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Preface

This book aims to create an interdisciplinary theoretical overview of
Artificial Intelligence (AI) in our current society. In addition to under-
standing managerial and global business perspectives, the book highlights
state-of-the-art industrial applications, as well as scenarios of poten-
tial societal impacts and the evolving reality of human and machine
collaboration—Industry 5.0 and beyond.
This book is inspired by the constantly evolving and increasing usage

of computational terminology, emergent discussions and theories on
Artificial Intelligence (AI), and the seemingly overwhelming increase of
new skill acquisition. AI technologies and functional applications have
been around for decades in some form or another, yet, we still occa-
sionally lack a common grounding framework and a horizontal view
of the multiple fields of research and their perspectives on AI. This
includes for example the simple differentiation between algorithms and
functional applications—the former referring to mathematical models
and the latter to a user-ready combination of ones, such as ChatGDP.
Advanced disciplines in the area have published extensive work on AI
and AI applications—such as cloud computing, Cyber-Physical-Systems
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vi Preface

(CPS), Digital Twins (DT), and Machine Learning (ML), yet, reading
further on any discipline alone leads to a rabbit hole. To understand
the practical implications, ethical dilemmas, and prospects of AI, it is
unreasonable to suggest full societies become data scientists overnight.
On the other hand, research can only arrive at straw-man arguments
on strategic AI integration without understanding the core concepts of
phenomena—data hierarchies construction, user interface significance,
and mandatory inter-organizational collaboration. In the age of Industry
5.0, even the simplest questions could remain unanswered without a
truly interdisciplinary effort.
To first touch base with the black box that is AI, we have created

a book that does not shy away from technical details, yet aims to
understand the core of AI’s significance for businesses, and where the
future opportunities and challenges lie. The purpose of this book is
to provide a guiding introduction to scholars and practitioners who
navigate ambiguous and heterogeneous research of AI and provide a
systematic source for the basics from a holistic viewpoint.

Compiling this book has taken a village and some very dedicated indi-
viduals. The editors would like to acknowledge and thank the highly
esteemed expert panel for their help in the early stages of designing the
content and for their excellent advice in both practical and contextual
directions. We would also like to express our gratitude to the long list
of anonymous reviewers for their extensive and high-quality feedback,
as well as to all the authors for their patience and rapid responses, for
their excellent contributions, and for their enthusiasm towards the book
from the early stages on. Finally, we would like to thank our supporting
facilities and funders, especially the Business Finland projects SANTTU
(project 8859/31/2021), VIIMA (project 7290/31/2023), and the ITEA
Eureka Cluster project AIToC (project 19027), that have made possible
the publication of this book and given an insightful view to what is
Industry 5.0.

Helsinki, Finland
August 2024

Päivi Aaltonen
Emil Kurvinen
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Part I
The Operational Core of AI



1
Introduction to the Concepts: The Past,

Present, and Future of AI

Päivi Aaltonen and Emil Kurvinen

1.1 Introduction to the Book

Artificial intelligence (AI) refers to an umbrella of technologies, from
unsupervised machine learning to regression analysis and data manage-
ment (Lichtenthaler 2020; Lee 2020). There is a long tradition of AI
research in operations management and information systems, however,
other management fields have only recently been interested in AI’s orga-
nizational impacts (Michael et al. 2019; Iansiti and Lakhani 2020).
For example, in databases such as EBSCO and Scopus using the terms
‘AI’ and ‘Artificial Intelligence’, over 250,000 manuscripts starting from
1975; most of which were in the field of computer science and engi-
neering, while 3135 were in management field, of which 2149 were

P. Aaltonen (B)
LUT University, P.O. Box 20, 53851 Lappeenranta, Finland
e-mail: paivi.aaltonen@lut.fi

E. Kurvinen
Oulu University, Oulu, Finland
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journal articles. Nonetheless, this ‘fifth industrial revolution’, stands
apart significantly from its predecessors, marked by an exponential surge
in opportunities and a simultaneous upheaval in the global landscape
(Andreas and Michael 2019; Xun et al. 2021; Dąbrowska et al. 2022).

In the modern day, the available technology is no longer an issue.
In prior decades, the competitive race between firms to develop tech-
nology played a much larger role. In contrast, in the current day the
operational environment, skilled personnel, and internal coordination
can determine success (Glikson and Woolley 2020; Frankiewicz and
Chamorro-Premuzic 2020). However, while staying completely ignorant
of AI technology is no longer possible, not all of us need to become data
scientists overnight. In this introductory chapter, we first take a look and
the recent history and terminology related to AI. While there are multiple
definitions for AI, none are particularly clear nor universally agreed upon.
For example, the dictionary defines AI as

a software designed to imitate aspects of intelligent human behavior; a
branch of computer science dealing with the simulation of intelligent
behavior in computers; software designed to imitate aspects of intelligent
human behavior; an individual program or set of programs designed in
this way; something (such as a robot) that operates using AI software

In the first part, we open the details and background of these definitions
to position the various definitions in their context. In the second, we
apply an interdisciplinary lens to AI applications—how it is evident in
everyday firm operations, how it can be a crucial part of firm strategy,
and how to benefit from it as a tool for solving future challenges. The
rest of the chapters in this book dwell on each of these points in more
detail with empirical evidence.

1.2 Fundamental Concepts and Background

In the story of the blind men and the elephant, each of the men
touches a different part of the elephant—declaring what it likens to. It is
both a story about collaboration and communication in understanding
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complexity and about appreciation of a different viewpoint. Similarly,
defining AI in a single sentence is challenging:

AI represents a highly capable and complex technology that aims to
simulate human intelligence (Glikson and Woolley 2020).

(AI) encompasses logic, probability, and continuous mathematics; percep-
tion, reasoning, learning, and action; and everything from microelectronic
devices to robotic planetary explorer (Russell 2010).

ML lacks sentience and relies on formal rationality, or impersonal quan-
titative calculations, to select a small set of statistical models that best
describe the specific context of historical data. (Balasubramanian et al.
2022).

Artificial intelligence (AI) technologies are edging closer to human capa-
bilities and are often positioned as a revolutionary resource promising
continuous improvements in problem-solving, perception, and reasoning.
(Lebovitz 2022).

AI tends to refer to either macro-economic development, e.g., labor
market,’world-fist’ innovations, i.e. Uber and Netflix, or deep concep-
tualizations regarding distant future (Aaltonen et al. 2024).

The definition of Artificial Intelligence is simultaneously complex and
clear. On the other hand, Artificial refers to something man-made,
and Intelligence refers to some processing capability. A simple calcu-
lator. One might want to clarify what type of calculator, does it deal
with Large Language Models (LLM), or generative AI in particular?
Or, where does it get its input? Sensors? Simulation? Us pushing the
buttons? On the other hand, however, the mere concept of AI is filled
with symbol-laden discussion on, for example, theft of opportunities
(Fleming 2019), mistrust (Glikson and Woolley 2020), and account-
ability (Perc and Hojnik 2019). Both are very valid and important lenses
to study AI, yet can lead easily to a mixed view of the phenomena for
anyone unfamiliar with the ontological assumptions paradigms carry.
Our perception of AI is not as simple and value-free as algorithm
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construction. Unlike a keyboard or a mouse, we have a complex rela-
tionship with AI, yet is equally as much of an integrated part of many of
our daily lives. And continues to increasingly be so. This creates a partic-
ularly evident dualism to AI, that applications of simpler technologies
might not have—although, humans have a habit of naming and growing
attached to everything.

1.2.1 Elements of AI

We have selected three questions to illustrate how AI has multiple
built-in, dualistic, contradictions following the equally contradictory
concept of being both man-made, human-like, yet of superior intel-
ligence (Lindebaum et al. 2020; Ramaul et al. 2025). These relate to
interaction, scope assumptions, and inscrutable rationality.
This dualism in interaction refers to the question—is it us or them

who should change? Do humans need to follow the rules and recom-
mendations created by AI, even if we do not always want to—or should
we build AI and revise algorithms based on our comfort? After all, seems
funny to force traditionally hard-headed human individuals conditioned
to certain behaviors since birth to follow fully rational actors. In other
words, should we alter systems to complement our capabilities, where
then the pure rational efficiency of AI does not suffice as a ‘positive
outcome’, but the net positive of human experience included does? Or,
are we the recipients of benefits and need to act accordingly, as we are
inherently biased and lacking in certain cognitive capabilities? Secondly,
the dualism based on scope assumptions essentially highlights our rela-
tionship and expectations toward AI. Do we discuss AI’s potential to
become religion-like [see e.g., EM Forster’s short story ‘The Machine
Stops’ from 1909 (Lindebaum et al. 2020)], or do we want to develop
economic implications for transfer learning? The latter sees AI from
a pragmatic micro-level perspective, a calculator and statistical mathe-
matical algorithm that uses data provided to it, and acknowledges that
understanding full details requires often deep domain-specific knowl-
edge. The former conceptualizes AI as an abstract contextualization, an
intelligent agent that can perform humanlike functions—such as beating
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world champions in games (see Fig. 1.1). Thus, we tend to create unreal-
istic expectations of its capabilities as exemplified by science fiction such
as The Terminator. Our final question is the perspective of dualism in
inscrutable rationality. Is AI rational or does it lack the capability to fully
comprehend reality as we are unable to describe it properly? Is AI a black
box of inscrutable, powerful, and opaque technologies, or is it a bias box
that is a contextual result of data work that is inherently biased? These
perspectives are summarized in Table 1.1.

Fig. 1.1 Defining AI [based on Lee (2020)]

Table 1.1 Perspectives on AI

Viewpoint

Interaction Humans adapt to AI AI is created around
humans

Scope assumptions AI transforms everything Incremental
improvements with
AI

Inscrutable
rationality

We cannot understand AI AI cannot understand
physical reality
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For the purpose of this book, we use the following example to capture
the various elements forming a general output that could be considered
AI in Fig. 1.1.
While this is a simplification, it encapsulates many of the elements

often overlooked in the general discussion around AI. For example, we
humans tend to need a visualization of the outputs created by an algo-
rithm to comprehend it, the calculator does not. Yet, this definition also
leaves out many elements, such as context awareness. This can be exem-
plified with the help of Digital Twins. Digital Twins—digital copies of
real-world objects, such as factories and machines—can exist as a sepa-
rate entity (Digital Twin Prototype), or as an entity constantly connected
to its physical counterpart (Digital Twin Instance). Both may or may
not exist additionally in a digital environment, that can be used to
either predict future behavior (Digital Twin Prototype) or investigate
past behavior (Digital Twin Instance) (Aaltonen et al. 2024; Kurvinen
et al. 2022; Grieves and Vickers 2017). Furthermore, the description
in Fig. 1.2 leaves out details of algorithms themselves, for example
linear, polynomial and support vector regression; decision tree and neural
network classification; K-means Clustering and DBSCAN; Gaussian
Mixture Model and Hidden Markov Model in pattern recognition (Lee,
2020). On the other hand, the larger picture of the combination of
technologies, applications, and mutual hierarchies is best described as
AI maturity (Lichtenthaler 2020; Aaltonen et al. 2024). Maturity here
refers to the organizational capabilities and not the reliability of the algo-
rithm itself. Level 1 maturity indicates a company that has taken initial
steps toward experimentation with selected technologies and applica-
tions, but implementation is limited. Level 2 indicates ongoing initiatives
and in level 3, multiple solutions are exploited, and there is clear coor-
dination between organizational units. Level 4 describes how AI is used
for purposes beyond simple efficiency, and level 5 indicates that truly
novel solutions are created (Lichtenthaler 2020; Aaltonen et al. 2024).
However, this evaluation does not take into account different AI tech-
nologies (mathematical models) or different applications (or functional
applications—such as speech recognition or computer vision), nor the
field of application (e.g., medical industry, agriculture, or transporta-
tion). AI technologies can relate to data technology, analytic technology,
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Fig. 1.2 Levels of AI

platform technology, or operations technology (Lee 2020) (see also CH
6 in this book), whereas AI applications in this book refer to particular,
often named, uses—such as Google maps—that can utilize any type of
AI technology and algorithms or a combination. Figure 1.2 represents
these differences and in Table 1.2 we have collected a short list of various
terms used in this book and literature.

Following Table 1.2, this book uses a multitude of the above terms
to highlight the rich variety of studies and paradigms related to AI
and Industry 5.0. In the first part of this book, where the focus is
on current-day operations management in established industrial firms,
Chapter 3 authors focus on the usage of AI especially autonomous and
semi-autonomous systems, describing in detail current functional appli-
cations used and the planned future advances. For example, companies
tend not to see the ‘mistrust’ toward AI as an issue, unlike some liter-
ature has suggested (Fleming 2019; Glikson and Woolley 2020), as the
change in technological advances at the company grassroots level is incre-
mental and slow. In Chapter 4, the authors discuss in detail how firms
could formally organize their functions to support AI applications, using
Digital Twins as an example. As each stage in the manufacturing system
process is affected by human, equipment, material, process, and envi-
ronmental problems, the perspective minimizes invisible problems and
leverages the creation of a holistic perspective when aiming toward higher
AI maturity levels (Kurvinen et al. 2024; Lichtenthaler 2020). Chapter 5
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Table 1.2 Some AI terminology

General terminology

ICT
Data Data that includes the relevant

information that the AI algorithm
can use as input

Input Information and data inputs for the
AI

Output Results from the AI algorithm applied
in an application

Visualization Input or output information
presented in a visual format for
human interpretation

Maturity (algorithm) The algorithm sufficiency and
confidence level of a given
application

Maturity (AI) The amount of interconnections,
future plans, and coordination
between AI applications in a given
organization

Industrial AI AI applied to industrial context and
cases

Internet of Things (IoT) Platform for data visualization and
gathering

Intelligent industry (II) Industry that uses advanced data
processing for the benefit of
innovation in business

Cyber-physical-systems (CPS) Hardware and software are closely
connected

Data technology (DT)* (Any) CPS technology used for
handling, collecting, and organizing
data

Analytic technology (AT) (Any) CPS technology used for
analyzing data collected

Operations technology (OT) (Any) CPS technology used for
monitoring and controlling processes
in DT, AT, or HMT and their
interconnections

Human–machine technology (HMT) (Any) CPS technology used for
communication and inter-action
between humans and machines

Platform technology (PT) Combination of all CPS technologies
used in DT, AT, HMT and OT

General AI Refers to the general umbrella of AI
or functional applications

(continued)
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Table 1.2 (continued)

General terminology

Narrow AI Refers to a single or well-defined
model, functional application, or use

Functional applications

Virtual simulation A category of simulation
Cloud computing
Centralized external storage of data
and hardware to be used online
open-source

Software or a part of it that is free
to Can create different kinds of
information such as text, visual use
or modify Generative AI (G-AI)
representations

Digital twins (DT) An accurate representation of a real
asset or a piece of asset in a virtual
world

Digital twin prototype (DTP) A representation of a real asset or a
piece of asset used to predict
behavior

Digital twin instance (DTI* A representation of a real asset or a
piece of asset used to asses previous
behavior

Digital twin environment (DTE) A virtual world created for a Digital
Twin that can be based on real life
as well

Autonomous Capable of making independent
decisions without human
intervention

Semi-autonomous Capable of deciding with human
intervention

Algorithms and models

Deep learning (DL) Multilayered neural networks used
Machine learning (ML) Statistical algorithm that can learn from

data
Transfer learning (TL) Pre-trained model can be used in a related

but different task
Neural networks (NN) Artificial mathematical models estimating

nonlinear models
Large language models (LLMs) General purpose language generation
Supervised learning (SL) Uses labeled data sets

(continued)
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Table 1.2 (continued)

Algorithms and models

Unsupervised learning (UL) Uses non labeled data sets
Reinforcement learning (RL) Trains software to make the most optimal

results
Regression Statistical method for estimating variable

relationships
Classification Classifies data into different sets
Cluster analysis Grouping of similar information datasets

to clusters
Pattern recognition ML-based methodology that identifies

different patterns and regularities in data

examines the risk and potential of investments toward Industry 5.0 tech-
nologies and AI functional applications, as the future of technology
benefits is uncertain. In the second part of this book, which discusses
AI from a firm ecosystem level, Chapter 6 serves as an introduction to
the levels of AI technologies similar to Fig. 1.2 and the core competitive
capabilities they enable. However, Chapters 7, 8, and 9 each illustrate
how it is far from simple to integrate AI into operations. Chapter 7
focuses here on established industries, Chapter 8 on entrepreneurial start-
ups and Chapter 9 takes a special approach to value-laden leadership
roles that are idiosyncratic—family firms, local businesses, and diaspora
entrepreneurship (Elo and Volovelsky, 2017) are examples of this.

1.2.2 The Multilayer History of AI

The question

Is AI “just” an influential digital technology among others, or should we
more fundamentally alter how we theorize organizations, their employees,
and their relationship to AI?

is the main theme of the first chapter of this book [also see (Ramaul
et al. 2025)], along with an extensive look at the history of revolutions
dating back to the agricultural revolutions of the Stone Ages. However,
before anything comes to a world-changing technology, it tends to
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go through incremental changes, evolving from niche technology to
dominant applications (Geels 2005).

Multiple events are connected to the history of AI, such as the
invention of the Turing test, ‘AI winter’, and remarkable technolog-
ical feats—such as IBM’s Deep Blue defeating world leader Kasparov
in chess. Here, we conceptualize roughly three parallel but thematically
different development paths in AI (1) technologies and functional appli-
cations, (2) management practices adopted and theoretical frameworks
developed, and the general, (3) societal interest. The latter, in addition
to news and media, also impacts funding and government support initia-
tives. This section is not an extensive and all-inclusive timeline of AI
nor does it represent the entire history of mathematics, but it focuses on
common events and theories developed. Borrowing from Chapter 2:

Beginning in Britain in the mid-eighteenth century and spreading to
Europe and North America, the First Industrial Revolution introduced
steam power and mechanization, transforming textile manufacturing and
other industries. The societal changes brought by this “revolution” were
enormous, and yet, it took nearly a century for the impacts to fully mani-
fest (Ashton 1948). Thereafter, the “Second Industrial Revolution,” often
dated from 1870 to 1914, introduced further significant changes. These
included the widespread electrification of factories, the development of
rail and telegraph networks, and the introduction of internal combustion
engines. The diffusion of these technologies was faster than that of the
First Industrial Revolution, reflecting a quickening pace of technological
change (Mokyr 1998)

Around the turn of the century theories on organization and manage-
ment began to appear [e.g., the works of Schumpeter (Schumpeter
1906) and the Hawthorne studies (Muldoon 2017)]. After World
War II, the developing industrial nations adopted wartime managerial
systems in statistical analysis and automation—for example, Standard
Process Theory (SPT), Computer Numerical Control (CNC), and soon
after Computer-Aided Design (CAD) (Lee 2020). However, during the
famous Dartmouth conference and the scholarly work of Alan Turing in
the 1950s, the term ‘Artificial Intelligence’ was officially coined, closer
to the origins of the Third Industrial Revolution, despite often being
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connected to the 2020s and the Fifth Industrial Revolution. Notable
in these revolutions, nonetheless, is the decrease in the lengths of the
waves, i.e., time difference, between revolutions—when the first wave of
innovation to the second took 60 years, the fifth only 30 (Ziemnowicz,
2020)—current evidence between Industry 4.0 and Industry 5.0 devel-
opment suggests even shorter lengths of merely a decade (Xun et al.
2021). Simultaneously to Turing, in 1956, an American inventor named
George Devol and a physicist named Joseph Engelberger invented the
world’s first industrial robot, Unimate (Lee 2020). As its research field,
AI was initiated in 1955 (Andreas and Michael 2019), and the first dedi-
cated academic journal was established in the mid-1970s, titled ‘Artificial
Intelligence’ (Waterman 1970). In the World of Science (WOS) database
there are in 2024 over half a million publications on AI, and additional
and earlier publications exist in for example in European Patent Office
(EPO) databases, having closer to two million publications in total.
The terms AI winter—often the first and second are acknowledged—

refer to brief periods of decreased interest in general AI. The first takes
place around the mid-1970s to the beginning of the 1980s and the
second between the late 1980s and 1990s. It has been suggested that the
first was due to the limited capabilities of the technologies and the second
to the collapse of the specialized hardware industry in the late 1980s.
Before this, microprocessor development in the 1970s had reduced the
cost of computing machine tools. However, actual technology develop-
ment never ceased to exist. Furthermore, firms in the field during those
times successfully developed strategies by product diversification [e.g.,
Intel and semiconductors (Burgelman 1983, 1994, 2002) Corning and
fiber optics (Cattani 2006)] or joined the field through alternative tech-
nologies—the CD-ROM technology was originally invented to improve
the durability and sound quality of vinyl records, yet had a unique char-
acteristic of being capable to store enormous amounts of data (Aaltonen
et al. 2020; Aaltonen 2020). Thus, AI winters refer, in general, largely to
the popular interest decrease and shifts in development focus, rather than
complete pauses in technology development. Since the mid-1990s, the
increased computational power has steered toward data-driven systems,
such as cloud computing, Amazon recommendations, and finally Siri
(Zhang et al. 2011; Aaltonen et al. 2020; Andreas and Michael 2019),
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then evolving into driverless cars and Chat-GDP (Manzl et al. 2024).
However, looking into purely the economic literature under the term
‘AI’, less than 10 000 have been published, with only 2017 more than
200 annually (note that the term ICT has been in much wider use in past
decades with equally 10,000 results, hitting past 200 a decade earlier).
Interestingly, most cited publications on AI focus on larger societal issues,
such as expressing a growing concern about job security (Fleming 2019)
and the role of AI in service (Wirtz et al. 2018; Huang and Rust 2018)—
highlighting the increasing impact of AI and Industry 5.0 in the wider
society. Surprisingly, based on an industrial survey, Chapter 3 concludes
that such concerns do not reflect the opinion of all firms, especially
as many focus on field-specific functional applications and narrow AI.
Yet, as Chapters 7, 8, and 9 highlight, organizational structures and
environmental impact remain barriers to overcome.

As literature under one paradigm ponders whether robots will replace
humans, robotics—as a relatively simple assistance tool to begin with—
has been the most common functional application of AI since the 1980s.
Robots followed the advances in computer vision in the 1970s, and
by the 1990s natural language processing, distributed AI and predictive
analytics began to be of more frequent use. As noted before, the terms
Industry 4.0 and 5.0 refer to European manufacturing industries and the
European Union launched terms describing the commonly used tech-
nologies in particular fields of applications. However, the line between
operations management practices, functional applications of AI tech-
nologies, and scholarly theories—such as the Technology-Organization-
Environment (TOE) and TAM (Technology Acceptance Model) models
(Tornatzky 1990; Davis 1989)—is vague. For example, the management
practice titled the PDCA cycle (Plan, Do, Check, Action), or ‘Kaizen’
originates from Japanese organizational culture in the mid-1900s focused
on continuous improvement, that has largely impacted the Lean manage-
ment practices of the 1990s (Lean Womack et al. 1991). However, it
essentially originates from the efficiency generated by the Computer
Numerical Control (CNC), whereas AI also originates from (Lee 2020).
Similarly, Toyota’s and General Motors’s manufacturing development in
the 1980s and 1990s led to the project management quality insurance
management practice ‘Six Sigma’, still popular decades later (Fig. 1.3).
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Fig. 1.3 Multilayer timeline

Popular and public advances in AI bring much of the underlying
technology and applications development narrowly to public knowl-
edge, steering interest toward them. Only in the past few years has AI
become an increasingly popular search term, following the Chat-GDP
launch. A similar increase in interest is notable during the launch and
spreading of Google driverless cars, Siri, and IBM beating the top Jeop-
ardy contestants. These events have caused a need to revise educational
guidelines on cheating, and futuristic scenarios in movies, TV, and liter-
ature (Lindebaum et al. 2020) have geared the general perception of
AI toward something far beyond possible with current technologies. A
sentient AI is in practice very far from reality taking into consideration
that humanity does not even comprehend all the human cognitive func-
tions yet. As mentioned before, we have divided our parallel streams of
the AI timeline into three levels, roughly following the widespread uses
of technologies, the development of ones, and the major milestones.
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Firstly we have the development of the underlying technology (Manzl
et al. 2024). Second, the academic theories and managerial practices
developed as a consequence. Finally, we have the notable milestones and
trailblazer functional applications reaching the public eye—Deep Blue,
IBM Watson, and Chat-GDP for example—and the fluctuating general
interest of the society.

1.3 Industry 5.0 and Beyond

This book has been divided into three parts, each consisting of chapters
addressing a particular area of AI, starting from the very practical insights
on the current use of AI in day-to-day operations. In the first part, the
chapters discuss the contemporary status of AI functional applications
in twelve industrial sectors (according to the NACE Rev. 2 classification
system of economic activities in the European Union) in Chapter 3, and
how model-based systems engineering (MBSE) can eliminate technical
barriers between personnel and data in Chapter 4. Chapter 5 highlights
how economic theories can adeptly address numerical uncertainties in
mathematical models and enable the usage of decision frameworks in
making investment decisions on AI technologies and applications. These
chapters form what we understand as the narrow core of modern-day AI
in companies. Figure 1.4 summarizes the focal point of each part.

In the next part, we widen our perspective and focus on the develop-
ment strategies and capabilities potential of AI applications. Chapter 6
opens this part by examining the strategic use of these technologies
and the technological infrastructure of Google and similar players in
building new services and products. Chapter 7 discusses the infrastruc-
tural and managerial competencies needed to leverage firm AI maturity,
and 8 compares the differences in innovation processes of technological
startups and the impact of these processes on their early-stage success.
Chapter 9 points out the challenges created by existing strong ecosystem
relations, risk aversion, and non-financial goals by using family firms
as an example. In the final part of the book, we highlight the promise
of AI as a society changing. The grand challenges, complex, uncer-
tain, and evaluative (Ferraro et al. 2015; George et al. 2016), may be
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Fig. 1.4 Scope of book

addressed with AI applications—by for example gathering data on how
pricing can impact sustainable consumer decisions as in Chapter 11, or
how rescue departments can utilize ML techniques simulating poten-
tial emergency scenarios in Chapter 13. Chapter 10 opens this part
with an integrative literature review addressing socio-technical transi-
tion toward sustainability, and the joint role of humans and AI within.
Chapter 12 summarizes how the principles of Industry 5.0 enable the
inclusion of social and sustainable goals in the techno-centric world-
view of the previous decade. Finally, this part and the book ends with
Chapter 14, a pedagogical discussion on how we can teach current and
future generations to utilize AI applications to their fullest.

1.3.1 The Operational Core of AI

Is AI as significant in current organizational reality as we are led to
believe? If so, what is the level of AI utilization in firms across industries,
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how do they select in what technologies to invest and how do they handle
data collection and internal co-alignment between functional applications
across business sectors?

Chapter 2 questions indeed whether a transition is currently taking place
toward a new Industrial Revolution, or if AI is just a modern buzzword.
The authors question the increasingly popular narrative of technolog-
ical advancement as a series of abrupt Industrial Revolutions—instead
of an incremental trajectory of technological and industrial evolution
(also Geels 2005). The essay advocates for a nuanced understanding of
the development of AI and encourages practitioners to adopt a long-
term perspective and balance in transforming organizational structures
[similarly, (Aaltonen et al. 2024)].

Chapter 3 focuses on the current plans for AI utilization in organiza-
tions, the common benefits and drawbacks of AI application integration,
and the challenges in scaling. The chapter provides a comprehen-
sive overview of the current state of the art of AI’s business use and
future implications for academics and practitioners, highlighting the
increasing need to identify effective integration strategies and study
how AI affects organizational performance, strategic management, and
capabilities development. Industry 5.0 emphasizes the integration of
digital technologies and automation while placing a strong emphasis
on enhancing the well-being of workers, customization, and sustain-
ability (Xun et al. 2021). As an integral part of the Industry 5.0 vision,
Chapter 4 identifies a method for effective integration and illustrates how
AI can facilitate the challenges of operations systems engineering, and
simulation can patch up uneven data repositories and create new data
rapidly—a requirement of efficient algorithm development. The systems
engineering approach highlights how all the information can be centrally
captured, and instead of many, the system can act as a singular source of
truth that can act as a justification for development decisions, and in
comparing alternative solutions to specific problems. To build systematic
infrastructures enabling efficient AI utilization, the significance of these
supporting hierarchical structures is crucial.
The central question of Chapter 5 is to evaluate the potential and

investment risk in AI and Industry 5.0 technologies. Essentially, how
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one can grasp the emerging opportunities of technological change while
avoiding sunk cost investments in, possibly, soon-to-be-obsolete tech-
nology applications, when should companies engage in transitional
investments and how could they approach the investment decision
and technology integration systematically? The authors introduce how
strategic foresight tools can help organizations choose an optimal path
forward by understanding the potential consequences of their decisions.

1.3.2 Managing AI and Strategy

Novel technologies are a double-edged sword for companies. Techno-
logical advances enable scalable global operations and support growth,
equality, and inclusivity—yet, traditional industries can be slow to adopt
new technologies and some challenges cannot be avoided.

Despite the growing interest in AI, organizations can struggle to realize
and transform the value of AI and solutions in practice (Fountaine
et al. 2019; Raisch and Krakowski, 2021). Organizations encounter
major hurdles in realizing the full AI benefits; financial constraints,
cultural resistance, skill gaps, and ethical concerns, among other chal-
lenges. Furthermore, while AI shows promise in improving organiza-
tional efficiency, decision-making, and adaptability, its implementation
often remains confined to specific operational segments. While AI indeed
provides a remarkable opportunity for firms’ growth (Lannon et al.
2023), it is not yet widely applied: less than 5% of German family
firms apply AI in their daily business and only successful experimenta-
tion tends to be reported (Raisch and Krakowski 2021; Rammer et al.
2022; Soluk and Kammerlander, 2023).

In Chapter 6 of this book, the authors elaborate on the potential of
AI as a core competitive capability through the examples of multina-
tional giants such as Google, Meta, Amazon, and IBM [see also (Zhang
et al. 2011)]. Especially, they highlight the pivotal role of cloud plat-
forms within the broader cloud technology ecosystem, as these occupy
a central position and serve as access points that interconnect various
sub-ecosystems of open technologies and explain how constraints across
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heterogenous technology ecosystems emerge and how to deal with such
bottlenecks.

Chapter 7 then provides in-depth empirical evidence on how firms
can develop such capabilities in operational practice, yet also what can
be hindering factors for advancing holistic AI maturity and leveraging
one’s competitive advantage. The authors introduce a framework for
addressing Industry 5.0 competencies by adding soft competencies to the
previous TAM and TOE models (Davis 1989; Tornatzky 1990), empha-
sizing the need for talent, conflict management, and emotional intel-
ligence [similarly (Frankiewicz and Chamorro-Premuzic 2020; Glikson
and Woolley 2020)].

Chapter 8 examines the challenges faced by deep technology start-
ups as they navigate across the critical *Valley of Death*—the phase of
financing their long and capital-intensive development processes. The
author focuses on the systemic nature and interdependencies involved in
innovation processes. The chapter concludes how concluding how deep-
tech start-ups require an effective innovation system to be successful,
diverging from conventional methods, as financing and human capital
are critical components of an effective innovation system.

Chapter 9 highlights and opposite end of the spectrum in terms of
AI maturity and willingness for technology adoption and focuses on the
social values, talent, and human resource management areas in times
of change in legacy firms. Due to the concentrated ownership struc-
tures, family firms pursue efficient decision-making processes that can
be a source of competitive advantage but also a barrier. The cases serve
as an example of challenges in AI technology integration in the pres-
ence of non-financial goals that strongly impact the company’s strategic
preferences.

1.3.3 Prospects of Distributed AI Experimentation

Grand challenges are formulations of global problems that can be plau-
sibly addressed through coordinated and collaborative effort (George et al.
2016).
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Industry 5.0 is expected to do what Industry 4.0 did not achieve—a
more just and sustainable society (Coelho et al. 2023). A Sustain-
able society is a combination of inclusive health, equal opportunities
in economics and educational pursuits alike, and protecting the envi-
ronment that requires participatory architecture and distributed exper-
imentation (George et al. 2016; George et al. 2016). However, the
discussion on AI often addresses how technologies revolutionize their
sectors, underscoring their importance for and in societal development.
Industry 4.0, characterized by its heavy reliance on automation and data-
driven technologies, poses risks of social inequalities and reduces human
oversight, potentially leading to ethical dilemmas and decreased job
satisfaction among workers. For example, Chapter 4 discusses how the
production of defective metal products consumes substantial quantities
of natural, financial, and energy resources, contributing to environmental
degradation. Learning how to benefit from AI is the core of a sustain-
able future society, yet we are still to understand the possibilities of
augmenting human capabilities with AI.

Chapter 10 presents an integrative literature review that elucidates
the underlying factors that influence the process and role of individual
learning in sustainability transition and develops a conceptual frame-
work to discuss the alignment of AI with these elements. The analysis
identifies key points where AI can synergistically enhance the learning
process, particularly in the restructuring of learning spaces and the
facilitation of learning approaches that improve competency develop-
ment, and illustrates the optimized alignment of roles and responsibilities
between humans and AI in the creation of an improved learning function
necessary to steer sustainability transitions.

Chapter 11 seeks to understand the key components of marketing
strategies with a focus on pricing strategies in an era of increased orienta-
tion toward sustainable consumption and AI. The study uses agent-based
simulations as a tool to analyze the impacts of pricing changes on
customer behavior related to green products. Further, it identifies and
discusses how this method can help reduce the risk of systems’ failure
and improve service precision as well as managers’ awareness of suitable
pricing strategies for green products. The results of this chapter reveal
the optimal product pricing strategies that companies should pursue to
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convince and nudge their customers’ buying behavior toward choosing
sustainable products over other, substituting products. We specifically
address how managers may benefit from pricing simulations facilitated
by technology.

According to Chapter 12, Industry 5.0 enables embracing the orig-
inal principles of sustainability, as the recent paradigm shifts have only
brought to light the limits of the techno-centric approach of Industry
4.0. To create a balance between societal and economic goals, an adap-
tation of the traditional linear model to a circular operational model,
mutual cognitive coordination between humans and AI, and a human-
centric approach is required. While a standard approach to embedding
these complexities is still developing, the authors provide a prelimi-
nary framework for creating circular economy operations by using AI
technologies systematically.

Chapter 13 highlights the potential of AI in times of disruption, risk,
and uncertainty as creasing the capabilities of rapid, societal resilience
complex networks. Managerial literature outlines societal challenges
related to an aging population, healthcare politics, and safety risks
involved in decentralized home care plans. In industrialized Western
nations, up to 80% of people are living in or near urban regions, and the
fastest-growing areas are those surrounding the urban regions of major
cities.

According to forecasts by the Ministry of the Interior (2016), approx-
imately 25% of the population will be aged over 65 in 2030. For
example, the authors demonstrate how trained artificial neural networks
(ANNs) can be utilized in rescue service assessment in residential areas,
where societal changes and healthcare reforms drive fire station networks,
addressing challenges emerging from decentralized home care plans.

Chapter 14 highlights how companies need new types of professionals,
and how the shortage of skilled workforce hinders the exploitation of
advanced technologies (Brynjolfsson and McElheran 2016; Gürdür Broo
et al. 2022; Pomp et al. 2022). However, while the increased amount of
data is collected with sensors and IoT-related advanced technologies, not
all data and technologies available are utilized as the support of decision-
making by managers. The authors focus on creating a systematic process
to use AI in operations provide a guiding framework to improve tactic
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knowledge and skills in everyday decision-making, and offer a systematic
process to use as an educational element in company operations.
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2
Another Industrial Revolution? It’s All

Evolution!

Johan Kask and Ryan Armstrong

2.1 Introduction

References to industrial eras (e.g., “Industry 4.0”, “Industry 5.0”,
“Fourth Industrial Revolution”) have recently exploded in academic
and popular literature, reflecting increased interest in socio-technological
change. While such interest is most welcomed, both the scientific sound-
ness and purpose of the “Fourth Industrial Revolution” and related
terms have been questioned (Cetrulo and Nuvolari 2019; Drath and
Horch 2014). The more recent discussion of a “Fifth Industrial Revo-
lution” or “Industry 5.0"—the terms are not equivalent but are used
interchangeably—further calls into question the appropriateness of such
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terms within scholarly discussion. The question emerges: Do these terms
refer to actual events, or are they just buzzwords, marketing devices
devoid of any real substance? In this chapter, we seek to address this
question. Our paper is conceptual, though we employ bibliometrics and
our research data to support the arguments and illustrate our points. The
first aim of this chapter is to consider the value of such terms so that
scholars can distinguish between their use as a buzzword—a pathologi-
cally vague description of events, linked to a strong belief in what they are
meant to bring about (Rist 2007), versus scholarly discussion. Drawing
on a bibliometric analysis of recent publishing trends, we suggest its use
is mainly promotional rather than scientific. With some exceptions, this
use creates confusion and redundancy with existing concepts. Perhaps
worse, such use obscures plausible explanatory mechanisms of techno-
logical change. Rather than viewing the industrial period as a series
of distinct “revolutions” or stages, we suggest it is more accurate to
perceive industrial progress as a continuous process of cumulative, path-
dependent interaction between technology and society at a varying pace,
with each iteration of evolution adding new elements to the existing
system (Murmann and Frenken 2006). Technical innovation, driven by
competition and the pursuit of efficiency and effectiveness, interacts with
other factors such as government regulations, consumer preferences, and
social attitudes, to (re)shape the industrial landscape.
The second aim of the chapter is to propose that technological shifts

are better understood as “Industrial Evolution,” which holds greater
descriptive and explanatory value. To illustrate this perspective, we use
the case of technological development in the music recording industry,
in which the recent development is driven by an evolutionary change
in human values, countering the progressivist rhetoric of the Industrial
Revolution. Data from interviews, industry reports, news archives, and
patent databases, highlight that disruptive changes in the marketplace,
occurring within a limited time frame, such as the shift from phys-
ical CDs to streaming-on-demand as a dominant way of distributing
recorded music, are not a sudden revolution. Instead, they are preceded
by a decades-long build-up of technologies and patents, as well as social
habits, across several interacting sectors.
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The chapter concludes by proposing the term Industrial Evolution as
a more accurate descriptor of this multi-dependent, dynamic process
where technological advancements are both the causes and results of
ongoing sociotechnical and economic transformations. This term offers a
more in-depth and nuanced understanding of the dynamics of industrial
development.

2.2 A Brief History of Technological
Evolution: From Hand Axes to AI

The evolution of technology across human history has been a slow but
enduring process, marked by periods of gradual development and accel-
erating change. Examining this historical progression provides essential
insights into the dynamics of sociotechnical transformation and helps
put the idea of “Industrial Revolutions” into perspective. The earliest
human technologies were strikingly durable. The Acheulean hand axe,
for example, is an artifact of the Early Stone Age (Lower Paleolithic),
dating back nearly 1.7 million years (See Fig. 2.1). These tools, created by
our early human ancestors, Homo erectus, remained virtually unchanged
for over a million years (Handwerk 2021). They represent an essen-
tial technological adaptation that helped our ancestors survive in diverse
environments across Africa and Eurasia.

Following this, the “Neolithic Revolution"—sometimes referred to as
the “First Agricultural Revolution"—saw the widespread transition of
human societies from hunting and gathering to settled farming. This
transition occurred over thousands of years, beginning around 10,000
BCE (Diamond 1997). This era introduced domesticated crops and
animals, as well as technological innovations like the plow and pottery,
dramatically altering human societies and the environment. However,
the pace of technological change remained very slow compared to
the pace of change in our modern era, with innovations often taking
centuries to spread across different regions.
What is referred to as the “First Industrial Revolution” marked a

significant turning point in this slow trajectory of technological evolu-
tion. Beginning in Britain in the mid-eighteenth century and spreading
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Fig. 2.1 Stone age technologies and human evolution [Source The authors,
drawn from data from Wood (2012) and Mcbrearty and Brooks (2000). Note
that the timeline is not at scale]

to Europe and North America, the First Industrial Revolution introduced
steam power and mechanization, transforming textile manufacturing and
other industries. The societal changes brought by this “revolution” were
enormous, and yet, it took nearly a century for the impacts to fully mani-
fest (Ashton 1948). Thereafter, the “Second Industrial Revolution,” often
dated from 1870 to 1914, introduced further significant changes. These
included the widespread electrification of factories, the development of
rail and telegraph networks, and the introduction of internal combustion
engines. The diffusion of these technologies was faster than that of the
First Industrial Revolution, reflecting a quickening pace of technological
change (Mokyr 1998).

More recent discussions of industrial eras—the “Third Industrial
Revolution” (associated with digital technologies and often dated from
the late twentieth century), the “Fourth Industrial Revolution” or
“Industry 4.0” (related to cyber-physical systems and Internet of Things,
and spanning the early twenty-first century), and even a proposed “Fifth
Industrial Revolution” and “Industry 5.0” (focusing on artificial intel-
ligence and machine learning)—implies even shorter time frames for
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each “revolution.” These periods are increasingly compressed, with each
new “revolution” predicted to unfold over mere decades, reflecting an
unprecedented acceleration in technological change (Makridakis 2017;
Schwab 2015).

2.3 The Problemwith Revolution

The word revolution to describe technological developments is prob-
lematic. For one, it introduces ambiguity at the expense of specificity.
Ambiguous definitions hinder scientific progress and the accumulation
of evidence (Rousseau et al. 2008). Drawing valid conclusions is impos-
sible when people use the same term to refer to different things and,
it appears, this is what is happening when the term “Fourth Industrial
Revolution” and its derivatives are employed.

Unlike the first three industrial revolutions, which emerged in schol-
arly literature, the fourth emerged from practice, beginning with the
term “Industrie 4.0” in 2011 (Drath and Horch 2014), to refer to
a subset of technologies including automation, Big Data, digitization,
Internet of Things (IoT), networking and smart manufacturing (Lasi
et al. 2014). The notion of “revolution” appeared shortly after. To be
clear, it is not its non-scholarly origins that make the term problematic—
plenty of now widely accepted concepts in scholarly literature began in
this way (Macey and Schneider 2008). It is precisely its use in research
where one expects conceptual clarity that appears most problematic.

Indeed, most scholarly discussion that includes a Fourth Industrial
Revolution are not talking about a revolution at all but rather some
aspect of it, i.e., the effects of the implementation of some particular
aspect of a technology rather than a composite suite of technologies. Just
which technologies are included, and the degree of concern for revolu-
tionary aspects is unclear. To be sure debates around delineating exactly
when and what things are is a hallmark of scientific debate and are not
germane to the Fourth Industrial Revolution—they exist for the First
Industrial Revolution, as well as technological developments in the Stone
Age. For example, De Vries (1994) notes that while much discussion on
the First Industrial Revolution places it in the late eighteenth century,



34 J. Kask and R. Armstrong

the foundations and key developments had already taken place in the
seventeenth century, and possibly earlier. Mcbrearty and Brooks (2000)
level a comparable critique against oversimplifications of the “human
revolution,” a relative acceleration in technology that occurred around
50,000 years ago and marked the beginning of the later Stone Age.
The demarcations between Industrial and non-Industrial, and Middle

and Late Stone Age, despite being separated by tens of thousands of years
of human development, suffer similar deficiencies that any attempt to
define a clearly defined era or “revolution” is likely to share. These are
a general dismissal of heterogeneity and richness in design in favor of
a wider scope, a tendency for Euro or Anglo-centricity, and a progres-
sivist framing in which technological development is taken for granted
to be good (Lycett and Norton 2010; Mcbrearty and Brooks 2000). But
unlike these terms, the Fourth and possibly Fifth “Industrial Revolu-
tion” are ongoing, and therefore present a further deficiency. Revolution
is a term that refers to an event, rather than a tendency. The term is
almost always applied retrospectively and implies a subversive element—
a significant change in the way of life and social order (Nickles 2006).
Kuhn’s (1970) discussion of scientific revolutions speaks to the depth
of this change: a revolution alters deep-seated assumptions that underlie
fundamental and wide-ranging ways of thinking and behaving. There is
a before and after, such that after, the “world of his research will seem,
here and there, incommensurable with the one he had inhabited before”
(p. 112). None of these criteria necessarily applies to the current context.
While technologists have claimed the mantel for subversion in certain
fields (e.g., that it will revolutionize education by providing expanded
access), so far, the benefits of Industry 4.0 technology have not displaced
wealth (Center 2020). There is little evidence of any widespread shift in
the thinking of the type Kuhn referred to within industry that would
suggest revolution—the rules governing systems of production remain
largely unchanged, beyond some espoused recognition of its harm to the
environment. On the contrary, we would expect the ecological impacts
of an industrial revolution, clearly visible in the “Neolithic Revolution”
as well as the “First Industrial Revolution.” Despite these limitations,
academia appears to buy into the concept wholly and enthusiastically:
since 2011, “Industry 4.0” and related terms have generated over 30,000
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citations (Fig. 2.2). Compare this number to the combined total for the
first three revolutions: Just over 1,000, with the majority also appearing
in the past decade (Fig. 2.3). Such growth has not, to our knowledge,
been accompanied by a related growth in academic departments whose
remit is sociotechnical transitions, but rather, as Xu et al. (2021) warn
against, more indicative of a marketing device to generate interest and
justify grant applications.

Finally, the labeling of these periods as distinct revolutions may also
obscure the true nature of technological development as an enduring
process of cumulative, path-dependent technological development that
has characterized human history from the Acheulean hand axe to today’s
AI. Technological change is an iterative process, with each innovation
building upon previous ones in complex, interactive ways. Under-
standing this can provide a deeper perspective on our current era of
rapid technological change and help us anticipate the trajectory of future
developments.

Fig. 2.2 Publications on the 4th industrial revolution, 2011–2022
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Fig. 2.3 Publications on 1st, 2nd and 3rd industrial revolutions to 2022

2.4 The Continuity of Technological
Evolution

The concept of technological revolutions may be deceptive, obscuring the
complex, continuous processes of technological evolution that underpin
apparent “breakthroughs.” The narrative of sudden, disruptive change
often overshadows the reality that these transformations are built on
a cumulative foundation of previous innovations, patents, and techno-
logical advancements that have developed over the years, even decades.
The model of evolution rather than revolution is more accurate, as evolu-
tion suggests continuity: technological variation comes about through
innovation, some are selected if they outperform the competition, and
some are retained through generations. Often, co-evolution occurs where
the evolution of one entity—a species, technology, or practice—exerts
a causal influence on another and is itself responsive to that evolution
(Breslin et al. 2021).
The evolution of humans and human tools in the Stone Age is an

example of this co-evolutionary development. Consider solar photo-
voltaic technology. Although the wider adoption of solar energy and
its recognition as a viable alternative to fossil fuels is a relatively recent
development, the foundational research goes back much further. The
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photovoltaic effect was discovered, and the first patents for solar cells
were filed, already in the 1800s by Becquerel Sr and others Lincot
(2017). This early invention, although groundbreaking, had limited effi-
ciency and high production costs. However, since then, the field has seen
a cascade of patents, each building on, refining, and evolving from the
accomplishments of their predecessors. For example, a later invention
that substantially improved the efficiency of solar cells by, employing
layered nanostructures would not have been possible without a firm
grounding in earlier developments. Thus, what might seem like a recent
“revolution” in energy production is the culmination of over a century
of incremental improvements and persistent research.
The narrative of continuity and evolution is also evident in other tech-

nological systems, such as the development of electric vehicles (EVs) and
the corresponding advances in battery technology. While the commer-
cial success of companies like Tesla may seem to signify a sudden shift,
the history of EVs extends back to the nineteenth century. Advances in
battery technology, a key component for the operation of EVs, have been
the result of long-term, incremental research and development (Mom
2004). Also, this progress has been characterized by a series of patented
inventions that build on, revise, and develop previous inventions. For
example, a rechargeable lithium battery with a particular arrangement of
the anode and cathode (Mizushima et al. 1980), laid the groundwork
for subsequent improvements, including those that have resulted in the
high-performance lithium-ion batteries in today’s EVs.

Similarly, the internet—a technological innovation that has radically
transformed societies worldwide—did not emerge suddenly. Its roots can
be traced back to the 1960s with the development of ARPANET , a
project funded by the U.S. Department of Defense. The protocols that
form the foundation of the internet, such as TCP/IP , were developed in
the 1970s, and theWorld Wide Web, which made the internet accessible
and useful to the public, did not come into being until 1989 (Leiner
et al. 2009). This multi-decade evolution underscores that even the
most transformative innovations are products of extended, cumulative
processes.
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Artificial intelligence (AI)—so labeled by Turing, and defined as the
science and engineering of creating intelligent machines (Turing 1950)—
and virtual reality (VR) are other examples where the origins of the
technologies predate their widespread use and societal impact by several
decades. AI research began in earnest in the 1950s and 1960s (McCor-
duck 2004), but its potential is only being realized recently due to
advances in computational power and data availability (Hassabis et al.
2017; Silver et al. 2016). Similarly, the conceptual groundwork for VR
was laid in the mid-twentieth century, with key developments like the
Sensorama (1962) and the Head-Mounted Display (1968) (Biocca and
Levy 1995). Nevertheless, VR technology only started to gain main-
stream attention and commercial success in the 2010s with products like
the Oculus Rift .
These examples above demonstrate that while we may perceive tech-

nological change as occurring in leaps and bounds or “revolutions,” it
is a cumulative and ongoing evolutionary process. The apparent break-
throughs we see are often just the most visible aspects of long, complex
journeys of technological innovation happening on multiple fronts in
parallel, often barely or loosely connected. Recognizing this can provide
us with a more nuanced understanding of technological change and its
implications for society.

2.5 Lessons from the Recording Industry:
The Evolutionary Path to On-Demand
Streaming

The evolution of the music recording industry provides a clear illustra-
tion of the complex interplay, or co-evolution, of technological advance-
ments that culminated in apparent sudden disruptions. Spotify and other
on-demand streaming services didn’t suddenly emerge and transform
the music industry; they are the visible outcomes of a long-standing
evolutionary process encompassing several technological breakthroughs.
The internet is a fundamental prerequisite for streaming services.

Developed over decades, the internet has profoundly impacted the music
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industry by providing a platform for global music distribution. Addi-
tionally, the creation of theWorld Wide Web in 1989 and the subsequent
development of web browsers during the 1990s made the internet more
accessible and user-friendly, enabling the rise of digital music platforms
(Leiner et al. 2009).

Advancements in digital storage technology played a crucial role as
well. The introduction of CDs in the 1980s signaled the transition from
analog to digital music formats, revolutionizing the recording industry
by offering superior sound quality and durability. The proliferation of
CD-ROM writers in the late 1990s allowed consumers to copy CDs
and create their compilations, a step toward the personalization of music
consumption (Kask 2011; Wikström 2009).
The development and popularization of the MP3 format in the mid-

1990s further accelerated the digitization of music. MP3s compress
audio files without significantly compromising sound quality, enabling
users to store more songs on their devices and share music online. This
led to the rise of peer-to-peer file-sharing services like Napster, which
marked the beginning of digital music distribution and sharing, even
though it ran afoul of copyright laws (Wikström 2009). Fast broad-
band connections have been another essential factor, enabling quick and
seamless music streaming. In the early days of the internet, slow dial-up
connections made online music streaming impractical. With the advent
of broadband, music could be streamed smoothly, paving the way for the
growth of online music platforms (Kask 2011).

It is in this context that Spotify and other music streaming services
emerged, integrating these various technological advancements into a
single user-friendly platform. Through a longitudinal study, Kask (2011)
underscored how the evolution of technologies and innovative market
channels, underpinned by technological advancements, paved the way
for Spotify. The study highlighted how Spotify leveraged the existing
technological infrastructure— digital music formats (first CDs and then
MP3s), internet, digital storage, broadband connections, Peer to Peer
sharing—to offer a new way of consuming music. Further, Kask and
Öberg (2019) posited that Spotify’s success is not only due to techno-
logical innovation but also to its alignment with the music consumer’s
will to use such a service. By providing unlimited access to a vast music
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library through a subscription model, these platforms have fundamen-
tally changed the way we purchase, own, and listen to music.
Yet, despite the disruptive impact of these platforms, they are simply

the latest manifestation of a nested, path-dependent process of techno-
logical evolution that has been reshaping the music industry for decades.
Understanding this historical context can help us appreciate the nuances
and dynamics of this transformation and anticipate the future direction
of various industries.

2.6 Discussion

Our exploration of the evolutionary processes underlying technological
development challenges the prevailing notion of industry “revolutions.”
Through a historical review of technological progression and the lessons
learned from the music recording industry’s transformation, we argue
that the concept of Industrial Evolution holds greater descriptive and
explanatory value. Technological shifts, from the creation of the first
hand axe to the rise of music streaming services, have unfolded through
a cumulative evolutionary process, often misunderstood as a series of
abrupt revolutions. The notion of industrial revolutions, often perpet-
uated by the media and corporations, creates a perception of radical
discontinuity and emphasizes the newness of technologies over their
historical underpinnings. This perspective can distort our understanding
of technological change by presenting it as a series of leaps and break-
throughs rather than as a long-term, path-dependent process (Frenken
and Leydesdorff 2000; Kask 2013). We acknowledge that the narrative of
distinct “Industrial Revolutions” may appear attractive for its simplicity
and the way it neatly categorizes periods of drastic change.

However, this narrative overlooks the fact that the time interval
between these so-called revolutions is diminishing, and the rate of tech-
nological innovation is accelerating. The increase in the number of
patents issued, the growing population of educated individuals involved
in research and development, and the exponential pace of advancements
in fields like computing power (Moore’s law), bandwidth, energy storage,
and solar power (Kask et al. 2022; Kittner et al. 2017). All demonstrate
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this acceleration. This tendency for technological growth to follow an
exponential, rather than a linear trajectory, is a significant factor. This can
be attributed to the cumulative and interconnected nature of technolog-
ical development. Each innovation serves as a building block for future
inventions, creating a positive feedback loop that fuels faster and more
sophisticated advancements (Arthur 2009). While disruptive technolo-
gies certainly emerge, it is misguided to think of these as “revolutions.”
The accelerating pace of technological advancements implies that there
will be no final “Industrial Revolution.” Instead, we are likely to witness
a continual, rapid evolution of technologies and industries. The concept
of an “Industrial Revolution” may, thus, increasingly become a buzzword
or a sales pitch for the most recent “big thing,” rather than a meaningful
description of a distinct period of more drastic change. This perspective
aligns with the view that we are now in an era of constant, high-speed
innovation, where the acceleration of technological progress has become
the norm (Schwab 2015). Therefore, rather than focusing on labeling
and differentiating “revolutions,” we might do better to understand the
broader, continuous, and accelerating process of Industrial Evolution.
Recognizing the cumulative, interconnected, and exponential nature of
technological progress can provide a more nuanced and accurate under-
standing of the socio-technological landscape, its trajectory, its pace, and
its implications for society.

Moreover, in this chapter we address that technologies do not emerge
from a vacuum; they build upon previous achievements, knowledge, and
structures. The sum of numerous improvements and developments in
the details at the niche level in technologies and sociocultural norms
can yield and accumulate significant macro-level transformations over
time. The story of Spotify’s rise, for example, is not simply about a
single breakthrough, but about a long-term accumulation of technologies
and patents, as well as changes in consumer habits and societal norms.
In this context, Spotify’s success was more the outcome of a gradual
technological evolution in the condition of this kind of service than
a sudden revolution (Kask and Öberg 2019). Acknowledging, instead,
the evolutionary and co-evolutionary nature of industrial development—
focusing on the interdependency between actors or between technology
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and sociocultural norms (Abatecola et al. 2020)—has profound implica-
tions. It can help decision-makers and policymakers craft more informed
strategies and policies, educators provide a more realistic portrayal of
technological progress, and the public cultivate a deeper understanding
of how technology and industry evolve. It also encourages us to pay
attention to the less glamorous, incremental advancements that, while
often overlooked, form the basis for the “breakthroughs” that, often
much later, capture our imagination.
The concept of Industrial Evolution also compels us to recognize the

multidimensionality of technological change. It is not only about the
evolution of hardware and software but also about the evolution of regu-
latory frameworks, market structures, social norms, and cultural values.
All these elements interact to shape the path of technological develop-
ment, with each “revolution” simply reflecting a particular and temporal
stage in this ongoing process. Hence, we claim that technological change
is better conceptualized as a co-evolutionary process—a series of small,
history-dependent steps rather than giant leaps. We believe that adopting
this perspective can deepen our understanding of the past and present
technological landscape and, importantly, guide us as we navigate the
uncharted territories of the future.

2.7 Conclusions and Implications

This chapter has endeavored to reframe our understanding of tech-
nological change as a process of Industrial Evolution a concept that
emphasizes path-dependent change rooted in cumulative knowledge.
We posited that so-called “industrial revolutions” often overlook the
historical context and cumulative advancements, resulting in a distorted
understanding of the nature of technological change. By analyzing the
music recording industry, we demonstrated how perceived revolutionary
shifts are better understood as the long-term, cumulative evolutionary
processes, inherently driven by previous innovations and societal shifts.
Hence, challenging the existing discourse of a series of so-called “Indus-
trial Revolutions” has implications for research and practice. Firstly, it
serves as a rallying call for a shift in our conceptual understanding



2 Another Industrial Revolution? It’s All Evolution! 43

of industrial change. The concept of Industrial Evolution necessitates
a reconsideration of existing ideas, theories, and frameworks that too
often label technological progress into isolated, discrete “revolutions.”We
contend that a reframing of this nature has the potential to enhance the
discourse in fields like innovation, technological change, and industrial
organization. For one, it suggests that scholars interested in technological
development would be better served by focusing on specific technolo-
gies or technology groupings and their context-dependent effects, rather
than trying to divine or evaluate a set of “Industry 4.0” technologies.
Otherwise, they may miss out on adaptive heterogeneity as the tech-
nologies develop in different contexts and for different purposes. Second,
our proposed concept of “Industrial Evolution” demands a change in
research methodologies. The focus should shift toward longitudinal
studies that meticulously trace the intricate and gradual processes leading
to major technological changes. Additionally, given the diverse range of
factors at play in these transitions, an interdisciplinary approach becomes
paramount. This is an audacious demand, but one we believe is crucial
for capturing the genuine essence of technological progression.

For practitioners, acknowledging “Industrial Evolution” could reshape
the way one thinks about strategic decision-making. Instead of being
captivated by the lure of the next “big thing,” firms would need to
cultivate a deep, historical understanding of long-term technological-
evolutionary trajectories. Policymakers, too, would need to transition
from short-term, reactive policymaking to a more visionary, long-term
perspective that fosters sustained and inclusive innovation. To this end,
direction and pace in the change processes are as important as the current
state-of-the-art.

Despite the arguments presented here, there remains terrain to be
explored. We encourage future research to undertake detailed longitu-
dinal case studies across various sectors to further enrich the concept
of “Industrial Evolution.” Additionally, investigating the pace of socio-
technological evolution across different contexts and its interaction
with broader societal trends remains a largely uncharted but potentially
rewarding area of study.
To conclude, this chapter is a call for a rethinking of our under-

standing of technological change, bringing in more of the longer lines
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and the parallel societal change. By advancing the concept of “Indus-
trial Evolution,” we aim to provoke thought, incite debate, and inspire a
more rigorous, comprehensive, and realistic appreciation of the dynamic
interplay between society and technology. This is a daring stance, but it
is in these audacious challenges to the status quo that we believe lies the
key to understanding our ever-evolving social, technical, and economic
world. Because, after all, it is worth noting that the term evolution stems
from the Latin word evolvere, which means “to roll forward.” In contrast,
revolution implies a “rolling back.” It is an inherent trait of history and
time that they never roll back, but rather, continuously move forward.
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3
Industrial Transformation via AI

and Autonomous Systems: Evidence
from a State-of-the-Art Survey

Luke Treves, Paavo Ritala, and Päivi Aaltonen

3.1 Introduction

The development of Artificial Intelligence (AI) and autonomous systems
is transforming operations across industries (Fountaine et al. 2019;
Thomson et al. 2021). While AI and its applications are not new [e.g.
(Xu et al. 2021)], they have received increasing attention in recent years
due to the rapid advancement of AI technologies and the increasing
availability of data (Ransbotham et al. 2018). AI now performs tasks
once imagined impossible for machines, such as driving cars (Banerjee
2020), diagnosing diseases (Lebovitz et al. 2022), and with the advent of
Generative AI, conducting creative and knowledge-intensive tasks such
as writing and editing creative content (Ritala et al. 2023). This capa-
bility has led to a surge of interest in AI applications, such as autonomous
systems and digital twins, from businesses, governments, and the public
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(Enholm et al. 2022). Another important factor driving the growth of
AI is the increasing availability of data. Organizations use this data to
train AI and autonomous systems, and the adage goes that the more data
they train with, the better they perform. The development of technolo-
gies like the Internet and the Internet of things (IoT) in the last decade
(Xu et al. 2021) has led to an explosion in the amount of data available,
enabling AI to be trained on massive datasets, resulting in significant
performance improvements (Acciarini et al. 2023), increasing the need
to rethink business strategies (Ruokonen and Ritala 2023) and orga-
nizational practices (Berente et al. 2021; Brock and von Wangenheim
2019). Given the ubiquity of digital technologies and the breadth of
data available in different industries (Dabrowska et al. 2022), organi-
zations are increasingly exploring ways to deploy and scale AI and other
predictive and autonomous systems to achieve business benefits such as
increased revenue, cost savings, and improved efficiency (Enholm et al.
2022; Davenport and Mittal 2023; Bouschery et al. 2023). However,
despite the growing interest in AI, organizations are struggling to realize
and transform the value of AI and solutions in practice (Fountaine et al.
2019; Raisch and Krakowski 2021). Even if organizations invest time,
effort, and resources in AI adoption, the expected benefits may not be
realized (Makarius et al. 2020). Common challenges include a lack of
time and money, cultural challenges, resistance to change, a lack of neces-
sary knowledge and skills, and ethical, security, and privacy concerns
(Enholm et al. 2022; Acciarini et al. 2023; Glikson and Wooley 2020).
Against this backdrop, this chapter addresses the research question:

What is the current state of the art of AI and semi-autonomous/
autonomous systems used by industry, and what has been its impact?

To address our research question, we present findings from a Summer
2023 survey of 207 Finnish and international companies headquartered
in Finland across various industries. The chapter comprises eight main
sections. After the introduction, Sect. 3.2 defines AI and autonomous
systems in the context of our study. Sections 3.3–3.7 form the main
body of the chapter. We describe the results of our survey, which focus
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on (1) how organizations are currently and plan to use AI and semi-
autonomous/autonomous systems, (2) strategy and management, partic-
ularly the future objectives and management commitment to applying
these technologies within organizations, (3) the impact of AI and semi-
autonomous/autonomous capabilities on organizations. (4) the benefits
and drawbacks of access to data, and (5) the challenges organizations
encounter when implementing and scaling AI and semi-autonomous/
autonomous systems in their organizations. The final section (8) provides
concluding remarks and an outlook.

3.2 Theoretical Background: AI and Scaling
Within Organizations

3.2.1 Conceptual Foundations of AI

AI has transformed the business world in recent years, with its applica-
tions streamlining productivity and efficiency across all industries. Initial
research on AI in business began in the late 1950s with the early devel-
opment of artificial neural networks. However, it was not until the early
twenty-first century that AI truly took off in the business world, with
the introduction of more sophisticated algorithms such as deep learning,
reinforcement learning (Haenlein and Kaplan 2019), and generative AI,
involving generative pre-trained transformers and related large language
models (Dwivedi et al.2023; Ritala et al. 2023). Building on existing
definitions (Mikalef and Gupta 2021; Enholm et al. 2022), AI is a field
of technology that combines computer science and large datasets to solve
problems and make predictions. It also includes the subfields of machine
learning and deep learning, that may be used in a variety of industrial
applications, such as semi-autonomous/autonomous systems or digital
twins [further see e.g. (Holopainen et al. 2022)], and more recently, in a
variety of Generative AI applications. In the context of this chapter, AI
describes the ability of a system to identify, interpret, make inferences,
and learn from data to achieve predetermined organizational and soci-
etal goals (Haenlein and Kaplan 2019). In line with this definition, an
AI application is any system that can generate insights from data and act
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based on these to reach a set of objectives. This capability is also referred
to as ‘cognitive ability’ whereby AI resembles the human brain’s ability to
think and act intelligently (Bytniewski et al. 2020) while using different
technological means to do so.

Further, we focus on the most recent technologies under the AI
umbrella, excluding technologies present in Industry 4.0 applications,
such as IoT and cloud computing, and aim to follow more closely the
definition of Industry 4.0 and 5.0 (Xu et al. 2021). Industry 4.0 and
5.0 are concepts not that far from classical Schumpeterian waves—also
sometimes called the 4th or 5th Industrial Revolution—which embody
transformative stages in economic development marked by innovation
and technological progress that pave the way for more agile, efficient,
and personalized production systems. Specifically, Industry 4.0 refers to
a German-led strategic initiative in 2010, describing the highly advanced
technologies in use—IoT is one of them. Industry 5.0, a term coined by
the European Commission in 2020, is a movement beyond Industry 4.0
that focuses on human-centered design, sustainability, and augmentation
of human intelligence with digitalization and AI-driven technologies to
increase production efficiency and flexibility (Xu et al. 2021).

3.2.2 Artificial Intelligence and Industrial Change

Today, AI applications are ubiquitous in the workplace and are rapidly
transforming how organizations operate. Fueled by access to large
amounts of data and advances in computational power (Enholm et al.
2022), AI is allowing organizations to automate, augment, optimize,
and streamline, their business and operational processes across the entire
value chain, including HR, manufacturing, marketing, sales, quality
control, IT, and finances. As such, AI promises to deliver significant
advantages in terms of decision-making and creating and capturing
added value (Chui et al. 2018; Mikalef and Gupta 2021). Organiza-
tions are integrating AI into their business activities in a variety of ways
(Haenlein and Kaplan 2019; Iansiti and Lakhani 2020). For example, AI
can automate repetitive and time-consuming tasks, enabling employees
to focus on more strategic and creative work (Raisch and Krakowski
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2021), improve decision making by analyzing large amounts of data and
by identifying patterns and trends that would be difficult or impos-
sible for humans to see (Waardenburg and Huysman 2022), and finally,
AI potentially enables the creation of previously unthinkable products and
services—such as self-driving cars, personalized healthcare plans, and
intelligent virtual assistants and ‘copilots,’ among other things (Enholm
et al. 2022; Ritala et al. 2023).

Additionally, AI is creating new opportunities for organizations to
create value for their customers and stakeholders (Haenlein and Kaplan
2019; Przegalińska et al. 2019). Semi-autonomous and autonomous
systems (Thomson et al. 2021) are at the forefront of this transfor-
mation by embedding AI’s predictions and affordances into broader
solutions and technological frameworks. AI-powered semi-autonomous
and autonomous systems can automate complex tasks and enable better
decision-making. They have become an essential part of organizations of
all sizes and industries helping them achieve their goals more effectively
by improving efficiency and automating tasks that were once time-
consuming and prone to errors (Chui et al. 2018; Mikalef and Gupta
2021). For instance, in the finance industry, AI-powered systems can
automate risk assessment and fraud detection, and in the manufacturing
industry, they are enabling organizations to optimize production lines,
reduce waste, and improve quality control.

3.3 Methods

The findings presented in this chapter were gathered through a cross-
industrial survey. When gathering primary data, this technique has
several advantages, including the ability to obtain a high response rate,
improve data quality, and reduce non-responses, as well as the ability
to collect data on complex issues because interviewers can explain issues
if interviewees have uncertainties (Newsted et al. 1998; Dillman et al.
2014). The telephone survey used a Likert questionnaire to gather data
on five key themes: (1) AI usage, (2) strategy and management, (3)
capabilities and technology, (4) data usage, and (5) challenges in AI inte-
gration. All constructs were measured by using a 7-point Likert scale,
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ranging from 1 (not at all) to 7 (to a great extent) and ranging from 1
(strongly disagree) to 7 (strongly agree). A 7-scale Likert questionnaire
was chosen as it allowed us to gather nuanced responses on a range
of phenomena, reduces central tendency bias, increases reliability and
validity, and enhances data analysis (Dawes 2008). The questions were
developed using peer-reviewed academic articles relevant to the research
phenomenon and the five key topics.
The organizations surveyed represent twelve industrial sectors defined

by the official NACE Rev. 2 classification system of economic activi-
ties in the European Union (Table 3.1), which presents a framework for
collecting and presenting a large range of statistical data according to
economic activity in the fields of economic statistics (e.g., production,
employment, national accounts) and other statistical domains. Providing
uniformity and comparability for assessing data across EU member
states (Eurostat 2008). This framework is suitable for our research as
it comprehensively covers a broad range of industrial sectors, facilitates
comparative and trend analysis, and enables us to develop insights into
the state-of-the-art impact of AI and semi-autonomous and autonomous
systems on organizations.

3.3.1 Sampling and Data Collection

Our research encompassed a sample of approximately 2738 organiza-
tions within the industrial sectors outlined in Table 3.1. Per the Euro-
pean Union’s definition, these enterprises have a workforce exceeding
50 employees (EUR-Lex 2023). The selection of medium and large
organizations was strategic, given their substantial resources, varied appli-
cations, and significant market impact compared to smaller entities.
Facilitating a deeper insight into the effects and evolving patterns of AI
alongside semi-autonomous and autonomous systems.

Out of this sample, we surveyed 207 Finnish-owned and international
organizations with headquarters in Finland during the summer of 2023.
The survey was conducted via telephone and recorded electronically into
a database. The response rate we received was 7.6%, which represents the
diversity of our chosen industrial sectors and provides a comprehensive
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Table 3.1 Descriptive details of survey

n

Area of operations
Administrative and support service activities 18
Professional, scientific and technical activities 28
Real estate 1
Information and communication services 15
Accommodation and food services 3
Transportation and storage services 8
Distributive trade sector 36
Construction 25
Water supply, waste and remediation activities 3
Electricity, gas, steam andair conditioning supply 5
Manufacturing 64
Mining and quarrying 1
Turnover
EUR 20 million or more 121
EUR 10–19.999 million 46
EUR 1–9.999 million 37
EUR under 1 million 3
Employees
10,000+ 4
500–999 8
250–499 28
249–50 167

insight into the dynamic landscape of AI adoption. Our cross-sectional
approach also ensured that the study’s findings provide a comprehen-
sive and generalizable overview of the current state of knowledge in this
rapidly evolving field.

3.4 Findings

In the following sections, we provide a descriptive analysis to summa-
rize and provide a clear description of the state-of-the-art situation in AI
integration and use by industries from five perspectives:
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• AI usage relates to the number of ongoing AI projects organizations
have, the types of AI technologies they currently use and intend to use
in the future, and in which operational areas.

• Strategy and management relate to current and future organizational
and management commitment to use AI technologies in their organi-
zation. Specifically, this perspective looks at the extent of AI use in an
organization’s business and operational processes and the importance
of investment and resource commitment when it comes to AI.

• Capabilities and technology relate to how AI technologies affect job
roles, skills, and responsibilities within organizations and subsequent
employee attitudes toward AI.

• Data use relates to an organization’s collection, analysis, and use of
vast and complex datasets to gain insights, enhance decision-making,
and drive business strategies. It also relates to data sharing among
internal and external partners and its drawbacks when used to train
AI technologies.

• Challenges in AI integration relate to challenges organizations face
when implementing and scaling AI technologies, including lack of
time or money, cultural challenges, resistance to change, and security
and privacy concerns.

Additionally, we categorize our findings in two distinct ways:

• For a Likert scale ranging from 1 (not at all) to 7 (to a great extent),
we report and analyze responses from 2 (to a limited extent) to 7 (to
a great extent). This indicates the level of engagement an organiza-
tion has in a specific AI-related activity. One means that there is no
engagement.

• For the Likert scale, ranging from 1 (strongly disagree) to 7 (strongly
agree), responses falling between 5 and 7 indicate agreement (ranging
from agree to strongly agree). A response of 4 denotes a neutral
stance, while responses between 1 and 3 reflect various degrees of
disagreement (from disagree to strongly disagree).

• We do not report non-responses.
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In this study, we opted for a descriptive-analytical methodology to
present our results as it allows us to provide a clear and more widely
accessible account of the survey findings. This approach also allows us to
simplify the initial understanding of the large dataset gathered through
the survey and ensure the reliability of subsequent detailed statistical
analyses by providing a clear overview of patterns, trends, and potential
anomalies within the data.

3.4.1 AI Usage: How Industries Are Using These
Technologies to Transform Their Businesses

The rapid evolution of AI is fundamentally altering business land-
scapes, compelling organizations across diverse industrial sectors to
harness these technologies to achieve a multitude of objectives, ranging
from automating repetitive tasks to effectively forecasting and satisfying
customer demands. Our survey investigates the state of AI adoption in
organizations and how it will evolve over the next three years by exam-
ining the number of AI projects organizations are working on and the
types of AI technologies they use.

Despite emerging as a top technological priority of organizations in
recent years (Mikalef and Gupta 2021), the survey found that 79 orga-
nizations have no ongoing AI projects, 122 have between one and ten
ongoing projects, and only 5 organizations have more than ten (Fig. 3.1).
The findings suggest that, while organizations recognize the strategic
importance of AI they are still in the early stages of implementation. This
situation may be due to factors, including a lack of expertise, resources,
or data. However, it is also possible that organizations are taking a
cautious approach to AI, launching a limited number of projects to assess
their impact before scaling up. The findings are also consistent with those
of a global survey of Chief Information Officers (CIOs) from leading
companies and industry experts conducted by MIT Technology Review
Insights (2023), which reports that while AI is viewed as strategically
important, current ambitions are limited.
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Fig. 3.1 Number of ongoing AI projects

3.4.2 Current and Future Applications of AI

When it comes to AI technologies, literature (Haenlein and Kaplan
2019; Enholm et al. 2022; Bouschery et al. 2023; Chowdhury et al.
2023) provides various classifications based on the types of intelligence
and their corresponding applications. In this chapter, we examine AI
technologies at three levels of abstraction:

• Automated intelligence (including machine learning, computer vision,
sensor systems, speech synthesis systems, robotic process automation,
and rules-based expert systems) which can perform automated and
repetitive rule-based routines, freeing human workers to focus on more
strategic and creative tasks.

• Assisted intelligence (including Natural language processing (NLP);
Generative AI tools for natural language processing (such as
ChatGPT); Generative AI tools for visual material (such as Dall-E or
Midjourney) which can aid data-driven decision-making by analyzing
and extracting meaningful insights from large datasets, and by creating
new data, insights, and outputs based on users’ prompts.

• Autonomous intelligence (semi-autonomous and fully autonomous
systems, including self-driving vehicles and robots in warehouses)
which can adapt to a working environment and function indepen-
dently under certain conditions but requires human intervention in
functions like design, development, governance, and management
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of such systems. Moving to complete autonomy where systems can
operate and adapt to dynamic environments and scenarios indepen-
dently.

3.4.2.1 Automated Intelligence Technologies

The survey results indicate that the most used Automated Intelligence
technologies (Fig. 3.2) are ‘Robotic Process Automation (RPA) (68%)’
and ‘Sensor systems (62%).’ These technologies are relatively mature
and are being used in various industrial sectors to perform tasks that
would be dangerous, repetitive, or difficult for humans. For example,
in manufacturing, RPA robots are used to automate machine loading
and unloading and to detect defects. The use of other AI technologies
is relatively low. For example, 71% of respondents are not using ‘speech
synthesis systems.’ These findings may be due to factors including the
newness of technology, lack of skills and knowledge, and industry fit.

Looking to the future, the survey results show a different picture with
most respondents indicating that their organizations intend to use auto-
mated technologies to an extent. Notable the intention to use ‘machine

Fig. 3.2 Current and future intention to use automated intelligence technolo-
gies (%)
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learning’ (from 50% organizations currently using this technology to
81%) and ‘computer vision’ (from 48% of organizations currently using
this technology to 75%).

3.4.2.2 Assisted Intelligence Technologies

The survey results show that current use of Assisted Intelligence tech-
nologies is low (Fig. 3.3), with over half of respondents reporting that
they are not using any form of these technologies: Natural Language
Processing (NLP) 56%, Generative AI tools for NLP 52%, and Genera-
tive AI tools for visual material 61%. The low use of these technologies
may be due to factors, including awareness of the technologies or their
potential applications. Accessibility barriers due to the current high costs
associated with them. Complexity of their use, or their trustworthi-
ness and reliability to produce consistent and accurate results. However,
respondents are forecasted to rapidly increase the use of these tech-
nologies in the coming years, with 64% indicating their intention to
utilize NLP to some extent and 72% expressing their intention to use
Generative AI tools for both NLP and visual material.

Fig. 3.3 Current and future intention to use automated intelligence technolo-
gies (%)
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3.4.2.3 Autonomous Intelligence Technologies

The survey results show that when it comes to Automated Intelli-
gence technologies (Fig. 3.4), 60% of respondents currently use a form
of semi-autonomous system in their business compared to 28% using
autonomous systems. These findings may be due to factors, including
semi-autonomous systems being more available than fully autonomous
systems, allowing users to become more familiar and comfortable with
applying semi-autonomous systems in their operations. Organizations
may also be more willing to use semi-autonomous systems now as they
want to maintain an element of human oversight or intervention in their
operational control and do not see fully autonomous systems as being
mature, dependable, or safe enough in their current stage of development
to contribute effectively to their business or operational processes.

However, the results suggest that organizations are becoming increas-
ingly interested in using a form of autonomous intelligence technology
in the future. The intention to use fully autonomous systems more than
doubles from its current use, with 59% of respondents indicating their
intention to use these systems to an extent in the next three years. At the

Fig. 3.4 Current and future intention to use autonomous intelligence technolo-
gies (%)
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same time, 74% of respondents intend to use semi-autonomous systems
in the next three years.

3.4.2.4 Outlook for the Future

While the current use of AI technologies is relatively low within most
organizations, our survey results suggest that this picture is about to
change. Several factors are driving this rapid increase. First, AI technolo-
gies are becoming more accessible and affordable. For example, cloud
computing allows organizations of all sizes to access powerful AI tools,
and the cost of training and deploying AI models has fallen significantly
in recent years. Second, the benefits of AI technologies are becoming
more apparent. AI allows organizations to solve real-world problems in
industries ranging from manufacturing to finance, such as optimizing
production lines and making more accurate financial predictions. These
results suggest that as AI technologies mature and costs decrease, their
use will become more common in the workplace.

3.4.3 Business Areas AI Is Being Used in

AI is rapidly transforming industries across the globe, from marketing
and production management to enterprise management and customer
service (Alsheibani et al. 2018; Jelonek et al. 2019). According to
McKinsey (2022), business AI adoption and application have risen
dramatically in recent years, with 20% of respondents reporting adop-
tion in at least one business area in 2017, rising to 50% today. Despite
this figure peaking at 58% in 2019, the continued growth in AI adop-
tion reflects a growing awareness of its potential benefits. AI applications
can be deployed across the entire value chain of an organization to realize
significant gains in business value through increased revenue, cost reduc-
tion, and increased business efficiency (Wamba-Taguimdje et al. 2020).
Reflecting these possibilities, organizations are adopting and applying AI
throughout their operations, including business planning and decision-
making, customer relationship management, finance and budgeting,
human resources, logistics and supply management, manufacturing and
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production, and product and service design (Enholm et al. 2022; Accia-
rini et al. 2023). Our survey asked respondents to what extent their
organizations use AI in these business areas and their plan to do so in
the next three years (Fig. 3.5).
The results show that currently AI is being used to an extent across all

the business areas we examined. The most prominent application area is
customer relationship management (CRM), where 82% of respondents
indicate they are using AI technologies to some extent. Organizations
are also using AI technologies to a high extent in finance and budgeting,
where 57% of respondents indicate they are using AI technologies. Addi-
tionally, the survey found that in other business areas, approximately half
of the respondents report using AI to some extent as follows: manufac-
turing and production 50%, product service and design 49%, business
planning and decision-making 48%, in logistics and supply chain 45%,
and human resources (HR) 41%.

However, looking to the future respondents indicate that they believe
that AI will be in use increasingly across all business sectors. Looking
at logistics and SCM, business planning and decision-making, product
service and design, and HR, we can see the intention to use increases to
71%, 74%, 76%, and 64%, respectively.

Fig. 3.5 Business area AI is being used in and plans to use in the next 3 years
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3.5 Strategy andManagement:
Revolutionized by AI in Business

Organizations are interested in how AI can lead to improved opera-
tional and competitive performance and seek to find unique approaches
to make themselves distinctive from their competitors with data, algo-
rithms, and execution based on that (Ruokonen and Ritala 2023). To
understand how AI is affecting organizational approaches to strategy and
management, we study the effects of AI at both the process (first-order)
and organizational (second-order) levels proposed by Enholm et al.
(2022). The first-order effects of AI use are related to changes it causes
at the ‘process level,’ including process efficiency, insight generation,
organizational agility, and business process transformation. Second-order
effects are related to AI use effects at the ‘organizational level,’ including
operational performance, financial or accounting performance, market-
based performance, and sustainability performance (Enholm et al. 2022).
These process and organizational level effects are described in more detail
in the following section of this chapter.

3.5.1 Process (First-Order) Effects

While the survey results suggest that AI is still in the early stages of use
within organizations, we found that it is already impacting how they
think about and develop their business strategies and associated activ-
ities to improve the process level of their organization. AI is enabling
organizations to improve their efficiency by automating tasks, improving
decision-making, and developing new products and services. To under-
stand the extent to which AI is impacting organizational strategy we
performed an extensive survey across a diverse range of business processes
(Fig. 3.6).
The results show that respondents organizations are using AI most

‘to improve data security’ and ‘increase throughput (the amount of
a product or service that a company can produce and deliver to a
client within a specified period (Hayes 2023), with 72% and 80% of
respondents respectively indicating their organizations are using AI in
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Fig. 3.6 AI’s current effect on organizations’ business processes

these areas to some extent. The reasons that organizations are using AI
in these areas may be due to its benefits being more immediate and
tangible than in other areas. For example, organizations are using AI
to create more sophisticated security systems capable of detecting and
responding to threats more quickly and effectively. AI is also being used
to automate time-consuming or error-prone tasks, increasing produc-
tivity, responding to market and operational changes more quickly
and accurately (Eriksson et al. 2020), and freeing human operators to
perform more rewarding activities (Enholm et al. 2022).

At the other end of the spectrum, AI is least used in re-engineering
and redesigning existing organizational structures (54%) and improving
occupational health (55%). One explanation is that these are more
difficult and complex areas to apply AI. For example, re-engineering
organizational structures necessitates a thorough and often human
understanding of how the organization operates and how different orga-
nization sections interact to instigate and implement changes, which
AI is currently unable to do. Similarly, improving occupational health
and safety is a complex issue involving factors including employee
physical and mental health, workplace design, and work organiza-
tion, which require nuanced understanding and human judgments.
Although AI is powerful, it may lack the contextual understanding and
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empathy provided by human interactions. There are also legal and ethical
concerns, such as who is responsible if AI makes a mistake.

3.5.2 Organizational (Second-Order) Effects

The survey results show that the impact of AI varies at the organizational
level (Fig. 3.7). To date, AI has had the greatest impact in enhancing the
quality of existing products and services (61%), operational performance
(60%), and market-based performance (59%). These results are likely
due to AI already being widely used in these fields. For example, AI is
being used to collect and utilize data on the use of products and services
new offerings, improve the quality of existing products and services,
more effectively target customers, and cut costs.

Although AI has demonstrated a positive effect on organizational
processes, the findings from the survey indicate areas where enhance-
ments are needed. For instance, only 41% of respondents indicated a
favorable impact of AI on their capacity for precise customer segmen-
tation. Similarly, only 48% of participants reported a positive influence
of AI on their efforts to enhance targeted and personalized marketing
and the introduction of new products and services. An explanation for
why AI has had less impact on these areas is that they are more complex
and nuanced than others, making AI automation more difficult. For
example, customer segmentation and marketing necessitate a thorough

Fig. 3.7 AI’s current effect on organizations’ business processes
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understanding of customer’s wants and needs, and the ability to create
and deliver personalized messages and experiences. These are still tasks
AI is unable to perform well.

3.6 Capabilities and Technologies:
Rethinking Industry Approaches
Through AI

AI capabilities are critical for organizations across all industrial sectors
seeking to thrive and remain competitive in the twenty-first century
(Schmidt et al. 2020). Organizational capabilities are an organization’s
collective skills, abilities, and expertise it employs to adapt to changes
in its business environment and identify, create, and capture value for
itself, its stakeholders, and its customers. Furthermore, they are the
result of investments in human resource staffing, training, compensation,
communication, and other areas (Smallwood and Ulrich 2004). In the
context of AI, the core capabilities (referred to ‘AI capabilities’ from this
point) are an organization’s ability to select and leverage hard-to-imitate
AI-specific resources, such as data, methods, processes, and people, to
unlock new possibilities for automation, decision-making, collaboration,
develop new products and service, and improve existing ones, and more
(Davenport and Ronanki 2018; Mikalef and Gupta 2021; Karttunen
et al. 2023; Chowdhury et al. 2023). This definition underscores the
importance of looking at AI through the lens of organizational capa-
bilities rather than technologies on their own (Davenport and Ronanki
2018). In other words, the capability lens focuses on what the technology
allows the organization to do, rather than what the technology is as such.

Our study seeks to understand to what extent AI capabilities are
impacting organizations, particularly their employees. We adopt this
perspective as AI is predicted to have a significant impact on employees
from eliminating jobs to creating new and different ones based on
new ways of working (Davenport and Ronanki 2018; Mikalef and
Gupta 2021; Chowdhury et al. 2023). Specifically, the survey aimed to
understand the extent to which:
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(i) AI capabilities are changing job roles and responsibilities.
(ii) AI capabilities are freeing workers up from repetitive, physical,

manual, and dull tasks to creative ones.
(iii) Employees’ perceptions and attitudes are relevant factors in AI

acceptance and use.
(iv) AI capabilities have/are changing job roles and necessary skills.
(v) AI capabilities require ongoing reskilling and upskilling of

employees.
(vi) Trust in AI capabilities is higher among high-skilled employees

than low-skilled employees.
(vii) Overpromising AI capabilities have led to mistrust and dissatisfac-

tion among employees.
(viii) Employees and AI can coexist, resulting in a more technologically

evolving workforce.

Figure 3.8 shows the percentage of survey respondents who agree or
strongly agree (on a scale of 5–7) that AI capabilities affect their
organizations in different areas.
The results show that only 27% of respondents agree that AI capa-

bilities are significantly changing job roles and responsibilities. There
is a similar picture when it comes to the impact of AI capabilities

Fig. 3.8 Are AI capabilities impacting organizations employees?
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on freeing workers from repetitive, physical, manual, and dull tasks to
perform more creative ones and the relevance of employee perceptions
and attitudes toward technological change and the use of AI. Respec-
tively, only 39% and 34% of respondents agree that these factors impact
their assessment of these technologies’ integration and scaling in their
organizations.

One explanation for these findings is that the current iteration of AI
is introducing relatively new technologies into the workplace, and their
impact is not yet fully felt. Another possibility is that employees are
skeptical that these technologies will affect their jobs. Skepticism may
be due to a lack of evidence that AI capabilities will change their jobs or
because they believe their tasks are too complex or unsuitable for automa-
tion. The results also show that respondents feel that the perceptions
and attitudes of employees toward AI capabilities are not relevant factors
that influence the successful integration and scaling of these technologies
within their organizations. This lack of awareness of the importance of
the employee’s role may be due to a focus on the technological aspects of
change at the expense of including human elements.

Despite these findings, the situation is different when examining the
impact of AI capabilities on job roles and employees’ skill requirements.
The survey results show that 49% of respondents agree that AI capa-
bilities have or are changing job roles and the required skills within
their organization. While 65% agree that AI capabilities require ongoing
reskilling and upskilling of employees. These results can be attributed
to AIs to automate tasks previously performed by humans. At the same
time, these technologies will create new opportunities for workers to
focus on more complex and strategic tasks. The findings also suggest that
organizations should invest in reskilling and upskilling their employees
to adapt to a changing workplace.

Employee trust and dissatisfaction with AI capabilities also affect
the successful integration of these technologies within organizations.
Previous research suggests that highly skilled workers are more likely to
trust AI because they understand how these technologies work and how
to use them safely and effectively (Enholm et al. 2022). Additionally,
high-skilled employees may be more likely to work in roles that comple-
ment these technologies rather than ones that are likely to be replaced
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by them. The results show no clear consensus on whether high-skilled
employees trust technology more than low-skilled employees. Suggesting
that there is still uncertainty and a need to understand the relationship
between employee skill level and trust in AI capabilities.

Finally, the results show respondents do not think that overpromising
the AI capabilities has led to mistrust or dissatisfaction within their orga-
nizations with only 8% of respondents agreeing that this is an issue. This
finding is complemented by 59% of respondents agreeing that employees
and AI can coexist to create a technologically evolving workforce. In
other words, most respondents are aware of the limitations of AI capa-
bilities but are also optimistic about the potential for these technologies
to coexist with human workers in a way that benefits both. Together, the
responses suggest a growing understanding of the need for a balanced
approach to integrating and scaling AI in organizations as they strive to
achieve their goals.

3.6.1 Data Use: The Fuel Behind AI

Data is the fuel that powers AI and enables it to learn and make accu-
rate predictions. The higher the quality and variety of data an AI model
is trained on, the better it will be at learning the patterns and relation-
ships in the data and making quick and accurate predictions (Mikalef
and Gupta 2021; Acciarini et al. 2023). The amount of data available has
reached unprecedented proportions, and businesses and governments are
increasingly turning to it to gain new insights and make better decisions
(Acciarini et al. 2023). Underling the significance of data, the Economist
stated in 2017 that ‘The world’s most valuable resource is no longer oil,
but data’ (Economist 2017), with the data market being forecast to grow
to $103 billion by 2027 (Statista 2011).
To better understand how the availability and use of data affect the

development and integration of AI in organizations, we sought to under-
stand the extent to which they currently collect and use data to train their
AI technologies, and the extent to which they share and collaborate with
their external partners in this process (Fig. 3.9).
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Fig. 3.9 Is the availability and use of data affects the development and
integration of AI in organizations

The results showed that 63% of respondents strongly agreed or agreed
that their organizations collect business and operational data. However,
only 19% of respondents strongly agreed or agreed that their orga-
nizations currently use business and operational data to train their
AI.

Nonetheless, the use of business and operational data to train AI is
expected to grow over the next 3–5 years, with 57% of respondents
strongly agreeing or agreeing that their organizations plan to use data
they collect to train AI systems. These findings are consistent with
other research on the adoption of AI by organizations. For example,
McKinsey & Company the State of AI in 2020 report (McKinsey 2020),
only 16% of organizations use the data they collect to scale AI beyond
pilot projects. Even though organizations that successfully implement
AI reap significant benefits such as increased productivity, improved
customer service, and new product and service innovation.

Collaboration and data sharing are essential for organizations to
succeed in the AI economy, as they enable the development of better AI
capabilities and lead to competitive advantage by establishing internal
and external digital (supply chain) platforms that facilitate the exchange
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of data between members related to operational and business activities.
This exchange of data enables organizations to gain insights that are
more accurate and actionable than those derived from isolated data sets,
which allow them to make better decisions, improve their utilization of
resources, and enhance product and service offerings (Li et al. 2020;
Acciarini et al. 2023). The survey results show that when it comes to
collaborating and sharing data only 27% of respondents strongly agree or
agree that their organizations currently collaborate with external business
partners, networks, and ecosystems to collect mutually beneficial data to
be used to train AI. As for collaborating and sharing data internally, the
picture is more positive, with 47% strongly agreeing or agreeing with the
same question.

Our survey also sought to understand the main drawbacks organi-
zations encounter when it comes to data in terms of data quality and
relevance issues, unauthorized access and misuse, lack of standardized
practices, and information overload. These drawbacks can be significant
as they can compromise the accuracy and effectiveness of these tech-
nologies. Additionally, the lack of universally accepted industry norms
hinders seamless integration and interoperability, creating inefficien-
cies and complexity. The sheer volume of data also poses a problem
of information overload, reducing the ability to extract meaningful
insights. Respondents’ perceptions of these drawbacks are crucial in
understanding the challenges of the use of data in AI systems (Mikalef
and Gupta 2021; Enholm et al. 2022; Acciarini et al. 2023).
The survey explored to what extent these are drawbacks when using

data to train AI (see Fig. 3.10).
According to the results, there are certain limitations to using data for

training AI. However, the degree to which these limitations are perceived
as drawbacks varies among respondents. Most respondents consider the
unavailability of quality (93%) and relevant (88%) data as the biggest
drawbacks to using data for training AI. It is important to note that AI
depends heavily on precise and relevant data to produce accurate predic-
tions and recommendations and automate processes. Low-quality and
irrelevant data can lead to inadequate performance, biased decisions, or
harmful actions.
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Fig. 3.10 Drawbacks to using data to train AI

91% of respondents also think that a lack of shared practices related
to the collection, storage, and use of data is a disadvantage. The absence
of standards can make it difficult for organizations to share data or
concerns about privacy and security. The survey also revealed that 88%
and 82% of the respondents believe privacy and security risks, and a lack
of standards are drawbacks when it comes to data.

3.6.2 Challenges in AI Integration

Despite the growing interest in AI and the value it can provide, organiza-
tions face challenges that make integrating it with their existing systems
and processes and realizing value identification, creation, and capture
gains difficult (Enholm et al. 2022; Mikalef and Gupta 2021) producing
a modern productivity paradox (Brynjolfsson et al. 2018). The main
challenges in AI include time, money, expertise, and resistance to change
due to disruption, unfamiliarity, and legal and ethical concerns. These
complex technologies also require large amounts of data, training, and
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knowledge, making it difficult for organizations to find suitable partners
and manage projects effectively.
The survey results show the most significant challenge organizations

face when implementing and scaling AI is a ‘lack of time’ with 58% of
respondents strongly agreeing or agreeing that this is a challenge when
implementing and scaling AI (Fig. 3.11). As relatively new and complex
technologies, AI can be time-consuming to develop and implement.
Additionally, in increasingly disruptive business environments, allocating
time for technology implementation and scaling can be challenging due
to the need for quick adaptation and decisive decision-making while also
developing complex new technologies.
The results also show that 56% of respondents strongly agree and

agree that a ‘lack of knowledge or understanding’ is a challenge when
implementing and scaling AI. These findings support previous research,
that organizations face challenges in effectively implementing AI due
to a lack of knowledge and expertise, shortage of skilled workers, and
high competition for talent retention, leading to delays and errors when
implementing and scaling AI (Enholm et al. 2022; Acciarini et al. 2023).
However, the results show that respondents are more optimistic about
other potential challenges. Respondents were positive, for example, when
it came to addressing’lack of clear usage cases’ and’external cultural
factors.’ with only 19% and 13% of respondents ‘strongly agree or agree’

Fig. 3.11 Challenges organizations face implementing and scaling AI (%)
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that these are challenges when it comes to implementing and scaling AI,
respectively.

3.7 Conclusion and Outlook

In this chapter, our research examines the current state-of-the-art of
AI and semi-autonomous/autonomous systems used by industry, exam-
ining their consequential effects. To provide clarity in our investigation,
we undertake a descriptive analysis centered on five pivotal themes:
(1) AI usage, (2) strategy and management, (3) capabilities and tech-
nology, (4) data usage, and (5) challenges in AI integration. The results
suggest that AI is a rapidly growing field with the potential to trans-
form industries. The results show that 61% of the organizations we
surveyed are exploring the use of AI in their business. The most forward-
thinking in developing AI plans is the ‘information and communication
services,’ with all companies surveyed reporting at least one ongoing AI
project. Furthermore, the findings indicate outliers in specific industries,
with some organizations reporting significant investment in AI projects.
For example, one respondent operating in the ‘Professional, scientific,
and technical activities sector’ reported that their organization has 100
ongoing AI projects. As AI technologies continue to mature and become
more accessible, we can expect to see a significant increase in their use
by organizations of all sizes. Most organizations report increased plans
to utilize AI and autonomous systems in the future (when inquired
about their intentions 3 years to the future). We believe that AI as
a general-purpose technology will be eventually adopted by nearly all
digital and later, physical systems, transforming both unprecedented as
well as difficult to forecast. For this reason, it is partially surprising that
there are still companies (with over 50 employees) that do not report
using AI or semi-autonomous/autonomous systems now, nor plan to
in the future. It might of course be that they are not implementing
such systems themselves but benefit from the AI-driven services provided
by other companies, which could partially explain the result. Neverthe-
less, given the prominence and breadth of the ‘AI revolution’ with both
classic machine learning but also the newer Generative AI models, our
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advice to the companies regardless of the industry is to make a strategic
assessment of the potential of AI and semi-autonomous/autonomous
systems, and then deliberate choices of whether and how to implement
this technology.

3.7.1 Academic and Practical Contribution

The findings and reflections in this chapter provide a comprehen-
sive overview of the current state-of-the-art of AI’s business use and
future implications for various industries. It highlights the increasing
importance of AI and associated semi-autonomous/autonomous systems
across different industrial sectors and the need for long-term studies
to understand its impact and to identify effective integration strategies.
Academically, it calls for further investigation into how AI affects orga-
nizational performance, strategic management, capabilities development,
and data governance. The study highlights the importance of strategy
agility, the correlation between AI capabilities and performance, and the
complexities of data management in AI applications. From a practitioner
perspective, our findings highlight the importance for organizations to
constantly monitor and assess AI and semi-autonomous/autonomous
system advancements in the context of their business and industrial
sectors they operate in and plan to operate in the future and develop
their business strategies applying appropriate forms of these technologies
accordingly. It also underscores the importance of aligning AI initiatives
with broader business strategies and addressing integration challenges
proactively to ensure coherent growth and maintain a competitive edge.

Finally, the findings and interpretations provide actionable insights
for both the academic community and practitioners, highlighting the
critical necessity of grasping and systematically incorporating AI and
semi-autonomous/autonomous systems to harness their transformative
power in the digital era.
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3.7.2 Limitations and Future Research

While providing valuable insights our study has several limitations.
Firstly, it is important to recognize that the survey results are just a snap-
shot of the current state of AI adoption by organizations in Finland,
and they may not be representative of all organizations and the situation
in different countries. Secondly, while the diverse industry representa-
tion in our sample aids in providing a comprehensive overview, the
survey may not have captured every way organizations use AI and semi-
autonomous/autonomous systems. For example, organizations may use
these technologies to develop new products or services, while others
may use them to improve their internal operations. Our sample consists
mostly of SMEs. Replicating this study in larger organizations could
yield additional insights.

Finally, as a descriptive analysis of statistical results, our research
serves as a foundational step for further statistical analysis. Future
research should also explore the use of AI in organizations in more
detail, including how different types of organizations use AI, organi-
zations located in other countries, the impact of AI on organizational
performance, and the challenges and opportunities associated with AI
adoption. Additionally, more in-depth research methodologies, including
organization case studies and interviews, would provide more nuanced
and rich descriptive findings.
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4.1 Introduction

Industry 5.0 emphasizes the integration of digital technologies and
automation while placing a strong emphasis on enhancing the well-being
of workers, customization, and sustainability (European Commission
and Directorate-General for Research and Innovation 2022). As an inte-
gral part of the Industry 5.0 vision, physics-based real-time simulations
can provide data for the artificial intelligence (AI) algorithms (Han et al.
2021) to automate and optimize different phases of the product life-
cycle by monitoring and adjusting processes in real time to maximize
efficiency, reduce waste, improve quality and optimize the entire supply
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chain (Javaid et al. 2022). Further, the safety and ergonomics of work
environments and human–machine interactions can be improved signif-
icantly when optimized AI models are utilized together with system
architecture to create a virtual representation of the system in operation
(Leng et al. 2021). Enhanced with Kalman filters and AI algorithms,
real-time simulations also enable online condition monitoring, predic-
tive maintenance, and product retirement decisions at the fingertips
(Khadim et al. 2023a). However, the subject of combining model-based
systems engineering (MBSE) and physics-based real-time simulations in
the context of Industry 5.0 is a relatively less investigated area.

Manufacturing of metal products poses a concrete application where
the benefits of Industry 5.0 can be materialized. The production of
defective metal products consumes substantial quantities of natural,
financial, and energy resources, contributing to environmental degrada-
tion. To foster the creation of sustainable products, seamless manage-
ment of production data across the design, development, materials,
manufacturing, and deployment phases is imperative. This integrated
approach facilitates the realization of products that align with the prin-
ciples of ‘first-time-right’ and ‘zero-defect.’ However, concurrently, it
is crucial to ensure that products adhere closely to design specifica-
tions, mitigating the allocation of resources toward excessive quality
(over-quality). Currently, the establishment of robust data management
protocols and data formats across the various phases of a product’s life
cycle remains inadequate, leading to substandard products and services.
Systems engineering, as a management methodology, has evolved to
streamline the efficient development of well-defined systems designed
to address customer objectives translated into system requirements
(Weilkiens 2008). A fundamental aspect of the systems engineering
process lies in the exchange of diverse documentation, serving to encap-
sulate information spanning the developmental phases from problem
definition to testing. As the scope of a system expands, introducing
heightened complexity, the task of maintaining and sharing up-to-date
documentation grows increasingly intricate. Consequently, this challenge
has precipitated the emergence of Model-Based Systems Engineering
(MBSE), where the system model becomes the singular source of truth,
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accurately portraying the present state of the system under development
(Madni and Sievers 2018).
The MBSE approach enables the representation and analysis of diverse

information across different phases of the product lifecycle through
the use of models (Ramos et al. 2012). These models help in the
visualization, simulation, and documentation of system requirements,
design, and behavior, enabling multiple team members to collaborate on
the shared model simultaneously. Integrating MBSE with physics-based
real-time simulations can contribute to providing real-time feedback
on system parameter changes (Han et al. 2021), facilitating improved
communication and detailed analysis for all stakeholders. Further, with
real-time simulation models, the end-users and customers can be engaged
in the various phases of the product lifecycle (Khadim et al. 2021).
The integration of MBSE with real-time physics-based simulations aligns
with the vision of Industry 5.0, also known as the human-centric
industry, which represents the future of manufacturing and industry
(European Commission and Directorate-General for Research and Inno-
vation 2022). This chapter delves into the combination of MBSE and AI
as a means to propel the industry toward the aspirations of Industry 5.0.
Offering an overview of the MBSE concept and a holistic perspective
of its alignment with Industry 5.0 goals, this chapter proceeds to illus-
trate its vision through a case study centered on the development and
optimization of steel product manufacturing.

4.2 Model-Based Systems Engineering

In document-based systems engineering, information on the system is
captured in textual specifications and design documents (Friedenthal
et al. 2014). These data should be transferred and iterated between
different departments for decision-making, (Fig. 4.1a), which is an
error-prone and time-consuming procedure. The development of new
engineering methods, tools, and means of communication has greatly
improved the accuracy and efficiency of the design process. However, this
progress requires novel methods to manage the massive volumes of digital
data produced by modern engineering procedures. MBSE has developed
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(a) Document-based systems engineering (b) Model-based systems engineering

Fig. 4.1 Comparison between document-based and model-based systems engi-
neering

based on document-based systems engineering to be capable of handling
the development process through a central model, (Fig. 4.1b). The adop-
tion of an MBSE model to capture all critical system data not only
improves traceability but also provides a unified comprehension of the
system’s status (Ramos et al. 2012).
The key perspectives highlighted in a system presentation through

an MBSE model are the system’s requirements, structure, behavior, and
parametric representation. The use of the system model as the sole
source of truth leads to a decreased risk of mismatched or disregarded
information during the system’s life cycle phases.
The MBSE approach is emerging as a standard for exercising systems

engineering for the development of systems in a vast variety of fields in
technology.

Benefits to the approach have been claimed in numerous publications,
although measured benefits have not yet been demonstrated sufficiently
in publicly available research (Henderson and Salado 2021). Quan-
titative evidence of realized MBSE value propositions could alleviate
resistance to the transformation from a document-centric to a model-
centric systems engineering approach. The model-centric approach
enables visualization of the system and makes it easy to comprehend for
non-technical stakeholders, making it a successful platform for broader
development, e.g., for evaluating business models or considering the
sustainability aspects more comprehensively.
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4.2.1 Adoption of MBSE

The collection of essentials that enable the adoption of the MBSE for
varying development challenges is referred to as methodology (Fig. 4.2).
A comprehensively defined methodology gives the user answers to ques-
tions about what is to be done and how it should be done (Estefan and
Weilkiens 2020). A defined process gives steps that are needed to accom-
plish a complete model. A method is needed to provide information on
how to approach and complete the tasks defined by the process. Finally,
a tool is necessary to enable the compilation of a system model. In the
commercial use of MBSE, it is commonplace that a tool is tailored for
adoption with a certain process and method to ease the adoption. This
leads to multiple similar options being available from different vendors
for new adopters of the new systems engineering approach. Often over-
looked additional factors that either support or obstruct the adoption
and maintenance of the practice but that are not physically tied to the
methodology are the environmental factors (Estefan et al. 2007).
Organizational factors such as reluctance to change and unwillingness

to dedicate the workforce are key obstructions to wider adoption—
especially when radical changes are desired. This is because the radical
changes might impose risk on the main business by influencing the
design and manufacturing of products. Demonstrated quantified benefits
of the approach and openly available, well-defined methodologies could
alleviate the effects of organizational resistance to this transformation.
To have a real impact the change should be driven by the willingness

Fig. 4.2 Contents of a methodology and other factors that affect the adoption
of MBSE
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to improve and not by the necessity to change. An incentive for the
transformation might also come from other suppliers that exploit MBSE
successfully and thereby gain a competitive edge.
The methodologies for MBSE have been developed to facilitate a

sufficient capturing of system information during the modeling process.
A scan through the methodology surveys (Estefan et al. 2007) reveals
that most MBSE methodologies employ a top-down approach of func-
tional decomposition for system modeling and development, similarly as
the business analysis is conducted. Common activities in the order of
application include stakeholder need analysis, system requirement defi-
nition, logical architecture definition, and verification and validation.
Functional analysis is often utilized as a step to assist the compilation
of system logical architecture. These common MBSE activities roughly
follow the traditional systems engineering lifecycle models such as the
V-model. The V-model is a widely adopted product development frame-
work that was originally developed for software development but has
since been adapted for wider use in the development of different systems
(Graessler et al. 2018). For MBSE, these frameworks have been opti-
mized to produce modeling from viewpoints that enable a step-by-step
development of the system. Contents of these viewpoints connect and
produce a satisfactory model that provides a complete representation of
the system for all life cycle development needs. While the completeness
of the model is highly desirable, a well-formed methodology that is suit-
able for the particular application enables the creation of a good enough
system model with the least amount of resources. This challenge has been
an incentive for the development of many methodologies. This has led
to some different approaches to the modeling process. Common to most
of the MBSE methodologies is the iterative nature of the development
process following a top-down approach. Modeling for each discovered
system branch could be stopped at any level when the original problem
is deemed as sufficiently, fulfilling predefined conditions, solved.
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4.2.2 Benefits and Challenges of MBSE

MBSE is claimed to provide various benefits when compared to tradi-
tional product development approaches. Benefits commonly associated
with the approach in the literature include improved communica-
tion, complexity management, increased reusability, and cost reduc-
tion (Henderson and Salado 2021). In another study, some examples
of frequently used positive attributes of Model-Based Systems Engi-
neering (MBSE) were listed to be verifiability, reasoning, consistency, and
communication capability (Campo et al. 2023). These attributes demon-
strate the original vision of MBSE that promotes a model as a singular
source of truth. To provide comprehensive reasoning for decision-making
the model should be complete and thus verifiable and consistent. These
requirements demand a suitable methodology, a compatible toolset, and
a proficient dedicated workforce.
The MBSE can still be regarded as an emerging approach to product

development. It can be common that the benefits of the approach are
presented with no consideration of possible drawbacks (Campo et al.
2023). The changing and tool-specific field of methodologies and the
difference to the traditional systems engineering approach can raise ques-
tions about the feasibility and profitability of adopting a new approach.
These doubts can be seen in the list of most frequently negatively
perceived attributes toward Model-Based Systems Engineering (MBSE)
gathered in a study (Campo et al. 2023; Huldt and Stenius 2019).
The list of these attributes includes acceptability, familiarity, afford-
ability, and feasibility. To combat these doubts, the development of
the approach and methodologies should aim for universal semantics
and guidelines for adoption while supporting the development of indi-
vidual discipline-specific methodologies. One of the leading advocates
for systems engineering and MBSE practices, the International Council
on Systems Engineering (INCOSE), has noted technical challenges as
one of the limitations for wider adoption of MBSE in their Systems Engi-
neering 2020 Vision (INCOSE 2020). The listed challenges concern the
difficulty of integrating models across boundaries of e.g. organizations or
system lifecycle phases and the limitations of model and data exchange
between modeling tools. Sharing models and data along supply chains
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should be facilitated to eliminate the need for overlapping activities.
Models have been supporting part of system development for a long time
in the phases of system analysis and design. Integration of the existing
models and discipline-specific modeling tools with the system level to
capture the system as a whole is one of the challenges that MBSE needs
to solve shortly.

Despite its unavoidable limitations, MBSE has become a go-to
approach for the development of new and existing systems. Already in
its current state, the modeling practices of MBSE enable the creation
of machine-readable representations of increasingly complex systems in
commonly adopted languages such as SysML. This characteristic of
MBSE permits the employment of machine intelligence as a tool in
the essential quest toward sustainable and efficient systems. Hence the
authors see MBSE as an important enabler of widespread adoption of
Industry 5.0 including multidisciplinary viewpoints. In the following
sections, a vision of employment of MBSE for Industry 5.0 is presented.

4.3 MBSE Vision in Industry 4.0 and 5.0

Industry 4.0, which emerged in the twenty-first century, integrates intel-
ligent systems across industries. This revolution fully automates processes
by utilizing flexible AI and machine learning in ambiguous situa-
tions (Akundi et al. 2022). Moreover, the implementation of machine
learning and optimization methods aims to enhance operational effi-
ciency (Vinitha et al. 2020).

In contrast, Industry 5.0 provides cooperative robots that commu-
nicate with human operators and reduce risk while comprehending
objectives and duties. It represents the fusion of AI into daily life while
boosting human capabilities using cutting-edge IT, IoT, robotics, AI,
and augmented reality (Akundi and Lopez 2021). Industries have been
pursuing Industry 4.0 visions such as digitalization (Verdugo-Cedeño
et al. 2023), AI, and cyber-physical systems (CPSs) as integrated phys-
ical and software systems. Despite all the advantages Industry 4.0 has
brought, it has been detected that it is not the right framework to achieve
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Fig. 4.3 Industry 5.0’s integration of human-centric values and societal goals
with industry 4.0’s vision

European 2030 goals, which leads to promoting Industry 5.0 (Euro-
pean Commission and Directorate-General for Research and Innovation
2022). Industry 5.0 nested the Industry 4.0 vision and added other
pillars as the main targets, such as a human-centric approach, person-
alized production, and decentralized decision-making, to direct industry
toward societal challenges (Fig. 4.3).

4.3.1 Key Technologies in Industry 4.0

Utilizing key enabling technologies such as AI, the Internet of Things
(IoT), and digital twins (DT) as the key technology to represent the
behavior of the manufacturing process has become a critical practice in
pursuing Industry 4.0 goals. These technologies increased the complexity
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of the design and manufacturing processes of a CPS. The uncertainties
rooted in human behavior and safety considerations will also increase
the complexity, even to a higher level, by placing humans at the center
of the manufacturing process in Industry 5.0. To ensure the robustness
and flexibility of cyber-physical production systems (CPPS) to real-time
changes in the environment, reconfigurability is identified as a major
need of Industry 5.0.

It is crucial to have models that cover business, processes, and
control views to combine a wide variety of information and obtain
the optimum reconfiguration approach. However, Industry 4.0 relies
heavily on automation and data-driven technologies such as generative
AI (Cámara et al. 2023). This shift could increase social inequalities
and reduce human oversight, potentially leading to ethical dilemmas and
decreased job satisfaction among workers. Further, the extensive inte-
gration of CPS and CPPS will increase vulnerability to cyber security
threats, posing risks to both individual privacy and industrial security.
The regulatory push for ethical AI practices in Industry 4.0, as high-
lighted in Mittelstadt (2019), has paved the way for Industry 5.0 to
further balance technological advances with human-centric values. Next,
the role of MBSE in Industry 5.0 is explained in more detail.

4.3.2 Role of MBSE in Industry 5.0

By encouraging cross-disciplinary cooperation, utilizing model-based
design, and managing complex system structures, MBSE enhances auto-
mated production systems. MBSE offers benefits including increased
efficiency, productivity, and consistency in managing complex systems,
despite facing implementation difficulties. An assessment of MBSE
deployment in the manufacturing and industrial sectors has been carried
out by Akundi and Lopez (2021). MBSE provides an extensive foun-
dation to tie different system models and methodologies together since
there has not been any dedicated methodology in the Industry 5.0
context. It provides a suitable foundation for managing the complexity
of various standards, languages, and methodologies used in software and
systems engineering to increase productivity, flexibility, and the level of
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automation in general as nested targets of the Industry 4.0 paradigm
within Industry 5.0. Moreover, it provides extensive possibilities for
personalizing the product and decentralized decision-making through an
emphasis on a human-centric framework design which is in line with the
Industry 5.0 paradigm.

4.3.3 Integrating AI in MBSE

DTs (Khadim et al. 2021; Verdugo-Cedeño et al. 2023), AI, and key
enabling technologies of Industry 5.0 can improve the performance of
the MBSE models in a variety of ways. Using systems engineering tools
enhanced with AI algorithms allows system engineers to focus more on
creative tasks and less on data input or report generation. The production
cycle becomes more difficult when people are involved since modeling
non-deterministic behavior is involved. For control strategies based on
observations, cognitive approaches, and AI techniques are stated as essen-
tial, and models can help with the learning processes of AI algorithms by
supplying the required information for evaluating the system’s present
condition. AI for MBSE (AI4MBSE) has been introduced to facilitate
the challenges of MBSE practice by contributing to task automation,
improving analysis, and optimizing system designs (Chami et al. 2022).

Utilizing various AI techniques such as natural language processing
(NLP) (Gerstmayr et al. 2024) and pattern recognition (Dunne 2007)
by the Industry 5.0 vision not only improves the performance of MBSE
model generation but also allows humans to return to the correct place
in the production cycle. Moreover, the utilization of DT models and
having them linked to the MBSE model as the executable part of a
holistic model and virtual representative of a system of interest (SoI) will
lead to agile decision-making and increase traceability in the early stages
of the design. Nevertheless, the implementation of AI techniques and
large language models (LLMs) will require huge computational resources
in Industry 5.0. However, this challenge can be overcome by using
low-fidelity models such as in Khadim et al. (2023b, 2024).

In the latest release of Systems Engineering Vision by INCOSE
(2020), the concerns of Industry 5.0 have been covered by considering
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the Industry 4.0 and Society 5.0 approaches. This vision covers the
idea of human-centered production while pursuing Industry 4.0 (Miller
2022). Implementing the MBSE approach, human intelligence can
map and orchestrate design and manufacturing by considering different
points of view and drawing linkages between related activities to improve
the efficacy of design and manufacturing procedures.

4.4 Applications of MBSE for Industry 5.0
in a Case Study

The Industry 5.0 vision through MBSE and AI can be demonstrated
in a case study. This case study examines the application of MBSE in
the manufacturing of a marine engine connecting rod (Fig. 4.4) in the
Industry 5.0 context. A modular product portfolio of the supplier facili-
tates that the component can also be used in a separate application as an
engine power plant component. As a result, the operational requirements
for the component can include a lot of variation in static and dynamic
loading. The specified design loads are determined by simulations of
differing fidelities which are typically validated by physical testing of
limited coverage and accuracy. As such, the design loads contain multiple
sources of uncertainty and have to be defined conservatively to provide
a product that fulfills its function with an acceptable rate of failure.
The physical realization of the connecting rod is a cumulative result

of a multi-stage, multisubcontractor manufacturing chain. Each stage
of the process has to be specified to a level that ensures the realization
of satisfactory product quality. The output of manufacturing stages is
inherently affected by both epistemic and aleatoric uncertainty. Epis-
temic uncertainty in the output characteristics can be reduced by existing
means (Lemaire 2014) but this process is often resource-intensive after a
certain point. A compromise has to be made about good enough knowl-
edge. The resulting leftover epistemic uncertainty has to be taken into
account with an additional margin on product specification (Pelz 2021),
similar to aleatoric uncertainty born from the inevitable randomness of
phenomena (Lemaire 2014). This leads to over-quality in the majority
of the components.
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Fig. 4.4 Principle diagram of a marine engine crank train with dimensions

Simultaneously, a small number of manufactured parts will experience
failure due to unforeseen circumstances and the unaccounted-for varia-
tion that was deemed not significant. The connecting rod, as a part of the
engine in its use context, interacts directly with other engine components
and indirectly with the operational environment. In this context, the
engine can be seen as a system whose function is to generate mechanical
power from chemical energy and an infinite air reservoir called an atmo-
sphere. This main system, the engine, can be decomposed into different
subsystems which each correspond to specific requirements and sub-
functions. One of the primary sub-functions of a reciprocating engine
is typically the conversion of gas forces into rotational torque. This func-
tion can be assigned to a subsystem called cranktrain. A decomposition of
subsystems reveals another level of subsystems and components. Compo-
nent level has been reached when at least part of subsystem functions
can be directly realized by individual elements or parts. In this example
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connecting rod is a component that fulfills the function of transmitting
reciprocal forces from the piston to the crankshaft.

An engine can be considered the SoI if the concern is primarily to
develop an engine to a given specification. This definition for the SoI
boundary is highly rational since it narrows the complexity and scope
to a level that is comprehensible and maintainable by human actors
with reasonable resources and only considers intellectual property up
to the level of a whole engine. The exchange of information from one
service and software to another within the system boundary is an existing
problem with today’s technology, and that challenge becomes more
prominent with additional system complexity. However, a more compre-
hensive approach to systems and system lifecycle is inevitably needed
to permit the development and production of systems with increased
efficiency and sustainability. To enable that, the scope of SoI should be
switched from system level to system of systems (SoS) level. An SoS is
an SoI with individual systems as system elements (SFS-ISO/IEC/IEEE
2015). Systems that constitute an SoS work together to fulfill a task that
is not realizable by the individual systems.

4.4.1 Natural Language Processing for Improved
Accessibility of Captured Knowledge

Transition to SoS-viewpoint leads to exponential growth in information
within the model. A level where a system is transformed into SoS can
be reached when extending the scope of the SoI boundary vertically or
horizontally. Here vertical extension would mean going up the structure
from the component level to the application-specific level, for instance,
a level of the complete vessel or a power grid. For optimization of manu-
facturing, we can extend horizontally on the component level to examine
the connecting rod alongside its manufacturing chain as an SoS that
provides both the design and the physical means for reliably transmitting
forces to the engine crankshaft (Fig. 4.5). Regardless of the extension
direction, the added complexity of managing systems on the SoS level
generates challenges for model maintenance and information integration.
A common, machine-readable system modeling language is necessary to
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facilitate the integration of models of different systems. The Systems
Modelling Language (SysML) has been widely associated with MBSE as
a semi-formal language for systems modeling (Saqui-Sannes et al. 2022).
SysML was developed as a general tool-independent language and as
such, leaves a lot of modeling decisions up to the modeler. This feature
poses a challenge for model exchange between multiple disciplines and
stakeholders for example in manufacturing SoS modeling cases. In addi-
tion, the specification of SysML doesn’t facilitate direct verification and
validation of the model by executable simulations. This limitation has led
to the development of extended versions of SysML. One tool-dependent
extension of SysML is the Arcadia method used with the software tool
Capella (Saqui-Sannes et al. 2022). The current limitations of SysML
have been noted by the developers and are alleviated in the upcoming
SysML specification v2 by increasing interoperability and introducing
analysis as an integral part of the system model (Bajaj et al. 2022).
With a developed model exchange capability, the manufacturing

partner’s system models could be integrated as a part of the SoS-level
manufacturing chain model. The SoS-level model acts as a centralized
representation of the current state of the manufacturing process and
could be queried for desired information about subsequent manufac-
turing states. If the used modeling language is stable and machine-
readable, this interpretation of model information could be automatically
performed by AI via a prompt through a typical chat-type interface
that utilizes an LLM. Similar document and report generation via NLP

Fig. 4.5 Block definition diagram for case study system of systems definition
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techniques has been demonstrated in Delp et al. (2013). This approach
would make the knowledge captured within the system model accessible
to stakeholders regardless of their ability to use specific tools or interpret a
specific language. The practicality of such an approach suffers from some
of the challenges regarding the compatibility of models from different
tools and also from unavoidable cautiousness about data-sharing. This
potential need has already been accounted for in the specification of the
forthcoming SysML version 2 by defining the API to support require-
ments change impact assessment and querying the traceability of model
elements (Bajaj et al. 2022). Automatic report generation for each stake-
holder viewpoint is a promising concept that would relieve personnel
from repetitive auxiliary duties that don’t directly serve the goal of system
development. In a practical example, a report could include a mapping
of all processes whose output requirements are affected if the lifetime of a
connecting rod in a certain application is to be altered. The result would
be a trace from application-specific lifetime requirements to fatigue anal-
ysis to inclusion formation during manufacturing. A decision about the
change feasibility could then be made based on the report. The use of
LLMs for expanding the usability of system models is not limited to
information queries. An extension of this technique is the automated
AI-assisted building of SysML models and diagrams, which has already
been demonstrated (Apvrille and Sultan 2024; Zhong et al. 2023).

4.4.2 System Model as a Structure for DTs

A deeper and more advantageous integration of MBSE into the Industry
5.0 concept is achieved by creating and maintaining an executable simu-
lation model on top of the SoS model. This requires the integration
of discipline-specific simulation models into the SoS model structure
(Madni et al. 2019). For the connecting rod, this would include simula-
tion models for the continuous casting of steel bars, forging simulation,
machining simulations, and finally a simulation model of the connecting
rod in operation. Additionally, a model for product end-of-life treat-
ment is also necessary when the product’s environmental impact over
its full life cycle is to be considered. Such a simulation toolchain would
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inevitably be computationally inefficient to use frequently with high-
fidelity models. A more realistic approach is to utilize data-driven models
of different processes in a fidelity that is deemed sufficient. Data-
driven models provide an additional benefit by protecting the underlying
intellectual property of the owner of a manufacturing stage.

A comprehensive, full life cycle simulation toolchain constitutes a
DT of the metal product. The DT can be used for assessing and
quantifying impacts of proposed changes, and optimization of the manu-
facturing process. If we use the component lifetime requirement change
as an example, the increase would result in a reduced allowed size of
inclusions within the material. This sub-requirement change then prop-
agates into a concrete set of requirements for the manufacturing stages:
for steel composition, casting process parameters, etc. The optimiza-
tion of the manufacturing SoS can be performed against a variety of
goals, including improvement of business and sustainability metrics. The
complete manufacturing chain contains a significant number of vari-
ables and various combinations of parameter values can lead to the same
outcome. Simultaneously, the targets of optimization can be conflicting.
Hence the task of finding the Pareto-optimal set of solutions requires
multi-objective optimization algorithms. Machine-learning-based opti-
mization algorithms have proved to provide a good compromise between
accuracy and efficiency (Liu et al. 2015; Schweidtmann et al. 2018).

4.4.3 Employing Patterns and Optimization
to Accelerate Product Development

The given examples of MBSE utilization use the existing SoS model of
the manufacturing process to guide the development of the SoS toward
specified targets. The SoS model itself needs to be built to materialize
these applications, and the model development itself is certainly a task for
an informed systems engineer. At present, the systems that form the SoS
can be described internally in a multitude of ways that do not obey the
conventions of MBSE. The fragmented field of MBSE and the various
languages used for system modeling lead to there being incompatibilities
between those already utilizing the approach for their processes. A skilled
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human operator is needed to interpret and tie together information on
manufacturing processes to form a coherent and consistent picture of the
complete SoS. This integration phase will become more straightforward
if more concrete evidence of the benefits is published and the MBSE
approach is adopted more widely. Additionally, the maturation of the
MBSE approach will inevitably lead to better interoperability of tools
and methodologies.
The unnecessary, recurring manual integration work that would be

done for similar systems and systems of systems could be greatly reduced
by employing previously created models as patterns. Each sufficiently
described and complete system and SoS model defined according to
the conventions of MBSE presents a solution to a defined problem.
This entity of problem and its solution can be referred to as a Solution
Pattern (Anacker et al. 2020, 2022). A Solution pattern captures solution
knowledge in a reusable and well-documented way. This is contrary to
the traditional practice of having that information stored as experience
of individual employees (Anacker et al. 2022). Reuse of this captured
solution knowledge would enable a higher level of efficiency during the
development of future products (Anacker et al. 2020). A relevant solu-
tion pattern for the connecting rod manufacturing development would
represent for instance each stage of the manufacturing process. One
example problem could be the manufacturing of high-quality steel bar
for connecting rod stock. This domain-specific knowledge is not neces-
sarily essential for the connecting rod manufacturer and could easily
be unofficially a responsibility of one senior employee. Future devel-
opment of similar steel components would benefit from documenting
this model of a system that constitutes one part of the manufacturing
SoS as a solution pattern. A solution pattern can equally be the model
of the connecting rod manufacturing chain. This pattern can then be
used to configure the manufacturing process of connecting rods for
different applications and operating conditions. The solution pattern
provides a re-configurable template for a family of similar products.
While the initial development of patterns is highly manual labor, the
pattern can later be used for configuring new products for alternative
sets of requirements. This configuration could employ AI for selecting
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optimal parameters for a specific set of requirements based on models of
manufacturing stages.

4.4.4 Benefits and Challenges for Integrating MBSE
in Industry 5.0

The given three approaches for applying MBSE to facilitate the effi-
cient transition toward Industry 5.0 demonstrate merely a limited set
of possible advantages that arise when the approach is adopted. The
main value proposition of MBSE is to provide an organic and commonly
agreed upon database that captures the whole architecture of SoI together
with its functions and interactions. Making this centralized database
accessible to all technical and non-technical stakeholders leads to the
decentralization of knowledge, which ultimately facilitates more stake-
holders to take part in development and innovation. DTs can be built
on top of the captured knowledge to efficiently test system perfor-
mance against numerous scenarios and to find the optimal configuration
and parameters for each use case. Finally, the development of new
systems inherently needs the creativity that is currently provided solely
by us, the human actors within the development cycle. One key benefit
of well-built and standardized models is their reusability as patterns.
Employing AI and optimization techniques as assisting tools to provide
the best possible starting points from previous configurations enables
the human actor in the loop to concentrate on the more creative parts
of development instead of repetitive configuration of similar types of
products.

Key barriers that inhibit the realization of these benefits stem from the
current limitations regarding the interconnectivity of created system-level
models and models that capture subsystem and component behavior.
This issue has been recognized as an important research area and a
lot of advances have been made recently on this front. Nevertheless,
existing methods and tools fail to provide a generally applicable solu-
tion to achieve truly integrated DTs that benefit fully from the system
models that are created in a growing level of detail as product devel-
opment proceeds. Another more fundamental barrier was already partly
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discussed in section two of this chapter. This barrier is created by the
scattered compilation of methods, tools, and processes that are currently
offered as separate and non-interconnected solutions. The threshold for
adoption of the approach is high since no established processes exist
for varying sizes of product development teams. Lowering this threshold
requires quantified benefits and demonstrated success stories. This would
eventually lead to a cumulative effect that leads to the natural prosperity
of the best available solutions.

4.5 Conclusion

Systems engineering is an approach that has been developed for the
efficient development of systems to specific and well-defined needs.
Model-based systems engineering (MBSE) extends this approach by
capturing all the information about the system of interest (SoI) in a
centralized representation of the system called a system model. The
system model acts as a singular source of truth that is used by stake-
holders to communicate, act as a justification for development decisions,
and compare alternative solutions to specific development problems.
The field of MBSE is still developing and no common understanding
about the best modeling languages or methodologies exists. The lack
of consensus and abundance of options for methodologies creates chal-
lenges for integrating information from different sources. Despite its
inherent challenges, MBSE can be seen both as a contributor and a bene-
ficiary for the transition toward Industry 5.0. The use of system models
can contribute to a platform for managing the development of complex
cyber-physical systems (CPSs) and the various models that are an essen-
tial part of today’s product development. System models can additionally
provide a structure for integrating simulation models to form digital
twins (DTs) of complex systems. The DTs can be used as a tool to
quantify the effects of design decisions.

Several benefits of utilizing MBSE to advance Industry 5.0 concepts
can be recognized in the context of manufacturing development, such
as for a marine engine connecting rod. The centralized documenta-
tion provided by the fully integrated manufacturing chain system of
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systems (SoS) model can be used to trace the impacts of development
decisions. This impact tracing could utilize AI for report generation
to relieve personnel from repetitive tasks. The structure and behavior
modeling from the SoS model provide a structure that facilitates the
integration of simulation models for each of the manufacturing stages.
When applied to the complete chain, this DT can be used for further
optimization of the manufacturing process. A comprehensive DT with
advanced machine-learning-based optimization algorithms can provide
an optimized solution for multi-objective optimization tasks. Another
benefit provided by MBSE is the use of patterns to promote reusability,
reconfigurability, and personalization. The SoS and system models devel-
oped during the development of the manufacturing stages and the whole
chain provide documentation on development problems and solutions,
which can be used to provide Solution Patterns for solving future prob-
lems. Similarly, the whole manufacturing process model can be reused as
a general Solution Pattern for any connecting rod, reducing repeated and
overlapping human work and freeing human resources for creative tasks.
This chapter offers a vision of how MBSE can be used to promote

the goals of Industry 5.0 and encourages integrating MBSE as an inte-
gral part of Industry 5.0. Additionally, the chapter highlights challenges
that hinder the wider adoption of MBSE in the industry and its role in
Industry 5.0.
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5
Managing Strategic Flexibility in Industry
5.0 Transition: An Integrated Real Options

and Strategic Foresight Approach

Jyrki Savolainen and Mikkel Stein Knudsen

5.1 Introduction

After a decade-long interest in the concepts of Industry 4.0 among both
academics and policy stakeholders, contours now emerge of an Industry
5.0 (I5.0) society shaped by digitalization and novel applications of
artificial intelligence (AI). In this chapter, we look at corporate invest-
ment strategies through the lenses of Strategic Foresight (SF) and Real
Options (RO) theory with a specific focus on Industry 5.0 and system-
level Digital Twinning. The chapter is written out on the authors’ beliefs
that an important part of theorizing about AI and Industry 5.0 relates to
theorizing about investments on them: when should companies engage
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in transitional investments and how could they approach them system-
atically. Integrating Strategic Foresight and Real Options Analysis could
be one such way to attain strategic flexibility under such rapidly evolving
conditions.

Strategic foresight as a tool involves a set of practices that help organi-
zations choose an optimal path forward by understanding the potential
consequences of their decisions and, subsequently, attain a superior posi-
tion in future markets (Metz and Hartley 2020; Rohrbeck and Kum
2018). The Real Options theory introduced by Myers (1977, 1984)
suggests that companies should assign value to their potential invest-
ment opportunities like investing in publicly traded options of financial
assets. Following this logic, the value of an investment can be calculated
using the analytical option valuation formula developed by (Black and
Scholes 1973), which takes into consideration asset volatility, time until
expiration, and the possibility of alternative risk-free investment.
This chapter considers the requirements of Industry 5.0 in the capital

budgeting decisions of companies. The central question is how one can
grasp the emerging opportunities of technological change while avoiding
sunk-cost investments in, possibly, soon-to-be-obsolete technology appli-
cations. Misinformed or ill-timed strategic bets on losing technologies
might result in significant company write-offs and, in the worst-case
scenario, even jeopardize the company’s existence. On the other hand,
a simple wait-and-see strategy that postpones major investments “until
the future becomes clear” (Courtney et al. 1997) can create windows of
opportunity for new competitors. This managerial myopia may lead to
situations that neither defend the company against new threats nor take
sufficient advantage of new opportunities. It is not an optimal way to
approach fast technological transitions.

As for the definition of Industry 5.0, we acknowledge it to be a
contested concept in the sense that there is no clear and accepted defini-
tion, and the common conceptualization has drawn “mixed reactions”
(cf. Lu et al. 2022). There is already an extensive stream of research
aimed at investigating challenges and enabling technologies (Huang et al.
2022), but summarily, we see the extant vision of I5.0 as human-centric
and recognizes the role of industry in achieving societal goals beyond
jobs and growth. It remains unknown what the new technological
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and societal landscape will look like, how the pace of the technolog-
ical transformation will unfold, and how companies should prepare
themselves. In this vein, the key question that this chapter strives to
answer is how market incumbents, with technologically mature product/
service portfolios, should attain strategic flexibility considering the I5.0
transition.
The novelty of the contribution rests on the attempt to produce a

meaningful combination of two theoretical schools of real options and
strategic foresight, which both can help strategy-making under uncer-
tainty, but which have hitherto been siloed from each other. That is, this
chapter discovers, surprisingly, that very few previous academic works
have sought to integrate the two fields of ROs and SF. It is suggested here
that ROs could be utilized for exploiting opportunities when the uncer-
tainty is mainly of parametric (numerical) type whereas SF could serve
as a more qualitative vehicle of opportunity exploration under struc-
tural and/or radical uncertainty. This is followed by an introduction of a
sketch of a high-level decision-making framework applied to an emerging
technology of system-level digital twinning referring to virtual models
of the whole (industrial) systems, identified as one of the Industry 5.0
technologies.
This chapter continues with a literature survey which is followed by

a more general introduction to the two schools of thought. Thereafter,
we present an integrated framework of SF and ROs derived from the
exploration versus exploitation dilemma. The primary contribution of
this text follows as the applicability of the integrated framework is evalu-
ated for I5.0. Since the integration of strategic foresight and real options
is at such an early stage, this is presented as an explorative and conceptual
model. Finally, the chapter closes with conclusions and discussion.

5.2 Earlier Works

The original idea of this paper was to draw insights from the previous
literature that had already considered the integration of the two theo-
retical streams of Strategic Foresight and Real Options. To do this, the
Scopus citation database was queried using the keywords “Real Option”,
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“Real Options”, and “foresight”. A total of fifteen works were identified
of which only three studies were selected after reading the abstracts. One
of the main reasons for heavy filtering was that even though several RO
papers did use term the “perfect foresight”, they did it in a narrow sense
to depict a situation where the pre-set numerical uncertainties would be
known before something happens. Such studies did not fit into the scope
of our inquiry, as we are specifically interested in circumstances without
access to such information.
The first research effort found in this area was made by Collan and

Liu (2003), who propose a partially automated decision support system
that would collect and analyze information related to ongoing projects
and employ a real options framework as a means of facilitating ongoing
dialogue with decision-makers about alternative future courses of action.
By assigning a value to each alternative, the proposed system helps
decision-makers make informed choices.

Eriksson and Weber (2008) examined the role of real options in adap-
tive foresight and aimed to establish a tangible connection between
foresight that generally promotes open participation of all interested
parties in society, and decision-making that focuses on implementing
targeted strategy development on an organizational level. The authors
suggest that adaptive planning highlights the importance of keeping
options open and postponing decisions to adapt to changing circum-
stances. As uncertainties become resolved, gradual increases in bets
for different technologies should be made (ibid.). While the paper of
Eriksson and Weber (2008) purportedly limits itself to public poli-
cymaking, the insights are applicable also on a corporate-organization
level.
The last paper is a recent literature review on radical innovation by

Tiberius et al. (2021). They imply that incorporating strategic foresight
can boost creativity, while the use of real options can provide valuable
insights for financial evaluations. However, Tiberius et al. (2021) note
that the financial aspects of radical innovations remain a relatively unex-
plored area of research and suggest that further investigation, perhaps
within the framework of a real options strategy, is needed to shed light
on this topic.
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As a conclusion of the few results of the literature survey, the inter-
section of real options and foresight has been acknowledged by a few
authors so far. The possibilities of integrating the fields remain mostly
unexplored. Probably, multiple reasons can help explain this conun-
drum. A simple explanation could be that, traditionally, the discipline
of capital budgeting, and more importantly real options framework, has
looked at investment with a limited timeframe and constrained uncer-
tainty whereas strategic foresight takes a long-term perspective. Even
though investments in capital budgeting are planned for 20–30 years,
the practice of heavily discounting distant returns tends to result in deci-
sions with short-term value maximization. On the other hand, the lack
of interest in the topic in the literature may indicate that the idea has
been considered too far-fetched to address previously.

As a conclusion, it is highlighted that this work is not a review of the
literature but rather a literature-based attempt to synthesize accumulated
knowledge of Strategic Foresight and Real Options. Hence next, we cover
the foundations of SF and RO individually and then discuss the points
of connection between these two schools that both deal with decision-
making under uncertainty.

5.3 Theory

5.3.1 Foresight

The term foresight has been applied since the 1980s to describe an inher-
ently human activity aimed at increasing organizational future prepared-
ness (Schwarz et al. 2020). Foresight is “the discipline of exploring,
anticipating and shaping the future to help building and using collective
intelligence in a structured, and systemic way to anticipate developments”
(Commission 2020). Strategic foresight practices in profit-oriented orga-
nizations seek to enable flexibility and responsiveness to counter poten-
tial disruptions (Marinković et al. 2022). Corporate strategic foresight
is applied to build and support competitive advantages by interpreting
changes in the business environment (ibid.). In contrast, corporate
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strategy refers to the process of making choices about resource deploy-
ment within an organization (see Bowman and Hurry 1993).
The well-known dynamic capabilities theory (see, e.g., Teece et al.

1997) revolves around the reconfiguration of firms’ resources to remain
competitive in the current market environment. Strategic foresight in
companies links to these ideas as it is considered as a series of micro
activities aimed at negotiating an organizational path toward the future
(Fergnani 2022; Marinković et al. 2022). Here we use the terms strategic
foresight , organizational foresight , and corporate foresight interchangeably,
as is often the case in foresight literature (Schwarz et al. 2020). Interest in
these activities is fueled by the expectations that these practices will help
companies with high future preparedness attain a superior position in
future markets (Rohrbeck and Kum 2018). Longitudinal analysis (ibid.)
does suggest the hypothesis is true: firms with higher levels of corpo-
rate foresight practices seem to overperform the average on growth and
profitability.

Strategic foresight in business literature is often manifested through
scenario planning, although it is an umbrella term for a range of
methodological approaches. SF encompasses agile focus groups, such as
panels and workshops, narrative techniques such as storytelling or world-
building, and more complex techniques such as road mapping, horizon
scanning, or, indeed, scenario planning (Sakellariou and Vecchiato
2022). A unifying component is that the primary value of the mostly
qualitative approaches stems from high uncertainty situations that render
traditional (quantitative) forecasts less applicable (Metz and Hartley
2020; Wack 1985). If companies are looking at a “clear-enough future”
(Courtney et al. 1997), there is little need for introducing alternative
methods for exploring the future.

A risk of being too preoccupied with foresight has also been iden-
tified: when firms’ peripheral vision capabilities exceed their needs, they
are said to be “neurotic” (Rohrbeck and Kum 2018). Too much emphasis
on managing distant futures, while failing to provide sufficient attention
to short-term matters has been coined “managerial hyperopia” (ibid.).
Therefore, good corporate foresight practices should trigger appropriate
organizational responses instead of lethargy (Rohrbeck et al. 2015).
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5.3.2 Real Options

The Real Options theory builds on the neoclassical assumption of a
rational decision-maker who is interested in maximizing her current
wealth by making informed decisions under uncertainty by balancing
between the risk and return. It has been implied (e.g., Adner 2007;
Trigeorgis and Reuer 2017) that ROs could serve as a framework for
guiding investment allocation decisions under uncertainty. Anand et al.
(2007) distinct two foundational strategic option types as growth to
add commitment and switch to embrace flexibility. In the context of
forecasting, Eriksson and Weber (2008) distinct between robustness to
describe fixed/passive uncertainty mit igation measures and flexibility
that require active monitoring and decision-making. The “success indi-
cator” of Real Option Analysis (ROA) is the perceived economic value
of the decision and the extant literature has found numerous use cases
for ROA including Research and Development (R&D) (Rogers et al.
2002), closing industrial operations temporarily during market down-
turns (Brennan and Schwartz 1985), or managing construction projects
(Guma and de Neufville 2008), among others. For an in-depth review
of the most common uses of ROs, we recommend referring to Trige-
orgis and Tsekrekos (2018) and Bengtsson (2001) which gives a more
comprehensive account of how to apply real options analysis at the
manufacturing system level. In the big picture, most corporate strategy-
related decisions are optional and can be theorized in terms of ROA of
alternative actions. Lee et al. (2018) write that essentially “real option
theory helps isolate optimal choices” . Research has shown that real-world
managers tend to follow real options reasoning , i.e., they implicitly or
explicitly respond to the value of preserving future investment decision
rights (Gunther McGrath and Nerkar 2004).

In this chapter, we are interested in the strategic-level problem
setting with more than one real option at the management’s disposal.
Within this RO-portfolio context, qualitative considerations include, for
instance, the fact identified by Barnett (2008) that ROs noticed and
selected by the company are shaped by the contextual and concrete chan-
nels of information filters where the managerial attention for sales pitches
is dependent on the decision environment. Ghemawat and Ricart i Costa
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(1993) define two types of organizational entities: first, control-driven
steered by a top-down decision-making institution to pursue static effi-
ciency and, second, a knowledge-driven, bottom-up one with an emphasis
to resort to new opportunities that foster dynamic efficiency. The extant
RO literature seems to be focusing on the former, which can be consid-
ered as exploitative-type, whereas more scholarly efforts to operationalize
ROs for explorative capability building would be required. And, to do
this, strategic foresight is considered here.

5.4 Toward an Integrated Framework
of Strategic Foresight and Real Options

5.4.1 Dilemma of Control

By definition, the term exploitation, following March (1991), is charac-
terized by refining, being efficient, and implementing existing knowl-
edge to produce positive short-term returns whereas exploration, as
its opposite, involves the acquisition of information through innova-
tion, discovery, and experimentation with uncertain and distant returns.
Already Bowman and Hurry (1993) proposed that, in general, organiza-
tions are more toward exploitation activity until a major change in the
environment forces them to initiate exploration activities. The contradic-
tion between exploration versus exploitation in the face of Industry 5.0
is at the core of our interest.
The problem of optimal balance between exploration and exploitation

investments in dynamic markets can be viewed from several perspectives.
First, the risk of obsolete exploration investments is evident that can
constrain the exploitation of future opportunities [see, discussion, e.g.,
in (Uotila et al. 2009)]. On the other hand, the Collingridge Dilemma
highlights the role of control—“When change is easy, the need for it cannot
be foreseen; when the need for change is apparent, change has become expen-
sive, diflcult and time-consuming” (Collingridge 1980). A similar view on
the assessment of new technologies being adopted is summed up by the
maxim of Buxton’s law, which states that rigorous assessment is always
too early, until, unfortunately, it’s suddenly too late (Barkun et al. 2009).
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The dilemmas show the inherent challenges of acting optimally today
to prepare for the future which is the shared foundational concern of
both Strategic Foresight and Real Options. Over time, these two schools
seem to have arrived at different conclusions on how. As the key differ-
ence, SF mostly builds on qualitative expert knowledge, while ROs build
on the existence of traceable numerical uncertainties that are utilized
to evaluate asset values. As observed by (Marinković et al. 2022), it is
notable that (corporate) foresight methods lack profitability indicators
as analysis outputs which is a gap in research that this chapter touches
upon.
The requirement of traceable numerical uncertainties (or uncertainty

proxies) practically limits the scope of ROs as documented, e.g., in
Adner and Levinthal (2004) who write that ROs should be utilized
in projects with specific technical implementations and whose value
depends on quantifiable uncertainties. This observation is supported
by Eriksson and Weber (2008) who note that the real options litera-
ture has primarily focused on simple exploitation problems in corporate
finance, overlooking the existence of structural uncertainties. Barnett
(2008) deducts that externally oriented organizational attention struc-
tures support exploratory, large innovative portfolios whereas the oppo-
site favors small portfolios of incremental, “close-to-marker” options. It
is not surprising that the bulk of existing literature on ROs to date
has primarily focused on discrete, one-off investment projects treated
as numerical exercises aimed at selecting optimal actions while at the
same time, it is acknowledged (see, e.g., Bowman and Hurry 1993;
Myers and Read 2022) that the long-term success of companies depends
on the ability to strategically manage their portfolio of real options.
We argue that the portfolio effects of having multiple ongoing projects
in parallel are seldom addressed quantitatively as they bring several
additional complexities and qualitative factors into the mathematical
formulations taking the edge off the available RO methods. With regard
to complexity, referring to Anand et al. (2007), the value of an option
portfolio is dependent not only on the volatility and the number of indi-
vidual opportunities but also on the correlation between the returns of
underlying assets and the number of how many options can be exercised
(resource constraints)—since new real options decrease the probability
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of exercising the existing options in the portfolio. Furthermore, having
an organizational resources aspect in the RO context brings it close to
dynamic capabilities theory (Teece et al. 1997).

5.4.2 From Sensemaking to Strategy

To bridge the gap between Strategic Foresight and Real Options, the role
of strategy should be considered. Bowman and Hurry (1993) write that
opportunities for strategies emerge only once they are recognized and
require “making sense” of organizational resources that serve as access to
them. Strategic foresight offers one possible primer for such sensemaking
activities (Sakellariou and Vecchiato 2022). Foresight activities do not
seek to predict the future but rather support organizations in sensing
(Teece 2007) or perceiving (Højland and Rohrbeck 2018) different
possible futures, opportunities, and challenges. Hence, we suggest that
the nature of SF, as an act, locates itself closer to exploration than
exploitation.

Others have pointed out that incumbent companies may have chal-
lenges in digital transformation, as managers often rely on prior experi-
ence and prefer familiar strategic choices (see, e.g., (Warner and Wäger
2019) for a discussion on the digital transformation of incumbent firms).
Creating systematic sensing and foresight capabilities in an organization
can help overcome this potential legacy bias.

Literature on SF highlights its participatory nature (Dufva and
Ahlqvist 2015). Stakeholder involvement can help produce better SF
results by reducing potential biases and blind spots, and, simultaneously,
SF processes can be a vehicle for aligning organizational visions and
strategies across involved participants. Consensus may not be a target,
however, as dissent among stakeholders in itself can be built into scenario
development as an important component (Metz and Hartley 2020). One
possible benefit of strategic foresight capabilities for companies is to
limit exploration costs by ensuring a truly future-oriented strategic basis
of investment activities by narrowing down the initial scope of oppor-
tunities for value creation. Therefore, at best SF could function as an
open discussion tool to focus information-gathering efforts before the
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capital budgeting processes are initiated (with ROs) that are confidential
and aimed at value capture . In this two-stage process, feasible invest-
ments would most likely emerge once the high-value-creation capability
implied by SF can be topped with a doable blueprint of value capture
devised by the RO framework. For a detailed discussion about the value
creation and value capture, we advise the reader to refer to Baden-Fuller
and Haefliger (2013).
While strategic foresight might be useful as an input for one-off

projects and investments, the conceptualization of foresight as a set of
future-oriented capability-creating activities underscores the necessity of
continuous foresight. Foreseeing and hitting a home run on one set of
market trends—like Blockbuster anticipating the market for home video
rentals or Nokia the explosion of mobile telecommunications—does not
guarantee long-term success, if companies fail to foresee and adapt to
market disruptions.

Eastman Kodak Company, one of the market leaders in analog
photographing products, is often regarded as a “classic example” of
strategic failure as it filed for bankruptcy protection in 2012. A less-
known fact is that already in 1997 a seminal paper by Courtney et al.
(1997) commended Kodak’s strategic bet on digital photography prod-
ucts. The aspect that remains missing is that for decades the value capture
element existed only in analog photography while digital photography
was at an exploratory stage with value promise that was not realized until
technological leaps were made in other sections of computing. From the
management perspective driven by maximal monetary returns, it prob-
ably did make sense for Kodak to exploit its leading position to the
maximum while keeping the, yet uncertain, digitalization as an R&D-
based real option until the expiration date. When looked at this way,
the case of Kodak’s failure could be seen as a failure of strategic foresight
on a large scale and, subsequently, the inability to exercise its existing
call option(s) for digital photography timely enough to keep up with the
competitors.

Summarily, strategic foresight in itself is hardly valuable in a company;
the value rests almost entirely in the interpretation and uptake of
its contributions, and, first and foremost, in the actions to which a
company’s SF might lead. Successful implementation relies on obtaining
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organizational buy-in across multiple levels, while also emphasizing the
importance of consistent updates to ensure its ongoing value. It is essen-
tial to recognize that this tool serves as a decision support system rather
than providing explicit paths to the future.

5.4.3 Narrowing Down the Strategy to Actionable
Options

In contrast to SF, Real Options theory starts from an assumption that
explicit, alternative futures are described, and the decision-maker is in a
position to bet on them based on probabilities of resolving uncertainties.
As such, RO theory provides two key insights for companies struggling
to make choices of emerging technology. The first is the importance
of keeping options open in uncertain markets to see how uncertainties
unfold, while the second is the advantage of reducing the uncertainty
with one’s actions. To implement these guidelines effectively, it is often
necessary to establish “toehold” positions in projects and monitor their
value, allowing these real options to be exercised promptly when the time
is right to capture the value held by the RO.
The above guidance is much easier said than done: in reality, first,

many of the investments are large, lump-sum projects that do not allow
for gradual betting, and second, it is hard or even impossible to devise
exact rules for the right timing that would trigger the pre-structured
organizational actions. To complicate the situation further, a concept
of “shadow options” has also been identified (Barnett 2008), referring
to opportunities that exist but are not currently being systematically
managed or pursued. At the same time, these shadow options might
be the most valuable, for instance, in cases where structural or radical
uncertainty unfolds in unpredictable directions that result in futures not
included in the initially drafted RO analysis.
The discussion of Strategic Foresight and Real Options theory is

summarized in Table 5.1 for comparison. It can be stated that the SF
in the general business context is a qualitative tool aimed at identifying
scenarios and their future value-creation opportunities that one should
explore to maintain long-term competitiveness. The difference in the RO
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Table 5.1 Comparison of problem formulation of corporate foresight and real
options

Problem characteristic Strategic foresight Real options theory

Business orientation Exploration Exploration and
exploitation

Business value focus Value creation Value capture
Main type of analysis Qualitative Quantitative
Wealth maximization Long-term Current
Organization Open and participatory,

broad stakeholder
involvement

Closed and
confidential; specialist
committee/manager

Renew unsuccessful
projects

Not stated No

Uncertainty type in
projects

Qualitative (narrative) Mathematical
(parametric)

Development of
uncertainties

Yes/continuous No/static probabilities

Portfolio effects of
technology

Sometimes/context
dependent

No/restricted to single
investment

theory should not be overstated, but Real Options are more restricted to
the current state of affairs highlighting the exploitation of opportuni-
ties with given uncertainties to produce numerically proven wealth as of
today. Due to market competition, the nature of the Real Options Anal-
ysis process is expert-driven and confidential. It strives to excel others
by implementing specific projects while SF is kept open and produces
holistic insights that as such may not contain a tangible business value.

5.4.4 Budgeting Toward Industry 5.0

It is posed here that the frameworks of SF and RO could complement
each other. We expand on this proposition with two main objectives:
firstly, to explore the potential of a combined strategic foresight and real
options approach for identifying promising exploratory opportunities on
a theoretical level; secondly, to evaluate the suitability of this frame-
work for analyzing Industry 5.0 opportunities. According to Eriksson
and Weber (2008), the role of strategic foresight is to first look across
the identified scenarios and then select the technology options and poli-
cies with the maximum robustness and adaptivity. The primary task for
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the decision-maker is to assess the problem complexity for the task/
organization and use strategic foresight to scope the landscape, relevant
challenges, opportunities, changes, and options for value creation.

Strategic foresight is best suitable for situations that involve system-
level changes and non-quantifiable uncertainties. It should be utilized
to narrow down the feasible scenarios of interest. Then, Strategic Flex-
ibility, discussed in recent research (see e.g. Brozovic 2018; Chanphati
and Thosuwanchot 2023), can be drafted in broad terms starting with
the aim of value creation. This can mean a long-term plan involving
such elements as capability development through education to acquire a
new skill base. In a landscape of rapidly evolving technologies, this type
of broad flexibility fostering “shadow options” has value (Mankins and
Gottfredson 2022) as it is still unclear what the right bet on the “win-
ning” assemblage of technologies will be. Only after finite and discrete
scenarios are possible to formalize explicitly, real options can serve as a
vehicle for taking strategic actions aimed at value capture.

Capital-intensive industries typically make investments with a long-
term horizon of 10–20 years or longer, which can limit their flexibility to
change course in the rapidly evolving technological landscape, even when
new, more efficient ways of doing business become available. While real
options theory recognizes the option to abandon unprofitable ventures,
often induced by technology changes, it’s not a decision to be taken
lightly due to the possibility of positive developments that could make
the business profitable again. In other words, despite the “theory-level”
valueadding flexibility of ROs, a company with limited resources is tied
down with the investment decisions taken previously.
Therefore, the importance of being able to write down a discrete

presentation of the problem in a manner that is compatible with the
limits of RO methodology is underscored. This requires the uncertain-
ties to be mainly of parametric type [see discussion (Langlois 1984)] and
be able to represent them numerically. If the problem does not meet the
requirements of quantitative RO formulas, also the benefit is likely to be
negligible.
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5.4.5 Managing Portfolios

The importance of investment decision formalization calls for more elab-
oration as it omits some of the flexibility aspects identified in the current
real options literature on strategy. We suggest that from the point of
view of a decision-maker, the ability to invest resources into multiple
uncertain projects can be viewed as a “problem of multi-armed bandits”
to a player at an imaginary casino who can choose between several slot
machines and each time a machine is played it produces information on
its return distribution. An extension to this problem is called “restless
bandits” where the probability distributions change dynamically. As it is
not known which of the slot machines bet at a certain point in time,
one should conduct exploration by dividing bets before the exploitation
phase—in this case, the investment decision.

As a well-known solution to this general problem, Gittins (1979)
suggests that a rational decision-maker should utilize the best oppor-
tunity to the maximum before moving on to the next one which we
see is the common case with capital budgeting aimed at producing
maximum returns. That is, in terms of risk, rational businesses, like in
the Kodak example, should prioritize the lowest risk—highest return
activities when choosing between alternatives with different expected
rates of return, and often there are no natural incentives for exploratory
activities (= changing slot machine to another) over the exploitation.
Therefore, system-level changes in the industrial landscape, driven by
high-level legislation and top-down initiatives like Industry 5.0, are
crucial in providing companies with guidelines for navigating their future
economic risks when the actual business value remains distant.

Real Options Analysis falls short of identifying these faraway, yet
possible, system-level changes in the business environment. Here,
strategic foresight could help firms “build specialized sensors that reduce
blind spots in their peripheral vision” (Højland and Rohrbeck 2018).
This, for example, enables firms to identify relevant technological devel-
opments that are not yet directly affecting their operational environment
today, being excluded from the capital budgeting analyses, but which
could profoundly alter their industry in the mid or long term. The
potential emergence of novel Industry 5.0 and AI solutions are one such
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example that are widely known but as abstract concepts, rarely convert
directly into value capture propositions formalized as actionable real
options.
With the help of strategic foresight, mature companies are, ideally,

better primed to anticipate relevant change drivers in their given market
space, which would make them gain lead-time advantages against
competitors (Højland and Rohrbeck 2018) and limit their risk of legacy
bias associated with relying on past experiences (Warner and Wäger
2019). However, since SF analyses are subject to inherent structural
uncertainties, it is borderline impossible to assign precise economic
values to the various opportunities identified.

5.4.6 Evaluation Framework Proposition

Based on the discussion provided so far, a sketch of an integrated
framework is visualized in Fig. 5.1.
Reiterating some of the previous points, the integrative framework

suggests the following stepwise actions: (i) Assess the level and type
of uncertainty The first step for companies seeking to take strategic
actions with technology investments is to assess the level of uncer-
tainty surrounding their concerns. Different levels of uncertainty call for
different approaches to devising a path to the future (Courtney et al.
1997). This step effectively precedes the visualized model, and given the
assessment of the level of uncertainty may render the rest of the steps

Fig. 5.1 Toward an integrative framework of strategic foresight and real
options
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unnecessary. After all, there is little need to maintain strategic flexibility
if there is sufficient certainty about the right course of action.

(ii) Sensemaking via Strategic Foresight In investment cases surrounded
by structural uncertainty, as the case is for mature companies
pondering the transition to Industry 5.0, strategic foresight can help
in sensemaking. When several simultaneous developments, some
mature and some early stage, are happening in the technological
and operational landscape, strategic foresight enables a better under-
standing of technological trajectories and potential consequences
thus helping to provide insights into possible futures relevant to the
given company. This narrows down the range of relevant courses of
action.

(iii) Devising Actionable Real Options Once explicit, alternative futures
are described, and the decision-maker is in a position to bet on
them based on, at least subjective, probabilities of resolving uncer-
tainties, real options theory can help isolate and highlight optimal
choices. Real options thereby provide decision support for compa-
nies looking to put their money where their mouth is by investing
in small “toehold” positions in emerging technologies.

(iv) Maintaining Strategic Flexibility in an Uncertain Environment The
targeted outcome of the process is for the company to obtain
strategic flexibility in uncertain and fast-changing conditions. It
is important to note that to maintain strategic flexibility in this
environment, the process has to be continuous and iterated.

5.4.7 Illustrative Application

To give an idea of how this framework could be used for budgeting in
the Industry 5.0 context, we focus on real-time digital twinning (DT)
of entire systems (system-level Digital Twins) which has been identi-
fied as one of the five critical technology areas of I5.0 by the European
Commission et al. (2020). Instead of an off-the-shelf product, digital
twinning is essentially a technology bundle consisting of several system
components making the investment decision setting inherently complex
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for capital budgeting. While the system-level DT remains at rather a
conceptual level at the time of writing [see discussion, e.g., in Savolainen
and Knudsen (2021)], an evident potential exists to generate significant,
positive impacts in many foreseeable future scenarios, which makes the
technology relevant for detailed analysis.

In the scale of exploratory versus exploitative investments, the real-
time, system-level DT falls in the former category: for mature manu-
facturing companies, it represents a potential disruptive shift in the
organizational set-up and its manufacturing processes as well as in the
ways how the end-products are being used. Therefore, the uncertainty
is structural at the uncertainty assessment phase (i). However, at the
same time, partial investments in individual parts of the manufacturing
systems to enable digital twinning in the future might be consid-
ered more of an incremental technological adaptation linked with the
current business model exploitation. In this regard, value capture poten-
tial exists, but sensemaking of the future (ii) could be further exercised
to focus constrained resources toward the most potential directions of
development.

Suppose a company arrives at a realistic plan during the initial phases
of analysis to build a customized, real-time, system-level DT for its key
product that is, say, some type of moving equipment. In that case, it
would be necessary to position itself in the market to understand the
most likely scenarios and, subsequently, identify relevant, traceable indi-
cators that can trigger RO positions [phase (iii)] from the current set of
options aimed for DT-product launch. Since the technology remains in
the development stage standards are in constant flux, one has to resort to
strategic foresight to formulate these underlying scenarios and then build
capabilities that align with most of them.
The prospect of having to switch the entire Real Option (RO) port-

folio has to be kept in mind in case of scenario breakdown which calls
for constant revision of the selected course of action as suggested by
the framework phase (iv). In the case of digital twinning, one could
imagine some type of standard DT model that works irrespective of the
underlying application and its embedded ICT technology which at this
moment seems impossible. However, keeping the scenario breakdown
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in mind would enable the company to respond proactively and effec-
tively to changes in the market and capitalize on new opportunities as
they arise. This is in line with strategic RO literature, where Anand et al.
(2007) states that a large portfolio of independent growth options should
be preferred in high-volatility environments.

Due to the impossibility of predicting the future, it would be desir-
able for real option portfolios to have overlapping investments that are
relevant irrespective of the scenario. We can think of these as “no-regret
investments”; investments that would serve their purpose in any of the
most plausible futures. It is worthwhile to consider whether some of
the portfolio investments are “platform” projects that serve multiple
purposes. For example, cloud computing capabilities can be used for
both digital twinning projects (exploration) and advanced data analytics
for refining existing business processes (exploitation). From the corpo-
rate perspective, developing such platforms may be more easily justified
regardless of the scenario, as they are ambidextrous with regard to explo-
ration and exploitation (see also, e.g., Sinha 2015) providing several
opportunities for return on investment.

Summarily, putting the above example in context, companies can
employ foresight to assess and contextualize potential disruptions (to
their operations, organizational set-up, supply-chain relations, markets,
etc.) entailed by leaps in digital twin capabilities. Foresight may also
help illuminate possible implications caused by developments in periph-
eral fields, e.g., advancements in artificial intelligence. A viable guess
is that foresight would also underline the possible future benefits of
having access to greater amounts of data with higher levels of gran-
ularity, suggesting an incentive for initiating increased generation and
collection today (Savolainen and Knudsen 2021). Exaptation (the utiliza-
tion of existing knowledge or technologies, hitherto unutilized, for novel
purposes) is a well-recognized source of innovation and expected future
AI and digital twin capabilities make incumbents’ large amounts of data
make a promising exaptive pool (Garud et al. 2016) for potential future
exploitation. Even if derived investments would not be economically
feasible at present, this effectively represents a shadow option (Andriani
and Cattani 2016) for future exaptation. Once the potential and plau-
sible scenarios are laid out, companies can use real options tools to align
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their investment strategy for digital twins, taking into consideration also
the value of shadow options. An investment portfolio that supports both
exploration and exploitation activities is possible but calls for rigorous
allocation of limited resources. If successful, the company can flourish
across a wide range of possible technological trajectories of system-level
digital twinning.

5.5 Conclusions and Discussion

This chapter focused on the strategic allocation of corporate resources in
the transition process to Industry 5.0 (I5.0). It explored on a concep-
tual level how organizations could combine the theories of Strategic (or
corporate) Foresight and Real Options as a practical tool to make better-
informed decisions about resource allocation and position themselves
viably in the rapidly evolving I5.0 landscape. The interest in the inte-
gration of SF and ROs lies in the authors’ shared aspiration of finding
more valuable, yet workable, means to navigate in uncertain technolog-
ical transitions that would circumvent the method-specific problems of
SF and ROs once utilized individually in the investment decision-making
process. The key takeaway of this chapter is that SF could serve as a tool
of organizational sensemaking and value creation that can be utilized
to formulate more rigorous real options problems, while RO-framework
should be seen as a tool that improves the value capture.
Technological advancements, not least in the realm of artificial intel-

ligence, leave mature, incumbent organizations faced with radical uncer-
tainty about the near-future operating environment. Investment choices
about whether and how to commit to Industry 5.0 technology invest-
ments—exemplified in this chapter with system-level digital twins—are
inherently difficult under these conditions. We believe that the suggested
integrative framework could provide valuable decision support for orga-
nizations seeking to navigate through uncertain waters. Each of the two
theories seeks to increase the number of areas that organizations can
explore while decreasing the cost of each exploratory foray (Gunther
McGrath and Nerkar 2004)—when applied together, we believe this is
even more true.
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As shown in the literature study, the idea of using strategic foresight
and real option methodologies in concert has remained largely unstudied
until now. Therefore, several future research directions exist out of which
some of the most fruitful areas could include example case studies where
the proposed integrated framework has been adopted and documenting
its applicability. Secondly, a more rigorous, theoretical development of
the integrated framework would be valuable as well that could meaning-
fully bring together the qualitative insights of strategic foresight with the
numerical analysis of real options in the context of several uncertainties.
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6
Creating Value by Combining AI

and Other Open Technologies: Cloud
Infrastructure as a Pivotal Asset

Hervé Legenvre, Erkko Autio, and Ari-Pekka Hameri

6.1 Introduction

Research on digital technologies and infrastructures has highlighted the
importance of ‘control points’ for value creation and capture within
digital infrastructures—i.e., bottleneck technologies and assets that exer-
cise a disproportionate influence on the performance of a given system
(Pagani 2013). We advance the concept of pivotal assets to describe the
central role of cloud infrastructure as a shared value-creating resource
within the digital landscape. The cloud infrastructure is composed of a
proliferating stack of complementary technologies that support a wide
array of digital resources and related computing services and make them
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available to large user audiences (Piccoli et al. 2022). Specifically, we
describe how digital incumbents and others have been strengthening the
cloud infrastructure’s ability to support supermodular complementarities
in digital infrastructures (Henfridsson et al. 2018; Jacobides et al. 2018)
by judiciously releasing open technologies such as open-source software,
open datasets, pre-trained machine learning algorithms, open hardware
designs, and other technical resources that can be accessed and harnessed
with highly permissive licensing conditions. Such releases have not only
helped build momentum into the cloud and AI and machine learning
(AIML) ecosystems, but they have also boosted the capacity of the cloud
infrastructure to support generative innovation and the creation and
exploitation of supermodular complementarities.

Pagani (2013) described the dynamic evolution of control points
within an industry structure as a shift in the positions where value and
power accumulate. Pagani suggested that vertical industry structures tend
to be weakened by mechanisms such as the entry of niche competitors,
the difficulty for incumbents to address diverse market requirements, and
the rigidities of their organization. This leads to a disaggregation of the
industry structure. On the other hand, horizontal industry structures
face forces that push toward a more vertical integration. These forces
include technical advances achieved by some firms, which drove their
market power and proprietary integration of specific subsystems. This
resulted in the formation of strategic bottlenecks (Baldwin 2015) where
the focal points of value creation and appropriation within the industry
structure migrated toward the technical system’s technical bottlenecks.
Although Pagani (2013) comprehensively described a pervasive and
continuous transformation dynamic of value creation and appropriation
within industries due to digitalization, we have a limited understanding
of the dynamic by which some technologies evolve to become technology
bottlenecks within digital infrastructures and how the proprietary control
of technical bottlenecks supports the creation of strategic bottlenecks
within the corresponding industry structure. In this paper, we therefore
investigate how specific control points not only emerge out of technical
advantages and competitive forces but also through their relationship
with other components within a complex technical system. More specif-
ically, we analyze the emergence of cloud infrastructure by studying how
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such relationships are shaped and manipulated by the judicious release
of open technologies.
This article starts by describing cloud infrastructure, its history, and

its technical architecture. We then describe how different layers of the
cloud infrastructures interrelate and generate value through supermod-
ular complementarities. This allows us to characterize cloud infrastruc-
ture as a pivotal asset that resides at the crossing point of multilateral
supermodular complementarities.

6.2 Digital Infrastructures, Cloud
Infrastructure, and Cloud technology
Ecosystems

In this section, our focus is on digital, cloud, and AI and
machine learning (AIML) infrastructures and their related developer
and technology provider communities. Digital infrastructure is a:
“shared, open (and unbounded), heterogeneous and evolving socio-technical
system.consisting of a set of IT capabilities and their user, operations and
design communities” (Hanseth and Lyytinen 2010). Digital infrastruc-
tures enable the functioning of the economy and society, including firms
and industries. Unlike specific information systems, digital infrastruc-
tures are not defined by a distinct set of functions, and unlike specific
applications, they do not have strict boundaries (Bygstad 2010; Hanseth
and Modol 2021). Instead, digital infrastructures are shared, constantly
evolving, heterogeneous, and open sociotechnical systems of digital tech-
nologies and capabilities whose evolution is non-linear, path-dependent,
and influenced by network effects and unbounded learning in user, oper-
ations, and design communities (Hanseth and Lyytinen 2010; Hanseth
and Modol 2021). They are systems of systems, composed of hetero-
geneous digital capabilities and related technologies and their respective
user, operator, and design communities. The easy combinability inherent
in digital technologies means that different communities can be recur-
sively related, and as such constitutes a potent enabler of generative
innovation (Bygstad 2010; Henfridsson et al. 2018; Yoo et al. 2012).
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Digital infrastructures are composites of more specialized technology
infrastructures that form identifiable wholes and are composed of special-
ized technology stacks, or constellations of interrelated technologies.
Relevant to our discussion is the cloud infrastructure and a distinct,
identifiable whole within it, the AI and machine learning (AIML) infras-
tructure. The AIML infrastructure constitutes a distinct subset of the
wider cloud infrastructure, yet it also constitutes a distinct technology
stack that is embedded in the wider cloud infrastructure.

Finally, specialized technology stacks are nurtured by technology
providers and developer communities. We denote the combination of a
specialized technology stack and its developer community a technology
ecosystem, an example of which is the AIML ecosystem. The AIML
ecosystem partially overlaps with and is embedded within the wider
cloud infrastructure.

6.3 Cloud Infrastructure: History
and Technical Architecture

We review the emergence and evolution of cloud services from the early
aspiration to offer computing as a utility service up to the dominance
of AWS, Microsoft Azure, and Google Cloud as key providers of public
cloud services. We describe the key characteristics of cloud services such
as on-demand availability, the pay-per-use commercial model, and the
provision of software and cloud infrastructure as a service. We then
describe the technical architecture of cloud services and how it meshes
diverse digital resources and organizations.

In the 1960s, Joseph Carl Robnett Licklider was a leading computer
scientist and instrumental in the creation of the Advanced Research
Projects Agency Network (ARPANET), a precursor to the modern
Internet. Licklider saw the potential of connecting computers and people
to create a global information and communication network. He envi-
sioned a future where people could access information and computing
resources from anywhere and collaborate in real time.

In 2002, Amazon Web Services (AWS) was launched to offer cloud-
based storage to businesses. In 2006, it started allowing users to rent
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virtual computing resources on demand and established the model under
which cloud providers offer a platform for developers to build on and
deploy applications. In the following years, other major cloud providers
such as Microsoft and Google entered the market, with their cloud-based
service platforms. As a result, the adoption of cloud services accelerated
rapidly, coinciding with the rapid growth in the use of mobile devices,
the rise of big data, and eventually, the widespread adoption of machine
learning technologies.

In 2009, a paper authored by researchers from the University of
Berkeley summarized the key characteristics and advantages of cloud
services (Armbrust et al. 2010). This paper was one of the first to describe
cloud services, applications, and the underlying hardware as digital
resources that were provided as a service. Organized this way, cloud
infrastructures offer benefits, including access to infinite computing
resources on demand, thereby eliminating the need to plan and provi-
sion these resources internally. Under the cloud as a service model,
users can increase their access to computing resources when they need
it without the need to make an upfront investment in an internal
computing capacity. Instead, users of a cloud service pay for the use of
cloud resources as they access them. Today, the cloud infrastructure has
become a general-purpose technology that is driving digitalization within
virtually all sectors.
Today, cloud services provide any organization with the capability to

easily aggregate data from different sources, interconnect different stake-
holders, technologies, and resources, and scale their operations as needed.
By leveraging these capabilities, organizations can gain deeper insights
into their data, improve their operations, and create new opportuni-
ties for innovation and growth. Cloud computing services have become
central to digitalization and digital transformation.
The cloud services market is dominated by a few major players,

including Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud Platform (GCP). These companies currently hold the largest
market share in the cloud service market. This domination results from
the investments these companies have made to expand their infrastruc-
ture including all their data centers, and the provision of a wide range of
services and capabilities to their customers.
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Fig. 6.1 Cloud technology ecosystem as a layered technical system

We describe a cloud infrastructure as a layered technical system
starting with hardware at the bottom and ending with applications at
the top (see Fig. 6.1).
At the bottom of the cloud technology stack is the hardware layer.

This layer consists of physical servers including computing power, storage
devices, and networking equipment. These components are housed in a
data center, which is a large facility designed to provide space, power,
and cooling for these devices.

Above the physical infrastructure, there is the containerization layer.
This layer is responsible for running applications in software containers,
which are lightweight and portable. Kubernetes is an open-source project
and one of the most popular container orchestration platforms used
in cloud infrastructures. It automates the deployment, scaling, and
management of containerized applications.

Above the containerization layer, there is the platform layer. This layer
provides pre-built services and tools that developers can use to develop,
test, and deploy their applications. These services include databases and
other data management tools such as Hadoop, Elasticsearch, MongoDB,
and others, which are commonly used in this layer.
The platform layer of the cloud infrastructure also provides Internet

of Things (IoT) services and technologies. IoT devices can communicate
with cloud servers and services using various communication protocols.
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In this layer, IoT devices can be connected to the cloud, and their data
can be collected, stored, and analyzed to provide insights and drive
decision-making. The platform layer of the cloud infrastructure stack
can provide pre-built IoT services that developers can use to build IoT
applications.
The platform layer of the cloud infrastructure also provides pre-built

AI services that developers can use to build intelligent applications. AI
models can be deployed using containerization or serverless technologies.
Cloud providers also offer AI services such as speech recognition, natural
language processing, image recognition, and computer vision that can be
directly integrated into applications.
The platform layer of the cloud infrastructure also provides open

datasets that can be stored and accessed in the cloud infrastructure.
Cloud providers provide a curated list of open datasets that can be
accessed by developers to further train and specialize pre-trained machine
learning algorithms and AI models, generate insights, and drive decision-
making.

Finally, at the top of the cloud infrastructure stack, there is the
application layer. This layer is where the actual applications run. The
applications are sometimes organized as ‘digital resources’—i.e., algo-
rithmically coded functionalities that can be accessed through a simple
programmatic interface and bundled with other functionalities to create
novel value offerings. These applications can be web-based, mobile, or
desktop-based, and they can be developed using a variety of program-
ming languages and frameworks.

6.4 Background: Appropriation Value
in Digital Infrastructures

According to Pagani (2013), the migration of control points within an
industry architecture prompts corresponding shifts in the concentration
of power and value appropriation ability. Vertical industry architectures
tend to be eroded by niche competition, sub-optimal ability to satisfy
heterogeneous demand, and organizational rigidities. All these forces
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drive disaggregation within the industry architecture. Conversely, hori-
zontal industry architectures tend to exhibit forces that tend toward
greater vertical integration. These include technical advances, accumu-
lation of market power, and proprietary integration of individual subsys-
tems, each facilitating the formation of strategic bottlenecks (Baldwin
2015). Although Pagani describes a constant dynamic of shifting loci
for value creation and appropriation within industries, we only have a
limited understanding of how some assets and not others become central
to an industry architecture during a period of industry disaggregation.
While the ability to control bottleneck technologies (technologies that
exercise a disproportionate effect on the user-perceived performance of
a given technological system) plays a key role in the evolving dynamic
of value creation and appropriation within industry structures, less is
known about how some technologies end up becoming bottlenecks
(Jacobides and Tae 2015). We suggest that technology bottlenecks are
decided by the configuration of their relationships with other technolo-
gies and complementary assets. As described by (Asgari et al. 2017)
during periods of technological discontinuity, a broad reconfiguration
of the industry’s capability base occurs as new complements are needed
to enhance the collective value creation potential of a group of comple-
mentary and complementary, often co-specialized assets. In this article,
we therefore extend the technology control argument by elaborating a
logic of relationships and complementarities among technologies within
the industry’s technology base.
The concept of complementarity helps illuminate how value is created

and captured within digital infrastructures. In economics, complemen-
tarities are defined as synergies that make a bundle of technology and
complementary resource(s) more valuable in combination than what the
combined value of these is in isolation. When complementary tech-
nologies are bundled into a system, the value of the system becomes
superior to the sum of the values of individual parts. In such systems,
value is usually not distributed equally among the providers of different
components: those modules that exercise a disproportionate effect on
user-perceived value allow their providers to appropriate a greater share of
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the value created by the system as a whole. Understanding the character-
istics of complementarities and how they shape system-level performance
is therefore important.

Helfat (2002) distinguished between core and complementary capa-
bilities where a complementary capability can only exist because of the
core resource it complements. A mobile application needs a platform
(IoS or Android) to function. This represents a unilateral complemen-
tarity, as the platform can exist without many of the mobile appli-
cations, whereas individual applications always require a platform to
run. Building on Teece (1986) and Helfat (2002), also distinguished
between generalized and specialized complementary capabilities. Special-
ized complementary capabilities are applicable in specific settings only
whereas generalized ones apply to a broad range of settings. A mobile
application is typically focused on a specific setting while the mobile
platform can support a broad range of settings.
The concept of supermodular complementarities helps uncover the

impact of complementarities on value creation and appropriation within
technical systems (Jacobides et al. 2018; Topkis 1978; Milgrom and
Roberts 1990). A supermodular complementary refers to a situation
where there exist increasing returns to the joint production and or
consumption of the complements: As the perception of a smartphone
operating system’s value increases, a growing number of applications are
developed; and the higher the number of open-source developers, the
quality and perceived value of Linux grows in a nonlinear way. Super-
modular complementarities are different from ‘unique’ and ‘generic’
complementarities. In the case of ‘unique’ complementarities, the value
of the components is greater when consumed together, but there are no
increasing returns: for example, a car represents the greater value when
complemented with tires, but increasing the number of different tires
does not generate significant additional value. Generic complementari-
ties exist when two items are more valuable when jointly consumed, but
the components can be consumed jointly with many other components
as well (e.g., house and furniture).

In the digital sector, mobile operating systems, such as iOS and
Android, provide a platform for third-party developers to create and
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distribute apps. The more users that use the platform, the more valu-
able the platform becomes for app developers, as the platform offers
developers access to more potential customers for their apps. There there-
fore exists a supermodular relationship between the operating system and
its application developers. However, the reverse relationship is not auto-
matic. Although the value of the smartphone operating system for app
developers increases in relationship with the size of its user base, the value
of the mobile operating system for users may not increase in relationship
with the number of apps available, as users may be indifferent to many
of the available apps. This creates a unilateral supermodular complemen-
tarity between the platform and app developers. The platform’s success
depends more on its ability to attract and retain high-quality app devel-
opers rather than simply increasing the raw number of apps, and the
proliferation of low-quality apps may even undermine the value of the
smartphone operating system, as its perceived quality suffers in the eyes
of users. The relationship between smart phone platforms and app devel-
opers may also change due to technical developments. Over time, as new
developer tools such as React Native have emerged to support the easy
portability of applications across smartphone platforms, this has reduced
the dependency of individual developers upon any specific smartphone
platform.

Cloud infrastructure constitutes a complex, multi-layered technology
stack that exhibits a wide array of complementarities and various degrees
of co-specialization among its constituent technologies and assets. It
therefore provides a rich context for the study of how different kinds
of complementarities emerge and evolve among varyingly co-specialized
technologies and assets and how such developments affect both the
system’s value creation potential as a whole, as well as the ability of
different participants to appropriate their share of the collectively created
value. We next describe our research method.
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6.5 Analysis of the Digital Technology
Ecosystems

Since 2018, we have investigated different technology ecosystems that
are part of the cloud infrastructure. We have investigated how open
technologies shape competitive advantages in digital infrastructures
(Legenvre et al. 2022; Autio et al. 2023) and how technology ecosys-
tems combine distant capabilities for smart industries (Bernardes and
Legenvre 2022). We have also explored how Alphabet has been building
and driving ecosystem momentum within the AI and ML (AIML) tech-
nology ecosystem through the judicious release of previously proprietary
technologies into the public domain (Autio et al. 2022). More recently,
we have begun to explore open-source ventures and data ecosystems.
Cloud infrastructure appears as a foundation technology in all our inves-
tigations. For the present discussion, we use data collected during our
various research efforts to describe the complementarity dynamics that
surround cloud infrastructure.

In this section, we review how some complementarity dynamics
surrounding cloud infrastructure have unfolded over time. We start with
the hardware layer before moving up the cloud technology stack.

6.5.1 Hardware Layer

Within the hardware layer, the Open Compute Project (OCP), initiated
by Facebook, is an open hardware initiative that supports the design of
data center hardware such as computer servers. By releasing and creating
open hardware designs, companies active in the OCP community have
enabled hyperscale companies including cloud computing platforms
such as Google and Microsoft to build, expand, and enhance their
data center infrastructure rapidly and flexibly. By using OCP-compliant
servers, storage devices, and many other technologies, cloud providers
also benefit from innovations that improve their performance and reduce
their energy consumption and operating costs. In turn, companies’ activ-
ities within the OCP take advantage of the growing demand generated
by their clients. An open hardware initiative reduces transaction costs, as
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dependencies on suppliers are eliminated for companies who buy in large
volumes. It also reduces search costs, as the community attracts innova-
tors interested in taking part in industry development. The relationship
between the OCP and cloud platforms is characterized by supermod-
ular complementarity, as more progress on the OCP side makes cloud
services more valuable.

Furthermore, an open hardware community such as the OCP creates
further synergies among hardware technologies, as diverse and distant
capabilities are meshed by this community. This supports diverse,
concurrent, and mutually reinforcing super-modular complementarities
across hardware capabilities within the OCP ecosystem. Collectively,
these can be characterized as multilateral supermodular complementar-
ities. The modular structure and widely adopted interface standards of
the OCP ecosystem support the flexible creation and exploitation of
new supermodular complementarities, as new technical advances can
be rapidly co-opted throughout the system. For example, the intro-
duction of a new cooling technology can be easily integrated across a
range of complementary technologies within the OCP system. This is
possible as the OCP has facilitated the emergence, around a modular
and open architecture, of a community that drives innovation and gener-
ates value mostly captured by the companies who deploy data centers
on a large scale. Companies such as Meta, Microsoft, and Google have
unleashed and profited from innovation synergies among complemen-
tary and co-specialized capabilities on the hardware side. In a thriving
ecosystem such as the OCP, ample business opportunities can be seized
by ecosystem participants who also benefit from simple access to one
another’s capabilities and from sharing knowledge and resources.

6.5.2 Containerization Layers

In the containerization layer, Kubernetes and Apache Mesos are open-
source container orchestration platforms that enable the efficient creation
and management of cloud resources. The relationship between container-
ization technologies and cloud platforms is characterized by supermod-
ular complementarity, as more of one makes the other more valuable.
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By using these open-source solutions, organizations can deploy and scale
applications in the cloud more easily, which can increase the value of
cloud platforms. Moreover, the open-source nature of these solutions
fosters innovation, as they are continually improved and adapted to the
needs of the community. New projects and services continuously emerge
from these open-source communities and enhance the value of the cloud
platform as a whole. In turn, the success of cloud platforms attracts new
developers to join and grow the open-source community and contribute
to further innovation. This results in multilateral supermodular comple-
mentarities, as different projects can be mixed and matched to create
value. Kubernetes is one of many open-source projects at the center
of a broader developer community that surrounds the Cloud Native
Computing Foundation CNCF. On the one hand, Kubernetes is a stan-
dard used by all cloud platforms. On the other hand, it is supported by
a vibrant developer community of over 200,000 contributors and over
200 projects. This community produces generative spillovers and related
use case innovation, as the CNCF community also counts hundreds of
startups as currently active and contributing participants.

How Google Orchestrated the Emergence of the Kubernetes Ecosystem
In mid-2010 Google was lagging behind AWS and Microsoft in cloud
services. To shake up the status quo, it open-sourced Kubernetes, the
software containerization and data center management platform, to
help clients more easily migrate into the cloud and potentially become
customers of Google Cloud. With the 2015 release of Kubernetes,
Google initiated an open-source developer community, and Kubernetes
was handed over to the Cloud Computing Native Foundation (CNCF).
Although this meant that Google lost proprietary control of
Kubernetes, Google expected that the Kubernetes community would
boost its capabilities and help establish Google as a recognized leader
for Kubernetes and other cloud-native developments

The Kubernetes maneuver proved successful: in 2020, the Kubernetes
developer community comprised 52,000 contributors, and in 2023, it
reached 200,000. Kubernetes had dislodged open-source alternatives
such as Mesosphere from their leadership positions, and in 2020, its
adoption rate reached 91% of cloud-based container orchestration
platforms. The Kubernetes maneuver proved successful, and Google’s VP
for Infrastructure commented in hindsight: “Google had to make a bold
move in the cloud space to be the long-term winner. Kubernetes has
been a wonderful journey with highs and lows, but in the end, it has
changed the game for cloud and computing at large.”



150 H. Legenvre et al.

6.5.3 IoT Layer

IoT devices generate vast amounts of data, which is then processed and
analyzed in the cloud to extract valuable insight and enable new applica-
tions and services. IoT technologies, by enabling access and communica-
tion of data, act as a complementary technology that enhances the value
of cloud services. At the same time, by leveraging resources in the cloud,
the value of IoT devices and technologies is enhanced, as cloud services
help scale data processing capabilities and provide access to advanced
functionalities. Moreover, cloud infrastructure provides IoT technologies
and the data generated by IoT devices with numerous complemen-
tary capabilities, such as advanced analytics and machine learning that
enhance their value and enable new applications. For example, by using
cloud-based analytics and AI algorithms, IoT devices can detect anoma-
lies, predict failures, and optimize operations. This ability to mesh
numerous complementary technologies and capabilities supports multi-
lateral supermodular complementarities across IoT, cloud infrastructure,
data processing, and AI capabilities.

6.5.4 Data Management Layer

Cloud platforms, IoT, and other technologies have also benefited from
the emergence of open-source software for data curation and data
management. Tools like Apache Hadoop, MongoDB, Elasticsearch, and
others have emerged as popular solutions for processing and analyzing
large datasets in the cloud. The relationship between open-source soft-
ware for data curation and data management and cloud platforms
supports a supermodular complementarity. As more open-source tools
are developed and deployed in the cloud, the value of cloud infrastruc-
tures increases for potential users, as the cloud technology ecosystem
becomes more powerful and able to offer a more flexible platform for
data processing and analysis across a wide range of use cases. Similarly,
as cloud platforms become more powerful and flexible, the value of
open-source tools increases, as they can take advantage of these resources
to perform more complex data processing and analysis tasks. Then, as
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data curation and data management are dominated by open-source soft-
ware, digital infrastructures can be easily integrated. Anyone can create
new connectors that are made available to everyone to facilitate further
integration. This ability to easily mix and match technologies facilitates
the emergence of multilateral supermodular complementarities among
data curation and data management tools. Also on a broader scale,
these tools drive multilateral supermodular complementarities, as they
enhance the value of all technologies connected to cloud platforms.
For instance, open-source software available for data curation and data
management has facilitated the development of IoT, AI, and machine
learning technologies.

6.5.5 AI Layer

The rise of AI models and machine learning frameworks has enabled the
creation of multilateral supermodular complementarities within cloud
infrastructures, AI, and other adjacent technologies. The availability of
pre-trained AI models for tasks like natural language processing and
image recognition has accelerated the adoption of cloud infrastructures
in an ever-increasing number of industries. This relationship between AI
models and cloud infrastructures can be seen as supermodular comple-
mentarity, as more of one makes the other more valuable. For example,
as more AI models are developed and deployed in the cloud, the value
of cloud infrastructures increases for prospective users, as there are more
resources available for training and deploying these models. Similarly,
as cloud platforms become more powerful and scalable, the value of
AI models and frameworks increases, as they can take advantage of
these resources to perform more complex tasks and deliver better results.
Beyond the relationship between AI technologies and cloud platforms,
AI complements adjacent technologies as described already with IoT and
data curation and management software.
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How Google Orchestrated and Drove Ecosystem Momentum for AI
Technologies AI frameworks and models have initially been released
under source licenses by companies such as Google and Meta. In 2015,
the academic community was making rapid progress in the
development of AI technologies and applications, yet the technological
base of the AI developer community remained fragmented. To address
this fragmentation and drive momentum within the AIML ecosystem,
Google released TensorFlow, an open-source machine learning
framework that is used to train AIML models and design AIML
applications. TensorFlow quickly gained popularity with academics and
developers who could rapidly create and share AI models and develop
complementary technologies. This led to the emergence of a large
ecosystem of developers, online courses, books, open-source projects,
complementary technologies, service providers, and AI startups, which
was able to attract significant investment and client interest across all
sectors. Google and Facebook, among others, continued to fuel this
ecosystem by releasing rich datasets, pre-trained models, and other
complementary resources under open-source licenses, further
empowering the new generation of AIML computer scientists. This
success was due to a deliberate technology-sharing strategy by
companies like Google and Facebook, which made AI frameworks and
complementary resources accessible to everyone. Part of the motivation
of Google was associated with Google Cloud Platform which could now
offer its clients an opportunity to develop and run their own AIML
applications in the cloud. This was also one of the strategies used by
Google to try to catch up with AWS as a cloud service provider

6.5.6 Access to Specialized Hardware

The emergence of AI has accelerated the need to establish access to
specialized hardware for AIML model training. It has also created super-
modular complementarities between specialized hardware and cloud
infrastructures. Specialized hardware for AI adds value to cloud plat-
forms by enabling the training and operation of AI and ML models
in the cloud. AIML specialized hardware consists of custom-designed
processors, and Tensor Processing Units (TPUs) that are optimized for
the effective computation and training of machine learning algorithms
and offer high performance while minimizing power consumption. The
introduction of TPUs triggered a virtuous cycle where the increasing
demand for AIML resources fuelled the development and deployment
of more advanced hardware for AIML computation, which in return
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enhanced the capabilities of cloud platforms. As cloud providers integrate
specialized hardware, they offer more valuable AIML services and attract
more clients who want to use the cloud for machine learning workloads.

6.5.7 Open Datasets Layer

Open datasets act as complements that enhance the value of cloud plat-
forms by allowing the development of new applications and use cases
for users who can leverage the datasets available to train customized ML
algorithms and thus improve their operations and decision-making capa-
bilities. This relationship between open datasets and cloud infrastructure
is characterized by supermodular complementarity: when open datasets
become available on the platform, the value of cloud infrastructures
increases, as there are more resources available for creating use-specific
applications and training new specialized ML algorithms.

6.5.8 Questioning the Future of Cloud Infrastructure
Supermodular Dynamics

The emergence of heterogeneous open technology ecosystems centered
around cloud platforms has created a vast cloud technology ecosystem
where all technologies can be easily accessed and assembled. This could
threaten the ability of cloud service providers to capture extensive value
beyond their core business over time. Today’s supermodular complemen-
tarities could evolve into submodular ones when adding new technolo-
gies will create diminishing returns, and this synergistic effect will vanish.
This could happen as technologies further standardize, as functionalities
overlap, as the complexity of adding technology increases, and as the
market enters a phase of saturation.
While, according to the data we collected, this is not yet the case today,

we have seen already some of the cloud service providers maneuvering
against their complement providers to try to capture more value out
of complements themselves. For instance, Amazon Web Service started
to compete with Elasticsearch, the open-source search and analytics
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engine, by launching its own managed service called Amazon Elastic-
search Service. The use of the word Elastic by Amazon Web Services
was challenged in court. Amazon finally abandoned the use of the
name Elastic, and the two companies settled their conflict and started
cooperating again. This rapid change demonstrates that, for these two
companies, harvesting benefits from supermodular complementarities
was more productive than competing in markets and battling in courts.

Another maneuver of a cloud platform against its complement
providers became visible after the launch of ChatGPT by OpenAI.
Indeed, both Microsoft and Google now favor the adoption of a more
proprietary approach for large language models. They justify it by the
costs associated with the development of such models and by ethical
considerations. A more proprietary approach is an opportunity for them
to extract value from such compliments. In reaction, Meta, Amazon,
and IBM now favor a more open-source approach to AI. This is a
classic competitive dynamic; when leaders are tempted to go propri-
etary, followers coalesce and form open-source ecosystems to undermine
their advantages. Simultaneously, we saw companies who own significant
amounts of data that have been used to train large language models such
as Twitter and Reddit charging for access to their API. So as Microsoft
and Google turned against open-source complement providers, other
platforms sided with them. We believe that open-source AI model
providers will continue to challenge companies such as Microsoft and
Google in the future thanks to both new technical advances and strong
ecosystem momentum powered by supermodular complementaries. Such
development will provide diversity from both technical and cultural
perspectives. Adopting an open technology approach for AI models
empowers communities around the world to develop and use AI in ways
that reflect their unique cultural contexts and linguistic needs. We also
believe that Microsoft and Google will keep contributing to the open-
source AI movement as they do not want to upset academics, developers,
and a large share of their complement providers. When supermodular
complementarities have been reinforced by open-source forces, it can be
difficult to return to more proprietary dynamics.
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These two examples show that we are still in an era of supermodular
complementarities for could technologies, but diminishing returns from
adding complements could arise at some point in the future.

6.6 Discussion

We have described the cloud technology ecosystem and the sub-
ecosystems it comprises. Our findings describe the cloud technology
ecosystem as a nexus of diverse multilateral supermodular comple-
mentarities. Our findings show that cloud platforms occupy a pivotal
position within digital architectures. Cloud infrastructures, according
to the taxonomy of Helfat (2002), are a core and general technology
that underpins all modern digital applications. Cloud platforms have
benefited from supermodular complementarities with complementary
technologies that help build and exploit them. They also benefited from
supermodular complementarities within and among diverse technology
ecosystems within the digital infrastructure. This is true within the OCP
and CNCF communities. This is also true within and among IoT, data
management, and AIML technology ecosystems.

Our findings lead us to define cloud platforms as pivotal assets that
reside at the center of cloud infrastructures and related technology
ecosystems. We call such an asset pivotal because of three character-
istics. First, they occupy a central position within the overall cloud
technology ecosystem, and, by extension, within the digital infrastructure
of their users. They provide access to and interconnect diverse subecosys-
tems of technologies. Second, the heterogeneous sets of technologies and
resources that help create, build, and exploit cloud platforms exhibit
multilateral supermodular complementarities, as all of them create value
for cloud infrastructures and the platforms capture value. Such multi-
lateral supermodular complementarities drive network effects at the
technology level. The value of each technology increases as a result of
the adoption and use of all complementary technologies within the
ecosystem. Finally, we witnessed a significant share of open technolo-
gies among these complementary capabilities that allow cloud platforms
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to capture a large share of the value created within digital infrastruc-
tures. Open technologies not only reduce the costs of the technologies;
they also facilitate the integration of technologies and the continuous
emergence of innovation across complements (See Fig. 6.2).
Open technologies, as catalysts for innovation, provide a fertile ground

for the emergence of new promising developments and spur cycles of
resource diversification that reshape existing technological landscapes.
This is not merely a quantitative expansion of resources that elimi-
nates technical bottlenecks, but also a qualitative transformation in how
these resources get combined and utilized. Through this process, the
diverse technology ecosystems meshed thanks to cloud platforms contin-
ually adapt, evolve, and diversify in response to the opportunities and
challenges posed within an open environment.

As resources diversify and networks of complementarities expand,
open technology ecosystems become hotbeds for innovation. Novel
recombination of resources gives rise to new solutions to old problems.

Fig. 6.2 Open technologies, pivotal assets, supermodular complementarities,
and generativity
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At the same time, transforming and combining existing resources creates
functionalities that were previously unimagined. In this way, unexpected
yet beneficial outcomes emerge from a generative process.

In this context, the role of supermodular complementarities becomes
paramount. Supermodularity implies a synergistic relationship between
resources, meaning the combined value of different modules is greater
than the sum of the values of individual modules in isolation. Thanks
to open technologies, this synergy amplifies generativity—the poten-
tial to create diverse outputs, including unexpected ones, from a set
of inputs. The diversified resources, in their innovative configurations,
form a complex network of complementary relationships, reinforcing
each other and contributing to the overall value of the ecosystem.
Transitioning from a closed to an open technical system can precipitate

large-scale shifts within the related technology ecosystem. This profound
change can trigger a proliferation of diverse outcomes and trigger an
explosion of innovation.

Centrality, heterogeneity, and openness enabled the emergence of
supermodular complementarities for cloud platforms that act as the
pivotal assets that mesh together diverse technology ecosystems.

6.6.1 Implications for Practitioners: The Strategy
of Pivotal Asset Owner

Pivotal assets and their technology complements tend to exhibit strong
supermodular complementarities that drive increasing returns to scale
and benefit the owners of pivotal assets. This is achieved as pivotal asset
owners facilitate the opening of the technology ecosystems that surround
their assets. By doing so they attract new users and developers who all
use and rely on the core and generic capabilities offered by their pivotal
assets. Companies that control pivotal assets need to have the resources
and capabilities to invest in developing open technologies. Thanks to
the careful orchestration and stewardship of these diverse technology
ecosystems they ensure that these technology ecosystems remain sustain-
able and that openness leads to beneficial outcomes for all stakeholders.
As they do so, they can leverage their large networks of developers,
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customers, and partners to strengthen the complementarities between
components on their platforms. This results in increasing returns to
scale and winner-take-most dynamics markets structured around pivotal
assets.

6.7 Conclusion

In conclusion, our research has highlighted the pivotal role of cloud plat-
forms within the broader cloud technology ecosystem. These platforms
occupy a central position and serve as access points that interconnect
various sub-ecosystems of open technologies. We have identified three
key characteristics that make them pivotal assets.

First, cloud technology ecosystems exhibit multilateral supermodular
complementarities. The diverse open technologies and resources involved
in creating, building, and leveraging cloud platforms generate value for
cloud service providers and complement providers. The adoption and
use of open complementary technologies result in network effects, where
the value of each technology increases in conjunction with the adoption
of other complementary technologies.

Second, a significant portion of such complementary capabilities is
comprised of open technologies. Open technologies not only reduce
costs but also facilitate the integration of technologies and drive contin-
uous innovation across complements. They serve as catalysts for innova-
tion, providing fertile ground for the emergence of new possibilities and
diversification of resources. This diversification goes beyond mere quan-
titative expansion, transforming and combining resources in ways that
reshape existing technological landscapes.

Lastly, the interplay between centrality, heterogeneity, and openness
creates a generative process within open technology ecosystems. Super-
modular complementarities play a paramount role in this process, as
the combined value of resources surpasses the sum of their values.
The diverse and innovative configurations of resources form a complex
network of complementary relationships that reinforce each other and
contribute to the overall value of the ecosystem sometimes in unexpected
ways.
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In the future, additional research could help further understand how
diverse open technology ecosystems co-evolve to maintain generativity
and continuously create value altogether. This could lead to a better
understanding of how and why constraints that span different technology
ecosystems emerge and how participants in complex interconnected
technology ecosystems deal with these bottlenecks.

In summary, our findings emphasize the critical role of cloud plat-
forms as pivotal assets within the cloud technology ecosystem. Their
centrality, heterogeneity, and openness foster supermodular complemen-
tarity, driving innovation, and enabling the emergence of diverse and
unexpected outcomes. By understanding and harnessing these dynamics,
we can further enhance the value and potential of cloud platforms and
their surrounding ecosystems.
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7
Analysis of Digital Twin-Related
Competences in Manufacturing

Mira Timperi, Kirsi Kokkonen, Ilkka Donoghue,
Lea Hannola, and Kalle Elfvengren

7.1 Introduction

Digital twin (DT) technologies are suitable for many purposes and offer
various opportunities for companies. DTs have streamlined operations
(Leung et al. 2022), enhanced resource efficiency (Golovina et al. 2020),
provided foundations for novel businesses (VanDerHorn and Mahadevan
2021), and contributed to multiple sustainability aspects (Kamble et al.
2022; He and Bai 2021). To this day, DTs have been recognized as
offering possibilities for various industries, for example, in aerospace
(Jin et al. 2023), agriculture (Purcell et al. 2023), healthcare (de Boer
et al. 2022), construction (Kan and Anumba 2019), and manufacturing
(Kritzinger et al. 2018), where DT technology can provide value to
production, maintenance, decision-making, safety, planning and design,
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training, remote access operations, and many other areas (e.g., Bao et al.
2019; Liu et al. 2021; Meierhofer et al. 2020).

DTs and other data-based digital technology solutions have garnered
increasing attention in academia and the manufacturing industry for
over a decade (e.g., Alnowaiser and Ahmed 2023; Liu et al. 2021) as
their potential in terms of, for example, competitiveness (Lattanzi et al.
2021) and sustainability challenges (He and Bai 2021) have begun to be
better understood. The importance of DT adoption is also recognized
at the level of the European Union through EU and national funding
initiatives. The research focus has increasingly turned from applying
DTs mainly to product design to their role encompassing the entire
business value chain and resulting in improved products, production
processes, system performance, and services (Onaji et al. 2022). Previous
research has studied, for example, technical and technological require-
ments (e.g., Damjanovic-Behrendt and Behrendt 2019; Liu et al. 2021;
Semeraro et al. 2021) and business aspects (e.g., Lim et al. 2020; Minerva
and Crespi 2021; Onaji et al. 2022), but the competences needed for
DT adoption remain a rather unresearched area. Thus, this chapter
investigates what competences are commonly needed to utilize DTs in
manufacturing.

According to Nicoletti et al. (2020), the needed competences vary
among digital technologies. They noted that the adoption of tech-
nologies is always, at some level, influenced by other factors, such as
required investments and the regulatory barriers to market entry, which
differ between technologies. Hence, single digital technologies should
be examined separately as regards their enablers and prerequisites for
adoption. One digital technology accelerator has been the Industry 4.0
(I4.0) revolution. I4.0 focuses on implementing connected and smart
technology into different areas of the organization, such as produc-
tion and product-service systems (PSS) (e.g., Frank et al. 2019; Pirola
et al. 2020). The competence requirements stemming from the I4.0
wave have been studied by Kipper et al. (2021), according to whom
professional education plays a pivotal role in securing the needed skills,
and by Hernandez-de-Menendez et al. (2020), who concluded that
future professionals must be able to exploit knowledge and add value in
various collaborative domains. The successor of I4.0 is the Industry 5.0
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(I5.0) revolution with sustainability and human perspectives. Due to the
novelty and early stages of I5.0, only a few studies discuss its competence
needs. One example of such a study is from Salminen et al. (2023), who
found that the requirements vary depending on company size and the
implemented technology. Also, the vast growth of artificial intelligence
(AI)-based technologies is altering skill and competence needs at an accu-
mulating pace (e.g., Morandini et al. 2023). All the abovementioned
changes demand active assessment and vigilance from companies.

One commonly used approach to assess digital technology-related
competence needs is the technology–organization–environment (TOE)
framework. According to Baker (2012), the three context areas of TOE
serve particularly the adoption and implementation of innovations.
However, it has some recognized gaps: a review by Gangwar et al. (2014)
summarized that the TOE framework does not consider sociological
or cognitive variables, organizational learning, professionals’ skills and
experience, technology readiness, change management capabilities, secu-
rity issues, or government- and country-related factors. Further, Horani
et al. (2023) pointed out that it also leaves out individual character-
istics, such as top management support. Considering the above, the
research angle related to the needed competences in digital technology
adoption is significant and topical—new and innovative solutions do
not arise by themselves; rather, a wide variety of competences, skills,
experts, and other resources are needed to design, develop, build, and
maintain them. Thus, among competences, the required resources and
collaboration perspectives are also explored. This study used a qualita-
tive research method. The research was carried out through interviews
and focus group workshops in selected companies in the manufacturing
industry and their service providers. The chapter answers the following
research question: What competences are needed to utilize digital twins in
the manufacturing industry?

As a main contribution, this study provides a competence framework
for DT and other digital technology adoption. The framework consists
of four interdependent categories—technological, cognitive, soft, and
managerial competences. Further, the results highlight that identifying
competence and resource needs alone does not guarantee the successful
adoption of DTs; many other aspects must be considered before the
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competences can be truly utilized, e.g., available financial and human
resources. There are also many challenges in companies related to the
concentration of skills in different functions and the lack of an all-
encompassing vision. The researchers also noticed that ownership and
responsibilities for DT projects in companies are not always clear, which
requires comprehensive management of digital strategy and DT-related
competences. Further, the adoption of DTs is seen to have impacts on
companies’ organizational structures.

7.2 Related Research

7.2.1 Digital Transformation Through Industrial
Revolutions

DTs and other digital technologies are part of digital transformation and
digitalization. Digital transformation is a pervasive, continual process
depicting organization-wide change toward novel business models (e.g.,
Brunetti et al. 2020; Schallmo et al. 2017; Verhoef et al. 2021), whereas
the term ‘digitalization’ refers to the transfer of analog information into
digital data and the effect it generates. Digitalization helps to process
information electronically, increase efficiency and flexibility, save process
costs, and accelerate time-to-market (Köhler-Schute 2016). Interest in
digital transformation and digitalization is evident. Previous research has
found that digital transformation, digitalization, and digital technolo-
gies affect manufacturing business in various ways (e.g., Björkdahl 2020;
Favoretto et al. 2022; Zangiacomi et al. 2020), for example, by powering
industrial revolutions (Syam and Sharma 2018; Vrana and Singh 2021).
The ongoing industrial revolution, named I4.0, is steering the emer-

gence of smart factories using cyber-physical systems and the IoT
(Coelho et al. 2023). Following I4.0 is the concept of I5.0, which
is based on the idea of merging sustainable development goals and
digitalization provisions from the fourth industrial revolution through
human-centric solutions, bio-inspired technologies, and cyber-safe data
transmission (Farsi et al. 2021). The shortcoming of I4.0 is its limited
impact on the socio-economic transition that is driven by both humans
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and technology (Jefroy et al. 2022). The focus of I5.0 is to correct
these shortcomings. Thus, while I4.0 is focused primarily on economic
objectives to be achieved through digital transformation and the automa-
tion of monotonous work processes, I5.0 will also bring in social and
ecological objectives (Hein-Pensel et al. 2023).

According to a profound bibliographic analysis by Coelho et al.
(2023), most of the papers associated with the fifth industrial revolu-
tion address how I5.0 will do what I4.0 did not achieve: promote a
more just and sustainable society, where there are collaborative relation-
ships between machines and humans. I5.0 enables more sustainable and
technology-oriented workplaces through digitalization, AI, and robotics
by optimizing human–machine–robot interactions and supporting the
empowerment of humans rather than replacing them with industrial
robots (Majerník et al. 2022). In addition, Hein-Pensel et al. (2023)
identify the main elements of I5.0 as sustainability, resiliency, and
human-centered design. According to Paschek et al. (2019) and Lachva-
jderová and Kádárová (2022), unsolved dilemmas for the future include
questions of what skills are needed and are to be developed, what kind
of rules for human and machine interaction must be defined, which
impacts AI may have, and what conflicts may arise between humans
and AI. Furthermore, the rapid development of innovative technologies,
such as the DT, is affected by questions related to human and machine
interactions, where the DT represents the real-world counterpart in a
virtual environment. The accuracy of a DT depends on an AI algorithm
and data quality as well as the physics and mathematical accuracy of the
simulation model. The integration of both approaches creates a DT that
can achieve accuracy close to the real-world counterpart. However, DTs
based on AI and/or physics-based simulation call for new competences
that organizations rarely have (Jaiswal et al. 2022).

7.2.2 Digital Twins in Manufacturing Industry

The concept of a DT is generally acknowledged as a promising and
innovative research area, as well as a strategic way to improve current
manufacturing processes (Lattanzi et al. 2021). Academic literature has
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provided numerous definitions of a DT (e.g., Bao et al. 2019; Liu
et al. 2021; Negri et al. 2017; Wang et al. 2021). The term has been
assigned various meanings and used for different purposes and applica-
tion domains (Lattanzi et al. 2021). Originally, the concept of the DT
was created in early the 2000s by Dr. Michael Grieves, who defined
it as a virtual representation of a physical product or system that is
upgraded constantly with data from the physical counterpart (Grieves,
2014). Over the years, definitions of DTs have evolved as research around
the topic has expanded. For example, Lattanzi et al. (2021) summarized
some significant definitions of DTs among their potential application
areas in product lifecycles. Based on their study, DT concepts and tech-
nologies have gained increasing interest over the years in the industry.
DT technology can have a significant impact on automation systems.
Moreover, it may provide business value throughout the various product
lifecycles in manufacturing. However, many research papers still focus on
DT concept definitions, meaning that further research on DT systems in
manufacturing is still needed to tackle the open challenges (Lattanzi et al.
2021).
Manufacturing companies use DTs to increase their flexibility and

competitiveness and to forecast the health and performance of their
products over their lifecycles (Lattanzi et al. 2021). Liu et al. (2021) have
summarized the industrial application areas of DTs in respective lifecycle
phases—they found out that most research papers on DTs focus on a
single lifecycle phase, while only 5% of studies cover the entire lifecycle.
Manufacturing (45%) and service phases (32%) are the most common
areas of published DT research, while only 1% of research papers focus
on the retirement or end-of-life phase (Liu et al. 2021). Li et al. (2022b)
have analyzed the application areas of DTs in manufacturing through
time dimensions, i.e., design, production, and operation & maintenance
phases. In these lifecycle phases, DTs can serve specific purposes, e.g.,
simulation verification in the design phase, equipment monitoring in the
production phase, and health maintenance in the operation and mainte-
nance phases. The application areas of DTs in manufacturing (Li et al.
2022b; Liu et al. 2021) are summarized in Fig. 7.1.
The retirement or end-of-life phase is often not counted as an actual

lifecycle phase, and knowledge about the behavior of a product or system
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Fig. 7.1 Application areas of DTs in manufacturing (modified from Li et al.
(2022b) and Liu et al. (2021))

is often lost when the solution is retired (Liu et al. 2021). Moreover,
the small number of published research papers on DTs in the end-of-life
phase or during the entire lifecycle indicates the need for further research,
for example, regarding DTs’ potential to solve sustainability challenges.
In addition, the required competences and resources for DTs vary in
different lifecycle phases and between various digital technologies, but
there are only a few research papers covering the competence needs of
DT utilization.

7.2.3 Competence Needs in the Adoption of New
Digital Technologies

Companies create value by transferring different inputs into outputs
(Grant 1996). The academic literature from the resource-based angle
depicts these inputs as ‘resources’ (e.g., Grant 1996; Teece et al. 1997)
that can be either tangible or intangible: tangible resources refer to
assets that are property-based, such as financial and physical resources,
whereas intangible resources are comprehended as skill- and knowledge-
based organizational, human, and technological assets (Das and Teng
2000; Jancenelle 2021). The efficiency and effectiveness of resources
depend not only on their existence but on how they are managed.
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Hence, companies need competences and capabilities, i.e., activities and
processes through which they deploy their resources (e.g., Grant 2010;
Whittington et al. 2020).
The terms ‘competence’ and ‘capability’ have differing definitions in

the academic literature; some academics see ‘competence’ as an upper-
level ability to use resources and capabilities (e.g., Barney and Hesterly
2010; Sanchez 2008) while others use the term ‘capability’ to depict a
longer-term ability to form competitive advantage which is based on
different levels of resources (e.g., Brown and Eisenhardt 1999; Whit-
tington et al. 2020). However, these terms are often used interchangeably
to depict the deployment of resources in ways that help in achieving a
company’s goals in the competitive context. The present research also sees
these terms as interchangeable, and for clarity, only the term ‘compe-
tences’ is used. Also, the term ‘skills’ is used to depict person-related
specific know-how and talent, whereas competences are understood more
as company-level skills.

Combining resources into competences is a complex process that is
highly dependent on the types of resources that companies can draw on
(e.g., Helfat and Peteraf 2015; Jancenelle 2021). Digital technologies are
strongly complementary to other intangible resources of a company (e.g.,
Brynjolfsson et al. 2017; Khin and Ho 2018), such as workers’ skills or
managerial talent. This means that the factors related to competences are
likely to play a specific role in the adoption of new digital technologies
(Nicoletti et al. 2020). Several authors have stated that digital transfor-
mation entails the need for new kinds of skills and competences to ensure
the efficient application and management of advanced technologies (e.g.,
Cimini et al. 2020; da Silva et al. 2022; Onaji et al. 2022). For instance,
Cimini et al. (2020) argue that big data and related technologies play a
prominent, disruptive role in today’s digital transformation that requires
machine operators to extend their skill set. Also, the increasing intelli-
gence of technological systems and the generation of more complex data
require more qualified workers for decision-making in very different areas
(Cagliano et al. 2019; Jerman et al. 2020). In general, the increasing
complexity of human–machine interconnection makes it necessary to
study the new ways in which people work (Galati and Bigliardi 2019).
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The requirement of new kinds of skills and competences in the adop-
tion of digital technologies inevitably means that companies’ competence
profiles and the labor market need to adapt accordingly (da Silva et al.
2022; Liboni et al. 2019). Thus, the renewal of key competences for
adapting existing jobs as well as establishing a competence profile for new
jobs have been recognized as important elements in this development
(e.g., Ana et al. 2019; Jerman et al. 2020). More specific know-how and
new skills will be needed, e.g., from multiple new engineering areas. In
their study of smart factories, Jerman et al. (2020) found those areas to
be, e.g., in programming, IoT design, data analytics, robotics, bionics,
and mechatronics. Onaji et al. (2022) also highlight that along with
the development of interoperable production systems and ever-increasing
uses of data, engineering skills need to become more interdisciplinary.
As repetitive, easy activities are expected to be largely automated (e.g., da
Silva et al. 2022), future competences are directed toward more strategic,
coordinated, and creative activities. Jerman et al. (2020) argue that
the role of soft competences, such as conflict management, leadership,
emotional intelligence, and motivation, is expected to rise in the future.
Moreover, the importance of continuous learning, flexibility, creativity,
collaboration, problem-solving, and critical and analytical thinking has
been emphasized in the development of I4.0 technologies (Gilli et al.
2023; Jerman et al. 2020).
Although the need for new competence profiles is widely recognized,

and the significant disruptive impact of digital transformation on today’s
business and society is evident, the number of organizations that are
ready to take full advantage of this development is still limited. Gilli
et al. (2023) state that harnessing the opportunities of digital technolo-
gies is one of the great challenges companies are facing today. Most
companies are well aware of the potential of new digital technologies,
but they lack a clear path to bridge the gaps to reshape existing processes
in line with emerging technologies (Gökalp and Martinez 2022). Khin
and Ho (2018) also highlight that besides the importance of an orien-
tation toward digital technology adoption, a company also needs to
have competences to integrate digital technologies into its innovation
processes. Li et al. (2022a) state that companies should not consider only
technology diffusion and adoption; systematic improvement is needed
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in, e.g., the management of strategy, organization, business processes,
and operation modes. Further, Hannola et al. (2021) have noted that it is
important to match enabling technologies with the actual needs of users
and customers. These statements are strengthened by Gilli et al. (2023),
who highlight the importance of the role of leaders who grasp the oppor-
tunities of digitalization for their businesses and transform them into
new business models.
When considering DTs, Broo and Schooling (2023) found the

skills gap to be one of the most important underlying factors in the
unsuccessful adoption of DTs; without a fundamental understanding
of technologies throughout the organization, DT development cannot
be achieved. According to Kober et al. (2022), there are only a few
employees in manufacturing companies who already have the appro-
priate skills to develop, use, and evaluate DTs. Thus, extensive training
or recruitment is necessary. Further, Gilli et al. (2023) state that many
DT processes have failed not because of a lack of knowledge of the tech-
nology but because of a lack of leadership skills in orchestrating different
expertise fields, renewing organizational structures and processes, and
creating new business models. Kober et al. (2022) also note that one
of the most underestimated hurdles is employee acceptance. Hence,
more emphasis should be given to change management during the
transformation process.

In addition, companies are filling their skills gap by forming different
kinds of partnerships. The rapid development of DTs has boosted new
solutions and service businesses, but at the same time, also the need
for collaboration, as companies cannot provide all the needed skills and
competences by themselves (e.g., Kokkonen et al. 2022; Meierhofer et al.
2020). Increasingly, DTs can be applied throughout product lifecycles
from creation to reuse and modification, which enables collaborative
management between all companies in the value chain (Fan et al. 2022).
However, collaboration is not without problems either; in addition to
the challenges related to the technological fit of several applications and
systems, more open collaboration raises questions concerning, e.g., disad-
vantages of dependency on other companies, uncertainties regarding
data sharing and management, differentiating goals of the companies
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involved, and the lack of appropriate governance models for collabo-
rative relationships (Kokkonen et al. 2022; Reim et al. 2022). Hence,
renewing collaboration models demands that companies adopt new
kinds of openness and collaboration skills.

7.3 Methods

This study used a qualitative research approach consisting of semi-
structured thematic interviews and focus groups. According to Carey
and Asbury (2016), qualitative research is useful when exploring new
topics and examining complex issues. Yin (2015) emphasizes that the
advantage of qualitative research is that it enables in-depth studies on
a broad array of topics. Miles et al. (2020) argue that qualitative data
enable chronologizing a flow of events and consequences while deriving
credible explanations. Moreover, a qualitative approach gives opportuni-
ties, e.g., to examine the phenomena in real-life contextual conditions, to
contribute insights from existing or new concepts, and to acknowledge
the potential relevance of multiple sources of evidence instead of a single
source alone (Yin 2015).

According to Miles et al. (2020), the choice of methods is important
when intending to obtain the best answers. Thus, attention should be
given to the selection of the most suitable methods to produce them.
The chosen methods for this research (semi-structured interviews and
focus groups) were seen to serve this goal. Semi-structured interviews are
conversational and reasonably informal (Longhurst 2010). They consist
of open-ended and formulated questions that provoke free responses and
provide a basis for discussion (McIntosh and Morse 2015). In relation to
structured interviews, semi-structured interviews are more adaptable and
flexible, which provides room for researchers to adjust their research and
obtain more in-depth information (Ruslin et al. 2022). A focus group
method was seen to complement and enrich the data gathered from
semi-structured interviews. Krueger and Casey (2000) describe the focus
group as an efficient method for obtaining data from multiple partici-
pants, thus increasing the overall number of participants in a study. In a
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focus group, a small group of people is engaged in an informal discus-
sion around a particular topic or a set of issues. The discussion is usually
based on general guideline questions. The researcher generally acts as a
moderator for the group; posing the questions, keeping the discussion
flowing, and enabling group members to participate (Carey and Asbury
2016; Silverman 2004). The idea of focus group work is not to reach
a consensus but to collect deep, strongly held beliefs and perspectives
(Carey and Asbury 2016). The combination of two research datasets was
seen as forming an effective sample size; four precisely chosen interviews
with professionals, and 12 focus group discussions with a wider group
of people engaged in the researched theme areas, proved to saturate the
research data. Although guidelines on sample sizes for saturation have
been identified in the academic literature (see e.g. Hennink and Kaiser
2022), more essential is ensuring that the sample is adequate for the
phenomenon studied, i.e., the collected data have captured the diversity,
depth, and nuances of the issues studied (Francis et al. 2010; Hennink
and Kaiser 2022).
The interviewees chosen for the thematic, semi-structured interviews

were four professionals representing manufacturing and manufacturing
consultancy companies. The focus group workshops were arranged as
several company workshops with five companies over a longer period.
Four of the companies operate in the manufacturing industry, and
one company is a service provider for manufacturing companies. An
overview of the interviewees and companies who participated in the
workshops and the relevance of each participant and event for the study
are presented in Table 7.1.
The interviews were carried out online via collaboration software. All

the interviews were recorded and supported with comprehensive written
notes. Some of the workshops were conducted as face-to-face meet-
ings and some as online meetings. In the interviews and focus group
workshops, the following themes were discussed: (1) the DT matu-
rity level of the companies; (2) the business potential of DTs and new
DT-enabled services; (3) skills and competences to adopt, deliver, imple-
ment, and maintain DTs; (4) availability and sources of DT-related skills
and competences; and (5) resource needs and ownership of DT solu-
tions. The results from company workshops were collected as slide-set
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Table 7.1 Overview of interviews and workshops
Company’s
business
sector Date

Relevance for
the research

Interviews Role of the interviewee
Company
A

R&D
Programme
Manager

Heavy
equip-
ment and
tech-
nology
engi-
neering

March 2023 Industry
insight on
DT adoption

Company
B

Development
manager

On-site
transport
solutions

April 2023 Industry
insight on
DT adoption

Company
C

Consultant Product
manage-
ment
consul-
tancy

May 2023 Business
insight on
DT adoption
and product
management

Company
D

Consultant Product
lifecycle
manage-
ment and
business
develop-
ment
consul-
tancy

June 2023 Business
insight on
DT adoption
and impact
on customer
business

Workshops
Company A Heavy

equip-
ment and
tech-
nology
engi-
neering

November
2021–January
2022, April 2023

Industry
insight on
DT adoption

Company E Power
solutions

January 2023, April
2023

Industry
insight on
DT adoption

Company F Robotics
and
automa-
tion

January 2023, April
2023

Industry
insight on
DT adoption

Company G Bearing
solutions

September–
December 2021,
April 2023

Business
insight on
DT adoption

Company H Software
solutions

October 2021, April
2023

Service
provider
insight on
DT adoption
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presentations and supported with written notes. The data obtained from
the interviews and workshops were processed through thematic analysis.
According to Braun and Clarke (2014), thematic analysis is useful, espe-
cially for applied research focusing on practical matters outside academia,
such as in the manufacturing context in this case. The thematic anal-
ysis was executed using a four-level framework for classifying different
competences needed in the adoption of digital technologies, especially
DTs.

Previous academic literature presents several classifications and cate-
gorizations of competences and skills, including models with differing
numbers of skill and competence levels (e.g., Janjua et al. 2012;
Mumford et al. 2000), different competence domains (e.g., Hogan
and Warrenfeltz 2003; Kauffeld 2006) and different competence hier-
archies (e.g., Rifkin et al. 1999; Viitala 2005). The framework used
in this study is based mainly on Mumford et al.’s (2000) classification
into complex problem-solving skills, solutions construction skills, and
judgment skills; Janjua et al.’s (2012) competence classification into func-
tional, generic management, social, and cognitive skills, and personal
characteristics; and Viitala’s (2005) six-dimensional classification into
technical, business, knowledge management, leadership, social, and
intrapersonal competences. These theoretical frameworks are combined
with the competence needs related to digital technology adoption identi-
fied in previous academic discussion (e.g., da Silva et al. 2022; Gilli et al.
2023; Jerman et al. 2020; Onaji et al. 2022).
The formed competence categories are as follows:

• Technological competences , comprising functional and technical compe-
tences in different engineering areas.

• Cognitive competences , comprising problem-solving skills, critical and
analytical thinking, and solution construction skills.

• Soft competences, comprising social skills, collaborative skills, conflict
management, emotional intelligence, and creativity.

• Managerial competences , comprising judgment skills, generic manage-
ment skills, business know-how, knowledge management, and leader-
ship.
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The empirical results, classified in the abovementioned competence
categories, are presented in the next section.

7.4 Research Results

The results of this study indicate that companies’ situations as regards
needed skills and competences vary based on the maturity level of their
DT journey. Based on the collected data, there are categorizations that all
companies need to consider if they are implementing DTs in their busi-
ness, either as a supportive solution or as a part of a large-scale business
transformation. The following subsections introduce the competences
involved in DT adoption and other factors, such as needed resources,
influencing the success of the transformation.

7.4.1 Required Competences for Digital Twin
Utilization

The analysis of data from the expert interviews and workshops indi-
cates that adopting, developing, building, and maintaining DTs and
other digital technologies require an exceptional skill profile consisting
of multiple competences. The results were classified into the four compe-
tence categories formed in the methodology section: technological,
cognitive, soft, and managerial competences (see Fig. 7.2).

Due to the multi-technical nature of DTs, companies need profes-
sionals with strong technological skills and competences in various
specialties to implement and keep the solution running. Examples of
needed technological skills are strong proficiencies in information tech-
nology, programming, and system and software development, as well as
expertise in simulation, design, and installation. The abovementioned
competences are needed in all phases of designing, building, and testing
the DT solution, whereas knowledge of electricity, dynamics, mechanics,
and hydraulics is often required to merge the physical equipment with
the DT. Other engineering competences are also needed, e.g., for the
companies to launch products to the market.
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Fig. 7.2 Competence framework related to DT and other digital technology
adoption

From a cognitive viewpoint, introducing DTs and other digital tech-
nologies involves the need for retrained, adaptable competences because
resiliency according to case and context is essential in a fast-paced and
changing operating environment; digital transformation alters the manu-
facturing business by introducing novel tools and new ways of working.
An analytical approach, strong problem-solving skills, and more detailed
competences, e.g., in mathematics and physics, play important roles in
solving challenges, developing new operations, and reaching the best
possible outcomes.

Utilizing digital technologies also requires soft competences, such as
collaboration skills, a curious mind, and a fresh mindset. Collaboration
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is emphasized because DTs are rarely developed alone but in collabora-
tion networks. However, the ownership of the solution, the basic skills
and core competence to maintain and fine-tune the DT solution, and
the ability to lead the development work must be inside the company
itself. Regarding an open, curious mind and a fresh mindset, a big leap
toward novel thinking is needed. Using a DT requires changes in oper-
ating methods—if such a solution is not already in use, it is difficult for
companies to position themselves to exploit its full potential. Essential
in solving this challenge is a willingness to solve things that do not fall
directly under one’s domain because the DT’s domain has not yet been
defined. The challenge is illustrated through an example: for a person
working as a mechanical designer, it is usually clear what belongs to their
field of tasks, i.e., what their work tasks and responsibilities are. If, on the
other hand, a person is given a DT as their domain, they must penetrate
the entire organization with all its silos and processes to maintain it. To
conclude, the lack of a job description and domain causes a challenge in
defining the necessary skills, thus highlighting the importance of a clear
vision of the future and a desire to achieve goals.

In addition to technological, cognitive, and soft competence needs,
there are also managerial competence needs. Managerial competences
can be divided into detailed, certain niche areas, or more holistic enti-
ties. The holistic view is challenging, as it includes interdisciplinary
needs for knowledge and skills. However, someone who handles both
perspectives, technical and business, and understands what kind of tech-
nical solutions can be used and how to start a business is required to
accelerate the development process. Overall, establishing a DT solu-
tion requires various management, supervisory, and administrative skills.
Some examples of identified development areas are commercial product
management and business development. An important example is the
requirement to know the supply chain and the ways data can be used
to improve the development of the offered product-service solutions.
Another need seen was the competence development of senior manage-
ment where the focus will be to lead a digital organization that is
integrated end-to-end, through the value chains and related product life-
cycles. Managerial competences should also include a strong knowledge
of the company’s operational activities.
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According to the interviewees, the internal competence demands
created by DTs may differ from the skill profile of existing staff,
which means that companies must recruit new specialists. However, the
recruiting process is often somewhat complicated because the compe-
tences needed depend vastly on the context and the intended use of
the DT solution and because DTs cannot be mastered through a single
subject or discipline one could study. The current state and maturity
of the DT solution must be understood as well because according to
the interviewees, competence needs are not stable and change over time:
a company starting DT implementation requires different competences
than a company that has been using DTs for a decade, meaning that
competence needs are bound to the company’s operational maturity and
its ecosystem’s maturity. Even so, the competence categories are interde-
pendent, i.e., successful implementation of DT requires management of
all areas, and thus, arranging competence areas in order of importance
does not serve the purpose.

7.4.2 Tangible and Intangible Resource Needs
and Ownership of DT Solutions

There are also other aspects to consider after recognizing the needed
competences. These matters include tangible and intangible resources,
e.g., human resources, required investments, technological assets, and
ownership of DT solutions. According to the interviewees, it is a well-
known problem that if a scheme does not have resources, it will progress
quite slowly, if at all—planned actions should always be resourced and
recognized at the management level. Too often, the DT development has
not been allocated with specifically assigned human resources; instead,
the development work is done alongside other tasks. This results in prior-
itization issues between different tasks, which results in other matters
easily bypassing the DT implementation. In general, it requires a person
who takes things forward: the development work depends on whether
the company understands and agrees that the intended plan has potential
worth investing in. After this agreement, the company is ready to allocate
resources so that the development is preserved. Resources include not
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only workforce and time but also technological aspects, such as systems
and software.

However, companies do not need competences or resources to build
and run DTs if the DTs are not granted with required investments.
Proving the actual value of the planned investment to the company’s
management can be challenging, and that is why it is necessary to explain
what benefits the intended DT solution can bring. Is it a mandatory
investment without which the company drops out of the business, or is
it an investment that produces additional value, such as better competi-
tiveness, lower costs, or more committed customers? The required and
resulting changes must be described in detail, as well as how these
changes correspond to company strategy.

Furthermore, competences, resources, or investments will not take the
DT implementation far unless related ownership and responsibility issues
have been clarified. The ownership of DTs was seen as a difficult question
among the research participants because ownership requires knowledge
of lifecycle management practices and technologies in ways that must
be implemented to support the enterprise’s products and services. In the
traditional, siloed company structures still used in most manufacturing
companies, there is not usually a natural position or owner for DTs—
the difficulty is that a DT’s domain spreads across the organization to
different areas and departments without a responsible party. Solving
this dilemma is critical because DTs will not live without an owner
promoting their design and development and upholding the solution
with a fresh mindset. According to the interviewees, there is no straight-
forward answer to the question of who owns or who should own the DT
solution; ownership depends on the intended use and chosen business
model. One possible answer to the ownership issue could be organiza-
tions establishing a concept owner role with an ‘end-to-end’ lifecycle
management responsibility. The role should also define the positions
needed in the industry context to achieve the goals from job descriptions,
process development, and digital technology.
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7.5 Discussion

The interview results are aligned with previously published research (e.g.,
Jerman et al. 2020; Onaji et al. 2022) in highlighting the need for DT-
related technological and soft competences and skills. The interviewees
also stressed the importance of managerial competences that require an
understanding of how DTs impact the enterprise architecture of the
company end-to-end, thus aligning with Gilli et al.’s (2023) statement
about the significance of human and management factors. Moreover, the
adoption of DTs requires new roles that own and are responsible for both
the integrated physical product-service system and its digital counter-
part. At the same time, as noticed earlier by Kokkonen et al. (2022) and
Meierhofer et al. (2020), the rapid development of DTs drives companies
toward collaborative business models, as they cannot provide all neces-
sary competences by themselves. This development further highlights the
importance of needed cognitive competences found in the research data,
such as adaptability according to case and context.
The results of this study showed that one of the main obstacles

to DT adoption is a siloed organizational structure. Hence, compa-
nies should take a step toward end-to-end thinking and focus on the
smooth operation of an organization with clear roles and responsibili-
ties. The implementation of DTs impacts company structures in multiple
ways: it requires changes in organizational and process structures that
result in both change management and employee retraining to achieve
the skillsets. At the same time, this adjusts existing role descriptions
and creates skill gaps within the organization’s structure. However, the
competences and skills needed in companies vary based on the case, and
this variation influences how related gaps can be filled—that is, either
through training existing employees or securing expertise from outside
the company. Moreover, as noted earlier by Kober et al. (2022), the
implementation of DTs in organizations requires the revision of existing
training programs to include the needs placed on the companies from
the implementation of DTs. All companies involved in this research saw
that certain competences to manage and coordinate the work are needed
internally, but more technical skills could be outsourced from a partner
ecosystem. Moreover, along with the development of I5.0, the change in
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the working environment should be the removal of repetitive tasks from
humans to AI and process automation. The goal should be for humans
to excel in creative and other areas where DTs and AI have limitations,
for example, the development of concepts and approval of new AI-based
solutions. Organizations will move tasks from humans to AI, and the
role and competences of humans should be developed with these goals
in mind; the competence needed to maintain and develop this type of
system requires technical and managerial competence in simulation, AI,
and data analytics as well as the competence to integrate these domains
into a working solution.

Competence needs are also dependent on goals that the company
is trying to achieve, that is, incremental improvement versus business
transformation. Focusing on incremental development and improvement
are issues of a mature company, i.e., a company with strong operating
models and significant investments in its organization and culture. This
is realized through equipment and know-how that can be either docu-
mented or tacit knowledge. The idea of a sudden change in ways of
working that DTs can create can be too much for the organization to
adopt—this research result strengthens the previous findings of, e.g.,
Kober et al. (2022) and Gilli et al. (2023), on the importance of change
management and employee acceptance when implementing changes to
the organization’s operations.
This research confirmed the previous notions of da Silva et al. (2022)

and Liboni et al. (2019), according to whom companies’ competence
profiles should correspond to the requirements of implemented digital
technologies. DTs, as noticed by, e.g., Liu et al. (2021), are by nature
cross-disciplinary and thus require knowledge of a broader scope and
the combination of these different fields horizontally rather than a deep
vertical understanding of a narrow area. Moreover, the issues are ampli-
fied through education programs, for example, universities, offering
education traditionally in specific, vertical areas, such as engineering,
manufacturing, computer science, or business, focusing on narrow exper-
tise even though the education and training offering of DTs should be
holistic over the company’s extended operating model and not siloed into
domains or schools. The amount of uncertainty is further increased by
the requirement to customize reskilling and training programs based on
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the needs of the company. The difficulty of DT is its natural end-to-end
footprint across the organization from different departments to expertise
domains, which brings the discussion to ownership and responsibility
issues.

As stated earlier by, e.g., Li et al. (2022a), planned digital solu-
tions must be aligned with company strategy, which requires efforts
from management and ownership. At present, companies do not have
managers or owners for a DT, which creates a problem in developing and
maintaining it. DTs require an owner within the organization: without
a responsible person or department, the DT falls victim to insufficient
resources. However, nominating an end-to-end owner for a DT is often
challenging, as it creates a new force in the organization with end-to-
end influence and decision-making power that causes conflict in the
existing organizational setup. The abovementioned structural issues are
closely linked to the organization’s leadership and management, how the
company is run, and what management methods are used.

7.6 Conclusions

This chapter investigated the competences and resources commonly
needed when adopting and utilizing DTs in the manufacturing industry.
The literature review and data obtained from interviews and workshops
answered the research question: “What competences are needed to
utilize digital twins in the manufacturing industry?” In unveiling the
competence demands, resource and collaboration perspectives were also
touched on, as these are prerequisites for successful DT utilization.

As a theoretical contribution, this study provided a competence
framework proposal related to digital technology adoption. The frame-
work contains four main categories: technological, cognitive, soft, and
managerial competences. The proposed framework combines previ-
ously published research into an applicable tool for analyzing digital
technology- and DT-related competences when planning or adopting
such technologies. This study fills a theoretical gap and increases existing
knowledge on required DT-related competences in the manufacturing
industry in all the abovementioned categories.
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The research also provided practical contributions to manufacturing
industry professionals. Managers can utilize the framework in esti-
mating their company’s situation and maturity level and in detecting
possible competence shortages that require attention from all four cate-
gories. Moreover, managers may recognize development targets from
managerial demands and realize the true potential of novel, pervasive,
end-to-end thinking, which can motivate them to rethink traditional,
inflexible, siloed organization structures hindering the development of
DT solutions.

In addition to the four-field competence framework, the competences
and skills that a company needs to benefit from the use of DTs can be
divided into two separate areas. The first area is understanding of the
business case, and holding the experience and skills to design and imple-
ment DTs at the required maturity level. This implementation capability
should continue to evolve and be maintained as business needs grow.
The second area is the organization’s ability to effectively use DTs in its
daily operations, as part of its operating model. To conclude, core compe-
tence and role in organizations is the cross-organizational DT concept
and/or business owner, whose role is to define and drive the transforma-
tion caused by DT in the enterprise at the level that brings the most
value with the correct level of investment and risk. The question is
where to find and acquire this kind of expertise, and, on the other hand,
if the company has the resources to hire such competent. One of the
key success criteria, according to Onaji et al. (2022), is an end-to-end
virtual product–process integration where data are captured continu-
ously throughout the lifecycle. This end-to-end thinking is a significant
leap forward for many organizations, one that places new demands on
leadership and upper management.

However, the identification of competences and resources does not
support the development of DT solutions very far without a radical
change in ways of thinking. The senior management level of an orga-
nization must understand the benefits and risks related to a DT-centric
operating model, in which case it can be granted sufficient competences
and resources, and the development work and adoption of the solu-
tion become easier. DTs must be driven by a business strategy where
goals are identified and short-term business benefits are defined because
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a clear vision helps organizations commit to DT development. Moreover,
implementing a DT solution should not be done recklessly—resources
and abilities for building these solutions must be in order: a DT solu-
tion cannot be implemented despite excellent competences if there is no
system on which the solution is built. On the other hand, the system
cannot be built without skilled competences either.
This study revealed that the competence and resource needs related to

DTs and other digital technologies are relevant and topical for further
research as well. This observation is supported by the novelty and rapid
increase of the literature published on the topic. The significance and
potential of these matters have been realized in academic discussions and
manufacturing industries. After the competence and resource aspects,
the next natural subject to study would be digital sustainability: digital
transformation and the emerging I5.0 enhance sustainability in many
ways, but sustainability in the implementation of DT solutions remains a
rather unresearched area. Questions related to this research angle involve,
for example, how to take care of sustainability issues from the begin-
ning, in the implementation, and during the use of a DT solution;
how companies can best develop their digital sustainability competences;
and what kinds of ecosystems should be established for organizations to
implement new, innovative DT solutions so that they can focus on the
solutions’ use and management and safely outsource those steps and tasks
that fall outside their core business.
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8
Navigating the Innovation Process:

Challenges Faced by Deep-Tech Startups

Johan Kask and Gabriel Linton

8.1 Introduction

Innovation is essential for industry and businesses, acting as the engine
of societal advancement and harnessing rapid technological advances.
Nonetheless, the journey of transforming a mere invention or idea into
a market-ready innovation is laden with uncertainties and risks. As a
result, many inventions fail to survive the commercialization stage. While
innovation may vary in complexity, the process remains fraught with
difficulty and high failure rates, especially when it involves complex and
research-intensive technologies, also known as ‘deep tech.’ This research
strives to bridge the gap in the literature by taking a systems perspec-
tive to understand the barriers facing deep-tech startups. This introduces
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the scholarly field of innovation systems, which emphasizes the systemic
nature and interdependencies involved in innovation processes (Edquist
1997; Chaminade and Edquist 2006; Rakas and Hain 2019). Arti-
ficial Intelligence, Robotics, Security, Radar, Sensors, the Internet of
Things, and Energy, and Biotechnology exemplify deep-tech solutions
with the potential to address global issues and revolutionize their sectors,
underscoring their importance for societal development.

However, as the global pursuit of technological advancements
continues, a fine grained understanding of the deep-tech innova-
tion process has often been overlooked. Despite their transformative
potential, deep-tech companies often encounter heightened challenges
compared to ‘shallow-tech’ counterparts due to the research-intense
nature of their technology, necessitating more knowledge, time, and
resources for market introduction. This difference is partly due to deep-
tech startups’ nature of being more capital intensive, with associated
significant risks concerning technology functionality, market existence,
and funding for the entire innovation journey. Additionally, a more
complicated technology can be harder to understand, requiring higher
expertise levels from financiers, which, along with capital intensity and
associated risks, makes these companies less attractive to investors than
shallow-tech companies, where a new mobile app or service can be devel-
oped in just a few months, presenting quicker returns. The critical period
from invention to commercialization is known as the ‘Valley of Death’
(Auerswald and Branscomb 2003), as the costs of development exceed
the revenue, making it difficult to secure funding and resources. By
engaging with literature on innovation systems and entrepreneurship,
this chapter illustrates how these systemic challenges affect the survival
of deep-tech startups. Deep tech’s longer and more expensive commer-
cialization process makes this valley particularly perilous, with greater
chances of failure (Auerswald and Branscomb 2003). This makes it more
likely that valuable deep-tech companies will not be able to secure the
funding needed, resulting in bankruptcy and that other than the source
country later capitalizing on the original investments.
To illustrate, the Swedish innovation system is today designed mainly

for shallow tech such as mobile apps, meaning that there is a lack of
specific support for deep-tech companies, making the Valley of Death
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especially taxing for them. Here, models and theories on national
and regional innovation systems can provide insights into the specific
challenges faced by countries in fostering environments conducive to
deep-tech innovations (Nelson 1993; Lundvall and Rikap 2022). The
problem is amplified when a product is developed but the commercializa-
tion process is incomplete, coupled with the growing difficulty in finding
new financing sources. When a physical product is to be manufactured,
an industrialization process (i.e., to be able to produce standardized)
needs to be developed, which is more difficult the more complex the
product is. At the same time, startups have already made full use of
many different financing options and it is becoming more difficult to
find new sources of funding. The difficulty grows when the industrial-
ization process involves closely knit hardware and software. Moreover,
current innovation systems rarely offer robust support to startups during
the industrialization processes, with most of these processes taking place
in large companies with greater and different resources.
This chapter aims to investigate the challenges faced by deep-tech

startups in the innovation process, particularly concerning the commer-
cialization of their potentially disruptive and revolutionary inventions.
To this end, the chapter sheds light on the complexities of the Valley of
Death for deep-tech startups, referencing the Swedish context, and exam-
ining the industrialization process for startups. This chapter’s contribu-
tion lies in exploring the unique challenges that deep-tech companies,
particularly startups, face during the innovation process. By exploring
the distinctions between deep tech and shallow tech and investigating
the reasons for disparities in support and success, this chapter provides
insight for investors, policymakers, and scholars. The insights presented
here can contribute to a broader understanding of the innovation system’s
current landscape and can guide strategies to support deep-tech startups.

Following this introduction, the next section provides a theoretical
background, drawing upon existing literature to frame the unique chal-
lenges faced by deep-tech startups. Subsequent sections use a Swedish
case, discussing the financing and support mechanisms for deep-tech
startups, and practical considerations in navigating the Valley of Death.
The chapter concludes with a synthesis of the insights gained, offering
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recommendations and outlining avenues for future research and policy
intervention.

8.2 Theoretical Background

This theoretical background establishes a foundation for understanding
the challenges faced by new companies, especially deep-tech startups.
Research on the Valley of Death describes the phenomenon as the space
between research and product development or as the space between
opportunity discovery (invention) and the process of product devel-
opment (innovation) (Markham et al. 2010). Sandberg and Aarikka-
Stenroos (2014) reviewed the literature and found that a lack of
competencies and unsupportive structures contribute to the Valley of
Death. We, therefore, focus on startups’ human capital and the inno-
vation systems designed to navigate startups across the Valley of Death
(Fig. 8.1).
In this research, we combine auxiliary theories from both micro-level

dynamics, on human capital—which posits that the skills, knowledge,
and experience of individuals are entral to organizational success (Becker

Fig. 8.1 Illustration of the Valley of Death (design based on Markham et al.
2010)
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1964)—and supportive structures, i.e., innovation systems, that influ-
ence the trajectory of startups. Thus, in this chapter, we draw upon
a systemic approach that combines perspectives rooted in both Becker
(1964) and Lundvall (1992), aligning individual and in-house capabil-
ities (e.g., human capital) with external support systems to provide a
systemic, holistic view of the deep-tech startup landscape. On the one
hand, the human capital strand of research can help us better under-
stand how these elements are intertwined with the success of deep-tech
startups. On the other hand, the systemic view of innovation systems
helps us understand how external factors and support systems also play
an important role in facilitating the innovation process. This dual focus
allows us to explore how the internal and the external interact to either
facilitate or hinder the commercial success of deep-tech startups. By
combining these perspectives, we can also better understand this two-
sided interplay in overcoming the barriers typically encountered in the
Valley of Death (Auerswald and Branscomb 2003).

First, about the internal lack of competencies. Recent studies in
entrepreneurship have increasingly highlighted the important role of
human capital in startup success. It emphasizes the critical role of various
knowledge domains, the importance of prior startup experience, the role
of team dynamics, and the necessity of connecting with or acquiring
missing competencies. The human capital of the founder/entrepreneur,
as characterized by education, ability, knowledge, skill, and experience,
has been fundamentally linked with a startup’s likelihood of success in
the market. Research consistently shows that individuals with higher
levels of human capital are more likely to establish successful businesses,
and more adept at attracting essential capital—a vital component for
startup growth (Colombo and Grilli 2010; Ko and McKelvie 2018). For
deep-tech startups, given the complexity of technology, the importance
of human capital extends beyond mere knowledge to include adapt-
ability. In the domain of deep tech, these human capital challenges are
amplified by the nature of the technologies involved. Whereas shallow-
tech startups might pivot quickly in the face of an obstacle, deep-tech
startups often must navigate complex technical terrains.

Successful startups often require various types of knowledge:
industry-specific insights; technical knowledge related to the product,
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marketing acumen; and knowledge of leading companies; and/or prior
entrepreneurial experiences (Lim and Busenitz 2020). Those founders
and entrepreneurs with higher levels of education, more work experience,
particularly in the same sector, and more entrepreneurial human capital
are equipped with better capacity for entrepreneurial assessment. This
enriched knowledge base allows them to seize business opportunities and
make effective strategic decisions essential for a new company’s success
(Colombo and Grilli 2010). These findings resonate with the theory
of knowledge spillover, where the transfer and application of specific
knowledge within an industry or sector result in innovation and growth
(Audretsch and Keilbach 2007). However, Lim and Busenitz (2020) have
illustrated that previous experience in management from large corpo-
rations might be less important for startups than previously assumed.
Instead, their research points to the relevance of having previous startup
experience in the entrepreneurial process. This is particularly important
for companies that need to undergo industrialization. This observa-
tion aligns with Shane’s (2000) notion of ‘prior knowledge,’ where
specific experiences are viewed as critical to recognizing and exploiting
entrepreneurial opportunities.

Moreover, and related, it’s challenging for individuals to have compre-
hensive knowledge and experiences required. For deep-tech startups,
where innovation is at the forefront, the urgency to supplement missing
competencies is even more pronounced. This leads to an essential
task for startup founders to find ways to supplement their existing
competencies through various means. Previous studies have explored the
role of mentoring and networks in enhancing the human capital of
entrepreneurs (Wright et al. 2007), and the research has underscored the
importance of team dynamics within the entrepreneurial process (Klotz
et al. 2014), thereby contributing to success: The implication is that the
more complicated the entrepreneurial process, as is the case with deep-
tech startups, the greater the need for a comprehensive and diverse skill
set within the company, or accessible from other actors surrounding it.
This echoes the insights from team heterogeneity literature, suggesting
that diverse teams may bring a richer variety of perspectives, thereby
enhancing creativity and problem-solving (Hoogendoorn et al. 2013).
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Next, we turn to the external barrier of unsupportive systems (Sand-
berg and Aarikka-Stenroos 2014). While startups inherently rely on
human capital, they also depend on supportive external innovation
systems and robust financial structures. The innovation systems frame-
work, often rooted in the early works of Lundvall (1992), underscores
the importance of networks, institutions, and policies in fostering an
environment conducive to innovation. In particular, challenges related
to financing have been well-documented in the innovation literature.
The scarcity of private capital, especially in the face of long and costly
commercialization processes, can pose major barriers to startups seeking
funding (Winborg and Landström 2001). This is further compounded
by the time required to realize a return on investment, which can
diminish the appeal to investors.

In addition to emphasizing the importance of an efficient finance
structure, the literature also highlights the importance of efficient and
supportive innovation systems (Ferrary and Granovetter 2009). The eval-
uation of research and development activities can be challenging and
frequently holds little practical value until a product is finished, creating
obstacles for companies involved in protracted and expensive develop-
ment (Hall et al. 2016). The theoretical concept of ‘information asym-
metry’ further complicates financing scenarios; it occurs when companies
have more insight into their investment returns than external investors,
leading to higher costs or even inaccessibility of external financing,
particularly when the assets possess low-security value (Carpenter and
Petersen 2002).
These understandings provide essential insights for entrepreneurs and

investors and set the stage for future research to explore methods by
which startups can effectively bridge their competence gaps, and for
policymakers how to organize efficient innovation systems. It can also
help innovation systems and educational institutions set up curricula and
support the specific needs of startups in fostering entrepreneurship. With
this theoretical backdrop, we will further examine how these concepts
play out specifically in the Swedish innovation system, shedding light on
the unique challenges and opportunities in this context. These insights
pave the way for a deeper understanding of deep-tech startups, high-
lighting the synergy between human capital, financial challenges, and
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the overarching innovation system. As we dig deeper into the Swedish
context in the following sections, these foundational concepts will be
used as a perspective.

8.3 Methods

The methodology adopted for this study is based on a case study
approach, which is suitable for exploring the dynamics within the deep-
tech startup and about the wider startup landscape to generate insights
about the challenges of crossing the Valley of Death. The chosen method
allows for an in-depth examination of individual cases within their real-
life contexts, enhancing the robustness and relevance of the empirical
findings (Eisenhardt 1989). However, by employing a comparative study
across multiple cases (Eisenhardt and Graebner 2007), the research goes
also beyond individual cases, facilitating a broader understanding of
patterns and trends across deep-tech support systems, and thus allowing
for theoretical generalizations. In this study, two main cases and a total
of 17 Swedish robotics startups were covered.

As the study is designed to be explorative, the approach allows for an
iterative process between theory and empirical data (Dubois and Gadde
2002). Thus, it is well-suited to the dynamic nature of startups and
innovation systems, where pre-defined hypotheses may not fully capture
the internal or contextual challenges of deep-tech startups. The explo-
rative nature of the study also aligns with the systemic view discussed in
the theoretical background, facilitating a comprehensive exploration of
various factors affecting these startups.

Data collection involved a mix of qualitative techniques, primarily
semi-structured interviews, and document analysis. The interviews were
conducted with founders and key personnel from selected deep-tech
startups, while relevant documents, such as annual reports and invest-
ment pitches, were reviewed to complement and corroborate interview
data. That way, we got a rather thick case for each of the main startup
cases. Silverman’s (2021) recommendations on qualitative research were
followed to ensure that the data analysis followed a systemic coding
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scheme and data collection methods were sensitive to contextual nuances
(see also (Seale and Silverman 1997).

8.4 The Swedish Case

Sweden, known for its innovative environment and robust startup
support system, provides a rich context to investigate the dynamics of
deep-tech startups. Two of its growing robotics startups, Alpha Robotics
and Beta Robotics, exemplify the challenges and opportunities in this
space. These two Swedish startups exhibit typical traits of small startups
and require long and capital-intensive development before a market can
be reached. The entrepreneurs operate their companies on their own.
Alpha Robotics is working on a robot that will assist people in living
independently, with a primary focus on healthcare. Beta Robotics creates
a multifunctional service robot that can be outfitted for specific tasks.

Both organizationally and business-wise, these two companies differ.
Alpha Robotics has a product that the market is ready to buy if it can
be sold at a suitable price. Therefore, a cost-effective manufacturing
process is needed. Beta Robotics has less interest from the market but
will be able to have a higher margin on the product. Regarding the orga-
nizations’ proactivity, risk-taking, and innovativeness, Alpha Robotics
can be described as very high, while Beta Robotics is more medium to
medium–high. Acting entrepreneurially can be beneficial, but an excess
of entrepreneurial propensity can become ineffective (Andersén 2010;
Linton 2016). Beta Robotics has surrounded itself with advisors and
a board of directors more comprehensively than Alpha Robotics. The
market for Beta Robotics is niche and specific, whereas Alpha Robotics
has a product that is standardized and could have a very large market if
the price is right. Alpha Robotics has difficulty charging high margins
on the product, but to bring down the price, the product needs to be
further industrialized to reduce manufacturing costs. In contrast, for
Beta Robotics, the price is not as decisive to the customer, and there
is a greater margin. However, it has been more difficult to reach out to
the market and to get people to take the step and buy the product. The
cases of Alpha and Beta Robotics show the critical importance of human
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capital, as discussed earlier. Alpha Robotics, for instance, exemplifies the
challenges faced by startups when the product needs further industri-
alization to reach a competitive price point, highlighting the practical
implications of financing and innovation systems.

Alpha and Beta Robotics offer detailed insights into individual startup
journeys. Yet, to gain a broader understanding of the entire robotics
startup community, it was essential to cast a wider net. We, therefore,
ventured beyond these two companies to explore the overarching land-
scape of robotics startups. This expanded exploration allows us to explore
on a deeper level how the theoretical concepts discussed play out on
a larger scale within a Swedish innovation system. To achieve this, a
broader study was conducted focusing on startups linked to Robotdalen,
a regional innovation system for robotics. A total of 23 startups were
identified as interesting cases, and interviews were conducted with 17 of
these startups. Presented below is a table listing the 17 companies with
their latest reported annual turnover and the number of employees:
Table 8.1 offers a comprehensive overview of the financial perfor-

mances of the 17 startups in focus. Notably, 9 out of the startups have
achieved sales of over SEK 2 million in the last annual sales, and total
turnover exceeded SEK 75 million, with 47 jobs created. The review
of the annual reports reveals an encouraging trend: there is growth in
almost every startup with sales above SEK 2 million mark. It is, therefore,
reasonable to assume that turnover will increase in the coming years. This
positive financial growth trend, especially in deep-tech startups, reaffirms
the earlier discussed significance of supportive innovation systems and
the role of efficient financial structures in ensuring startup success.

Our interviews uncover a wide variety of financing for these compa-
nies. A pre-dominant trend, however, is the extensive reliance on govern-
ment grants. Institutions such as Almi, Vinnova and the Swedish Agency
for Economic and Regional Growth emerge as major funders through
their various grants. Besides institutional support, it is also clear that
many entrepreneurs have made personal financial commitments, either
by directly investing in their ventures or by securing private loans for this
purpose. While venture capital and business angels represent a desired
financing avenue, only 8 of the 17 startups have successfully secured such
financing, illustrating the competitive nature of this type of funding. The
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Table 8.1 Comparative analysis of selected Swedish deep-tech startups

Business

Sales (in
thousand
SEK)

Number of
employees

Type of
development

Venture
capital

A 24,000 13 Product–Robot Yes
B 13,000 4 Product–AI No
C 12,000 6 Product–Robot No
D 9000 11 Product–Sensors Yes
E 7000 4 Product–Robot Yes
F 4000 0 Product–Robot Yes
G 3000 1 Application for

Robot
No

H 2000 5 Service–AI Yes
I 2000 0 Product–Robot No
J 200 1 Product–Sensors No
K 200 1 Product–Robot Yes
L 100 1 Product–Robot Yes
M 0 0 Product–Robot No
N 0 0 Product–Robot No
O M&A N/A Product–Robot No
P M&A N/A Application for

Robot
No

Q M&A N/A Product–Robot Yes

heavy reliance on government grants and especially personal financial
commitments is indicative of the challenges faced by startups crossing
the Valley of Death. It also underscores the importance of robust innova-
tion systems, as highlighted in the theoretical background, where external
support can significantly impact a startup’s journey.

8.5 Findings

The findings of this study provide insights into the challenges and oppor-
tunities faced by deep-tech startups, primarily focusing on financing and
product complexity, human capital, and the role of innovation systems.

Firstly, the critical aspect of financing was a prevalent theme
throughout the study, revealing the layers of complexities involved in
funding deep-tech startups. Entrepreneurs with prior experience in the
startup process, especially in funding, tended not to view funding as a
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major hurdle, though they acknowledged its inherent complexities. The
complex nature of financing extends beyond this, with many different
types of financing available to companies. This complexity is exac-
erbated by the fact that long-term financing plans rarely hold and
need constant revision, thus requiring more capital than initially antic-
ipated. The Swedish case reveals a clear pattern: simpler products with
straightforward industrialization processes typically have a shorter path
to market. This is often related to the number of components and
the inherent complexity of the product. For example, companies inter-
viewed that developed applications using existing robots faced fewer
complexities than those developing a robot from scratch. More complex
innovations involve numerous different components and both software
and hardware built from scratch increase the difficulties. Such hurdles
show the challenge of the Valley of Death for deep-tech startups, where
initial development stages recieve support, but the gap between product
development and commercial viability poses substantial financial strain.
The complexities in financing are not limited to the product’s nature

but also extend to the overall financial planning. As the development
process progressed, it was conveyed that it became more and more diffi-
cult to secure funding. In the beginning stages, it is relatively easy to
get started and get grants that do not need repayment, and then expand
with, for example, loans. However, as the process unfolds, it becomes
increasingly more challenging to find further financing options. Conse-
quently, many entrepreneurs invest their private funds or secure private
loans for funding. They often sell equity in their companies, predom-
inantly at advanced stages. But the longer the process takes, the less
ownership is reasonable or possible to allocate. This underlines that the
complexity of financing increases with the number of different stages,
particularly as more complicated products demand greater capital over
extended periods. Additionally, the fragmented approach to product
development, where the process is divided into smaller stages, may lead
to components not fitting together, underscoring the need for a more
integrative view of the entire development process.

Next, the study explored the role of human capital and how deep-tech
startups could access it and get assistance. Startups exhibited a wide vari-
ance in their human capital. While many founders possessed customer
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or user perspectives that are beneficial for understanding the needs in
a good way, industry-specific knowledge and entrepreneurial experience
were often lacking. The study indicates a trend where those with industry
knowledge and previous experience performed somewhat better. While
the data from the Swedish case does not conclusively affirm this, a
notable trend emerges. Hence, our findings indicate, as assumed, that
founders with higher human capital are more likely to establish successful
companies, and we show that there is a strong correlation between the
human capital of the founders and a startup’s chance of success in the
market.

Finally, a third important finding explores the role of innovation
systems in supporting deep-tech companies. The lack of a focused
strategy or program on the part of the innovation system to aid these
companies was identified as a major concern. The study found that
key components, such as an effective funding system and access to
human capital, were not adequately developed in the innovation systems
that supported the interviewed deep-tech startups. Private capital is
hard to secure for prolonged and expensive commercialization processes,
and challenges such as information asymmetry make external financing
costly or even unattainable. This highlights the importance of accessing
the right human capital, and it seems that close collaboration with
innovation environments can help reduce information asymmetry and
supplement the lack of human capital and specialized competencies in
startups. Hence, we can conclude that it is critical to invest in innovation
environments—where the innovation system may be a key actor—to
better support deep-tech startups and the industrialization process. These
environments should have a breadth and depth of knowledge in their
networks, as well as contributions to research, publicity, and companies.
This would allow them to identify any gaps in human capital and try
to fill them. In addition, close cooperation with the startup company
would help to reduce information asymmetry when compared to more
traditional financial institutions. Given the prevalent lack of experience
working with startups, innovation systems, and broader environments
must aid in identifying suitable industrialization partners. Such collab-
oration can lead to a more solid foundation for these startups and
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emphasize the critical importance of specialized innovation systems in
fostering growth.

As indicated earlier in the chapter, the interplay between financing,
product complexity, human capital, and innovation systems presents
a specific and difficult challenge for deep-tech startups. The Swedish
cases’ findings offer an outline for understanding these complexities and
forging a path forward. Tailored support frameworks that align financial,
human, and technological resources, grounded in strategic foresight, can
reinforce the unique potential of deep-tech companies. The important
question remains: How should we design this innovation system?

8.6 Discussion

This discussion underscores the need for a robust innovation system
tailored for deep-tech startups, addressing their distinct challenges and
leveraging their unique opportunities. Drawing on the study’s find-
ings, several key suggestions emerge for improving and designing future
innovation systems to best support deep-tech startups.

Specialized innovation environments, tailored for deep tech, are essen-
tial. It is argued that traditional means of financial judgment often
fall short when dealing with deep tech, due to inherent uncertainties
and long developmental timelines. As such, a more nuanced approach
is necessary, making capital more accessible through tailored financing
models that understand the complexities of deep tech. This entails
supporting funds through long development stages, not just earmarking
finances for ‘safe’ shallow-tech projects. Support in the early stages
through grants, investments, and seed capital is vital, and the separation
of funding systems for entrepreneurial and non-entrepreneurial busi-
nesses helps target resources effectively. This study indicates that there
are capital market imperfections, in line with Carpenter and Petersen
(2002), and that deep-tech environment needs are context-specific.

Additionally, addressing information asymmetry in the financing
journey is also underlined. Deep-tech startups often suffer from inac-
cessible private venture capital due to the complex nature of their
offerings. Building on Shane’s (2000) idea of prior knowledge, this can
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be addressed by the specialization of innovation systems in the domain
of the deep tech in question. Such systems can articulate the startup’s
potential to investors, enhancing financing ability.
Thirdly, the mobilization of necessary human capital is pinpointed as

crucial. Deep-tech startups need a well-rounded team, encompassing not
just technical skills but also commercial and legal expertise. Intellectual
capital, especially relational capital, is important for securing financing
for startups (Nigam et al. 2021), and our study indicates that this is even
more important for deep-tech startups. Investment in education and
training to develop a skilled workforce is key to meeting the demands of
the deep-tech sector. This calls for an innovation system connecting star-
tups with seasoned professionals who can guide growth stages. Previous
research has highlighted how the human capital of founders, such as
education and industry experience, is an important aspect of favorable
outcomes for startups (Kato et al. 2015). Our research extends this
by suggesting how human capital can be developed through targeted
training and education in the innovation system. Connections to a
broader network, providing continual resources and expertise, become
important to success. This reinforces the need for a support system that
is dynamic and can develop human capital for deep-tech startups.

Another aspect revolves around network building. Deep-tech star-
tups must access a comprehensive network providing knowledge and
resources. This necessitates building collaborative networks that bridge
startups with other entities, reducing information asymmetry and facili-
tating information flow. Emphasis is placed on focusing more on techno-
logical specialization rather than regional limitations. A well-orchestrated
network aids in rapid feedback, broad resource access, and essential
connections. Through a system of innovation perspective (Edquist 1997)
our research extends Lundvall and Rikap (2022) research on national and
corporate innovation systems. Our results indicate that strategic focus on
specialized networks is needed for deep-tech startups, whereas Lundvall
and Rikap (2022) highlight the national and corporate level networks.
Finally, the advancement of an entrepreneurial mindset within the

innovation system is seen as critical. The dynamic nature of deep tech
necessitates a bold, forward-thinking approach—one that focuses on
potential and is unafraid of possible failures. This mindset unlocks the
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full potential of deep-tech startups, focusing on broader possibilities of
market disruption and radical innovation. Previous research has high-
lighted the need for an entrepreneurial mindset of technology leaders
and scientists (Iafelice et al. 2022). Our research suggests this a bit differ-
ently, it is perhaps not the scientists that need to be more entrepreneurial,
rather it is the whole innovation system, not only leaders, but every
member of the innovation system.
These five insights are instrumental in guiding stakeholders and poli-

cymakers in crafting frameworks that recognize the unique attributes
of deep-tech companies. Close collaboration between innovation envi-
ronments and startups is necessary to facilitate information flow and
reduce asymmetry, as is integration with larger industrialization partners,
and effective utilization of government grants and policies. Investing
in education and training to foster a skilled workforce is also key to
meeting the demands of the rapidly growing deep-tech sector. The
varied challenges faced by deep-tech startups highlight the critical role of
specialized innovation systems in fostering a thriving innovation system.
The concerted effort that aligns financial, human, and technological
resources, anchored by a clear vision and long-term strategic planning,
becomes the path forward (Fig. 8.2).

Fig. 8.2 Illustration of the Valley of Death (design based on Markham et al.
2010)
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The findings align with our previous work (Kask and Linton 2023),
demonstrating principles that serve as critical pillars to the endeavor of
nurturing deep-tech startups. It underlines the argument that the tailored
support system is not merely preferable but necessary for the rapidly
growing deep-tech sector. Future research might also research-specific
mechanisms to implement these suggested principles in various regional
and technological contexts.

8.7 Conclusion and Implications

In conclusion, deep-tech startups can cross the valley and thrive under a
varied approach, diverging from conventional methods. By applying the
insights from this research, the success path of deep-tech startups can
be paved. This involves understanding deep tech’s complexities, reducing
financial information asymmetry, mobilizing the right human capital,
developing specialized networks, and developing an entrepreneurial
mindset in sync with deep tech’s ambition. Together, these principles
forge a pathway that promotes the growth of individual deep-tech star-
tups and enhances the broader technological landscape, offering novel
solutions that have the power to revolutionize industries and enrich
society.
This research contributes to the research stream on the Valley of

Death by analyzing challenges that deep-tech startups face during early
phases. We illustrate how different approaches to the innovation process
influence the startups’ ability to secure financing, as also highlighted in
previous research on Valley of Death (Wessner 2005). The research draws
on Romme et al. (2023) and Barr et al. (2009) to propose educational
frameworks suitable for deep-tech innovation. Our research also relates
to Ellwood et al. (2022) study, who detail the stages of crossing the
Valley of Death through specific innovation processes, our research offers
a more systemic approach by combining an analysis of human capital and
support from the innovation system.

Investors, particularly venture capitalists, need to recalibrate their
evaluation metrics to prioritize long-term value creation and techno-
logical breakthrough potential (Carpenter and Petersen 2002). Moving
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beyond mere calculable returns, they should also consider the trans-
formative potential of deep-tech startups. This implies shifting from
traditional investment evaluation metrics to those that also capture
the long-term disruptive potential and the inherent value of techno-
logical advancements. Policy-makers play an essential role in shaping
the innovation landscape and are challenged to create policies that
adopt specialized funding, network building, and expertise mobilization
(Audretsch and Keilbach 2007). This approach highlights the need to
focus on technological domains rather than geographical regions, thereby
leveraging sector-specific networks to optimize resource use (Chaminade
and Edquist 2006), redefining how innovation systems are frequently
organized today.

Building on this, the principles shed light on new perspectives,
notably in redefining innovation financing, emphasizing the nuanced
mobilization of human capital, and introducing a novel perspective on
building technologically specialized networks. This approach necessitates
a move beyond ‘safe’ investment paradigms and emphasizes a cohesive
blend of various proficiencies, extending human capital theory within
complex technology domains. Reorienting networks around technolog-
ically specialized, as opposed to regionally confined, provides a fresh
understanding of deep-tech innovation. An entrepreneurial approach
within innovation systems also reflects a new take on organizational
culture, stressing that the system must emulate the dynamism and
disruptive potential akin to the startups it supports (Iafelice et al. 2022).
These insights mark a large step toward understanding and fostering

deep-tech innovation, with potentially far-reaching effects across indus-
tries, economies, and societies. They offer both practical and theo-
retical insights, enriching the fields of innovation financing, human
capital, network theory, and entrepreneurial culture. The complexity of
deep-tech innovation requires an adaptable and sophisticated approach,
challenging traditional paradigms and inspiring new methodologies.
This leads us to a thought: Are our current innovation systems, (too)
often bound by geographical borders and conventional risk assessment,
fundamentally misaligned with the visionary and disruptive nature of
deep-tech innovation? While the answer remains a subject of debate,
this research pushes the boundary, suggesting that traditional systems
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may not be fully equipped for the unique demands of deep-tech inno-
vation. The insights gained from this research present a challenge to
traditional theories of innovation management, particularly those that
emphasize risk minimization and localized network building. The princi-
ples laid out here require a rethinking, shifting the focus from risk-averse
investment strategies to ones that embrace the unknown and uncertain
potentials. This shift undermines the traditional economic principles of
calculable return on investment that still dominate existing financing
models. The emphasis on aligning networks based on technological
specialization, instead of geography, challenges traditional perspectives
found in economic geography and innovation clusters. The call to go
beyond local or even national borders, organizing innovation systems
by technological fields, represents a departure from regional innovation
systems theory.

Future research could consider case studies that compare and contrast
traditional innovation systems with those reoriented around deep-tech
principles. Comparative analyses can show the tangible benefits of the
latter. Qualitative interviews with managers, policymakers, and especially
investors established in the deep-tech space can offer further insight into
practical challenges and strategies to navigate them.

Finally, promoting an entrepreneurial mindset within innovation
systems prompts a reevaluation of traditional management practices,
which often favor short-term gains over long-term disruptive potential.
This perspective challenges prevailing organizational behavior theories,
suggesting a need for frameworks that integrate entrepreneurial thinking
into innovation system design. These advancements open new avenues
for exploration and debate, inviting researchers to engage with these
concepts and question established paradigms. Thus, future research could
expand our understanding of innovation in the deep-tech sector and offer
a novel perspective on theories and practices that guide our approach to
technological advancement. This reorientation toward a potential-driven
model suggests a promising shift in innovation support practice. As we
venture into an era dominated by deep tech, it becomes urgent to realign
our strategies, theories, and practices, ensuring they resonate with the
dynamism and promise this sector holds.
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9
AI Adoption Challenges in Family-Owned

Firms: A Case Study

Maija Worek and Päivi Aaltonen

9.1 Introduction

Digital transformation is currently reshaping organizations, individuals,
ecosystems, and societies simultaneously on many levels (Dąbrowska
et al. 2022a), forcing firms to adopt and apply new technologies (George
et al. 2020) such as AI, which currently shutters many traditional
industries dominated by long-lived family firms (Kammerlander and
Ganter 2015). AI indeed provides a remarkable opportunity for family
firms’ growth (Lannon et al. 2023; Liu et al. 2020) but it is not
yet widely applied: less than 5% of German family firms apply AI
in their daily business (Soluk and Kammerlander 2023). Traditionally,
technology adoption has been examined through models such as TOE
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(technology, organization, and environment) (Tornatzky 1990; Arpaci
et al. 2012) and TAM (technology acceptance model) (Davis 1989).
However, evidence suggests that these theories do not apply to AI due
to its complexity, and its lack of individual aspects such as talent, trust,
and human collaboration (Frankiewicz and Chamorro-Premuzic 2020;
Glikson and Wooley, 2020). Family firms, which are the most ubiqui-
tous company form in the world (Villalonga and Amit 2020), have even
more factors in play and are significantly slow to adopt new technologies
(Chrisman et al. 2015; McElheran et al. 2024; Ulrich et al. 2023). Thus,
empirical evidence on family firms’ AI adoption would highlight the
challenges faced by multiple traditional industry firms. Technology adop-
tion has been discussed from various operational perspectives such as
individual, organizational, technological, and environmental (Alsheibani
et al. 2018), and by classifying findings on different levels of anal-
ysis (Bagozzi et al. 2022; Bertani et al. 2021; Dąbrowska et al. 2022b;
Michael et al. 2019). To grasp the nuances of the social context and indi-
vidual perspectives, informal routines, and organizational legacy (Geels
2002), family firms offer a fruitful base for subsequent theorizing AI
adoption. While there is a long tradition of AI research in fields like
operations management and information systems (Lee 2020), other
management fields have only recently taken an interest in its organi-
zational impacts (Michael et al. 2019; Iansiti and Lakhani 2020). This
research ranges from organizational challenges and opportunities to AI’s
impact on functions such as marketing, human resources, and manage-
ment and decision-making (Davenport and Ronanki 2018; Andreas and
Michael 2019; Tambe et al. 2019). AI technologies introduce several
novel challenges—but also potential for an emergent competitive edge.
Potential benefits include positive economic value, the emergence of new
organizational roles and functions, promotion of interactivity, increased
comprehension, and instantaneous feedback (Kellogg et al. 2020), and
organizations can maximize these benefits by balancing between AI
augmentation and automation (Raisch and Krakowski 2021).
A growing body of literature examines new technology adoption and

digitalization in family firms. These contributions assess when and how
family firms adopt new technologies (Soluk and Kammerlander 2023
2021; König et al. 2013; Dressler and Paunovic 2021; Soluk 2022;
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Souder et al. 2017), human and cultural resources (Ano and Bent 2022),
socioemotional wealth aspects (Basly and Hammouda 2020), manage-
rial attention as a precursor (Kammerlander and Ganter 2015), changes
in work environment (Dressler and Paunovic 2021) and related topics
such as business model innovation (BMI) (Brenk et al. 2019) as well
as external triggers, such as crises, that push the companies toward
digital adoption (Kraus et al. 2020; Soluk 2022; Soluk and Kammer-
lander 2021) and also the possible barriers for such implementation
processes (Soluk and Kammerlander 2021 2023). The idiosyncratic
nature that also impacts their technology adoption can take many forms.
For example, due to the concentrated ownership structures, family firms
pursue efficient decision-making processes. This can be a source of
competitive advantage but also a barrier if the family is hesitant toward
digital transformation (Soluk and Kammerlander 2023). What is more,
the family influence and the non-financial goals (Kotlar et al. 2022)
strongly impact the company’s strategic preferences (Chrisman et al.
2015). Further features include family firms’ risk aversion toward new
technologies (König et al. 2013), which might further shape family firms’
adoption of disruptive technologies.

Building on theoretical arguments, it is proposed that the influence of
family in the business and the managerial aspect leads to specific chal-
lenges due to their idiosyncratic nature discussed above (König et al.
2013). There are only a few contributions examining the specific barriers
that family firms experience, concentrating generally on digital transfor-
mation (Soluk and Kammerlander 2021), yet not the next evolution of
AI technologies (Xu et al. 2021). Considering the potential opportuni-
ties AI can offer for family firms’ growth (Liu et al. 2020) we posit that
there is a need for further research on AI adoption in family firms (as also
called by (Lannon et al. 2023)). To examine this, we adopt the following
research question: RQ)What kind of challenges do family-owned businesses
experience in AI adoption and implementation?
The purpose of this study is to empirically examine the challenges

and eventual responses emerging in a new technology, namely the AI
adoption process in five family-owned businesses. This study contributes
to the literature on new technology adoption in family firms by high-
lighting specific challenges family firms experience in AI adoption and
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how they attempt to respond to these. Second, we contribute to the
literature on new technology adoption in general by building specific
categories describing the challenges the case companies face. Building on
this, we form propositions to be tested and developed for further studies
on technology adoption in family firms.

9.2 Theoretical Framework

9.2.1 AI Adoption in Industry 5.0

Artificial intelligence (AI) in current literature refers to a group of
technologies and their functional applications, or a general level of tech-
nological maturity (Lichtenthaler 2020; Lee 2020). The focal points can
be for example in the general operations and impacts of the applications
(Glaser et al. 2021; Kellogg et al. 2020), or in the temporal develop-
ment of industrial sectors, inspiring such terms as Intelligent Industry,
Industry 4.0. or Industrial AI, or in the more detailed functionalities of
algorithms technologies and uses, such as Cyber-Physical Systems (CPS),
Internet of Things (IoT), and cloud computing (Lee 2020; Xu et al.
2021). Studies on the impact of such advanced technologies empha-
size the interplay between technology, organization, and environment
(TOE) (Tornatzky 1990), or novel technology acceptance (UTAUT)
(Venkatesh 2022). However, currently, the availability of technology is
no longer an issue and calls have been made to include the “human”
perspective in the studies (Frankiewicz and Chamorro-Premuzic 2020;
Agostini and Nosella 2019). The term Industry 5.0 further credits the
impact of technology development on society as a whole, increasing
resilience, prosperity, and increasing employee well-being—the society
of human–machine work symbiosis (Xu et al. 2021). Further, this
increasing maturity of AI technologies illustrates the industrial diver-
gence between needs, strategies, and international expansion pathways
due to an increasing variety of application usage. Technology-intensive
industries utilizing AI in their operations differ from current empirical
studies on AI adoption—such as the operations of plat-form giants such
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as Uber and Netflix (Iansiti and Lakhani 2020), and the general concep-
tualization of AI driving productivity and innovation across diverse
indus-tries and companies (Brynjolfsson and McElheran 2016; Brynjolf-
sson and Mcafee 2017; Liu et al. 2020; Wamba-Taguimdje et al. 2020).
Recent studies emphasize individual cognitive elements such as trust
(Glikson and Wooley, 2020, Mubarak and Petraite 2020) and argue that
understanding AI adoption is beyond simply using existing technology
adoption models (Wang et al. 2021). A multilevel empirical perspec-
tive would create a solid base for subsequent theorizing (Dąbrowska
et al. 2022b) by including TOE—perspectives on the human side
of AI (similarly e.g. Davenport and Ronanki 2018; Frankiewicz and
Chamorro-Premuzic 2020). Thus, to assess how Industry 5.0 technolo-
gies impact firm operations, a holistic view of technology, organization,
the market, and people should be taken into consideration.

9.2.2 Technology Adoption in Family Firms

The literature on new technology adoption in family businesses is scat-
tered over various disciplines, such as family firm innovation (review by
(Calabrò et al. 2019)) and BMI (Brenk et al. 2019; Brinkerink et al.
2020). Findings from current studies show that the idiosyncratic char-
acteristics, such as ownership and decision-making structures (Soluk and
Kammerlander 2023), family influence, succession process (Lannon et al.
2023), and non-financial goals of family firms (Kotlar et al. 2022), may
create barriers and drivers that hinder the technology adaption process,
specifically its organization and management (De Massis et al. 2012). In
this vein, Bruque and Moyano (2007) find that personnel issues, such
as difficulties in finding a qualified workforce needed for the specific
technology can pose a barrier to such an adoption process in the family
firm. Furthermore, internal power structures and culture can pose further
challenges (Bruque and Moyano 2007; López-Fernández et al. 2016).
From a theoretical perspective, König et al. (2013) develop a model
proposing that family influence weakens the forces that influence the
adoption of discontinuous technologies. Forces such as formalization,
need for external capital, and political resistance strengthen the sources
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of organizational paralysis, ties to existing assets, and rigidity of mental
models. They argue that the influence of a family results in different chal-
lenges in new technology adoption than those that apply to nonfamily
firms for these reasons. Kammerlander and Ganter (2015) highlight the
meaning of managerial support (along with (Cassia et al. 2012; Niehm
et al. 2010)), which is essential in new technology adoption. In this vein,
managerial non-economic goals (Kotlar et al. 2022) need to be aligned
with adoption processes. Without managerial support, especially from
the owner-manager-family, AI adoption will not reach support in the
family company (Soluk and Kammerlander 2023). In addition, Cassia
et al. (2012) found that other managerial factors such as commitment
and time orientation potentially have a positive impact generally on
innovation adoption. New technology can generally be viewed as risky
for the family firms’ internal landscape such as socioemotional wealth,
which may even challenge the family stability when new methods and
potentially new employees are introduced (Gómez-Mejía et al. 2007).
Family firms generally protect their wealth by avoiding risky innovations
(Muñoz-Bullón and Sanchez-Bueno 2011). A few studies state socioemo-
tional wealth as central to new technology adoption (Souder et al. 2017),
finding that family firms are more reluctant regarding new technology
adoption, especially among family firms with minority family influence.
To sum up, current findings on new technology adoption in family
firms have found that family firms might face specific challenges in such
processes due to their idiosyncratic nature. While such contributions
exist, the focus of current studies lies on innovation or digital trans-
formation in general. Only scarce evidence exists regarding AI adoption
specifically; more is being called for, especially regarding the challenges
in AI adoption (Lannon et al. 2023; Soluk and Kammerlander 2023).
This is surprising considering the specific challenges they may have,
such as the lack of necessary (for family firm preferably internal) human
resources (Soluk and Kammerlander 2023), which makes them depen-
dent on external knowledge and resources. To protect the socioemotional
wealth (Gómez-Mejía et al. 2007; Souder et al. 2017), family firms
may withhold from adopting disruptive technologies altogether. These
findings show that family firms may handle new technology adoption
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processes differently than nonfamily firms and that they may face partic-
ular challenges in such transitions. For practitioners and family managers
to support and manage such processes, more evidence is needed on
family firms’ new technology adoption, especially AI.

9.3 Methods

To understand the complexity of established family-owned companies
in their process of adopting and implementing new technology, a qual-
itative case study setting with an abductive approach and systematic
combining (Dubois and Gadde 2002) was applied. This setting was
chosen, as our interest was to find interdependencies between the cases,
generating reasonable justifications (in the vein of (Eisenhardt 1989;
Eisenhardt and Graebner 2007)).

9.3.1 Cases Selection and Data Collection

All of the case companies are part of a joint research project, where
multiple rounds of primary data collection were applied over the years
2021–2023. The project aimed at developing automated solutions for
manufacturing and AI, so all of the companies already have adopted
AI in their products and processes. We obtain primary data from inter-
views, workshops, and secondary data from publicly available company
reports, such as annual reports and press releases. Several interviews
and workshops were conducted with key persons responsible for the
AI implementation in each company. Altogether more than 16 h of
primary data from 12 different individuals were analyzed. Secondary
data encompasses the last 10 years (2012–2022) of annual reports, press
releases, and official documents for each company, as well as some addi-
tional data, such as publicly available company videos and podcasts. Our
sampling criteria ensure that all interviewees have first-hand experience
on the topic and have an interest in developing solutions concerning
new technology adaptation. Additionally, wide gathering of secondary
data ensures data triangulation and inclusion of additional viewpoints
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that were not covered in the interviews as well as early identification of
communication of the topic in the company documents. An overview of
the data is presented in Table 9.1.

Table 9.1 Types of data per company

Case
4 h
workshop

Additional
interviews Positions Hrs

Additional
data

A 4 persons NA CEO, systems
developer, AI
systems
developer,
head of
engineering

4 Annual
reports
2012–2022,
press
releases

B 2 persons 1 Product group
manager,
project lead

5 Annual
reports
2012–2022,
press
releases,
website
reports,
podcast,
video

C No 5 Data science
managers,
Head of
people flow
op
timization,
Head of Ana
lytics, Head
of (X) devel
opment

5 Annual
reports
2012–2022,
web site
reports,
press
releases

D No 1 Director,
Data-driven
services

1 Annual
reports
2012–2022,
website
reports,
press
releases

E 1 person 1 Product group
manager

1 Annual
reports
2012–2022,
website
reports,
press
releases
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Table 9.2 Key characteristics of case companies

Company
Year
founded

Last
available revenue
(te)

Family
ownership
(%)

Last available
nr
of employees

A 1963 79.790 86.40 550
B 1970 755.123 61.93 1800
C 1910 10.906 62.28 61,380
D 2005 4.088 74.53 11,500
E 1908 158.324 18.96 802

9.3.2 Case Companies

Details of the case companies are displayed in Table 9.2. All of the
companies are based in Finland but operate in global business interna-
tionally and have international subsidiaries except for Company A. In
all of the companies, the majority of the shares are held by the family.
Except for Company A, all of them are publicly listed companies.

9.3.3 Data Analysis

The data was analyzed with a content analysis based on the themes
arising from the raw primary and secondary data (Eisenhardt 1989;
Eisenhardt and Graebner 2007), the overarching research question as
a central theme. In the first step, central themes but also other related
topics that the interviewees mentioned as relevant were highlighted in
the raw data applying open coding. This gave us an understanding that
there were many simultaneous topics discussed on AI, such as cultural
issues, the process, the status where the company currently is or was, and
the barriers and drivers. It was decided to concentrate on the challenges
on many levels, as these seemed to be present in many interviews and
workshop discussions. Axial coding was applied here in the interviewee’s
statements regarding challenges. These were organized into first-order
themes that were as close to the original statements as possible (Corley
and Gioia 2004). The second-order themes were formed based on the
first-order themes, as we organized the first-order themes in thematic
categories. Thus, the aggregate dimensions are the most abstract ones,
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compared to the original statements. After this, this categorization was
compared with suitable literature on technology adoption challenges
(Dąbrowska et al. 2022b). Based on this comparison with the litera-
ture and the aggregate dimensions, categories of challenges identified
in the data are built. The categories and dimensions are presented in
Figure 1. In the figure, the column on the left represents the themes
highlighted in the raw data. From these themes, conceptual categories
are developed. Finally, the conceptual categories are further organized
in aggregate dimensions of people, organization, and environment. The
aggregate dimensions represent the most abstract form of the challenges.
Figure 9.1 summarizes the analysis.

9.4 Findings

Several categories of challenges can be found in the data. Three main
categories are people, organization, and environment (POE), which
are further divided into more detailed subcategories, as presented in
Figure 1. In the following, the categories are described, enriched with a
few examples from the data, and reflected in the theory. Further examples
from the data with a connection to theory are presented in Tables 9.3,
9.4, and 9.5.

9.4.1 People Level

The challenges related to human resources in the organization
include themes such as talent attraction/job concerns, communica-
tion/motivation, and involvement, summarized in Table 9.3. Examples
of addressing these challenges are different ways of motivating and
involving people, addressing their fear of being useless, and the possi-
bilities of incentivizing their innovative initiatives regarding AI. Below,
we discuss each of these challenges in this category, presenting examples
from the data and finally reflecting our findings with current literature.
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Table 9.4 Main findings: organization

Challenge Selection of quotes Theoretical concepts

Priorities and
values

“If they don’t see that a
customer would be ready
to pay for this, it is often
difficult to justify an
investment for the
managers.” (Company C)
“It’s a question of how
they are prioritized as the
budget is monetary,
resources are restricted… a
clear organizational process
does not exist.” (Company
C) the difficulty in digital
services is that they don’t
necessarily deliver direct
monetary value, but
instead they impact
reputation, brand image,
customer satisfaction,
usability, the problem is
how to convert this to a
currency… we don’t
knowthis yet” (Company C)

Managerial support is
essential for the
implementation of
discontinuous
technologies
(Kammerlander and
Ganter 2015; Porfírio
et al. 2021);
Experimentation with AI
is not reported
transparently (Rammer
et al. 2022)

Structures “Lack of knowledge, lack of
assigned, clear roles and
diverse responsibilities… It
is more of an
organizational challenge.”
(Company C) “It’s probably
the biggest learning and
challenge in how we can
offer simple valuecreating
solutions for the customer
when our setup is very
complex”. (Company D) “…
the how can we present
new things for the
customer when there are a
couple of more hurdles in
between compared to like,
Spotify. We cannot
communicate directly with
the customer through the
system…” (Company D)

Change and organizational
design (Dąbrowska et al.
2022b), Adopting new
organizational structures
and forms (Lanzolla et al.
2020), and
cross-functional
collaboration (Dremel
et al. 2017) is essential;
Less centralization and
formalities of
organizational structures
(Craig and Moores 2006),
new forms of control
(Kellogg et al. 2020),
reduction of production
variance (Craig and
Moores 2006): AI enables
new forms of control
(Kellogg et al. 2020)

(continued)
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Table 9.4 (continued)

Challenge Selection of quotes Theoretical concepts

Pricing and
selling

“The customers strongly
assume that the digital
services are included in the
price” (Company B). “We
have needed help… one
needs much knowledge
about the existing offering
in the market and about
their prices and quality”
(Company B). “We are not
where we want to be in
how to set the price… and
how to communicate the
promise of the value to the
customer”. (Company D)
“you will need to build a
new business unit, own
sellers and customer
responsibility” (Company F)
“I quite often give access
to digital service for free
for a few months to let the
customer try it out and see
the benefits and then to
charge for them after the
period (Company B)

The focal point is on
research and long term
orientation, also paving
the way to increasing
number of custom
solutions and expertise
(Aaltonen et al. 2023a); AI
leverages annual sales
(Rammer et al. 2022)

Significance of
data

“Data is usually not a
mystical IT-thing; it means
whether we know what is
happening in the company
or not” (Company C) “It is
central to clear for people
that they know how the
data is connected to what
their job and what
happens to the data after
that” (Company B) “the
culture needs to change
regarding why we need
data, why it is important,
why do we need to see
that it is of high quality.
There are a lot of
discussions on this, as we
are in a traditional
industry.” (Company C)

Data quality and accuracy
should be an
organizational priority (Al
Badi et al. 2022; Merhi
2023); Data drives
learning from AI and
networks development
(Brynjolfsson and
McElheran 2016); Data
analytic capabilities reflect
on innovation capabilities
(Wu et al. 2021)
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9.4.1.1 Talent Attraction and Job Concerns

Some case companies experience challenges regarding talent when imple-
menting AI. On the other hand, in attracting the right personnel in the
right locations and on the other hand in keeping talent while addressing
their concerns regarding AI. Due to the tradition and the nature of
its industry, Company B’s headquarters is located far away from major
cities. To address this, they had to establish a new subsidiary through
the acquisition of a software company to get the resources they needed.
This shows that companies located far away from central areas need to
find creative ways to attract personnel needed for AI implementation and
development. A representative of Company B describes this as follows:

“it comes to the recruitment of people and availability of talent and
skills"… "(we only had) RandD locations in X and Y (far away from
the major cities). We faced problems and that’s also in the background
of opening this site, especially automation software talents, there was no
way of getting people to location X.” (Company B)

Another challenge in the people category is related to the concerns that
the personnel may have when parts of it can be given over to AI and
automatized processes, as a representative from company D describes:

“People fear for their jobs, that an algorithm will replace them" (…) "this
has appeared also in surprising connections" (…) "people worry about
that what will happen to them when even this kind of ape work will be
taken away." (Company D)

In this case, the company had developed an internal AI-based solution
to automatize a simple, monotonous task, facing resistance from worried
employees who were nervous about the changes in their tasks and the
possibility of AI replacing them altogether. Ways to address this chal-
lenge are similar to addressing the motivation and involvement, which
are discussed below.
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9.4.1.2 Communication/Motivation and Incentives

Related to the fears described above, in many cases the interviewees
mentioned the difficulties in the high need for discussion and with
getting employees on board with the change on different organizational
levels. With AI implementation, many actors needed to be convinced
about the significance of data and the automation that AI implementa-
tion had on these particular actor’s daily tasks. Generational issues and
differences in organizational levels were mentioned. In the course of AI
implementation, the interviewees described that it was also a cultural
change in the organization, the whole company needing to change the
direction toward an “AI culture.” To communicate the change and to get
people on board with it, companies described different ways to involve
and incentivize personnel:

“The same thing applies for service personnel and internal personnel as
for our customers; once they see the added benefit they’ll get, they’ll work
with you to give you the stuff you want." (–) "You need to find the
words to motivate each type of personnel and tell them why we need
their input, if you force or give them instructions, it’s a no-go, it won’t
work." (Company D).

"It is very important to involve the service area managers and service
personnel themselves already at the beginning to make them feel heard
and important so that they don’t feel that this is not kind of absurd
order with black magic like AI, which may create all kinds of unnecessary
resistance." (Company C)

Generally, the cruciality of the human aspect is highlighted in the process
of new technology adoption, both in general DT literature (Davenport
and Redman 2020) as well as in family firms adopting new technolo-
gies (Ano and Bent 2022; Bruque and Moyano 2007). The aspect of
talent attraction is also found a barrier in the earlier literature on family
SMEs in new technology adoption (Bruque and Moyano 2007). Our
data underlines that it is important to find ways to motivate and commu-
nicate with each type of employee group to reduce resistance. In line with
these findings, Soluk and Kammerlander (2021) also found that one of
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the barriers to introducing digital technologies in Mittelstand firms is
employee resistance. One way to reduce such resistance is to share success
stories on the topic among both internal and external stakeholders. This
can benefit new technology adoption in the organization. Such experi-
ences can help to justify and effectively demonstrate the value and the
potential benefits for the organization as well as for the individuals and
lower their resistance to the adoption. Such conscious communication
supports the new technology adoption, but family firms might struggle
with this due to the lack of formalization, especially in smaller firms (De
Massis et al. 2012; König et al. 2013). In the literature on digital trans-
formation, aspects of human resources and talent are also seen as crucial
for new technology adoption (Davenport and Redman 2020). Based on
this, we propose:

P1 Employee resistance can pose a barrier to the AI adoption and imple-
mentation process in family firms; involving and motivating employees
early by showing the potential benefit of their work contributes to
success.

9.4.2 Organizational Level

The challenges found on the organizational level category include
barriers in organizational structures and values as well as the specific
organizational processes such as pricing and selling AI-based solutions.
The significance of data is presented as a further challenge, as in case
it is not acknowledged by key stakeholders, it hinders the AI adoption
and implementation process. Below we discuss each of these challenges
in this category, presenting examples from the data, and reflecting our
findings with DT and family firm literature, summarized in Table 9.4.
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9.4.2.1 Organizational Priorities and Values

The challenges in organizational priorities regard to the decisions on
which digital projects to support and invest in an organization, often-
times without knowing which ones will be beneficial and which ones
not. Furthermore, whether AI should be developed and implemented to
smoothen the company’s internal processes whether they should concen-
trate on the processes of the customer, and whether there should be
the technology first or a use case first are central dilemmas of priori-
ties. These quotations reflect the challenges in setting the organization’s
priorities for certain projects, where the lack of process poses a barrier to
the justification:

it’s a question of how to create these innovations in digital products and
services and how they are prioritized as the budget is monetary, resources
are restricted…" (…) "For this, a clear organizational process does not
exist." “If they don’t see that a customer would be ready to pay for this,
it is often difficult to justify an investment for the managers. (Company
C)

In the literature, the alignment of the AI implementation process with
the organization’s goals and metrics such as key performance indicators
(KPIs) is essential to justify the resources needed for the projects. The
lack of formal processes in initiating AI-based innovations can hinder
the implementation process, especially if the organization lacks a clear
vision of AI altogether (Bérubé et al. 2021). A further barrier to the
internal priority setting is the nature of AI products and the difficulty
of evaluating their monetary value:

Before the digital era, we could calculate just how fast it (the product)
works (and calculate the investment) but now the difficulty in digital
services is that they don’t necessarily deliver direct monetary value, but
instead, they impact reputation, brand image, customer satisfaction,
usability, the problem is how to convert this to a currency… we don’t
know this yet (Company C)
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Lack of managerial support in combination with a lack of internal struc-
tures and processes is presented as a further barrier to the development:

“Our highest manager may communicate to all of us and encourage us
to boldly try out new things (with data), but it’s not an incentive, it’s just
a pep talk. This kind of encouraging talk is not worth much or there is
none. It would be great to try out new stuff, but if our technology just
is not on a certain level, it makes no sense to develop something tempo-
rary just to try out new improvements for example with an algorithm
(Company C).

it was great that our owners realized that we need to invest in lifecycle
and digital services to attract investors. And I was like, yeah, finally we
start connecting the pieces of the puzzle, this is how it should go” (…)
“As I talked to our CEO about whether we will now become a software
company, he said it’s not what our owners want, it’s not our DNA. But
if it’s what our customers need it’s fine, then the owners also understand
it (Company B).

It’s not easy in any way (to get data development projects on the way), we
talked a lot about it internally, and finally, we got the CEO convinced, he
talked about it in the board meetings and then things started rolling, but
we still weekly discuss on how to proceed internally with these things”
(Company B)

Finally, the organization’s own identity can stand in the way of AI
implementation, as in case B:

“We just kept hearing (internally) that ‘but we are machine producing
company!’(…) We can’t be just a machine producing company anymore
or we will lose in this competition.” This reflects the need for a cultural
change crucial to the implementation, as discussed above in the people
category of challenges as well.

To sum up, challenges regarding organizational priorities and values
relate to the difficulties in getting support for initiated AI projects
due to a lack of organizational processes, a lack of (honest) manage-
rial support, or difficulties in articulating the possible monetary value
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of digital products. Specifically, regarding managerial support, in the
literature, Kammerlander and Ganter (2015) highlight the need for
managerial support as essential for the implementation of discontinuous
technologies. In family firms, this challenge may be particularly rele-
vant due to their characteristic of exercising favoritism in recruiting and
toward peers, resulting in a lack of high-quality managers (De Massis
et al. 2012). For the implementation of complex new technologies such
as AI, that require significant changes in organizational structures and
processes, human capital is particularly relevant. The rigidity of certain
managerial models connected to family influence hinders the adoption
of discontinuous technologies (König et al. 2013). Based on this, we
propose:

P2 (a) Organizational priorities and values can pose a barrier to AI
implementation in the family firm if the organization’s identity is not
in line with the proposed developments.

P2 (b) Lack of honest managerial support can pose a challenge for AI
implementation in family firms.

9.4.2.2 Organizational Structures

General structural themes that emerged from the interviews include
silos, which make cross-functional cooperation more difficult. Often-
times, the anticipated need for a new process or structure was mentioned.
Compared to business-to-customer software development, business-to-
business software was experienced as more difficult to test the application
as the “way to reach the end user” is not as straightforward, as intervie-
wees from companies C and D describe:

Lack of knowledge, lack of assigned, clear roles, and diverse responsibili-
ties. If we have roles in service development where one silo is responsible
for portfolio management, one for selling spare parts, one in service
development concepts, and one in service contracts, then you suddenly
have six or seven teams, and developing something new would require a
combination of these teams, it is difficult to coordinate (Company C)
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It’s probably the biggest learning and challenge of how we can offer simple
value-creating solutions for the customer when our setup is very complex.
(Company D)

Organizational structure relates to the formalization and management
structures of family firms and is also related to innovation development
in family firms: less formality and decentralized structures enabled inno-
vation development (Craig and Moores 2006; Kraus et al. 2020). In line
with this, AI implementation triggers various changes in organizational
processes and structures and strategic alignment (Cennamo et al. 2020;
Dąbrowska et al. 2022b), which is essential to successfully implement
new technologies. As is reflected in the quotation of Company C above,
establishing cross-functional teams may smoothen technology adoption
in the whole organization, but to make such teams work, they need to
be coordinated efficiently and they need an established structure. In line
with this, we propose:

P3 Lack of suitable or too complex organizational structures and silos
can hinder AI implementation processes in family firms. Flexible struc-
tures are needed to address this.

9.4.2.3 Organizational Processes: Selling and Pricing

Challenges mentioned in processes such as selling the product include
difficulties in combining the capabilities of sellers that are used to selling
the “traditional” hardware product that is each of the case company’s
core products. When software is added, the added value for the customer
needs to be packaged, priced, and also sold in a new way, as new needs of
the customer are met, and new solutions can be offered. Some companies
result in adding more sellers sharing responsibilities, one concentrating
on traditional products and the other one on digital services. This,
however, results in organizational silos, where sellers compete on the
same incentives and also confusion from the customer side. Regarding
pricing, it is experienced difficult to justify and set a price for an added AI
service. Especially where the core product may be similar to the rivalries
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but where the digital product adds a certain value. This value is diffi-
cult to demonstrate and predict the direct value for the customer. These
challenges are reflected in the following quotes:

We have needed help in pricing these services and calculating the busi-
ness cases, it’s by no means easy, as one needs much knowledge about
the existing offering in the market and about their prices and quality.
(Company B)

We are not where we want to be in how to set the price in predictive
maintenance and how to communicate the promise of the value to the
customer. (Company D)

If you want to grow with this kind of new business, then you will need
to build a new business unit, own sellers, and customer responsibility.
If you just put slides into the bag of a machine seller, it’ll never work.
(Company F)

These findings are similar to the study of Langley and Truax (1994),
finding that the technology adoption process is linked to the organi-
zation’s other internal processes, showing that various process models
contribute to the understanding of such adoption processes. AI adop-
tion creates new products, product bundles, and changes as well as
the way value is created. Although there are no findings specifically
addressing organizational processes in family firms’ technology adop-
tion, their change processes may be more unstructured due to the lack
of formalization (De Massis et al. 2012). Technological champions,
people pushing for change (Bruque and Moyano 2007), might also help
integrate processual changes.

9.4.2.4 Significance of Data

Challenges regarding the significance of data regard the understanding
of the meaning of quality as essential; the prognosis and usability of AI
depend on the basic data input. If the basic data is not entered in a
certain way, it might not be possible for the algorithm to handle and
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apply. As this means a certain background work where an employee
might not understand why and where the data is used, there might
well be discrepancies and misunderstandings, especially in case compa-
nies with many international subsidiaries. Furthermore, certain industry
standards pose challenges for the data. These quotations reflect this
challenge:

It is central to clear for people that they know how the data is connected
to what their job is and what happens to the data after that. That’s what
we have been concentrating on and this is still ongoing. (Company B)

Data is usually not a mystical IT thing; it means whether we know what
is happening in the company or not. It usually opens one’s eyes, like, true;
if we don’t even know where our (service) guys currently are, it’s probably
not a good thing. (Company C)

Data accuracy should be a priority (Merhi 2023) and is listed as a top
challenge for AI implementation in other studies (Al Badi et al. 2022;
Weber et al. 2023). Weber et al. (2023) suggest a set of specific orga-
nizational capabilities to be developed to address the complexity of AI
challenges. They suggest a specific Data Management system to address
this challenge.

9.4.3 Environmental Level

Organizational environments, such as networks, partnerships, and
geographical locations impact the potential of AI solution adoption. The
main findings on this topic are summarized in Table 9.5 and discussed
here in more detail.

9.4.3.1 Industry-Specific Challenges

Industry-specific challenges regard the specific, sometimes data security-
related or legal environment that constrains or sets some rules for the
technology application. Company A states that they would need “some-
thing from the EU side or government or global rules for how things
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can be done” (…) “It’s good to develop new things but I think that the
ecosystem is not ready to take (certain) action yet.” Besides the busi-
ness environment, the physical one can pose challenges for the technical
implementation of AI:

You might have snow or rain or whatever and even these forest canopy
leaves affect those sensors heavily. (Company B).

and

I think one challenge, other than just placing sensors to the boom struc-
ture, is that our attachment, or the bucket that is used for grabbing the
material, can be quite large and it’s hard to see behind it and it’s gonna
be swinging in front of the lidar view. (Company A).

These findings are in line with the literature, which suggests that the
characteristics of both industry and the government impact innova-
tion performance (Collinson and Liu 2019). Such external shocks can
indeed trigger digital transformation in family firms (Soluk 2022), which
impacts other technologies as well.

P4 Family firms experience industry- and legalization-specific challenges
when implementing AI technologies.

9.4.3.2 Partnerships and Customers

Partnership and customer challenges include the challenges regarding
the specific challenges that arise when digital services are developed
together with the customer and/or partners and how they are presented.
Regarding partnerships, challenges include difficulties in finding and
identifying partners with the needed experience and establishing stable
partnerships. Regarding customers, findings show that the customers
might have very individual needs, where co-creation is essential and an
explicit wish from the customer side:
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“Internally, there is a stronger will for the application” (…) “but it’s not
because they would be afraid of AI, but because the development together
with the customer is slower and a lot is going on so it’s more difficult to
introduce more stuff.” (Company D)

Customer involvement is seen as essential in AI product and service
creation; however, it is slower due to both organizational and tech-
nological hurdles. While the literature finds chances for companies to
co-developing solutions and offerings with their customers (Collinson
and Liu 2019), it also poses challenges by intensifying and reorga-
nizing the inter-organizational collaboration and competition dynamics
(Cennamo et al. 2020). The case companies express the need to collab-
orate with new kinds of companies and even competitors in new ways.
Family firm literature states that family firms seek to build social capital
with their stakeholders by cooperating more with other firms, seeking
inputs for their innovation (Llach and Nordqvist 2010) especially the
closeness to customers promotes innovation. Such long-lasting relation-
ships provide stability in turbulent times (Gómez-Mejía et al. 2007), like
introducing new technologies, like Company A states:

We do have very long partnerships. I think that also part of the family
business approach, that this is kind of from one generation to the next
kind of thing. One of our first customers in Finland, (company name),
will have 50 years of co-operation with them next year, and with some
of our dealers, they started almost 20 years ago, when we just started
manufacturing there. We do try to always find partners with whom there
is longevity in the partnership. (Company A)

Family firms may experience such challenges when creating AI solutions
together with their customers, however, the background of the chal-
lenges seems to stem from their structures and processes and not from
the partnerships per se. In line with the literature, and as reflected in
the quotations, family firms do collaborate with partners and customers
to smoothen their innovation adoption (Hausman 2005; Kim et al.
2004) and seek stable relationships with their stakeholders (Miller and Le
Breton-Miller, 2005). This experience of connectedness and long-term
relationships contribute to the formation of the company identity of the
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firm (Gómez-Mejía et al. 2007). Collaborative innovation efforts help
family firms tackle their barriers to gaining technological inputs (Feranita
et al. 2017). In line with above, we propose:

P5 Family firms experience challenges in identifying and establishing
the right partnerships essential for new technology adoption; customer-
centered development is found important but slow.

9.5 Discussion

This study empirically examines new technology adoption processes
and challenges in five family-owned manufacturing companies. All case
companies have adopted AI technologies but are in somewhat different
stages in the implementation. We found many categories of challenges
which we categorized into the people-organization-environment (POE)
framework. The people level encompasses challenges mainly with the
employees and their jobs, such as talent and job concerns, incentives, and
involvement of employees and managers in the implementation process.
Here, employee resistance is found to be a central challenge, as we posit
in P1. This is supported by the literature as well: attracting and keeping
talent is found to be a central barrier to new technology adoption in
family firms (Bruque and Moyano 2007). AI adoption can indeed create
insecurity in the organizational environment. Also, managerial talent is
essential in engaging personnel and thus lowering political resistance
(König et al. 2013). Attracting the right talent is essential for AI strategy
(Frankiewicz and Chamorro-Premuzic 2020), which is not always easy
for family firms, as future talents perceive them slower in new technology
adoption (Ceja Barba and Tàpies 2009). It can be summarized that the
challenges in the people category seem more contextual and individual,
which makes them more difficult to address. The challenges presented
here may not have a source in family firm nature but can be found in
many organizations.
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Second, the challenges on the organizational level are for example the
organization’s priorities and values that are not aligned with the tech-
nology adoption, as we posit in proposition P2a. Especially in the case
of new and emerging technologies, it is not always clear from the start
which projects will be profitable and which not, which makes prioriti-
zation difficult. In large companies changing metrics for KPIs and other
measurements just for the sake of a technology adoption is seldom a fast
process. Our proposition P2b posits the need for managerial support
(Kammerlander and Ganter 2015; Kotlar et al. 2022; Niehm et al.
2010), which is essential for a project to get resources and internal
priority in the company and for the employees to accept the technology.
Regarding the organization’s structures, if the organization’s “setup is too
complex”, as mentioned by company D in the data, it can be difficult
to establish communication flows needed for the technology adoption.
The lack of suitable organizational structures and the establishment of
silos make the cooperation between organizational units and customers
bureaucratic and time-consuming. This is reflected in P3. Therefore,
adopting new organizational forms might be necessary (Lanzolla et al.
2020). Along with the technology adoption, there might be new prod-
ucts and services that need to be priced and sold differently than the
original products the companies are manufacturing (Duch-Brown et al.
2022). Also, the significance of data should be seen on an organizational
level as a priority (Al Badi et al. 2022; Merhi 2023) as “it (data) should
not be seen as a mystical IT-thing” (Company C). Finally, the challenges
on the environmental level regard the industry level as well as the global
and institutional environment, as we posit in the P4. The family compa-
nies examine difficulties in the business environment if it does not adapt
to the technological change. On the institutional level, they express the
need to get a kind of legal network for technology development. On
the global level, only recently institutional actors are starting to give
guidance to companies on how to apply it and the data (as the AI act
of the European Parliament). Also, the stakeholders such as customer-
and partnership-related challenges are considered here. It is found that
developing the technology together with the customer is essential but
also more costly and difficult regarding the organizational structures;
data developers may not have direct customer contact according to the
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structure even if it would be needed in a certain project. Developing
the technology together with the customer changes the customer expec-
tations and extends the possibilities for further digital offerings. It is
difficult for the family firms to find the right, stable partnerships for
technology development, as posited in P5, however, it is essential for
innovation (Feranita et al. 2017).

9.5.1 Implications for Theory and Practice

Our findings contribute to both family business and AI/DT literature.
We extend the current theory on AI by suggesting a POE framework
for assessing AI implementation in organizations and by categorizing
AI adoption challenges and possible responses to these. We contribute
to the growing body of AI theories which, stemming from informa-
tion systems research, mostly concentrates on the technological areas of
digital transformation (Yoo et al. 2012). We show that neglecting the
human and individual aspects and other firm-related aspects of such
technology adoption processes can hinder the adoption process and
success (Soluk and Kammerlander 2021; De Massis et al. 2012). Second,
we contribute to the literature on technology adoption in family firms,
showing specific challenges when family firms implement AI, which
has been scarcely examined in existing literature (Soluk and Kammer-
lander 2021). Managers working in family firms as well as practitioners
supporting family firms in processes of technology adoption will gain
insights in recognizing the influence of family-specific strategic prefer-
ences, as these may impact the adoption process and raise challenges.
Practitioners are advised not to assume the universal applicability of tech-
nology adoption processes for the case of family firms. Family owners
gain insights for self-reflection for ongoing and upcoming technology
adoption processes.
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9.5.2 Limitations and Future Research

As with all studies, also this one has its shortcomings. As our sample
consists only of family companies, a comparison between family and
nonfamily firms is not possible. Therefore, we only can show possible
challenges in our sample and not assess whether they would apply to
nonfamily firm samples as well. Further empirical evidence is needed to
examine this. Furthermore, as our data does not encompass interviews
with all companies’ managing families, identifying the family influence
is not always clear and possible. This is a shortcoming that further
studies examining specifically the family influence could tackle. Table 9.6
summarizes further suggestions for future research.

9.6 Conclusions

This study empirically examined family firms’ challenges in technology
adoption and implementation. Our findings show that family firms expe-
rience challenges in AI adoption in three main areas, namely people,
organization, and environment (POE). We, therefore, propose this POE
framework applicable for AI adoption instead of the TOE (Tornatzky
1990) applied in the current literature on digital transformation. POE
aspects encompass also the human and talent aspects essential for AI
adoption in organizations, where TOE falls short. We conclude that the
subcategories found under these aspects may vary depending on indus-
tries and even geographical areas and may differ in nonfamily firms, but
adding the people aspect to the framework is important when devel-
oping AI theories further. Even though our findings highlight the specific
features of family firms, certain challenges are most likely to be universal
for many companies adopting and implementing AI technologies.
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Exploring the Role of Individual Learning
for Human–AI Empowered Sustainability

Transitions: An Integrative Review
of Literature

Ellen Saltevo, Antero Kutvonen, and Marko Torkkeli

10.1 Introduction

Sustainability transitions (STs) involve the purposeful transformation of
sociotechnical systems (i.e., system innovation) underlining key societal
functions (e.g., mobility, energy, housing, and food) in a normatively
guided direction (i.e., what is considered sustainable) (Geels 2005;
Kemp and Martens 2007). STs are characterized by interdependent and
complex development processes between multiple elements, dimensions,
and actors; long-term change processes of overcoming forces that main-
tain incumbent systems and facilitating forces that contribute to the
institutionalization of emerging systems; as well as uncertainty over the
best courses of action and open-mindedness of objectives according to
evolving understanding (Köhler et al. 2019). Due to these attributes,
STs require experimental operationalization and reflexive governance
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approaches, in which learning plays a crucial role in directing the devel-
opment and adaptation of the system (Loorbach 2010; Kemp et al.
2007). Notably, STs and artificial intelligence (AI) share fundamental
characteristics as learning-based systems. AI refers to “a systems’ ability
to interpret external data correctly, to learn from such data, and to use
those learnings to achieve specific goals and tasks through flexible adap-
tation” (Kaplan and Haenlein 2019). While the complete integration
of these two systems so far appears to be a techno-utopian aspiration,
the synergistic development of human and artificial learning is on its
way. However, the effective utilization of AI in this context necessi-
tates a comprehensive and detailed understanding of learning in STs to
determine how synergies can best be achieved.

Despite the acknowledged importance of learning in established theo-
ries and management principles in the field of STs, relatively limited
research has been specifically dedicated to this area (Truffer et al. 2022).
Recently, scholars such as Van Mierlo and Beers (2020), Van Poeck
et al. (2020), Goyal and Howlett (2020), Luederitz et al. (2017a),
and Rauschmayer et al. (2015) have highlighted conceptual underde-
velopment, theoretical fragmentation, and methodological challenges in
the field. Furthermore, much of the existing literature on learning in
STs focuses on collectives, overlooking the research significance of the
individual perspective (Lähteenoja et al. 2022). In multi-minded social
systems, individuals exhibit purposefulness and capacity for making
choices that influence the system’s trajectory (Gharajedaghi 2011), which
is why it is important not to overlook the micro-foundations that exert
influence on the system’s development.

Consequently, calls for further research on several areas relating to
individual learning in STs have been made: the role of individual learning
(Rauschmayer et al. 2015), the determinants influencing learning (Van
Poeck et al. 2020), individual learning’s impact on collective learning
(Van Mierlo and Beers 2020), and ways of bridging the current separa-
tion of micro–macro analysis levels (Köhler et al. 2019).
These point to a research gap in understanding the role of indi-

vidual learning in connection to the whole and defining the underlying
factors and mechanisms that influence individual learning contributions
in STs. This research aims to bridge this gap through an integrative
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literature review that provides a conceptual framework, which further
enables a discussion on the synergy points of human–artificial learning
for facilitating the twin (green and digital) transition. The relevance
of this research is highlighted by the European Union’s strategic focus
on Industry 5.0 development, which aims for human-centric change,
putting central emphasis on empowering the workforce with technolo-
gies that complement human capabilities and in the microfoundations
of development (e.g., up- and re-skilling) for facilitating a just and more
balanced twin transition (European Commission et al. 2021).

10.2 Key Concepts and Theories

Multi-actor processes in STs are complicated due to varying agencies,
interests, strategies, and capabilities (Köhler et al. 2019). Agency and
capability are interdependent concepts; agency is the ability to pursue
one’s objectives, while capability is the ability to act effectively to achieve
those objectives (Sen 1999). Individual agencies and the subsequent
assembly of individual capabilities give rise to collective agency and capa-
bility through learning (Pelenc et al. 2015; Pahl-Wostl 2006). In the field
of STs, the dominant theoretical framework is the multilevel perspective,
and the primary management frameworks are transition management
and strategic niche management. These theories and concepts assume
different learning entities (who learns), processes (how learning occurs),
and functions (what is the role of learning), which will be elaborated on
next.
The multilevel perspective outlines system innovation evolution as

a dynamic interplay among three nested levels (niches, regime, and
landscape) interlinking various dimensions, elements, and actors into
sociotechnical systems. System innovations emerging from niches may
gradually grow to pose an alternative configuration able to disrupt
existing regime structures when landscape changes render the incum-
bent system suboptimal, creating takeover opportunities for the emerging
system (Geels 2002 2004 2005 2010). Transitions are shaped by struc-
turation [based on Giddens (1984)], and learning is an iterative process



268 E. Saltevo et al.

of multi-agency interaction with existing and emerging structures that
inform the innovation’s trajectory forward (Geels 2002 2019).
Transition management is a policy-driven approach for the multi-

phase (including pre-development, take-off, acceleration, and stabiliza-
tion) adaptive governance of transitions (Rotmans et al. 2001). The
entity in focus is the system in transition, commonly characterized as
a complex adaptive system (Loorbach 2010), which consists of diverse
agents interacting, adapting, learning, and self-organizing into emergent
structures, properties, and phenomena without designated management
(Holland 1995, 1998). Transition management relies on the inherent
change dynamics of complex systems (Rotmans and Loorbach 2009;
Loorbach 2010), but pursues to influence them through collaborative
learning in cyclical transition management processes, influencing inter-
action patterns and thus directing the system’s course (Turnheim et al.
2015; Kemp et al. 2007).

Strategic niche management focuses on niches as platforms for inno-
vation incubation and experimentation and assumes that through the
strategic creation, development, and sequencing of these spaces, niches
can grow into disruptive innovation trajectories (Markard et al. 2012;
Hoogma et al. 2002; Kemp et al. 1998 2001). Niches operate in
an ecosystemic manner, consisting of interdependent groups of actors
centered around a shared vision of radical innovation that co-develops
resources and aligns capabilities, creating value for the whole (Schot
and Geels 2008; Geels and Raven 2006; Moore 1993; Adner 2017;
Adamides and Mouzakitis 2009). Learning in strategic niche manage-
ment is a central process for testing and iterative development to reshape
visions for guiding the direction (global niche) and operational config-
uration further (local niche) (Geels and Raven 2006; Schot and Geels
2008; Kemp et al. 1998). While niches involve diverse actors, special
emphasis is attributed to companies due to their function in innovation
creation. In the context of STs, this refers primarily to sustainability-
oriented innovation that is directed at “realizing social and environmental
value in addition to economic returns” on a systemic level (Adams et al.
2016).
Companies, as differentiated entities guided by strategic visions, learn

through dynamic capabilities, referring to “the firm’s ability to integrate,



10 Exploring the Role of Individual Learning for Human … 269

build, and reconfigure internal and external competencies to address
rapidly changing environments” (Teece et al. 1997). Recent research has
started exploring dynamic capabilities in sustainability-oriented innova-
tion (e.g., Inigo and Albareda 2019; Cavalcanti Barros Rodrigues and
Gohr 2022).
The aforementioned focus is on collective entity learning in STs.

However, education for sustainable development is an emerging policy-
driven learning-specific research field, focusing on individual compe-
tency development through educational innovation to facilitate indi-
vidual agency for sustainability (Zhang and Wang 2022; UNESCO
2017). Individual learning is construed as a socio-emotional-cognitive-
behavioral process that builds competencies that both enable and
empower individual development and action for sustainability and thus
indirectly contribute to generating change across domains (UNESCO
2017). Prominent contributions in the field include the development of
competency frameworks, e.g., the “GreenComp” (Bacigalupo and Punie
2022).

Learning also plays a fundamental role in AI and is the very func-
tion that distinguishes AI from explicitly human-programmed expert
rule-based systems (Kaplan and Haenlein 2019). Modern AI usually
refers to machine learning, which withholds different learning algorithms
and subsequent models (e.g., deep, reinforcement, transfer, ensemble,
and evolutionary) that can be used to build systems for a variety of
purposes (e.g., analytical, robotics, natural language processing, and
predictive modeling systems) applicable across sectors (Sarker 2021;
Banzhaf and Machado 2024). The potential of artificial intelligence
to contribute meaningfully to sustainability transitions depends on its
successful coupling with actor empowerment and transformative prac-
tices (Mäkitie et al. 2023), and the emerging field of augmented/
integrated intelligence explores how AI systems can be harnessed to
enhance and elevate human capabilities (Zhou et al. 2021; Lichtenthaler
2018).
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10.3 Material andMethods

This study adopts an integrative approach to reviewing the current
literature on learning and competency building in STs. An integrative
literature review is a suitable research approach for examining topics in
which, despite a body of existing literature, conceptual integration is
still lacking and evidence from different disciplines and types of studies
can be gathered for a critical evaluation and synthesis of the literature
in pursuit of building a comprehensive understanding of the topic to
further theory development and the generation of new insights (Snyder
2019; Torraco 2005). Data for the literature review was gathered from
two scientific databases by necessitating a combination of search terms
for the title and the abstract referring to the sought-after phenomena
(“transition” or “sociotechnical”), the processes or outcomes under inves-
tigation (“learning” or “competency”/ “competencies” or “capability”/
“capabilities”), and the overarching context (“sustainable”/ “sustainabil-
ity”) in this study. AI literature was not included in the search query
due to the recognition that research on AI in this context is extremely
limited. Therefore, the approach of this study is to first construct a
foundational understanding of learning in STs through literature review
synthesis in the results section, and then, in connection with relevant AI
literature, explore opportunities for synergies of human-AI learning in
the discussion section to generate new insights. This approach allows for
targeted and meaningful engagement with all the key elements relevant
to this study and a human-centric exploration approach to AI integra-
tion. Table 10.1 further details the sample generation for the integrative
literature review.

In integrative literature reviews, the application of an underlying theo-
retical or conceptual structuring of some kind is preferred to analyze the
literature in a coherent and structured way (e.g., Torraco 2005; Rocco
and Plakhotnik 2009). Accordingly, a well-established analytical frame-
work known as “Coleman’s boat” (Coleman 1986 1987 1990) from the
field of sociology is applied in this study. Given that the field of sustain-
ability transitions is heavily influenced by sociology (Köhler et al. 2019),
it can be considered justifiable to draw from it for further development as
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Table 10.1 Sample generation for the literature review

SEARCH

Search time May 2023
Search filters Journal articles + English language
Search database and query 1. Scopus database: (TITLE (transition OR

sociotechnical) AND ABS (learning OR
competence* OR capability*) AND ABS
(sustainability*))

2. Web of Science database: ((TI = ((transition
OR sociotechnical))) AND AB = ((learning
OR competence* OR capability*))) AND AB
= ((sustainability*))

Search results 488 articles (after elimination of duplicates)
SEARCH
Phase 1 Exclusion of articles from journals with an SJR

ranking below one (quality criterion)
Phase 2 Inclusion of articles with abstracts referring to

transitions of socio-
ecological-technical–economic nature and
addressing explicitly learning (relevance
criterion)

Phase 3 The remaining articles were reviewed in their
entirety and included in the final sample if
they were assessed to potentially contribute
theoretical, empirical, or conceptual value to
the research questions

Final sample 32 articles (indicated by asterisks in the
reference list)

well. By employing the set categories and relationships from the frame-
work as a baseline, the thematic organization, evaluation, and synthesis
of data are enabled in a structured way.
The framework, based on Coleman’s theory of social structure

(Coleman 1986 1987 1990), illustrates the interconnections of macro-
and micro-level phenomena and, as such, provides a general represen-
tation of how individual agents’ and their actions are shaped by the
collective contexts they are embedded in and how, as a result, they further
contribute to the restructuring of these contexts. The framework consists
of four distinct states: the collective state at the macro-level, the indi-
vidual agent’s state of being at the micro-level, the individual agent’s
state of action at the micro-level, and the collective state’s outcome
at the macro-level (Coleman 1986 1987 1990). However, macro-level
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Fig. 10.1 An illustration of the framework, integrated from Coleman (1986
1987 1990) and Hedström and Swedberg (1998)

outcomes are considered characteristically unpredictable and often left
unspecified in the framework (Ylikoski 2021); hence, their exclusion
also from this research and only general reference going forward. These
states interlink through mechanisms further conceptualized by Hedström
and Swedberg (1998) as situational (macro–micro), action formation
(micro-micro), and transformational (micro–macro), detailing the influ-
ence of social structures on individuals and vice versa, but not implying
causality (Ylikoski 2021). Situational mechanisms explain how social
structures shape an individual’s state of being and thinking; action forma-
tion mechanisms explain how individual state of being influences action;
and transformational mechanisms explain how individual action and
interaction generate social structures (Hedström and Swedberg 1998).
Figure 10.1 illustrates the framework and the connecting mechanisms.
The continued relevance of the framework is demonstrated by its recent
applications, for example, in management (Cowen et al. 2022) and
policy learning (Dunlop and Radaelli 2017).

10.4 Literature Review Synthesis

According to the structure of the previously defined analytical frame-
work, we have analyzed the sampled literature for analogous states and
mechanisms depicting learning in STs.
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10.4.1 The Macro-State and Its Connection
to Micro-State

Sustainable development has prompted a shift in the underlying assump-
tions of what constitutes favorable socioeconomic development, as well
as the methods and approaches through which it is pursued. The liter-
ature underscores several key pillars indicative of this shift: (1) the
direction of socioeconomic change is not defined solely by economic
growth but also encompasses normative justice- and ethics-based imper-
atives; (2) the occurrence of change is an actively assisted future-oriented
transformation rather than a passive phenomenon subject to historical
research; (3) the problems underlying change have become increasingly
complex, interconnected, and systemic by nature; (4) the realization of
change is not to be enacted by the powerful few but by multi-actor
coalitions combining perspectives and efforts of many domains and
disciplines; (5) the change dynamics have shifted from rivalry and domi-
nance to coopetition, collaboration, and coevolution; (6) change is not a
process to be controlled but rather one that should be influenced contin-
uously in a reflexive and adaptive manner (Beers et al. 2014; Bos and
Brown 2012; Bögel et al. 2019; Cuppen et al. 2019; Luederitz et al.
2017a b; Oliver et al. 2021; Rauschmayer et al. 2015; Safarzyńska et al.
2012; Singer-Brodowski 2023; Svare et al. 2023; Turnheim et al. 2015;
Van Poeck et al. 2020; Van de Kerkhof and Wieczorek 2005; Von Wirth
et al. 2019; Voß and Bornemann 2011; Wittmayer and Schäpke 2014;
Öztekin and Gaziulusoy 2019). This sustainability transition paradigm
at the macro level provides an overarching framework for guiding change.

Situational mechanisms link macro- and micro-levels, translating the
sustainability transition paradigm into practice across levels. These mech-
anisms embed the paradigm in the daily activities of agents, contex-
tualizing the paradigm locally and further informing the individual.
The literature highlights a variety of mechanisms for this transcontex-
tualizing, as noted by Beers et al. (2014), Luederitz et al. (2017a),
and Cuppen et al. (2019), are key, with Luederitz et al. (2017a)
identifying four main narratives: green economy, low-carbon transfor-
mation, ecotopian solutions, and transition movements, which guide
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systemic interventions. Furthermore, Loorbach (2010) multilevel gover-
nance model is frequently cited (e.g., Kemp et al. 2007; Bos and
Brown 2012; Raven et al. 2010), outlining strategic (vision develop-
ment, strategic discussions, long-term goal formulation), tactical (agenda
building, negotiating, networking, and coalition building), and opera-
tional (experimentation, project building, implementation) as means of
procedural governance through which the transition paradigm is inten-
tionally put forward across different levels. Most commonly, however,
these mechanisms manifest in various initiatives such as policy frame-
works and programs (e.g., Scholz and Methner 2020; Svare et al. 2023),
research and innovation projects (e.g., Beers et al. 2019) business devel-
opment activities (Bögel et al. 2019), community-based initiatives (e.g.,
Öztekin and Gaziulusoy 2019; Affolderbach and Schulz 2016; Von
Wirth et al. 2019; van Oers et al. 2023), educational or scientific
reforms (Wittmayer and Schäpke 2014; Singer-Brodowski 2023), which
materialize the sustainability agenda in localized contexts.

10.4.2 The Micro-State

As noted by Svare et al. (2023), “a theory of learning in STs (sustain-
ability transitions) needs to consider the learning needs of the learners,
how these relate to shifting perceived challenges and to what extent the
resulting learning is useful in dealing with these challenges.” Learning
needs thus arise from a reflected discrepancies between current abili-
ties and those needed to effectively perform tasks or roles in a specific
setting (Van Mierlo and Beers 2020; Singer-Brodowski 2023). The iden-
tification of learning needs is enabled by uncertainty awareness that
makes way for cognitive dissonance (Broto et al. 2014) and the activating
processes of reflexivity, autonomy, and empowerment (Svare et al. 2023).
Identifying learning needs can be a challenge due to limited rationality,
bias, and resistance to change (Safarzyńska et al. 2012; Van Mierlo and
Beers 2020). The learning needs of individuals are diverse and dependent
on the heterogeneous contextual properties of agents. Contextual factors
interact in diverse variations, shaping the emergent learning process
and consequently its outcomes (Van Poeck et al. 2020). The literature
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provides an abundance of contextual factors that can be considered influ-
ential in determining individual learning needs, which are classified into
three distinct categories, which together form the learner’s metacontext.

Firstly, intracontextual factors encompass a wide array of elements
within a specific entity (e.g., individual, organization, system). These
factors direct learning according to each person’s current schemata and
competencies, both explicitly, to the extent that the person is aware of
them (Wittmayer and Schäpke 2014), and inexplicitly, where uncon-
scious priorities shape decisions (Van Poeck et al. 2020), based on
Wertsch (1998). Van Poeck et al. (2020) identify a spectrum of indi-
vidual factors (e.g., cognition, emotion, values, and experiences) along-
side entity embeddedness components (e.g., culture and paradigms),
which influence the learning process. Further, Van Mierlo and Beers
(2020) determine the diversity of intracontextual factors as a source of
embeddedness in societal context on four distinct levels, drawing from
different theoretical domains; in collaborative learning contexts indi-
vidual diversity is attributed to cognitive differences inside groups; in
organizational learning contexts, diversity is attributed to the differ-
ences in competencies, roles, routines, and values of the practitioners
in the organization; in ecology learning contexts stakeholder diver-
sity is attributed to differences in knowledge, past experiences, values,
and roles determined in networks; in economy learning contexts diver-
sity is attributed to larger entities differing in terms of competencies,
culture, and reasoning frameworks determined in sectoral or cross-
sectoral systems (e.g., the innovation system). Notably, in the context
of sustainability transitions, the concept of intracontextual factors takes
on additional complexity. Bögel et al. (2019) specifically highlight the
notion of institutional plurality, which refers to the coexistence and
concurrent influence of multiple institutional logics (e.g., norms, values,
regulations, cultures, and beliefs) within transitions, which exempli-
fies the multifaceted nature of intracontextual factors where various
embedded logics interact.

Secondly, inter-contextual factors can have a significant influence on
directing individual learning, encompassing interactions both between
individuals (interpersonal interactions) and among individuals in an
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entity (dynamics). These factors encompass relational practices, as high-
lighted by Van Poeck et al. (2020), and a variety of roles that carry
specific expectations, responsibilities, and capabilities. Direct impacts
on individual learning can arise from roles within one’s community,
as illustrated by Wittmayer and Schäpke (2014) in identifying various
roles for researchers in sustainability transitions (e.g., change agents,
knowledge brokers, reflective scientists). Indirect impacts on individual
learning can come from organizational roles within the wider system, as
exemplified by Bos and Brown (2012) in categorizing roles like “cham-
pions,” who lead and innovate, and “bridging organizations,” which
serve as connectors and integrators, thus determining individual learning
priorities. Thirdly, extra-contextual factors, which bind different enti-
ties together in a common context in which transitions evolve, include
spatial (natural, immaterial, and anthropogenic), temporal, and material
artifacts (Affolderbach and Schulz 2016; Van Poeck et al. 2020).

10.4.3 Connection From Micro-State to Micro-Action

At the micro-level, individual learning needs shape individual action
through the mechanism of learning. This learning process involves both
the creation of the new and the discarding of the old (van Oers et al.
2023; Van Mierlo and Beers 2020). The components that influence this
learning process will be detailed in the following sections.

10.4.3.1 Learning Space

Learning in STs is generally described as occurring across various
domains, levels, and collective entities. However, Beers et al. (2019)
suggest that the effectiveness of learning processes in STs is fundamen-
tally contingent upon their congruence with the elements of the specific
learning space. In a similar vein, Singer-Brodowski (2023) advocates for
the shaping of suitable learning spaces rather than directly intervening
in the learning process itself. Consequently, it is important to delin-
eate and increase focus on the different learning spaces, both actual and
conceptual, that are prevalent within STs.
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Among the literature, different learning spaces have been outlined,
each with a unique focus depending on the originating discipline. In
transition management, Beers et al. (2019) refer to arenas that emphasize
learning within and between local and global loci, each space consisting
of differentiated learning about knowledge, constituencies, values, activ-
ities, interests, goals, and roles. In sustainability science, Wittmayer
and Schäpke (2014) describe societal learning spaces as co-constructed
collaboratives where science and society join forces to address sustain-
ability issues, create solutions and actionable experiments, and gain
new knowledge, with a focus on learning about the ownership, and
nature of sustainability, power relations, and action goals. In design
science, Öztekin and Gaziulusoy (2019) suggest a three-tiered embedded
learning space, comprising specific, community, and global contexts,
which interplay through learning about concrete actions, theoretical
codes, meanings, and purposes. In innovation studies, Bos and Brown
(2012) define creative spaces as platforms of radical ideas where stake-
holders come together to learn about new ideas, visions, and agendas.
In urban studies, Von Wirth et al. (2019) describe urban arenas as
co-creative collaborative spaces in cities for engaging with the local
community for systemic sustainable innovation design and testing. In
educational sciences, Singer-Brodowski (2023), and in policy sciences,
Voß and Bornemann (2011), describe the creation of discursive spaces
as informal and individual-accessible platforms for societal discussion
to learn about the diverse normativity-base of action propositions of
collective concern.

Across these diverse spaces in STs, individual learning is often consid-
ered implicit, and thus the true effectiveness of learning is difficult
to establish. However, there’s a growing recognition of supplementing
implicit individual learning with explicit formal and professional educa-
tion in these settings (e.g., Bögel et al. 2019; Von Wirth et al. 2019; Van
Poeck et al. 2020; Van Mierlo and Beers 2020).
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10.4.3.2 Learning Approaches

The existing body of literature provides a clear shared understanding
that experiential (i.e., learning from experiences) and social (i.e., learning
from interaction) are the two primary approaches to learning in sustain-
ability transitions. In deep interplay, the two approaches result in cogni-
tive (e.g., new solutions, mental models, knowledge, skills) and relational
(e.g., relationships, trust, empathy) capital (Van Mierlo and Beers 2020;
Scholz and Methner 2020; Beers et al. 2014). Despite the integral nature
of the two, due to the differences in nature and consequent reliability of
feedback from the two approaches, for analytical purposes, it is best to
maintain a separation of the two approaches.

Experiential learning, influenced by Dewey’s (1916/1997) pragmatic
learning theory and encompassing learning by doing and reflective prac-
tice, is essential in transition management, emphasizing learning from
experiments and reflection at different stages (Vande Kerkhof and Wiec-
zorek 2005; Luederitz et al. 2017b; Svare et al. 2023; Turnheim et al.
2015; Van Poeck et al. 2020; Van Mierlo and Beers 2020). Experi-
mentation can take various forms, such as larger transition initiatives
(e.g., Bos and Brown 2012), smaller bounded-sociotechnical experiments
(e.g., Brown and Vergragt 2008), urban living labs (e.g., Von Wirth
et al. 2019), and innovation experiments (e.g., Beers et al. 2014). In
experiential learning for the individual, extending reflection beyond the
mere outcomes of experimentation to actor-relevant attributes, such as
legitimacy and relevance, is key (Turnheim et al. 2015).

Social learning–drawing fromWenger’s (2000) community of practice
theory, Bandura’s (1977) social learning theory, and Nelson and Winter’s
(1982) evolutionary theory of economic change involves learning from
each other (observation, sharing of knowledge, and imitation) and
learning with each other (creating shared or divergent understanding and
meaning-making) in a connected social setting (e.g., Kemp et al. 2007;
Rauschmayer et al. 2015; Van de Kerkhof and Wieczorek 2005; Beers
et al. 2014; Svare et al. 2023; Van Mierlo and Beers 2020; Scholz and
Methner 2020; Beers et al. 2019; Voß and Bornemann 2011; Brown and
Vergragt 2008; Safarzyńska et al. 2012).
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Social learning is informed by the diverse values, knowledge, and
interests of the multistakeholder environment (Van Mierlo and Beers
2020). Learning with each other can either serve the role of inte-
grating perspectives and creating interdependence among actors for
acting in concert or embracing the diversity of perspectives for inno-
vation and generating alternative pathways for transitions; however, the
general perception is that STs require balancing between consensus and
conflict, as both elements serve a purpose (Van Mierlo and Beers 2020;
Scholz and Methner 2020). Beers et al. (2019) emphasize that effective
social learning is a shared process among contextually diverse entities
that, through externalization, internalization, negotiation of common
meaning, and integration (based on Beers et al. 2006), focuses more
on translating perspectives than merely transferring them. Conflicts, if
harnessed appropriately, can provide significant learning opportunities,
whereas unaddressed, might lead to divided and differentiated learning
among conflicting communities (Cuppen et al. 2019; Beers et al. 2014).
Effective conflict management strategies include, for example, Schön
and Rein (1994) frame reflection to clarify underlying perspectives and
their impact on actionable issues for critical examination and reframing
(Voß and Bornemann 2011; Brown and Vergragt 2008) and Rip (1986)
approach of using controversy as an informal technology assessment
and leveraging diverse viewpoints for further exploration in a widened
social setting for more informed and deeper social learning (Voß and
Bornemann 2011; Cuppen et al. 2019).

Social learning is fundamentally a process of learning in interaction,
where individual and collective understanding is constructed in dynamic
interplay (Scholz and Methner 2020) based on Reed et al. (Brown
and Vergragt 2008; Van Mierlo and Beers, 2020; 2010). As learning is
differentiated among collectives (Safarzyńska et al. 2012), including tran-
sition arenas (e.g., Brown and Vergragt 2008; Beers et al. 2014; Scholz
and Methner 2020), businesses and organizations (e.g., Bögel et al.
2019; Duygan et al. 2021), and networks (Goyal and Howlett 2020),
individual learning can be considered contingent on the differentiated
community it is connected to, thus making collective composition and
its internal dynamics, influential factors for learning. Furthermore, Beers
et al. (2014) demonstrate the importance of extending social learning
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beyond collectives to the wider social environment. Relating to this,
transition management has faced criticism for overlooking the speci-
ficities of internal (e.g., power and politics) and outer dynamics (e.g.,
democratic legitimacy) (Rauschmayer et al. 2015). Voß et al. (2009)
illustrate the importance of social learning-related procedural issues in
enabling constructive learning dynamics—such as inclusivity, diversity,
representativeness, power balance, and transparency—essential for legit-
imizing learning outcomes and, subsequently, the reflexive governance
approach directing STs. Additionally, effective social learning in STs is
often considered to necessitate some form of subtle guidance, making
the inclusion of a facilitator (e.g., project monitor, researcher, knowledge
broker) instrumental (Wittmayer and Schäpke 2014; Van de Kerkhof
and Wieczorek 2005; Lähteenoja et al. 2022).

10.4.3.3 Learning Forms

Scholars in the field almost unanimously refer to different forms of
learning, drawing on Argyris and Schön (1978), and Bateson (1972)
conceptualizations of multiple loops of learning (e.g., Van de Kerkhof
and Wieczorek 2005; Broto et al. 2014; Van Mierlo and Beers 2020;
Van Poeck et al. 2020; Lähteenoja et al. 2022). In its most basic form,
learning is zero-loop learning, characterized by automatic, conditional
responses to situations. First-loop learning is a feedback-based reflective
adjustment of responses within existing frames of reference. Second-loop
learning involves deeper reflection and questioning of the current frames
themselves, leading to a possible reconfiguration of responses based on
new interpretations of situations. Third-loop learning includes meta-level
reflection, such as learning about learning and learning how to transform
the frames that generate learning. Thus, the learning loops represent a
progression from conditioned learning to incremental, extended, and
transformative change in the frames that generate responses to a given
situation (Argyris and Schön 1978; Bateson 1972). Van Mierlo and Beers
(2020) [based on Senge (1990)] note that feedback is a key challenge
to learning in transitions, as in complex settings, feedback often comes
from the immediate results of actions, neglecting the indirect, long-term,
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or elsewhere realized consequences, thereby possibly misrepresenting the
reality of reflection.

In STs, first- and second-loop learning are prominent. First-loop
focuses on acquiring solution-based knowledge via cognitive analysis,
while second-loop learning, critical for breaking path dependency and
lock-in, delves into understanding problems and solutions through
normative analysis (Van de Kerkhof and Wieczorek 2005; Van Mierlo
and Beers 2020). Third-loop learning, while less explored in ST studies,
focuses on changing the underlying operative theories within organiza-
tions, which guide decision-making and behaviors (Argyris and Schön
1978; Bateson 1972). Singer-Brodowski (2023), based on Mezirow’s
(1978) transformative learning, argues for the importance of extending
the focus beyond organizational frames to the frames of individuals influ-
encing in various informal collectives (e.g., multiprofessional networks)
and thus facilitating more systemic learning in STs.

Empirical research on learning in STs, though limited (Van Poeck
et al. 2020), mainly confirms the prevalence of first- and, to some
extent, second-loop learning (e.g., Lähteenoja et al. 2022; Broto et al.
2014; Brown and Vergragt 2008; Svare et al. 2023). Third-loop learning,
while generally considered essential for sustainability transitions (Singer-
Brodowski 2023), lacks extensive empirical support. In this literature
review, only two studies confirmed empirically the existence of third-loop
learning (see Bos and Brown 2012; Svare et al. 2023). Consequently,
Lähteenoja et al. (2022) caution against favoring one learning form over
others based on generalized assumptions, as the effectiveness of learning
in transitions ultimately depends on the specific context (e.g., transition
phase and timing) and the involved actors (e.g., existing competencies).

10.4.4 Micro-Action

A fundamental objective of transition activities is to equip and enable all
members of society to contribute to the advancement of sustainability
within their respective realms (Rauschmayer et al. 2015) based on Loor-
bach (2007) and Luederitz et al. (2017b). Van de Kerkhof andWieczorek
(2005) note that while diversity among actors in transitions fosters
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learning, a degree of homogeneity is considered crucial for effective
coordination. Homogeneity can be considered in terms of competen-
cies to outline generalizable learning outcomes that enable individuals to
influence the evolution of the transition. Research has generated various
competencies in the context of transitions [e.g., Raven et al. 2010; Loor-
bach 2010; Luederitz et al. 2017b; Svare et al. 2023) based on (Wiek
et al. 2011; Redman and Wiek 2021; Rauschmayer et al. 2015)], which
can be synthesized as the ability to: (1) reflect on the guiding princi-
ples and objectives for the system’s target state, (2) envision long-term
scenarios and identify uncertainties, (3) understand system dynamics,
structures, and connections, which comprise the systemic functioning
of the whole, (4) innovate and use creativity to generate new solutions,
(5) build relational capital for collective action, (6) integrate diverse
perspectives and logics across the system, (7) construct, experiment, and
implement change strategies, (8) monitor, evaluate, and adjust to system
evolution, (9) exercise agency within one’s relative realm, (10) self-reflect,
learn, and adjust one’s position and role within the system.

Competencies empower individuals to exercise agency effectively
(Duygan et al. 2021). The effectiveness of competencies relies on an
individual’s ability to appropriately employ a set of competencies to
address a particular situation (Svare et al. 2023), the correspondence of
those actions with others in an interdependent environment (Safarzyńska
et al. 2012), the activation of essential supportive resources for a specific
practice (Duygan et al. 2021), as well as pairing competencies with
a suitable form of agency. Individual agency is distributed across the
system and manifests in various forms in transitions, ranging from the
informal agency (e.g., lifestyle choices) (Rauschmayer et al. 2015) to the
formal agency (e.g., institutional entrepreneurship) (Duygan et al. 2021).
Furthermore, (Partzsch 2017) suggests agency in STs takes predomi-
nantly three forms: “power with” is agency empowered by the collective
to act by shared values; “power to” is self-empowered agency to unidi-
rectionally inflict change by one’s values; and “power over” is relationally
empowered agency to shape the actions of others.
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10.4.5 Connection from Micro-Action to Macro-State

Based on the literature, the role of individual agency in influencing
processes that structure and inform the functioning of the system in
transformation is based on two types of complementary mechanisms:
(1) co-evolutionary mechanisms of variation, selection, and retention, as
well as (2) relational mechanisms of diffusion, mutation, migration, and
scaling.

A co-evolutionary perspective suggests that change in one part of
the system influences another, which leads to gradual evolution across
levels, driven by changes within and among various interconnected enti-
ties at each level (Kemp et al. 2007). Although co-evolution focuses
on the broad strokes of change, individual changes are ground zero for
realized impact across the system, as exemplified by Safarzyńska et al.
(2012): individual exploration and learning foster a variety of practices
that become selected for their utility to both individuals (i.e., indi-
vidual selection) and collectives (i.e., group selection), which evolve
into Meso-level rules that disrupt existing coordination and to new
macro-level interaction patterns, resulting in simultaneous decoordi-
nation and recoordination of structures that create realignment and
propel the system toward self-organization and coevolution ultimately
culminating in structural changes and the emergence of novel system
properties (Safarzyńska et al. 2012) based on Dopfer, (2006). Moreover,
with growing interest in the deliberate construction of knowledge and
learning systems in STs (e.g., Oliver et al. 2021; Luederitz et al. 2017b;
Svare et al. 2023), the individual agency can be seen to have an increasing
part in shaping these evolutionary processes through the aggregation of
inputs and the design of such systems.

A relational perspective to change in transitions is proposed by
Affolderbach and Schulz (2016), where individual actors act as practice
carriers across entities, places, and levels within sustainability transitions,
and through the interactions and inter-connectedness of individuals in
larger sociospatial contexts (e.g., cities) diffuse and mutate into unique
“assemblages of innovation.” This underscores the importance of indi-
vidual agency in spreading variations across the system by diffusing them
deeper into surrounding contexts, migrating them into other contexts,
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and scaling them into broader contexts (Öztekin and Gaziulusoy 2019;
Von Wirth et al. 2019; Bos and Brown 2012).

10.5 Discussion

Societies currently find themselves amid multiple parallel STs initiated
to respond to the urgent need for sustainable change on a massive scale.
AI is seen as possibly the single most potential technology to accelerate
sustainable development (Gupta et al. 2021; VanWynsberghe 2021), but
an understanding of where and how that impact is realized in the system
is lacking. Most works on the subject are sectoral studies of various AI
tools utilized in improving sustainability outcomes, e.g., food (Camaréna
2020) or energy systems (Nizetic et al. 2023). As STs are predicated on
the function of human learning systems that are social systems with high
levels of human agency, they have so far been generally dismissed as
impregnable to meaningful AI integration. The dominant frameworks
used in conceptualizing and managing sustainability transitions focus on
the macro- and meso-levels of the system and collective change and, as
such, arguably cannot fully respond to the need to effectively manage
these transitions or to discover how AI could help. This research has
opened up the multiple tiers in these frameworks, all the way down to
the foundational micro-level processes of learning that drive STs, and
related them to the macro-level. In doing so, an integrative multilevel
framework is provided that reveals the factors and mechanisms inside
the complex adaptive learning systems found in transitions toward more
sustainable paradigms and thus enables further exploration into possible
human-AI learning synergies.
The paradigm is carried by situational mechanisms (narratives, gover-

nance, and initiatives) across nested levels to individuals. As the indi-
vidual becomes instilled with new cues of values, processes, and actions,
reframing ways of being and doing things, discrepancies may arise.
These discrepancies, depending on the individual’s metacontext, bring
forth different kinds of learning needs in practicing agency. Learning
is an action-formation mechanism to alleviate those discrepancies, as
individual agency is empowered by competencies. Learning processes
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are formulated in a combination of spaces, approaches, and forms of
learning, leading to different learning outcomes. When individuals prac-
tice agency across the system, through transformational mechanisms
(evolutionary and relational), learnings accrue into emergent transition
capabilities of the whole, which further shape the trajectory of the
system.

Opening up the mechanisms underlying the learning in STs illumi-
nates further opportunities for facilitating transitions. Once individual
learning is triggered, it can be effectively fostered by the creation of
fitting conceptual and actual conditions, i.e., learning spaces. AI deep
learning generative models, i.e., multi-layered non-linear learning and
syncretization of novel data (Bian and Xie 2021), could be utilized in the
re-arrangement of conceptual learning spaces to process, integrate, and
subsequently re-interpret existing disciplinarily separate research and data
from conceptual learning spaces into potentially improved configurations
that frame learning in STs. The de facto use of AI in learning extends the
actual learning spaces into the digital sphere, which brings possibilities
for creating more structured conditions for learning via evidence-based
monitoring and assistance to individual learning. However, as evidenced
by AI-enabled adaptive learning platforms developed for educational
settings, the effective utilization of such platforms requires considerable
design effort to result in fit-for-purpose benefits (Kabudi et al. 2021).
However, if digital learning spaces are modeled successfully, it would
enable the scalability of such spaces more effectively.
Within STs, competencies are developed primarily through experien-

tial or social learning. Effective experiential learning requires systematic
data collection, analysis, and contextual reflection on the initiatives and
experiments conducted, which can often be neglected (Sætra 2023). AI
has tremendous potential to support this by managing the collection,
linking, cross-referencing, preliminary analysis, and contextualization of
data in connection to STs, thereby addressing some of the problems in
establishing effective feedback (Camaréna 2020; Sætra 2023; Pan and
Nishant 2023). For social learning approaches, on the other hand, direct
intervention by AI remains too challenging for current AI solutions,
but they should instead be used to facilitate appropriate social interac-
tion processes and connections (Pan and Nishant 2023). This could be
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enacted, e.g., by using AI evolutionary learning through swarm intelli-
gence tools to foster participatory and negotiation-like social learning,
which, via real-time human input and AI optimization, has shown
improved intelligence in business contexts (Metcalf et al. 2019).

AI can also “move the goalposts” in terms of the general competencies
for sustainability that should be achieved. Most of the currently targeted
competencies can be directly supported or elevated by the thoughtful
application of different AI tools, thereby accelerating the achievement of
a functional level of competence by the individual. This would have an
empowering effect on the broader learning system, as with the support
of AI, an even higher share of the agents within the system will be able to
independently evaluate and align their activities correctly by relying on
narrative and metacontextual cues to produce co-evolutionary systemic
change without direct management from the top-down—in essence,
transforming larger portions of the whole into a true complex adap-
tive system state. This would bolster the correctness and effectiveness of
selection at the level of transformative mechanisms, granting agents the
possibility to better evaluate beneficial variations to solidify at the macro
level.

It is evident that AI–human-empowered learning systems in STs are
currently set to primarily operate through the decentralized applica-
tion of AI tools harnessed independently by individual agents embedded
in different group, organizational, and network contexts at the micro-
level, as envisioned in some sectoral studies (e.g., Camaréna 2020;
Nizetic et al. 2023). As with other sustainability competencies, we will
undoubtedly need to learn through experimentation and iteration to
discover the optimal combination of different AI models that can tap
into the complex essence of learning in STs for each agent. Therefore,
as we progress, the utilization of AI ensemble learning, i.e., a combi-
nation of learning models for improved fit (Zounemat-Kermani et al.
2021), seems appropriate, as there is no “one size fits all” solution to
be discovered in pursuing human-centric AI implementation for meta
contextually differing individual learners. The application of AI to the
critically important learning system for STs is not without risks. With the
emergence of AI-empowered agencies, transparency, and consciousness
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over deployed AI tools and their underlying algorithms are impera-
tive. It is vital to ensure that AI’s role in influencing individual agency
forms promotes “power to” and “power with” by providing individuals
with accurate knowledge and suitable tools for acting on their own and
shared values and objectives, instead of contributing to “power over”
AI manipulation. This is also echoed by increasing research interest in
the development of explainable and trustworthy AI in domains where
AI-empowered agencies could have profound societal implications (e.g.,
Markus et al. 2021). AI as a technology paradoxically can capture
many of the flaws distinct to human learning, and as such, it stands
to exacerbate issues with power, politics, and democratic legitimacy
already problematic in STs. Due to how AI works, it has a documented
tendency to reinforce path dependencies, replicate and even strengthen
the embedded patterns of bias within the data and decisions it learns
from, and result in preferential outcomes (Camaréna 2020; Vinuesa et al.
2020; Pan and Nishant 2023). As AI helps to solve sustainability issues,
its development and application also generate new ones (Gupta et al.
2021), e.g., a greenhouse gas produced in training AI models (Strubell
et al. 2019) or widening the digital divide between developed and devel-
oping nations (Vinuesa et al. 2020). Therefore, further integration of AI
into human learning requires an additional AI literacy competency for
individuals to assess the extent to which AI tools can be used effectively,
reliably, and ethically to facilitate learning (Miao et al. 2021).
The integration of AI into the human learning system is likely to

happen in stages, where the adoption of much of the first generation of
AI-empowered learning systems is already possible. The first generation
of AI-empowered learning will result from the diffusion of generic-
purpose AI among individual learners, such as advanced generative AI
tools (e.g., ChatGPT 4.0) that are already able to provide significant
algorithmic assistance to most knowledge-related tasks (Ritala et al.
2024) and provide much of the needed functionality. Such AI excels
and functions largely on first-loop learning and becomes less applicable
the more sensemaking and higher-order learning are required (Pan and
Nishant 2023), naturally leading us to the discussion on how responsi-
bilities and roles in human–AI collaborative learning systems would be
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shared in the second and further generations of human–AI collaborative
learning.

10.6 Conclusions

In this integrative literature review, we have illuminated the significance
of individual learning in the multilevel embedded context of STs and
delineated the underlying influential factors and mechanisms for a more
concise theoretical understanding. The employed methodology limits the
study to the material in the literature sample, and as such, future studies
are invited to empirically relate these findings in different ST contexts to
bridge theory and practice.
The analytical framework we have outlined, and the possible AI-

human synergy points elaborated, offer a valuable baseline to which
distinct STs (e.g., hydrogen economy or regenerative industry) can build
to further analyze context-specific learning and design more explicit
knowledge and learning systems—an emerging interest in transition
practice and research.

Moreover, as human–AI integration deepens, there is an exciting
opportunity for research to explore how this convergence alters roles
(e.g., how does AI impact the role of individual learning in different
tasks) and learning dynamics (e.g., how does the integration of AI
impact social learning dynamics) within STs and, as such, contributes
to the emergence of potentially new influential factors and mechanisms.
During these initial stages of human–AI-empowered sustainability tran-
sitions, much remains to be discovered, underscoring the essential need
for continued research to map and elucidate the realized effects of
augmented intelligence for the agents involved and for the dual transition
in progress.

In summation, human–AI empowered learning systems are only as
effective as the paradigms and models they are conceptualized and
trained by, the individual learners and data points from which the system
extrapolates information to appropriately direct its trajectory, as well
as the structural connectors and algorithms that underpin the system’s
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capacity for self-organization of the whole and co-evolutionary devel-
opment among its parts. The interplay of these elements highlights the
imperative to thoughtfully navigate human–AI collaborative learning by
leveraging both systemic (macro) and individual (micro) perspectives for
transparency throughout processes to ensure the identification of limiting
factors for managing inherent risks and enabling factors for creating
synergy benefits. This facilitates the optimized division and merging
of roles and responsibilities between humans and AI for an improved
learning function to steer sustainability transitions.
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11
Machine Learning Promoting Sustainable
Customer Behavior and Product Pricing

Katayoon Pourmahdi, Anna-Greta Nyström,
and Amin Majd

11.1 Introduction

A more sustainable approach to marketing strategies helps firms protect
the environment ecologically and leads to better organizational perfor-
mance (Håkansson et al. 2005).

Sustainability concerns have become a highlighted topic influencing
the marketing strategies of companies, particularly as regards product
pricing strategies. Sustainable marketing is defined as a process involving
the planning, implementation, and control of pricing, promotion, and
distribution of products that reconciles ecological and economic factors
(Fuller 1999; Sheth and Parvatiyar 1995). Although pricing strategies
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are currently attracting attention from marketers and policymakers, few
academic investigations specifically focus on pricing strategies. This topic
has not been as extensively theoretically developed as other marketing
subjects, such as promotion, product, and distribution (Hinterhuber
2004; Ingenbleek 2014; Liozu et al. 2012; Liozu and Hinterhuber 2013).
Empirical studies show that only a few academic articles published in
leading marketing journals have incorporated pricing strategies (Hinter-
huber 2004; Liozu et al. 2012). Nevertheless, the pricing strategies of
firms are becoming an important buying criterion for price-sensitive
consumers (Belz and Peattie 2014; Hinterhuber 2004); in times of
increasing energy prices and a focus on saving fuel energy, products are
awarded labels indicating their energy efficiency levels, corresponding to
different prices (Fuller 1999).
To address concerns regarding sustainable product pricing and price-

sensitive customers’ behavior, big data analytics powered by artificial
intelligence (BDA-AI) is being used to assist companies in identifying
influential factors affecting customer purchase decision-making (Dubey
et al. 2020). More precisely, adapting Machine Learning (ML) methods
offers a powerful tool for marketers to analyze and identify interactions
within large quantities of data. Consequently, this chapter focuses on
pricing decisions and sustainable consumer behavior, employing descrip-
tive and predictive analytics using ML methods to visualize patterns and
predict sustainable customer behavior. We aim to answer the following
research questions:
What factors, in addition to price, influence customers’ decision-

making process when choosing sustainable food products that address
sustainability concerns in their production processes? What is the likeli-
hood of customers choosing sustainable food products over regular food
products? The first research question aims to develop a theory-driven
model for studying the topic, whereas the second research question show-
cases how descriptive and predictive analytics using ML methods can be
deployed. From a theoretical standpoint, we review behavior theories to
identify the main components affecting customer behaviors, such as atti-
tudes, intentions, and habits. Then, using these theories, we propose a
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study model that showcases the inputs, exogenous factors, and hypothet-
ical constructs of sustainable customer behavior that inform the empir-
ical analysis. Finally, we develop a data-driven model utilizing descriptive
and predictive analytics using ML methods, specifically visualization and
logistic regression, to explore customers’ purchasing behavior regarding
sustainable products.

11.2 Consumer Purchase Behavior
and Pricing Strategies: An Overview
of Previous Research

This section presents an overview of theories related to consumer
behavior in purchase decision-making, and pricing strategies. The review
aims to explain the decision-making process, which will subsequently be
examined using ML methods.

11.2.1 Consumer Behavior in Purchase
Decision-Making

Success in creating a sustainable marketplace depends on developing a
comprehensive understanding of consumer intention, their perception of
purchasing sustainable products, and the barriers consumers encounter
during the decision-making process to prevent sustainable consumption.
By delving into the realm of consumer attitude, intention, habit, and
behavior, researchers have endeavored to construct and evaluate models
that forecast the drivers and barriers influencing sustainable consumer
behavior (Ma et al. 2018). The following explanation of related theories
gives a flavor of some important concepts related to consumer behavior.

According to the theory of planned behavior, the main determinant
of consumer behavior is intention. Theoretically, a particular human
behavior can be predicated by its intention, which is influenced by
three core components: the subjective norm, the individual’s behavioral
attitudes (values, beliefs, and norms), and perceived behavioral control
(Ajzen 1991). This theory was developed to predict an individual’s
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intention to engage in a certain behavior at a specific place and time.
Alphabet theory offers a detailed description of the relationship between
habits, intentions, and the actual behavior of consumers. This theory was
formulated through the synthesis of two environmental behavior theo-
ries: attitude–behavior–context theory and value–belief–norm theory.
According to alphabet theory, knowledge, information-seeking, demo-
graphics, and context are the main components that affect human
attitudes (Martínez-Carrasco Martínez et al. 2023; Sadeli et al. 2023;
Taghikhah et al. 2021; Zepeda and Deal 2009). The rational choice
theory is an early theory clarifying the understanding of the social, envi-
ronmental, and economic behavior of customers. It has been used to
describe the link between perception and human behavior in different
contexts. According to this theory, an individual conducts a cost–benefit
analysis before making an actual purchase decision (Zepeda and Deal
2009).
Inspired by the theories of planned behavior, alphabet theory, and

rational choice theory, Fig. 11.1 illustrates a framework for capturing
consumer behavior in purchase decision-making. Consequently, the
components affecting individual attitudes are demographics, knowledge,
information seeking, and context, while attitudes, habits, and context
affect intention, intention, and habit subsequently affect behavior.

11.2.2 Capturing Consumer Behavior
for Sustainable Product Purchases

Several theories and models, such as the Nicosia, Eagle, Kollat, and
Blackwell models, have been proposed to explain consumer behavior and
its influence on marketing strategies (Juan et al. 2017). A commonly
used theory is the Howard–Sheth model, according to which consumer
behavior theory, input, and external factors can provide various messages
that can be crucial in customer purchasing decisions (Howard and
Sheth 1969; Sheth 2011). The model claims that the effects of atti-
tude on purchases are only possible through intention (Howard and
Sheth 1969; Juan et al. 2017) and suggests three levels of consumer
decision-making. These three categories are extensive problem-solving,
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Fig. 11.1 Overview of consumer behavior in purchase decision-making

limited problem-solving, and habitual response behavior. These cate-
gories comprise four components of consumer behavior: input variables,
hypothetical constructs, exogenous variables, and output variables. The
input variables consist of three stages: significative, symbolic, and social.
The output variables occur in a logical sequence, beginning with atten-
tion, brand comprehension, attitudes, and intentions, and ending with
purchase. Hypothetical factors affect inputs and outputs’ learning and
perception constructs (Juan et al. 2017; Sheth 2011).

In line with consumer behavior theories and the logic of the Howard–
Sheth model, we adopted four sets of dimensions in our study: input
variables (product characteristics), hypothetical construct (customers’
intentions, attitudes, and habits toward sustainable products), output
variables (sales performance of sustainable products), and exogenous
variables, which are not directly involved in decision making (demo-
graphic information). This study model simulates the real world and
aims to attain a comprehensive understanding of the factors influencing
sustainable consumer behavior. In Fig. 11.2, we identify the demographic
information, product characteristics, and customer intentions, attitudes,
and habits as determinants affecting sustainable consumer behavior.
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Fig. 11.2 Study model of customer behavior of sustainable product purchase

11.2.3 Pricing Strategies

Setting optimal pricing strategies requires the company to commit to
objectives, actions, and operational strategies and to employ a set of
control and review procedures. The marketing process of a company
involves strategic choices that impact the type of pricing employed by
the firm. Factors such as customer demographics, behavior, and product
details all influence pricing. It is important to acknowledge the input
required from departments such as accounting, research and develop-
ment, sales, marketing, and manufacturing to implement optimal pricing
strategies (Kotler and Keller 2016; Lancioni 2005). Moreover, the imple-
mentation of optimal pricing strategies is influenced by several key
concepts, including market segmentation (Daraboina et al. 2024; Tynan
and Drayton 1987), price elasticity of demand (Bijmolt et al. 2005;
Whitaker 1988), and the concept of premium pricing (Anselmsson et al.
2014; Ashraf et al. 2017; Juan et al. 2017).

11.2.3.1 Pricing Strategy Development Based on Market
Segmentation

Market segmentation enables marketers to address the diversity of
consumers and their behaviors (Tynan and Drayton 1987). Sustain-
ability market segmentation, in turn, divides heterogeneous markets into
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smaller ones. Thus, marketers vary their offerings to meet the evolving
needs of customers regarding sustainable products. The four major vari-
ables used for market segmentation are geographic (customer’s place of
residence), behavioral (final decision to purchase), demographic (age,
gender, and family size), and psychographic variables (attitude, inten-
tion, and habit) (Fuller 1999; Tynan and Drayton 1987). Considering
consumers’ perception of sustainability, which in turn influences their
attitudes, intentions, and behaviors, the implementation of different
pricing strategies based on the four major variables of sustainability
market segmentation can create a win–win-win situation for consumers,
firms, and society (Hempel 2024; Zhang and Zheng 2022). To clarify,
traditionally, customers and businesses have been considered two parties
in a competitive transactional game. In business transactions, price is a
tentative quotation offered by the seller to a potential customer, which
can be either accepted or refused. However, from a new competitive
perspective, sustainable marketing considers the environment as a new
party. All parties underpin transactions and aim for mutual success,
making the integration of environmental costs into product prices a vital
step (Fuller 1999).

11.2.3.2 Price Elasticity of Demand

By considering the price elasticity of products, decision-makers can
calculate customers’ willingness to pay for the product at different price
points (Bijmolt et al. 2005). According to the price elasticity of demand
devised by Marshall (2011), the formula for the coefficient of price elas-

ticity of demand for products X i (1, 2) is, e(R) =
dQ
Q
dP
P
, where dQ

Q

represents the percentage change in demand for the good, and dP
P is

the percentage change in the price of the good. Although the demand
for products generally moves in the opposite direction from their price,
the impact of price changes can vary. The demand for some products is
not significantly affected by changes in their prices, while the demand
for others is highly responsive to price changes. The price elasticity of
the demand for a product measures the percentage change in demand
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divided by the percentage change in its price. Products with high elas-
ticity are considerably sensitive to price changes, whereas products with
low elasticity are less responsive to price fluctuations (Auer and Papies
2020; Bijmolt et al. 2005; Ma et al. 2018; Marshall 2011; Whitaker
1988). The elasticities change according to the retailers, the manufacturer
brand, location, time trend, stage of the product life cycle, household
disposable income, inflation rate, and, importantly, the product category
(Bijmolt et al. 2005).

11.2.3.3 Premium Pricing

From a sustainability perspective, the prices of sustainable products are
higher than those of unsustainable products under normal competitive
conditions (Ingenbleek 2015). The higher prices reflect the environ-
mental costs, aiming to reduce the destruction and waste caused by
production. This pricing strategy is known as premium pricing . Premium
pricing refers to the practice of a retailer pricing a product or service
above the market price in the same marketplace (Allsopp 2005; Fuller
1999; Juan et al. 2017).

According to Ottman (1993), customers are more likely to be recep-
tive to green product prices when their primary needs for afford-
ability, convenience, quality, and functionality are met. Additionally,
as customers become more aware of environmental issues, the ecolog-
ical attributes of products can influence their final purchase decisions
and motivate them to pay premiums (Fuller 1999; Juan et al. 2017).
In a typical market setting, customers seek products and services that
meet their needs. It is important to recognize that a clean and habitable
ecosystem is also a legitimate need; thus, customers must be aware of and
prioritize the relationships between consumption decisions and environ-
mental quality. To obtain environmental benefits, the five eco-cost drivers
that may impact the unit cost structures are as follows: (1) product
inputs of raw materials and energy; (2) process, facility, and manage-
ment; (3) fugitive emission clean-up; (4) environmental legal action; and
(5) routine regulatory compliance (Fuller 1999).
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Primarily, the significance of the concepts above becomes even more
important when considering sustainable products, which often have
higher prices compared to regular products (Fuller 1999; Ingenbleek
2015). In this chapter, our results show that customers need to be
segmented according to their needs and preferences. Companies must
consider their profitability, costs, and external competitive dynamics.
Additionally, product elasticity is measured to facilitate the implementa-
tion of optimal pricing decisions. Finally, customers must be convinced
that the higher prices of sustainable products are a legitimate need,
not only for our generation but also for future generations (Kotler and
Armstrong 2010). To achieve this goal, in the following section, we
analyze real-world retail data using ML methods to extract the signifi-
cant features and position them effectively. We assume that ML methods
assist in making effective pricing decisions by considering significant
behavioral, demographic, and product features.

11.3 Descriptive, Predictive, and Prescriptive
Analytics

The integration of ML in business analytics takes place through three
distinctive analytical classifications (see Fig. 11.3): descriptive, predictive,
and prescriptive analytics (Greasley 2019). While descriptive analytics
(i.e., business intelligence) focuses on understanding past patterns and
events, predictive analytics and prescriptive analytics are oriented toward
the future, aiming to predict an outcome with a certain likelihood of
accuracy. Concerning model development and analysis, both predictive
and prescriptive analyses can be defined as methods utilizing histor-
ical data and using this data to make predictions. After importing
the training dataset into ML algorithms, the prediction model can
make predictions on new data. These analytics enable decision-makers
to address questions such as “What will happen?” and “What next?”
considering historical datasets and data-driven predictions. One should,
however, note that descriptive analytics mainly deals with structured
data, which is data that is processed by humans. Predictive and prescrip-
tive analytics process and analyze both structured and unstructured data
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using computer algorithms (El Morr and Ali-Hassan 2019; Lone and
Sofi 2022). The integration of ML into business operations provides a
powerful tool for optimizing processes, solving complex problems, and
making informed decisions within complex systems (Fishwick 1992).
Interest in integrating ML algorithms into business operations has gener-
ated a new stream of literature highlighting the importance of developing
specific capabilities in an organization before ML adoption. For instance,
Keegan et al. (2022) highlight that firms face challenges preceding ML
adoption in marketing. One specific challenge is the need to gain access
to large high-quality datasets and acquire the necessary technological
infrastructure for processing such data (procurement process). Further-
more, AI readiness and AI enablers have been proposed as core concepts
in developing ML capabilities. For instance, Baabdullah et al. (2021)
developed a conceptual model based on the technology-organization-
environment framework (TOE) for understanding the impact of AI
readiness and AI enablers on the acceptance of AI practices in the context
of business-to-business small and medium enterprises.

Fig. 11.3 Using ML in business analytics
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The application of ML in the food industry effectively simulates
its intangible aspects, including continuous feedback on the decision-
making process despite limited information. This is particularly evident
in the context of food policymaking, which requires long-term strategic
decision-making regarding consumer preferences and future scenarios
(Kler et al. 2022).
Integrating ML algorithms into the retail industry enables retailers

to collect, curate, and analyze vast amounts of customer data and
purchasing patterns. With this integration, retailers can predict demand
patterns accurately. Furthermore, it enhances inventory management,
demand forecasting, pricing optimization, and supply chain develop-
ment. An overview of data analysis types, such as numeric, text, voice,
and image/video data analysis, allows retailers to utilize and benefit from
ML. The strategic adoption of ML in the retail industry is thus impor-
tant for decision-makers but requires an understanding of how ML can
specifically benefit their operations and customers rather than following
trends or integrating ML into their businesses simply for public relations
purposes (Shankar 2018).
Decision-making through ML algorithms and computational

methods has been demonstrated by, for instance, Huiru et al. (2018),
who employed experiments and mathematical analysis to show how
customers shift their decisions toward other original alternatives when
there is another option. Furthermore, realizing the benefits of AI
requires interactive collaboration among suppliers, customers, and
AI in the development of value co-creation practices. This involves
adopting service-dominant logic and expanding critical capabilities in
business-to-business (B2B) marketing (Paschen et al. 2021).
To summarize, the primary motivation for employing ML methods

in the context of sustainable consumer behavior is the ability of these
methods to capture the complexities arising from interactions among
multiple agents (Huiru et al. 2018). However, in our study, the objec-
tive of the data-driven model is to examine customer decision-making
using ML algorithms and explore how organizations can influence
their customers’ behavior to purchase sustainable products rather than
unsustainable protein-based substitutes. The focus of this model is on
predicting the demand of consumers for sustainable products while
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changes in prices and the consumers’ perception of greenness occur in
the system.

11.4 Descriptive Analysis of Retail Data:
Vegetarian/Vegan Versus Meat-Based
Purchases

Based on the overview of pricing strategies, consumer behavior, and
especially the identified factors illustrated in Figs. 11.1 and 11.2, this
section develops a framework for further elucidating the factors influ-
encing sustainable food purchasing decisions and subsequently sustain-
able consumption. To exemplify how ML methods can aid in decision-
making, we assume that customers plan to purchase protein-based
products, which can be either vegetarian/vegan, or meat-based prod-
ucts. A protein-based food dataset from a food retailer was then used,
including information on customer clusters and their sales performance
over 5 years for two types of products, and the occurrence of nearly
one million sales. There are fifteen customer clusters and two protein-
based product types: vegetarian/vegan (P1) and meat-based (P2). In this
study, the sustainability concerns are limited to the production process
of vegetarian/vegan products, i.e., the product, its production process, or
the packaging highlighting green consumerism and sustainable action.
When consumers, acting as autonomous entities, arrive at the market-
place, they find both P1 and P2 items available in the retail store.
Each consumer has a product preference that reflects their perception of
sustainable consumption. During the decision-making phase, consumers
decide whether to buy P1 or P2 items and consider various factors, such
as the price. First, we evaluated the likelihood of each customer cluster
purchasing each product category. Then, logistic regression modeling
was applied to historical sales performance data to predict the purchase
performance of new customers. This analysis aims to provide insights
into purchasing patterns among different customer groups and forecast
future trends in sustainable food consumption based on the developed
framework of descriptive and predictive-analytic methods.
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As depicted in Fig. 11.4, the prices of protein-based products have
increased over time, and the upward slope of meat-based products is
sharper than that of vegetarian/vegan products. However, the average
price for vegetarian/vegan products is higher than their meat-based coun-
terparts. Additionally, it is observed that the demand for meat-based
products is higher than for vegetarian/vegan products. To understand
demand and price changes, we refer to the price elasticity of demand for
a product, which measures the degree of demand response to changes
in an economic factor. Contrary to common belief, it does not mean
that a lower price is more appealing to customers (Bijmolt et al. 2005).
Therefore, it is assumed that consumers can be persuaded to purchase
protein-based products at higher prices, considering factors such as
income level, family size, living location, educational level, age, and
gender.
The distribution of fifteen customer clusters across five popular outlets

is depicted in Fig. 11.5, illustrating the dominant customer clusters
in the market. Figure 11.6 and Fig. 11.7 illustrate the comprehensive
purchasing trends of each customer group for these two products during

Fig. 11.4 Price changes for meat-based and vegetarian/vegan products over
time
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five time periods. There is a higher likelihood that females aged 25–
44 are interested in vegetarian/vegan products. Thus, when measuring
the correlation between customer groups, including age and gender,
and sales performance, their correlation coefficient is 0.297, indicating
a positive correlation. Additionally, the p-value is significantly less than
0.05, suggesting strong evidence that there is a correlation between the
customer group and the sales performance of vegetarian/vegan products
(Table 11.1).
The sales performance of vegetarian/vegan products has declined over

time, which suggests that the higher prices of vegetarian/vegan prod-
ucts during this period must have affected price-sensitive customers. We
can describe this trend in customer purchase performance by employing
the salience theory established by Bordalo et al. (2012). The assump-
tion is that there are two types of consumers in the market: one type
of consumer is more sensitive to price while the other is more sensi-
tive to greenness and these decision-makers assign higher importance
to the product’s salient attribute (Balcombe et al. 2021; Bordalo et al.

Fig. 11.5 Distribution of customer groups in the top five popular outlet IDs
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Fig. 11.6 Monthly sales performance of product types for females aged 35–44

Fig. 11.7 Monthly sales performance of product types for females aged 25–34
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Table 11.1 Sample generation for the literature review

Customer group Meat-based purchase (%)
Vegetarian/vegan purchase
(%)

Female, − 24 64.41382 35.58618
Female, 25–34 62.35827 37.64173
Female, 35–44 65.9257 34.0743
Female, 45–54 70.14261 29.85739
Female, 55–64 72.65657 27.34343
Female, 65–74 74.59792 25.40208
Female, 75 + 79.20754 20.79246
Male, − 24 80.66654 19.33346
Male, 25–34 70.07245 29.92755
Male, 35–44 70.81305 29.18695
Male, 45–54 75.3744 24.6256
Male, 55–64 80.35555 19.64445
Male, 65–74 80.77859 19.22141
Male, 75 + 86.04237 13.95763

2012). Type one (pk ) gives a higher weight to price in their decision-
making process, while greenness receives the top ranking for type two
(qk ). According to the salient thinker, the evolution of weight given
by a customer’s utility (U LT ) for greenness and price over time can be
described using the following utility formulas: (1) price-sensitive and

(2) green-sensitive customers. (1) U LT (qk ) = θ1
(

δ
δθ1+θ2

)
qk − θ2(

1
δθ1+θ2

)
pk and (2) U LT (qk ) = θ1

(
1

θ1+δθ2

)
qk − θ2 _

(
δ

θ1+δθ2

)
pk.

In this context, θ1 and θ2 denote the utility weights, and their sum is
equal to 1. δ captures the degree of consumers’ salient thinking: δ (0 < δ
< 1). The smaller δ, the higher the level of consumers’ salient thinking.
If customers prefer greenness, the provided equations indicate that the

weight of greenness increases over time as θ̂k1 = θ1

(
1

θ1+δθ2

)
> θ1,

and simultaneously, the weight of the price decreases over time as θ̂k2 =
θ2

(
δ

θ1+δθ2

)
< θ2, (Meng et al. 2022). Subsequently, consumers’ deci-

sions can change over time based on changes in various factors, including
their perception of the salient attributes of the products (Herweg and
Müller 2021). To validate the factors that have a statistically signifi-
cant impact on sales performance (Y) (see Fig. 11.2), factor analysis was
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Table 11.2 Influential factors that affect sales performance

Exogenous variables Analysis method P-value

X1 Customer group (age, gender) ANOVA 0.0000
Input variables Analysis method P-value

X2 Sale date ANOVA 4.79e-53
X3 Outlet location ANOVA 6.40e−37
X4 Brand name ANOVA 0.0000
X5 Discount level ANOVA 0.0000
X6 Name of partnering entity ANOVA 0.0000
X7 Consumer package size Linear Regression 0.0000
X8 Price Linear Regression 0.0000

employed to analyze the reliability of each factor in the given dataset.
Analysis of Variance (ANOVA) is used for categorical variables, and
linear regression is used for numerical variables in the provided code.
Based on the results of the P-values, it concludes that variables X1 to
X8 have a significant impact on the sales performance of sustainable
products (see Table 11.2).

11.4.1 Predictive Analytics on Purchase Data:
Logistic Regression Development

In the past few years, the logistic regression model has been widely
employed to examine sales performance and customer decision-making
(Fadlalla 2005). Logistic regression utilizes a binary dependent variable
(sales performance, 0 or 1) to determine whether each customer group,
in a specific scenario, comes to the marketplace and makes a final deci-
sion to purchase vegetarian/vegan (0) or meat-based products (1). It
attempts to predict the probability of this binary outcome. Here, logistic
regression offers a powerful tool for predicting our binary target, the
named sales performances of vegetarian/vegan or meat-based products.
In our analysis, the data set has been separated into inputs and targets.
We employed logistic regression to predict the binary target, which is
the sales performance, based on the input variables (X1:X8) that have
higher P-values extracted from the dataset within the previous five time
periods. After feature selection, the extracted independent observations
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include price, consumer package size, customer group (including age and
gender), discount class, brand name, outlet location, partner name, and
sale date. To divide the data, 80% of the one million sales performances
were used for training, while the remaining 20% was reserved for testing
which would evaluate the model’s performance on unseen data. In our
analysis, 20% of the one million sales performances were set aside as
unseen data, meaning they were not used during the training phase.
The classification report on logistic regression (see Table 11.3) demon-

strates that the model achieved high precision, recall, and an F1-score
for both classes (0 and 1), with an overall accuracy of 91%. The model
attempts to predict the decision of new customers entering the market.
When we input the information on the relevant features of the new
customer, such as the customer group, the consumer package size, and
the discount class into the trained model, it will predict the probability
of the customer belonging to each class of the binary dependent variable
(e.g., sales performance being 0 or 1). To analyze a practical scenario, we
considered a male customer aged thirty-five who enters a marketplace
at a certain location. He notices a product priced at 9.50 euros, which
provides an example for our analysis. The product is not on discount
and has a specific brand name. The male customer decides to behave as
code 1, meaning he buys the meat-based product (among other goods
purchased in the retail store). The logistic regression model predicts that
30.31% of male customers aged thirty-five are to be classified as class
0, meaning that roughly a third of new customers in the chosen demo-
graphic target group decide to purchase vegetarian/vegan products, while
the future sales for the meat-based products are indeed more than twice
the percentage (60.31%) predicted for class 0.

In Fig. 11.8, the Receiver Operating Characteristic Curve (ROC) visu-
alizes the logistic regression of this study, proving the model’s accuracy in

Table 11.3 Classification report of logistic regression

Class Precision Recall F1-score Support

0 0.88 0.86 0.87 63,779
1 0.93 0.94 0.93 120,506
Accuracy 0.91
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classifying the data. The ROC score of 0.98% represents the performance
of the model in classifying the positive and negative samples.

In addition, the coefficient of the price variable for the given dataset is
approximately − 0.18. This shows that as the average kilogram price
of a product increases, the likelihood of a positive sales performance
decreases. In our case study, this implies that consumers are indeed price-
sensitive, meaning they are influenced by changes in the price of both
sustainable and unsustainable products, but only if the price changes
by 0.18%. To summarize the predictive analysis, Table 11.4 presents
an example of the predictive results of customer sales performance
concerning sustainable food products, with a focus on the most popular
outlet and a female customer group aged 55–64. The results indicate
that customers visiting stores in different locations make different deci-
sions. The accuracy of this prediction is nearly 92%. It is concluded that
customers are evolving in their perception of the salient attributes of

Fig. 11.8 ROC curve of study model
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Table 11.4 Predicted sales performance results for female customers aged 55–
64 at a popular outlet

Predicted 0 (%) Predicted 1 (%)

Actual 0 41.10 3.20
Actual 1 4.65 51.15

products. As can be seen in Table 11.3, the difference between selecting
meat-based products and vegetarian/vegan is narrow in this outlet,
whereas Table 11.2 indicates that, overall, customers have a greater pref-
erence for meat-based products than this difference suggests. Based on
the given dataset, this prediction implies that customer behavior varies
across outlets based on their perceptions of sustainability, as well as other
factors such as prices, age, and income.

11.5 Concluding Discussion

This chapter links three distinct research areas that have not been previ-
ously synthesized in a modeling study, namely: (1) optimal pricing
decisions for sustainable products, (2) sustainable consumer behavior,
and 3) ML methods in marketing. This chapter explores decision-making
based on a data-driven model and examines how a retailer, taking a
pricing strategy and other features into account, can analyze and predict
customers’ purchase behavior when choosing sustainable products over
unsustainable protein-based substitutes. We applied this model in the
context of food-purchasing behavior, providing insights into consumers’
sustainable choices and preferences. We rooted our descriptive and
predictive analysis model on a wide understanding of consumer behavior,
purchase decision-making toward sustainable customer behavior, and
pricing decisions to identify factors that impact the choice of a product
(green product versus non-green product, or vegetarian/vegan versus
meat-based products). We make an important contribution to the
modeling of pricing strategies based on ML, aiming to facilitate the
understanding of how to utilize big data to predict purchase decisions;
thus demonstrating how to facilitate managerial decision-making and



11 Machine Learning Promoting Sustainable Customer … 319

impact pricing strategies to nudge consumer purchases toward sustain-
able consumption and green consumerism (Sharma and Joshi 2017).
To summarize, this study underlines the complexity of promoting and
predicting sustainable consumer behavior based on historical data. We
have demonstrated how descriptive and predictive analytics using ML
methods aid in identifying both current and future purchase trends and
provided an extensive overview of the antecedents for those purchases
to take place. We contribute to marketing research by bringing pricing
strategies to the fore and using ML as the basis for empirical analysis of
sustainable consumption within the food retail industry.
We suggest that future studies should focus on the behavioral factors

that impact consumers’ decision-making process when selecting sustain-
able products over unsustainable ones, even when the former is more
costly. In addition to product specifications and consumer demo-
graphics, identifying and measuring intentions, attitudes, habits, and,
subsequently, customer behavior will give marketers a comprehensive
understanding of the company and customers’ positions. Thus, data
on individual characteristics and attitudes toward sustainability will
help marketers achieve more detailed descriptions and predictions using
ML methods. Eventually, data analyzed using ML methods may assist
decision-makers, and as our case suggests retailers, to persuade customers
that it is worth paying a higher price premium for sustainable products
(Anselmsson et al. 2014; Ashraf et al. 2017), especially when ecological
concerns are highlighted in their marketing.
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12
Role of Industrial Artificial Intelligence

in Advancing Human-Centric Sustainable
Development of Industry 5.0

Nampuraja Enose Kamalabai, Lea Hannola,
and Ilkka Donoghue

12.1 Introduction

Manufacturing value chains have traditionally followed a linear model,
characterized by a sequential series of distinct activities focused on the
forward flow of materials. This is typically based on a TAKE-MAKE-
WASTE economic model, also known as the linear economy (Lopes
de Sousa Jabbour et al. 2018), which operates on a continuous cycle
of material supply, where natural resources are retrieved from the envi-
ronment and converted into manufactured products that are disposed at
end of their useful life (Neves and Marques 2022). It focuses primarily
on the production of goods, overlooking environmental and economic
inefficiencies and the long-term consequences to the ecosystem. On the
other hand, technological advancements and the Industrial Revolution
have reshaped current patterns of production and consumption (Lopes
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de Sousa Jabbour et al. 2018), of goods and services, resulting in the
generation of more waste as a byproduct of consumption and produc-
tion activities. Beyond the waste generated, the linear model also results
in inefficiencies due to its non-circular design and use of unsustainable
materials. These inefficiencies lead to underutilized capacities and subop-
timal product lifecycles, largely resulting from insufficient information
exchange, poor integration and collaboration, and inadequate visibility
into product lifecycles and closed-loop processes. In the face of intensi-
fying global challenges, this poses significant concerns regarding resource
scarcity, waste generation, and environmental impacts. Addressing these
issues effectively, requires coordinated and sustainable practices in the
transition from a linear value chain model to a more sustainable and
circular one, necessitating a notable change in mindset, operations, and
strategic approaches.
The advent of Industry 4.0 holds the potential to reshape the way

things are made, fundamentally changing how manufacturing value
chains are implemented (Rosa et al. 2020; Dantas et al. 2021; Zheng
et al. 2021). It signifies a profound shift in a traditional value chain,
characterized by enhanced flows of goods and information, with each
influencing the other significantly. It also entails a shift in communica-
tion patterns, transitioning from one-way to two-way flows among all
participants in the value chain, including suppliers, producers, distrib-
utors, and consumers, allowing increased collaboration of physical and
computational components in a value creation process. Yet, the initial
implementations of Industry 4.0 have revolved around extensive digital-
ization with a techno-centric focus. This approach has often overlooked
the core principles of sustainability, urging industries to broaden their
perspectives and better understand sustainable outcomes beyond the
focus on productivity, and profitability (Ejsmont et al. 2020; Beltrami
et al. 2021; Saniuk et al. 2022). Therefore, there is a clear necessity
to move Industry 4.0 beyond a narrow technology purview and strive
for a balance between economic progress and social and environmental
responsibility. Furthermore, the current understanding of the circular
economy founded on broad concepts and different contexts, makes it
difficult to reach a consensus over an exact definition of circular economy
(Reike et al. 2018; An Andrade et al. 2021). Nevertheless, there is
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consensus on the core principles and objectives of the circular economy,
all directed toward achieving sustainable development. There is also
agreement on the necessity for fundamental systemic shifts to advance
the transition to a circular economy, moving away from current practi-
tioner efforts focused on incremental adjustments toward a potentially
revolutionary approach (Kirchherr et al. 2023). Additionally, it’s recog-
nized that the foundational principles of Industry 4.0 will still serve
as the basis for transitioning toward a more sustainable and regenera-
tive economic model (Nascimento et al. 2019; Khan et al. 2021). The
consensus emphasizes the importance of taking a comprehensive perspec-
tive toward sustainability that addresses every stage of the process and
fosters a more interconnected and adaptive system (Ghobakhloo et al.
2023a b). Consequently, the Industry 4.0–Circular Economy nexus, is
garnering attention due to their potential to implement systematic shifts
and contribute to sustainable development (Rajput and Singh 2019;
Tseng et al. 2018; Dantas et al. 2021; Lopes de Sousa Jabbour et al.
2018). This leads the transformation from a technocentric approach, in
Industry 4.0, focusing solely on technological advancements to a value-
centric paradigm (Enang et al. 2023; Atif 2023) in Industry 5.0. While
a standard approach to managing these complexities continues to evolve,
artificial intelligence (AI) holds the potential to serve as the backbone of
intelligent closed-loop systems operating alongside humans. The Euro-
pean Commission has incorporated the adoption of a human-centric
approach to digital technologies, with a specific focus on artificial intel-
ligence, as a pivotal policy initiative in its endeavor to achieve the vision
of Industry 5.0 (Breque et al. 2021). This is a critical enabler for real-
izing the transformative vision, centered on a resilient, sustainable, and
human-centric approach (Leng et al. 2022).
This chapter therefore structured into four main sections. Following

the introduction, Section 12.2 explores the theoretical background to
provide a comprehensive understanding of the underlying concepts
and principles aimed at capitalizing on existing circularity principles.
It examines inherent circularities within individual stages of the value
chain, emphasizing their potential to drive closed-loop practices and
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influence the transition to a circular economy. The section also eluci-
dates key concepts of Industry 4.0, that enhance circularity as foun-
dational to a circular value chain. Building on these foundational
insights, Section 12.3 introduces a new paradigm aiming to engineer
end-to-end circularity by integrating independent circular processes.
It introduces concepts such as “vertical circularity,” “horizontal circu-
larity,” and “closed-loop circularity,” illustrating innovative approaches
to value creation. Additionally, this section emphasizes the importance
of socio-technical evolution in fostering a sustainable, resilient, and
human-centric economy. It proposes leveraging artificial intelligence for
cognitive coordination between humans and intelligent systems, crucial
for managing the complexities of this transformation and supporting
intelligent closed-loop systems. Finally, Section 12.4 summarizes the
chapter, highlighting the urgency of accelerating this transition amidst
global challenges. It underscores the strategic imperative of embracing
these advancements as a cornerstone for Industry 5.0, advocating for
co-innovation, co-design, and co-creation of personalized products and
services within a circular economy framework.

12.2 Theoretical Background

12.2.1 Manufacturing Value Chain Processes
and Their Inherent Circularities

The manufacturing value chain encompasses multiple stages of product
management focused on optimizing material and resource utilization
while minimizing waste. This is achieved through individual value-
creation processes across the asset’s lifecycle that are interconnected to
form a value chain. Typically, a manufacturing value chain encompasses
three primary value creation processes: Product Development, Produc-
tion Operations, and Product Services. While both traditional and future
value chains involve structured operational activities aimed at achieving
specific objectives in the value creation process, they differ significantly
in how individual processes network and interact. Traditionally, value
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chains have been unidirectional and acyclic from a lifecycle perspec-
tive, whereas future value chains show the potential to become cyclic,
repeating lifecycle sequences multiple times. Several factors naturally
promote the adoption of closed-loop principles within these value-
creation stages and accelerate their integration. This section therefore
aims to uncover these principles and evaluate their effectiveness, crucial
for understanding their role in fostering a circular value chain. The objec-
tive is to capitalize on existing circularity principles within individual
value chain stages and propose a holistic approach to establishing circular
value chains.

12.2.1.1 Inherent Circularity within Product Development

Product development has evolved significantly, with the integrated
design approach now being pivotal to modern product design strate-
gies. Advancements in embedded systems and the integration of various
technical disciplines are driving products toward becoming complex
systems (Kagermann et al. 2013; Mosterman and Zander 2016). The
advent of cyber-physical systems has further complicated product design,
spanning multiple lifecycles encompassing embedded software, appli-
cation software, hardware, networking, and cybersecurity (Monostori
et al. 2016). Global competition and industry dynamics are acceler-
ating the pace of product lifecycles, necessitating faster development
times despite rising product demands. This necessitates a multidisci-
plinary and holistic approach in systems engineering to rethink how they
conceive, design, and engineer such products, manage them across their
lifecycle, and develop new applications and services (Kagermann et al.
2013; Mosterman and Zander 2016).

Consequently, “Systems Engineering” approaches have emerged to
establish comprehensive system specifications integrating considerations
across disciplines from the onset of development. Model-Based Systems
Engineering (MBSE) has become a prominent industrial practice and
uses models to design and analyze complex systems (Nguyen et al. 2017).
This integrated engineering approach ensures all product requirements
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are met while considering functionality across the entire lifecycle, facil-
itating efficient and collaborative development with minimal errors and
delays.

Emphasizing iterative design, collaboration across diverse disciplines
and lifecycle stages, and continuous improvement, MBSE utilizes the
concept of system lifecycle and closed-loop systems engineering to
optimize the design of complex multidisciplinary systems. Figure 12.1
illustrates a typical closed-loop design employed in product development
for integrated modeling of system architectures.

Such closed-loop systems engineering has inherent circularity funda-
mentals and is aligned with the thinking of building circularity into
products. The evolution of intelligent technical systems for Industry 4.0
applications (Cyber Physical Systems), further emphasizes the need for

Fig. 12.1 Typical closed-loop system engineering approach for integrated
modeling of system architectures
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innovative modeling and systems engineering practices (Kagermann et al.
2013). These practices support Product Lifecycle Management (PLM)
to effectively manage a complex product from design through produc-
tion, use, and end-of-life. Future PLM implementations would therefore
integrate System Engineering capabilities to model and simulate product
behaviors in an integrated way and incorporate feedback from different
disciplines, in making lifecycle decisions from a system perspective
(Penciuc et al. 2016). Integrating product lifecycle management into
circular economy practices is essential for achieving R-cycle management
from a product lifecycle perspective. This approach serves as the funda-
mental basis for closing design-production-usage loops, which is highly
dependent on choices made in early product development (Arekrans
2023). It goes a long way the integrate product, production, and service
management that involves the collaboration and integration of different
areas and functions within an organization to create a seamless devel-
opment process for products and manufacturing systems (Disselkamp
et al. 2023). The digital product passport (DPP) is in these lines and is
seen as a decisive enabler in the circularisation of products, components,
and materials in the manufacturing industry (Berg et al. 2021). The
inherent circularities in product development therefore play a crucial role
in advancing a sustainable circular economy and effectively managing the
environmental impacts of products across the entire value chain.

12.2.1.2 Inherent Circularity within Production
Operations

The foundational concept behind original industrial production design
is centered on closed-loop systems. The processes and their respective
control systems are accordingly designed to continuously monitor and
adjust processes based on feedback, ensuring that the actual output
aligns closely with the desired condition. The expected condition of the
output is constantly compared with the actual conditions and neces-
sary adjustments to minimize the difference or error. Such closed-loop
systems are self-regulating processes operating through a feedback mech-
anism that regulates input–output relationships, enhancing accuracy,
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stability, and efficiency in applications such as temperature, motion, and
process control. The operation of such a system is primarily described
by a functional relationship between its input and output variables. The
overall objective is a closed-loop production system optimizing resource
usage (resource efficiency), by effectively managing personnel, equip-
ment, materials, and physical assets while minimizing waste. Figure 12.2
illustrates a typical closed-loop control system, also known as a feedback
control system, which features one or more feedback loops connecting
its output and input.

Resource optimization is typically supported by the Manufa acting
Operation Management System (or Manufacturing Execution System)
which manages functions using resources to produce products during
operations. These systems optimize control systems that coordinate
materials, personnel, and equipment across production, maintenance,
inventory, and quality functions, including test labs. ISA-95, based
on the Purdue Reference Model, standardizes information exchange
between control functions and enterprise functions, detailing interrela-
tionships across different levels of manufacturing systems. With the rise
of Cyber-Physical Production Systems (CPPS), Industry 4.0 implemen-
tations deploy autonomous and cooperating computational entities, or
subsystems. These entities maintain close connections with the physical

Fig. 12.2 Typical closed-loop production control design



12 Role of Industrial Artificial Intelligence in Advancing … 333

world, including machines and ongoing production processes (Monos-
tori et al. 2016). These subsystems possess the capability to interact
with one another based on contextual demands, spanning all levels
of production to leaner production systems (Berg 2021). Such closed-
loop production systems aim for sustainability by improving economic
and environmental goals simultaneously (Winkler 2011) facilitating the
transition toward more resource-efficient and sustainable production
practices.

12.2.1.3 Inherent Circularity within Product Services

Although service businesses for product companies have existed for many
years, they are currently undergoing significant transformation. The
rapid increase in intelligent industrial assets is reshaping the economy,
promising improved quality of service with fewer resources. “Servitiza-
tion,” or long-term service contracts, has become a central theme for
manufacturers, especially with the rise of Industry 4.0. This shift is
primarily driven by the potential to leverage digital technologies and
connectivity (Alcayaga et al. 2019) to create new business models and
value propositions along the entire product lifecycle (Kiel et al. 2017;
Favoretto et al. 2022). Technologies such as IoT (Internet of Things),
cloud and edge computing, mobile applications, and data analytics
have contributed to the popular concept of “anything-as-a-service” or
“everything-as-a-service,” (Kiel et al. 2017) enabling advanced service
models by providing the right data at the right time. Consequently,
product service providers are moving away from traditional break-fix
and other transactional models, experimenting with new methods to
create and deliver value. Therefore, closed-loop service management is
evolving and aims to enhance integration within the service management
process and between product development and service teams. Emerging
service models address not only the operational phase but extend across
the entire value chain, emphasizing closed-loop approaches that facilitate
new circular business models (Berg et al. 2021).
The closed-loop approach, illustrated in Fig. 12.3, explicates the vital

connection across products and lifecycle phases, linking the as-designed,
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as-implemented, as-operated, and as-used stages. This interconnection
facilitates design changes based on field data, ensuring that products
and services are developed with end-use in mind, embodying a true
end-to-end lifecycle approach. This principle also forms the founda-
tion for the concept of the digital twin, which continuously updates to
reflect changes in the physical entity based on feedback from its digital
counterpart. Such an approach enhances the service value proposition
by integrating circularity parameters in several ways: designing systems
according to customer and field requirements, shifting toward a more
service-based manufacturing model, minimizing environmental impacts,
and managing the lifecycle to become more eco-efficient. It provides
product vendors with valuable insights into real-world field conditions,
which is crucial for closing the quality loop. This aims to enhance
product performance and longevity (extending lifetime), incorporate R-
cycles (Winquist et al. 2023), and more. It aligns with the principles
of sustainable production and consumption, focusing on “dematerial-
izing” the economy by reducing material flows and creating products
and services that deliver the same performance level with a significantly
lower environmental burden (Mont 2002). The goal is to continu-
ously “keep material in the loop,” ensuring it is reprocessed and reused
while providing value-added services that elevate performance levels and
improve economic outcomes (Geissdoerfer et al. 2020).

12.2.1.4 Leveraging Existing Circularity Principles
from Individual Value Stream Processes

The current ways of designing, producing, and using products inher-
ently incorporate principles of circularity. The aforementioned details
illustrate how these principles have effectively been applied in individual
value stream processes. However, these implementations are highly frag-
mented, as they have been applied from different perspectives and have
operated in silos. This presents significant opportunities to leverage in
the transition toward a circular economy, offering a chance to integrate,
collaborate, innovate, and create value. Emerging technologies and their
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Fig. 12.3 Closed-loop approach in service lifecycle management

advance ing capabilities hold promise for extending the existing frag-
mented approach with a more systematic implementation strategy aimed
at translating circular principles into tangible and sustainable impacts.
This strategic approach requires a system-thinking perspective to achieve
systemic change, integrating processes (Walmsley et al. 2019; Barnabè
and Nazir 2022), closed-loop ecosystems (Kara et al. 2022; Camilleri
2019), and a lifecycle approach (Mohan and Katakojwala 2021), mutu-
ally reinforcing with Industry 4.0 design principles and the principles of
circular economy.
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12.2.2 Industry 4.0 and the Circular Economy

Since its inception, Industry 4.0 has revolved around value creation
within a circular economy (Kagermann 2015; Blunck and Werth-
mann 2017). It is therefore evident that the foundational principles
of Industry 4.0, even if not fully utilized are inevitable and will drive
the future of a circular economy (Nascimento et al. 2019; Khan et al.
2021). In its ability to enhance resource circularity within production
and consumption operational systems (Kiel et al. 2017; Müller et al.
2018; Rajput and Singh 2019), a closed-loop, regenerative economic
model has increasingly emerged as the preferred industrialization model
for attaining sustainable growth. Academic literature acknowledges the
synergies between Industry 4.0 and Circular economy (da Silva and
Sehnem 2022) and the growing transformation within the global value
chains through Industry 4.0 (Awan et al. 2022). This represents a
significant shift in how products, components, and materials will be
circulated within the closed-loop manufacturing value chain (Berg et al.
2021) paving the way for substantial value creation at scale. It also
involves fostering co-innovation, co-design, and co-creation of person-
alized products and services enabling mutual cognitive coordination
between humans and intelligent systems (Leng et al. 2022). This section
aims to explore the concepts of Industry 4.0 and its impact on the
circular economy by focusing on its foundational design principles and
implementation strategies. These principles, as outlined in Fig. 12.4, are
pivotal in guiding manufacturers toward sustainable economic, environ-
mental, and social development within the broader business ecosystem
(Ghobakhloo 2020).

12.2.2.1 System Thinking and System Integration

Recent literature studies underscore Industry 4.0 as a data-centric
paradigm centered on cyber-physical systems characterized by a complex
architecture and heterogeneous components (Rajput and Singh 2019;
Klingenberg et al. 2021). Adopting a systems thinking approach and
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Fig. 12.4 Industry 4.0 design principles

integrating systems for achieving information interoperability is there-
fore essential (Büchi et al. 2020; Sanchez et al. 2020). Over the past
decade, industrial manufacturing has transitioned significantly from
factory-centric operations to interconnected digital production systems
embedded within digital-physical networks (Laskurain-Iturbe et al.
2021). This evolution fosters collaboration across manufacturing oper-
ations, and business processes, and extends to supply chain partners
and broader business ecosystems (Chen et al. 2023). The core objec-
tive of this transformation is to facilitate information exchange, enabling
seamless interconnection and interoperability while leveraging compre-
hensive data analysis and real-time automated decision-making. This is
outlined by three dimensions of integration, vertical integration, and
networked manufacturing systems, horizontal integration through the
value networks, and end-to-end digital integration across the value chain
(Kagermann et al. 2013).



338 N. Enose Kamalabai et al.

Vertical Integration

Vertical integration or vertical networking in Industry 4.0, aims to flatten
the automation pyramid by reducing the layers between decision-making
and system control within a single business. This connects all levels of
an enterprise control system, from the field and control levels at the
bottom to the supervisory and plant management level, right through
to the enterprise planning level, thus enabling real-time data flow. This
establishes a secure and reliable data exchange platform between plant-
floor and enterprise applications, integrating production with broader
business functions like supply chain management, product lifecycle
management, and logistics. Real-time data flows across plant floors; from
sensors, controllers, and mixed platform process control, right through to
management, aiming at “global” interoperability. The goal is to achieve
an interoperable “systems of systems” approach. A key challenge of
vertical integration has been in the convergence of two distinct types of
networks: the industrial communication network for industrial automa-
tion termed as operation network (OT network), and the traditional
office network (IT network) that connects the enterprise. However,
technologies like Unified Architecture (e.g., OPC UA) based on Open
Platform Communications have significantly progressed in overcoming
this challenge (Givehchi et al. 2017). OPC UA facilitates global inter-
operability across different platforms and manufacturers by enabling
standardized data exchange between industrial devices and software
applications, regardless of underlying protocols. This integration estab-
lishes a cohesive system across industrial ecosystems, facilitating real-time
coordination and collaboration among stakeholders. Consequently, it
sets up an integrated system closing loops in industrial ecosystems,
enabling components and stakeholders to coordinate and collaborate in
real-time (Sanchez et al. 2020). Overall, vertical integration transforms
the traditional automation pyramid to a platform-independent service-
oriented architecture, facilitating seamless data exchange and enhancing
operational efficiency in Industry 4.0 environments.
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Horizontal Integration

While vertical integration focuses on integrating processes within a single
business entity, horizontal integration involves connecting the factory
to various participants in the value chain through a well-designed,
secure, and integrated workflow. In the context of Industry 4.0, the
objective is to enhance inter-organizational interoperability, enabling
vertically integrated organizations to share information more effectively
across the supply chain. This often necessitates incorporating data from
external entities such as suppliers, subcontractors, partners, and some-
times customers. It complements vertical integration by incorporating
external relationships, integrating supplier and customer networks, infor-
mation, and management systems, among other elements (Pérez-Lara
et al. 2020). Horizontal integration extends to multisite operations and
engaging third-party partners both upstream and downstream, thereby
fostering opportunities for new business models and innovation through
collaborative efforts. The objective is to achieve deeper alignment and
transparency, thereby enhancing visibility, flexibility, and productivity,
while also increasing levels of automation throughout the supply chain
(Tiwari 2021). Through collaborative networks, enterprises combine
resources, share risks, and swiftly adapt to market changes, seizing new
opportunities (Brettel et al. 2014; Kagermann et al. 2013). Complete
digital integration spans the entire supply chain, encompassing suppliers,
manufacturing, logistics, distribution, and customer interactions. This
necessitates organizational adjustments, interdisciplinary collaboration,
and addressing social challenges throughout the transformation process
(Veile et al. 2020). Both vertical and horizontal integration are therefore
essential for achieving seamless communication across the value chain.

End-To-End Digital Integration Across the Value Chain

End-to-end integration in a value chain is primarily the extension of
horizontal integration by encompassing all the stages providing compre-
hensive support across the entire lifecycle, from product development
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to manufacturing system engineering, production, and services (Kager-
mann et al. 2013). It entails integrating and connecting all processes,
systems, and stakeholders involved in the lifecycle. For products, this
means linking product design, development, planning, engineering,
manufacturing, and services. Likewise, process plants, involve integrating
engineering, construction, and operational phases, starting from func-
tional specification requirements. This integration spans manufactured
products and the manufacturing process, achieving a seamless conver-
gence of the digital and physical worlds (Kagermann et al. 2013).
Achieving this requires logical, end-to-end digital integration across
stages of value creation and product (or plant) lifecycles, encompassing
product ranges and their corresponding manufacturing systems (Kager-
mann et al. 2013). Beyond technical aspects, it extends beyond tradi-
tional business domains by adopting a business lifecycle approach. This
is the basis for an end-to-end engineering approach across the entire
value chain, a major part of the concept of Industry 4.0 (Bartodziej
2017). Figure 12.5 illustrates the concepts of Vertical, Horizontal, and
End-to-end digital integration within the Industry 4.0 framework.
This therefore closely aligns with the principle of lifecycle thinking

in sustainability. Incorporating such an integrated approach to Industry
4.0 (horizontal, vertical, and end-to-end) is crucial for enabling circular
flows and realizing circular systems (Stahel 2016; Gebhardt et al. 2022).
It forms the foundation for a cradle-to-cradle cycle (end-to-end), moving
beyond the traditional ’end-of-life’ approach (Halse and Jæger 2019),
and plays a pivotal role in driving the transition toward a circular
economy.

12.2.2.2 Lifecycle View of Industry 4.0

Lifecycle management is a crucial enabler of Industry 4.0, a central
repository for all product-related data spanning from inception and
production to sales and services. This integration of physical products
and cyber services throughout their entire lifecycle (Machado Carla
Gonçalves and da Silva 2020), offers a comprehensive approach to
understanding, assessing, and improving economic, environmental, and
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Fig. 12.5 Vertical, horizontal and end-to-end digital integration in industry 4.0

social dimensions. Industry 4.0 technologies, systems, and processes
collaborate to enhance lifecycle management, promising significant
advancements across the lifecycle of production equipment. During the
design phase, it facilitates resource conservation, while in the operational
phase, it delivers benefits such as improved performance, simplified
system reconfiguration, reduced energy consumption, minimized pollu-
tion, and streamlined maintenance. These aspects not only facilitate the
translation of technological innovations into products and services but
also contribute to reducing total lifecycle costs, addressing environmental
and economic considerations (Javaid et al. 2022). Such a lifecycle-
driven business model is essential for sustainability strategies, where
products (and associated services) are designed for circular economy
principles, aiming for extended lifecycles and sustainable value creation
across all lifecycle stages. This approach includes sustainable design,
resource-efficient production processes, and the adoption of circular and
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symbiotic production systems (Machado Carla Gonçalves and da Silva
2020).
This is achieved through a three-step integration process aimed at posi-

tively and cohesively impacting all dimensions of sustainability. Initially,
internal integration within a company (vertical integration) is estab-
lished to familiarize the organization with the technology and ensure data
availability and consistency. Many companies have successfully imple-
mented Industry 4.0 technologies on the manufacturing shop floor,
focusing on digital use cases that support sustainable practices such as
eco-friendly product design, waste reduction, energy efficiency improve-
ments, and water conservation. Subsequently, this integration extends to
include adjacent stakeholders in the value chain (horizontal integration),
such as third-party logistics providers and direct suppliers upstream,
as well as distributors downstream, fostering enhanced data exchange.
This collaborative approach identifies new opportunities for innovation
and facilitates value creation across sustainability dimensions by lever-
aging access to supply chain information that was previously unavailable.
This is where modern supply chains face unprecedented challenges,
particularly due to their growing complexity involving multiple stake-
holders across global locations, intricate logistics networks, and the
imperative to share data beyond organizational boundaries. The ulti-
mate step involves the integration of data across pertinent lifecycles and
processes crucial for comprehensive end-to-end integration. However,
the complexity involved amplifies integration challenges, particularly in
dynamically collaborating across value streams and different product life-
cycle chains. Advocating for closed-loop lifecycles and cradle-to-cradle
approaches becomes essential in addressing these complexities. When
effectively implemented, it extends beyond enhancing productivity and
resource efficiency to enabling collaboration throughout the value chain,
promoting closed-loop production systems, circular product lifecycles,
sustainable product services, and circular economy business models,
contributing positively to the development of the circular economy
(Ghobakhloo 2020; Dantas et al. 2021; Khan et al. 2021).
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Lifecycle Modelling in Industry 4.0

Reference Architecture Model for Industry 4.0 (RAMI4.0) framework
provides a structured approach for lifecycle modeling in the context
of Industry 4.0 (Moghaddam et al. 2018). It serves to establish a
unified understanding among stakeholders and guides organizations in
representing, managing, and optimizing assets throughout their entire
lifecycle. This framework integrates essential elements of Industry 4.0
into a three-dimensional model, offering a structured and comprehen-
sive approach. A crucial development in RAMI4.0 is the inclusion of
a generalized lifecycle axis, based on IEC 62890, represented along
the horizontal axis, which can also serve as the foundation for circular
strategies. This axis covers the lifecycle and value stream of products,
distinguishing between different stages from conception to disposal, crit-
ical for lifecycle modeling across various dimensions. This distinction is
articulated through the definitions of “Type” and “Instance” to delineate
the lifecycle stages of assets within Industry 4.0. A “Type” represents the
initial concept of a product, evolving through subsequent development
stages (Rojko 2017). When a “Type” progresses to an “Instance,” it signi-
fies the transition from prototype to actual production, with instances
ultimately delivered to customers. This lifecycle progression from “Type”
to “Instance” and vice versa can iterate multiple times over a product’s
lifecycle. Due to these interlinked lifecycles involving multiple stake-
holders, individual component lifecycles are no longer viewed in isolation
but as interconnected entities involving all stakeholders—from compo-
nent suppliers to end customers. Hence, every object, whether it be a
product, machine, or material, can be distinctly designated as a “Type”
or “Instance.”

In terms of information modeling, each “Object Type” is assigned a
unique identifier linked to a specific entity within a system, (Zezulka
et al. 2016), facilitating the assignment of generic metadata and specific
data tailored for particular purposes based on standardized information
management specifications across the value chain and involved stake-
holders. This can be based on standard (industry) specifications for
information management that works across the value chain. An “Object
Instance,” meanwhile, is an occurrence of an Object Type characterized
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by its instance identifier. Consequently, the lifecycles of Object Types and
Object Instances can be independently managed within a value stream
alongside value-adding processes. RAMI4.0’s lifecycle and value stream
axis illustrate how process layers operate within the product lifecycle and
value stream context. The lifecycle of a product or system thus encom-
passes both Object Type and Object Instance lifecycles. The Object Type
lifecycle initiates during the conceptual stage, extending through opera-
tions, maintenance, and customer usage phases, whereas the lifecycle of
the product or system instance begins from manufacturing and proceeds
through operations, maintenance, and customer usage stages. Architec-
turally, this is an interesting approach that supports the introduction
of product lifecycle concepts spanning development, implementation,
usage, maintenance, and eventual disassembly or disposal stages. This
holistic approach is instrumental in realizing circular economy princi-
ples by facilitating a systematic and regenerative lifecycle model and
managing information flows throughout an object’s lifecycle. It also
promotes the transformation of output from one product’s lifecycle into
input for another (R-cycle), ensuring continuous value creation within
the value loop.

Linking of Value Streams in Industry 4.0

The manufacturing value chain comprises distinct value-creation
processes spanning the lifecycle of an asset. Despite their variances,
both traditional and future value chains adhere to a structured approach
involving operational activities aimed at achieving specific objectives in
the value creation process. Consequently, digitization and networking of
all activities across value streams throughout lifecycle stages into inte-
grated value networks becomes crucial, as it creates an integrated view
and drives value creation for Industry 4.0. The availability of all relevant
information in real-time through the networking of all value creation
instances provides a comprehensive view of all the value-adding processes
and enables control over the entire value stream across a product’s
lifecycle (Wolfgang 2016). Historically, companies have encountered
challenges in maintaining and managing the integrity of the overall value
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chain, necessitating consistent linkage and management of data across
multiple processes and their interrelationships.

Integrated product development revolutionizes conventional thought
patterns by integrating product development trajectories and service
innovation to establish a robust transformation pathway based on
the service value chain (Liu and Zhao 2022). Within production
processes, integrated production planning and control serve as the
nervous system for optimizing operational efficiency (Chen et al. 2023).
A networked manufacturing system orchestrates the efficient utiliza-
tion of resources, people, and systems through planning, coordination,
sequencing, scheduling, monitoring, and control of production activi-
ties to transform raw materials into finished products or components
optimally (Oluyisola et al. 2022). This seamless integration involves
embedding digital technologies across manufacturing facets to enhance
value creation. Thus, the value-adding processes must be considered
holistically alongside the lifecycle, rather than in isolation within a single
factory, encompassing all factories and stakeholders involved, ranging
from engineering through component suppliers to customers (Adolphs
et al. 2015). The emphasis is therefore on optimizing material utilization
and minimizing waste across core value creation processes: develop-
ment, production, and services through cyclic and recycling processes
(Wolfgang 2016).

System Composition for Lifecycle Implementation in A Circular
Economy

The circular economy system diagram, known as the butterfly diagram,
serves as a valuable tool for comprehensively understanding and prac-
tically applying the Circular Economy model. It highlights three key
participants in the ecosystem: the Parts Manufacturer (responsible for
product design), the Product Manufacturer (handling production), and
the Service provider (managing services). Conceptually, these roles align
intriguingly with the three business partners described in RAMI4.0:
the component supplier, machine manufacturer, and factory operator.



346 N. Enose Kamalabai et al.

Expanding lifecycle assessment and value stream mapping for decision-
making purposes, therefore allows for exploring the extension of Industry
4.0 principles of “lifecycle and value stream” to the circular economy.
The objective is to integrate the design and development process,
manufacturing processes, and service management systematically and
objectively. This approach facilitates a bi-directional flow of information
(R-Cycles), where usage data can inform product updates returned to the
manufacturer.
This iterative process improves the “Object Type” based on field

results and updates its design specifications. The revised “Type” then
informs the development of subsequent “Instances,” with updated spec-
ifications reflected in the “object instance” during production. This inte-
grated approach supports sustainable development aligned with circular
economic objectives.
Transitioning toward a circular economy necessitates more than just

resource efficiency; it requires a broader set of principles and prac-
tices encompassing circular product design, production management,
and service management. While each of these components has been
leveraging Industry 4.0 technologies, most of the lifecycle management
initiatives remain isolated and fragmented. Challenges persist in breaking
down entrenched silos within and across value chains, hindering effec-
tive coordination and alignment. Given the interdisciplinary nature of
the circular economy, these silos pose significant obstacles. A crucial step
toward realizing a circular economy involves organizing and bridging the
fragmented landscape of multidisciplinary industries, fostering system-
level disruptive innovation. This entails integrating (smart) product
design, (smart) production, and (smart) services into a holistic and inter-
connected ecosystem spanning the entire product lifecycle. Such inte-
gration unlocks opportunities for advancing circular economy principles
and implementations effectively.
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12.3 The Approach

12.3.1 Establishing End-To-End Circularity
Leveraging Industry 4.0 Principles

This section introduces an innovative approach aimed at achieving
comprehensive end-to-end circularity. It emphasizes the utilization of
inherent circular processes within the value chain while leveraging foun-
dational principles and technological capabilities of Industry 4.0. The
approach seeks to bridge gaps between isolated circular practices and
advocates for a holistic perspective. By extending circularity principles
from individual processes to encompass the entire value chain, this
methodology transforms linear value chains into closed-loop value loops.
These synergies between inherent circular systems promote circularity
within traditionally linear industrial frameworks, significantly influ-
encing the transition to a circular economy. This transition is crucial and
holds substantial potential to impact our shift toward a circular economy.
The introduction of concepts such as “vertical circularity,“horizontal
circularity,” and “end-to-end circularity” establish new avenues for value
creation in a circular economy context. This represents a significant shift
in how products, components, and materials are circulated within the
closed-loop manufacturing value chain (Berg et al. 2021) paving the
way for value creation at scale. It marks a significant transition from a
technocentric focus (Industry 4.0) to a value-centric paradigm (Industry
5.0). As a critical enabler, it facilitates the realization of the transfor-
mative vision of Industry 5.0, emphasizing resilience, sustainability, and
human-centric approaches (Berg et al. 2021; Leng et al. 2022).

12.3.1.1 Vertical Circularity

Vertical circularity refers to a closed-loop approach within individual
processes of a linear value chain. This integrated workflow oper-
ates within an organization’s value-creation processes, as firm-level and
industry-level innovations (Kirchherr et al. 2023). It focuses on elim-
inating waste and optimizing processes without extending forward or
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backward integration to external value chain participants. This approach
can significantly enhance organizational efficiencies by focusing on elimi-
nating waste and optimizing processes, following a cradle-to-grave devel-
opment model typical of a linear economy. The promising advancement
of CPS, can enable efficient operations and design systems, effectively
overcoming internal integration complexities Fig. 12.6, illustrates the
implementation of vertical circular processes within each value creation
process segment of the value chain, ensuring that resources and mate-
rials are continuously reused or recycled within the individual processes,
thereby minimizing waste, and maximizing efficiency.

Nevertheless, to achieve effectiveness throughout the entire value
chain, the industry must progress beyond mere efficiency. This strategic
approach involves extending beyond optimizing internal processes to
ensure alignment with value chain goals and objectives. By doing so,
organizations can achieve “efficient effectiveness,” a concept that maxi-
mizes efficiency through continuous feedback loops between process
components. This holistic perspective not only enhances individual
process perfor mance but also fosters seamless integration within the
value chain, driving overall value and sustainability.

12.3.1.2 Horizontal Circularity

Horizontal circularity refers to the closed-loop systems established
between individual vertical circular processes across the value chain. The
primary objective is to integrate these closed loops (vertical circulari-
ties) of individual processes with a horizontal loop, enabling the reuse
of materials and information across the entire value chain, as illustrated
in the figure below. This concept translates the principles of closed-loop
process management into value chain management, creating a compre-
hensive cognitive closed-loop system aimed at continuous improvement
and cradle-to-cradle development within a circular ecosystem approach.
Rather than extracting data from one process and feeding it into the
next, this system establishes an all-inclusive, synergistic, and eco-effective
approach for sustainable development across the value chain. This
approach elevates the concept of effectiveness, redefining the relationship
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between individual businesses (vertical) and the ecosystem (horizontal).
Unlike efficiency, which focuses on mitigating risks within an organi-
zation, this strategy ensures that strategic planning and commitment
are geared toward effectiveness, aiming to generate positive impacts and
co-regenerate with larger ecosystems. Figure 12.7 illustrates horizontal
circularity, occurring at the interface between individual vertical circular
processes. This involves the seamless integration of circular practices
across different stages of the value chain, fostering a holistic approach
to resource utilization and waste reduction throughout the entire value
chain.

12.3.1.3 Closed-Loop Circularity

Closed-loop circularity extends horizontal circularity by adopting a
holistic cradle-to-cradle perspective encompassing the entire ecosystem
associated with products, manufacturing systems, services, and all inter-
connected processes. This approach integrates various aspects of vertical
and horizontal circularity to achieve end-to-end circularity. It can be
envisioned as a system of interconnected closed loops, combining indi-
vidual closed-loop systems (such as product design, manufacturing, and
services) into a comprehensive circular closed-loop system (closed loop
of individual closed loops). This integration links design and produc-
tion with use and end-of-life management, establishing true end-to-
end circularity. As processes become more complex and multifaceted,
ensuring real-time, end-to-end transparency through effective bipar-
tite information exchange is crucial. Standardization plays a key role
in setting up a “single source of truth” for lifecycle data, facilitating
seamless information exchange among designers, producers, and end-
users. Figure 12.8 illustrates closed-loop circularity, emerging at the
convergence of horizontal and vertical circularities. It illustrates the
comprehensive integration of circular practices across different stages of
the value chain (horizontal) and within each segment (vertical), ensuring
a synergistic approach to sustainable resource management and waste
reduction throughout the entire production process.
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A single enterprise cannot autonomously implement and efficiently
operate a closed circular economy (Winkler 2011). Such an inte-
grated approach to the circular economy therefore transcends frag-
mented methods, aiming for a holistic and impactful transformation. It
encompasses circular systems engineering, lifecycle design, closed-loop
product lifecycle management, human-centered design, human-in-the-
loop manufacturing, circularity-integrated Digital Twins, end-to-end
closed loops, product service systems, and other pragmatic approaches.
The collaborative flow of information and materials creates a dynamic
and efficient ecosystem that drives circular thinking. This approach
facilitates the expansion of circular economy solutions, creating oppor-
tunities for all stakeholders and aligning with an economic model aimed
at enhancing sustainability across environmental, economic, and social
dimensions. It also complements the existing Industry 4.0 paradigm by
promoting a human-in-the-loop closed-loop control system, which facil-
itates assisted decision-making where individuals actively participate in
decision points within an otherwise automated process flow (Turner et al.
2022). Nevertheless, this implies higher complexity compared to linear
transactional value chains and is viewed as a complex system requiring
fundamental macro-level changes (Kirchherr et al. 2023). This sets the
path to realizing the vision of Industry 5.0, an evolution designed to
leverage the creativity of human experts collaborating alongside efficient,
intelligent, and accurate machines (Maddikunta et al. 2022).

12.3.2 Leveraging AI to Accelerate Industry 5.0
in a Circular Economy

The concept of a Circular Economy, Economy may seem intuitively
straightforward and easy to understand, however, realizing it in practice
is a complex issue (Domenech et al. 2019). Yet, AI emerges as a pivotal
tool in facilitating this transformative shift. It can accelerate the transi-
tion to a circular economy as it can help solve complex problems faster.
AI, as a subset of the technologies driving the emergence of the Industry
4.0 era, occupies a prominent position in advancing the values of the
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circular economy that deals with models and systems that execute func-
tions typically linked with complexity, reasoning, and learning functions,
related to human intelligence (Acerbi et al. 2021). Industry 5.0 builds
on the foundation laid by Industry 4.0, expanding and adapting its
features to address emerging requirements. While Industry 4.0 primarily
emphasized industrial automation, Industry 5.0 shifted toward a more
inclusive, human-centric approach. This is the sociotechnical evolution
wherein humans play a vital role, placing the operator at the core of
manufacturing and production systems (Valette et al. 2023). It there-
fore advocates a forward-looking vision, by specifically putting research
and innovation at the service of the transition to a sustainable, human-
centric, and resilient industry (Breque et al. 2021). This transition
involves adapting traditional linear operating models to reflect circular
business practices and adopting a circularly interconnected perspective.
It necessitates enabling mutual cognitive coordination between human
and artificial intelligence, fostering co-innovation, co-design, and co-
creation of personalized products and services (Leng et al. 2022). AI plays
a significant role by autonomously and remotely monitoring efficiency
throughout the manufacturing process and during the end-of-life phase
of products (Ghoreishi 2019). The European Commission has incorpo-
rated a human-centric approach to digital technologies, with a particular
focus on AI, as one of its key policy initiatives in the pursuit of Industry
5.0 (Breque et al. 2021).
While manufacturing organizations have started with AI for proven

use cases, Generative AI (GenAI) holds tremendous promise for Industry
5.0 paradigms by assisting humans to perform effectively. Unlike tradi-
tional AI, which focuses on pattern detection, decision-making, analytics
gathering, and data classification, GenAI is more collaborative in creating
new content, guided responses, generative designs, and data synthesis.
It aims to collaboratively create desired outputs, responses, recommen-
dations, and solutions to complex problems. An increasing number of
initiatives are exploring how AI can generate fresh opportunities within
a circular economy. When strategically deployed, AI can accelerate the
transition to a circular economy and toward Industry 5.0 by harnessing
its capabilities across various dimensions, including AI-based Circular
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Product Design, AI-based Circular Service Management, and AI-based
Circular Production Management.

12.3.2.1 AI-Assisted Circular Product Design

While product design is inherently complex and time-consuming, the
interdisciplinary nature of circular products amplifies this complexity,
rendering them even more intricate systems. Circular products are
typically designed based on three primary circular design principles:
eliminate, circulate, and regenerate. These principles extend to various
design aspects such as durability, reliability, maintainability, repairability,
upgradability, adaptability, compatibility, reassembly, and recyclability
(Ghoreishi 2019). Moreover, the advancement of CPS necessitates a
redefinition of design processes to accommodate escalating levels of
system complexity and the challenge of fully understanding the system’s
nature or potential failure modes (Hehenberger et al. 2016). Concrete
challenges are also highlighted to underscore the necessity for a novel
methodological approach to ensure successful CPS design, with partic-
ular emphasis placed on post-deployment system integration hurdles
(Mosterman and Zander 2016). The introduction of the Human–
Cyber–Physical System (HCPS) and Human-in-the-Loop CPS, which
are composite intelligent systems consisting of humans, cyber systems,
and physical systems, is engineered to achieve specific goals at an opti-
mized level (Zhou et al. 2019). This development is significant in the
transition to Industry 5.0, leveraging the creativity of human experts
collaborating alongside intelligent systems.

As discussions around circular economy implementation evolve, the
requirements for circular designs have expanded to encompass a broader
range of functional and non-functional considerations. A limitation
of sustainable systems engineering today is its inability to properly
reason about value retention loops, i.e., to introduce systematic circu-
larity into the engineering practice. This is due to the lack of ability
to combine end-to-end process networks with bipartite systems and
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method sustainability. This limitation, in turn, motivates the conver-
gence of Model-Based Systems Engineering (MBSE) and Product Life-
cycle Management (PLM) toward true Model-Based Engineering (MBE)
to realize a lifecycle-model-based approach that integrates data and
supports end-to-end lifecycle processes. Navigating these complexities
involves managing vast amounts of data and iterating through cycles
while coordinating within intricate networks. AI, therefore, has the
potential to handle complexity and make sense of abundant data more
effectively. It can accelerate the design of new circular products, compo-
nents, and materials fit for a circular economy through iterative machine
learning-supported design procedures, facilitating swift prototyping and
testing. The intent is to transition to a sustainable Industrial Revolution.

Consequently, product design engineering is transitioning from
informal, conceptual approaches toward data-driven design methodolo-
gies (Wang et al. 2022), with AI poised to facilitate this systematic
shift. AI holds immense potential in expediting prototyping and learning
processes by integrating field performance data into iterative design
cycles. AI techniques have proven immensely beneficial for sustainability
efforts, particularly in managing vast volumes of data within digital
thread-based engineering practices. The data-centric approach employed
in the implementation of cyber-physical systems for design, modeling,
simulation, and integration has been instrumental in this regard (Hehen-
berger et al. 2016). AI systems aim to respond in real-time to process
issues, with advanced AI even self-monitoring and self-controlling in
an autonomous style (Aphirakmethawong et al. 2022). AI has been
applied to analyze data and make decisions for operating systems to
reduce impacts on cost and quality. AI-enabled digital twins are well-
positioned to govern end-to-end processes (Heithoff et al. 2023), offering
opportunities for efficient data harvesting and rich decision support
based on modeling and simulation. Given the multi-systemic nature
of sustainability, multi-paradigm modeling (Vangheluwe et al. 2002),
multi-view modeling (Cicchetti et al. 2019), and user-friendly, flex-
ible modeling approaches, such as blended modeling (David et al.
2023), can provide solid foundations for the next generation of circular
modeling frameworks and tools. AI-generated product design can use
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artificial intelligence to create new product designs and generate innova-
tive concepts. Tools like DALL-E, the AI-powered image generation tool
from OpenAI, use neural networks to create images based on provided
descriptions, serving as an excellent resource for product designers to
generate futuristic concepts that do not yet exist. Given the immensely
complex nature of circular product design, modern machine learning,
and AI methods will inevitably become integral to the toolbox of circular
systems engineering.

12.3.2.2 AI-Assisted Circular Production Operations

Circular production or circular manufacturing signifies a major depar-
ture from traditional manufacturing practices. Its aim extends beyond
merely creating sustainable products; it encompasses the adoption of
circular methodologies throughout manufacturing processes. The objec-
tive is to minimize negative environmental impacts by manufacturing
products designed for circular use, optimizing resource utilization, and
extending product lifespans within a closed-loop supply chain ecosystem.
Intelligent use of production assets, resources, and materials during
production operations lies at the core of a circular economy (Rantala
et al. 2023). Manufacturing operations, which consume considerable
amounts of material resources, can effectively minimize energy consump-
tion, material usage, and waste when operating within a closed-loop
system (Schöggl et al. 2023). Transitioning from conventional methods
to circular production management requires significant adaptation and
innovation. This shift not only addresses numerous challenges but also
presents opportunities to overcome them simultaneously (Winquist et al.
2023). It involves collaborating with efficient, intelligent, and precise
machines, embodying the essence of Industry 5.0. This profound leap
forward places humans at the center of manufacturing evolution, envi-
sioning a symbiotic relationship between human workers and advanced
technologies, fostering co-existing production operations management
system (Rožanec et al. 2023). This transformation maps out human–
machine relationships along a 5C evolution journey, progressing from
Coexistence, Cooperation, and Collaboration to a future of Compassion
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and Coevolution (Lu et al. 2022). Among human–machine collabora-
tion approaches, mutual learning stands out, highlighting the reciprocal
collaboration between humans and machines as they jointly undertake
tasks (Rožanec et al. 2023). The intricacies of contemporary manu-
facturing operations underscore the need to integrate advanced tech-
nologies such as artificial intelligence (AI) for optimal performance.
The rise of digitalization in production equipment and operational
processes signifies the adoption of advanced manufacturing technolo-
gies to manage complex, high-dimensional problems and data (et al.
2020). Existing literature findings underscore the growing importance of
AI across various domains within smart production, including produc-
tion operations, maintenance management, quality enhancement, supply
chain management, inventory management, predictive maintenance, and
autonomous operations (Cioffi et al. 2020; Srivastava et al. 2023). AI-
driven analytics can identify operational inefficiencies, uncover bottle-
necks, and find potential market opportunities by utilizing data gener-
ated by algorithms and data models (Zong and Guan 2024). AI leverages
large datasets to analyze data generated during production processes.
Using sensors and data analytics, AI predicts potential equipment failures
and identifies maintenance needs before they occur, thereby extending
product lifecycles and ensuring products remain functional, relevant,
and sustainable for extended periods. Predictive maintenance systems
powered by AI can proactively detect equipment failures, decrease down-
time, and extend asset lifespans, enhancing operational efficiency and
reducing costs. AI-based digital twins provide 3D virtual representations
of real and complex operations, enabling improved design, health and
safety, operations, maintenance, and services, leading to overall resource
efficiency (Kolasani 2024).
AI-driven intelligent factories can move beyond conventional automa-

tion dependent on individual industrial robots toward interconnected
CPS. This transformation revolutionizes production plants, facilitating
communication among machinery and overarching factory systems
through an IoT configuration. Robotic Process Automation can handle
repetitive, high-volume tasks such as updating records, addressing
queries, and performing calculations. Furthermore, AI enhances collab-
oration between suppliers, manufacturers, and other stakeholders for
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a more integrated manufacturing. Collaborative production is vital for
establishing a circular economy, involving the coordination and coop-
eration of various stakeholders within the manufacturing value chain.
Together, they drive sustainable production efforts. Human-in-the-loop
manufacturing combines artificial intelligence and automation in the
manufacturing process. AI and human–machine collaboration in manu-
facturing brings together the strengths of AI and human expertise
to optimize various aspects of the manufacturing process, simulating
human intelligence and acting without explicit instruction (Ciccarelli
et al. 2024). Consequently, AI is recognized as the primary driver of the
Fourth Industrial Revolution, driven by new ways of interaction between
humans and machines. The integration of AI in circular production
operations has significant implications, serving as a pivotal component
in the progression of the Fourth Industrial Revolution and holding
considerable potential in advancing circular manufacturing practices and
fostering sustainable innovation.

12.3.2.3 AI-Assisted Circular Product Services

Since the greatest source of value lies in product usage, advancing circular
productservice management emerges as a primary strategy for promoting
a resource-efficient economy. It seeks to add value to products, extend
their lifecycle through repair and maintenance, and enhance perfor-
mance via refurbishment and upgrades during their end-of-life phase.
Circular service management thus emphasizes an integrated approach
by adopting closed-loop product-service systems for sustainable devel-
opment (Camilleri 2019). This creates an efficient service ecosystem
focused on the entire service lifecycle, from creation to end-of-life,
aiming to reduce environmental impact, enhance resource efficiency,
and promote sustainability based on real-time insights. Circular service
management therefore represents a significant opportunity to extend the
principles of the circular economy into the realm of service delivery.
While intelligent product-service systems, as part of the digital servi-
tization paradigm, have rapidly developed, literature reviews highlight
the obstacles and practical challenges encountered by manufacturing
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firms. These include difficulties in diverging from entrenched busi-
ness models, offerings, routines, and capabilities (Brekke et al. 2024;
Ren and Zheng 2024; Naeem et al. 2024). Despite its growing signif-
icance, the circular economy remains an uncharted area in transfor-
mative service research (TSR), with a limited understanding of how
the circular economy can support change for greater well-being among
individuals and collectives (Sönnichsen et al. 2024). This necessitates
intelligent design modifications to accommodate product services, digi-
tally enabled methods for delivering new services, data-driven capabil-
ities and innovation, customized service-based augmented innovation,
service delivery systems, and innovative approaches to managing service
outcomes (Brekke et al. 2024).
Since the greatest source of value lies in product usage, advancing

circular product-service management emerges as a primary strategy for
promoting a resource-efficient economy. This approach aims to add
value to products, extend their lifecycle through repair and main-
tenance, and enhance performance via refurbishment and upgrades
during their end-of-life phase. Circular service management thus empha
sizes an integrated approach by adopting closed-loop product-service
systems for sustainable development (Camilleri 2019). This creates
an efficient service ecosystem focused on the entire service lifecycle,
from creation to end-of-life, aiming to reduce environmental impact,
enhance resource efficiency, and promote sustainability based on real-
time insights. Circular service management therefore represents a signif-
icant opportunity to extend the principles of the circular economy into
the realm of service delivery.
While intelligent product-service systems, as part of the digital serviti-

zation paradigm, have rapidly developed, literature reviews highlight the
obstacles and practical challenges encountered by manufacturing firms.
These include difficulties in diverging from entrenched business models,
offerings, routines, and capabilities (Brekke et al. 2024; Ren and Zheng
2024; Naeem et al. 2024). Despite its growing significance, the circular
economy remains an uncharted area in transformative service research
(TSR), with a limited understanding of how the CE can support change
for greater well-being among individuals and collectives (Sönnichsen
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et al. 2024). This necessitates intelligent design modifications to accom-
modate product services, digitally enabled methods for delivering new
services, data-driven capabilities and innovation, customized service-
based augmented innovation, service delivery systems, and innovative
approaches to managing service outcomes (Brekke et al. 2024).

AI-enabled circular service management approaches, integrated with
other digital technologies, have the potential to fundamentally reshape
the conventional methods by which firms generate, deliver, and capture
value (Mariani et al. 2023). Leveraging advanced technologies such as
networking (e.g., Web 3.0), digitalization (e.g., mixed reality), and intel-
lectualization (e.g., AI-generated content), product-service systems can
revolutionize business innovation and service delivery to customers (Ren
and Zheng 2024). By harnessing these advanced technologies, product-
service systems can offer more dynamic and personalized experiences,
enhance efficiency, and drive innovation across various industries. In the
B2B context, firms have widely accepted the influence of AI on servitiza-
tion while shifting from a product-centric to an “Everything as a Service”
(XaaS) business model and logic (Abou-Foul et al. 2023; Nicoletti and
Appolloni 2023).

Research indicates that proactive interaction in design, incorporating
symbiosis between humans and smart-connected products, as well as AI-
enabled collaborative intelligence, emerges as a novel design feature for
innovative services, aligning with the human-centric and personalized
themes of Industry 5.0 (Nicoletti and Appolloni 2023; Ren and Zheng
2024). An AI-based integrated business model considering digital servi-
tization allows manufacturers to gain a competitive advantage through
product-service innovation (Naeem et al. 2024). AI has the poten-
tial to amplify the competitive advantage of circular economy business
models, such as product-as-a-service and leasing, by integrating real-time
and historical data from products and users. This integration enhances
product circulation for as long as possible, as they are reused, repaired,
refurbished, remanufactured, and circulated among users with diverse
and evolving needs. This will further motivate manufacturers to seek
more sophisticated solutions leveraging deep learning and AI-based capa-
bilities (Kohtamäki et al. 2022). Therefore, there is a consensus that
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organizations willing to leverage advanced technologies, including artifi-
cial intelligence, need to restrategize their business and operating models
and realign operations to transform their operating models and recon-
figure business architecture across the enterprise (Nicoletti and Appolloni
2023).

12.4 Conclusions

As global challenges intensify and value chains become increasingly
interconnected, it’s evident that the traditional linear economic model
is inadequate. However, within these traditional models lie inherent
capabilities and opportunities that can be effectively leveraged through
advanced technologies. One such opportunity is the existence of inherent
circularities within linear processes, providing pathways to transition
toward more sustainable and circular practices. This chapter explores
the inherent circularities within individual stages of the value chain,
illustrating their potential to drive closed-loop practices and influence
the transition to a circular economy. It also elucidates key concepts of
Industry 4.0, detailing design principles and implementation strategies
that enhance circularity as foundational to a circular value chain. By
building on these foundational insights, it presents the nexus between
Industry 4.0 and the Circular Economy—an evolution driven by techno-
logical advancements and sustainability imperatives, aiming to engineer
end-to-end circularity. This approach not only enhances efficiencies and
competitiveness in production operations but extends beyond, fostering
innovation in sustainable product design and service delivery. Never-
theless, the journey toward achieving end-to-end circularity is complex
and challenging. This complexity has catalyzed the emergence of the
concept of Industry 5.0, which emphasizes deeper integration of human
intelligence with advanced technologies like AI to foster sustainability
and human-centric development. Organizations must therefore over-
come organizational, technological, and cultural challenges to change the
way they integrate, collaborate, innovate, and create value systematically
in the transition toward sustainable and human-centric development.
Overall, Industry 5.0 represents a paradigm shift toward more inclusive,
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sustainable, and resilient industrial practices, where AI and advanced
technologies empower humans to drive meaningful change toward a
circular economy and sustainable future.

References

Mohamad Abou-Foul, Jose L Ruiz-Alba, and Pablo J López-Tenorio. The
impact of artificial intelligence capabilities on servitization: The moder-
ating role of absorptive capacity-a dynamic capabilities perspective. Journal
of business research, 157:113609, 2023.

Federica Acerbi, Dai Andrew Forterre, and Marco Taisch. Role of artifi-
cial intelligence in circular manufacturing: a systematic literature review.
IFAC-PapersOnLine, 54(1):367–372, 2021.

Peter Adolphs et al. Status report-reference architecture model industrie 4.0
(rami4.0). Technical report, VDI-Verein Deutscher Ingenieure eV and
ZVEI-German Electrical and Electronic Manufacturers Association, 2015.

Andres Alcayaga, Melanie Wiener, and Erik G Hansen. Towards a framework
of smart-circular systems: An integrative literature review. Journal of cleaner
production, 221:622–634, 2019.

Carlos An Andrade, Sandrine Selosse, and Nadia Maïzi. Thirty years since the
circular economy concept emerged: has it reached a consensus. Working paper,
Chaire Modélisation prospective au service du développement durable,
2021.

Janjira Aphirakmethawong, Erfu Yang, and Jorn Mehnen. An overview of arti-
ficial intelligence in product design for smart manufacturing. In 2022 27th
International Conference on Automation and Computing (ICAC), pages 1–6.
IEEE, 2022.

Johan Arekrans. Circling the Squares: Radical Innovation and Management
Control Systems in the Circular Economy. PhD thesis, KTH Royal Institute
of Technology, 2023.

Sehrish Atif. Analysing the alignment between circular economy and industry
4.0 nexus with industry 5.0 era: An integrative systematic literature review.
Sustainable development (Bradford, West Yorkshire, England), 31(4):2155–
2175, 2023.



364 N. Enose Kamalabai et al.

Usama Awan et al. Industry 4.0 and circular economy in an era of global value
chains: What have we learned and what is still to be explored? Journal of
Cleaner Production, 371:133621, 2022.

Federico Barnabè and Sarfraz Nazir. Conceptualizing and enabling circular
economy through integrated thinking. Corporate social-responsibility and
environmental management , 29(2):448–468, 2022.

Christoph Jan Bartodziej. The Concept Industry 4.0: An Empirical Analysis of
Technologies and Applications in Production Logistics. Springer Fachmedien
Wiesbaden GmbH, Wiesbaden, 2017.

Mirjam Beltrami et al. Industry 4.0 and sustainability: Towards conceptualiza-
tion and theory. Journal of cleaner production, 312:127733, 2021.

Holger Berg et al. Unlocking the potential of industry 4.0 to reduce the
environmental impact of production. Technical report, European Environ-
ment Agency, European Topic Centre on Waste and Materials in a Green
Economy: Mol, Belgium, 2021.

Erskin Blunck and Hedwig Werthmann. Industry 4.0: An opportunity to
realize sustainable manufacturing and its potential for a circular economy. In
DIEM: Dubrovnik International Economic Meeting , page 5650. Sveučilište u
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13
Exploiting Machine Learning to Test
Service Supply Scenarios: A Rescue

Department Case

Mika Immonen, Heidi Huuskonen, Jouni Koivuniemi,
and Jukka Hallikas

13.1 Introduction

Organizations’ ability to monitor and test supply chains and processes
supports adaptation to dynamic environments that enable agile strategies
and optimized operations (Akter et al. 2016; Wamba et al. 2017; Yang
et al. 2019). The achieved benefits of adopting novel analytics methods
in decision-making are also related to increased awareness of operations
risks and resiliency (Singh and Singh 2019). In practice, data-driven
decision-making aims to address assessment operations and experimen-
tation of alternative process structures where machine learning (“ML”)
and artificial intelligence (“AI”) provide approaches for forecasting and
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predicting the performance of solutions (Côrte-Real et al. 2017 2019).
These analyses can focus on, for instance, supply chain planning, supplier
selection and relationship prediction, supplier performance, and demand
forecasting (Lima-Junior and Carpinetti 2019; Rezaei et al. 2019).

In Europe, population aging and public finance drive changes in
public healthcare services, which increase the responsibility of individuals
and bias independent home living as an essential environment for elderly
people (Kumar et al. 2023). Changes in public health care lead to decen-
tralized risks in residential areas from a safety management perspective
and new approaches are needed to maintain awareness of urban regions,
areas surrounding urban regions, and sparsely populated areas (Helminen
et al. 2013; Helminen and Ristimäki 2008). In the Finnish context, 80%
of people are living in or near urban regions, and the fastest-growing
areas are those surrounding the urban regions of major cities. According
to forecasts by the Ministry of the Interior (2016), approximately 25%
of the population will be aged over 65 in 2030, and family structures
are changing as well, with the number of single dwellers increasing in all
age groups. To address these challenges, the harmonizing service manage-
ment of rescue services and elderly service provision plays a remarkable
role in guaranteeing a reasonable level of safety at home. Suburban
growth also raises ethical questions about accessibility because public
services are perceived as a subjective right regardless of economic, social,
or geographic factors (Cordella and Willcocks 2010). As a result, novel
approaches for assessing the risks and performance of safety management
are needed to address challenges in changing operational environments.
The empirical context of this chapter connects predictive analytics to

population changes and societal challenges, which are observed via an
empirical performance assessment of a rescue department. In particular,
focusing on the role of ML and AI as solutions to better understand the
challenges of demographic shifts and operational complexities highlights
Industry 5.0’s human-centric, technology-enabled approach. The discus-
sion on AI’s role in advancing proactive risk management also connects
the topic to data analytics premises indicating the potential of rescue
services and healthcare data. Finally, the effectiveness of public services



13 Exploiting Machine Learning to Test Service Supply … 375

enabled via ML and AI represents an interaction that merges technolog-
ical advancements with a focus on human well-being, hence embodying
the principles of Industry 5.0.
This chapter demonstrates an ML-based approach to improve

preparedness management in critical public services (Ghasemaghaei
2019) that relies on an artificial neural network regression model
(“ANN”) for enabling experiments of service system performance. This
approach connects supply chain design with data analytics and employs
empirical research to demonstrate the use of evidence-based approaches
in public service performance management. The empirical context of the
discussion wraps around the critical services of societies, where long-term
changes or sudden societal shocks can cause disruptions to the public
service supply and demand. Managing the effects of shocks requires
systemic resiliency, which involves flexibility, redundancy, durability,
collaboration, and financial stability to manage risks, mitigate immediate
impacts, and restore operations (Pettit et al. 2013).
The present empirical study describes the datasets and outlines the

modeling process for the experimentation of a service system. The
empirical case focuses on building an estimator of accessibility for a
rescue service network in residential areas in which societal changes
and healthcare reforms drive fire station network reconfiguration. The
data include emergency register data that are enriched with geospatial
variables (demographic descriptors, geocoding building data, and route
data). An empirical study utilized integrated data for training ANNs.
The trained model enables scenario modeling for response time estimates
of rescue services for commercial and residential buildings in a specific
region. ANNs are selected as the regression method in this study because
of their efficiency and adaptability in predictive modeling and their deci-
sion support for a variety of complex multivariate questions related to
risk assessment (Lima-Junior and Carpinetti 2019; Rezaei et al. 2019;
Tsai and Hung 2016). From a methodological perspective, this approach
provides a protocol for testing the supply networks of other time-critical
services and includes a baseline comparison of the ANN model with a
linear regression model to justify the trained model.
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13.2 Background of Supply Chain Resiliency

13.2.1 Risk and Information Management

Currently, risk management is progressively addressing vulnerabilities
originating from supply chains and networks. This change signifies
a deeper understanding of how organizations function as interlinked
delivery systems or chains, appreciating the mix of external and internal
resources necessary for an entity’s operational tasks. These resources,
which include suppliers of materials and services, subcontractors, and
partners, are vital for upholding and boosting operational efficiency and
competitive advantage (Choi and Wu 2009).

In the supply network context, information processing theory provides
a background for modern risk management approaches because there
is an increasing need to align information systems with risk manage-
ment processes (Fan et al. 2017). In practice, collecting, processing,
and sharing risk-related supply chain information are key tasks in risk
management and should lead to improved capabilities or routines for
organizations to detect, prevent, respond to, and recover from sudden
changes in an operational environment (Fan et al. 2017; Vedel and
Ellegaard 2013). Improved risk information-sharing also enhances proac-
tive risk management capabilities in operations (Christopher and Lee
2004; Harju et al. 2023), which has proven to positively influence
organizational performance (Fan et al. 2017)(Fan et al. 2017).

13.2.2 Demand Risk Management in Service Supply
Chains

Supply chain disruption management is based on knowing how vulner-
able the supply chain is (Wagner and Neshat 2012) and what kinds of
disruptions can upset it (Wagner and Bode 2006). Indeed, managing
risks in supply chains focuses on processes that include actors from
multiple organizations that also link structural configurations as a unit
of analysis, including both physical and information flow (Munir et al.
2020; Saha and Rathore 2024). Recognizing how different supply chain
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design options affect vulnerability is important because, depending
on those design choices, different disruptions can occur; that is, the
exposure to disruptions depends on the design choices of the supply
chain (Chopra and Sodhi 2014; Wagner and Bode 2006). In partic-
ular, amid increasing digitalization and operational complexity, effec-
tively managing structural complexity in supply chains is critical for
mitigating inherent vulnerabilities and minimizing their impact on oper-
ational continuity and stability (Guo et al. 2024). Supply risks are
the probability of an incident associated with an inbound supply from
an individual supplier failure or the occurrence of a supply market
(Zsidisin 2003). This definition encapsulates both the likelihood and
impact dimensions of risk (Colicchia and Strozzi 2012), underscoring
the goal of risk management to minimize both the possibility and impact
of adverse events. The traditional approach to supply risk manage-
ment, which offers numerous benefits for adequately executing the risk
management process, spans risk identification, risk assessment, risk miti-
gation, risk performance, and continuous improvement (Kern et al.
2012). Building on this foundation, risk factors can generally include
demand-side, supply-side, internal, and external factors, the latter of
which are identified as the primary drivers (Guo et al. 2024). This is
because a supply chain transmits demand information downstream to
support management decisions.

Nonetheless, as demand information passes through a supply chain, it
often becomes distorted (Sharma et al. 2023). The extent of this distor-
tion significantly influences supply chain vulnerability, particularly in
scenarios where chains are heavily reliant on market demands, further
complicating the management and mitigation of supply risk. In addition,
demand risk is an important dimension of supply chain risk. The reasons
for demand risks include, for example, demand volatility and the conse-
quent difficulty in predicting demand (Sodhi 2005). The literature shows
that the low versus high unpredictability of demand has a moderating
effect on supply chain volatility. When demand is relatively unpre-
dictable, cross-functional integration should be able to manage variability
in supply chain processes, thereby contributing to better performance
(Germain et al. 2007). Improving supply chain visibility is regarded as
an important mitigation strategy to help minimize the severity of supply
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chain disruptions caused by demand risks (Sodhi 2005). By improving
forecasting models, it is possible to better anticipate changes in demand
and reduce the uncertainty and risks related to demand (De Treville et al.
2014).

13.2.3 Supply Chain Resiliency

Resilience reflects the system’s ability to recognize, anticipate, cope
with, and recover from disruptions (Francis and Bekera 2014; Sheffi
and Rice 2005). Managing resiliency requires competent organizations
that can effectively adopt resources and strategies to anticipate the
outcomes of disruptions in their operational environments, which are
those capabilities that can positively affect firm performance (Lee and
Rha 2016). The literature also shows that, in the realm of data analytics,
firms need competencies in leveraging both internal and external data,
enhancing analytics skills, and responding to early warnings, suggesting
that viewing digitalization and supply chain resilience as strategic invest-
ments can foster strategic positioning and potentially improve expected
performance (El Baz and Ruel 2024).
The ability to respond and recover quickly from disruptions is

a key feature of a resilient organization’s performance (Jüttner and
Maklan 2011). Both proactive and reactive capabilities are important for
improving supply chain system resilience under pre- and post-disaster
conditions (Chowdhury and Quaddus 2017). Here, reactive resilience is
the ability of an organization to respond and recover from disruptions
(Sheffi and Rice 2005), while proactive resilience refers to the ability
of a system to build capabilities, such as flexibility, redundancy, dura-
bility, collaboration, and financial stability (Pettit et al. 2013). Because
certain features of supply chain design improve resilience, they need to
be considered in the design process (Christopher and Lee 2004). Finally,
there can also be predictive resilience, which predicts future exposure
based on past performance data. In this case, the user can predict a
problem before it occurs and offer mitigation strategies (Blackhurst et al.
2008).
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Studies have highlighted the requirements and influencing factors for
building resilience. Resilience development requires organizations to be
disruption-oriented and have the resources to define and implement
a risk management infrastructure (Chowdhury and Quaddus 2017).
Resilience can be enhanced by supply chain planning strategies, collab-
oration, agility, and the creation of a risk management culture (Christo-
pher and Lee 2004). Resiliency is also rooted in information-sharing
capability throughout the supply chain and in the structure of the supply
chain. Information-sharing and integration capabilities should cover
both suppliers and customers, and network structures should be aligned
to decrease risks that could negatively affect the overall performance of
the supply chain (Ledwoch et al. 2018; Munir et al. 2020). Therefore,
organizations need processes to support information processing so that
big data analytics can be used to effectively anticipate and monitor supply
chain disruptions (Gunasekaran et al. 2017). Information capability has
been found to have a positive effect on supply chain resilience through
supply chain visibility (Brandon-Jones et al. 2014), the creation of which
depends significantly on the development of a company’s analytical skills
(Srinivasan and Swink 2018).

13.3 Methods

13.3.1 Process For Estimating Scenarios of Rescue
Service Performance

In the current study, the assessment of service network responsiveness
was based on an ANN regression model that produces estimates of
operational response times for the rescue service system. The aim was
to produce a “normal state”—estimates that do not take into account
spatiotemporal variations in environmental conditions (traffic, weather,
etc.). The final model excludes the spatiotemporal variables because
of the limited cases in the training data, making it infeasible to add
these contextual variables. Adding contextual variables results in an
overly narrow sample for each condition, compromising the model’s
applicability and robustness.
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The model utilized derived spatial data for commercial and residential
buildings in the area, including the shortest distance to fire stations and
agglomerations, an estimate of the shortest route length and duration
to fire stations and the population density of an area, and the density
of its built environment (1/km2). Operational modeling was carried
out in four main phases: (1) enriching the dataset from the statistics
system of Finnish rescue services (PRONTO, a system for monitoring
and developing rescue operations and resolving accidents), (2) training
and validating a neural network estimator, (3) cross-validating the candi-
date ANN and (4) producing responsiveness scenarios for the modified
fire station networks.

In the first phase of the analysis, source data were augmented by
geocoding the addresses via the OpenStreetMap (REST/API) service and
generating path lengths between the accident and the nearest fire station
in the OpenStreetMap RouteMachine (REST/API) local service. The
events in the source data were also accompanied by descriptive vari-
ables of the environment from the following: (i) open information by
postal code area (PAAVO) and (ii) addresses of buildings (avoindata.fi).
The second phase focused on (1) finding significant variables and (2)
constructing an estimator. The selected features were distance variables
and population density indicators. The selected variables encompassed
distance metrics, capturing spatial relationships between addresses and
nearby amenities, such as fire stations, while population density indica-
tors were incorporated to account for variations in human settlement
patterns, providing insights into potential risk factors. Here, the aim
was to offer a comprehensive understanding of the spatial dynamics that
influence addresses. Furthermore, recognizing the importance of contex-
tual information for accurate predictions, indications were provided to
the neural network regarding the regional context of distant locations,
ensuring a more nuanced analysis of spatial patterns in addresses.
The second phase focused on creating an estimator. The neural

network was chosen as a regression estimator (Fig. 13.1) because (1)
the dependencies were nonlinear and (2) the environmental variables
were categorical (Zhang 2004). Before the final estimation of the service
scenarios, the neural network model was validated for estimation error
and explanation power by comparing outputs to observations and linear
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Fig. 13.1 Regression model to explain response times

estimates. In the third step, the ANN regressor was used to investi-
gate three fire station network scenarios: (a) only permanent fire stations
(no contract firefighters), (b) the existing service network (permanent
and contract fire brigades), and (c) the existing service network with
decentralized mobile complements.

13.3.2 Description of the Data

The research data can be divided into two groups at the general level:
controlled data and open data sources. The data sources are summarized
by title, description, format, and comments on availability in Table 13.1.
The controlled data are from PRONTO and are used as the core data
for model training. Access to PRONTO data is controlled by research
permits. Open data can be divided into two groups according to the
technical interface: (1) internet distributions of tabular formats (spread-
sheets, CSV files, etc.) and (2) distributions via application programming
interfaces (APIs). Tabular data typically include regional-level descrip-
tions that contain aggregated summaries of the base data. APIs provide
detailed information regarding a specific unit or time point. Because the
information received from APIs is in machine-readable form (typically
JSON or XML responses), the analysis requires further processing of the
data. In the present study, regional statistics were gathered from open
datasets across different interfaces, ranging from zip code-linked data to
location coordinates.
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Table 13.1 Applied data sources of the study

Data source Description Format Data access

PRONTO Statistics system of finnish
rescue services (number of
service events between 2007
and 2016 n = 22,153)

Tabular data
(SQL query)

Emergency
services
college/
research
permit a

Key content: type of mission,
timestamp, location

Building
locations

Location data of buildings in
Finland (n = 60,000 building
IDs)

Tabular data
(download)

Population
register
centre/
open data

Key content: province,
municipality, street address,
postal area code coordinates
(WGS84)

PAAVO Open data by postal code
area

Tabular data
(download)

Statistics
finland/
open data

Key content: population
structure, buildings and
dwellings, workplaces, main
activities of the inhabitants

OSM
nominatim

OpenStreetMap (OSM) is a
collaborative project
designed to create a free
editable map of the world

Interface
(REST/API)

Nominatim
APIb, Open
data

Key content: geocoding,
reverse geocoding, route
machine

OSM routing OpenStreetMap (OSM) is a
collaborative project
designed to create a free
editable map of the world

Interface
(REST/API)

OSRM
virtual
server b, c,
d, Open
data

Key content: geocoding,
reverse geocoding, route
machine

13.3.3 ML Model Selection, Training, and Validation

The data content and objective of the research model defined the guide-
lines for ML algorithm selection. The data collected from a variety of
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sources included numeric inputs for the model, which could be inter-
preted categorically in certain cases, and the model should, in this case,
include system features for predictions (Tsai and Hung 2016). The
model building included two steps: (1) hyperparameter optimization and
(2) model validation and cross-validation (Lima-Junior and Carpinetti
2019). To develop the most appropriate regression model, we tested
ANN configurations (i.e., topology) defined by the number of hidden
layers and neurons and employed training iterations to adjust the level
of accuracy. The goal of these phases was to estimate the gradient descent
of the training to avoid any remarkable overfitting or underfitting of the
solution (Hastie et al. 2017). The KNIME Analytics Platform v3.7 was
used for data preparation, model training, validation, and deployment of
the model.
Valid cases of service response times from PRONTO provided refer-

ence data for ANN construction and training. The network type selected
was a fully connected neural network. The training and validation data
began from a random split of the data into training (80%) and validation
(20%) sets. The model validation process also included the repetition
of the random splits to check the robustness of the solutions. The
performance of each construct was measured by cost functions, explana-
tory power (R2), and the root-mean-square error of estimation (RMSE)
(Metsämuuronen 2017).
The optimal structure of the ANN was determined in a two-step

process: (1) the number of hidden layers was determined using a fixed
number of neurons for each layer, and (2) the number of neurons in
each layer was later iterated. Each iteration included a comparison of the
given results with the observed response times, from which the perfor-
mance was evaluated by cost functions. The structural configuration was
defined with a fixed rate of iterations (n = 200), leading to six hidden
layers and 50 neurons. The training rate was optimized by repeating
the process from 50 to 800 iterations; the optimal level was found to
be 100 iterations. The modeling errors were interpreted, and no clear
trends were found (Fig. 13.2). A slight bias in the ANN may still occur
because training and validation data have significantly higher counts of
events at short distances, which follows the distribution of the population
(Fig. 13.2c, d).
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Fig. 13.2 Model validation

Finally, the optimized ANN was compared with an ordinary linear
regression model to validate the ANN modeling approach against the
baseline model (Table 13.2). The significant difference between the esti-
mates, and the observed values was also tested. The developed ANN
model was found to provide more accurate estimates than the linear
regression model in terms of both estimation error and degree of expla-
nation. No statistically significant differences were observed between the
estimates and observations.
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Table 13.2 Comparison of the ANN and linear regression models

ANNa regression Linear regression

Fit
R-sqr 0.5 0.33
RMSE 362.7 386.05

Difference of means
Observation to prediction (paired sample
t-test)

T; df; p (2-tailed) T; df; p (2-tailed)
− 0.42; 1166; 0.67 0.05; 1166; 0.96

In the final phase of testing, we aimed to assess the sensitivity of model
training to sampling bias by using a random sampling cross-validation
method (Lima-Junior and Carpinetti 2019). The cross-validation process
was based on repeating the model training 400 times with resampled
data, in which the sampling parameters were equal to those used in the
model development phase. During model validation, the random deci-
sion forest algorithm (“RDF”) was also tested as a competing solution.
Experience shows that the RDF was not a suitable estimator for this
case because cross-validation revealed remarkably high sensitivity to the
training dataset. In other words, estimates from the RDF depend heavily
on the biases of the sample, limiting its potential for generalizations.

A comparison of the cross-validation results between the ANN and
linear regression models was accomplished using the explanatory power
of the models as an indicator (see Fig. 13.3). The mean values of the
R2 model were 0.43 (SD 0.03) for the ANN model and 0.31 (SD 0.02)
for the linear regression model. From the model comparison, we can
conclude that neural networks provide greater accuracy and explanatory
power over phenomena when dealing with the problems of a geospatial-
related dataset. However, ANNs appear to be sensitive to training set
bias, which can be seen in the seemingly wider variation in the explana-
tory power. To conclude, the neural network appears to produce an
estimate of the response that is reasonably clear of random contextual
variations.
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Fig. 13.3 Cross-validation of the ANN (red) and linear regression (grey) models
using R2 as an indicator

13.4 Findings

The regression model developed in the third and final steps of the analysis
was used to examine three fire station network scenarios: (a) permanent
fire stations only (no contract fire departments) (4 units), (b) existing
service networks (permanent and contract fire departments) (22 units)
and (c) existing service networks reinforced with decentralized units (29
units). The latter scenario is particularly interesting from the perspective
of living at home as the relative share of first-response tasks increases. In
scenario modeling, the first step was to generate input variables for all real
estate in the region, which was grounded in the specifications described
in the research model. A trained neural network (6 hidden layers, 50
neurons per layer, 100 iterations) was used to produce response time
estimates for 60,366 property IDs in the given service network scenarios,
the distributions of which were subsequently compared (Fig. 13.4).
The significant difference in the means of the response time estimates

was assessed by a nonparametric Kruskal–Wallis test to detect variations
in the service network performance. At the system-wide level, statistically
significant differences (p < 0.001) were found in the means as follows:
(a) Scenario 1 → Scenario 2: − 0.31 min, (b) Scenario 2 → Scenario 3:
− 0.25 min, and (c) Scenario 1 → Scenario 3: − 0.57 min (Table 13.3).
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Fig. 13.4 Scenario results and distribution of estimates

In the analyzed region, city centers did not vary between the scenarios,
but their areas were small, covering only several blocks. The magnitude
of the effects of changes in the service network seems to dissolve further
away from the borders of the suburbs about distance, which is reflected
in a decreasing change between scenarios in distant rural residential areas.
Based on the neural network, the greatest impact of service network
change on the estimate of property-specific response times appears to
be in detached areas dominated by urban suburbs, where the response
change could be several minutes. The impact of service network change,
based on the neural network, on response times appears to be in the resi-
dential sectors of urban fringe areas. The illustrations in Figs. 13.5, 13.6,
and 13.7 (scenarios 1, 2, and 3, respectively) show the shifts in response
times in the analyzed region.
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Table 13.3 Data summary for different scenarios

Response, predicted (std. deviation)

Scenario 1 Scenario 2 Scenario 3

General descriptors
Mean 11.76 (3.59) 11.44 (3.86) 11.19 (3.97)
Median 11.28 10.86 10.65
Minimum 4.26 3.44 3.44
Maximum 17.80 17.90 17.90
Results for specific types of area
Dense city centres 6 (1.9) 6 (1.9) 6 (1.8)
Dense suburban 8.4 (2) 8 (1.9) 7.6 (1.9)
Urban fringe 10.6 (2.8) 10.1 (3) 9.7 (3)
Rural areas 13.5 (2.9) 13.2 (3.4) 12.9 (3.5)

13.5 Discussion

Driven by global megatrends, the role of home living as an essential envi-
ronment for elderly people is growing, and new, flexible ways to manage
safety-related risks are needed. To optimize the safety of aging residents,
specific information about organizations related to risk management
and dedicated service supply chains for safety networks and well-being
actors is needed. In aging societies, decentralized services are believed
to be one answer to the challenges they present, but there have been
no systematic approaches to comparing the effectiveness of different
implementation approaches at the system level. A combination of the
current service chain structure and new kinds of decentralized service
units seems to be the most optimized alternative for the production
of rescue services. This result is due to the changes in the operational
environment, in which the rescue services provided by public authorities
need to offset the increasing demands of safety services through a more
information-based, dynamically formed, and precisely targeted combina-
tion of performances. In this context, modern ML-based solutions offer
great potential for producing the novel information needed for the refor-
mulation of public services and for future increases in their productivity
and quality.

In the development of knowledge-based management and the required
technology, the scalability and transferability of procedures outside the
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Fig. 13.5 Map illustration of Scenario 1. Note Response time is estimated in
minutes in colored areas

development environment must also be considered. In the context of the
present study, the national scalability of predictive data models is espe-
cially critical. The complexity of the required data, the sensitivity of the
contents, the degree of modification of the data, permission, and the
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Fig. 13.6 Map illustration of Scenario 2. Note Response time is estimated in
minutes in colored areas

availability of programming interfaces define the potential of the models
for wide-scale utilization. Indeed, data enrichment processes influence
the overall quality of the data if some critical data points are missing from
the registry datasets. For instance, the geocoding phase was a major cause
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Fig. 13.7 Illustration of the Map of Scenario 3

of wasting data to be included in the training dataset because the correct-
ness of the address fields in the registers and the technical characteristics
of the interface affected the result. The structure of the data is also rela-
tively heavy and complex, hence affecting the ease and replenishment of
changes. In future phases, the data needs of spatial datasets and other
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models based on register data should be critically examined so that the
models contain as few variables as possible. By minimizing the number of
variables, the size of the model can be reduced. By optimizing the size of
the models, the number of relevant features can also be increased, which
has an impact on usability. In the future, the accuracy requirements of
the presented data must be clarified. This will enable informed decision-
making regarding the appropriate use of map tiles, statistical regions, or
other region types for reporting data accuracy. In the current situation,
a model at the national level could, for example, be based on statistical
regions for which population data are openly available.

In the future, incorporating national information systems into process
definitions will facilitate easier implementation of modeling across
different counties. On the other hand, all other data are at the national
level, from which the relevant sections have been selected for anal-
ysis. Further studies should utilize the population grid level of Statistics
Finland as the basic geometry for describing the population and building
an environment that increases the variation in input data and the reso-
lution of the model. From the perspective of the usability of the spatial
data model, it is essential to identify the confidentiality and location of
the data because these factors affect the use of the data from the perspec-
tives of different actors. The sensitivity of information must be assessed,
and confidentiality issues must be resolved throughout the network of
actors. Solutions to sensitivity should be sought through access rights
and the aggregation of information to certain regions, where the data
must be aggregated into spatial data so that data concerning individuals
disappear. On the other hand, sensitivity and security concerns can be
reduced by data-sharing platforms, which control access to data at user-
level credentials and where properly developed interfaces also enable the
monitoring of use.

13.6 Conclusions

Prior studies have highlighted the potential of applying big data analytics
in supply chain risk management (Wang et al. 2016) to effectively
anticipate and monitor supply chain disruptions (Gunasekaran et al.
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2017). The presented case study provides a novel approach for inte-
grating information processing into the risk management of supply chain
systems. Based on the case study, the applications of data analytics in
risk management were shown to be especially useful in accident preven-
tion, responsiveness, and the development of proactive supply chain
risk management. The current study has further developed the earlier
findings of (Fan et al. 2017), who align risk management practices
such as preventing, detecting, responding, and recovering with effective
information processing systems in supply chains.

Furthermore, the present study contributes to supply chain resiliency
research by illustrating the potential of data analytics in developing such
resiliency. The study findings provide direct evidence for the develop-
ment of proactive resiliency and risk management through advanced data
analytics. Here, resilience refers to the capabilities built into the system,
such as flexibility, redundancy, durability, collaboration, and financial
stability against disruptions (Pettit et al. 2013). Moreover, based on the
presented case study, there appears to be a high potential for building
operational resiliency in supply chains through the utilization of real-
time information from big data sources. Therefore, this utilization in risk
management can be suggested as an important future research area.
This chapter aims to assess ML as a research approach for service provi-

sion performance in alternative service supply network scenarios. The
present study contributes to the literature by providing an approach for
utilizing complex data while framing a technique to test supply chain
structures that support the management of resiliency in service provision
networks as well as anticipate dynamics in environments (Akter et al.
2016; Ledwoch et al. 2018; Munir et al. 2020; Wamba et al. 2017; Yang
et al. 2019). The present study has demonstrated a method for utilizing
a trained ANN for scenario modeling within a bounded geographical
area. The case consisted of an operational area (address space) of a single
rescue facility for which response estimates were provided. The research
data included two types of sources: controlled data and open data.
The controlled data comprised rescue events from PRONTO, which
included n = 22,153 service events covering the years 2007–2016. Core
data were also acquired from PRONTO for model training, providing
response time references for locations. The open datasets included data
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from internet distributions in tabular formats and distributions via APIs,
which were applied to enrich the core dataset. The method found statis-
tically significant differences between scenarios in the average response
times, both in the whole dataset and locally, based on visual inspection.
The developed method has the potential for further development

in testing the resilience of critical public services and assessing the
impact of competing service systems. In addition, the optimization of
performance provided by multiple actors in network-based structures
for risk prevention and management needs to be specifically assessed
in the future. Concerning a particular purpose, further development
should consider temporal variations that can significantly affect occa-
sional performance. We also need more research and a comparison of
ML modeling approaches in general and with geospatial data. The adapt-
ability of ML models needs to be further studied. The presented model
is relatively reliable in densely populated areas for two reasons. Sufficient
training data are available from the regions such that the model can vary
the estimates according to the situation. In addition, the homogeneity of
the area’s structure and traffic conditions enhances the model’s generaliz-
ability. In sparsely populated areas, the challenges are particularly related
to obtaining sufficiently large amounts of teaching and validation data
from only one administrative area. Based on the observed biases, further
research should focus on developing sufficient validation procedures for
deep learning models because the importance, significance, and reliability
of predictors are difficult to validate. Thus, the lack of validation proce-
dures remarkably limits the generalizability of deep learning for scientific
research purposes. Further research should also provide more compara-
tive studies between classic statistical methods (e.g., linear models), ML
(e.g., decision trees), and deep learning (e.g., ANNs) to create standard
rules for model selection by research problems, data features, and the
volume of available research data.
The servitization of ANN models is a key prerequisite for their wider

deployment and utilization in practical means. First, the models should
be produced into programming interfaces that enable their integration
into the management systems of rescue departments to support the
creation of an up-to-date risk situational picture. Second, the plan-
ning and specification of platform requirements are essential steps in
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the productization process from the provider side. These are followed
by the technical implementation of interfaces that enable access to the
trained models. These procedures require further research to connect
data management, AI development, and service design into a consistent
framework. One important direction for further research is a discus-
sion of the data quality and volume for modeling algorithm selection.
From a supply chain management perspective, more research is needed
to study approaches for effectively utilizing the signals derived from
predictive modeling. Finally, additional studies that focus on the requisite
organizational capabilities are needed to use complex datasets.
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14
Boosting the Learning Process for IoT
Data Utilization in Business Value

Sini-Kaisu Kinnunen, Lasse Metso, and Timo Kärri

14.1 Introduction

Companies are facing challenges in upgrading an increased amount
of data into value in their business. The increased amount of data is
collected with sensors and IoT-related advanced technologies, but not
all data and technologies available are utilized or benefitted from as the
support of decision-making, varying from operative level to managerial
decisions and strategic management. Value from data can be achieved for
example, by creating new business, e.g., developing data-driven services,
digital services, and solutions to support decision-making. The key is
understanding the process from data to decision-making, finding the
technologies to support the process, and realizing the IoT solutions. (see,
e.g., (Côrte-Real et al. 2020; Kinnunen, 2020, Kinnunen et al. 2018,
Momeni and Martinsuo, 2018, Räikkönen et al. 2020)) IoT solutions
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and artificial intelligence (AI) are essential parts of developing Industry
5.0. AI can be seen as a part of the IoT process, and it can be used
to enhance the intelligence of IoT solutions, for example by automating
decisions (Nolle, 2023; Vinugayathri, 2024). It has been emphasized that
by combining IoT and AI, companies can enhance the power of both
IoT and AI, develop more sophisticated and smart solutions, automate
decision-making, increase efficiency, and achieve more value in their
business (Gerlée, 2024; Nolle, 2023; Vinugayathri, 2024). However,
data-driven decision-making and technology adoption are uneven in
companies because companies are on a different economic scale, they
lack education both in the IT department and the worker side, and
they are on different levels in organizational learning (Brynjolfsson and
McElheran, 2016).

Companies need new types of professionals, and this shortage of
skilled workforce hinders the exploitation of advanced technologies and
data utilization (see, e.g., (Brynjolfsson and McElheran, 2016; Gürdür
Broo et al. 2022; Pomp et al. 2022). The actual need of companies
has been the reason to develop education in this area. As a part of
the Master’s Programme in Industrial Engineering and Management at
a Finnish university (University X), digital service processes and data
analytics are taught to meet the needs of companies to get skilled profes-
sionals, who can develop new business from data and support business
development with the aid of data. As a result of company collaboration,
e.g., visiting lecturers and master’s theses, it has been noticed that there
is an increasing need for industry and the public sector to employ profes-
sionals who have skills to exploit data in business. The role of universities
in transferring knowledge and skills for industrial needs, by considering
the trends in scientific research and emerging technologies on artificial
intelligence and IoT, has previously been studied by academics (see e.g.,
Gurdur Broo et al. 2022; Boltsi et al. 2024). It can be concluded that
there is a need for professionals with IoT skills especially in the time of
Industry 5.0, when companies should be able to take advantage of data
utilization.

It is well known that to develop into a skilled expert, a person needs
to apply theoretical models and frameworks, identify the need for a
solution, and realize the solution with advanced technologies, such as
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with an IoT platform. As a part of the course “Industrial Applica-
tions of Internet of Things,” a low-code/no-code solution or platform
is utilized to enable students with varying computing skills to learn and
develop solutions, including data models and dashboards, to support
the real needs of companies. The solutions aim to meet the needs
of different decision-makers, at different decision-making levels and to
create value for business. Students develop solutions for various business
and decision-making needs, from healthcare to maintenance manage-
ment. The aim is to educate professionals on the practical needs of
industry and the public sector and advance the development toward
Industry 5.0 (see, e.g., Xu et al. 2021; Gürdür Broo et al. 2022).
This paper aims to develop a systematic process description that

improves the student’s knowledge and skills to utilize analytical IoT solu-
tions for real decision-making needs related to business processes. The
research questions are as follows:

RQ1: What kind of decision-making needs related to business
processes can be solved with analytical IoT solutions?
RQ2: What kind of systematic process can support fulfilling these
decision-making needs?
RQ3: How can the utilization of low-code/no-code IoT platforms
support or improve the skills of students to create value for business?

As a result, the systematic process description is presented. By
following the learning process, students achieve the knowledge and skills
to utilize IoT solutions for the decision-making needs of companies.
These learned improved skills lead to a stronger link between IoT solu-
tions and business value, and make it possible to benefit from technology
advances in creating value for business.

In this study, the research method is conceptual research where
previous literature and concepts are analyzed and a systematic process
description is developed. The systematic process description is based on
observations from previous research and empirical observations from the
first-course implementation (in 2020). The systematic process descrip-
tion is then tested with 19 cases, i.e., the group works that the students
have done in the following course implementations. In the course,
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students have completed 19 group work projects during 2 years (2021–
2022). The group works deal with the theoretical framework and prac-
tical IoT solution for a certain decision-making need to solve a problem.
As an IoT platform, a commercial IoT tool is utilized, but the platform
could be any other platform as well. The case can concern any industry,
but according to the 19 cases, it can be said that maintenance manage-
ment, the energy market, and healthcare are emphasized as the targets of
solutions. The presented systematic learning process description responds
to the need for companies to employ professionals with new skills to reap
the benefits of advanced technologies and data utilization.

14.2 Literature Review

14.2.1 IoT Solution Development and Utilization

Recent literature is mainly focused on the technical development of IoT
solutions, and the links to the business decision-making needs and the
creation of business value are in a minor role. Although the technologies
and technical solutions already exist, the actual revenues of IoT solu-
tions have not yet met the expectations (Baltuttis et al. 2022). Several
researchers have discussed the importance of defining the value creation
potential of IoT solutions but stated that the value of IoT solutions is
hard to define (Baltuttis et al. 2022; Kaiser et al. 2021; Kinnunen, 2020;
Momeni and Martinsuo, 2018; Räikkönen et al. 2020). The focus has
been on the technical perspective and how to, e.g., connect devices to the
platform, do data preparation, warehousing, processing, and (advanced)
analytics (Nast and Sandkuhl, 2021). IoT solutions often struggle to
create business value, because the link to decision-makers is vague (Nast
and Sandkuhl, 2021). The key is understanding the process from data
to decision-making, finding the technologies to support the process, and
realizing the IoT solutions (see, e.g., (Côrte-Real et al. 2020; Kinnunen,
2020; Kinnunen et al. 2018). When creating the solutions, the decision-
making need and the decision-maker must be clear. The decision-making
need defines what kind of decision-making situation it is, and what
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kind of data and analysis are needed to support the decision-making
(Kinnunen et al. 2016).
Business value perspective is recently studied in IoT solutions (see,

e.g., (Baltuttis et al. 2022; Kaiser et al. 2021), but the importance of
the decision-maker is better acknowledged in business intelligence and
analytics (BI&A), big data and decision support systems (DSS) literature
(Phillips-Wren et al. 2021). BI&A and DSS studies discuss visualizations
and user interfaces (UI), where business users and decision-makers are
also emphasized. Whereas, IoT literature is highly technically oriented
and not focused on the decision-maker. Only recently have some scholars
acknowledged the need to also focus on business value evaluations of IoT
solutions, yet the link to the decision-maker has remained vague. Thus,
there needs to be collaboration with IoT solution developers and IoT
solution users. The utilization of IoT solutions in creating business value
requires analytical skills and business understanding from the decision-
maker, including knowledge about value creation and business models.
These aspects need to be emphasized more in IoT solution utilization
literature as well (Baltuttis et al. 2022; Horváth and Szabó, 2019).

14.2.2 Decision-Making Level and Different Needs
for Decision Support

If we consider the business value of an IoT solution, both the connec-
tions to the decision-maker and the decision-making need must be clear.
This also means that the type and level of decision-making situation are
defined. In general, decision-making situations can be categorized into
operational-, tactical- and strategic-level decisions. These decision levels
differ in type of decision, how often they occur, and how long-term the
effects are. However, IoT and an increasing amount of real-time data
have created a need for other types of categorizations for decision-making
situations (Kinnunen et al. 2016; Sun et al. 2008). Decision-making
situations can also be categorized into reactive, real-time, proactive, and
strategic decisions (Kinnunen et al. 2016).

Figure 14.1 illustrates how different types of decisions are positioned
with each other, when regarding the time scale, before or after an event
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where the decisions are made. Reactive decisions are made after an event
has already occurred. The aim is to minimize the damages that are real-
ized before corrective actions can be made (Räikkönen et al. 2020). In
industry, especially in the asset management and maintenance contexts,
the damages can be, for example, needed maintenance service, spare
parts, and loss of production. Real-time decisions are aimed to be made
just in time when something happens. Real-time decisions are often
based on real-time monitoring, and the aim is to avoid damage. Proac-
tive decisions are made before an event occurs. The aim is to predict
an event or outcome, usually based on predictive models. Reactive,
real-time, and proactive decisions can be seen as short-term decisions.
Strategic decisions are long-term decisions and influence over the years.
Strategic decisions are made long before an event or outcome occurs,
and usually, extensive analyses and models can be utilized as support for
decision-making. IoT solutions are not usually suitable in responding to
the needs of strategic decisions, where decision-making situations and
required data are often unstructured and not, e.g., routine decisions by
nature. However, IoT technologies and sensors have improved the avail-
ability of real-time data that can be utilized later as support for strategic
decision-making and models as well.
Thus, IoT solutions are mainly developed for the needs of operational-

and tactical-level decisions. For decisions that occur relatively often and
are routine decisions by nature, real-time data can bring benefits for
decision-makers who work as managers, in middle management, or
as experts or workers in operational tasks. Usually, top management
focuses on strategic decisions, where real-time IoT data is not optimum
to support long-term complex decisions. Thus, organizational hierarchy
affects who the decision-maker is and the nature of the decisions they

Fig. 14.1 Categorization of decision-making situations, based on time scale,
before/after an event occurs (Kinnunen et al. 2016)
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make. This also affects which analytics the decision-makers need or if
there is a need for monitoring, analysis (reports), predictive models, or
what kind of visualizations and dashboards can support the decision-
making (see, e.g., Tokola et al. 2016). These are important issues to
be acknowledged when developing analytical IoT solutions that can
help decision-makers make the right decisions at the right times, and
thus achieve the potential benefits. This link between decision-makers,
decision-making types, and needs for decision support (e.g., need for
monitoring, analysis, predictive models, etc.), and value in business, is
not clear (Kinnunen 2020). By combining these different levels of deci-
sions (operational, tactical, and strategic) and categorizations (reactive,
real-time, and proactive decisions), we can understand better the nature
of decision-making situations and the needs of decision-makers for deci-
sion support to which the IoT solutions are aiming to respond and create
business value from IoT data utilization.

14.2.3 Industry 5.0 and IoT Skills

Industry 4.0 has brought on the technologies, so the technical solutions
already exist, but the question is how we can intelligently benefit from
them in business. Industry 5.0 has been introduced, and the emphasis
is on “softer issues” and value-driven approach. The aim of Industry 5.0
is to create a sustainable, resilient, and human-centric industry. Industry
5.0 attempts to capture the value of new technologies while respecting
planetary boundaries, and emphasizing the well-being of the industry
worker. (Xu et al. 2021; European Commission et al. 2021). Industry
5.0 is also related to Society 5.0 which aims to solve social problems with
the help of the integration of physical and virtual spaces. Industry 5.0 is
expected to bridge this gap and create services and solutions that focus
on social and environmental aspects by utilizing data and technological
advancements. (Xu et al. 2021; Gürdür Broo et al. 2022).

Despite the introduction of the Industry 5.0 era, companies are at
different levels of adaptation to Industry 4.0 and 5.0 (see, e.g., (Bryn-
jolfsson and McElheran, 2016, Pomp et al. 2022)). Companies need
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skills to take advantage of technologies in creating value and acknowl-
edging sustainability and well-being issues. Thus, new types of IoT skills
are needed, but at the same time, the technology and data utilization
skills are still in a key role (Cetrulo and Nuvolari, 2019; Gürdür Broo
et al. 2022). Companies need to create an understanding of the changes
needed and focus on training to develop employee knowledge in tech-
nologies (Horváth and Szabó, 2019). Companies need professionals with
skills who understand the business value but also social, sustainability,
and environmental values. It is essential to have analytical skills but also
an understanding of business and the business environment. Thus, more
research is needed in business models related to technologies but also
both in social and economic aspects of Industry 5.0 (Gürdür Broo et al.
2022; Horváth and Szabó, 2019).

14.3 Methods and Data

This study applies a conceptual research approach, where a concep-
tual framework, a systematic process description, is developed based
on analyzing theoretical and empirical information on IoT data utiliza-
tion in creating business value (Kincheloe, 2001; Klag and Langley,
2013; Järvensivu and Törnroos, 2010). This approach combines the
features of moderate constructionism and the benefits of abduction,
which enables the assessment of previous theories and generates new
knowledge through dialogue between theoretical conceptualization and
empirical investigation (Järvensivu and Törnroos, 2010). The developed
systematic process description aims to present how to utilize IoT data
in business processes by creating an IoT solution for a certain decision-
making need. The process description is presented in Sect. 14.4.2. The
process is tested with 19 cases. The cases are 19 group work projects
in the course “Industrial Applications of Internet of Things,” in which
students have developed IoT solutions for certain decision-making needs.
Students can decide the topic of the IoT solution, and their previous
work experience and background might have influenced the topic of the
IoT solution. However, these cases reflect the practical needs and poten-
tial IoT data-utilization opportunities in companies. Some of the topics
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are related to the previous work experience of students, some topics are
existing examples from companies that students have applied and some
of the topics are descriptive solutions innovated by students.
The course was established in 2020, and there have been three

implementations (2020–2022). The learning process was first devel-
oped for the purpose of the course 2020, based on a combination of
previously presented theoretical frameworks and the experiences of the
researchers. The systematic process description was further developed
for the following course implementations based on empirical observa-
tions and experiences from the first implementation. The course has been
developed in a way that the IoT platform was utilized in the years 2021
and 2022. The 19 cases used in this study took place in 2021 and 2022.
Students create a report where they describe the IoT solution, including
the decision-making need, theoretical framework, model architecture or
data-to-decision process, description of IoT solution in the IoT tool and
how the solution creates value for business, and for example, state the
reasons the company should invest in the solution. The group work
also includes a part where the students realize the solution with the IoT
platform.

14.4 Process for IoT Data Utilization
in Business

14.4.1 The Need for IoT Professionals

The knowledge gap is also recognized in practices in companies where the
need for IoT professionals is increasing. For example, this phenomenon
can be noticed in LinkedIn, which is the world’s largest profes-
sional network on the internet, with more than 930 million members
(LinkedIn, 2023). On LinkedIn, there were a total of 202 results, when
conducting a job search 5.5.2023 with search terms “IoT” and “Fin-
land.” In Table 14.1, the results are divided by job function, in which
LinkedIn filters can be used. The same job advertisement can belong to
several job descriptions. Most job advertisements are in the IT sector or
related to that. There is a shortage of professionals, especially in software
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Table 14.1 LinkedIn job search (5.5.2023) with search terms “IoT” and “Fin-
land” (total 202 results)

Filter Results Job description

Information technology 161 Software developer
Engineering 120 Software developer**IT
Sales 17 Sales manager, product manager
Business development 13 Data-analysis, sales manager
Marketing 10 Marketing manager, sales manager
Quality assurance 5 Test automation
Consulting 4 Cloud architect
Administrative 3 AI data solutions
Human resources 3 HR
Product management 3 Product manager
Accounting/auditing 2 Accountant (electric vehicle)
Finance 2 Accountant
Other 12

development. There are only a few jobs open for other than developing
IoT software or analytics based on IoT.
The need for IoT professionals in companies is reflected in universi-

ties, where the topics of Master’s theses originate from companies and
their development needs. For example, the search for Master theses in
a Finnish university (University X) with the keywords “IoT,” “IIoT,”
“Internet of Things,” and “Industrial Internet of Things” resulted in
a total of 82 master theses from 2015 to 2022. Figure 14.2 demon-
strates the number of Master’s theses yearly (cumulative), and Fig. 14.3
demonstrates the number by department. It can be noticed that the
numbers increased most rapidly in 2018–2019, and then the growth has
been stabilized. As shown in Fig. 14.3, most of the Master’s theses are
done in computer science, electrical engineering industrial engineering,
and management. This reflects that the IoT solution development has
been rapid in software engineering and electrical engineering, but the
high number of theses done by industrial engineering and management
indicates that there has also been the need to apply IoT solutions in busi-
ness processes. Also, several Master’s theses have been related to business
administration and supply management.
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Fig. 14.2 The number of IoT-related Master’s theses yearly (cumulative) in
University X (2015–2022)

Fig. 14.3 The number of IoT-related Master’s theses by department in Univer-
sity X (2015–2022)
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To meet the need of companies to acquire skilled professionals, who
can develop new businesses from data and support business develop-
ment with the aid of data, teaching in the area of digital service processes
and data analytics has been developed at University X. Especially, when
recognizing the increasing interest around IoT technologies, a course,
“Industrial Applications of Internet of Things,” has been developed to
increase the knowledge of students about business opportunities related
to IoT technologies. As a part of the course, “Industrial Applications
of Internet of Things,” a low-code/no-code solution or platform is
utilized to enable students with no computing skills to learn and develop
solutions, including data models and dashboards, to support the real
needs of companies. The solutions aim to meet the needs of different
decision-makers, at different decision-making levels, and to create value
for business. Students develop solutions to various business and decision-
maker needs, from healthcare to maintenance management. The aim is
to educate professionals on the practical needs of industry and the public
sector and to advance the development toward Industry 5.0.

14.4.2 Process Description

A systematic process description combines theoretical knowledge and
frameworks with practical processes and solutions. The process is
presented in Fig. 14.4. As the starting point, the process description
is based on data-to-decision and data-to-knowledge processes or frame-
works. In other words, data from IoT devices is refined into analyses
and models with visualization to support decision-making. Information
or knowledge that is refined from data enables making better decisions
than without that information or knowledge, which then can create value
for business.
The process begins with defining the need for IoT solutions. This

requires that the potential value is defined and the decision-making
need is identified. After that, the process continues by defining the data
sources, including, e.g., IoT devices and other data sources. In the third
phase, the data model or architecture is defined, or the process from
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Fig. 14.4 A systematic process description for IoT data utilization in business

data to decisions is described based on theoretical frameworks and prac-
tical knowledge. This phase aims to understand the process of how data
is utilized as a support of decision-making. In the fourth phase, the
solution is realized with an IoT platform. Logics and the level of anal-
ysis, including analytics and modeling, (i.e., report, alarms, predictive
elements) and visualizations for decision-makers, are built with low-
code/no-code platforms. There can also be different layers for different
decision-makers or different decision-making situations. For example,
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there can be an overview layer for upper-level decisions and opportunities
to drill down for asset or component level. The fifth phase is decision-
making, and in this phase, the IoT data is utilized in decision-making,
and value is created for business. By following the systematic process for
IoT data utilization, it becomes possible to improve and strengthen the
abilities of students to develop their skills as professionals, and to reap
the benefits of IoT technologies and data utilization.

14.4.3 Testing the Systematic Process Description:
A Case Study

The developed systematic process description is tested with 19 group
work projects done in the course “Industrial Applications of Internet of
Things” in 2021–2022. The topics, business area, decision-making level
and categorization, decision-maker, and business value, are analyzed and
presented in Table 14.2.
All of the cases are based on real-time data, either on real-time

data imported to the platform or simulated real-time data. Real-time
data have affected the decision-making in a way that most of the
decision-making situations in the cases are real-time decisions, or reactive
decisions as near real-time as possible. However, some cases are reactive
decisions, but real-time data bring improvements to previous decision-
making when real-time monitoring has not been possible. Real-time
data have also made it possible to make proactive decisions. Proactive
decisions are emphasized in many cases. Figure 14.5 illustrates the distri-
bution of different types of decision-making situations in the 19 cases.
It needs to be acknowledged that some of the IoT solutions can include
more than one type of decision-making situation and the solution may
support all types of decisions: reactive, real-time, and proactive deci-
sions, or just one or two of these. In some cases, it was also mentioned
that the real-time data can later be utilized as history data to make a
root cause analysis, or the data can be utilized in predictive models to
identify behavior patterns. This can lead to improved predictive models
and proactive decisions. Real-time data and history data can also be
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Table 14.2 Case descriptions

Topic/title
Business
area

Decision
making level
and
categorisation

Decision
maker Business value

G1 IoT solution
for
healthcare:
supported
living for
elderly

Healthcare Operational
level,
real-time
data,
reactive
decisions

Healthcare
profes-
sional
(or
relative)

Working time
savings for
healthcare
professional,
improved
quality of life
for elderly

G2 IoT solution
for
packaging
machine:
production
interrup-
tions due
to paper
blocks/jam

Maintenance,
industry

Operational
and tactical
levels,
real-time
data,
reactive
decisions

Production
worker
and
produc-
tion
manager

Allocate
resources to
value-adding
tasks,
improved
production
processes and
product
quality, less
production
loss

G3 Increasing
industry
waste
manage-
ment

Industry
waste
manage-
ment

Operational
and tactical
levels,
real-time
waste
inventory
and sales
and supply
data

Material
manager

Cost savings in
waste
management,
improve
circular
economy

G4 Protecting
from the
volatility
of Bitcoin
value in
interna-
tional
business:
monitoring
the
exchange
risk

Blockchain
or crypto-
mining,
exchange
risk

Operational
level,
real-time
data,
reactive
decisions

Finance
director
or
manager

Avoid exchange
rate losses,
allocate
resources to
business
development

(continued)
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Table 14.2 (continued)

Topic/title
Business
area

Decision
making level
and
categorisation

Decision
maker Business value

G5 IoT solution
for
monitoring
wind
power
produc-
tion:
optimise
energy
production
in
changing
conditions

Energy
produc-
tion and
mainte-
nance

Operational
level,
monitoring,
real-time
data,
real-time
and reactive
decisions

Expert,
opera-
tions
and
mainte-
nance

Cost savings in
maintenance
costs, longer
lifetime of
components,
increased
production

G6 IoT
hype—case
hype train:
condition
monitoring
and
proactive
mainte-
nance of
passenger
train fleet

Maintenance,
train
fleet

Operational
and tactical
levels,
real-time
data, from
reactive to
proactive
decisions

Fleet
manager,
different
layers

Increased
customer
satisfaction
and service
quality, cost
savings in
claims,
improved
safety, cost
savings in
maintenance
costs, cost
savings in
spare parts
costs, less
capital tied up
in the fleet

G7 Smart home
and smart
construc-
tion:
IoT-based
building
manage-
ment
system

Building
manage-
ment
system,
smart
building

Operational
level,
real-time
data,
reactive
decisions

Owner of
a
building

Increased
lifetime of the
building, cost
savings in
energy costs,
safety,
sustainable
consumption
habit

(continued)
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Table 14.2 (continued)

Topic/title
Business
area

Decision
making level
and
categorisation

Decision
maker Business value

G8 Sensor-
enabled
floor:
preventing
falls with
activity
monitoring

Healthcare,
smart
building

Operational
level,
real-time
data,
reactive and
proactive
decisions

Healthcare
profes-
sional

Fewer severe
injuries,
improved
quality of life,
working time
savings of
healthcare
personnel,
allocation of
resources

G9 Smart office:
IoT
solution
for
improving
working
conditions

Smart
building,
facility
services

Operational
level,
real-time
data,
real-time
decisions

Maintenance
manager
or
worker
(facility)

Improved
well-being of
employees,
improved
productivity
of employees,
cost savings in
facility
maintenance

G10IoT solution
for remote
monitoring
of wind
farm

Maintenance,
windmill
fleet

Operational
and tactical
levels,
real-time
data,
reactive and
proactive
decisions
(option for
strategic
decisions)

Operations
and
mainte-
nance
managers,
different
layers

Increased
production,
cost savings in
maintenance
costs

(continued)
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Table 14.2 (continued)

Topic/title
Business
area

Decision
making level
and
categorisation

Decision
maker Business value

G11Real-time
mainte-
nance
system for
sewage
pumping
station

Maintenance,
industry

Operational
and tactical
levels,
real-time
data,
real-time
and
proactive
decisions

Maintenance
manager,
different
layers

Cost savings in
maintenance
and operating
costs,
increased
utilization
rate, cost
savings in
energy
consumption,
less capital
tied up in
spareparts
inventory

G12IoT solution
for
proactive
industrial
mainte-
nance:
case belt
drive
compo-
nents

Maintenance,
industry

Operational
level,
real-time
data,
real-time
and
proactive
decisions

Operations
and
mainte-
nance
engineer

Cost savings in
maintenance
costs,
increased
production

G13IoT solution
for
improving
situational
awareness
of
electricity
market
and grid

Energy
market

Operational
and tactical
levels
(strategic option)
real-time
data,
reactive,
real-time
and
proactive
decisions

Power
grid
manager,
oper-
ating
engineer

Savings in
electricity
production
and
consumption,
electricity
sufficiency

(continued)
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Table 14.2 (continued)

Topic/title
Business
area

Decision
making level
and
categorisation

Decision
maker Business value

G14Preventing
slip injuries
with IoT

Facility
mainte-
nance
and
services

Operational
level,
real-time
data and
forecasts,
proactive
decisions

Facility
mainte-
nance
manager

Cost savings in
maintenance
services,
savings in
insurance
compensations
and
healthcare
costs, reduced
health-related
absences

G15IoT solution
for care
and
follow-up
of diabetes

Healthcare Operational
and tactical
levels,
real-time
data,
reactive,
real-time
and
proactive
decisions

End-user
(patient)
and
health-
care
profes-
sional

Improved
quality of life,
decreased
visits to the
doctor and
fewer severe
attacks (due
to low sugar
levels),
working time
savings for
healthcare
professional,
easier to
make a
treatment
plan

G16Data
analysis of
Lokotrack
crusher IoT
solution

Maintenance,
mining
industry

Operational
and tactical
levels,
real-time
data,
proactive
decisions

Maintenance
manager

Cost savings in
maintenance
costs and
spare parts,
increased
production

(continued)
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Table 14.2 (continued)

Topic/title
Business
area

Decision
making level
and
categorisation

Decision
maker Business value

G17Smart home
and
IoT-based
solutions:
air
humidity,
tempera-
ture,
electricity
consump-
tion

Smart
building,
consumer

Operational
level,
real-time
data,
reactive and
real-time
decisions

Owner of
the
building

Cost savings in
energy
consumption,
well-being of
residents

G18Intelligent
extraction
ecosystem:
cryptocur-
rency
mining

Blockchain,
crypto
mining

Operational
level,
real-time
data,
real-time
optimisation
decisions

Business
owner

Cost savings in
energy costs,
optimised
profit

G19IoT solution
for
improving
grain
logistics
(grain
drying)

Logistics Operational
and tactical
levels,
real-time
data,
optimization
decisions
(proactive
decisions)

transport
manager,
truck
fleet
manager

Increased
quality of
product, cost
savings in
logistics costs,
less capital
tied up in the
fleet

utilized as the support of strategic decisions, such as investment deci-
sions, according to some cases. In strategic decisions, the long-term
perspective is emphasized, but many of the cases were more focused on
short-term operational or tactical decisions (see Fig. 14.6).

Figure 14.7 illustrates the distribution of IoT solutions for different
business areas. It needs to be acknowledged that some of the IoT solu-
tions can belong to, for example, two business areas, such as healthcare
and smart building (see, e.g., G8). With these 19 cases, the busi-
ness areas, such as maintenance, healthcare, smart building, and energy
market, were emphasized. Even though the industry is emphasized in
the form of multiple maintenance solutions, the business areas, such as
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Fig. 14.5 Categorization of decision-making situations of cases

Fig. 14.6 Categorization of decision-making level of cases

healthcare, energy markets, and smart buildings were also emphasized.
This same phenomenon can be seen as a trend in Industry 5.0 or Society
5.0, where the emphasis on technology applications is going to be more
on well-being, environmental, and sustainability issues in the future (Xu
et al. 2021; European Commission et al. 2021).
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Fig. 14.7 IoT solutions in different business areas

Business value in the cases was recognized as cost savings, such as
preventing production losses due to breakdowns or unplanned down-
time, cost savings in spare parts costs, and cost savings in maintenance
work. Many of these cases are trying to prevent disadvantageous and
costly events from occurring or trying to plan the operations more cost-
efficiently than previously. The emphasis here is on economic benefits
and value, but in many cases, softer non-monetary values were empha-
sized as well. In the cases related to healthcare, in addition to the
savings in the working time of healthcare personnel, the main value is
considered as the well-being of patients, increased quality of life, identi-
fying diseases, minimizing symptoms, and preventing accidents, attacks,
falls, etc. Measuring the value of this kind of benefits is challenging or
even immeasurable. Even though, in the industrial context, the mone-
tary value is emphasized, e.g., cost savings and increased revenues from
production, the softer values, such as well-being and the environment,
are also discussed. Safety issues, such as preventing accidents (G14) and
savings in energy consumption, can also be regarded as softer values,
although they can also create monetary value. Examples of the increased
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interest in environmental consciousness as a business value were consid-
ered in smart building cases (G7, G9, and G17) and waste management
and the circular economy case (G3).

In conclusion, in the 19 cases, the business value and the need for
decision-making have been the main drivers in developing the IoT solu-
tions described in the cases. It can be assumed that when value and
decision-making needs are the focus and are well-defined, the poten-
tial benefits from these solutions can most likely be achieved. In some
cases, hard values, i.e. monetary values, were at the center; and in other
cases, soft values were more emphasized. Some of the cases considered
both hard and soft values as key values of the IoT solution. In light
of these 19 cases, it can be said that the interest in IoT solutions is in
benefitting technology advances in the industrial, societal (healthcare),
environmental, and sustainability contexts.

14.4.4 Benefits of the Systematic Process
in Developing IoT Skills

The aim of creating the exercise to create IoT solutions was to develop
the student’s skills in IoT data utilization to create business value with
IoT solutions. A systematic process description that forces students to
define the need for IoT solutions was created. Defining the need for solu-
tions includes defining the decision-making situation and the value that
the solution produces. Students are required to plan the data-to-decision
process in theory and then realize it in practice with an IoT tool. How
the skills of students have developed can be observed from the statistics
on how many students completed the course. In 2021–2022, 64 students
started the course, and 62/64 completed the course. Some conclusions
can be made from the student feedback. According to student feedback,
the following comments were given:

There was a good balance between studying theories and combining them
with my own experiences.” “It was useful to learn to utilize the IoT plat-
form, even though it felt diflcult at first. In the course, there were plenty
of examples of IoT solutions and utilization opportunities in different
industries.
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If we think that, by completing the group exercise and the whole course,
students improve their IoT skills, this eventually leads to business value
when they utilize these skills when they start work. It was shown that
there is a demand for IoT professionals, and companies are highly inter-
ested in professionals who can benefit from IoT technologies and IoT
data utilization (see, e.g., (Brynjolfsson and McElheran, 2016, Gürdür
Broo et al. 2022, Pomp et al. 2022). In order for companies to reap the
benefits of technological advances, they need professionals who under-
stand the business value and how to utilize technologies and data to
create business value.

14.5 Conclusions

As the result of this study, a systematic process description was created
to improve the IoT skills of students to benefit from IoT data utiliza-
tion in creating business value. Theoretical contribution and managerial
implications are related to the investigation into which practical needs
are needed for IoT solutions, in which business areas, and what kind of
decision-making needs the IoT solutions can bring benefits and business
value.

As a result of the first research question (What kind of decision-making
needs related to business processes can be solved with analytical IoT solu-
tions?), it was observed that the decision-making situations, where we
can benefit from IoT data utilization, are increasingly real-time and
proactive decisions. However, there is still a need for supporting reac-
tive decisions with real-time data as well. It is also important to take
into account the needs of the decision-maker and to create a practical
view (layers) and dashboards for different decision-makers and their
needs. Decision-making needs were most emphasized in the mainte-
nance, or more broadly industrial asset management, context as well as
in healthcare, smart building, and the energy market. As a conclusion, it
was noticed that IoT data utilization enables shortening the time-scale
of operational decision-making, i.e., decisions are aimed to be made
faster than ever, as close to real-time as possible, or even proactively.
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IoT solutions can also be used to automatize certain decision-making
situations.

As an answer to the second research question (What kind of systematic
process can support fulfilling these decision-making needs?), the systematic
process description is based on the data-to-decision process, where the
decision-making need and potential value are the basis for IoT solutions.
It is essential to identify the decision-making need and create value that
is scalable to create adequate business value. Thus, if the decision-making
need or situation is repeated enough, the generated value is easier to
achieve and to justify the need for IoT solution development.
The third research question (How can the utilization of the low-code/

no-code IoT platform support or improve the skills of students to create
value for the business?) was taken on through group work projects in
the course, where students with varying computing skills planned and
realized an IoT solution with an IoT platform. Combining business skills
with IoT skills can be advantageous for students in the job market. There
is a need for IoT professionals who have business understanding and
can attend to the IoT solutions development process and strengthen the
link between the solutions and business value. By educating students in
IoT skills, it is possible to benefit from technological advances and create
business value in different business areas.

Future research is needed to understand the value of IoT data utiliza-
tion and how the business value created with IoT solutions can be
measured. The softer values are especially hard to measure, and these
elements should be taken into account when evaluating the business
value of technologies. It is also important to acknowledge the opportuni-
ties of artificial intelligence (AI) and how we could benefit if we combine
real-time IoT data and AI.
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