tests have been based on the 95 percent level of confidence.
This means that if a change is noted as being statistically significant, there
is a 95 percent probability that a real change has occurred, and is not simply
due to chance variation. (emphasis added)

Nope! That’s not what p < .05 means. That’s not what 95% confidence means to a fre-
quentist statistician. The bolded section is just plain wrong. Orthodox methods cannot
tell you that “there is a 95% chance that a real change has occurred”, because this is not
the kind of event to which frequentist probabilities may be assigned. To an ideologi-
cal frequentist, this sentence should be meaningless. Even if you’re a more pragmatic
frequentist, it’s still the wrong definition of a 𝑝-value. It is simply not an allowed or
correct thing to say if you want to rely on orthodox statistical tools.

On the other hand, let’s suppose you are a Bayesian. Although the bolded passage is
the wrong definition of a 𝑝-value, it’s pretty much exactly what a Bayesianmeans when
they say that the posterior probability of the alternative hypothesis is greater than 95%.
And here’s the thing. If the Bayesian posterior is actually the thing you want to report,
why are you even trying to use orthodoxmethods? If youwant tomakeBayesian claims,
all you have to do is be a Bayesian and use Bayesian tools.

Speaking for myself, I found this to be the most liberating thing about switching to the
Bayesian view. Once you’ve made the jump, you no longer have to wrap your head
around counter-intuitive definitions of 𝑝-values. You don’t have to bother remember-
ing why you can’t say that you’re 95% confident that the true mean lies within some
interval. All you have to do is be honest about what you believed before you ran the
study and then report what you learned from doing it. Sounds nice, doesn’t it? To me,
this is the big promise of the Bayesian approach. You do the analysis you really want
to do, and express what you really believe the data are telling you.

16.3.2 Evidentiary standards you can believe

If 𝑝 is below .02 it is strongly indicated that the 𝑛𝑢𝑙𝑙 hypothesis fails to account for
the whole of the facts. We shall not often be astray if we draw a conventional line at
.05 and consider that smaller values of 𝑝 indicate a real discrepancy.
– Sir Ronald Fisher (Fisher, 1925, p. 79)
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Consider the quote above by Sir Ronald Fisher, one of the founders of what has be-
come the orthodox approach to statistics. If anyone has ever been entitled to express an
opinion about the intended function of 𝑝-values, it’s Fisher. In this passage, taken from
his classic guide, Statistical Methods for Research Workers, he’s pretty clear about what it
means to reject a null hypothesis at 𝑝 < .05. In his opinion, if we take 𝑝 < .05 to mean
there is “a real effect”, then “we shall not often be astray”. This view is hardly unusual.
In my experience, most practitioners express views very similar to Fisher’s. In essence,
the 𝑝 < .05 convention is assumed to represent a fairly stringent evidential standard.
Well, how true is that? One way to approach this question is to try to convert 𝑝-values
to Bayes factors, and see how the two compare. It’s not an easy thing to do because
a 𝑝-value is a fundamentally different kind of calculation to a Bayes factor, and they
don’t measure the same thing. However, there have been some attempts to work out
the relationship between the two, and it’s somewhat surprising. For example, Johnson
(2013) presents a pretty compelling case that (for 𝑡-tests at least) the 𝑝 < .05 threshold
corresponds roughly to a Bayes factor of somewhere between 3:1 and 5:1 in favour of
the alternative. If that’s right, then Fisher’s claim is a bit of a stretch. Let’s suppose that
the null hypothesis is true about half the time (i.e., the prior probability of 𝐻0 is 0.5),
and we use those numbers to work out the posterior probability of the null hypothesis
given that it has been rejected at 𝑝 < .05. Using the data from Johnson (2013), we
see that if you reject the null at 𝑝 < .05, you’ll be correct about 80% of the time. I don’t
know about you but, inmy opinion, an evidential standard that ensures you’ll bewrong
on 20% of your decisions isn’t good enough. The fact remains that, quite contrary to
Fisher’s claim, if you reject at 𝑝 < .05 you shall quite often go astray. It’s not a very
stringent evidential threshold at all.

16.3.3 The 𝑝-value is a lie.

The cake is a lie.
The cake is a lie.
The cake is a lie.
The cake is a lie.
– Portal198

Okay, at this point you might be thinking that the real problem is not with orthodox
statistics, just the 𝑝 < .05 standard. In one sense, that’s true. The recommendation
that Johnson (2013) gives is not that “everyone must be a Bayesian now”. Instead, the
suggestion is that it would be wiser to shift the conventional standard to something like
a 𝑝 < .01 level. That’s not an unreasonable view to take, but in my view the problem
is a little more severe than that. In my opinion, there’s a fairly big problem built into
the way most (but not all) orthodox hypothesis tests are constructed. They are grossly
naive about how humans actually do research, and because of this most 𝑝-values are
wrong.

Sounds like an absurd claim, right? Well, consider the following scenario. You’ve come
up with a really exciting research hypothesis and you design a study to test it. You’re
very diligent, so you run a power analysis to work out what your sample size should be,
and you run the study. You run your hypothesis test and out pops a 𝑝-value of 0.072.
Really bloody annoying, right?

425



What should you do? Here are some possibilities:

1. You conclude that there is no effect and try to publish it as a null result
2. You guess that there might be an effect and try to publish it as a “borderline sig-

nificant” result.
3. You give up and try a new study.
4. You collect some more data to see if the 𝑝-value goes up or (preferably!) drops

below the “magic” criterion of 𝑝 < .05.

Which would you choose? Before reading any further, I urge you to take some time
to think about it. Be honest with yourself. But don’t stress about it too much, because
you’re screwed nomatter what you choose. Based onmy own experiences as an author,
reviewer and editor, as well as stories I’ve heard from others, here’s what will happen
in each case:

• Let’s start with option 1. If you try to publish it as a null result, the paper will
struggle to be published. Some reviewers will think that 𝑝 = .072 is not really a
null result. They’ll argue it’s borderline significant. Other reviewers will agree
it’s a null result, but will claim that even though some null results are publish-
able, yours isn’t. One or two reviewers might even be on your side, but you’ll be
fighting an uphill battle to get it through.

• Okay, let’s think about option number 2. Suppose you try to publish it as a bor-
derline significant result. Some reviewers will claim that it’s a null result and
should not be published. Others will claim that the evidence is ambiguous, and
that you should collect more data until you get a clear significant result. Again,
the publication process does not favour you.

• Given the difficulties in publishing an “ambiguous” result like 𝑝 = .072, option
number 3 might seem tempting: give up and do something else. But that’s a
recipe for career suicide. If you give up and try a new project every time you find
yourself faced with ambiguity, your work will never be published. And if you’re
in academia without a publication record, you can lose your job. So that option
is out.

• It looks like you’re stuck with option 4. You don’t have conclusive results, so you
decide to collect some more data and re-run the analysis. Seems sensible, but
unfortunately for you, if you do this all of your 𝑝-values are now incorrect. All of
them. Not just the 𝑝-values that you calculated for this study. All of them. All the
𝑝-values you calculated in the past and all the 𝑝-values you will calculate in the
future. Fortunately, no-one will notice. You’ll get published, and you’ll have lied.

Wait, what? How can that last part be true? Imean, it sounds like a perfectly reasonable
strategy, doesn’t it? You collected some data, the results weren’t conclusive, so now
what you want to do is collect more data until the the results are conclusive. What’s
wrong with that?

Honestly, there’s nothing wrong with it. It’s a reasonable, sensible and rational thing
to do. In real life, this is exactly what every researcher does. Unfortunately, the theory
of null hypothesis testing as I described it in Chapter 9 forbids you from doing this.199
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The reason is that the theory assumes that the experiment is finished and all the data
are in. And because it assumes the experiment is over, it only considers two possible
decisions. If you’re using the conventional 𝑝 < .05 threshold, those decisions are shown
in Table 16.11.

Table 16.11: Conventional null hypothesis signicance testing (NHST) with 𝑝 < .05)

Outcome Action
𝑝 less than .05 Reject the null

𝑝 greater than .05 Retain the null

What you’re doing is adding a third possible action to the decision making problem.
Specifically, what you’re doing is using the 𝑝-value itself as a reason to justify contin-
uing the experiment. And as a consequence you’ve transformed the decision-making
procedure into one that looks more like Table 16.12.

Table 16.12: Carrying on data collecting based on 𝑝-values obtained in preliminary
testing

Outcome Action

𝑝 less than .05
Stop the experiment and reject the

null
𝑝 between .05 and .1 Continue the experiment

𝑝 greater than .1
Stop the experiment and retain the

null

The “basic” theory of null hypothesis testing isn’t built to handle this sort of thing, not
in the form I described in Chapter 9. If you’re the kind of person who would choose
to “collect more data” in real life, it implies that you are not making decisions in accor-
dancewith the rules of null hypothesis testing. Even if you happen to arrive at the same
decision as the hypothesis test, you aren’t following the decision process it implies, and
it’s this failure to follow the process that is causing the problem.200 Your 𝑝-values are a
lie.

Worse yet, they’re a lie in a dangerous way, because they’re all too small. To give you
a sense of just how bad it can be, consider the following (worst case) scenario. Imag-
ine you’re a really super-enthusiastic researcher on a tight budget who didn’t pay any
attention to my warnings above. You design a study comparing two groups. You des-
perately want to see a significant result at the 𝑝 < .05 level, but you really don’t want
to collect any more data than you have to (because it’s expensive). In order to cut costs
you start collecting data but every time a set of observations arrive you run a 𝑡-test on
your data. If the 𝑡-test says 𝑝 < .05, then you stop the experiment and report a signif-
icant result. If not, you keep collecting data. You keep doing this until you reach your
pre-defined spending limit for this experiment. Let’s say that limit kicks in at𝑁 = 1000
observations. As it turns out, the truth of the matter is that there is no real effect to be
found: the null hypothesis is true. So, what’s the chance that you’ll make it to the end
of the experiment and (correctly) conclude that there is no effect? In an ideal world,
the answer here should be 95%. After all, the whole point of the 𝑝 < .05 criterion is to
control the type I error rate at 5%, so what we’d hope is that there’s only a 5% chance
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of falsely rejecting the null hypothesis in this situation. However, there’s no guarantee
that will be true. You’re breaking the rules. Because you’re running tests repeatedly,
“peeking” at your data to see if you’ve gotten a significant result, all bets are off.

So how bad is it? The answer from a simulation study is shown as the solid line in
Figure 16.1, and it’s astoundingly bad.

Figure 16.1: Probability of type I error in an experimentwith target𝑁 of 1000 per group
and peeking at different intervals:- things can go badly wrong if you peek at your data
and re-run your tests as new data arrives. If you are a frequentist, this is very wrong
(blue circles and solid line). If you are a bayesian, it is not so bad (green triangles and
dashed line). The alpha level was set at 0.05 (red dotted line) in this simulation.

If you peek at your data after every single observation, there is a 52% chance that you
will make a type I error. That’s, um, quite a bit bigger than the 5% that it’s supposed to
be. And it doesn’t improve much with less frequent peeking: if you only peek every 10,
or every 50 observations, then the type I error rates are still way too high: 37% and 29%,
respectively. By way of comparison, imagine that you had used the following strategy.
Start collecting data. Every single time an observation arrives, run Bayesian 𝑡-tests and
look at the Bayes factor. I’ll assume that Johnson (2013) is right, and I’ll treat a Bayes
factor of 3:1 as roughly equivalent to a 𝑝-value of .05.201 This time around, our trigger-
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happy researcher uses the following procedure. If the Bayes factor is 3:1 or more in
favour of the null, stop the experiment and retain the null. If it is 3:1 or more in favour
of the alternative, stop the experiment and reject the null. Otherwise continue testing.
Now, just like last time, let’s assume that the null hypothesis is true. What happens? As
it happens, I ran the simulations for this scenario too, and the results are shown as the
dashed line in Figure 16.1. It turns out that the type I error rate for peeking every time
a new observation arrives is 23%, much much lower than the 52% rate that we were
getting by using the orthodox 𝑡-test. And for peeking every 10 or 50 observations, the
rates are 11% and 7%, respectively.

16.3.4 Is it really this bad?

The example I gave in the previous section is a pretty extreme situation. In real life,
people don’t run hypothesis tests every time a new observation arrives. So it’s not fair
to say that the 𝑝 < .05 threshold “really” corresponds to a 52% type I error rate (i.e.,
𝑝 = 0.52). But the fact remains that if you want your 𝑝-values to be honest, then you
either have to switch to a completely different way of doing hypothesis tests or enforce a
strict rule of no peeking. You are not allowed to use the data to decidewhen to terminate
the experiment. You are not allowed to look at a “borderline” 𝑝-value and decide to
collect more data. You aren’t even allowed to change your data analyis strategy after
looking at data. You are strictly required to follow these rules. Otherwise the 𝑝-values
you calculate will be nonsense.

And yes, these rules are surprisingly strict. As a class exercise a couple of years back,
I asked students to think about this scenario. Suppose you started running your study
with the intention of collecting 𝑁 = 80 people. When the study starts out you follow
the rules, refusing to look at the data or run any tests. But when you reach 𝑁 = 50
your willpower gives in… and you take a peek. Guess what? You’ve got a significant
result! Now, sure, you know you said that you’d keep running the study out to a sample
size of 𝑁 = 80, but it seems sort of pointless now, right? The result is significant with
a sample size of 𝑁 = 50, so wouldn’t it be wasteful and inefficient to keep collecting
data? Aren’t you tempted to stop? Just a little? Well, keep in mind that if you do, your
type I error rate at 𝑝 < .05 just ballooned out to 8%. When you report 𝑝 < .05 in your
paper, what you’re really saying is 𝑝 < .08. That’s how bad the consequences of “just
one peek” can be.

Now consider this. The scientific literature is filled with 𝑡-tests, ANOVAs, regressions
and chi-square tests. When I wrote this book I didn’t pick these tests arbitrarily. The
reason why these four tools appear in most introductory statistics texts is that these
are the bread-and-butter tools of science. None of these tools include a correction to
deal with “data peeking”: they all assume that you’re not doing it. But how realistic
is that assumption? In real life, how many people do you think have “peeked” at their
data before the experiment was finished and adapted their subsequent behaviour after
seeing what the data looked like? Except when the sampling procedure is fixed by
an external constraint, I’m guessing the answer is “most people have done it”. If that
has happened, you can infer that the reported 𝑝-values are wrong. Worse yet, because
we don’t know what decision process they actually followed, we have no way to know
what the 𝑝-values should have been. You can’t compute a 𝑝-valuewhen you don’t know
the decision-making procedure that the researcher used. And so the reported 𝑝-value
remains a lie.
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Given all of the above, what is the take home message? It’s not that Bayesian methods
are foolproof. If a researcher is determined to cheat, they can always do so. Bayes’ rule
cannot stop people from lying, nor can it stop them from rigging an experiment. That’s
not my point here. My point is the same one I made at the very beginning of the book
in Section 1.1: the reason why we run statistical tests is to protect us from ourselves.
And the reason why “data peeking” is such a concern is that it’s so tempting, even for
honest researchers. A theory for statistical inference has to acknowledge this. Yes, you
might try to defend 𝑝-values by saying that it’s the fault of the researcher for not using
them properly, but to my mind that misses the point. A theory of statistical inference
that is so completely naive about humans that it doesn’t even consider the possibility
that the researcher might look at their own data isn’t a theory worth having. In essence,
my point is this:

Good laws have their origins in bad morals.
– Ambrosius Macrobius202

Good rules for statistical testing have to acknowledge human frailty. None of us are
without sin. None of us are beyond temptation. A good system for statistical inference
should still work even when it is used by actual humans. Orthodox null hypothesis
testing does not.203

16.4 Bayesian 𝑡-tests

An important type of statistical inference problem discussed in this book is comparing
twomeans, discussed in some detail in Chapter 11 on 𝑡-tests. If you can remember back
that far, you’ll recall that there are several versions of the 𝑡-test. I’ll talk a little about
Bayesian versions of the independent samples 𝑡-tests and the paired samples 𝑡-test in
this section.

16.4.1 Independent samples 𝑡-test

The most common type of 𝑡-test is the independent samples 𝑡-test, and it arises when
you have data as in the harpo.csv data set that we used in Chapter 11 on 𝑡-tests. In this
data set, we have two groups of students, those who received lessons from Anastasia
and those who took their classes with Bernadette. The question we want to answer is
whether there’s any difference in the grades received by these two groups of students.
Back in Chapter 11 I suggested you could analyse this kind of data using the Indepen-
dent Samples 𝑡-test in jamovi, which gave us the results in Figure 16.2. As we obtain a
𝑝-value less than 0.05, we reject the null hypothesis.
What does the Bayesian version of the 𝑡-test look like? We can get the Bayes factor
analysis by selecting the ‘Bayes factor’ checkbox under the ‘Tests’ option, and accepting
the suggested default value for the ‘Prior’. This gives the results shown in the table in
Figure 16.3. What we get in this table is a Bayes factor statistic of 1.75, meaning that the
evidence provided by these data are about 1.8:1 in favour of the alternative hypothesis.
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Figure 16.2: Independent samples 𝑡-test result in jamovi

Figure 16.3: Bayes factor analysis alongside independent samples 𝑡-test

Before moving on, it’s worth highlighting the difference between the orthodox test re-
sults and the Bayesian one. According to the orthodox test, we obtained a significant
result, though only barely. Nevertheless, many people would happily accept 𝑝 = .043
as reasonably strong evidence for an effect. In contrast, notice that the Bayesian test
doesn’t even reach 2:1 odds in favour of an effect, and would be considered very weak
evidence at best. In my experience that’s a pretty typical outcome. Bayesian methods
usually require more evidence before rejecting the null.

16.4.2 Paired samples 𝑡-test

Back in Section 11.5 I discussed the chico.csv data set in which student grades were
measured on two tests, and we were interested in finding out whether grades went up
from test 1 to test 2. Because every student did both tests, the tool we used to analyse
the data was a paired samples 𝑡-test. Figure 16.4 shows the jamovi results table for the
conventional paired 𝑡-test alongside the Bayes factor analysis. At this point, I hope you
can read this output without any difficulty. The data provide evidence of about 6000:1
in favour of the alternative. We could probably reject the null with some confidence!
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Figure 16.4: Paired samples 𝑡-test and Bayes factor result in jamovi

16.5 Summary

The first half of this chapter was focused primarily on the theoretical underpinnings of
Bayesian statistics. I introduced the mathematics for how Bayesian inference works in
the section on Probabilistic reasoning by rational agents, and gave a very basic overview
of Bayesian hypothesis tests. Finally, I devoted some space to talking about why I think
Bayesian methods are worth using.

Then I gave a practical example, with Bayesian 𝑡-tests. If you’re interested in learning
more about the Bayesian approach, there are many good books you could look into.
John Kruschke’s book, Doing Bayesian Data Analysis, is a pretty good place to start (Kr-
uschke, 2011) and is a nice mix of theory and practice. His approach is a little different
to the “Bayes factor” approach that I’ve discussed here, so you won’t be covering the
same ground. If you’re a cognitive psychologist, you might want to check out Lee &
Wagenmakers (2014). I picked these two because I think they’re especially useful for
people in my discipline, but there’s a lot of good books out there, so look around!
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Epilogue

“Begin at the beginning”, the King said, very gravely, “and go on till you come to
the end: then stop”
– Lewis Carroll, Alice in Wonderland

The undiscovered statistics

First, I’m going to talk a bit about some of the content that I wish I’d had the chance
to cram into this book, just so that you can get a sense of what other ideas are out
there in the world of statistics. One thing that students often fail to realise is that their
introductory statistics classes are just that, an introduction. If you want to go out into
the wider world and do real data analysis, you have to learn a whole lot of new tools
that extend the content of your undergraduate lectures in all sorts of different ways.
Don’t assume that something can’t be done just because it wasn’t covered in undergrad.
Don’t assume that something is the right thing to do just because it was covered in an
undergrad class. To stop you from falling victim to that trap, I think it’s useful to give
a bit of an overview of some of the other ideas out there.

Omissions within the topics covered

Even within the topics that I have covered in the book, there are a lot of omissions that
I’d like to redress in the future version. Just sticking to things that are purely about
statistics (rather than things associated with jamovi), the following is a representative
but not exhaustive list of topics that I’d like to expand on at some time:

• Other types of correlations. In Chapter 12 I talked about two types of correlation:
Pearson and Spearman. Both of these methods of assessing correlation are appli-
cable to the case where you have two continuous variables and want to assess the
relationship between them. What about the case where your variables are both
nominal scale? Or when one is nominal scale and the other is continuous? There
are actually methods for computing correlations in such cases (e.g., polychoric
correlation), and it would be good to see these included.

• More detail on effect sizes. In general, I think the treatment of effect sizes
throughout the book is a little more cursory than it should be. In almost every
instance, I’ve tended just to pick one measure of effect size (usually the most
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popular one) and describe that. However, for almost all tests and models there
are multiple ways of thinking about effect size, and I’d like to go into more detail
in the future.

• Dealing with violated assumptions. In a number of places in the book I’ve talked
about some things you can dowhen you find that the assumptions of your test (or
model) are violated, but I think that I ought to say more about this. In particular,
I think it would have been nice to talk in a lot more detail about how you can
tranform variables to fix problems. I talked a bit about this in Chapter 6, but the
discussion isn’t detailed enough I think.

• Interaction terms for regression. In Chapter 14 I talked about the fact that you
can have interaction terms in an ANOVA, and I also pointed out that ANOVA
can be interpreted as a kind of linear regression model. Yet, when talking about
regression inChapter 12 Imade nomention of interactions at all. However, there’s
nothing stopping you from including interaction terms in a regressionmodel. It’s
just a little more complicated to figure out what an “interaction” actually means
when you’re talking about the interaction between two continuous predictors,
and it can be done in more than one way. Even so, I would have liked to talk a
little about this.

• Method of planned comparison. As I mentioned this in Chapter 14, it’s not al-
ways appropriate to be using a post hoc correction like Tukey’s HSD when doing
an ANOVA, especially when you had a very clear (and limited) set of compar-
isons that you cared about ahead of time. I would like to talk more about this in
the future.

• Multiple comparison methods. Even within the context of talking about post
hoc tests andmultiple comparisons, I would have liked to talk about the methods
in more detail, and talk about what other methods exist besides the few options I
mentioned.

Statistical models missing from the book

Statistics is a huge field. The core tools that I’ve described in this book (chi-square tests,
𝑡-tests, regression and ANOVA) are basic tools that are widely used in everyday data
analysis, and they form the core of most introductory stats books. However, there are
a lot of other tools out there. There are so very many data analysis situations that these
tools don’t cover, and it would be great to give you a sense of just howmuchmore there
is, for example:

• Nonlinear regression. When discussing regression in Chapter 12, we saw that
regression assumes that the relationship between predictors and outcomes is lin-
ear. On the other hand, when we talked about the simpler problem of correlation
in Chapter 4, we saw that there exist tools (e.g., Spearman correlations) that are
able to assess non-linear relationships between variables. There are a number
of tools in statistics that can be used to do non-linear regression. For instance,
some non-linear regression models assume that the relationship between predic-
tors and outcomes is monotonic (e.g., isotonic regression), while others assume
that it is smooth but not necessarily monotonic (e.g., Lowess regression), while
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others assume that the relationship is of a known form that happens to be non-
linear (e.g., polynomial regression).

• Logistic regression. Yet another variation on regression occurs when the out-
come variable is binary, but the predictors are continuous. For instance, suppose
you’re investigating social media, and you want to know if it’s possible to predict
whether or not someone is on Twitter as a function of their income, their age, and
a range of other variables. This is basically a regression model, but you can’t use
regular linear regression because the outcome variable is binary (you’re either on
Twitter or you’re not). Because the outcome variable is binary, there’s no way
that the residuals could possibly be normally distributed. There are a number of
tools that statisticians can apply to this situation, the most prominent of which is
logistic regression.

• The General Linear Model (GLM). The GLM is actually a family of models
that includes logistic regression, linear regression, (some) nonlinear regression,
ANOVA and many others. The basic idea in the GLM is essentially the same
idea that underpins linear models, but it allows for the idea that your data might
not be normally distributed, and allows for nonlinear relationships between
predictors and outcomes. There are a lot of very handy analyses that you can
run that fall within the GLM, so it’s a very useful thing to know about.

• Survival analysis. In Chapter 2 I talked about “differential attrition”, the ten-
dency for people to leave the study in a non-random fashion. Back then, I was
talking about it as a potential methodological concern, but there are a lot of situa-
tions in which differential attrition is actually the thing you’re interested in. Sup-
pose, for instance, you’re interested in finding out how long people play different
kinds of computer games in a single session. Do people tend to play RTS (real
time strategy) games for longer stretches than FPS (first person shooter) games?
You might design your study like this. People come into the lab, and they can
play for as long or as little as they like. Once they’re finished, you record the
time they spent playing. However, due to ethical restrictions, let’s suppose that
you cannot allow them to keep playing longer than two hours. A lot of people
will stop playing before the two-hour limit, so you know exactly how long they
played. But some people will run into the two-hour limit, and so you don’t know
how long they would have kept playing if you’d been able to continue the study.
As a consequence, your data are systematically censored: you’remissing all of the
very long times. How do you analyse this data sensibly? This is the problem that
survival analysis solves. It is specifically designed to handle this situation, where
you’re systematically missing one “side” of the data because the study ended. It’s
very widely used in health research, and in that context it is often literally used to
analyse survival. For instance, you may be tracking people with a particular type
of cancer, some who have received treatment A and others who have received
treatment B, but you only have funding to track them for five years. At the end of
the study period some people are alive, others are not. In this context, survival
analysis is useful for determining which treatment is more effective, and telling
you about the risk of death that people face over time.

• Mixed models. Repeatedmeasures ANOVA is often used in situationswhere you
have observations clustered within experimental units. A good example of this
is when you track individual people across multiple time points. Let’s say you’re
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tracking happiness over time, for two people. Aaron’s happiness starts at 10, then
drops to 8, and then to 6. Belinda’s happiness starts at 6, then rises to 8 and then
to 10. Both of these two people have the same “overall” level of happiness (the
average across the three time points is 8), so a repeatedmeasuresANOVAanalysis
would treat Aaron and Belinda the same way. But that’s clearly wrong. Aaron’s
happiness is decreasing, whereas Belinda’s is increasing. If youwant to optimally
analyse data from an experiment where people can change over time, then you
need amore powerful tool than repeatedmeasures ANOVA. The tools that people
use to solve this problem are called “mixed” models, because they are designed
to learn about individual experimental units (e.g., happiness of individual people
over time) as well as overall effects (e.g., the effect of money on happiness over
time). Repeated measures ANOVA is perhaps the simplest example of a mixed
model, but there’s a lot you can do with mixed models that you can’t do with
repeated measures ANOVA.

• Multidimensional scaling. Factor Analysis is an example of an “unsupervised
learning” model. What this means is that, unlike most of the “supervised learn-
ing” tools I’ve mentioned, you can’t divide up your variables into predictors and
outcomes. Regression is supervised learningwhereas Factor Analysis is unsuper-
vised learning. It’s not the only type of unsupervised learning model however.
For example, in Factor Analysis one is concerned with the analysis of correlations
between variables. However, there are many situations where you’re actually in-
terested in analysing similarities or dissimilarities between objects, items or peo-
ple. There are a number of tools that you can use in this situation, the best known
of which is multidimensional scaling (MDS). In MDS, the idea is to find a “geo-
metric” representation of your items. Each item is “plotted” as a point in some
space, and the distance between two points is a measure of how dissimilar those
items are.

• Clustering. Another example of an unsupervised learning model is clustering
(also referred to as classification), in which you want to organise all of your items
into meaningful groups, such that similar items are assigned to the same groups.
A lot of clustering is unsupervised, meaning that you don’t know anything about
what the groups are, you just have to guess. There are other “supervised clus-
tering” situations where you need to predict group memberships on the basis of
other variables, and those group memberships are actually observables. Logistic
regression is a good example of a tool that works this way. However, when you
don’t actually know the group memberships, you have to use different tools (e.g.,
k-means clustering). There are even situations where you want to do something
called “semi-supervised clustering”, in which you know the group memberships
for some items but not others. As you can probably guess, clustering is a pretty
big topic, and a pretty useful thing to know about.

• Causal models. One thing that I haven’t talked about much in this book is how
you can use statistical modelling to learn about the causal relationships between
variables. For instance, consider the following three variables which might be of
interestwhen thinking about how someone died in a firing squad. Wemightwant
to measure whether or not an execution order was given (variable A), whether or
not a marksman fired their gun (variable B), and whether or not the person got
hit with a bullet (variable C). These three variables are all correlated with one
another (e.g., there is a correlation between guns being fired and people getting
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hit with bullets), but we actually want to make stronger statements about them
thanmerely talking about correlations. Wewant to talk about causation. Wewant
to be able to say that the execution order (A) causes themarksman to fire (B)which
causes someone to get shot (C). We can express this by a directed arrow notation:
we write it as 𝐴 → 𝐵 → 𝐶 . This “causal chain” is a fundamentally different
explanation for events than one in which the marksman fires first, which causes
the shooting 𝐵 → 𝐶 , and then causes the executioner to “retroactively” issue
the execution order, 𝐵 → 𝐴. This “common effect” model says that A and C are
both caused by B. You can see why these are different. In the first causal model,
if we had managed to stop the executioner from issuing the order (intervening
to change A), then no shooting would have happened. In the second model, the
shootingwould have happened anywaybecause themarksmanwas not following
the execution order. There is a big literature in statistics on trying to understand
the causal relationships between variables, and a number of different tools exist
to help you test different causal stories about your data. The most widely used of
these tools (in psychology at least) is structural equations modelling (SEM), and
at some point I’d like to extend the book to talk about it.

Of course, even this listing is incomplete. I haven’t mentioned time series analysis, item
response theory, market basket analysis, classification and regression trees, or any of
a huge range of other topics. However, the list that I’ve given above is essentially my
wish list for this book. Sure, it would double the length of the book, but it would mean
that the scope has become broad enough to cover most things that applied researchers
in psychology would need to use.

Other ways of doing inference

A different sense in which this book is incomplete is that it focuses pretty heavily on
a very narrow and old-fashioned view of how inferential statistics should be done. In
Chapter 8 I talked a little bit about the idea of unbiased estimators, sampling distribu-
tions and so on. In Chapter 9 I talked about the theory of null hypothesis significance
testing and 𝑝-values. These ideas have been around since the early 20th century, and
the tools that I’ve talked about in the book rely very heavily on the theoretical ideas
from that time. I’ve felt obligated to stick to those topics because the vast majority of
data analysis in science is also reliant on those ideas. However, the theory of statistics
is not restricted to those topics and, whilst everyone should know about them because
of their practical importance, in many respects those ideas do not represent best prac-
tice for contemporary data analysis. One of the things that I’m especially happy with
is that I’ve been able to go a little beyond this. Chapter 16 now presents the Bayesian
perspective in a reasonable amount of detail, but the book overall is still pretty heavily
weighted towards the frequentist orthodoxy. Additionally, there are a number of other
approaches to inference that are worth mentioning:

• Bootstrapping. Throughout the book, whenever I’ve introduced a hypothesis test,
I’ve had a strong tendency just to make assertions like “the sampling distribution
for BLAH is a 𝑡-distribution” or something like that. In some cases, I’ve actually
attempted to justify this assertion. For example, when talking about 𝜒2 tests in
Chapter 10 I made reference to the known relationship between normal distribu-
tions and 𝜒2 distributions (see Chapter 7) to explain how we end up assuming
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that the sampling distribution of the goodness-of-fit statistic is 𝜒2. However, it’s
also the case that a lot of these sampling distributions are, well, wrong. The 𝜒2

test is a good example. It is based on an assumption about the distribution of
your data, an assumption which is known to be wrong for small sample sizes!
Back in the early 20th century, there wasn’t much you could do about this sit-
uation. Statisticians had developed mathematical results that said that “under
assumptions BLAH about the data, the sampling distribution is approximately
BLAH”, and that was about the best you could do. A lot of times they didn’t even
have that. There are lots of data analysis situations for which no-one has found a
mathematical solution for the sampling distributions that you need. And so up
until the late 20th century, the corresponding tests didn’t exist or didn’t work.
However, computers have changed all that now. There are lots of fancy tricks,
and some not-so-fancy, that you can use to get around it. The simplest of these
is bootstrapping, and in it’s simplest form it’s incredibly simple. What you do
is simulate the results of your experiment lots and lots of times, under the twin
assumptions that (a) the null hypothesis is true and (b) the unknown population
distribution actually looks pretty similar to your rawdata. In otherwords, instead
of assuming that the data are (for instance) normally distributed, just assume that
the population looks the same as your sample, and then use computers to sim-
ulate the sampling distribution for your test statistic if that assumption holds.
Despite relying on a somewhat dubious assumption (i.e., the population distri-
bution is the same as the sample!) bootstrapping is quick and easy method that
works remarkably well in practice for lots of data analysis problems.

• Cross validation. One question that pops up in my stats classes every now and
then, usually by a student trying to be provocative, is “Why do we care about
inferential statistics at all? Why not just describe your sample?” The answer to
the question is usually something like this, “Because our true interest as scientists
is not the specific sample that we have observed in the past, we want to make
predictions about data we might observe in the future”. A lot of the issues in
statistical inference arise because of the fact that we always expect the future to
be similar to but a bit different from the past. Or, more generally, new data won’t
be quite the same as old data. What we do, in a lot of situations, is try to derive
mathematical rules that help us to draw the inferences that are most likely to be
correct for new data, rather than to pick the statements that best describe old
data. For instance, given two models A and B, and a data set 𝑋 you collected
today, try to pick the model that will best describe a new data set 𝑌 that you’re
going to collect tomorrow. Sometimes it’s convenient to simulate the process, and
that’s what cross-validation does. What you do is divide your data set into two
subsets,𝑋1 and𝑋2. Use the subset𝑋1 to train themodel (e.g., estimate regression
coefficients, let’s say), but then assess themodel performance on the other one𝑋2.
This gives you a measure of how well the model generalises from an old data set
to a new one, and is often a better measure of how good your model is than if you
just fit it to the full data set 𝑋.

• Robust statistics. Life is messy, and nothing really works the way it’s supposed
to. This is just as true for statistics as it is for anything else, and when trying to
analyse data we’re often stuckwith all sorts of problems inwhich the data are just
messier than they’re supposed to be. Variables that are supposed to be normally
distributed are not actually normally distributed, relationships that are supposed
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to be linear are not actually linear, and some of the observations in your data set
are almost certainly junk (i.e., not measuring what they’re supposed to). All of
this messiness is ignored in most of the statistical theory I developed in this book.
However, ignoring a problem doesn’t always solve it. Sometimes, it’s actually
okay to ignore the mess, because some types of statistical tools are “robust”, i.e.,
if the data don’t satisfy your theoretical assumptions they nevertheless still work
pretty well. Other types of statistical tools are not robust, and even minor devia-
tions from the theoretical assumptions cause them to break. Robust statistics is a
branch of stats concerned with this question, and they talk about things like the
“breakdown point” of a statistic. That is, how messy does your data have to be
before the statistic cannot be trusted? I touched on this in places. The mean is not
a robust estimator of the central tendency of a variable, but the median is. For
instance, suppose I told you that the ages of my five best friends are 34, 39, 31, 43
and 4003 years. How old do you think they are on average? That is, what is the
true population mean here? If you use the sample mean as your estimator of the
population mean, you get an answer of 830 years. If you use the sample median
as the estimator of the population mean, you get an answer of 39 years. Notice
that, even though you’re “technically” doing the wrong thing in the second case
(using the median to estimate the mean!) you’re actually getting a better answer.
The problem here is that one of the observations is clearly, obviously, a lie. I don’t
have a friend aged 4003 years. It’s probably a typo, I probably meant to type 43.
But what if I had typed 53 instead of 43, or 34 instead of 43? Could you be sure if
thiswas a typo or not? Sometimes the errors in the data are subtle, so you can’t de-
tect them just by eyeballing the sample, but they’re still errors that contaminate
your data, and they still affect your conclusions. Robust statistics is concerned
with how you canmake safe inferences even when faced with contamination that
you don’t know about. It’s pretty cool stuff.

Miscellaneous topics

• Suppose you’re doing a survey, and you’re interested in exercise and weight. You
send data to four people. Adam says he exercises a lot and is not overweight.
Briony says she exercises a lot and is not overweight. Carol says she does not
exercise and is overweight. Tim says he does not exercise and refuses to answer
the question about his weight. Elaine does not return the survey. You now have
a missing data problem. There is one entire survey missing, and one question
missing from another one, What do you do about it? Ignoring missing data is
not, in general, a safe thing to do. Let’s think about Tim’s survey here. Firstly,
notice that, on the basis of his other responses, he appear to be more similar to
Carol (neither of us exercise) than to Adam or Briony. So if you were forced to
guess his weight, you’d guess that he is closer to her than to them. Maybe you’d
make some correction for the fact that Adam and Tim are males and Briony and
Carol are females. The statistical name for this kind of guessing is “imputation”.
Doing imputation safely is hard, but it’s important, especially when the missing
data are missing in a systematic way. Because of the fact that people who are
overweight are often pressured to feel poorly about their weight (often thanks
to public health campaigns), we actually have reason to suspect that the people
who are not responding are more likely to be overweight than the people who do
respond. Imputing a weight to Tim means that the number of overweight people
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in the sample will probably rise from 1 out of 3 (if we ignore Tim), to 2 out of 4
(if we impute Tim’s weight). Clearly this matters. But doing it sensibly is more
complicated than it sounds. Earlier, I suggested you should treat Tim like Carol,
since they gave the same answer to the exercise question. But that’s not quite right.
There is a systematic difference between them. She answered the question, and
Tim didn’t. Given the social pressures faced by overweight people, isn’t it likely
that Tim is more overweight than Carol? And of course this is still ignoring the
fact that it’s not sensible to impute a single weight to Tim, as if you actually knew
his weight. Instead, what you need to do it is impute a range of plausible guesses
(referred to as multiple imputation), in order to capture the fact that you’re more
uncertain about Tim’s weight than you are about Carol’s. And let’s not get started
on the problem posed by the fact that Elaine didn’t send in the survey. As you
can probably guess, dealing with missing data is an increasingly important topic.
In fact, I’ve been told that a lot of journals in some fields will not accept studies
that have missing data unless some kind of sensible multiple imputation scheme
is followed.

• Power analysis. In Chapter 9 I discussed the concept of power (i.e., how likely are
you to be able to detect an effect if it actually exists) and referred to power analysis,
a collection of tools that are useful for assessing howmuch power your study has.
Power analysis can be useful for planning a study (e.g., figuring out how large
a sample you’re likely to need), but it also serves a useful role in analysing data
that you already collected. For instance, suppose you get a significant result, and
you have an estimate of your effect size. You can use this information to estimate
how much power your study actually had. This is kind of useful, especially if
your effect size is not large. For instance, suppose you reject the null hypothesis
at 𝑝 < .05, but you use power analysis to figure out that your estimated power
was only .08. The significant result means that, if the null hypothesis was in fact
true, there was a 5% chance of getting data like this. But the low power means
that, even if the null hypothesis is false and the effect size was really as small as
it looks, there was only an 8% chance of getting data like you did. This suggests
that you need to be pretty cautious, because luck seems to have played a big part
in your results, one way or the other!

• Data analysis using theory-inspiredmodels. In a few places in this book I’vemen-
tioned response time (RT) data, where you record how long it takes someone to
do something (e.g., make a simple decision). I’ve mentioned that RT data are al-
most invariably non-normal, and positively skewed. Additionally, there’s a thing
known as the speed / accuracy trade-off: if you try to make decisions too quickly
(low RT) then you’re likely to make poorer decisions (lower accuracy). So if you
measure both the accuracy of a participant’s decisions and their RT, you’ll proba-
bly find that speed and accuracy are related. There’smore to the story than this, of
course, because some people make better decisions than others regardless of how
fast they’re going. Moreover, speed depends on both cognitive processes (i.e.,
time spent thinking) but also physiological ones (e.g., how fast can youmove your
muscles). It’s starting to sound like analysing this data will be a complicated pro-
cess. And indeed it is, but one of the things that you find when you dig into the
psychological literature is that there already exist mathematical models (called
“sequential sampling models”) that describe how people make simple decisions,
and these models take into account a lot of the factors I mentioned above. You
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won’t find any of these theoretically-inspired models in a standard statistics text-
book. Standard stats textbooks describe standard tools, tools that couldmeaning-
fully be applied in lots of different disciplines, not just psychology. ANOVA is an
example of a standard tool that is just as applicable to psychology as to pharma-
cology. Sequential sampling models are not, they are psychology-specific, more
or less. This doesn’t make them less powerful tools. In fact, if you’re analysing
data where people have to make choices quickly you should really be using se-
quential sampling models to analyse the data. Using ANOVA or regression or
whatever won’t work as well, because the theoretical assumptions that underpin
them are not well-matched to your data. In contrast, sequential sampling models
were explicitly designed to analyse this specific type of data, and their theoretical
assumptions are extremely well-matched to the data.

Learning the basics, and learning them in jamovi

Okay, that was a long list. And even that listing is massively incomplete. There really
are a lot of big ideas in statistics that I haven’t covered in this book. It can seem pretty
depressing to finish an almost 500-page textbook only to be told that this is only the
beginning, especially when you start to suspect that half of the stuff you’ve been taught
is wrong. For instance, there are a lot of people in the field who would strongly argue
against the use of the classical ANOVA model, yet I’ve devoted two whole chapters to
it! Standard ANOVA can be attacked from a Bayesian perspective, or from a robust
statistics perspective, or even from a “it’s just plain wrong” perspective (people very
frequently use ANOVA when they should actually be using mixed models). So why
learn it at all?

As I see it, there are two key arguments. Firstly, there’s the pure pragmatism argu-
ment. Rightly or wrongly, ANOVA is widely used. If you want to understand the
scientific literature, you need to understand ANOVA. And secondly, there’s the “incre-
mental knowledge” argument. In the sameway that it was handy to have seen one-way
ANOVA before trying to learn factorial ANOVA, understanding ANOVA is helpful for
understanding more advanced tools, because a lot of those tools extend on or modify
the basic ANOVA setup in some way. For instance, although mixed models are way
more useful than ANOVA and regression, I’ve never heard of anyone learning how
mixed models work without first having worked through ANOVA and regression. You
have to learn to crawl before you can climb a mountain.

Actually, I want to push this point a bit further. One thing that I’ve done a lot of in this
book is talk about fundamentals. I spent a lot of time on probability theory. I talked
about the theory of estimation and hypothesis tests in more detail than I needed to.
Why did I do all this? Looking back, you might ask whether I really needed to spend
all that time talking about what a probability distribution is, or why there was even
a section on probability density. If the goal of the book was to teach you how to run
a 𝑡-test or an ANOVA, was all that really necessary? Was this all just a huge waste of
everyone’s time???

The answer, I hope you’ll agree, is no. The goal of an introductory stats is not to teach
ANOVA. It’s not to teach 𝑡-tests, or regressions, or histograms, or 𝑝-values. The goal is
to start you on the path towards becoming a skilled data analyst. And in order for you
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to become a skilled data analyst, you need to be able to do more than ANOVA, more
than 𝑡-tests, regressions and histograms. You need to be able to think properly about
data. You need to be able to learn the more advanced statistical models that I talked
about in the last section, and to understand the theory uponwhich they are based. And
you need to have access to software that will let you use those advanced tools. And this
is where, in my opinion at least, all that extra time I’ve spent on the fundamentals pays
off. If you understand probability theory, you’ll find it much easier to switch from
frequentist analyses to Bayesian ones.

In short, I think that the big payoff for learning statistics this way is extensibility. For a
book that only covers the very basics of data analysis, this book has a massive overhead
in terms of learning probability theory and so on. There’s a whole lot of other things
that it pushes you to learn besides the specific analyses that the book covers. So if your
goal had been to learn how to run an ANOVA in the minimum possible time, well, this
book wasn’t a good choice. But as I say, I don’t think that is your goal. I think you
want to learn how to do data analysis. And if that really is your goal, you want to make
sure that the skills you learn in your introductory stats class are naturally and cleanly
extensible to the more complicated models that you need in real world data analysis.
You want to make sure that you learn to use the same tools that real data analysts use,
so that you can learn to do what they do. And so yeah, okay, you’re a beginner right
now (or you were when you started this book), but that doesn’t mean you should be
given a dumbed-down story, a story in which I don’t tell you about probability density,
or a story where I don’t tell you about the nightmare that is factorial ANOVA with
unbalanced designs. And it doesn’t mean that you should be given baby toys instead
of proper data analysis tools. Beginners aren’t dumb, they just lack knowledge. What
you need is not to have the complexities of real-world data analysis hidden from from
you. What you need are the skills and tools that will let you handle those complexities
when they inevitably ambush you in the real world.

And what I hope is that this book is able to help you with that.

Author’s note – If you see anything clever sounding in this book that doesn’t seem to
have a reference, I can absolutely promise you that the idea was someone else’s. This
is an introductory textbook: none of the ideas are original. I’ll take responsibility for
all the errors, but I can’t take credit for any of the good stuff. Everything smart in this
book came from someone else.
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Chapter notes

Notes for chapter 1

1. The quote comes from Auden’s 1946 poem Under Which Lyre: A Reactionary Tract for the Times, delivered
as part of a commencement address at Harvard University. The history of the poem is kind of interesting,
seeAdamKirsch’s analysis in theHarvard Magazine, https://www.harvardmagazine.com/2007/11/a-poets-
warning.html

2. Including the suggestion that common sense is in short supply among scientists.

3. In my more cynical moments I feel like this fact alone explains 95% of what I read on the internet.

4. Earlier versions of these notes incorrectly suggested that they actuallywere sued. But that’s not true. There’s a
nice commentary on this by Alex Reinhart here: https://www.refsmmat.com/posts/2016-05-08-simpsons-
paradox-berkeley.html A big thank you to Wilfried Van Hirtum for pointing this out to me.

5. Which might explain why physics is just a teensy bit further advanced as a science than we are.

Notes for chapter 2

6. Presidential Address to the First Indian Statistical Congress, 1938. Source: https://en.wikiquote.org/wiki/
Ronald_Fisher

7. Actually, I’ve been informed by readers with greater physics knowledge than I that temperature isn’t strictly
an interval scale, in the sense that the amount of energy required to heat something up by 3° depends on its
current temperature. So in the sense that physicists care about, temperature isn’t actually an interval scale.
But it still makes a cute example so I’m going to ignore this little inconvenient truth.

8. Ah, psychology… never an easy answer to anything!

9. Annoyingly though, there’s a lot of different names used out there. I won’t list all of them – there would
be no point in doing that – other than to note that “response variable” is sometimes used where I’ve used
“outcome”. Sigh. This sort of terminological confusion is very common, I’m afraid.

10. The reason why I say that it’s unmeasured is that if you have measured it, then you can use some fancy
statistical tricks to deal with the confounder. Because of the existence of these statistical solutions to the
problem of confounders, we often refer to a confounder that we have measured and dealt with as a covariate.
Dealing with covariates is a more advanced topic, but I thought I’d mention it in passing since it’s kind of
comforting to at least know that this stuff exists.
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11. Some people might argue that if you’re not honest then you’re not a real scientist. Which does have some
truth to it I guess, but that’s disingenuous (look up the “No true Scotsman” fallacy). The fact is that there are
lots of people who are employed ostensibly as scientists, and whose work has all of the trappings of science,
but who are outright fraudulent. Pretending that they don’t exist by saying that they’re not scientists is just
muddled thinking.

12. Clearly, the real effect is that only insane people would even try to read Finnegans Wake.

Notes for chapter 3

13. Source: Dismal Light (1968).

14. At the time of first writing this in August 2018. Later versions of this book will use later versions of jamovi.

15. Although jamovi is updated frequently it doesn’t usually makemuch of a difference for the sort of work we’ll
do in this book. In fact, during the writing of the book I upgraded several times and it didn’t make much
difference at all to what is in this book.

16. From now on, we’ll use single quote marks to signify a label, command, option, or outputs in the jamovi
interface.

17. In later versions of jamovi there is a pre-defined function ‘Z’ to compute z-scores, which is much easier!

18. 𝑅 is a powerful statistical programming language. In fact, jamovi is just a user-friendly interface that sits on
top of the 𝑅 engine.

19. You can change the default value for missing values in jamovi from the top right menu (three vertical dots),
but this only works at the time of importing data files into jamovi. The default missing value in the data set
should not be a valid number associated with any of the variables, e.g., you could use -9999 as this is unlikely
to be a valid value.

20. I know this is a bit of a fudge, but it does work and hopefully this will be fixed in a later version of jamovi.

Notes for chapter 4

21. Note for non-Australians: the AFL is an Australian rules football competition. You don’t need to know any-
thing about Australian rules in order to follow this section.

22. Okay, now let’s try to write a formula for the mean. By tradition, we use �̄� as the notation for the mean. So
the calculation for the mean could be expressed using the following formula:

�̄� = 𝑋1 + 𝑋2... + 𝑋𝑁−1 + 𝑋𝑁
𝑁

This formula is entirely correct but it’s terribly long, sowemakeuse of the summation symbol ∑ to shorten it.
If I want to add up the first five observations I couldwrite out the sum the longway,𝑋1+𝑋2+𝑋3+𝑋4+𝑋5
or I could use the summation symbol to shorten it to this:

5
∑
𝑖=1

𝑋𝑖
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Taken literally, this could be read as “the sum, taken over all i values from 1 to 5, of the value 𝑋𝑖”. But
basically what it means is “add up the first five observations”. In any case, we can use this notation to write
out the formula for the mean, which looks like this:

�̄� = 1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖

In all honesty, I can’t imagine that all this mathematical notation helps clarify the concept of the mean at all.
In fact, it’s really just a fancy way of writing out the same thing I said in words: add all the values up and
then divide by the total number of items. However, that’s not really the reason I went into all that detail.
My goal was to try to make sure that everyone reading this book is clear on the notation that we’ll be using
throughout the book: �̄� for the mean, ∑ for the idea of summation, 𝑋𝑖 for the ith observation, and 𝑁 for
the total number of observations. We’re going to be re-using these symbols a fair bit so it’s important that you
understand themwell enough to be able to “read” the equations, and to be able to see that it’s just saying “add
up lots of things and then divide by another thing”. The choice to use ∑ to denote summation isn’t arbitrary.
It’s the Greek upper case letter sigma, which is the analogue of the letter𝑆 in that alphabet. Similarly, there’s
an equivalent symbol used to denote the multiplication of lots of numbers, because multiplications are also
called “products” we use the ∏ symbol for this (the Greek upper case pi, which is the analogue of the letter
𝑃 .

23. www.abc.net.au/news/2010-09-24/housing-bubble-debate-boils-over/2273406

24. However, whilst our calculations for this little example are at an end, we do have a couple of things left to
talk about. First, we should really try to write down a proper mathematical formula. But in order to do
this I need some mathematical notation to refer to the mean absolute deviation. Irritatingly, “mean absolute
deviation” and “median absolute deviation” have the same acronym (MAD), which leads to a certain amount
of ambiguity so I’d better come up with something different for the mean absolute deviation. Sigh. What I’ll
do is use AAD instead, short for average absolute deviation. Now that we have some unambiguous notation,
here’s the formula that describes what we just calculated:

𝐴𝐴𝐷(𝑋) = 1
𝑁

𝑁
∑
𝑖=1

∣ 𝑋𝑖 − �̄� ∣= 15.52

25. Well, I will very briefly mention the one that I think is coolest, for a very particular definition of “cool”, that
is. Variances are additive. Here’s what that means. Suppose I have two variables𝑋 and 𝑌 , whose variances
are 𝑉 𝑎𝑟(𝑋) and 𝑉 𝑎𝑟(𝑌 ) respectively. Now imagine I want to define a new variable 𝑍 that is the sum of
the two, 𝑍 = 𝑋 + 𝑌 . As it turns out, the variance of 𝑍 is equal to 𝑉 𝑎𝑟(𝑋) + 𝑉 𝑎𝑟(𝑌 ). This is a very useful
property, but it’s not true of the other measures that I talk about in this section.

26. The formula that we use to calculate the variance of a set of observations is as follows:

𝑉 𝐴𝑅(𝑋) = 1
𝑁

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)2

As you can see, it’s basically the same formula that we used to calculate the average absolute deviation, except
that instead of using “absolute deviations” we use “squared deviations”. It is for this reason that the variance
is sometimes referred to as the “mean square deviation”.

27. With the possible exception of the third question.

28. In other words, the formula that jamovi is using is this one:

1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)2

29. Because the standard deviation is equal to the square root of the variance, you probably won’t be surprised
to see that the formula is:

𝑠 =
√√√
⎷

1
𝑁

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)2
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and in jamovi there is a check box for ‘Std. deviation’ right above the check box for ‘Variance’. Selecting this
gives a value of 26.07 for the standard deviation.

30. For reasons that will make sense when we return to this topic in Chapter 8 I’ll refer to this new quantity as �̂�
(read as: “sigma hat”), and the formula for this is:

�̂� =
√√√
⎷

1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)2

31. One formula for the skewness of a data set is:

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) = 1
𝑁�̂�3

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)3

where 𝑁 is the number of observations, �̄� is the sample mean, and �̂� is the standard deviation (the “divide
by 𝑁 − 1” version, that is).

32. The equation for kurtosis is pretty similar in spirit to the formulas we’ve seen already for the variance and
the skewness. Except that where the variance involved squared deviations and the skewness involved cubed
deviations, the kurtosis involves raising the deviations to the fourth power:𝑎

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) = 1
𝑁�̂�4

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)4 − 3

I know, it’s not terribly interesting to me either. — 𝑎 The “-3” part is something that statisticians tack on to
ensure that the normal curve has kurtosis zero. It looks a bit stupid, just sticking a “-3” at the end of the
formula, but there are good mathematical reasons for doing this.

33. Sometimes jamovi will also present numbers in an unusual way. If a number is very small, or very large,
then jamovi switches to an exponential form for numbers. For example 6.51e-4 is the same as saying that the
decimal point is moved 4 places to the left, so the actual number is 0.000651. If there is a plus sign (i.e. 6.51e+4
then the decimal point is moved to the right, i.e. 65,100.00. Usually only very small or very large numbers are
expressed in this way, for example 6.51e-16, which would be quite unwieldy to write out in the normal way.

34. In actual maths, the equation for the z-score is:

𝑧𝑖 = 𝑋𝑖 − �̄�
�̂�

35. Though some caution is usually warranted. It’s not always the case that one standard deviation on variable
A corresponds to the same “kind” of thing as one standard deviation on variable B. Use common sense when
trying to determine whether or not the z-scores of two variables can be meaningfully compared.

Notes for chapter 5

36. The origin of this quote is Tufte’s lovely book The Visual Display of Quantitative Information.

37. This altered version of the AFL Margins By Year data set isn’t available to open / load into jamovi. I simply
changed a couple of the values of margin in the data set so that they were over 300. You can do this yourself
if you want.

38. jamovi uses the symbol “==” here to mean “matches”.
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Notes for chapter 6

39. The quote comes from Home is the Hangman, published in 1975.

40. I offer up my teenage attempts to be “cool” as evidence that some things just can’t be done.

41. You can do this in the ‘Compute new variable’ screen, though just calculating 2 + 2 for every cell of a new
variable is not very useful!

42. Note that this is a very different operator to the equals operator =. A common typo that people make when
trying to write logical commands in jamovi (or other languages, since the “= versus ==” distinction is im-
portant in many computer and statistical programs) is to accidentally type = when you really mean ==. Be
especially cautious with this, I’ve been programming in various languages since I was a teenager and I still
screw this up a lot.

43. Now, here’s a quirk in jamovi. When you have simple logical expressions like the ones we have already met,
e.g., 2+2 == 5 then jamovi neatly states ‘false’ (or ‘true’) in the corresponding spreadsheet column. Under-
neath the hood, jamovi stores ‘false’ as 0 and ‘true’ as 1. When we have more complex logical expressions,
such as (2+2 == 4) or (2 + 2 == 5), then jamovi just displays either 0 or 1, depending whether the logical
expression is evaluated as false, or true.

44. The absolute value of a number is its distance from zero, regardless of whether its sign is negative or positive.

45. The reasonwe have to use the ‘IF’ command and keep zero as zero is that you cannot just use ‘likert.centred /
opinion.strength’ to calculate the sign of ‘likert.centred’, because mathematically dividing zero by zero does
not work. Try it and see.

46. If you’ve read further into the book, and are re-reading this section, then a good example of this would be
someone choosing to do anANOVAusing ‘AgeCats’ as the grouping variable, instead of running a regression
using Age as a predictor. There are sometimes good reasons for doing this. For instance, if the relationship
between Age and your outcome variable is highly non-linear and you aren’t comfortable with trying to run
non-linear regression! However, unless you really do have a good rationale for doing this, it’s best not to. It
tends to introduce all sorts of other problems (e.g., the data will probably violate the normality assumption)
and you can lose a lot of statistical power.

47. We’ll leave the box-cox function until later on.

Notes for chapter 7

48. This doesn’t mean that frequentists can’t make hypothetical statements, of course. It’s just that if you want
to make a statement about probability then it must be possible to redescribe that statement in terms of a
sequence of potentially observable events, together with the relative frequencies of different outcomes that
appear within that sequence.

49. Note that the term “success” is pretty arbitrary and doesn’t actually imply that the outcome is something to
be desired. If 𝜃 referred to the probability that any one passenger gets injured in a bus crash I’d still call it the
success probability, but that doesn’t mean I want people to get hurt in bus crashes!

50. For those readerswho know a little calculus, I’ll give a slightlymore precise explanation. In the sameway that
probabilities are non-negative numbers that must sum to 1, probability densities are non-negative numbers
thatmust integrate to 1 (where the integral is taken across all possible values of X). To calculate the probability
that X falls between a and b we calculate the definite integral of the density function over the corresponding
range,∫ _𝑎𝑏𝑝(𝑥)𝑑𝑥. If you don’t remember or never learned calculus, don’t worry about this. It’s not needed
for this book.
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51. In the equation for the binomial, 𝑋! is the factorial function (i.e., multiply all whole numbers from 1 to 𝑋):

𝑃(𝑋|𝜃, 𝑁) = 𝑁!
𝑋!(𝑁 − 𝑋)! 𝜃𝑋(1 − 𝜃)𝑁−𝑋

If this equation doesn’t make a lot of sense to you, don’t worry too much about it.

52. As was the case with the binomial distribution, I have included the formula for the normal distribution in
this book, because I think it’s important enough that everyone who learns statistics should at least look at it,
but since this is an introductory text I don’t want to focus on it, so I’ve tucked it away in this footnote:

𝑝(𝑋|𝜇, 𝜎) = 1
𝜎

√
2𝜋 𝑒− (𝑋−𝜇)2

2𝜎2

53. There is a subtle and somewhat frustrating characteristic of continuous distributions that makes the y-axis
behave a bit oddly - the height of the curve here is not actually the probability of observing a particular 𝑥
value. On the other hand, it is true that the heights of the curve tells you which 𝑥 values are more likely (the
higher ones!). (see Probability density section for all the annoying details)

54. In practice, the normal distribution is so handy that people tend to use it evenwhen the variable isn’t actually
continuous. As long as there are enough categories (e.g., Likert-scale responses to a questionnaire), it’s pretty
standard practice to use the normal distribution as an approximation. This works out much better in practice
than you’d think.

55. For those readers who know a little calculus, I’ll give a slightly more precise explanation. In the same way
that probabilities are non-negative numbers that must sum to 1, probability densities are non-negative num-
bers that must integrate to 1 (where the integral is taken across all possible values of 𝑋). To calculate the
probability that 𝑋 falls between a and b we calculate the definite integral of the density function over the
corresponding range, ∫ _𝑎𝑏𝑝(𝑥)𝑑𝑥. If you don’t remember or never learned calculus, don’t worry about this.
It’s not needed for this book.

Notes for chapter 8

56. The proper mathematical definition of randomness is extraordinarily technical, and way beyond the scope of
this book. We’ll be non-technical here and say that a process has an element of randomness to it whenever it
is possible to repeat the process and get different answers each time.

57. Nothing in life is that simple. There’s not an obvious division of people into binary categories like
“schizophrenic” and “not schizophrenic”. But this isn’t a clinical psychology text so please forgive me a few
simplifications here and there.

58. Technically, the law of large numbers pertains to any sample statistic that can be described as an average
of independent quantities. That’s certainly true for the sample mean. However, it’s also possible to write
many other sample statistics as averages of one form or another. The variance of a sample, for instance, can
be rewritten as a kind of average and so is subject to the law of large numbers. The minimum value of a
sample, however, cannot be written as an average of anything and is therefore not governed by the law of
large numbers.

59. As usual, I’m being a bit sloppy here. The central limit theorem is a bit more general than this section implies.
Like most introductory stats texts I’ve discussed one situation where the central limit theorem holds: when
you’re taking an average across lots of independent events drawn from the same distribution. However, the
central limit theorem is much broader than this. There’s a whole class of things called “U-statistics” for
instance, all of which satisfy the central limit theorem and therefore become normally distributed for large
sample sizes. The mean is one such statistic, but it’s not the only one.

60. Please note that if you were actually interested in this question you would need to be a lot more careful than
I’m being here. You can’t just compare IQ scores in Whyalla to Port Pirie and assume that any differences are
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due to lead poisoning. Even if it were true that the only differences between the two towns corresponded to
the different refineries (and it isn’t, not by a long shot), you need to account for the fact that people already
believe that lead pollution causes cognitive deficits. If you recall back to Chapter 2, this means that there are
different demand effects for the Port Pirie sample than for the Whyalla sample. In other words, you might
end up with an illusory group difference in your data, caused by the fact that people think that there is a real
difference. I find it pretty implausible to think that the locals wouldn’t be well aware of what you were trying
to do if a bunch of researchers turned up in Port Pirie with lab coats and IQ tests, and even less plausible
to think that a lot of people would be pretty resentful of you for doing it. Those people won’t be as co-
operative in the tests. Other people in Port Pirie might be more motivated to do well because they don’t want
their home town to look bad. The motivational effects that would apply in Whyalla are likely to be weaker,
because people don’t have any concept of “iron ore poisoning” in the same way that they have a concept for
“lead poisoning”. Psychology is hard.

61. I should note that I’m hiding something here. Unbiasedness is a desirable characteristic for an estimator, but
there are other things that matter besides bias. However, it’s beyond the scope of this book to discuss this in
any detail. I just want to draw your attention to the fact that there’s some hidden complexity here.

62. Dividing by 𝑁 − 1 gives us an unbiased estimate of the population variance:

�̂�2 = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)2

and similarly for standard deviation:

�̂� =
√√√
⎷

1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)2

Okay, I’m hiding something else here. In a bizarre and counter-intuitive twist, since �̂�2 is an unbiased esti-
mator of 𝜎2, you’d assume that taking the square root would be fine and �̂� would be an unbiased estimator
of 𝜎. Right? Weirdly, it’s not. There’s actually a subtle, tiny bias in �̂�. This is just bizarre: �̂�2 is an unbiased
estimate of the population variance 𝜎2 , but when you take the square root, it turns out that �̂� is a biased esti-
mator of the population standard deviation𝜎. Weird, weird, weird, right? So, why is �̂� biased? The technical
answer is “because non-linear transformations (e.g., the square root) don’t commute with expectation”, but
that just sounds like gibberish to everyone who hasn’t taken a course in mathematical statistics. Fortunately,
it doesn’t matter for practical purposes. The bias is small, and in real life everyone uses �̂� and it works just
fine. Sometimes mathematics is just annoying.

63. This quote appears on a great many t-shirts and websites, and even gets a mention in a few academic papers
(e.g., https://jse.amstat.org/v10n3/friedman.html, but I’ve never found the original source.

64. Mathematically, we write this as:

𝜇 − (1.96 × 𝑆𝐸𝑀) ≤ �̄� ≤ 𝜇 + (1.96 × 𝑆𝐸𝑀)
where the SEM is equal to 𝜎√

𝑁 and we can be 95% confident that this is true. However, that’s not answering
the question that we’re actually interested in. The equation above tells us what we should expect about the
sample mean given that we know what the population parameters are. What we want is to have this work
the other way around. We want to know what we should believe about the population parameters, given
that we have observed a particular sample. However, it’s not too difficult to do this. Using a little high school
algebra, a sneaky way to rewrite our equation is like this:

�̄� − (1.96 × 𝑆𝐸𝑀) ≤ 𝜇 ≤ �̄� + (1.96 × 𝑆𝐸𝑀)
What this is telling is is that the range of values has a 95% probability of containing the population mean 𝜇.
We refer to this range as a 95% confidence interval, denoted 𝐶𝐼95. In short, as long as 𝑁 is sufficiently large
(large enough for us to believe that the sampling distribution of the mean is normal), then we can write this
as our formula for the 95% confidence interval:

𝐶𝐼95 = �̄� ± (1.96 × 𝜎√
𝑁

)
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Notes for chapter 9

65. The quote comes fromWittgenstein’s (1922) text, Tractatus Logico-Philosphicus.

66. A technical note. The description below differs subtly from the standard description given in a lot of intro-
ductory texts. The orthodox theory of null hypothesis testing emerged from the work of Sir Ronald Fisher
and Jerzy Neyman in the early 20th century; but Fisher and Neyman actually had very different views about
how it should work. The standard treatment of hypothesis testing that most texts use is a hybrid of the two
approaches. The treatment here is a little more Neyman-style than the orthodox view, especially as regards
the meaning of the 𝑝-value.

67. My apologies to anyone who actually believes in this stuff, but on my reading of the literature on ESP it’s
just not reasonable to think this is real. To be fair, though, some of the studies are rigorously designed, so
it’s actually an interesting area for thinking about psychological research design. And of course it’s a free
country so you can spend your own time and effort proving me wrong if you like, but I wouldn’t think that’s
a terribly practical use of your intellect.

68. This analogy only works if you’re from an adversarial legal system like UK/US/Australia. As I understand
these things, the French inquisitorial system is quite different.

69. An aside regarding the language you use to talk about hypothesis testing. First, one thing you really want
to avoid is the word “prove”. A statistical test really doesn’t prove that a hypothesis is true or false. Proof
implies certainty and, as the saying goes, statistics means never having to say you’re certain. On that point
almost everyone would agree. However, beyond that there’s a fair amount of confusion. Some people argue
that you’re only allowed to make statements like “rejected the null”, “failed to reject the null”, or possibly
“retained the null”. According to this line of thinking you can’t say things like “accept the alternative” or
“accept the null”. Personally I think this is too strong. In my opinion, this conflates null hypothesis testing
with Karl Popper’s falsificationist view of the scientific process. Whilst there are similarities between falsifi-
cationism and null hypothesis testing, they aren’t equivalent. However, whilst I personally think it’s fine to
talk about accepting a hypothesis (on the proviso that “acceptance” doesn’t actually mean that it’s necessarily
true, especially in the case of the null hypothesis), many people will disagree. And more to the point, you
should be aware that this particular weirdness exists so that you’re not caught unawares by it when writing
up your own results.

70. Strictly speaking, the test I just constructed has 𝛼 = .057, which is a bit too generous. However, if I’d
chosen 39 and 61 to be the boundaries for the critical region then the critical region only covers 3.5% of the
distribution. I figured that it makes more sense to use 40 and 60 as my critical values, and be willing to
tolerate a 5.7% type I error rate, since that’s as close as I can get to a value of 𝛼 = .05.

71. The internet seems fairly convinced that Ashley said this, though I can’t for the life of me find anyone willing
to give a source for the claim.

72. That’s 𝑝 = .000000000000000000000000136 for folks that don’t like scientific notation!

73. Note that the𝑝 here has nothing to dowith a𝑝-value. The𝑝 argument in the jamovi binomial test corresponds
to the probability of making a correct response, according to the null hypothesis. In other words, it’s the 𝜃
value.

74. Although in practice a very small effect size isworrying, because even veryminormethodological flawsmight
be responsible for the effect; and in practice no experiment is perfect, so there are always methodological
issues to worry about.

75. Notice that the true population parameter 𝜃 doesn’t necessarily correspond to an immutable fact of nature.
In this context 𝜃 is just the true probability that people would correctly guess the colour of the card in the
other room. As such the population parameter can be influenced by all sorts of things. Of course, this is all
on the assumption that ESP actually exists!
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76. One possible exception to this iswhen researchers study the effectiveness of a newmedical treatment and they
specify in advance what an important effect size would be to detect, for example over and above any existing
treatment. In this way some information about the potential value of a new treatment can be obtained.

77. Although this book describes both Neyman’s and Fisher’s definition of the 𝑝-value, most don’t. Most intro-
ductory textbooks will only give you the Fisher version.

78. In this case, the Pearson chi-square test of independence (see Chapter 10).

Notes for chapter 10

79. Also sometimes referred to as “chi-squared”.

80. A vector is a sequence of data elements of the same basic type:

81. If we let 𝑘 refer to the total number of categories (i.e., 𝑘 = 4 for our cards data), then the 𝜒2 statistic is given
by:

𝜒2 =
𝑘

∑
𝑖=1

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

Intuitively, it’s clear that if 𝑐ℎ𝑖2 is small, then the observed data𝑂𝑖 are very close to what the null hypothesis
predicted 𝐸𝑖, so we’re going to need a large 𝜒2 statistic in order to reject the null.

82. If you rewrite the equation for the goodness-of-fit statistic as a sum over 𝑘 − 1 independent things you get
the “proper” sampling distribution, which is chi-square with 𝑘−1 degrees of freedom. It’s beyond the scope
of an introductory book to show the maths in that much detail. All I wanted to do is give you a sense of why
the goodness-of-fit statistic is associated with the chi-square distribution.

83. I feel obliged to point out that this is an over-simplification. It works nicely for quite a few situations, but
every now and then we’ll come across degrees of freedom values that aren’t whole numbers. Don’t let this
worry you too much; when you come across this just remind yourself that “degrees of freedom” is actually
a bit of a messy concept, and that the nice simple story that I’m telling you here isn’t the whole story. For an
introductory class it’s usually best to stick to the simple story, but I figure it’s best to warn you to expect this
simple story to fall apart. If I didn’t give you this warning you might start getting confused when you see
𝑑𝑓 = 3.4 or something, (incorrectly) thinking that you had misunderstood something that I’ve taught you
rather than (correctly) realising that there’s something that I haven’t told you.

84. In practice, the sample size isn’t always fixed. For example, we might run the experiment over a fixed period
of time and the number of people participating depends on how many people show up. That doesn’t matter
for the current purposes.

85. Well, sort of. The conventions for how statistics should be reported tend to differ somewhat from discipline
to discipline. I’ve tended to stick with how things are done in psychology, since that’s what I do. But the
general principle of providing enough information to the reader to allow them to check your results is pretty
universal, I think.

86. To some people, this advice might sound odd, or at least in conflict with the “usual” advice on how to write
a technical report. Very typically, students are told that the “results” section of a report is for describing the
data and reporting statistical analysis, and the “discussion” section is for providing interpretation. That’s
true as far as it goes, but I think people often interpret it way too literally. The way I usually approach it is to
provide a quick and simple interpretation of the data in the results section, so that my reader understands
what the data are telling us. Then, in the discussion, I try to tell a bigger story about how my results fit
with the rest of the scientific literature. In short, don’t let the “interpretation goes in the discussion” advice
turn your results section into incomprehensible garbage. Being understood by your reader is much more
important.
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87. If you’ve been reading very closely, and are as much of a mathematical pedant as I am, there is one thing
about the way I wrote up the chi-square test in the last section that might be bugging you a little bit. There’s
something that feels a bit wrong with writing “𝜒2(3) = 8.44”, you might be thinking. After all, it’s the
goodness-of-fit statistic that is equal to 8.44, so shouldn’t I have written𝑋2 = 8.44 or maybe𝐺𝑂𝐹 = 8.44?
This seems to be conflating the sampling distribution (i.e., 𝜒2 with df = 3) with the test statistic (i.e., 𝑋2).
Odds are you figured it was a typo, since 𝜒 and 𝑋 look pretty similar. Oddly, it’s not. Writing 𝜒2(3)= 8.44 is
essentially a highly condensed way of writing “the sampling distribution of the test statistic is 𝜒2(3), and the
value of the test statistic is 8.44” In one sense, this is kind of stupid. There are lots of different test statistics
out there that turn out to have a chi-square sampling distribution. The 𝑋2 statistic that we’ve used for our
goodness-of-fit test is only one of many (albeit one of the most commonly encountered ones). In a sensible,
perfectly organised world we’d always have a separate name for the test statistic and the sampling distribu-
tion. That way, the stat block itself would tell you exactly what it was that the researcher had calculated.
Sometimes this happens. For instance, the test statistic used in the Pearson goodness-of-fit test is written
𝑋2, but there’s a closely related test known as the 𝐺-test𝑎 (Sokal & Rohlf, 1994), in which the test statistic
is written as 𝐺. As it happens, the Pearson goodness-of-fit test and the 𝐺-test both test the same null hy-
pothesis, and the sampling distribution is exactly the same (i.e., chi-square with 𝑘 − 1 degrees of freedom).
If I’d done a 𝐺-test for the cards data rather than a goodness-of-fit test, then I’d have ended up with a test
statistic of 𝐺 = 8.65, which is slightly different from the 𝑋2 = 8.44 value that I got earlier and which
produces a slightly smaller p-value of 𝑝 = .034. Suppose that the convention was to report the test statis-
tic, then the sampling distribution, and then the p-value. If that were true, then these two situations would
produce different stat blocks: my original result would be written 𝑋2 = 8.44, 𝜒2(3), 𝑝 = .038, whereas
the new version using the 𝐺-test would be written as 𝐺 = 8.65, 𝜒2(3), 𝑝 = .034. However, using the
condensed reporting standard, the original result is written 𝜒2(3) = 8.44, 𝑝 = .038, and the new one is
written 𝜒2(3) = 8.65, 𝑝 = .034, and so it’s actually unclear which test I actually ran. So why don’t we live
in a world in which the contents of the stat block uniquely specifies what tests were ran? The deep reason is
that life is messy. We (as users of statistical tools) want it to be nice and neat and organised. We want it to be
designed, as if it were a product, but that’s not how life works. Statistics is an intellectual discipline just as
much as any other one, and as such it’s a massively distributed, partly-collaborative and partly-competitive
project that no-one really understands completely. The things that you and I use as data analysis tools weren’t
created by an Act of the Gods of Statistics. They were invented by lots of different people, published as pa-
pers in academic journals, implemented, corrected and modified by lots of other people, and then explained
to students in textbooks by someone else. As a consequence, there’s a lot of test statistics that don’t even
have names, and as a consequence they’re just given the same name as the corresponding sampling distri-
bution. As we’ll see later, any test statistic that follows a 𝜒2 distribution is commonly called a “chi-square
statistic”, anything that follows a 𝑡 distribution is called a “𝑡-statistic”, and so on. But, as the 𝜒2 versus 𝐺
example illustrates, two different things with the same sampling distribution are still, well, different. As a
consequence, it’s sometimes a good idea to be clear about what the actual test was that you ran, especially
if you’re doing something unusual. If you just say “chi-square test” it’s not actually clear what test you’re
talking about. Although, since the two most common chi-square tests are the goodness-of-fit test and the
independence test, most readers with stats training can probably guess. Nevertheless, it’s something to be
aware of. – 𝑎 Complicating matters, the 𝐺-test is a special case of a whole class of tests that are known as
likelihood ratio tests (LRTs). I don’t cover LRTs in this book, but they are quite handy things to know about.

88. A technical note. The way I’ve described the test pretends that the column totals are fixed (i.e., the researcher
intended to survey 87 robots and 93 humans) and the row totals are random (i.e., it just turned out that 28
people chose the puppy). To use the terminology frommymathematical statistics textbook (Hogg et al., 2005)
I should technically refer to this situation as a chi-square test of homogeneity and reserve the term chi-square
test of independence for the situation where both the row and column totals are random outcomes of the
experiment. In the initial drafts of this book that’s exactly what I did. However, it turns out that these two
tests are identical, and so I’ve collapsed them together.

89. Technically, 𝐸𝑖𝑗 here is an estimate, so I should probably write it ̂𝐸𝑖𝑗, but since no-one else does, I won’t
either. Now that we’ve figured out how to calculate the expected frequencies, it’s straightforward to define
a test statistic, following the exact same strategy that we used in the goodness-of-fit test. In fact, it’s pretty
much the same statistic. For a contingency table with r rows and c columns, the equation that defines our
𝑋2 statistic is:

𝑋2 =
𝑟

∑
𝑖=1

𝑐
∑
𝑗=1

(𝐸𝑖𝑗 − 𝑂𝑖𝑗)2

𝐸𝑖𝑗

The only difference is that I have to include two summation signs (i.e., ∑ ) to indicate that we’re summing
over both rows and columns.
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90. A problem many of us worry about in real life.

91. Yates (1934) suggested a simple fix, in which you redefine the goodness-of-fit statistic as:

𝜒2 = ∑
𝑖

(|𝐸𝑖 − 𝑂𝑖| − 0.5)2

𝐸𝑖

Basically, he just subtracts off 0.5 everywhere.

92. Mathematically, they’re very simple. To calculate the 𝜙 statistic, you just divide your𝑋2 value by the sample
size, and take the square root:

𝜙 = √ 𝑋2

𝑁
The idea here is that the 𝜙 statistic is supposed to range between 0 (no association at all) and 1 (perfect
association), but it doesn’t always do this when your contingency table is bigger than 2 × 2 , which is a total
pain. For bigger tables it’s actually possible to obtain 𝜙 > 1, which is pretty unsatisfactory. So, to correct for
this, people usually prefer to report the𝑉 statistic proposed by Cramer (1946). It’s a pretty simple adjustment
to𝜙. If you’ve got a contingency tablewith r rows and c columns, then define𝑘 = 𝑚𝑖𝑛(𝑟, 𝑐) to be the smaller
of the two values. If so, then Cramér’s 𝑉 statistic is:

𝑉 = √ 𝑋2

𝑁(𝑘 − 1)

93. This example is based on a joke article published in the Journal of Irreproducible Results

94. Not surprisingly, the Fisher exact test is motivated by Fisher’s interpretation of a 𝑝-value, not Neyman’s! See
Section 9.5.

Notes for chapter 11

95. Informal experimentation in my garden suggests that yes, it does. Australian natives are adapted to low
phosphorus levels relative to everywhere else on Earth, so if you’ve bought a house with a bunch of exotics
and you want to plant natives, keep them separate; nutrients to European plants are poison to Australian
ones.

96. In order to do this I had to change the measurement level for 𝑋 to ‘Continuous’, as during the opening /
import of the csv file jamovi made this a nominal level variable, which isn’t right for my analysis.

97. Adopting the notation from Section 7.5, a statistician might write this as:

𝑋 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇0, 𝜎2)

98. In other words, if the null hypothesis is true then the sampling distribution of the mean can be written as
follows:

�̄� ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇0, 𝑆𝐸(�̄�))

99. Again, see Section 4.5 if you’ve forgotten why this is true.

100. Actually this is too strong. Strictly speaking the z-test only requires that the sampling distribution of themean
be normally distributed. If the population is normal then it necessarily follows that the sampling distribution
of the mean is also normal. However, as we saw when talking about the central limit theorem, it’s quite
possible (even commonplace) for the sampling distribution to be normal even if the population distribution
itself is nonnormal. However, in light of the sheer ridiculousness of the assumption that the true standard
deviation is known, there really isn’t much point in going into details on this front!
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101. Well, sort of. As I understand the history, Gosset only provided a partial solution; the general solution to the
problem was provided by Sir Ronald Fisher.

102. More seriously, I tend to think the reverse is true. I get very suspicious of technical reports that fill their results
sections with nothing except the numbers. It might just be that I’m an arrogant jerk, but I often feel like an
author that makes no attempt to explain and interpret their analysis to the reader either doesn’t understand
it themselves, or is being a bit lazy. Your readers are smart, but not infinitely patient. Don’t annoy them if
you can help it.

103. A technical comment. In the same way that we can weaken the assumptions of the z-test so that we’re only
talking about the sampling distribution, we can weaken the 𝑡-test assumptions so that we don’t have to as-
sume normality of the population. However, for the 𝑡-test it’s trickier to do this. As before, we can replace
the assumption of population normality with an assumption that the sampling distribution of �̄� is normal.
However, remember that we’re also relying on a sample estimate of the standard deviation, and so we also
require the sampling distribution of �̂� to be chi-square. That makes things nastier, and this version is rarely
used in practice. Fortunately, if the population distribution is normal, then both of these two assumptions
are met.

104. Although it is the simplest, which is why I started with it.

105. A funny question almost always pops up at this point: what the heck is the population being referred to in
this case? Is it the set of students actually taking Dr Harpo’s class (all 33 of them)? The set of people who
might take the class (an unknown number of them)? Or something else? Does it matter which of these we
pick? It’s traditional in an introductory behavioural stats class to mumble a lot at this point, but since I get
asked this question every year by my students, I’ll give a brief answer. Technically yes, it does matter. If
you change your definition of what the “real-world” population actually is, then the sampling distribution
of your observed mean �̄� changes too. The 𝑡-test relies on an assumption that the observations are sampled
at random from an infinitely large population and, to the extent that real life isn’t like that, then the 𝑡-test can
be wrong. In practice, however, this isn’t usually a big deal. Even though the assumption is almost always
wrong, it doesn’t lead to a lot of pathological behaviour from the test, so we tend to just ignore it.

106. Mathematically, we can write this as:
𝑤1 = 𝑁1 − 1
𝑤2 = 𝑁2 − 1

Now that we’ve assigned weights to each sample we calculate the pooled estimate of the variance by taking
the weighted average of the two variance estimates, ̂𝑠𝑖𝑔𝑚𝑎2

1 and ̂𝑠𝑖𝑔𝑚𝑎2
2:

�̂�2
𝑝 = 𝑤1�̂�2

1 + 𝑤2�̂�2
2

𝑤1 + 𝑤2
Finally, we convert the pooled variance estimate to a pooled standard deviation estimate, by taking the square
root:

�̂�𝑝 = √ 𝑤1�̂�2
1 + 𝑤2�̂�2

2
𝑤1 + 𝑤2

And if youmentally substitute (𝑤1 = 𝑁1−1) and𝑤2 = 𝑁2−1 into this equation you get a very ugly looking
formula. A very ugly formula that actually seems to be the “standard”way of describing the pooled standard
deviation estimate. It’s not my favourite way of thinking about pooled standard deviations, however. I prefer
to think about it like this. Our data set actually corresponds to a set of 𝑁 observations which are sorted
into two groups. So let’s use the notation 𝑋𝑖𝑘 to referto the grade received by the i-th student in the k-th
tutorial group. That is, 𝑋11 is the grade received by the first student in Anastasia’s class, 𝑋21 is her second
student, and so on. And we have two separate group means �̄�1 and �̄�2, which we could “generically” refer
to using the notation �̄�𝑘, i.e., the mean grade for the k-th tutorial group. So far, so good. Now, since every
single student falls into one of the two tutorials, we can describe their deviation from the group mean as the
difference:

𝑋𝑖𝑘 − �̄�𝑘
So why not just use these deviations (i.e., the extent to which each student’s grade differs from the mean
grade in their tutorial)? Remember, a variance is just the average of a bunch of squared deviations, so let’s
do that. Mathematically, we could write it like this:

∑𝑖𝑘(𝑋𝑖𝑘 − �̄�𝑘)2

𝑁
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where the notation “∑𝑖𝑘” is a lazy way of saying “calculate a sum by looking at all students in all tutorials”,
since each “𝑖𝑘” corresponds to one student.𝑎 But, as we saw in Chapter 8, calculating the variance by dividing
by𝑁 produces a biased estimate of the population variance. And previously we needed to divide by (𝑁 −1)
to fix this. However, as Imentioned at the time, the reasonwhy this bias exists is because the variance estimate
relies on the sample mean, and to the extent that the sample mean isn’t equal to the population mean it can
systematically bias our estimate of the variance. But this time we’re relying on two sample means! Does this
mean that we’ve got more bias? Yes, yes it does. And does this mean we now need to divide by (𝑁 − 2)
instead of (𝑁 − 1), in order to calculate our pooled variance estimate? Why, yes:

�̂�2
𝑝 = ∑𝑖𝑘(𝑋𝑖𝑘 − �̄�𝑘)2

𝑁 − 2
Oh, and if you take the square root of this then you get �̂�𝑝, the pooled standard deviation estimate. In other
words, the pooled standard deviation calculation is nothing special. It’s not terribly different to the regular
standard deviation calculation. — 𝑎 A more correct notation will be introduced in Chapter 13.

107. As long as the two variables really do have the same standard deviation, then our estimate for the standard
error is:

𝑆𝐸(�̄�1 − �̄�2) = �̂�√ 1
𝑁1

+ 1
𝑁2

and our 𝑡-statistic is therefore:
𝑡 = �̄�1 − �̄�2

𝑆𝐸(�̄�1 − �̄�2)

108. Strictly speaking, it is the difference in the means that should be normally distributed, but if both groups
have normally distributed data then the difference in means will also be normally distributed. In practice,
the central limit theorem assures us that, generally, the distributions of the two sample means being tested
will themselves approach normal distributions as the sample sizes get large, regardless of the distributions
of the underlying data.

109. Well, I guess you can average apples and oranges, and what you end up with is a delicious fruit smoothie.
But no one really thinks that a fruit smoothie is a very good way to describe the original fruits, do they?

110. But you can still estimate the standard error of the difference between sample means, it just ends up looking
different:

𝑆𝐸(�̄�1 − �̄�2) = √ �̂�2
1

𝑁1
+ �̂�2

2
𝑁2

The reason why it’s calculated this way is beyond the scope of this book. What matters for our purposes is
that the 𝑡-statistic that comes out of the Welch 𝑡-test is actually somewhat different to the one that comes
from the Student 𝑡-test.

111. This design is very similar to the one that motivated the McNemar test (Section 10.7). This should be no
surprise. Both are standard repeated measures designs involving two measurements. The only difference is
that this time our outcome variable is interval scale (workingmemory capacity) rather than a binary, nominal
scale variable (a yes-or-no question).

112. At this point we have Drs Harpo, Chico and Zeppo. No prizes for guessing who Dr Groucho is.

113. They introduce a small correction by multiplying the usual value of 𝑑 by (𝑁−3)
(𝑁−2.25) .

114. If you are interested, you can look at how this was done in the chico2.omv file

115. This is a massive oversimplification.

116. Either that, or the Kolmogorov-Smirnov test, which is probably more traditional than the Shapiro-Wilk. Al-
though most things I’ve read seem to suggest Shapiro-Wilk is the better test of normality, the Kolomogorov
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Smirnov is a general purpose test of distributional equivalence that can be adapted to handle other kinds of
distribution tests. In jamovi the Shapiro-Wilk test is preferred.

117. The test statistic that it calculates is conventionally denoted as𝑊 , and it’s calculated as follows. First, we sort
the observations in order of increasing size, and let ̄𝑋1 be the smallest value in the sample,𝑋2 be the second
smallest and so on. Then the value of 𝑊 is given by:

𝑊 = (∑𝑁
𝑖=1 𝑎𝑖𝑋𝑖)2

∑𝑁
𝑖=1(𝑋𝑖 − �̄�)2

where �̄� is themean of the observations, and the𝑎𝑖 values are…mumble, mumble… something complicated
that is a bit beyond the scope of an introductory text.

118. Actually, there are two different versions of the test statistic that differ from each other by a constant value.
The version that I’ve described is the one that jamovi calculates.

Notes for chapter 12

119. I’ve noticed that in jamovi you can also specify an ‘ID’ variable type, but for our purposes it does not matter
how we specify the ID variable as we won’t be including it in any analyses.

120. Actually, even that table is more than I’d bother with. In practice most people pick one measure of central
tendency, and one measure of variability only.

121. The formula for the Pearson’s correlation coefficient can be written in several different ways. I think the
simplest way to write down the formula is to break it into two steps. Firstly, let’s introduce the idea of a
covariance. The covariance between two variables 𝑋 and 𝑌 is a generalisation of the notion of the variance
and is a mathematically simple way of describing the relationship between two variables that isn’t terribly
informative to humans:

𝐶𝑜𝑣(𝑋, 𝑌 ) = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�)(𝑌𝑖 − ̄𝑌 )

Because we’re multiplying (i.e., taking the “product” of) a quantity that depends on X by a quantity that
depends on Y and then averaging,𝑎 you can think of the formula for the covariance as an “average cross
product” between 𝑋 and 𝑌 . The covariance has the nice property that, if 𝑋 and 𝑌 are entirely unrelated,
then the covariance is exactly zero. If the relationship between them is positive (in the sense shown in Fig-
ure 12.4 then the covariance is also positive, and if the relationship is negative then the covariance is also
negative. In other words, the covariance captures the basic qualitative idea of correlation. Unfortunately,
the raw magnitude of the covariance isn’t easy to interpret as it depends on the units in which 𝑋 and 𝑌
are expressed and, worse yet, the actual units that the covariance itself is expressed in are really weird. For
instance, if 𝑋 refers to the dani.sleep variable (units: hours) and 𝑌 refers to the dani.grump variable (units:
grumps), then the units for their covariance are ℎ𝑜𝑢𝑟𝑠 × 𝑔𝑟𝑢𝑚𝑝𝑠. And I have no freaking idea what that
would even mean. The Pearson correlation coefficient r fixes this interpretation problem by standardising
the covariance, in pretty much the exact same way that the z-score standardises a raw score, by dividing by
the standard deviation. However, because we have two variables that contribute to the covariance, the stan-
dardisation only works if we divide by both standard deviations.𝑏 In other words, the correlation between𝑋
and 𝑌 can be written as follows:

𝑟𝑋𝑌 = 𝐶𝑜𝑣(𝑋, 𝑌 )
�̂�𝑋�̂�𝑌

—𝑎 Just like we sawwith the variance and the standard deviation, in practice we divide by𝑁 −1 rather than
𝑁 . 𝑏 This is an oversimplification, but it’ll do for our purposes.

122. Also sometimes written as 𝑦 = 𝑚𝑥 + 𝑐 where 𝑚 is the slope coefficient and 𝑐 is the intercept (constant)
coefficient:

̂𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖
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123. The 𝜖 symbol is the Greek letter epsilon. It’s traditional to use 𝜖𝑖 or 𝑒𝑖 to denote a residual:

𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖

which in turn means that we can write down the complete linear regression model as:

𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖 + 𝜖𝑖

124. Or at least, I’m assuming that it doesn’t help most people. But on the off chance that someone reading this is
a proper kung fu master of linear algebra (and to be fair, I always have a few of these people in my intro stats
class), it will help you to know that the solution to the estimation problem turns out to be �̂� = (𝑋′ 𝑋)−1𝑋′ 𝑦,
where �̂� is a vector containing the estimated regression coefficients,𝑋 is the “designmatrix” that contains the
predictor variables (plus an additional column containing all ones; strictly𝑋 is a matrix of the regressors, but
I haven’t discussed the distinction yet), and 𝑦 is a vector containing the outcome variable. For everyone else,
this isn’t exactly helpful and can be downright scary. However, since quite a few things in linear regression
can be written in linear algebra terms, you’ll see a bunch of footnotes like this one in this chapter. If you can
follow the maths in them, great. If not, ignore it.

125. The formula for the general case: The equation that I gave in the main text shows you what a multiple re-
gression model looks like when you include two predictors. Not surprisingly then, if you want more than
two predictors all you have to do is add more 𝑋 terms and more 𝑏 coefficients. In other words, if you have
𝐾 predictor variables in the model then the regression equation look like this:

𝑌𝑖 = 𝑏0 + (
𝐾

∑
𝑘=1

𝑏𝑘𝑋𝑖𝑘) + 𝜖𝑖

126. And by “sometimes” I mean “almost never”. In practice everyone just calls it “R-squared”.

127. The adjusted 𝑅2 value introduces a slight change to the calculation, as follows. For a regression model with
𝐾 predictors, fit to a data set containing 𝑁 observations, the adjusted 𝑅2 is:

adj.𝑅2 = 1 − ( 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

× 𝑁 − 1
𝑁 − 𝐾 − 1 )

128. Formally, our “null model” corresponds to the fairly trivial “regression” model in which we include 0 pre-
dictors and only include the intercept term 𝑏0: 𝐻0 ∶ 𝑌0 = 𝑏0 + 𝜖𝑖 If our regression model has 𝐾 predictors,
the “alternative model” is described using the usual formula for a multiple regression model:

𝐻1 ∶ 𝑌𝑖 = 𝑏0 + (
𝐾

∑
𝑘=1

𝑏𝑘𝑋𝑖𝑘) + 𝜖𝑖

How can we test these two hypotheses against each other? The trick is to understand that it’s possible to
divide up the total variance 𝑆𝑆𝑡𝑜𝑡 into the sum of the residual variance 𝑆𝑆𝑟𝑒𝑠 and the regression model
variance 𝑆𝑆𝑚𝑜𝑑. I’ll skip over the technicalities, since we’ll get to that later when we look at ANOVA in
Chapter 13. But just note that 𝑆𝑆𝑚𝑜𝑑 = 𝑆𝑆𝑡𝑜𝑡 − 𝑆𝑆𝑟𝑒𝑠 And we can convert the sums of squares into mean
squares by dividing by the degrees of freedom:

𝑀𝑆𝑚𝑜𝑑 = 𝑆𝑆𝑚𝑜𝑑
𝑑𝑓𝑚𝑜𝑑

𝑀𝑆𝑟𝑒𝑠 = 𝑆𝑆𝑟𝑒𝑠
𝑑𝑓𝑟𝑒𝑠

So, how many degrees of freedom do we have? As you might expect the df associated with the model is
closely tied to the number of predictors that we’ve included. In fact, it turns out that 𝑑𝑓𝑚𝑜𝑑 = 𝐾. For the
residuals the total degrees of freedom is 𝑑𝑓𝑟𝑒𝑠 = 𝑁 − 𝐾 − 1. Now that we’ve got our mean square values
we can calculate an 𝐹 -statistic like this:

𝐹 = 𝑀𝑆𝑚𝑜𝑑
𝑀𝑆𝑟𝑒𝑠

and the degrees of freedom associated with this are 𝐾 and 𝑁 − 𝐾 − 1.
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129. For advanced readers only. The vector of residuals is 𝜖 = 𝑦 − 𝑋�̂�. For K predictors plus the intercept,

the estimated residual variance is �̂�2 = 𝜖′ 𝜖
(𝑁−𝐾−1) . The estimated covariance matrix of the coefficients is

�̂�2(𝑋′ 𝑋)−1, the main diagonal of which is 𝑠𝑒(�̂�), our estimated standard errors.

130. Note that, although jamovi has done multiple tests here, it hasn’t done a Bonferroni correction or anything
(see Chapter 13). These are standard one-sample 𝑡-tests with a two-sided alternative. If you want to make
corrections for multiple tests, you need to do that yourself.

131. Fortunately, confidence intervals for the regression weights can be constructed in the usual fashion 𝐶𝐼(𝑏) =
�̂� ± (𝑡𝑐𝑟𝑖𝑡 × 𝑆𝐸(�̂�)) where 𝑠𝑒(�̂�) is the standard error of the regression coefficient, and 𝑡𝑐𝑟𝑖𝑡 is the relevant
critical value of the appropriate 𝑡-distribution. For instance, if it’s a 95% confidence interval that we want,
then the critical value is the 97.5th quantile of a 𝑡-distribution with 𝑁 − 𝐾 − 1 degrees of freedom. In other
words, this is basically the same approach to calculating confidence intervals that we’ve used throughout.

132. Strictly, you standardise all the regressors. That is, every “thing” that has a regression coefficient associated
with it in the model. For the regression models that I’ve talked about so far, each predictor variable maps
onto exactly one regressor, and vice versa. However, that’s not actually true in general and we’ll see some
examples of this later in Chapter 14. But, for now we don’t need to care too much about this distinction.

133. Leaving aside the interpretation issues, let’s look at how it’s calculated. What you could do is standardise all
the variables yourself and then run a regression, but there’s a much simpler way to do it. As it turns out, the
𝛽 coefficient for a predictor𝑋 and outcome 𝑌 has a very simple formula, namely 𝛽𝑋 = 𝑏𝑋 × 𝜎𝑋

𝜎𝑌
where 𝜎𝑋

is the standard deviation of the predictor, and 𝜎𝑌 is the standard deviation of the outcome variable 𝑌 . This
makes matters a lot simpler.

134. The way we calculate these is to divide the ordinary residual by an estimate of the (population) standard
deviation of these residuals. For technical reasons, the formula for this is:

𝜖′
𝑖 = 𝜖𝑖

�̂�√1 − ℎ𝑖

where �̂� in this context is the estimated population standard deviation of the ordinary residuals, and ℎ𝑖 is
the “hat value” of the 𝑖th observation. I haven’t explained hat values to you yet, so this won’t make a lot of
sense. For now, it’s enough to interpret the standardised residuals as if we’d converted the ordinary residuals
to z-scores.

135. The formula for doing the calculations this time is subtly different 𝜖∗
𝑖 = 𝜖𝑖

�̂�(−𝑖)√1−ℎ𝑖
Notice that our estimate

of the standard deviation here is written �̂�(−𝑖). What this corresponds to is the estimate of the residual
standard deviation that you would have obtained if you just deleted the 𝑖th observation from the data set.
This sounds like the sort of thing that would be a nightmare to calculate, since it seems to be saying that you
have to run 𝑁 new regression models (even a modern computer might grumble a bit at that, especially if
you’ve got a large data set). Fortunately, this standard deviation estimate is actually given by the following

equation: �̂�(−𝑖) = �̂�√ 𝑁−𝐾−1−𝜖′
𝑖

2

𝑁−𝐾−2 .

136. 𝑓(𝑥, 𝜆) = 𝑥𝜆−1
𝜆 for all values of 𝜆 except 𝜆 = 0. When 𝜆 = 0 we just take the natural logarithm (i.e., ln(𝑥).

137. In jamovi, you can compute this new variable using the formula ‘SQRT(ABS(Residuals))’.

138. It’s a bit beyond the scope of this chapter to talk about how to deal with violations of homogeneity of variance,
but I’ll give you a quick sense of what you need to consider. The main thing to worry about, if homogeneity
of variance is violated, is that the standard error estimates associated with the regression coefficients are no
longer entirely reliable, and so your 𝑡-tests for the coefficients aren’t quite right either. A simple fix to the
problem is to make use of a “heteroscedasticity corrected covariance matrix” when estimating the standard
errors. These are often called sandwich estimators, and these can be estimated in 𝑅 (but not directly in
jamovi).
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139. The formula for the𝑘-th VIF is: 𝑉 𝐼𝐹𝑘 = 1
1−𝑅2

(−𝑘)
where𝑅2

(−𝑘) refers to R-squared value youwould get if you

ran a regression using 𝑋𝑘 as the outcome variable, and all the other 𝑋 variables as the predictors. The idea
here is that 𝑅2

(−𝑘) is a very good measure of the extent to which 𝑋𝑘 is correlated with all the other variables
in the model. Better yet, the square root of the VIF is pretty interpretable: it tells you how much wider the
confidence interval for the corresponding coefficient 𝑏𝑘 is, relative to what you would have expected if the
predictors are all nice and uncorrelated with one another.

140. Again, for the linear algebra fanatics: the “hat matrix” is defined to be that matrix 𝐻 that converts the vector
of observed values 𝑦 into a vector of predicted values ̂𝑦, such that ̂𝑦 = 𝐻𝑦. The name comes from the fact
that this is the matrix that “puts a hat on y”. The hat value of the i-th observation is the i-th diagonal element
of this matrix (so technically I should be writing it as ℎ𝑖𝑖 rather than ℎ𝑖). And here’s how it’s calculated:
𝐻 = 𝑋(𝑋′ 𝑋)1𝑋′ .

141. 𝐷𝑖 = 𝜖∗
𝑖

2

𝐾+1 × ℎ𝑖
1−ℎ𝑖

Notice that this is a multiplication of something that measures the outlier-ness of the
observation (the bit on the left), and something that measures the leverage of the observation (the bit on the
right).

142. In jamovi you can save the Cook’s distance values to the data set, then draw a boxplot of the Cook’s distance
values to identify the specific outliers. Or you could use a more powerful regression program such as the
“car” package in R which has more options for advanced regression diagnostic analysis.

143. In the context of a linear regression model (and ignoring terms that don’t depend on the model in any way!),
the AIC for a model that has 𝐾 predictor variables plus an intercept is 𝐴𝐼𝐶 = 𝑆𝑆𝑟𝑒𝑠

�̂�2 + 2𝐾.

144. While I’m on this topic I should point out that the empirical evidence suggests that BIC is a better criterion
than AIC. In most simulation studies that I’ve seen, BIC does a much better job of selecting the correct model.

145. We can fit both models to the data and obtain a residual sum of squares for both models. I’ll denote these
as: 𝑆𝑆(1)

𝑟𝑒𝑠 and 𝑆𝑆(2)
𝑟𝑒𝑠 respectively. The superscripting here just indicates which model we’re talking about.

Then our 𝐹 statistic is:

𝐹 =
𝑆𝑆(1)

𝑟𝑒𝑠−𝑆𝑆(2)
𝑟𝑒𝑠

𝑘
𝑆𝑆2𝑟𝑒𝑠
𝑁−𝑝−1

where 𝑁 is the number of observations, 𝑝 is the number of predictors in the full model (not including the
intercept), and 𝑘 is the difference in the number of parameters between the two models.𝑑 The degrees of
freedom here are 𝑘 and𝑁 −𝑝−1. Note that it’s often more convenient to think about the difference between
those two 𝑆𝑆 values as a sum of squares in its own right. That is:

𝑆𝑆Δ = 𝑆𝑆(1)
𝑟𝑒𝑠 − 𝑆𝑆(2)

𝑟𝑒𝑠

The reasonwhy this is helpful is that we can express𝑆𝑆Δ as ameasure of the extent to which the twomodels
make different predictions about the the outcome variable. Specifically:

𝑆𝑆Δ = ∑
𝑖

( ̂𝑦(2)
𝑖 − ̂𝑦(1)

𝑖 )2

where ̂𝑦𝑖(1) is the predicted value for 𝑦𝑖 according to model 𝑀1 and ̂𝑦𝑖(2) is the predicted value for 𝑦𝑖 ac-
cording to model 𝑀2. — 𝑑 It’s worth noting in passing that this same 𝐹 statistic can be used to test a much
broader range of hypotheses than those that I’m mentioning here. Very briefly, notice that the nested model
𝑀1 corresponds to the full model 𝑀2 when we constrain some of the regression coefficients to zero. It is
sometimes useful to construct sub-models by placing other kinds of constraints on the regression coefficients.
For instance, maybe two different coefficients might have to sum to zero. You can construct hypothesis tests
for those kind of constraints too, but it is somewhat more complicated and the sampling distribution for 𝐹
can end up being something known as the non-central𝐹 -distribution, which is way beyond the scope of this
book! All I want to do is alert you to this possibility.
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Notes for chapter 13

146. When all groups have the same number of observations, the experimental design is said to be “balanced”.
Balance isn’t such a big deal for one-way ANOVA, which is the topic of this chapter. It becomes more impor-
tant when you start doing more complicated ANOVAs.

147. So the formula for the total sum of squares is almost identical to the formula for the variance:

𝑆𝑆𝑡𝑜𝑡 =
𝐺

∑
𝑘=1

𝑁𝑘
∑
𝑖=1

(𝑌𝑖𝑘 − ̄𝑌 )2

148. One very nice thing about the total sum of squares is that we can break it up into two different kinds of
variation First, we can talk about the within-group sum of squares, in which we look to see how different
each individual person is from their own group mean:

𝑆𝑆𝑤 =
𝐺

∑
𝑘=1

𝑁𝑘
∑
𝑖=1

(𝑌𝑖𝑘 − ̄𝑌𝑘)2

where ̄𝑌𝑘 is a groupmean. In our example, ̄𝑌𝑘 would be the averagemood change experienced by those peo-
ple given the k-th drug. So, instead of comparing individuals to the average of all people in the experiment,
we’re only comparing them to those people in the the same group. As a consequence, you’d expect the value
of 𝑆𝑆𝑤 to be smaller than the total sum of squares, because it’s completely ignoring any group differences,
i.e., whether the drugs will have different effects on people’s moods.

149. In order to quantify the extent of this variation, what we do is calculate the between-group sum of squares:

𝑆𝑆𝑏 =
𝐺

∑
𝑘=1

𝑁𝑘
∑
𝑖=1

( ̄𝑌𝑘 − ̄𝑌 )2

=
𝐺

∑
𝑘=1

𝑁𝑘( ̄𝑌𝑘 − ̄𝑌 )2

150. 𝑆𝑆𝑤 is also referred to in an independent ANOVA as the error variance, or 𝑆𝑆𝑒𝑟𝑟𝑜𝑟.

151. At a fundamental level ANOVA is a competition between two different statistical models, 𝐻0 and𝐻1. When
I described the null and alternative hypotheses at the start of the section, I was a little imprecise about what
thesemodels actually are. I’ll remedy that now, though you probablywon’t likeme for doing so. If you recall,
our null hypothesis was that all of the group means are identical to one another. If so, then a natural way to
think about the outcome variable 𝑌𝑖𝑘 is to describe individual scores in terms of a single population mean
𝜇, plus the deviation from that population mean. This deviation is usually denoted 𝜖𝑖𝑘 and is traditionally
called the error or residual associated with that observation. Be careful though. Just like we saw with the
word “significant”, the word “error” has a technical meaning in statistics that isn’t quite the same as its
everyday English definition. In everyday language, “error” implies a mistake of some kind, but in statistics
it doesn’t (or at least, not necessarily). With that in mind, the word “residual” is a better term than the word
“error”. In statistics both words mean “leftover variability”, that is “stuff” that the model can’t explain. In
any case, here’s what the null hypothesis looks like when we write it as a statistical model:

𝑌𝑖𝑘 = 𝜇 + 𝜖𝑖𝑘

where we make the assumption (discussed later) that the residual values 𝜖𝑖𝑘 are normally distributed, with
mean 0 and a standard deviation 𝜎 that is the same for all groups. To use the notation that we introduced in
the Introduction to probability we would write this assumption like this:

𝜖𝑖𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)
What about the alternative hypothesis, 𝐻1? The only difference between the null hypothesis and the alter-
native hypothesis is that we allow each group to have a different population mean. So, if we let 𝜇𝑘 denote
the population mean for the k-th group in our experiment, then the statistical model corresponding to𝐻1 is:

𝑌𝑖𝑘 = 𝜇𝑘 + 𝜖𝑖𝑘
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where, once again, we assume that the error terms are normally distributed with mean 0 and standard de-
viation 𝜎. That is, the alternative hypothesis also assumes that 𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) Okay, now that we’ve
described the statistical models underpinning 𝐻0 and 𝐻1 in more detail, it’s now pretty straightforward to
say what the mean square values are measuring, and what this means for the interpretation of 𝐹 . I won’t
bore you with the proof of this but it turns out that the within-groups mean square, 𝑀𝑆𝑤, can be viewed
as an estimator of the error variance 𝜎2 . The between-groups mean square 𝑀𝑆𝑏 is also an estimator, but
what it estimates is the error variance plus a quantity that depends on the true differences among the group
means. If we call this quantity 𝑄, then we can see that the 𝐹 statistic is basically:𝑎

𝐹 = �̂� + �̂�2

�̂�2

where the true value 𝑄 = 0 if the null hypothesis is true, and 𝑄 < 0 if the alternative hypothesis is true
(e.g., Hays (1994), ch. 10). Therefore, at a bare minimum the 𝐹 value must be larger than 1 to have any chance
of rejecting the null hypothesis. Note that this doesn’t mean that it’s impossible to get an𝐹 -value less than 1.
What it means is that if the null hypothesis is true the sampling distribution of the 𝐹 -ratio has a mean of 1,𝑏
and so we need to see 𝐹 -values larger than 1 in order to safely reject the null. To be a bit more precise about
the sampling distribution, notice that if the null hypothesis is true, both 𝑀𝑆𝑏 and 𝑀𝑆𝑤 are estimators of
the variance of the residuals 𝜖𝑖𝑘. If those residuals are normally distributed, then you might suspect that the
estimate of the variance of 𝜖𝑖𝑘 is chi-square distributed, because (as discussed in the Section 7.6) that’s what a
chi-square distribution is: it’s what you get when you square a bunch of normally-distributed things and add
them up. And since the𝐹 distribution is (again, by definition) what you get when you take the ratio between
two things that are 𝜒2 distributed, we have our sampling distribution. Obviously, I’m glossing over a whole
lot of stuff when I say this, but in broad terms, this really is where our sampling distribution comes from. —
𝑎If you read ahead to Chapter 14 and look at how the “treatment effect” at level 𝑘 of a factor is defined in
terms of the 𝛼𝑘 values (see [Factorial ANOVA 2: balanced designs, interactions allowed]), it turns out that

𝑄 refers to a weighted mean of the squared treatment effects, 𝑄 = (∑𝐺
𝑘=1 𝑁𝑘𝛼2

𝑘)
(𝐺−1) . — 𝑏Or, if we want to be

sticklers for accuracy, 1 + 2
𝑑𝑓2−2 .

152. Or, to be precise, party like “it’s 1899 and we’ve got no friends and nothing better to do with our time than
do some calculations that wouldn’t have made any sense in 1899 because ANOVA didn’t exist until about the
1920s”.

153. In the Excel clinicaltrial-anova.xls the value for 𝑆𝑆𝑏 worked out to be very slightly different, 3.45, than that
shown in the text above (rounding errors!).

154. The jamovi results are more accurate than the ones in the text above, due to rounding errors.

155. https://daniellakens.blogspot.com/2015/06/why-you-should-use-omega-squared.html

156. If you do have some theoretical basis for wanting to investigate some comparisons but not others, it’s a differ-
ent story. In those circumstances you’re not really running “post hoc” analyses at all, you’remaking “planned
comparisons”. I do talk about this situation later in the book - Section 14.9, but for now I want to keep things
simple.

157. It’s worth noting in passing that not all adjustment methods try to do this. What I’ve described here is an
approach for controlling “family wise type I error rate”. However, there are other post hoc tests that seek to
control the “false discovery rate”, which is a somewhat different thing.

158. If you remember back to A worked example, which I hope you at least skimmed even if you didn’t read the
whole thing, I described the statistical models underpinning ANOVA in this way:

𝐻0 ∶ 𝑌𝑖𝑘 = 𝜇 + 𝜖𝑖𝑘

𝐻1 ∶ 𝑌𝑖𝑘 = 𝜇𝑘 + 𝜖𝑖𝑘
In these equations 𝜇 refers to a single grand population mean which is the same for all groups, and 𝜇k is the
population mean for the k-th group. Up to this point we’ve been mostly interested in whether our data are
best described in terms of a single grand mean (the null hypothesis) or in terms of different group-specific
means (the alternative hypothesis). This makes sense, of course, as that’s actually the important research
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question! However, all of our testing procedures have, implicitly, relied on a specific assumption about the
residuals, 𝜖_𝑖𝑘, namely that:

𝜖𝑖𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)
None of the maths works properly without this bit. Or, to be precise, you can still do all the calculations and
you’ll end up with an 𝐹 -statistic, but you have no guarantee that this 𝐹 -statistic actually measures what you
think it’s measuring, and so any conclusions that you might draw on the basis of the 𝐹 -test might be wrong.

159. The Levene test is shockingly simple. Suppose we have our outcome variable 𝑌𝑖𝑘. All we do is define a new
variable, which I’ll call 𝑍𝑖𝑘, corresponding to the absolute deviation from the group mean:

𝑍𝑖𝑘 = 𝑌𝑖𝑘 − ̄𝑌𝑘
Okay, what good does this do us? Well, let’s take a moment to think about what 𝑍𝑖𝑘 actually is and what
we’re trying to test. The value of 𝑍𝑖𝑘 is a measure of how the 𝑖-th observation in the 𝑘-th group deviates
from its groupmean. And our null hypothesis is that all groups have the same variance, i.e., the same overall
deviations from the group means! So the null hypothesis in a Levene test is that the population means of
𝑍 are identical for all groups. Hmm. So what we need now is a statistical test of the null hypothesis that
all group means are identical. Where have we seen that before? Oh right, that’s what ANOVA is, and so all
that the Levene test does is run an ANOVA on the new variable 𝑍𝑖𝑘. What about the Brown-Forsythe test?
Does that do anything particularly different? Nope. The only change from the Levene test is that it constructs
the transformed variable 𝑍 in a slightly different way, using deviations from the group medians rather than
deviations from the group means. That is, for the Brown-Forsythe test:

𝑍𝑖𝑘 = 𝑌𝑖𝑘 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑘(𝑌 )
where 𝑚𝑒𝑑𝑖𝑎𝑛𝑘(𝑌 ) is the median for group 𝑘.

160. So let’s let 𝑅_𝑖𝑘 refer to the ranking given to the 𝑖th member of the 𝑘th group. Now, let’s calculate �̄�𝑘, the
average rank given to observations in the 𝑘th group:

�̄�𝑘 = 1
𝑁𝑘

∑
𝑖

𝑅𝑖𝑘

and let’s also calculate �̄�, the grand mean rank:

�̄� = 1
𝑁 ∑

𝑖
∑

𝑘
𝑅𝑖𝑘

Now that we’ve done this, we can calculate the squared deviations from the grand mean rank �̄�. When
we do this for the individual scores, i.e., if we calculate (𝑅𝑖𝑘 − �̄�)2 , what we have is a “nonparametric”
measure of how far the 𝑖𝑘-th observation deviates from the grandmean rank. Whenwe calculate the squared
deviation of the group means from the grand means, i.e., if we calculate (𝑅𝑖𝑘 − �̄�)2, then what we have is a
nonparametric measure of howmuch the group deviates from the grandmean rank. With this in mind, we’ll
follow the same logic that we did with ANOVA and define our ranked sums of squares measures, much like
we did earlier. First, we have our “total ranked sums of squares”:

𝑅𝑆𝑆𝑡𝑜𝑡 = ∑
𝑘

∑
𝑖

(𝑅𝑖𝑘 − �̄�)2

and we can define the “between groups ranked sums of squares” like this:

𝑅𝑆𝑆𝑏 = ∑ 𝑘 ∑
𝑖

(�̄�𝑘 − �̄�)2

= ∑
𝑘

𝑁𝑘(�̄�𝑘 − �̄�)2

So, if the null hypothesis is true and there are no true group differences at all, you’d expect the between group
rank sums 𝑅𝑆𝑆𝑏 to be very small, much smaller than the total rank sums 𝑅𝑆𝑆𝑡𝑜𝑡. Qualitatively this is very
much the same as what we foundwhen wewent about constructing the ANOVA𝐹 -statistic, but for technical
reasons the Kruskal-Wallis test statistic, usually denoted 𝐾, is constructed in a slightly different way:

𝐾 = (𝑁 − 1) × 𝑅𝑆𝑆𝑏
𝑅𝑆𝑆𝑡𝑜𝑡

and if the null hypothesis is true, then the sampling distribution of𝐾 is approximately chi-square with𝐺−1
degrees of freedom (where 𝐺 is the number of groups). The larger the value of 𝐾, the less consistent the
data are with the null hypothesis, so this is a one-sided test. We reject 𝐻0 when 𝐾 is sufficiently large.
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161. However, from a purely mathematical perspective it’s needlessly complicated. I won’t show you the deriva-
tion, but you can use a bit of algebraic jiggery-pokery𝑎 to show that the equation for 𝐾 can be:

𝐾 = 12
𝑁(𝑁 − 1) ∑

𝑘
𝑁𝑘�̄�2

𝑘 − 3(𝑁 + 1)

It’s this last equation that you sometimes see given for 𝐾. This is way easier to calculate than the version
I described in the previous section, but it’s just that it’s totally meaningless to actual humans. It’s probably
best to think of 𝐾 the way I described it earlier, as an analogue of ANOVA based on ranks. But keep in mind
that the test statistic that gets calculated ends up with a rather different look to it than the one we used for
our original ANOVA. — 𝑎A technical term.

162. More to the point, in the mathematical notation I introduced above, this is telling us that 𝑓3 = 2. Yay. So,
now that we know this, the tie correction factor (TCF) is:

𝑇 𝐶𝐹 = 1 −
∑𝑗 𝑓3

𝑗 − 𝑓𝑗
𝑁3 − 𝑁

The tie-corrected value of the Kruskal-Wallis statistic is obtained by dividing the value of 𝐾 by this quantity.
It is this tie-corrected version that jamovi calculates.

163. (𝑛 − 𝑘): (number of subjects - number of groups)

164. As with all of the chapters in this book, there are quite a few different sources that I’ve relied upon, but the
one stand-out text that I’ve been most heavily influenced by is Sahai & Ageel (2000). It’s not a good book
for beginners, but it’s an excellent book for more advanced readers who are interested in understanding the
mathematics behind ANOVA.

Notes for chapter 14

165. The nice thing about the subscript notation is that it generalises nicely. If our experiment had involved a third
factor, then we could just add a third subscript. In principle, the notation extends to as many factors as you
might care to include, but in this book we’ll rarely consider analyses involving more than two factors, and
never more than three.

166. Technically, marginalising isn’t quite identical to a regular mean. It’s a weighted average where you take into
account the frequency of the different events that you’re averaging over. However, in a balanced design, all
of our cell frequencies are equal by definition so the two are equivalent. We’ll discuss unbalanced designs
later, and when we do so you’ll see that all of our calculations become a real headache. But let’s ignore this
for now.

167. NB There are some rounding errors here, the value of the mean square, to 5 decimal places, is 1.72667. And
the value of the residualmean square to 5 decimal places, is 0.05444. jamovi actually usesmanymore decimal
places in its calculations, but the figures shown in the results tables are rounded for clarity. Though you can
change the number of decimal places displayed by jamovi if you want.

168. Now thatwe’ve got our notation straight, we can compute the sumof squares values for each of the two factors
in a relatively familiar way. For Factor A, our between group sum of squares is calculated by assessing the
extent towhich the (row)marginal means ̄𝑌1., ̄𝑌2. etc, are different from the grandmean ̄𝑌.. Wedo this in the
same way that we did for one-way ANOVA: calculate the sum of squared difference between the ̄𝑌𝑖. values
and the ̄𝑌.. values. Specifically, if there are 𝑁 people in each group, then we calculate this:

𝑆𝑆𝐴 = (𝑁 × 𝐶)
𝑅

∑
𝑟=1

( ̄𝑌𝑟. − ̄𝑌..)2

As with one-way ANOVA, the most interesting𝑎 part of this formula is the bit, which corresponds to the
squared deviation associated with level 𝑟. All that this formula does is calculate this squared deviation for
all 𝑅 levels of the factor, add them up, and then multiply the result by 𝑁 × 𝐶. The reason for this last part
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is that there are multiple cells in our design that have level 𝑟 on Factor A. In fact, there are 𝐶 of them, one
corresponding to each possible level of Factor B. For instance, in our example there are two different cells in
the design corresponding to the anxifree drug: one for people with no.therapy and one for the CBT group.
Not only that, within each of these cells there are 𝑁 observations. So, if we want to convert our 𝑆𝑆 value
into a quantity that calculates the between groups sum of squares on a “per observation” basis, we have to
multiply by 𝑁 × 𝐶. The formula for Factor B is of course the same thing, just with some subscripts shuffled
around:

𝑆𝑆𝐵 = (𝑁 × 𝑅)
𝐶

∑
𝑐=1

( ̄𝑌.𝑐 − ̄𝑌..)2

Now that we have these formulas we can check them against the jamovi output from the earlier section.
Once again, a dedicated spreadsheet programme is helpful for these sorts of calculations, so please have a go
yourself. You can also take a look at the version I did in Excel in the file clinicaltrial_factorialanova.xls. First,
let’s calculate the sum of squares associated with the main effect of drug. There are a total of 𝑁 = 3 people
in each group and 𝐶 = 2 different types of therapy. Or, to put it another way, there are 3 × 2 = 6 people
who received any particular drug. When we do these calculations in a spreadsheet programme, we get a
value of 3.45 for the sum of squares associated with the main effect of drug. Not surprisingly, this is the
same number that you get when you look up the 𝑆𝑆 value for the drugs factor in the ANOVA table that I
presented earlier, in Figure 14.3. We can repeat the same kind of calculation for the effect of therapy. Again
there are 𝑁 = 3 people in each group, but since there are 𝑅 = 3 different drugs, this time around we note
that there are 3 × 3 = 9 people who received CBT and an additional 9 people who received the placebo. So
our calculation in this case gives us a value of 0.47 for the sum of squares associated with the main effect
of therapy. Once again, we are not surprised to see that our calculations are identical to the ANOVA output
in Figure 14.3. So that’s how you calculate the 𝑆𝑆 values for the two main effects. These 𝑆𝑆 values are
analogous to the between group sum of squares values that we calculated when doing one-way ANOVA
in Chapter 13. However, it’s not a good idea to think of them as between groups 𝑆𝑆 values anymore, just
because we have two different grouping variables and it’s easy to get confused. In order to construct an 𝐹
test, however, we also need to calculate the within groups sum of squares. In keeping with the terminology
that we used in Chapter 12 and the terminology that jamovi uses when printing out the ANOVA table, I’ll
start referring to the within groups 𝑆𝑆 value as the residual sum of squares 𝑆𝑆𝑅. The easiest way to think
about the residual 𝑆𝑆 values in this context, I think, is to think of it as the leftover variation in the outcome
variable after you take into account the differences in the marginal means (i.e., after you remove 𝑆𝑆𝐴 and
𝑆𝑆𝐵). What I mean by that is we can start by calculating the total sum of squares, which I’ll label 𝑆𝑆𝑇 . The
formula for this is pretty much the same as it was for one-way ANOVA. We take the difference between each
observation 𝑌𝑟𝑐𝑖 and the grand mean ̂𝑌.., square the differences, and add them all:

𝑆𝑆𝑇 =
𝑅

∑
𝑟=1

𝐶
∑
𝑐=1

𝑁
∑
𝑖=1

(𝑌𝑟𝑐𝑖 − ̄𝑌..)2

The “triple summation” here looks more complicated than it is. In the first two summations, we’re summing
across all levels of Factor A (i.e., over all possible rows r in our table) and across all levels of Factor B (i.e.,
all possible columns 𝑐). Each rc combination corresponds to a single group and each group contains 𝑁
people, so we have to sum across all those people (i.e., all 𝑖 values) too. In other words, all we’re doing
here is summing across all observations in the data set (i.e., all possible 𝑟𝑐𝑖 combinations). At this point, we
know the total variability of the outcome variable 𝑆𝑆𝑇 , and we know how much of that variability can be
attributed to Factor A (𝑆𝑆𝐴) and how much of it can be attributed to Factor B (𝑆𝑆𝐵). The residual sum of
squares is thus defined to be the variability in 𝑌 that can’t be attributed to either of our two factors (or their
interaction if you also calculate the interaction effect, which is the default in jamovi). In other words:

𝑆𝑆𝑅 = 𝑆𝑆𝑇 − (𝑆𝑆𝐴 + 𝑆𝑆𝐵)
Of course, there is a formula that you can use to calculate the residual 𝑆𝑆 directly, but I think that it makes
more conceptual sense to think of it like this. The whole point of calling it a residual is that it’s the leftover
variation, and the formula above makes that clear. I should also note that, in keeping with the terminology
used in the regression chapter, it is commonplace to refer to 𝑆𝑆𝐴 + 𝑆𝑆𝐵 as the variance attributable to the
“ANOVA model”, denoted 𝑆𝑆𝑀 , and so we often say that the total sum of squares is equal to the model
sum of squares plus the residual sum of squares. Later on in this chapter we’ll see that this isn’t just a surface
similarity: ANOVA and regression are actually the same thing under the hood. In any case, it’s probably
worth taking a moment to check that we can calculate 𝑆𝑆𝑅 using this formula and verify that we do obtain
the same answer that jamovi produces in its ANOVA table. The calculations are pretty straightforward when
done in a spreadsheet (see the clinicaltrial_factorialanova.xls file). — 𝑎English translation: “least tedious”.

169. As a consequence, the way that the idea of an interaction effect is formalised in terms of null and alternative
hypotheses is slightly difficult, and I’m guessing that a lot of readers of this book probably won’t be all that
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interested. Even so, I’ll try to give the basic idea here. To start with, we need to be a little more explicit
about our main effects. Consider the main effect of Factor A (drug in our running example). We originally
formulated this in terms of the null hypothesis that the two marginal means 𝜇𝑟. are all equal to each other.
Obviously, if all of these are equal to each other, then they must also be equal to the grand mean 𝜇.. as well,
right? So what we can do is define the effect of Factor A at level 𝑟 to be equal to the difference between the
marginal mean 𝜇𝑟. and the grand mean 𝜇... Let’s denote this effect by 𝛼𝑟, and note that:

𝛼𝑟 = 𝜇𝑟. − 𝜇..

Now, by definition all of the𝛼𝑟 values must sum to zero, for the same reason that the average of the marginal
means 𝜇𝑐 must be the grand mean 𝜇... We can similarly define the effect of Factor B at level 𝑖 to be the
difference between the column marginal mean 𝜇.𝑐 and the grand mean 𝜇..:

𝛽𝑐 = 𝜇.𝑐 − 𝜇..

and once again, these 𝛽𝑐 values must sum to zero. The reason that statisticians sometimes like to talk about
the main effects in terms of these 𝛼𝑟 and 𝛽𝑐 values is that it allows them to be precise about what it means to
say that there is no interaction effect. If there is no interaction at all, then these𝛼𝑟 and𝛽𝑐 values will perfectly
describe the group means 𝜇𝑟𝑐. Specifically, it means that:

𝜇𝑟𝑐 = 𝜇.. + 𝛼𝑟 + 𝛽𝑐

That is, there’s nothing special about the group means that you couldn’t predict perfectly by knowing all the
marginal means. And that’s our null hypothesis, right there. The alternative hypothesis is that:

𝜇𝑟𝑐 ≠ 𝜇.. + 𝛼𝑟 + 𝛽𝑐

for at least one group 𝑟𝑐 in our table. However, statisticians often like to write this slightly differently. They’ll
usually define the specific interaction associated with group 𝑟𝑐 to be some number, awkwardly referred to
as (𝛼𝛽)𝑟𝑐, and then they will say that the alternative hypothesis is that:

𝜇𝑟𝑐 = 𝜇.. + 𝛼𝑟 + 𝛽𝑐 + (𝛼𝛽)𝑟𝑐

where (𝛼𝛽)𝑟𝑐 is non-zero for at least one group. This notation is kind of ugly to look at, but it is handy as
we’ll see when discussing how to calculate the sum of squares. How should we calculate the sum of squares
for the interaction terms, 𝑆𝑆𝐴∶𝐵? Well, first off, it helps to notice how we have just defined the interaction
effect in terms of the extent to which the actual group means differ from what you’d expect by just looking
at the marginal means. Of course, all of those formulas refer to population parameters rather than sample
statistics, so we don’t actually know what they are. However, we can estimate them by using sample means
in place of population means. So for Factor A, a good way to estimate the main effect at level 𝑟 is as the
difference between the sample marginal mean ̄𝑌𝑟𝑐 and the sample grand mean ̄𝑌... That is, we would use
this as our estimate of the effect:

�̂�𝑟 = 𝑏𝑎𝑟𝑌𝑟. − ̄𝑌..
Similarly, our estimate of the main effect of Factor B at level 𝑐 can be defined as:

̂𝛽𝑐 = ̂𝑌.𝑐 − ̄𝑌..

Now, if you go back to the formulas that I used to describe the 𝑆𝑆 values for the two main effects, you’ll
notice that these effect terms are exactly the quantities that we were squaring and summing! So, what’s the
analog of this for interaction terms? The answer to this can be found by first rearranging the formula for the
group means 𝜇𝑟𝑐 under the alternative hypothesis, so that we get this:

(𝛼𝛽)𝑟𝑐 = 𝜇𝑟𝑐 − 𝜇.. − 𝛼𝑟 − 𝛽𝑐
= 𝜇𝑟𝑐 − 𝜇.. − (𝜇𝑟. − 𝜇..) − (𝜇.𝑐 − 𝜇..)
= 𝜇𝑟𝑐 − 𝜇𝑟. − 𝜇.𝑐 + 𝜇..

So, once again if we substitute our sample statistics in place of the population means, we get the following as
our estimate of the interaction effect for group 𝑟𝑐, which is:

( ̂𝛼𝛽)𝑟𝑐 = ̄𝑌𝑟𝑐 − ̂𝑌𝑟. − ̄𝑌.𝑐 + ̄𝑌..

Now all we have to do is sum all of these estimates across all 𝑅 levels of Factor A and all 𝐶 levels of Factor
B, and we obtain the following formula for the sum of squares associated with the interaction as a whole:

𝑆𝑆𝐴∶𝐵 = 𝑁
𝑅

∑
𝑟=1

𝐶
∑
𝑐=1

( ̄𝑌𝑟𝑐 − ̄𝑌𝑟. − ̄𝑌.𝑐 + ̄𝑌..)2
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where wemultiply by𝑁 because there are𝑁 observations in each of the groups, andwewant our𝑆𝑆 values
to reflect the variation among observations accounted for by the interaction, not the variation among groups.
Now that we have a formula for calculating 𝑆𝑆𝐴∶𝐵, it’s important to recognise that the interaction term is
part of the model (of course), so the total sum of squares associated with the model, 𝑆𝑆𝑀 , is now equal
to the sum of the three relevant 𝑆𝑆 values, 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴∶𝐵. The residual sum of squares 𝑆𝑆𝑅 is
still defined as the leftover variation, namely 𝑆𝑆𝑇 − 𝑆𝑆𝑀 , but now that we have the interaction term this
becomes:

𝑆𝑆𝑅 = 𝑆𝑆𝑇 − (𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴∶𝐵)
As a consequence, the residual sum of squares 𝑆𝑆𝑅 will be smaller than in our original ANOVA that didn’t
include interactions.

170. You may have spotted this already when looking at the main effects analysis in jamovi that we described
earlier. For the purpose of the explanation in this book I removed the interaction component from the earlier
model to keep things clean and simple.

171. This chapter seems to be setting a new record for the number of different things that the letter R can stand for.
So far we have R referring to the software package, the number of rows in our table of means, the residuals
in the model, and now the correlation coefficient in a regression. Sorry. We clearly don’t have enough letters
in the alphabet. However, I’ve tried pretty hard to be clear on which thing R is referring to in each case.

172. Implausibly large, I would think. The artificiality of this data set is really starting to show!

173. What’s the difference between treatment and simple contrasts, I hear you ask? Well, as a basic example
consider a gender main effect, with 𝑚 = 0 and 𝑓 = 1. The coefficient corresponding to the treatment
contrast will measure the difference in mean between females and males, and the intercept would be the
mean of the males. However, with a simple contrast, i.e., 𝑚 = −1 and 𝑓 = 1, the intercept is the average of
the means and the main effect is the difference of each group mean from the intercept.

174. If, for instance, you actually find yourself interested to know if Group A is significantly different from the
mean of Group B and Group C, then you need to use a different tool (e.g., Scheffe’s method, which is more
conservative, and beyond the scope of this book). However, in most cases you probably are interested in
pairwise group differences, so Tukey’s HSD is a pretty useful thing to know about.

175. This discrepancy in standard deviations might (and should) make you wonder if we have a violation of the
homogeneity of variance assumption. I’ll leave it as an exercise for the reader to double check this using the
Levene test option.

176. Actually, this is a bit of a lie. ANOVAs can vary in other ways besides the ones I’ve discussed in this book. For
instance, I’ve completely ignored the difference between fixed-effect models in which the levels of a factor are
“fixed” by the experimenter or the world, and random-effect models in which the levels are random samples
from a larger population of possible levels (this book only covers fixed-effectmodels). Don’tmake themistake
of thinking that this book, or any other one, will tell you “everything you need to know” about statistics, any
more than a single book could possibly tell you everything you need to know about psychology, physics or
philosophy. Life is too complicated for that to ever be true. This isn’t a cause for despair, though. Most
researchers get by with a basic working knowledge of ANOVA that doesn’t go any further than this book
does. I just want you to keep in mind that this book is only the beginning of a very long story, not the whole
story.

177. Or, at the very least, rarely of interest.

178. However, in jamovi the results for type III sum of squares ANOVA are the same regardless of the contrast
selected, so jamovi is obviously doing something different!

179. Note, of course, that this does depend on the model that the user specified. If the original ANOVA model
doesn’t contain an interaction term for 𝐵 × 𝐶, then obviously it won’t appear in either the null or the alter-
native. But that’s true for types I, II and III. They never include any terms that you didn’t include, but they
make different choices about how to construct tests for the ones that you did include.
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180. I find it amusing to note that the default in 𝑅 is type I and the default in SPSS and jamovi is type III. Neither
of these appeals to me all that much. Relatedly, I find it depressing that almost nobody in the psychological
literature ever bothers to report which type is used either. The only way I can ever make any sense of what
people typically report is to try to guess from auxiliary cues which software they were using, and to assume
that they never changed the default settings. Please don’t do this! Now that you know about these issues
make sure you indicate what software you used, and if you’re reporting ANOVA results for unbalanced data,
then specify what Type of tests you ran, specify order information if you’ve done type I tests and specify
contrasts if you’ve done type III tests. Or, even better, do hypotheses tests that correspond to things you
really care about and then report those!

Notes for chapter 15

181. Quite helpfully, factor loadings can be interpreted like standardized regression coefficients.

182. A more advanced statistical technique, one which is beyond the scope of this book, undertakes regression
modelling where latent factors are used in prediction models of other latent factors. This is called “structural
equation modelling” and there are specific software programs and R packages dedicated to this approach.

183. An Eigen value indicates how much of the variance in the observed variables a factor accounts for. A factor
with an Eigen value > 1 accounts for more variance than a single observed variable.

184. Oblique rotations provide two factor matrices, one called a structure matrix and one called a pattern matrix.
In jamovi just the pattern matrix is shown in the results as this is typically the most useful for interpretation,
though some experts suggest that both can be helpful. In a structurematrix coefficients show the relationship
between the variable and the factors whilst ignoring the relationship of that factor with all the other factors
(i.e. a zero-order correlation). Patternmatrix coefficients show the unique contribution of a factor to a variable
whilst controlling for the effects of other factors on that variable (akin to standardized partial regression
coefficient). Under orthogonal rotation, structure and pattern coefficients are the same.

185. Sometimes reported in Factor Analysis is “communality” which is the amount of variance in a variable that
is accounted for by the factor solution. Uniqueness is equal to (1 ∼ communality).

186. Remembering to first reverse score some variables if necessary.

187. As an aside, given that we had a pretty firm idea from our initial “putative” factors, we could just have gone
straight to CFA and skipped the EFA step. Whether you use EFA and then go on to CFA, or go straight to
CFA, is a matter of judgement and how confident you are initially that you have the model about right (in
terms of number of factors and variables). Earlier on in the development of scales, or the identification of
underlying latent constructs, researchers tend to use EFA. Later on, as they get closer to a final scale, or if
they want to check an established scale in a new sample, then CFA is a good option.

Notes for chapter 16

188. https://en.wikiquote.org/wiki/David%20Hume

189. https://en.wikipedia.org/wiki/Climate_of_Adelaide

190. It’s a leap of faith, I know, but let’s run with it okay?

191. Um. I hate to bring this up, but some statisticians would object to me using the word “likelihood” here. The
problem is that the word “likelihood” has a very specific meaning in frequentist statistics, and it’s not quite
the same as what it means in Bayesian statistics. As far as I can tell Bayesians didn’t originally have any
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agreed upon name for the likelihood, and so it became common practice for people to use the frequentist
terminology. This wouldn’t have been a problem except for the fact that the way that Bayesians use the word
turns out to be quite different to the way frequentists do. This isn’t the place for yet another lengthy history
lesson but, to put it crudely, when a Bayesian says “a likelihood function” they’re usually referring one of the
rows of the table. When a frequentist says the same thing, they’re referring to the same table, but to them “a
likelihood function” almost always refers to one of the columns. This distinction matters in some contexts,
but it’s not important for our purposes.

192. Just to be clear, “prior” information is pre-existing knowledge or beliefs, before we collect or use any data to
improve that information.

193. If we were being a bit more sophisticated, we could extend the example to accommodate the possibility that
I’m lying about the umbrella. But let’s keep things simple, shall we?

194. You might notice that this equation is actually a restatement of the same basic rule I listed at the start of the
last section. If you multiply both sides of the equation by 𝑃(𝑑), then you get 𝑃(𝑑)𝑃(ℎ|𝑑) = 𝑃(𝑑, ℎ), which
is the rule for how joint probabilities are calculated. So I’m not actually introducing any “new” rules here,
I’m just using the same rule in a different way:

𝑃(ℎ|𝑑) = 𝑃(𝑑, ℎ)
𝑃(𝑑)

195. Obviously, this is a highly simplified story. All the complexity of real-life Bayesian hypothesis testing comes
down to how you calculate the likelihood, 𝑃(𝑑|ℎ), when the hypothesis ℎ is a complex and vague thing. I’m
not going to talk about those complexities in this book, but I do want to highlight that although this simple
story is true as far as it goes, real life is messier than I’m able to cover in an introductory stats textbook.

196. https://www.imdb.com/title/tt0093779/quotes I should note in passing that I’m not the first person to use
this quote to complain about frequentist methods. Rich Morey and colleagues had the idea first. I’m shame-
lessly stealing it because it’s such an awesome pull quote to use in this context and I refuse to miss any
opportunity to quote The Princess Bride.

197. https://about.abc.net.au/reports-publications/appreciation-survey-summary-report-2013/

198. https://knowyourmeme.com/memes/the-cake-is-a-lie

199. In the interests of being completely honest, I should acknowledge that not all orthodox statistical tests rely
on this silly assumption. There are a number of sequential analysis tools that are sometimes used in clinical
trials and the like. These methods are built on the assumption that data are analysed as they arrive, and these
tests aren’t horribly broken in the way I’m complaining about here. However, sequential analysis methods
are constructed in a very different fashion to the “standard” version of null hypothesis testing. They don’t
make it into any introductory textbooks, and they’re not verywidely used in the psychological literature. The
concern I’m raising here is valid for every single orthodox test I’ve presented so far and for almost every test
I’ve seen reported in the papers I read.

200. A related problem: https://xkcd.com/1478/

201. Some readers might wonder why I picked 3:1 rather than 5:1, given that Johnson (2013) suggests that 𝑝 = .05
lies somewhere in that range. I did so in order to be charitable to the 𝑝-value. If I’d chosen a 5:1 Bayes factor
instead, the results would look even better for the Bayesian approach. In some ways, this is remarkable. The
entire point of orthodox null hypothesis testing is to control the type I error rate. Bayesian methods aren’t
actually designed to do this at all. Yet, as it turns out, when faced with a “trigger happy” researcher who
keeps running hypothesis tests as the data come in, the Bayesian approach is much more effective. Even the
3:1 standard, which most Bayesians would consider unacceptably lax, is much safer than the 𝑝 < .05 rule.

202. https://www.quotationspage.com/quotes/Ambrosius_Macrobius/

203. Okay, I just know that some knowledgeable frequentists will read this and start complaining about this sec-
tion. Look, I’m not dumb. I absolutely know that if you adopt a sequential analysis perspective, you can avoid

472

https://www.imdb.com/title/tt0093779/quotes
https://about.abc.net.au/reports-publications/appreciation-survey-summary-report-2013/
https://knowyourmeme.com/memes/the-cake-is-a-lie
https://xkcd.com/1478/
http://www.quotationspage.com/quotes/Ambrosius_Macrobius/


these errors within the orthodox framework. I also know that you can explictly design studies with interim
analyses in mind. So yes, in one sense I’m attacking a “straw man” version of orthodox methods. However,
the straw man that I’m attacking is the one that has been used by most practitioners. If it ever reaches the point
where sequential methods become the norm among experimental psychologists and I’m no longer forced to
read 20 extremely dubious ANOVAs a day, I promise I’ll rewrite this section and dial down the vitriol. But
until that day arrives, I stand bymy claim that default Bayes factor methods are muchmore robust in the face
of data analysis practices as they exist in the real world. Default orthodox methods suck, and we all know it.
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