

The Computational Content
Analyst

Most digital content, whether it be thousands of news articles or millions
of social media posts, is too large for the naked eye alone. Often, the advent
of immense datasets requires a more productive approach to labeling
media beyond a team of researchers. This book offers practical guidance
and Python code to traverse the vast expanses of data—significantly
enhancing productivity without compromising scholarly integrity. We’ll
survey a wide array of computer-based classification approaches, focusing
on easy-to-understand methodological explanations and best practices to
ensure that your data is being labeled accurately and precisely. By reading
this book, you should leave with an understanding of how to select the best
computational content analysis methodology to your needs for the data and
problem you have.

This guide gives researchers the tools they need to amplify their analytical
reach through the integration of content analysis with computational
classification approaches, including machine learning and the latest
advancements in generative artificial intelligence (AI) and large language
models (LLMs). It is particularly useful for academic researchers looking
to classify media data and advanced scholars in mass communications
research, media studies, digital communication, political communication,
and journalism.

Complementing the book are online resources: datasets for practice,
Python code scripts, extended exercise solutions, and practice quizzes for
students, as well as test banks and essay prompts for instructors. Please visit
www.routledge.com/9781032846354.

Chris J. Vargo is an Associate Professor in the College of Media,
Communication, and Information and Leeds School of Business (Courtesy)
at the University of Colorado Boulder, USA. His research primarily focuses on
the intersection of computational media analytics and political communication,
employing computational methods to enhance understanding in these areas.

http://www.routledge.com/9781032846354

“The Computational Content Analyst opens new research frontiers using
highly sophisticated computer-based approaches that greatly expand
the substantive depth and scope of quantitative content analysis. These
approaches vastly improve scholars’ ability to examine the large body of
content available on the internet.”

—Maxwell McCombs, University of Texas at Austin, USA

“The Computational Content Analyst provides a practical and informative
guide for scholars and practitioners aiming to learn the basics of computational
approaches to analyzing text. This book is practical and insightful; Vargo
makes a complex topic accessible through insightful examples and useful
research case studies.”

—Matthew Weber, Rutgers University, USA

“This book makes computational content analysis as easy as following a
recipe.”

—Milad Minooie, Kennesaw State University, USA

Using Machine Learning to Classify
Media Messages

Chris J. Vargo

The Computational Content
Analyst

Designed cover image: © BlackJack3D/Getty Images

First published 2025
by Routledge
605 Third Avenue, New York, NY 10158

and by Routledge
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

Routledge is an imprint of the Taylor & Francis Group, an informa
business

© 2025 Chris J. Vargo

The right of Chris J. Vargo to be identified as author of this
work has been asserted in accordance with sections 77 and 78
of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted
or reproduced or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information
storage or retrieval system, without permission in writing from
the publishers.

Trademark notice: Product or corporate names may be
trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

ISBN: 9781032846354 (hbk)
ISBN: 9781032846309 (pbk)
ISBN: 9781003514237 (ebk)

DOI: 10.4324/9781003514237

Typeset in Galliard
by Apex CoVantage, LLC

Access the Support Material: www.routledge.com/9781032846309

http://www.routledge.com/9781032846309
https://doi.org/10.4324/9781003514237-1

To my doctoral advisors and mentors, Dr. Joe Bob
Hester and Dr. Jaime Arguello at the University of North
Carolina at Chapel Hill. I will be forever grateful for
you encouraging me to learn Python and take classes in
information science. Until that point, I was not yet truly
a nerd. Thank you for letting me join the club.

http://taylorandfrancis.com

Contents

Preface� viii

1	 Unveiling Content Analysis in the Contemporary
Media Ecosystem	 1

2	 Designing a Computational Content Analysis: An
Illustration from “Civic Engagement, Social Capital,
and Ideological Extremity”	 16

3	 Basic Information Retrieval for Content Analysis	 32

4	 Supervised Machine Learning with BERT for
Content Analysis	 46

5	 Text Classification of News Media Content
Categories Using Deep Learning	 67

6	 Leveraging Generative AI for Content Analysis	 87

7	 Topic Modeling as a Lens for Discovery	 101

8	 Extending Deep Learning to Image Content Analysis	 114

Appendix A: Codebook and Conceptual Definitions� 127
Appendix B: Deletion Themes� 128
Index� 130

Preface

In every corner of our lives, unbeknownst to us, we are constantly com-
municating in data. There is too much data in our world to make complete
sense of but we have developed ways to filter or make sense of large data.
In my media analytics courses, one way we talk about doing this is by “seg-
menting” the data. Whether we segment a list of customers based on their
likelihood to buy a product, or simply segment a weekly grocery list by food
groups, categories, and dietary needs, we, in our own ways, are constantly
organizing and filing away the data that is thrown at us in life.

Inherent in newspapers, movies, artwork, speeches, and even TikTok
posts are overt and covert messages with profound implications. Content
analysis breathes life into these messages. This research technique makes
replicable and valid inferences by interpreting and coding material. Content
analysis aids us in deconstructing and discerning the intricacies of media and
communication. Through meticulous coding and examination, we can re-
veal insights into structure, meaning, and patterns. In this book, we’ll focus
on coding and analyzing various types of media, from social media posts to
news articles and even images.

With the escalating growth of media content, conducting manual con-
tent analysis becomes a Herculean task. If you’ve struggled to do a content
analysis, this book is for you. We’ll leverage machine learning—a subset of
artificial intelligence—and train (or, in generative AI use cases, simply use)
a computer model to make accurate predictions or decisions without being
explicitly programmed to do so.

This book will include all the methodological considerations one should
consider when taking a content analysis and attempting to automate, or
at least expedite, that process using computers. We’ll review different
approaches to automated content analysis, from time-tested approaches
like keyword lexicons to supervised machine learning, unsupervised machine
learning (e.g., topic modeling), and even emergent techniques using large
language models and generative artificial intelligence.

Preface  ix

I encourage you to imagine the power of content analysis and machine
learning combined. This fusion is a burgeoning area of study that has
the potential to streamline media research, making it quicker, easier, and
more efficient. The goal of this book is to illuminate that sweet spot where
these two fields intersect. It is designed to equip scholars at every stage—
from early career researchers to experienced academicians—with the tools
to harness automated processes for expediting content analysis.

This book is a “roll up your sleeves” kind of guide. It takes a hands-on
approach to understanding and applying machine-learning techniques to
content analysis. Each chapter is packed with practical examples and Python
code, designed to enable you to navigate through real-world datasets.

It is with much pleasure that I present The Computational Content
Analyst: Using Machine Learning to Classify Media Messages, a navigator
for your journey into the convergence of content analysis and machine
learning—the next generation of analyzing media messages.

http://taylorandfrancis.com

DOI: 10.4324/9781003514237-1

Chapter 1

Unveiling Content Analysis
in the Contemporary Media
Ecosystem

Before embarking on my academic career, I experienced the mundane
world of data entry firsthand during a memorable “bring your child to
work day” at the bank where my mother was employed. At the age of 16,
even in a state of partial attentiveness, I could discern the pitfalls inherent
in the manual processing of data. Missteps such as typographical errors in
postal addresses, the challenges of deciphering illegible handwriting, and
a discernible lack of diligence from the individual inputting the data (me)
inevitably introduced inaccuracies into the spreadsheet I was assembling.
Although the list consisted merely of rewards for children who had adeptly
accumulated savings, the implications were troubling, especially given the
institution’s fiduciary responsibilities.

Data annotation, which encompasses labeling, segmenting, and annotat-
ing, is an integral part of the development of machine learning and artificial
intelligence systems (Russell & Norvig, 2016). Despite the diligence of hu-
man annotators, the manual aspect of labeling data introduces the potential
for error, affecting the quality of the resulting data sets (Goodfellow et al.,
2016). Computers, though typically reliable in that they do the same thing
over and over following their strict programming, possess limitations in
recognizing and categorizing data in externally valid ways, which can lead
to systematic errors (Jordan & Mitchell, 2015). In the realm of machine
learning, labeling raw data such as images, texts, or videos with descriptors
provides essential context, equipping algorithms with the data they need to
learn and make predictions (LeCun et al., 2015).

To illustrate, a facial recognition system needs each image to be tagged
with names so that it can learn to identify individuals correctly (Taigman
et al., 2014). However, these algorithms, sophisticated as they may be, are
susceptible to inaccuracies. An instance of this can occur when an individual
changes their hair color or style, or starts wearing glasses (Szegedy et al.,
2013). The computer only knows what it has seen.

https://doi.org/10.4324/9781003514237-1

2  The Computational Content Analyst

Consider the case involving the way social media entity “X” programmed
its automated cropping of images. It was uncovered that X’s algorithm had
a bias; it disproportionately cropped in favor of individuals with lighter skin
tones and women (Zou & Schiebinger, 2018). This issue invoked public
criticism and sparked a dialogue on AI fairness and the need for transparent
algorithmic practices. It underscored the critical need for precise, impartial
data labeling, and the ramifications of deficiencies in these areas. Likely, the
computer was trained on images in two forms, photos that were cropped by
humans to feature the most interesting part of a photo, and the uncropped
version of that photo. By showing the computer how images are typically
cropped, the algorithm learned how to crop photos. However, because the
labeled data (the cropped photos) likely had a disproportionate number of
individuals with lighter skin, the machine-learning algorithm likely inad-
vertently picked up on skin color as a feature.

As AI evolves, precise, impartial data labeling remains a critical challenge.
This is where content analysis comes in. In this book, I will argue that it
is particularly helpful in advancing the field of artificial intelligence due to
its systematic nature and ability to provide a framework to derive reliable
and replicable findings from diverse datasets (Krippendorff, 2013). Con-
tent analysis primarily focuses on identifying specific characteristics within
content, serving as a powerful means to interpret complex communication
patterns, especially within our increasingly digital environment (Neuendorf,
2017).

According to Riffe et al., (2019), content analysis computes and exam-
ines the occurrence, connotations, and associations among particular words,
themes, or concepts appearing in text or, more broadly, any type of me-
dia. This quantitative approach involves sorting information into categories
based on systematic rules and then assessing the connections between these
categories using statistical measures (Riffe et al., 2019).

Content analysis in the media realm finds its roots in the scrutinization of
print materials by the Church in the 17th century. Its development was no-
tably influenced by the 18th-century Swedish debate on the Songs of Zion,
a set of hymns that stirred discussions on the interpretation of symbols and
textual meanings, a central element of contemporary content analysis (Krip-
pendorff, 2013). Further evolution of content analysis occurred with the
explosion of mass-printed newspapers in the early 20th century. Researchers
started exploring newspaper coverage on various topics, shedding light on
the thematic content and reflecting societal attitudes. This type of analy-
sis was subsequently adapted to additional media formats, including radio
broadcasts, television programming, and social media posts (Neuendorf,
2017).

Krippendorff (2022) critiqued early perspectives, such as those advocated
by Berelson (1952), by disputing the assumption that content exists as a

Unveiling Content Analysis in the Contemporary Media Ecosystem  3

manifest element within messages and by questioning the sole reliance on
quantitative techniques. Krippendorff (2022) suggests that content emerges
through the conceptual engagement of individuals with text, maintaining
that textual meanings are not uniform and fixed. He contends that the sig-
nificance drawn from texts is subjective, engaging with the reader’s own
context rather than pointing to an inherent meaning within the message
itself (Krippendorff, 2022). While there is some scholarly debate over the
degree to which humans can classify documents with a high level of ob-
jectivity, or whether subjective influences are an inseparable part of certain
tasks, this book will adopt Riffe et al. (2019)’s consensus that documents
can be objectively labeled, at least in some straightforward cases.

Quantitative content analysis is fundamentally more objective as re-
searchers delineate specific, pre-established categories alongside precise
coding protocols, which are then consistently enforced across the content
(Krippendorff, 2018). The goal is to diminish the influences of subjectivity
and bias, presenting the data in a statistical manner. Conversely, qualitative
content analysis leans towards a more interpretive and subjective stance.
This method entails a detailed and nuanced scrutiny of the content, with
an emphasis on unearthing themes, patterns, and deeper meanings. Here,
researchers’ perspectives and lived experiences might color their interpreta-
tion, thus injecting a measure of subjectivity (Schreier, 2012). Within the
confines of this book, we proceed with the presumption that, if content
analysis is meticulously defined and the concept is accessible even without
an advanced degree, documents can be labeled objectively.

Unitization and Measurement

The concept of unitizing, as defined by Krippendorff (2004), is founda-
tional in content analysis. Imagine dissecting a multifaceted jigsaw puzzle
into tinier, more controllable segments. These fractions represent the core
and enlightening segments of the content under scrutiny. This is akin to
segmenting a film into its constituent scenes or partitioning a novel into
chapters. This technique not only highlights the pivotal components but
also facilitates a more meticulous and manageable examination process
(Krippendorff, 2004).

Selecting appropriate units is essential for effective analysis. This often
necessitates the exclusion of extraneous or non-essential information to
concentrate on the data that directly pertains to the research question. For
example, in the analysis of a political speech, an analyst might prioritize the
evaluation of substantive statements and arguments, disregarding periph-
eral elements such as introductory greetings or informal banter (Krippen-
dorff, 2018). Furthermore, an analyst may sometimes categorize the speech
content more broadly rather than analyzing each proposition, categorizing

4  The Computational Content Analyst

statements as either “positive” or “negative” to provide a more holistic view
of the speech’s sentiment (Neuendorf, 2017).

Krippendorff’s model for content analysis suggests that a researcher
should remain flexible and willing to adapt their methodology to align with
the emerging patterns within the data (Krippendorff, 2018). As you delve
into the data, your initial hypotheses may evolve. For instance, you may
begin by exploring persuasive strategies in speeches, but discover that emo-
tive language is more predominant, prompting a shift in focus to emotional
rhetoric instead. Such adaptability is vital; it allows the data to steer your
analytical process. The essence of unitizing, and content analysis broadly, is
the deciphering of data effectively and dependably.

When undertaking content analysis, researchers are engaging in system-
atic data measurements. These measurements aim to collect information
on variables pertinent to the research question (Neuendorf, 2017). There
are two principal concerns when it comes to measurement: reliability and
validity. Reliability refers to the consistency with which data can be labeled,
and validity addresses the accuracy and truthfulness of the measurement in
relation to the intended construct or concept (Riffe et al., 2019).

Reliability is central to the trustworthiness of measurement outcomes in
any research. For content analysis, it poses the question of whether repeat-
ing a particular method of analysis would yield consistent results. Essen-
tially, the reliability of a measure indicates the extent to which it is without
bias and ensures stable measurement across different occasions and observ-
ers (Riffe et al., 2019). If you repeated your content analysis, would you get
similar results? A reliable content analysis yields similar results, even if differ-
ent individuals analyze the same content, and even when the same analysis
is conducted at separate times.

Your content analysis must also include a sample of documents that is
representative of what you are claiming to study. As a researcher interested in
understanding the public’s perspective on climate change, you might con-
sider examining TikTok videos as a barometer of public opinion. This ap-
proach is based on the premise that the content of such videos could serve
as a proxy for societal sentiments. However, it is essential to recognize that
TikTok has a predominantly younger user base that is adept at navigating
the online world, potentially biasing the results. This limitation is significant
since certain segments of the population, such as the elderly, individuals
who lack internet access, or those who simply do not engage with TikTok,
may not be sufficiently represented in your analysis, leading to skewed data.

As such, TikTok data can offer a glimpse into the perspectives of certain
individuals on the subject of climate change but should not be mistaken for
an all-encompassing reflection of the general public’s standpoint. A robust
assessment would require scrutiny of the extent to which TikTok content—
subject to the sway of algorithms, prevailing trends, and singular content

Unveiling Content Analysis in the Contemporary Media Ecosystem  5

producers—authentically embodies the wider populace’s feelings (High-
field & Leaver, 2015). At this juncture, the soundness of your evaluative
metric is potentially compromised, for the material under review may not
efficiently encapsulate the more extensive subject that piques your interest
(Burgess & Green, 2018).

Maintaining an awareness of both methodological soundness and con-
textual understanding is critical in enhancing the validity of content analysis
outcomes (Krippendorff, 2018). It is paramount to acknowledge that, not-
withstanding the rigor of the methodology employed, interpretation neces-
sitates a human touch—a deep comprehension of the contextual intricacies,
a solid grasp of the respective field, and the application of informed discern-
ment (Maxwell, 2020). These elements elevate the role from being simply
an analyst of data to a genuine scholar in the research sphere (Neuendorf,
2016).

Sampling in the Age of AI

The notion of sampling is closely interconnected with the constructs of reli-
ability and validity (Kumar, 2019). Specifically within content analysis, the
primary concern lies not only in the nature of the content under investiga-
tion but also in the segments of content selected for scrutiny, which is where
the role of sampling is emphasized (Bryman, 2016).

To extend the earlier example regarding TikTok, imagine the challenge
of meticulously examining every TikTok video that covers climate change.
Given the overwhelming number of videos uploaded daily, such a task is
practically unfeasible. To render this project feasible, one would need to
employ a methodological approach by selecting a sample—a smaller, but
representative, collection of TikTok videos—for analysis (Bryman, 2016).

The sampling method deployed influences the validity of research find-
ings. Selecting a sample at random can bolster the likelihood of it being rep-
resentative of the broader population, thereby mitigating potential biases
(Vogt, 2019). By contrast, a non-random sampling strategy, such as select-
ing TikTok videos based exclusively on their popularity—measured through
views or likes—limits the sample to reflecting prevailing opinions and may
result in a skewed portrayal of the subject matter (Sue & Ritter, 2012). That
said, targeting viral content specifically might align with a researcher’s de-
liberate focus on phenomena with widespread influence. Recognizing and
delineating these methodological choices is vital from the outset to ensure
precise and consistent terminology throughout the research documentation
process. Ultimately, the crux of proficient sampling is ensuring that the sam-
ple accurately mirrors the entire population under study (Babbie, 2020).

AI and machine-learning technologies have significantly alleviated con-
cerns related to sampling processes. Ideally, we can employ a computational

6  The Computational Content Analyst

system to exhaustively analyze the plethora of TikTok videos relating to
climate change, thus obviating the necessity for sampling (Hastie et al.,
2009). However, if we rely on AI to label all the data, the most meticulous
and painstaking step is verifying that the data is indeed labeled correctly
and resembles a human approach to data categorization (Russell & Norvig,
2016). The paradox lies in the inception of this training process, which in-
herently demands the collection of a representative sample (Bishop, 2006).

“Training data” is pivotal in machine learning, serving as a benchmark for
expected outcomes and as such guiding computational models. In computer
science vernacular, such datasets may be referred to as “gold standard data,”
essentially signifying the optimal performance we aim for the computer
to emulate (Brookshear & Brylow, 2014). In supervised machine-learning
tasks human experts are required to manually label and scrutinize a subset
of data—this forms what is known as the training set. Subsequently, the
algorithm uses this curated dataset as a basis for learning, enabling it to cat-
egorize and examine new, unseen data (Alpaydin, 2020). A critical inquiry
arises in this methodology: How extensive must the volume of data manu-
ally labeled by humans be for the machine to independently continue the
task (Halevy et al., 2009)?

The question of when to allow automated systems to take over tasks that
require human judgment is intricate and varies widely across different fields
and specific activities. As we explore in this book, determining the optimal
balance (Brynjolfsson & McAfee, 2014) between human effort and ma-
chine automation is the goal. Successfully identifying this equilibrium can
significantly enhance the scalability and precision of your content-analysis
processes (Kitchin, 2014).

A Content-Analysis Case Study: Contextual
Advertising

The sheer amount of content generated by news organizations daily is stag-
gering. Every news piece, broadcast segment, or update on a social plat-
form presents an abundance of data awaiting analytical exploration. Imagine
you’re an advertiser looking to put your ad alongside some of this content,
specifically news about climate change. Content analysis plays a pivotal role
in programmatic contextual advertising, which typifies the modern adver-
tising landscape—a behemoth propelled by data and guided by black-box
algorithms. At the heart of this sector is the examination of content where
countless pieces of news media are systematically evaluated, classified, and
matched with relevant advertisements. Such operations represent an ongo-
ing, extensive application of content analysis specific to the assessment of
news articles.

Unveiling Content Analysis in the Contemporary Media Ecosystem  7

For instance, consider how a digital publication detailing contemporary
smartphone advancements is evaluated by a sophisticated advertising sys-
tem. Such a system would dissect the primary subjects within the text—mo-
bile technology, cutting-edge developments—and then strategically match
the content with corresponding adverts, like accessories for phones, cellular
service offers, or the latest tech devices. Despite the procedure’s outward
simplicity, it’s supported by some type of computational algorithm.

Martin Porter, known for inventing the Porter Stemmer algorithm and
the Snowball programming framework, co-cofounded Grapeshot, a com-
pany specializing in contextual targeting and content recommendation. He
brought his expertise in linguistics and computer science to the develop-
ment of Grapeshot’s technology. The company’s approach involves analyz-
ing the text on webpages and identifying key themes and words through
a method that resembles the bag-of-words model. This allows for the ex-
traction of keywords without considering the order or contextual usage of
words, focusing instead on their frequency and relevance. Grapeshot’s suc-
cess in the ad tech market was significant, and it attracted the attention of
Oracle Corporation. The sale of Grapeshot to Oracle was a notable event
in the tech industry, with the company selling for $325 million (Pirrone,
2018).

Despite the hefty price tag, most classification systems that work at scale
fail to provide conventional benchmarks for external validity or reliability, as
we might expect in content analysis. External validity is the extent to which
data-labeling processes can generalize to different scenarios, environments,
or demographic groups, while, as mentioned, reliability relates to consist-
ency (Joppe, 2000; Trochim & Donnelly, 2008). This involves ensuring
that each article’s classification is accurate, consistent, and representative of
reality. Unfortunately, these key measures are often compromised or over-
looked in the categorization approach of contextual advertising systems,
leading to imprecise or misleading ad placement.

I encourage you to think critically about the limitations of a system that
only looks for words and ignores usage and context. For instance, a system
that relies solely on keywords or phrases to label posts may fail to take into
account the wider semantic context. A discussion critiquing the adverse ef-
fects of fast food could be incorrectly tagged as endorsing it if certain buz-
zwords such as “tasty” and “fast casual” are detected. This might seem like a
harmless misclassification but consider the concept of negation. If an article
says, “Nothing in this fast casual restaurant could be perceived as tasty,”
the system would position a fast-food chain’s advertisements alongside the
critical content (Ferrara et al., 2016). Such inaccuracies, particularly if they
occur frequently, can dilute the effectiveness of an advertising initiative and
damage the trust in the advertiser’s brand (Goldsmith & Lafferty, 2002).

8  The Computational Content Analyst

If advertisers better understood content analysis and its connection to
AI, they could ask questions and obtain data from contextual advertising
vendors that could help them empirically verify the algorithms they use.
This sunlight might inspire companies in advertising technology to devise
sophisticated, targeted, and genuinely effective classification methodologies.
I encourage any advertiser to manually review the classifications made by
their vendors for this very reason.

Could advertisers label every news article, social media post, and You-
Tube video they could appear alongside like a detailed researcher could?
Of course not. The world needs computational capabilities to sift through
and interpret extensive data sets (Krippendorff, 2013). As such, modern
research frequently incorporates computer-facilitated content analysis and
social media data, exemplifying the method’s versatility and continued evo-
lution (Bryman, 2016).

Take, for example, an inquiry into the portrayal of women in news media
spanning the last ten years. A researcher could embark on a manual re-
view, coding a sample of content individually—a task potentially stretching
over years. Alternatively, computational tools and machine-learning algo-
rithms could be applied to automate the categorization, leading to a more
efficient and scalable content-analysis process. Of course, there are compro-
mises, such as the potential loss of finer qualitative nuances. However, if the
researchers apply the core teachings of content analysis, they can still show
in their research that they have reached external validity and that they have
coded their data accurately and precisely. In the coming chapters, we’ll walk
through various approaches to save you time when wading through and
labeling large amounts of data.

Language as Inferences to Societal Norms

In content analysis, drawing conclusions—known as inferences—from data
is paramount. This involves interpreting the outcomes to discern trends
or recurring patterns. A researcher might, for instance, conclude that the
portrayal of women in passive roles within news content is indicative of
broader societal biases (Krippendorff, 2013). Coding or segmenting con-
tent into discrete units follows, where news portrayals might be classified
based on the depicted roles of women (passive, active, neutral), laying the
groundwork for systematic analysis (Neuendorf, 2017). Categorization en-
tails organizing the coded data into relevant groups for analysis, such as
sorting content by the dominant depiction of women’s roles. These group-
ings provide a structured framework for data interpretation (Weber, 1990).

The utility of content analysis spans beyond the examination of linguis-
tic patterns—it can probe the framing effects of language and its capacity
to construct and reshape realities through various linguistic constructs and

Unveiling Content Analysis in the Contemporary Media Ecosystem  9

cultural narratives (Altheide, 2013). For example, take the discussion on cli-
mate change that we see in the media. Various news outlets may present the
issue using different language strategies. Certain reports might opt for lan-
guage that evokes fear, underlining the disastrous consequences of climate
change and the critical need for prompt action (Hansen & Machin, 2013).
These editorial choices can shape public perception of climate change, de-
picting it as an immediate and dire emergency that evokes a deep sense
of concern and urgency among the audience (O’Neill & Nicholson-Cole,
2009).

Alternatively, certain websites may present a more detached or even
skeptical attitude, minimizing the perceived dangers tied to climatic shifts.
Terminology such as “so-called climate change” or “purported global
warming” can insidiously inject skepticism concerning the existence and se-
riousness of climate change. Such wording has the potential to influence in-
dividuals’ perceptions, causing them to view climate change as a non-critical
issue or one open to debate, thereby crafting an altered perception of reality
(Corner et al., 2012).

Content analysis within linguistics can be utilized to examine how texts
contribute to the construction of social norms. Such literature frequently
perpetuates gender stereotypes, albeit in a subtle fashion (Weitzman et al.,
1972). For instance, a quintessential fairy tale might portray princesses us-
ing attributes such as beauty and fragility, often cast in a passive role await-
ing rescue. Conversely, princes are depicted as embodiments of courage,
strength, and proactivity (Baker-Sperry & Grauerholz, 2003). These nar-
rative choices have the potential to influence children’s understanding of
gender roles, implicitly suggesting that femininity is associated with attrac-
tiveness and passivity whereas masculinity is linked with heroism and vigor
(Hamilton et al., 2006).

In both illustrated cases, the influence of language in framing perception
becomes clear. Investigating these linguistic patterns via content analysis
enables scholars to unearth and address latent prejudices, thereby promot-
ing a deeper, more enlightened dialogue on articulating intricate subjects
such as climate change and gender roles with democratic fairness.

As Krippendorff (2022) underscores, analyzing the conceptual frame-
work that a text constructs for its audience is fundamental. A text does not
merely transmit a narrative; it plays an active role in constructing realities
for those who engage with it. The significance of scrutinizing linguistic rep-
resentations carefully and systematically is instrumental in deciphering the
influence of language and contributing to a more enlightened society.

When conducting scholarly research, one must precisely delineate the
concepts to be examined. Such concepts inevitably shape the research hy-
potheses and influence the trajectory of the investigation. The selection
of these concepts should be reasoned and anchored in robust theoretical

10  The Computational Content Analyst

frameworks, existing scholarly work, and the specific research questions be-
ing addressed (Denscombe, 2014).

Picking the Right Concepts and Coding Scheme

Underlying concepts operate as a foundational framework for your research,
playing a crucial role in encapsulating and quantifying the subtleties of the
phenomena or attributes under scrutiny (Miles & Huberman, 1994). Take,
for instance, the examination of electronic word-of-mouth (eWOM) adver-
tising. Researchers might be particularly interested in the concept of “senti-
ment,” which encapsulates the positive or negative emotions expressed in
customer feedback regarding a product or brand (Liu, 2006).

Sentiment analysis, often utilized in eWOM research, serves as a barom-
eter for assessing public opinion. For example, a predominance of posi-
tive sentiment within online reviews often correlates with enhanced public
perception, which can subsequently contribute to a boost in both product
popularity and sales (Hennig-Thurau et al., 2004). Its applications extend to
aiding marketers in the appraisal of their promotional strategies and quanti-
fying the success of such initiatives (Liu, 2006).

To ensure academic integrity and adhere to scholarly standards, we must
refrain from over-relying on predetermined constructs such as “sentiment”
when they do not precisely align with the research concept at hand. Opt-
ing for such constructs out of convenience or prevalence could undermine
the specificity and relevance of the investigation. When handling intricate
or specialized concepts, it becomes crucial to delineate tailored constructs
that are deeply rooted in the related theoretical framework and scholarly
discourse (Shields & Rangarjan, 2013).

In exploring the impact of eWOM advertising on consumer purchasing
choices, it might be insufficient to focus solely on the “sentiment” of re-
views. While positive feedback can suggest a satisfactory product experience,
the process behind a customer’s decision to purchase can be profoundly
multifaceted. This complexity encompasses elements such as the credibility
of the reviewer (Metzger et al., 2010), the concept of social proof where
potential buyers are influenced by the actions and approvals of others (Cial-
dini, 2001), the perceived usefulness of the product, and the degree to
which an individual is influenced by their peers (Goldsmith & Clark, 2008).

In cases where analysis is centered solely around “sentiment,” there is
a risk of overly simplifying and misconstruing the data. This simplification
may lead to skewed results, directing the research trajectory off course. Sen-
timent analysis does not capture the complexities of trust or social valida-
tion, both of which are fundamental in understanding eWOM (Kang &
Johnson, 2013).

Unveiling Content Analysis in the Contemporary Media Ecosystem  11

Rather than relying on broad and overused constructs such as sentiment,
I encourage you to dedicate effort to developing specific and relevant con-
structs that accurately reflect the phenomena under investigation. Taking
the instance of eWOM in advertising studies, constructs that are more tar-
geted—such as reviewer credibility, information quality, and peer influence
(e.g., De Vries et al., 2017; Cheung & Thadani, 2012)—might prove to be
significantly more insightful and appropriate.

The nuanced and precise delineation and development of analytical
frameworks are pivotal for unlocking the depth of your research discoveries.
This endeavor necessitates robust theoretical knowledge, careful attention
to detail, and profound reverence for the data involved (Babbie, 2016). In-
deed, the dimensions of investigation that are quantified become the focal
points of your scholarly work. It is, therefore, incumbent upon you, the re-
searcher, to verify that these measurements replicate actuality with maximal
fidelity and authenticity (Mertens, 2014).

Imagine online evaluations of a specific smartphone brand via a collec-
tion of Amazon reviews. The variability within the research objective may
relate to the array of features highlighted by reviewers—such as display clar-
ity, operating system efficiency, battery durability, photographic functions,
and so forth. When devising your coding scheme, it must encompass cate-
gories that sufficiently represent these distinct features. Should your coding
merely register undifferentiated favorable or unfavorable impressions, it is
likely that the nuanced distinctions within the research subject are not fully
captured, leading to a significant loss of vital details.

A better approach would factor in the potential variations that exist
within the different attributes under examination. For example, when evalu-
ating screen quality, one must consider a variety of factors, including resolu-
tion, brightness, and color accuracy, to accurately reflect the complexity of
these aspects. Effective instructions for human annotators ought to include
these subtleties to provide a comprehensive analysis.

Suppose your focus of study is the partisanship reflected in media reporting.
The scope of this research is remarkably broad due to the multitude of
expressions that partisan perspectives may take. These expressions range
from the selection of topics to the descriptive choices framing particular
events or figures (Entman, 1993). To precisely assess bias, the research
methodology must incorporate coding protocols that capture the subtleties
across these facets. For instance, quantifying bias in the selection of subjects
could include tracking the relative frequency with which certain topics
are reported compared to others (D’Alessio & Allen, 2000). Meanwhile,
uncovering linguistic partiality might demand pinpointing the use of certain
adjectives that denote a slant when describing individuals affiliated with
divergent political ideologies (Somasundaram & Vavreck, 2010).

12  The Computational Content Analyst

Hence, it is crucial to adopt a multifaceted metric when analyzing bias,
which transcends the simplistic dichotomy of “positive or negative.” A nu-
anced strategy is necessary to uncover and scrutinize the complexities and
subtleties inherent in the phenomena being studied.

On to Computational Analysis

The meticulous development of your analytical strategy, specifically the
instructions you give to human annotators, is imperative for ensuring
the strength and dependability of your content-analysis outcomes (Krip-
pendorff, 2018). In other words, the instrument you employ must be
well-defined and generalizable to the entire dataset to be annotated. This
is the only way you can aptly uncover the intricate details inherent in your
research objective (Neuendorf, 2017). In upcoming chapters, you will build
algorithms that classify things based on these concepts and strategies. While
doing so, I encourage you to recognize that your “algorithms” are specific
to the analytical constructs developed at the onset and may not generalize
to other circumstances.

This will prove frustrating. Your TikTok topic classification algorithm
may not classify Reddit discussions well. It may not even classify TikTok
content well a few months later. This is due to the inherent dynamism of
language—its continuous evolution and shift over time invariably degrade
the performance of your algorithm (Kearns & Vazirani, 1994). An algo-
rithm’s inception marks the peak of its performance, with a gradual decline
thereafter (Russell & Norvig, 2016).

In this book, we’ll start with the research aims of various computational
content-analysis studies that I’ve published or ones published by colleagues.
We embark on constructing algorithms aimed at classification tasks paying
close attention to the analytical frameworks that were devised, the code-
books and definitions used, and the algorithms that resulted. Provided you
know a bit of Python, or are using a computer-assisted coding tool such as
Julius.ai, I am confident you can use content analysis alongside computa-
tional tools to systematically analyze communication data and make sense of
our increasingly digital world.

References

Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.
Altheide, D. (2013). Media logic, social control, and fear. Communication Theory,

23(3), 223–228.
Babbie, E. (2016). The practice of social research (14th ed.). Cengage Learning.
Babbie, E. (2020). The basics of social research. Cengage Learning.
Baker-Sperry, L., & Grauerholz, L. (2003). The pervasiveness and persistence of the

feminine beauty ideal in children’s fairy tales. Gender & Society, 17(5), 711–726.
https://doi.org/10.1177/08912432032556

https://doi.org/10.1177/08912432032556

Unveiling Content Analysis in the Contemporary Media Ecosystem  13

Berelson, B. (1952). Content analysis in communication research. Free Press.
Brookshear, G., & Brylow, D. (2014). Computer science: An overview (12th ed.).

Pearson
Cialdini, R. B. (2001). Influence: Science and practice (4th ed.). Allyn & Bacon.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Bryman, A. (2016). Social research methods (5th ed.). Oxford University Press.
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and

prosperity in a time of brilliant technologies. W.W. Norton.
Burgess, J., & Green, J. (2018). YouTube: Online video and participatory culture.

Polity.
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth

communication: A literature analysis and integrative model. Decision Support Sys-
tems, 54(1), 461–470. https://doi.org/10.1016/j.dss.2012.06.008

Corner, A., Whitmarsh, L., & Xenias, D. (2012). Uncertainty, scepticism and attitudes
towards climate change: Biased assimilation and attitude polarisation. Climatic
Change, 114(3–4), 463–478. https://doi.org/10.1007/s10584-012-0424-6

D’Alessio, D., & Allen, M. (2000). Media bias in presidential elections:
A meta-analysis. Journal of Communication, 50(4), 133–156. https://doi.org/
10.1111/j.1460-2466.2000.tb02866.x

De Vries, L., Gensler, S., & Leeflang, P. S. H. (2017). Effects of traditional adver-
tising and social messages on brand-building metrics and customer acquisition.
Journal of Marketing, 81(5), 1–15. https://doi.org/10.1509/jm.15.0178

Denscombe, M. (2014). The good research guide: For small-scale social research pro-
jects. Open University Press.

Entman, R. M. (1993). Framing: Toward clarification of a fractured paradigm. Journal
of Communication, 43(4), 51–58. https://doi.org/10.1111/j.1460-2466.1993.
tb01304.x

Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social
bots. Communications of the ACM, 59(7), 96–104. https://doi.org/10.1145/
2818717

Goldfarb, A., & Tucker, C. E. (2011). Privacy regulation and online advertising.
Management Science, 57(1), 57–71. https://doi.org/10.1287/mnsc.1100.1246

Goldsmith, R. E., & Clark, R. A. (2008). An analysis of factors affecting fashion
opinion leadership and fashion opinion seeking. Journal of Fashion Marketing and
Management, 12(3), 308–322. https://doi.org/10.1108/13612020810889272

Goldsmith, R. E., & Lafferty, B. A. (2002). Consumer response to websites and their
influence on advertising effectiveness. Internet Research, 12(4), 318–328.http://
doi.org/10.1108/10662240210438407

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Hamilton, M. C., Anderson, D., Broaddus, M., & Young, K. (2006). Gender ste-

reotyping and under-representation of female characters in 200 popular children’s
picture books: A twenty-first century update. Sex Roles, 55(11–12), 757–765.
https://doi.org/10.1007/s11199-006-9128-6

Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data.
IEEE Intelligent Systems, 24(2), 8–12. https://doi.org/10.1109/MIS.2009.36

Hansen, A., & Machin, D. (2013). Media and communication research methods.
Palgrave Macmillan.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learn-
ing: Data mining, inference, and prediction. Springer. https://doi.org/10.1007/
978-0-387-84858-7

Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic
word-of-mouth via consumer-opinion platforms: What motivates consumers to

https://doi.org/10.1016/j.dss.2012.06.008
https://doi.org/10.1007/s10584-012-0424-6
https://doi.org/10.1111/j.1460-2466.2000.tb02866.x
https://doi.org/10.1111/j.1460-2466.2000.tb02866.x
https://doi.org/10.1509/jm.15.0178
https://doi.org/10.1111/j.1460-2466.1993.tb01304.x
https://doi.org/10.1111/j.1460-2466.1993.tb01304.x
https://doi.org/10.1145/2818717
https://doi.org/10.1145/2818717
https://doi.org/10.1287/mnsc.1100.1246
https://doi.org/10.1108/13612020810889272
https://doi.org/10.1108/10662240210438407
https://doi.org/10.1108/10662240210438407
https://doi.org/10.1007/s11199-006-9128-6
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7

14  The Computational Content Analyst

articulate themselves on the Internet? Journal of Interactive Marketing, 18(1),
38–52. http://doi.org/10.1002/dir.10073

Highfield, T., & Leaver, T. (2015). A methodology for mapping Instagram hashtags.
First Monday, 20(1–5). https://doi.org/10.5210/fm.v20i1.5563

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives,
and prospects. Science, 349(6245), 255–260.

Joppe, M. (2000). The research process. https://www.uoguelph.ca/hftm/research-
process

Kang, J.-Y. M., & Johnson, K. K. P. (2013). How does social commerce work for
apparel shopping? Apparel social e-shopping with social network storefronts.
Journal of Customer Behaviour, 12(1), 83–100. https://doi.org/10.1362/147
539213X13645550618524

Kearns, M., & Vazirani, U. (1994). An introduction to computational learning the-
ory. MIT Press.

Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures
and their consequences. Sage. https://doi.org/10.4135/9781473909472

Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd
ed.). Sage.

Krippendorff, K. (2013, 2018, 2022). Content analysis: An introduction to its meth-
odology. Sage.

Kumar, R. (2019). Research methodology: A step-by-step guide for beginners (5th
ed.). Sage.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444. https://doi.org/10.1038/nature14539

Liu, B. (2006). Sentiment analysis and subjectivity. In N. Indurkhya & F. J. Dam-
erau (Eds.), Handbook of natural language processing (pp. 627–666). Chapman &
Hall/CRC.

Maxwell, J. A. (2020). Qualitative research design: An interactive approach. Sage.
Metzger, M. J., Flanagin, A. J., & Medders, R. B. (2010). Social and heuristic ap-

proaches to credibility evaluation online. Journal of Communication, 60(3),
413–439. https://doi.org/10.1111/j.1460-2466.2010.01488.x

Mertens, D. M. (2014). Research and evaluation in education and psychology: Inte-
grating diversity with quantitative, qualitative, and mixed methods (4th ed.). Sage.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook. Sage.

Neuendorf, K. A. (2016). The content analysis guidebook. Sage.
Neuendorf, K. A. (2017). The content analysis guidebook (2nd ed.). Sage.
O’Neill, S., & Nicholson-Cole, S. (2009). “Fear won’t do it”: Promoting posi-

tive engagement with climate change through visual and iconic representa-
tions. Science Communication, 30(3), 355–379. https://doi.org/10.1177/
1075547008329201

Pirrone, G. (2018, April 27). Oracle takes a “shot” & acquires brand safety platform,
Grapeshot. CMS-Connected. https://www.cms-connected.com/News-Archive/
April-2018/Oracle-Takes-A-Shot”-Acquires-Brand-Safety-Platform,-Grapeshot

Riffe, D., Lacy, S., & Fico, F. (2019). Analyzing media messages: Using quantitative
content analysis in research (4th ed.). Routledge.

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd
ed.). Pearson.

Schreier, M. (2012). Qualitative content analysis in practice. Sage.
Shields, P. M., & Rangarjan, N. (2013). A playbook for research methods: Integrating

conceptual frameworks and project management. New Forums Press.
Somasundaram, N., & Vavreck, L. (2010). The power of political adjectives:

Measuring the influence of descriptive labels on political perceptions. Political
Communication, 27(4), 394–412.

https://doi.org/10.1002/dir.10073
https://doi.org/10.5210/fm.v20i1.5563
https://www.uoguelph.ca/hftm/research-process
https://www.uoguelph.ca/hftm/research-process
https://doi.org/10.1362/147539213X13645550618524
https://doi.org/10.1362/147539213X13645550618524
https://doi.org/10.4135/9781473909472
https://doi.org/10.1038/nature14539
https://doi.org/10.1111/j.1460-2466.2010.01488.x
https://doi.org/10.1177/1075547008329201
https://doi.org/10.1177/1075547008329201
https://www.cms-connected.com/News-Archive/April-2018/Oracle-Takes-A-Shot”-Acquires-Brand-Safety-Platform,-Grapeshot
https://www.cms-connected.com/News-Archive/April-2018/Oracle-Takes-A-Shot”-Acquires-Brand-Safety-Platform,-Grapeshot

Unveiling Content Analysis in the Contemporary Media Ecosystem  15

Sue, V. M., & Ritter, L. A. (2012). Conducting online surveys (2nd ed.). Sage.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., &

Fergus, R. (2013). Intriguing properties of neural networks. arXiv. https://doi.
org/10.48550/arXiv.1312.6199

Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the
gap to human-level performance in face verification. 2014 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2014) (1701–1708).

Trochim, W. M., & Donnelly, J. P. (2008). The research methods knowledge base (3rd
ed.). Atomic Dog.

Vogt, W. P. (2019). Dictionary of statistics & methodology: A nontechnical guide for
the social sciences (5th ed.). Sage.

Weber, R. P. (1990). Basic content analysis (2nd ed.). Sage.
Weitzman, L. J., Eifler, D., Hokada, E., & Ross, C. (1972). Sex-role socialization

in picture books for preschool children. American Journal of Sociology, 77(6),
1125–1150.

Zou, J., & Schiebinger, L. (2018). AI can be sexist and racist—it’s time to make
it fair. Nature News, 559(7714), 324–326. https://doi.org/10.1038/d41586-
018-05707-8

https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.1038/d41586-018-05707-8
https://doi.org/10.1038/d41586-018-05707-8

DOI: 10.4324/9781003514237-2

Chapter 2

Designing a Computational
Content Analysis
An Illustration from “Civic
Engagement, Social Capital, and
Ideological Extremity”

As we’ve covered thus far, content analysis offers the researcher a struc-
tured method to interpret and label data. It presents a systematic approach
to decoding textual data, which is essential in maintaining research rigor.
Effective content analysis is grounded in two fundamental principles: sys-
tematic procedures and validity (Krippendorff, 2018). Before we set off to
do innovative computational analysis, let’s first take time to be intentional
and premeditated in what we’re going to measure and operationalize it in a
way that will pass muster for academic research. This chapter illustrates best
practices to accomplish these tasks, through the lens of one of my favorite
content analyses that I conducted a few years ago, “Civic Engagement, So-
cial Capital, and Ideological Extremity: Exploring Online Political Engage-
ment and Political Expression on Facebook” (Ferrucci et al., 2020). I close
the chapter with some thoughts on diversity in content analysis, and provide
you with a few tools to help with the data-labeling process.

Thinking Intentionally about Operationalization

Operationalization is a frequently neglected step in the research methodol-
ogy that entails the clear definition of variables intended for measurement.
By operationalizing variables, researchers ensure that they move from theo-
retical constructs to quantifiable entities grounded within empirical obser-
vation. The rigor of this process is often a determinant of a study’s success,
as it is instrumental in aligning collected data with the targeted conceptual
framework. Without meticulous attention to operationalization, the risk of
gathering data that inadequately represents the investigated concepts in-
creases significantly. Put another way, we need to meditate on precisely what
it is we’re going to measure before we actually do so, or else we run the risk
of what I call “concept drift,” which is a study that doesn’t exactly measure
what it ought to. Reviewers are good at spotting this oversight, and yes,
reviewer #2 will hate it.

https://doi.org/10.4324/9781003514237-2

Designing a Computational Content Analysis  17

In the aforementioned paper, we explored Facebook as a venue for po-
litical expression. As someone with a passion for methodology, I have of-
ten found conventional survey methods asking about low-frequency and
unmemorable activities to be inadequate. It’s a fact that most people don’t
frequently make political posts on social media, and alongside all of the con-
tent an individual generates on Facebook, it’s likely beyond their immediate
ability to recall how much political content they generate (Tucker et al.,
2018). Given this, inaccuracies likely arise in our understanding of online
content sharing due to both numeracy and social desirability biases (Larson,
2019). To overcome these challenges, we crafted a methodological strategy
that integrated participants’ self-reported survey data with their behavioral
data on Facebook. This allowed for a direct comparison of self-reported po-
litical engagement against actual political postings by that user on Facebook
(Macke et al., 2022). After obtaining consent from our study participants,
they permitted a specialized application to collect their Facebook activity.
We employed the Facebook Graph API to gather a range of content from
each participant’s profile (Ferrucci et al., 2020). Our approach was indeed
reminiscent of the technique used by the infamous Cambridge Analytica.
However, our research adhered to ethical standards: securing IRB approval,
anonymizing the data, and ensuring its protection. Furthermore, our inten-
tion was not to manipulate elections but to advance academic understand-
ing of political engagement.

Unitizing: The Essential Methodological Approach

Before we can measure “how political someone is on Facebook,” we need
to think specifically about how that behavior manifests and focus first on ex-
actly what the unit of analysis is important. In content analysis, the process
of unitizing, which refers to identifying the basic elements for analysis, is the
start (Krippendorff, 2018). It can involve texts, words, phrases, sentences,
themes, or, in the case of our study, individual Facebook posts. We decided
on Facebook posts as our unit of analysis because they could be efficiently
analyzed based on their content and context. This example underscores the
importance of ensuring that the units of analysis are both relatable to the
research question and commensurate with the characteristics of the data.
What else might we have done? We could have looked at what pages they
liked, but that would have been more of a passive measure of political en-
gagement. Just because someone likes a Facebook page doesn’t mean they
are actively participating in politics. Other sources, such as direct messages,
might have been even better but we deemed that too personally invasive.

The use of social media platforms, such as Facebook, can serve as a
window into user behavior and preferences. The regularity with which

18  The Computational Content Analyst

individuals update their statuses or posts could be indicative of their en-
gagement level with the platform. The variety of shared content, including
articles, multimedia, and personal photographs, may reveal insights into a
user’s hobbies, interests, and even political orientations (Vargo et al., 2014).
Moreover, the interactive elements of these platforms such as the number
of likes, comments, and shares one accumulates can be reflective of a user’s
tendency to engage with content and potentially their propensity for in-
volvement in digital discourse. The specific timing of social media activity
can reveal intricate details about user engagement. Posting during signifi-
cant political happenings or amid contentious debates may indicate a higher
level of political involvement compared with those who remain silent during
these times. An analysis that identifies the use of politically charged lan-
guage in a person’s postings can be an indicator of their political interests.

While an assortment of digital footprint information can be gathered
from a user’s visible activity on social media platforms like Facebook, let’s
acknowledge the inherent limitations of this data. A user’s comprehensive
interaction with political content on Facebook cannot be accurately sur-
mised from their public postings alone (Crawford & Finn, 2015). Activities
such as silently browsing or privately responding to posts, the nature of the
content they elect to read without any direct engagement, or the duration
spent perusing specific political material comprise significant elements of an
individual’s political involvement on the platform. These facets, regrettably,
remain beyond the reach of researchers who only analyze publicly shared
posts (Tufekci, 2014). As such, it’s a major limitation that we had to accept
and work around. We were not measuring political engagement or interest
but instead how vocal someone was about politics.

The crux of the matter is that existing methodological approaches pri-
marily focus on “active” behaviors or overt interactions, such as those that
create a digital footprint like click-throughs, responses, or content creation.
Contrastingly, “passive” activities—a term for when users read, scroll, or
simply watch content without direct engagement—may also significantly
shape political perspectives and actions, yet these do not produce observ-
able traces for analysis (Thorson et al., 2020; Zhang & Pentina, 2012). This
dichotomy spotlights the intricacies of examining political participation on
social media and highlights the pressing need to refine our research meth-
ods. When considering social media trace data, here are a few different units
of analysis we could decide to measure:

1.	Posts: Examining the hashtags, keywords, themes, and/or issues users
employ in the content they generate or share on their profile, as a part
of their “timeline” or “news feed” is the common choice for studying
social media behaviors. This data is often what is most readily available
to researchers, and it can uncover trends in political discourse (Murphy
et al., 2014).

Designing a Computational Content Analysis  19

2.	Comments: Instead of concentrating solely on the original posts made
by users, comments provide a deeper understanding of user engagement
with political content; comments are fertile grounds for rich discus-
sions and debates that may not be as apparent in the initial post. Yet,
this approach presents practical difficulties—the overwhelming number
of comments presents a significant hurdle, introducing a high level of
labor intensity and a time-consuming analysis process (Diakopoulos &
Naaman, 2011). Furthermore, there is the risk of detachments from the
original context when comments are analyzed as standalone fragments.

3.	Likes, follows, and other platform engagement: Assessing the volume
of likes and shares a given user dedicates to specific content or pages
offers an alternative approach to quantifying an individual’s involvement
with politics. If an individual engages regularly with political content
by “liking,” or “upvoting” the content, it is a signal of their support.
Additionally, if we analyze which pages or groups that individuals belong
to or “like,” we can understand at a higher level what topics they want
to see content from. In either case, the algorithms running behind the
scenes at social media platforms will likely suggest content they engage
with, and in turn this likely means they see political content.

4.	Exposure time: Analyzing the amount of time users spend viewing
certain posts or the frequency at which they are exposed to certain types
of content can be insightful. Though it might be hard to gain access to
such data outside of conducting a lab-based experiment, this kind of
data would provide valuable information about passive engagement with
political content, thus offering a more comprehensive analysis.

While alternative unitizing methods may offer more depth or breadth to
the analysis, each comes with its own set of challenges and limitations, and
the most suitable method will depend on the specific research questions
being asked and, perhaps most likely, the data that you have available to
you. In our study, we collected the data from both posts and comments.
We did not save the likes of individuals, due to a limitation with Facebook’s
API. Since we weren’t running a laboratory experiment, we were left with
looking at what users said, not what users consumed or viewed. This fun-
damental understanding of what we are measuring and what we are not is
very important. This limits what we can study, and should directly shape the
analysis and literature therein.

Operational Definitions: The Foundation of Content
Analysis

When planning the scope of texts or specific units of trace data to be coded,
focus your energy on constructing precise operational definitions for the
content in question. Allocate the bulk of your effort to developing the

20  The Computational Content Analyst

coding scheme, rather than the mechanical aspects of the coding process.
From my own scholarly practice, I have observed that failures in content
analysis often stem from a lack of rigorously defined and comprehensive
guidelines for categorization. For instance, here are a couple of codebooks
that inspired us when we were drafting my definition for political talk.

Codebook for Social Media Analysis from “Measuring
Networked Social Capital” Study

In their research on social capital in online networks, Ellison et al. (2007)
present a robust codebook that outlines distinct categories for user interac-
tions on Facebook. The codebook covers a range of behaviors, from initiat-
ing contact and sending messages to the frequency of profile updates and
the number of Facebook friends. This instrument shows clear relationships
between each category and the overarching research inquiry, aiding in a
comprehensive and nuanced analysis of online social capital.

Codebook for Political Engagement on Twitter from “More than
a Microblog” Study

Conover et al. (2011) employed a comprehensive codebook to classify dif-
ferent forms of political engagement in their study that investigated patterns
of Twitter use in political contexts. The codebook effectively categorized
political information sharing, original political content creation, and politi-
cally themed retweets. Notably, the codebook also addressed the sentiment
of tweets (positive, negative, neutral), lending nuance to their analysis of
online political engagement.

Each of these codebooks is an informative example of comprehensive, spe-
cific, and reliable measurement tools for content analysis in the research of
online behaviors. It’s important to remember that unless the concept you’re
trying to measure is new, there is probably a definition or a combination of
definitions available in the extant literature that you can leverage and incor-
porate into your study. We surveyed the literature and found different types
of political talk that commonly occur and created an exhaustive list. While
our final label was a binary decision on whether the posts mentioned political
talk (0 = no, 1 = yes), by identifying common types and examples of politi-
cal talk, we were able to ensure that we labeled documents consistently and
exhaustively. Political talk was coded as being present if a post had: a refer-
ence to a political figure; an exploration or connection to topics of govern-
ance and public administration such as taxation, law enforcement, defense,
or healthcare; discourse on legislative agendas or actions; commentary on
issues of local governance; engagement with prominent societal concerns;
allusions to electoral processes or the act of voting; or relevance to judicial

Designing a Computational Content Analysis  21

deliberations at a high level, illustrated, for example, by the scrutiny sur-
rounding the Trump administration’s travel restrictions often referred to as
the “Muslim ban.” Even after the literature review, we only felt confident our
definition was good after we read several posts from our collected dataset.
While an initial literature review uncovered some topics, others were miss-
ing, or needed to be adjusted to better describe what we saw in our data.

The process of developing a codebook for content analysis is iterative, ne-
cessitating continual refinement and enhancement. It involves crafting code
definitions that draw from theoretical frameworks, existing literature, and
the researcher’s anticipations (Neuendorf, 2016). Still, when coders start
working with the actual data, they might stumble upon content elements
that resist fitting snugly within these pre-established categories. Referred
to as edge cases, these anomalies can significantly challenge the reliability
of the coding framework (Riffe et al., 2014). Adaptability becomes crucial
when addressing edge cases (Krippendorff, 2013).

After the initial codebook is developed, a preliminary round of coding
should be conducted. This first round will highlight any issues, ambiguities,
or edge cases not covered by the existing codebook. For instance, there
could be forms of expression, nuances in language, or specific contexts not
anticipated during the codebook construction (Bazeley, 2013; Saldaña,
2021). These instances serve to not only test the robustness and adequacy
of the initial codebook but also provide opportunities for refining it. Fol-
lowing this initial round, researchers should review the cases where coders
struggled or disagreed. Regular coder discussions play an essential role in
this process. They provide a platform for coders to discuss their challenges,
propose possible solutions, and share insights to inform codebook revision.
These discussions are instrumental for identifying edge cases and uncover-
ing subtleties or complexities not initially considered (Miles et al., 2019).

Based on these insights, the codebook should be revised to address these
issues, either by refining existing codes or adding new ones. Once revisions
are made, another round of coding should be conducted, and the codebook’s
effectiveness reevaluated. This iterative process continues until the codebook
reliably captures all nuances of the content and handles edge cases effectively.
The coding process is not static but evolves as deeper understandings of the
content are gained. It embraces the complexity and diversity of human com-
munication, acknowledging that edge cases are not mere anomalies but valu-
able data that can offer unique insights. Iterative codebook creation enhances
the depth, accuracy, and reliability of content analysis, leading to more robust
and valid research findings (Krippendorff, 2018; Schreier, 2012).

Intercoder Reliability

The reality is, no matter how good a codebook or set of rules seems to you,
until others can reliably produce similar results given those instructions,

22  The Computational Content Analyst

we have no way of empirically knowing if the instructions generalize to the
concept we are measuring (Krippendorff, 2018). For these reasons alone it
makes sense to take a small sample of documents and have at least two re-
searchers independently label that data and compare their agreement.

Turning back to our study of political talk, after we felt we had a good
codebook that handled all the various ways politics could be discussed, my
trusted colleague, Toby Hopp, and I independently reviewed a random col-
lection of 100 Facebook posts. We disagreed once (κ = .80). We talked it
out, and it was obvious that one of us missed labeling a political post. That
aside, it was clear that the operational definition was working. Now it was
time to independently review two random samples. Together we labeled
5,006 (3,937 unique) posts for if they contained political talk. As we’ll talk
about later in Chapter 4, these annotations were used to build a Keras neu-
ral network (Gulli & Pal, 2017).1

How to Write Good Content-Analysis Codebooks

Zooming into specific codes, let’s review another more myopic example. Im-
agine a hypothetical codebook using a concept slightly different from politi-
cal talk—political engagement. We could start with something as simple as:

Code 1: Engaged—User engages with political content.
Code 2: Not Engaged—User doesn’t engage with political content.

This version of the codebook is too vague. It does not provide enough instruction
on what constitutes “engagement” or differentiate among engagement levels.
This can lead to inconsistency in data coding because different coders may have
their own interpretations of what “engagement” entails, and what that cutoff is
for making someone political or not. Let’s try again:

Code 1: Engaged—User actively participates in political discourse by posting
original content, sharing political news, commenting on political discus-
sions, or responding to political polls or surveys. Evidence of engagement
includes the use of political hashtags, direct mentions of political figures
or parties, discussion of policy issues, or advocacy for political action.

Code 2: Not Engaged—User does not exhibit any of the behaviors listed un-
der “Engaged.” Posts are devoid of political content, hashtags, mentions
of political figures or parties, policy discussions, or advocacy. The user’s
activity is limited to non-political personal updates, entertainment-related
content, or other apolitical interactions.

This revised codebook provides clear, specific guidelines for coders to fol-
low, reducing ambiguity and increasing the likelihood of consistent cod-
ing across individuals. It delineates what behaviors and content qualify as

Designing a Computational Content Analysis  23

political engagement and what do not, making it easier for coders to make
informed decisions.

To further refine the codebook, we could also consider abandoning a
binary classification (“political” or “not”) and adding more nuanced cat-
egories of engagement, such as passive engagement (e.g., liking or viewing
political content without commenting or sharing) or differentiating be-
tween levels of active engagement (e.g., creating original political content
versus simply sharing existing content). Additionally, including examples of
each type of engagement and non-engagement can help coders recognize
borderline cases.

Let’s consider one more example, this time political extremity. Often in
political science research, there is a desire to know how extreme one’s ide-
ologies are. To that end, we may want to observe social media content from
users and adopt the following codebook:

Code 1: Mild Liberal Extremist—User consistently posts political content
promoting liberal viewpoints, advocates for liberal policies and politi-
cians, and criticizes conservative ones. However, these actions do not
involve personal attacks, misinformation, or the promotion of radical
changes in the political system.

Code 2: Extreme Liberal Extremist—User consistently posts political con-
tent that aggressively promotes liberal viewpoints, advocates for radical
policies and politicians, and strongly criticizes conservative ones. They
often use personal attacks, misinformation, and advocate for radical
changes in the political system.

Code 3: Mild Conservative Extremist—User consistently posts political
content promoting conservative viewpoints, supports conservative poli-
cies and politicians, and criticizes liberal ones. However, these actions do
not involve personal attacks, misinformation, or the promotion of radical
changes in the political system.

Code 4: Extreme Conservative Extremist—User consistently posts politi-
cal content that aggressively promotes conservative viewpoints, supports
radical policies and politicians, and strongly criticizes liberal ones. They
often use personal attacks, misinformation, and advocate for radical
changes in the political system.

Code 5: Moderate—User posts political content that promotes both liberal
and conservative viewpoints, supports both liberal and conservative poli-
cies and politicians, and criticizes both. They do not use personal attacks,
misinformation, or advocate for radical changes in the political system.

This codebook reads like a first draft. While it encapsulates a lot of inter-
esting ideas, such as mis/disinformation sharing, it is overly complicated
and creates a confusing overlap between political ideologies (liberal, con-
servative) and extremity levels (mild, extreme). It assumes that all political

24  The Computational Content Analyst

posts can be categorized as either liberal or conservative, overlooking the
likelihood of nuanced posts or those centering on nonpartisan issues. Addi-
tionally, using both “mildly extreme” and “extreme” ideological labels can
create confusion—they are oxymoronic and may be hard to distinguish in
practice. Finally, the subjectivity involved in categorizing “misinformation”
and “radical changes” in the political system could lead to inconsistency
and bias in coding. This illustrates the importance of keeping codebooks
clear, concise, and objective to maximize their practical utility in content
analysis. My advice here is to simplify and detach each code. If you want to
measure misinformation, do so in a separate code, where a proper definition
is provided. Avoid conflating concepts during the initial phases of a content
analysis, as it can easily be done later in the data analysis phase.

Case Study: What Is Toxic, Anyway?

A well-constructed codebook is like a meticulously well-organized diction-
ary, comprehensive in its coverage, clear in its definitions, and concise in its
explication. In academia, we have the time, patience, and incentive to get
these things right, because it’s how we publish science (Krippendorff, 2018).
However, in industry, it’s not always possible nor desired. Let’s go through a
concept that I’ve struggled with in online content moderation—“toxicity”—
and talk about how it is defined. Alphabet, the parent company of Google,
owns the corporation Jigsaw. Their Perspective tool comes from their broader
initiative to spark innovation and help detect/remove awful content like bul-
lying and harassment in various contexts, like YouTube comments (Perspec-
tive API, 2021). I applaud them for helping researchers study hate speech and
threats online, “at scale” across big datasets (Wulczyn et al., 2017).

Perspective has, however, no formal codebooks that define toxicity.
This comes from their inability to enforce one labeling process from their
training data. Some data was annotated by comment moderators at the
New York Times, other data came from crowdsourcing platforms like Ama-
zon Mechanical Turk and Figure Eight (now Appen; Wulczyn et al., 2017).
Broadly, this data has been assembled into one broad definition, “a rude,
disrespectful, or unreasonable comment that is likely to make you leave a
discussion” (Perspective API, 2021). Beyond this, we get a little more de-
tail—the Perspective API can retrieve specific attributes, including:

1.	TOXICITY: A rude, disrespectful, or unreasonable comment that is
likely to make one leave a discussion.

2.	SEVERE_TOXICITY: A very hateful, aggressive, or disrespectful com-
ment that is likely to contribute to a hostile environment.

3.	INSULT: Insulting, disrespectful, or bad-natured comments.
4.	PROFANITY: The use of intense offensive language.

Designing a Computational Content Analysis  25

5.	IDENTITY_ATTACK: Negative or hateful comments targeting some-
one because of their identity.

6.	THREAT: Comments that express an intent to hurt someone physically.
7.	SEXUALLY_EXPLICIT: Sexually suggestive, detailed, or graphic sexual

language or imagery.
8.	FLIRTATION: Pickup lines, complimenting appearance, subtle sexual

innuendos, etc.

These attributes attempt to parse out the different flavors of toxicity that can
exist, but at their core, there are considerable ambiguities. What qualifies as
rude or disrespectful? If a post is rude but doesn’t make an individual want
to stop reading a conversation, does it count? What constitutes a hostile
environment? What language is deemed profane and to what extent does a
comment need to be negative or hateful to be considered an identity attack?
Such questions are inherent in the task of defining and identifying toxicity.

Addressing them, while remarkably challenging, is needed to develop
effective measures against online harm and foster healthier digital spaces.
Therefore, defining toxicity with clarity and rigor, even in fast-paced indus-
try settings, is not just a desirable goal but a necessary step in the seemingly
endless battle against toxic online behavior.

Moderators at Wikipedia likely differ from those at the New York Times
in what they consider problematic and how they perceive toxicity (Dixon
et al., 2018). This means that the underlying definitions that powered this
training data are byproducts of the specific content-moderation policies that
governed Wikipedia and the Times. Let’s consider some different ways we
could define toxicity:

Code 1: Toxic—The news article uses negative language, contains harmful
stereotypes, or promotes division among groups.

Code 2: Non-Toxic—The news article uses neutral language, does not con-
tain harmful stereotypes, and does not promote division among groups.

Terms like “negative language,” “harmful stereotypes,” and “promotes divi-
sion” are extremely subjective and can be interpreted differently depending
on the coder’s perspectives and biases (Sapir, 1929; Whorf, 1956). What
one coder might perceive as negative language could be seen as neutral or
even positive by another. It depends highly on context, tone, and nuanced
understanding of language, none of which this code provides guidelines or
definitions for.

Similarly, “harmful stereotypes” and “promoting division” are ambigu-
ous terms that can change depending on cultural, social, and individual per-
spectives. The lack of precise definitions or examples leaves coders to rely on
their own judgment, increasing the risk of inconsistent and biased coding.

26  The Computational Content Analyst

Binary labels like “toxic” and “non-toxic” can oversimplify complex
issues, leading to difficulties in accurately gauging the nuances of certain
texts. Consider the instance where an article might convey harmful stereo-
types in an underhanded way, despite using language that appears neutral or
even positive on the surface. Alternatively, a report may deliver an impartial
account of events, and yet the very incidents it chronicles may unintention-
ally perpetuate social divisions. In these subtle scenarios, an overly simplistic
framework for interpretation falls short of capturing the intricacies involved.

This codebook also lacks concrete operational guidelines or procedures.
For example, it doesn’t elucidate what specific media should be considered
in coding—should the comments that precede a comment in a discussion
or comment thread be considered, or must the toxicity be inferred from the
context? Let’s take all of these into consideration and try again:

INSTRUCTIONS: Code the following comment, and review its context in
the greater context of the entire discussion thread.

Code 1: Derogatory Language—The comment uses language that demeans,
belittles, or insults a certain group or individual. Examples include ag-
gressive swear words, derogatory slurs, or pejorative nicknames targeting
a person or group’s race, gender, religion, etc.

Code 2: Stereotyping—The comment presents groups or individuals in a
generalized, simplified manner based on their race, nationality, religion,
gender, etc. This may include assuming certain characteristics, behaviors,
or attitudes as inherent to the group or individual without providing nu-
anced or balanced perspectives.

Code 3: Unsubstantiated Claims—The comment presents claims that are
not backed by reliable evidence or factual information. This may include
spreading misinformation, promoting conspiracy theories, or presenting
personal opinions as factual statements.

Code 4: Inciting Division—The comment promotes hostility or division
among different groups. This may involve framing issues in a polariz-
ing way, inciting hate or fear towards specific groups, or promoting an
us-versus-them narrative.

Code 5: Neutral/Non-Uncivil—The comment uses neutral language, pre-
sents balanced viewpoints, does not contain harmful stereotypes, does
not promote division among groups, and backs claims with reliable evi-
dence or factual information.

The updated codes delineate explicit parameters for identifying behav-
iors classified as “toxic” within communication, creating a more meticu-
lous instrument for content examination. It manages situations through
the subdivision of the generic “toxic” content classification into distinct
forms of incivility (Roberts, 2018; Sheth et al., 2022). Consequently,

Designing a Computational Content Analysis  27

if a comment demonstrates a single type of incivility without evidenc-
ing others, it can be accurately categorized. The granularity and specific
detail provided by this enhanced coding manual reduce discrepancies
stemming from subjective interpretation among researchers. This then
bolsters the consistency of the coding process and fortifies the credibility
of the study’s findings.

The revision of the broader and somewhat abstract concept of “toxicity”
into a more specific notion of “incivility” results in a more targeted and em-
pirical research focus. Concrete parameters for investigation link to specific,
existing bodies of literature in the field. Incivility is particularly relevant to
several research fields, including political communication, online behavior,
cyberbullying, and even interpersonal communication, and now we have
directly measured these things. Together, these codes do still represent the
umbrella of toxicity. But by focusing on the “incivility” in the comments,
researchers can explore and reveal the links between the nature of the arti-
cles’ content and its potential effect on readers’ political attitudes and be-
haviors, drawing from previous research findings in political communication
(e.g., Vargo & Hopp, 2020).

Providing Examples of Codes

To ensure a comprehensive understanding of concepts, providing illustra-
tive examples can be beneficial for annotators as they navigate complex
subjects. For instance, consider the concept of uncivil discourse, such as
the use of derogatory language. Suppose we encounter a sentence within
a comment that reads, “Liberals are totally-divorced-from-reality, and fail
to grasp economic truths.” This type of language exemplifies the uncivil
character of the discourse as it is dismissive and belittling, thereby serving
as a vivid example.

In this case, the article uses the phrase “totally-divorced-from-reality”
to demean a certain group (liberals). This aligns with Code 1: Derogatory
Language, as the language demeans and insults a certain group. Though the
edge case here lies in the use of stereotypical language rather than explicit
slurs or aggressive insults, the detailed codebook ensures such subtler forms
of derogatory language are also captured. Still, it’s good to show examples
like this so our annotators understand that an insult is an insult.

Next, let’s consider stereotyping and the phrase, “Teenagers these days
are more interested in TikTok than in meaningful conversation.” In this
instance, the comment makes a sweeping generalization about all teenagers.
Even though this statement might not seem extremely uncivil, it still falls
into Code 2: Stereotyping, as it presents an oversimplified view of a group
(teenagers). The comprehensive definitions of the codebook make sure such
milder, yet still harmful forms of stereotyping are not overlooked.

28  The Computational Content Analyst

These edge examples reaffirm the strength and effectiveness of the re-
vised codebook in capturing various forms and levels of incivility. It ensures
that even the subtler, milder, or more nuanced instances of incivility do not
slip through the cracks, thereby providing a more comprehensive and ac-
curate analysis. When in doubt, include a few examples of each concept you
define for your annotators. Do this while keeping in mind that too many
examples will likely lead to your annotators not reading your instructions
closely, and could even generate confusion.

Leveraging Computational Tools for Data
Management and Analysis

Once you’re ready to start labeling lots of documents, keep in mind that
several tools can make your life easier. Here are three top options for labe-
ling media data:

Labelbox (https://www.labelbox.com/) is a collaborative annotation tool
that allows teams to label their data efficiently. It supports various types
of data, including text, images, and videos. Labelbox offers a user-friendly
interface and a range of features, such as bounding boxes, polygons, and
semantic segmentation for images and videos. It also supports text clas-
sification and named entity recognition for text data. While Labelbox is
easy to use, some technical skills may be required to set up and manage
the tool effectively. Coding is not required for basic usage, but advanced
features may require some programming knowledge.

Doccano (https://doccano.github.io/doccano/) is an open-source text
annotation tool that is particularly useful for natural language processing
tasks. It supports three types of annotation: text classification, sequence
labeling, and sequence-to-sequence annotation. Doccano offers a simple
and intuitive interface, making it easy for non-technical users to label
their data. However, setting up Doccano requires some technical skills,
as it needs to be installed and run on a server. Coding is not required for
using Doccano, but some familiarity with command-line interfaces can
be helpful in troubleshooting and configuring it.

Label Studio (https://labelstud.io/) is a multi-type data labeling tool
that supports text, audio, image, and video data. It offers a wide range
of annotation options, including text classification, named entity recog-
nition, object detection, and audio transcription. Label Studio is highly
customizable, allowing users to create their own annotation interfaces
to suit their specific needs. While using Label Studio does not require
coding, setting up and customizing the tool may require some techni-
cal skills, including familiarity with HTML and CSS. Label Studio is
what we use in several of our studies to label data, and I highly recom-
mend it.

Designing a Computational Content Analysis  29

Closing Remarks on Defining Your Content Analysis

The sophisticated algorithms we build in the subsequent chapters all depend
on data that has been labeled in a reliable and externally valid way. Don’t fall
into the toxicity trap I discussed earlier. Strive for clarity, exhaustiveness, and
inclusivity in your codes. Operationalize your codes in ways that directly
match the definitions of concepts from existing literature whenever possible.

Here is the rubric I use to evaluate my codebooks:

•	 Comprehensive: Ensuring that the codebook covers all relevant aspects
of the data (Neuendorf, 2016).

•	 Clear: Providing unambiguous definitions that can be easily understood
and applied by coders (Krippendorff, 2018).

•	 Consistent: Applying the same standards across all content to ensure
that coding is reliable (Riffe et al., 2014).

•	 Concise: Keeping the codebook brief and to the point to avoid over-
whelming coders with unnecessary information (Saldaña, 2021).

•	 Contextual: Considering the context in which content appears, as it can
greatly affect the interpretation of the data (Miles et al., 2019).

With these things in mind, start with labeling your data for your content
analysis. The following chapters will focus on how we can take labeled data
and use computers to label documents for us, under our supervision. From
here we will assume that you have a fundamental working knowledge of
manipulating data in Python. If you are not a coder, we’ll discuss emerging
generative AI tools that can help you code. Either way, join me as I unpack
the various types of classification tools that are at our disposal today. They
will guide you in better understanding and working with computational
folks who can help you “scale” your content analysis across large datasets.

Note

1.	Data was tokenized and transformed using fasttext.cc (Mikolov et al., 2017). 80%
(n = 3,729) of the data was randomly selected as training data, 20% was allotted to
test. Training, tuning, and evaluation were performed via Python’s ktrain package
(Maiya, 2022). The F1 score was .96 for non-political talk and .89 for political talk,
suggesting the model was accurate despite biased classes. The log loss was .10 and the
validated loss was .20, suggesting the model performed acceptably on unseen data.

References

Bazeley, P. (2013). Qualitative data analysis: Practical strategies. Sage.
Conover, M. D., Goncalves, B., Ratkiewicz, J., Flammini, A., & Menczer, F. (2011).

Political polarization on Twitter. Proceedings of the Fifth International AAAI
Conference on Weblogs and Social Media, 5(1), 89–96. https://doi.org/10.1609/
icwsm.v5i1.14126

https://doi.org/10.1609/icwsm.v5i1.14126
https://doi.org/10.1609/icwsm.v5i1.14126

30  The Computational Content Analyst

Crawford, K., & Finn, M. (2015). The limits of crisis data: Analytical and ethical
challenges of using social and mobile data to understand disasters. GeoJournal,
80(4), 491–502. https://doi.org/10.1007/s10708-014-9597-z

Diakopoulos, N., & Naaman, M. (2011). Towards quality discourse in online news
comments. Proceedings of the ACM 2011 Conference on Computer Supported
Cooperative Work, 2011, 133–142. https://doi.org/10.1145/1958824.1958844

Dixon, L., Li, J., Sorensen, J., Thain, N., & Vasserman, L. (2018). Measuring
and mitigating unintended bias in text classification. Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, 2018, 67–73. https://doi.
org/10.1145/3278721.3278729

Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook
“friends”: Social capital and college students’ use of online social network sites.
Journal of Computer-Mediated Communication, 12(4), 1143–1168.

Ferrucci, P., Hopp, T., & Vargo, C. J. (2020). Civic engagement, social capital, and
ideological extremity: Exploring online political engagement and political expres-
sion on Facebook. New Media & Society, 22(6), 1095–1115.

Gulli, A., & Pal, S. (2017). Deep learning with Keras: Implementing deep learning
models and neural networks with the power of Python. Packt Publishing.

Krippendorff, K. (2013). Content analysis: An introduction to its methodology. Sage.
Krippendorff, K. (2018). Content analysis: An introduction to its methodology (4th

ed.). Sage.
Larson, R. B. (2019). Controlling social desirability bias. International Journal of Mar-

ket Research, 61(5), 534–547. https://doi.org/10.1177/1470785318805305
Macke, E., Daviss, C., & Williams-Baron, E. (2022). Untapped potential: Col-

lecting and analyzing digital trace data within surveys. SocArXiv. https://doi.
org/10.31235/osf.io/frhj6

Maiya, A. S. (2022). ktrain: A low-code library for augmented machine learning.
Journal of Machine Learning Research, 23(1), 1–6.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2017). Advances in
pre-training distributed word representations. ArXiv. https://doi.org/10.48550/
arXiv.1712.09405

Miles, M. B., Huberman, A. M., & Saldaña, J. (2019). Qualitative data analysis:
A methods sourcebook (4th ed.). Sage.

Murphy, J., Link, M. W., Childs, J. H., Tesfaye, C. L., Dean, E., Stern, M., Pasek, J.,
Cohen, J., Callegaro, M., & Harwood, P. (2014). Social media in public opinion
research: Executive summary of the AAPOR task force on emerging technologies
in public opinion research. Public Opinion Quarterly, 78(4), 788–794. http://
doi.org/10.1093/poq/nfu053

Neuendorf, K. A. (2016). The content analysis guidebook. Sage.
Perspective API. (2021). Attributes and languages. https://developers.perspec-

tiveapi.com/s/about-the-api-attributes-and-languages?language=en_US
Riffe, D., Lacy, S., & Fico, F. (2014). Analyzing media messages: Using quantitative

content analysis in research. Routledge.
Roberts, S. T. (2018). Behind the screen: Content moderation in the shadows of social

media. Yale University Press.
Saldaña, J. (2021). The coding manual for qualitative researchers (4th ed.). Sage.
Sapir, E. (1929). The status of linguistics as a science. Language, 5(4), 207–214.
Schreier, M. (2012). Qualitative content analysis in practice. Sage.
Sheth, A., Shalin, V. L., & Kursuncu, U. (2022). Defining and detecting toxicity on

social media: Context and knowledge are key. Neurocomputing, 490, 312–318.
https://doi.org/10.1016/j.neucom.2021.11.095

https://doi.org/10.1007/s10708-014-9597-z
https://doi.org/10.1145/1958824.1958844
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.1177/1470785318805305
https://doi.org/10.31235/osf.io/frhj6
https://doi.org/10.31235/osf.io/frhj6
https://doi.org/10.48550/arXiv.1712.09405
https://doi.org/10.48550/arXiv.1712.09405
https://doi.org/10.1093/poq/nfu053
https://doi.org/10.1093/poq/nfu053
https://developers.perspectiveapi.com/s/about-the-api-attributes-and-languages?language=en_US
https://developers.perspectiveapi.com/s/about-the-api-attributes-and-languages?language=en_US
https://doi.org/10.1016/j.neucom.2021.11.095

Designing a Computational Content Analysis  31

Thorson, K., Cotter, K., Medeiros, M., & Pak, C. (2020). Algorithmic inference,
political interest, and exposure to news and politics on social media. Information,
Communication & Society, 23(2), 223–239. https://doi.org/10.1080/13691
18X.2019.1642934

Tucker, J. A., Guess, A., Barberá, P., Vaccari, C., Siegel, A., Sanovich, S., Stukal,
D., & Nyhan, B. (2018). Social media, political polarization, and political disinfor-
mation: A review of the scientific literature. SSRN. https://dx.doi.org/10.2139/
ssrn.3144139

Tufekci, Z. (2014). Big questions for social media big data: Representativeness, va-
lidity and other methodological pitfalls. Proceedings of the Eighth International
AAAI Conference on Weblogs and Social Media, 8(1), 506–514. https://doi.
org/10.1609/icwsm.v8i1.14517

Vargo, C. J., Guo, L., McCombs, M., & Shaw, D. L. (2014). Network issue agendas
on Twitter during the 2012 U.S. presidential election. Journal of Communication,
64(2), 296–316. https://doi.org/10.1111/jcom.12089

Vargo, C. J., & Hopp, T. (2020). Fear, anger, and political advertisement engage-
ment: A computational case study of Russian-linked Facebook and Instagram con-
tent. Journalism & Mass Communication Quarterly, 97(3), 743–761. https://
doi.org/10.1177/1077699020911884

Whorf, B.L. (1956). Language, thought, and reality: Selected writings. Technology
Press of Massachusetts Institute of Technology.

Wulczyn, E., Thain, N., & Dixon, L. (2017). Ex machina: Personal attacks seen at
scale. Proceedings of the 26th International Conference on World Wide Web, 2017,
1391–1399. https://doi.org/10.1145/3038912.3052591

Zhang, L., & Pentina, I. (2012). Motivations and usage patterns of Weibo.
Cyberpsychology, Behavior, and Social Networking, 15(6), 312–317. https://doi.org/
10.1089/cyber.2011.0615

https://doi.org/10.1080/1369118X.2019.1642934
https://doi.org/10.1080/1369118X.2019.1642934
https://dx.doi.org/10.2139/ssrn.3144139
https://dx.doi.org/10.2139/ssrn.3144139
https://doi.org/10.1609/icwsm.v8i1.14517
https://doi.org/10.1609/icwsm.v8i1.14517
https://doi.org/10.1111/jcom.12089
https://doi.org/10.1177/1077699020911884
https://doi.org/10.1177/1077699020911884
https://doi.org/10.1145/3038912.3052591
https://doi.org/10.1089/cyber.2011.0615
https://doi.org/10.1089/cyber.2011.0615

DOI: 10.4324/9781003514237-3

Chapter 3

Basic Information Retrieval
for Content Analysis

In a world full of algorithms and constant innovation in AI, which I prom-
ise we will get to, I want to intentionally start our journey into computa-
tional content analysis “old school.” Given that most content analyses, and
academic studies in general, use static datasets, that is, data that we define,
collect, and then analyze, we don’t need to be worried about some of the
problems that big data engineers spend time on. We are not building scal-
able, flexible systems that must work on new data as the world turns and
evolves. We are building a fragile, custom solution to solve specific chal-
lenges on known and fixed datasets. This takes the pressure off us in one
important way. If it works, and we can verify it works by checking a random
sample, then it is good enough. We may analyze the data, write the results,
and move on to tenure. Jokes aside, remember, we are fitting a glove, not a
one-size-fits-all jacket. This limits our technical challenges, but it also limits
what we can say we have solved.

Defining and Justifying “Big Data” in Content Analysis

I am occasionally asked to define what constitutes “big data.” My “official”
definition, which I offer for the sake of content analysis only, is a dataset
that is too large to manually review a representative sample of. This is what
makes it “big,” in my opinion. After all, computational methods like ma-
chine learning or sentiment analysis are only better than humans for two
things: scale (Goodfellow et al., 2016), and reliability (Riffe et al., 2014).
They invariably are less useful in many other ways. I reason that we should
only use computational methods on data when the effort exerted by hu-
mans to review a representative would be too great, and therefore we need
the scale and reliability that automated technologies bring.

A misconception that has come because of big data analyses in mass com-
munication is the idea that labeling all of the documents in a corpus is nec-
essary to draw conclusions about that corpus. Remember that samples of

https://doi.org/10.4324/9781003514237-3

Basic Information Retrieval for Content Analysis   33

data sets are perfectly acceptable if they are drawn appropriately. Determin-
ing the appropriate sample size ensures findings are both valid and reliable.
Riffe et al. (2014) provide guidance on sampling procedures, suggesting
that the traditional standard for content analysis in mass communication
often involves examining a sample that is large enough to represent the
population, which can be around 10% of the dataset. This percentage is not
arbitrary but is based on statistical principles that aim to balance the need
for representativeness with practical constraints (Riffe et al., 2014). How-
ever, the exact percentage may vary depending on the research question, the
variability within the data, and the available resources (Krippendorff, 2018).

With social media data, researchers often must decide among different
types of data access. Back when X was Twitter, we had different ways to
access content that was on the platform. Different Application Programming
Interfaces (APIs) provided different samples of data, there was the firehose
(the full stream), the garden hose (a large, but still limited percentage of
the stream), or a spritzer stream (a ~1% random sample). Morstatter et al.
(2013) discuss the implications of using different sampling strategies and
their adequacy for representing the broader social media landscape. They
found that the 1% random sample can be significantly different from the
firehose, leading to potential biases in the analysis. This suggests that
while smaller samples like 1% of a Twitter stream are more manageable,
they may not always be sufficient for accurate representation, especially
when analyzing rare events or minority opinions (Driscoll & Walker, 2014;
Morstatter et al., 2013).

I want to draw your attention to a study I did when I was starting my
tenure, “Does Negative Campaign Advertising Stimulate Uncivil Commu-
nication on Social Media?” (Hopp & Vargo, 2017). The study explored
the relationship between negative political advertising and political incivility
on Twitter during the 2012 presidential election. The data for our study
was collected from over 140,000 individual Twitter users located in 206
Designated Market Areas. Our data-preparation process was extensive and
involved both human and machine labeling. While our dataset was quite
large, encompassing over 70 million tweets collected from August 1 to
November 6, 2012, only 400,976 of these messages could be resolved to
specific Designated Market Areas (DMAs). We wanted to look at the inter-
action of advertisements in locations, so we needed geo data, and very few
users of Twitter opted in. Let this be a lesson that, often, data melts quickly
as you segment it to match your desired area of focus.

Determining whether a dataset warrants a “big data analysis” can be
boiled down to a simple heuristic: the number of human working hours re-
quired. Reviewing a single tweet might take one minute. To label 10% of the
dataset, we would need 40,000 minutes—that’s about 666 hours. Labeling

34  The Computational Content Analyst

a tweet could take mere seconds, but even at a rate of three tweets per sec-
ond, the labor demanded is excessive and creates an unreasonable expecta-
tion for researchers (Kitchin, 2014). Therefore, in these instances, the data
is “big” enough to warrant computational content analysis. Under these
conditions, my sample of a 400,000-post dataset exemplifies “big data.”

However, if I were reviewing video content, the time spent per video
would be exponential, and therefore a sample with a much smaller n, for in-
stance 10,000 YouTube videos, surely qualifies as big data. 1,000 videos of
even just a few minutes in duration each will take a very long time to watch.
10,000 Instagram reels, however, may sound big, but a 10% sample is only
1,000 videos. If they are limited to 30 seconds, it may be reasonable to
manually review them in a reasonable amount of time. Generally, the more
laborious the content labeling process is, the more justified it is to employ
computational methods in content analysis.

Creating a Simple “List of Words” Classifier

Turning back to our study of Twitter, the core of our investigation centered
on the classification of tweets based on their incivility level. Faced with an
overwhelming volume of microblogging entries (a.k.a., posts), traditional
coding methods proved impractical, necessitating an automated approach
to draw conclusions. Before we got to Python, we started with an initial
qualitative review of a sample of tweets. After reviewing a few hundred
tweets, it was obvious to both authors which posts were uncivil. At the
time, Twitter was free from moderation, and as a result lots of profanity and
insults were hurled at both candidates. We were shocked at the time how
much of it was very racially insensitive.

If it were today, I would likely use the generative artificial intelligence
approach used later in this book to solve this content analysis problem. It
would have offered us the most flexibility and saved me writing my own
Python classifier and gathering an exhaustive list of “bad words.” That said,
generative artificial intelligence requires special computing, is expensive,
and ultimately has somewhat of a mind of its own. For these reasons, I’m
choosing to start our content-analysis journey using a rules-based classifica-
tion system. While custom classifiers like this lack the smarts and training/
testing functionalities that machine-learning enthusiasts love, they are also
simple systems that are easy to understand, and they ultimately afford you
the most control over labeling your data.

In addressing the challenge of identifying candidate-specific incivility
in tweets, we initiated our research by compiling lists of derogatory and
profane terms. These lists, which we sourced from various freely accessible
online platforms, included terms that companies such as Google and Yahoo
had identified as unsuitable for indexing within search results, reflecting

Basic Information Retrieval for Content Analysis   35

their inappropriateness for professional settings (Narayanyan, 2018). In
the nascent stages of Internet search technology, it was common prac-
tice for search engines to maintain databases of words deemed unfit for
work-related searches. We merged these publicly available lists with a care-
fully curated catalog of political candidate names and their associated com-
mon misspellings.

This method, often referred to as the “keyword spotting” technique or
“bag-of-words” model, provides a straightforward and pragmatic strategy
for categorizing textual content by identifying the presence or absence of
specific words (Harris, 1954; Salton & McGill, 1983). It’s the same solution
we talked about in the previous chapter with contextual advertising. Despite
its efficacy, this approach presents significant restrictions because it disre-
gards the context and sentiment in which a word is deployed (Pang & Lee,
2008). For instance, our system could misinterpret the use of a potentially
offensive term delivered in a humorous or sarcastic tone as objectionably
“uncivil.” Recognizing this shortcoming we found most uncivil tweets to be
quite straightforwardly vulgar.

In fact, over the years authors have asked for our “bad words” lists, and
while I have obliged, I’ve been very clear to reiterate that we created a tai-
lored solution to solve a specific problem with a specific dataset. We did not
aim to build an incivility classifier that would even purport to contend with
the Jigsaw Perspective API that we talked about in Chapter 2. We printed
out a detailed view of the words, the frequency in which they occurred in
the corpus (a.k.a., collection, sample), and their context. From that, we
created a list to slowly chip away at our problem. We went down the list,
reviewing each word one at a time. We reviewed examples of how those
words were used in actual posts in the corpus and made a binary decision on
whether each word should be considered as a correlate to incivility. Essen-
tially, if a comment contained one or more of these bad words, we labeled it
as “uncivil.” If it didn’t, we labeled it as “civil.” This is a very basic form of
content analysis, but it was the right-size glove to solve the problem.

Labeling for something you know you’re looking for is a somewhat easier
problem in content analysis, and information retrieval generally. Pinpoint-
ing a concise list of representative keywords can serve as a gateway to iden-
tifying positive exemplars of your research interest. As you delve into these
instances, they often lead to the discovery of additional pertinent keywords
or hashtags. With a greater time investment, you enter a cycle of discovery
and refinement until your keyword list encapsulates the essence of the target
phenomenon.

This iterative approach underpinned the methodology of our investiga-
tion. We continuously expanded our review of tweets, refining our filters
until our algorithm consistently identified relevant examples within our
dataset. The incremental step of populating our “toxic” lexicon (a.k.a., list)

36  The Computational Content Analyst

was crucial for our rudimentary analytic tool. When I’m starting new con-
tent analyses today, I still start with this exercise because it can serve four
purposes: 1) it compels an in-depth and qualitative understanding of the
concept under analysis (Krippendorff, 2018); 2) it yields a preliminary col-
lection of straightforward examples that can enhance a codebook and con-
ceptual definitions; 3) it starts a collection of documents that can be fed to a
supervised machine learning training dataset (refer to Chapter 4 for detailed
discussion); and 4) for highly specific or simple concepts, such as determin-
ing whether a tweet is uncivil toward a political candidate, a well-curated
keyword catalog may suffice to address the research question.

Calculating Intercoder Reliability in Python

As I said in the preface, I assume you have some functional working knowl-
edge of Python. If you don’t, I strongly recommend using Julius.ai to han-
dle Python code for you.1 I’m going to assume you understand basic logic
and data types. For each chapter, you will find a Python notebook and rel-
evant files that have all the code snippets in one place with comments for
you to follow along. I will also include snippets of code and data here in
the book for those who want to follow along at a conceptual level. Here is
a sample of the kind of data we are working with:

typhanieluv | 40.71002717 | -73.78744176 | 0 | “@maddow I’m
echoing Rich Santorum: Mit Romney will be the worst Repub-
lican to run against Obama. So far Soo true!” | 78455847 |
78455847_1343870209275 | false | 0 | false | “Twitter for
Android” | 08/01/2012 21:16:49 | 501 | New York, NY

These columns represent various details about each tweet, separated in an
“old-school” data format, tab-separated values. The fields are separated by
a tab delimiter to prevent this fragile file format from breaking. Inside the
fields you see the username of the tweeter (“typhanieluv”), their latitude
and longitude, the actual content of the tweet, the source of the tweet
(“Twitter for Android”), the timestamp, and the designated market area
(“New York, NY”), among other details.

Import the pandas library
import pandas as pd

Define the path of the file
file_path = ’path/to/your/in_sample.tsv’

Load the TSV file
Note: the ’sep’ parameter is set to \t, which represents
a tab character in Python, to specify that the file is a TSV
df = pd.read_csv(file_path, sep=‘\t’, header=None)

Basic Information Retrieval for Content Analysis   37

Display the DataFrame
print(df.head())

In the above example, replace “path/to/your/in_sample.tsv” with the
actual path to your “in_sample.tsv” file.

You may want to add the column names manually using the “names”
parameter:

column_names = [‘user_name’, ’latitude’, ’longitude’,
’content’, ’source’, ’timestamp’, ’designation’]
df = pd.read_csv(file_path, sep=‘\t’, header=None,
names=column_names)

This will create a DataFrame with the named columns, filled with data from
the “in_sample.tsv” file. Once we have our tweets loaded into a Data-
Frame, we can easily take a random sample of 100 tweets, and add a column
for each coder (data annotator)—“Coder A” and “Coder B.” Let’s save the
file, and pretend we went off in the dark for a while and labeled the tweets.
Here’s a Python code snippet to add additional columns and take a random
sample of tweets:

Import necessary libraries
import pandas as pd
import numpy as np

Define the path of the file
file_path = ’path/to/your/in_sample.tsv’

Create your column names
column_names = [‘user_name’, ’latitude’, ’longitude’,
’num1’, ’tweet’, vnum2’, ’num3’, ’bool1’, vnum4’, ’bool2’,
’source’,
’timestamp’, ’designation’, ’location’]

Load the TSV file
df = pd.read_csv(file_path, sep=‘\t’, names=column_names)

Add new columns for each coder
df[‘Coder A’] = np.nan
df[‘Coder B’] = np.nan

Take a random sample of 100 tweets
df_sample = df.sample(n=100)

Save the resulting DataFrame to a new TSV file
df_sample.to_csv(‘path/to/your/sample_tweets.tsv’, sep=‘\t’,
index=False)

38  The Computational Content Analyst

In the above code snippet, replace “path/to/your/in_sample.tsv” with
the actual path to your “in_sample.tsv” file. Similarly, replace “path/to/
your/sample_tweets.tsv” with the path where you want to store your
output sample file.

When you’re doing your content analysis, you’ll want to label your data us-
ing a spreadsheet program like Microsoft Excel, Apple Numbers, or Google
Sheets. Create columns like the “Coder A” and “Coder B” columns in the
saved “sample_tweets.tsv” file. This procedure assumes that two coders
(“Coder A” and “Coder B”) are manually labeling the sampled tweets.

Once your manual labeling process is finished, you can load the sample
data back into Python using “pd.read_csv(‘path/to/your/sample_
tweets.tsv’, sep=‘\t’)” for the next phase of your analysis.

We’re going to make sure that the two coders (Coder A = our script;
Coder B = me) agree on what incivility is. Let’s calculate intercoder reli-
ability to verify that the coders have an acceptable agreement (Lombard
et al., 2002). Intercoder reliability is a critical metric in content analysis,
representing the degree of alignment among different coders who classify or
label dataset contents (Neuendorf, 2002). It essentially assesses whether our
codebook and annotators (human or android) consistently identify and in-
terpret data (Krippendorff, 2018). To quantify this reliability, several statis-
tical measures can be employed, such as percent agreement, Cohen’s Kappa
(Cohen, 1960), Krippendorff’s Alpha (Krippendorff, 2004), and Fleiss’
Kappa (Fleiss et al., 2003).

As you calculate the proportion of decisions in which coders concur,
percent agreement emerges as the most rudimentary metric. Its major limi-
tation is that it doesn’t factor in any concurrence that might arise by sheer
coincidence. Cohen’s Kappa (κ), building upon the foundation of percent
agreement, corrects for chance agreement. This index spans from –1 to +1,
with +1 denoting complete concordance, zero representing an agreement
level no better than randomness, and –1 signaling absolute discord. Cohen’s
Kappa becomes particularly relevant when dealing with just two raters, each
evaluating every item (McHugh, 2012).

When your analysis involves more than a pair of raters, or when not all
items are evaluated by every rater, you may turn to Krippendorff’s Alpha.
This broader statistical construct quantifies agreement across various cat-
egories and accommodates data of multiple types, such as nominal, ordinal,
or interval. Fleiss’ Kappa extends the utility of Cohen’s Kappa and is applica-
ble when numerous raters categorize a collection of items or classes.

In a social science investigation like the one outlined, with two individu-
als (“Coder A” and “Coder B”) manually categorizing tweets as “uncivil” or
“not uncivil,” Cohen’s kappa would aptly assist in appraising the intercoder
reliability. Computing Cohen’s kappa involves first determining the observed
agreement rate—the extent to which the coders’ decisions concur—and then
gauging the expected agreement rate—the likelihood of coincidental coder

Basic Information Retrieval for Content Analysis   39

concurrence. You arrive at the kappa statistic by deducting the expected
agreement from the observed agreement and dividing the resultant value
by the difference between one and the expected agreement (Cohen, 1960).

Here is a Python function to gauge intercoder reliability:

def intercoder_reliability(df, coder1, coder2):
coder1_labels = df[coder1]
coder2_labels = df[coder2]

Calculate observed agreement
observed_agreement = sum(coder1_labels == coder2_labels) /
len(coder1_labels)

Calculate expected agreement
coder1_incivility_rate = sum(coder1_labels == 1) /
len(coder1_labels)
coder2_incivility_rate = sum(coder2_labels == 1) /
len(coder2_labels)
coder1_civility_rate = sum(coder1_labels == 0) /
len(coder1_labels)
coder2_civility_rate = sum(coder2_labels == 0) /
len(coder2_labels)

expected_agreement = (coder1_incivility_rate *
coder2_incivility_rate) + (coder1_civility_rate *
coder2_civility_rate)

Calculate kappa
kappa = (observed_agreement - expected_agreement) / (1 -
expected_agreement)

return kappa

Please note that for more complex annotation tasks, more elaborate in-
tercoder reliability metrics such as Krippendorf’s Alpha or Fleiss’ Kappa,
which allow for multiple coders and the possibility of missing data, may be
more appropriate. This simple calculation should work for the binary clas-
sification task described in the text. Now, let’s load our data and calculate
intercoder reliability. To load the “intercoder_reliability.xls” file
and call the “intercoder_reliability” function on the “Coder A” and
“Coder B” columns, you would first import the necessary libraries (pandas
in this case) and then use the “pd.read_excel()” function to load the
spreadsheet data into a pandas DataFrame.

Afterward, you would invoke the “intercoder_reliability()” func-
tion, passing the loaded DataFrame and the column names “Coder A” and
“Coder B” as arguments.

40  The Computational Content Analyst

Here’s a Python code snippet illustrating how to do it:

Import the pandas library
import pandas as pd

Define the path of the file
file_path = ’path/to/your/intercoder_reliability.xlsx’

Load the Excel file
df = pd.read_excel(file_path)
Run the ’intercoder_reliability’ function on ’Coder A’
and ’Coder B’ columns
kappa = intercoder_reliability(df, ’Coder A’, ’Coder B’)

Print the calculated Cohen’s kappa
print(“Cohen’s Kappa is”, kappa)

Replace “path/to/your/intercoder_reliability.xlsx” with the
actual path to the file. This script will output the calculated Cohen’s kappa,
which is the measure of intercoder reliability in this case. The higher the
value of kappa, the greater the level of agreement between the two coders.
A negative kappa indicates a level of agreement that is worse than random.

You may be wondering about the benchmarks for a satisfactory Cohen’s
kappa coefficient. The answer is nuanced and contingent on the complex-
ity of the problem at hand. In situations comparable to ours, which are
more straightforward, a kappa value exceeding 0.8 is typically anticipated.
For issues that are less clear or require more profound understanding, the
expected kappa may be markedly lower. While there is no universal criterion
for Cohen’s kappa, as a guideline, values above 0.8 are often regarded as
“almost perfect” agreement. Scores ranging from 0.6 to 0.79 indicate “sub-
stantial” agreement, 0.4 to 0.59 denote “moderate” agreement, 0.2 to 0.39
reflect “fair” agreement, 0 to 0.19 are considered “slight” agreement, and
values below 0 signify “poor” agreement (Landis & Koch, 1977).

Building a Simple Classifier in Python

Now that we’ve taken some time to validate that our human coders are
labeling data as we’d expect, let’s take some time to unpack how I’ve
instructed the computer to label data and discuss a little natural language
processing. We don’t need to know a ton to solve this problem—just a
few concepts are going to take us a long way. If you refer to the “Text
Preprocessing and Tokenization” section of the Python notebook included
in this chapter, you can see the related code. I won’t include it here for
space considerations.

Basic Information Retrieval for Content Analysis   41

The “tokenize(text)” function breaks down the text into individual
words or “tokens.” This is done using regular expressions, which are pat-
terns used to match character combinations in strings. In this case, the regu-
lar expressions “WORD_PAT” and “WORD_PAIR” are used to match individual
words and pairs of words, respectively (Bird et al., 2009).

The function starts by initializing an empty list of tokens. It then enters
a loop that continues until the end of the text. In each iteration of the loop,
the function first tries to find a match for a word pair in the remaining text.
If it finds a match, it checks if the pair (stripped of any leading or trailing
punctuation and converted to lowercase) is in the list of incivility words. If
it is, the pair is added to the list of tokens. If it’s not, the function tries to
find a match for a single word in the remaining text.

Because the word “hate” is included in the incivility words CSV file, the
“tokenize(text)” function would recognize it as an incivility word and
add it to the list of tokens. However, the function as it is currently written
would not recognize “hater” or “haters” as matches for “hate.” This is be-
cause the function is looking for exact matches: it checks if a token (a word
or word pair from the tweet text) is in the list of incivility words, not if an
incivility word is in a token.

This is a limitation of the current approach. One way to address this
would be to use stemming or lemmatization, which are techniques for re-
ducing words to their root form. For example, the stem of “hater” and
“haters” is “hate.” If we applied stemming to the tokens before checking
them against the list of incivility words, then “hater” and “haters” would
match “hate.” To incorporate lemmatization into the function, we would
need to use a library like Natural Language Toolkit (NLTK), which pro-
vides a lemmatizer that reduces words to their base or root form (lemma).
In the Python notebook for this chapter, I’ve prepared a version of the code
that uses lemmatization at the end of the “tokenize(text)” function. I’ve
“commented it out” by inserting #’s in front of the code to ensure it doesn’t
run. To run this version, uncomment it out (CMD +/on Mac in Google
Colab, my preferred way to open Python notebooks), and comment out the
version of code that does not use lemmatization (again, CMD +/on Mac).

This revised function will now lemmatize each word or word pair before
checking if it’s in the list of incivility words. This means that variations of
a word, like “hater” or “haters,” will be reduced to their root form “hate”
and correctly identified as an incivility word if “hate” is in the list. Beware,
however; we didn’t end up doing this in our study, because it increased
the occurrence of false positives. For example, the word “hat” would also
be reduced to the stem “hat,” which would match “hate” if we use lem-
matization. So, if we use a lemmatized approach, we need to be extremely
stringent in our uses of lemmas, as they are bound to have more unintended
matches than our exact matching approach.

42  The Computational Content Analyst

The “get_word_scores()” function reads the list of incivility words
and their scores from a file. The score of a word indicates its degree of
incivility. For example, “hate” might have a higher score than “dislike.”
While this is a feature we did not ultimately use in our paper, this general
functionality could allow you to score some words as more severely uncivil
than other words.

The “remove_at_mentions(text)” function is used to preprocess the
text of the tweet by removing any @mentions. This is done using regular
expressions, a powerful tool for matching and manipulating strings. In this
case, the regular expression “@\.?\w+” matches any word that starts with
“@” which is how mentions are represented on Twitter. For example, the
tweet “@maddow I love your show!” would be transformed into “I love
your show!”.

The “preprocess(tweet)” function is a wrapper function that calls
“remove_at_mentions(text).” This function could be expanded in the
future to include other preprocessing steps, such as removing URLs or
hashtags, converting the text to lowercase, or removing punctuation.

The “main()” function is where the action happens. It reads the tweets
from a file, preprocesses them, tokenizes them, and calculates their incivility
score. The incivility score of a tweet is the sum of the scores of its incivility
words. The function also boosts the score of a tweet if it contains words
with exclamation marks or capital letters, as these are often used to express
strong emotions. For example, the tweet “I HATE Python!” would have a
higher score than “I hate Python.”

Finally, the script prints the incivility score of each tweet and stores that
score. In all we created a tool that had a one-time use, to classify 400,000
tweets. We kept tweaking and editing our Python script, each time review-
ing small samples of its output labels, until we felt that the machine was
accurately labeling the data. At the top of this chapter, we verified that
this was indeed the case by calculating intercoder reliability, where Coder
A was the Python script. In all, the script identified over 650 words associ-
ated with candidate-relevant incivility. The time spent here was primarily on
reading 800+ tweets to generate the word lists most associated with incivil-
ity and also tweaking the logic of the code to produce the correct labels.
Most importantly, we checked if any uncivil words were not detected by the
computer.

The external validity percentages were over 98%, indicating high preci-
sion. This means that 98% of the data labeled was exactly how we expected
it to be. Why? Well, first, incivility in this dataset was blatant and easy for
humans to spot. We knew what we were looking for, and it was easy to
see it manifested in specific, unique words. We then tailored our tool to a
specific use, improved it iteratively, and our dataset remained static during

Basic Information Retrieval for Content Analysis   43

that time. Interestingly, and perhaps not truly necessary (read: the reviewers
made us do it), we also ran several additional external validity checks. We
reasoned that if our “algorithm” was truly measuring incivility, it would also
negatively correlate with sentiment, as most uncivil content is negative in
valence. Additionally, we suspected a positive correlation with psychologi-
cal (and not sexual) arousal, given that incivility is a highly arousing set of
emotional responses. To do this, we used open-source lexicon classifiers that
measured these concepts and labeled the data with them. As we expected,
incivility was negatively correlated with sentiment and positively correlated
with arousal, even further suggesting that we were approximately measuring
the concept of interest.

After text classification was used to derive incivility scores for each tweet,
we then created incivility scores that were then averaged for each Twitter
user, and these average scores were aggregated at the Designated Market-
ing Area (DMA) level to create an overall incivility score for each DMA.
When compared against advertising DMA data, we now had a measure of
candidate-directed incivility as exhibited through Twitter that was directly
comparable. The linking of DMA advertising spend data with DMA-specific
data from Twitter provided a nuanced view of public sentiment, effectively
tracking how advertising spending impacted public discourse.

In our example above, content analysis was the vehicle that drove the
integration of different datasets (Krippendorff, 2018). By applying content
analysis methods to Twitter data, we were able to label each tweet with
an incivility score. The raw tweets, essentially unstructured data, were thus
transformed into structured data that could be compared and matched with
the structured DMA advertising spend data. When two structured data-
sets are married like this, the result is a rich, multi-layered dataset that can
be mined for invaluable insights. For instance, the analyses that could be
performed on such a dataset range from looking at correlations between
advertising spend and public discourse, comparing public sentiment across
different DMAs to measuring the impact of local news events on public sen-
timent. The possibilities are wide-ranging and ever-evolving as new meth-
ods and techniques of content analysis are developed.

The promise of marrying data extends beyond social media and advertis-
ing spend data. Labeled media data, in general, could be coupled with a vast
array of other datasets. For instance, census data, socioeconomic indicators,
weather data, or even data from satellite imagery could be combined with
labeled media data to examine a variety of phenomena—from studying cor-
relations between media coverage and changes in demographic trends to
measuring the impact of environmental conditions on media discourse. As
we continue to generate and accumulate unprecedented amounts of data
in our digital age, these methods will become more critical in making sense

44  The Computational Content Analyst

of our complex world. They will enable us to uncover patterns and associa-
tions that would otherwise remain hidden, providing valuable insights into
human behavior and society.

In closing this chapter, I hope you found that the accompanying code is
a very simple but effective way to measure a concept that is manifested in
text. You can easily repurpose this tool by simply changing the words that it
looks for. For instance, you could look for issues, attributes, frames, or any
other straightforward concept. It illustrates several key concepts in natural
language processing, including tokenization, regular expressions, and text
classification. However, such a simple approach has its limitations. For in-
stance, it does not account for the context in which words are used, or for
figurative language, such as sarcasm or irony. More sophisticated measure-
ments would require the use of supervised machine learning, a method that
involves feeding the algorithm labeled examples from which it can learn,
or Generative AI, an approach involving teaching the machine model to
learn the characteristics of a given category and then generate new, original
content that fits into the same category. We will cover these topics directly
in the chapters to come.

Note

1	 Give it a try for free by visiting: https://julius.ai. Just upload the file and,
in your own words, tell it to load the data into a pandas dataframe. For subse-
quent steps, describe to the AI what you want to do, and with a little trial and
error, it will do almost everything we cover in this book, with the exception of
generative AI.

References

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python:
Analyzing text with the Natural Language Toolkit. O’Reilly Media, Inc.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1), 37–46.

Driscoll, K., & Walker, S. (2014). Big data, big questions| Working within a black
box: Transparency in the collection and production of big Twitter data. Interna-
tional Journal of Communication, 8(2014), 1745–1764.

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and propor-
tions (3rd ed.). John Wiley & Sons.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Harris, Z. (1954). Distributional structure. Word, 10(2–3), 146–162.
Hopp, T., & Vargo, C. J. (2017). Does negative campaign advertising stimulate

uncivil communication on social media? Measuring audience response using big
data. Computers in Human Behavior, 68, 368–377. https://doi.org/10.1016/j.
chb.2016.11.034

Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data &
Society, 1(1). https://doi.org/10.1177/2053951714528481

https://julius.ai
https://doi.org/10.1016/j.chb.2016.11.034
https://doi.org/10.1016/j.chb.2016.11.034
https://doi.org/10.1177/2053951714528481

Basic Information Retrieval for Content Analysis   45

Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd
ed.). Sage.

Krippendorff, K. (2018). Content analysis: An introduction to its methodology (4th
ed.). Sage.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for
categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content analysis in
mass communication: Assessment and reporting of intercoder reliability. Hu-
man Communication Research, 28(4), 587–604. https://doi.org/10.1111/
j.1468-2958.2002.tb00826.x

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica,
22(3), 276–282. https://doi.org/10.11613/BM.2012.031

Morstatter, F., Pfeffer, J., Liu, H., & Carley, K. M. (2013). Is the sample good
enough? Comparing data from Twitter’s Streaming API with Twitter’s Firehose.
Proceedings of the Seventh International AAAI Conference on Weblogs and Social
Media, 1306(1), 400–408. http://doi.org/10.1609/icwsm.v7i1.14401.

Narayanan, B. K. (2018). Adult content filtering: Restricting minor audience from
accessing inappropriate internet content. Education and Information Technologies,
23(4), 2719–2735. https://doi.org/10.1007/s10639-018-9738-y

Neuendorf, K. A. (2002). The content analysis guidebook. Sage.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Founda-

tions and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/
10.1561/1500000011

Riffe, D., Lacy, S., & Fico, F. (2014). Analyzing media messages: Using quantitative
content analysis in research (3rd ed.). Routledge.

Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval.
McGraw-Hill.

https://doi.org/10.2307/2529310
https://doi.org/10.1111/j.1468-2958.2002.tb00826.x
https://doi.org/10.1111/j.1468-2958.2002.tb00826.x
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1609/icwsm.v7i1.14401
https://doi.org/10.1007/s10639-018-9738-y
https://doi.org/10.1561/1500000011
https://doi.org/10.1561/1500000011

DOI: 10.4324/9781003514237-4

Chapter 4

Supervised Machine Learning
with BERT for Content Analysis

The previous chapter focused on a basic keyword spotting approach for
identifying incivility in tweets surrounding the 2012 election. It was simple,
but adding words to a list as we read more tweets eventually built a tool to
do the job. As this book goes on, we’ll dial up the complexity of the method
on how to solve problems like this. In this next approach, we’ll lose the
ability to add words to a list, but also be freed of that tedious responsibility,
and instead just be asked to label documents like we would normally in a
content analysis.

I want to draw your attention to another study, this time one where
I used supervised machine learning to classify documents. The study
(Tomeny et al., 2017) stemmed from a conversation I had with a colleague
who was a psychology professor studying autism at the University of Ala-
bama. He wanted to know why people shared a myth that persists to this
day, that vaccines cause autism. He wanted to know why the myth persisted
on social media. At the time, and sadly no longer the case, I had good access
to Twitter data, and I found 549,972 tweets that mentioned vaccines and
autism. The big question we needed to answer was the position the tweet
was taking. Did the tweet support the idea that “vaccines cause autism,”
or did the tweet refute that claim? Using a machine-learning algorithm we
analyzed the tweets and separated which contained anti-vaccine sentiments
from the ones that rebuffed the idea. The data revealed that anti-vaccine
tweet volume increased following vaccine-related news coverage and was
geographically concentrated in certain areas. Certain factors such as the av-
erage household income of an area positively correlated to higher percent-
ages of anti-vax sentiment.

Why not stick to keyword spotting? While the lexicon approach served
well in our prior focus on political incivility, it has limitations. It’s heavily
reliant on a predefined list of words and can misclassify tweets due to the
context in which words are used; this is an inherent complexity of human lan-
guages. Unlike incivility, which has been studied and distilled down to “bad

https://doi.org/10.4324/9781003514237-4

Supervised Machine Learning with BERT for Content Analysis  47

word” lists, exactly what constitutes an anti-vax tweet is context-dependent.
It’s hard to argue that a tweet that has the “f” word is civil, even if it has
positive sentiment. However, when you imagine the almost infinite ways
people could show their support for or against an idea, it becomes less im-
mediately clear what signals we will need to latch on to classify the tweets.

The literature suggested we search for keywords like #CDCWhistleblower
where anti-vaccine people band together to discuss vaccines and autism.
However, those keywords did not just surface negative discussion, but also
people debunking and trying to dissuade people that the link was real.
Even keywords like “mercury” or “delayed schedule” are not dead ringers
because people can express support for or against any divisive issue. As such,
we turned to supervised machine learning (Kotsiantis, 2007). Supervised
learning is a type of machine learning where the model is “trained” using
labeled data (Alpaydin, 2020). In content analysis, you can think of
words as coefficients in a regression analysis; each brings a certain weight
or importance that contributes to the output or prediction (James et al.,
2021). By “learning” from the existing data, the model fits its best guess
as to the importance of each word/coefficient. It learns the optimal fit by
trying to recreate the labels found in the training data as closely as possible.
This flexibility is in some ways amazing. We no longer must explicitly define
words to make predictions. We can make predictions or decisions without
explicitly programming them, but instead by allowing our labels to give the
computer the evidence it needs to make the classification.

Preparing Data for a Supervised Machine-Learning
Algorithm

First, of course, we had to define the concept. To train the algorithm, two
researchers coded 3,371 tweets into two categories: (1) anti-vaccine and
(2) all other tweets. We instructed our coders to assign the anti-vaccine
label when vaccines were portrayed as dangerous, ineffective, or negative
and mentioned a potential causal link to ASD (e.g., “CDC whistleblower
confesses to publishing fraudulent data to obfuscate link between vaccines
and autism,” “RT @AnonCorpWatch: Autism is mainly caused by mercury
present in vaccines”). The coders made their judgments independently
and had perfect intercoder reliability due to the straightforward nature of
anti-vaccination tweets. You can take a look at the training data for the
project by simply loading it as a DataFrame in Python, or the old-fashioned
way by opening it in Excel. Either way, you’ll see that the first column to
the left is the text of tweets, and then a simple “0” or “2” in the annotation
column, telling the computer if the tweet is anti-vax (2) or not (0). We then
allowed a supervised machine-learning algorithm to learn the relationship

48  The Computational Content Analyst

between the words used in the tweets (which we consider as features) and
the labels we provide.

Let’s imagine our algorithm assigns a coefficient of –0.3 to the word
“harmful,” +0.4 to “mercury,” and +0.5 to “#CDCWhistleblower.” In sim-
ple terms, these coefficients represent the “weight” of each word in deter-
mining whether a tweet is likely to be pro-vax or anti-vax. The higher the
coefficient (positive or negative), the more predictive the word tends to be.
Positive coefficients mean that a particular word is predictively associated
with anti-vax sentiment, whereas negative coefficients are associated with
pro-vaccine sentiment. If we look at the word “harmful,” for instance, the
negative coefficient suggests that this word is often used in the context of
pro-vaccine discussions, perhaps in sentences discussing the harmful effects
of diseases that vaccines prevent. Conversely, the positive coefficients for
“mercury” and “#CDCWhistleblower” suggest that these terms are more
distinctively associated with the anti-vax sentiment.

In this way, the machine-learning algorithm is analyzing and weighting
the importance of these words based on the relationships it learns from the
training data. The more times “mercury” is mentioned in anti-vax tweets,
the stronger its coefficient will become. For this project, we used a sim-
ple bag-of-words (BoW) model (Kotsiantis, 2007). Bag-of-words models
extract all words in each document and look at their co-occurrences with
classes, here not anti-vax, or anti-vax. The journey begins with a corpus of
documents, a.k.a., a large and structured set of texts. In our study, the cor-
pus consists of all the tweets we want to analyze. Each tweet in the corpus
is referred to as a document.

In the initial phase of the process, the corpus undergoes pre-processing.
This step usually involves the conversion of all text to lowercase to ensure
uniformity (Manning et al., 2008), unless there are specific reasons why the
capitalization would help us understand the context and usage of words.
It also includes tokenization, the process in which a document is broken
up into individual words or tokens (Baeza-Yates & Ribeiro-Neto, 2011).
In addition, words that offer little unique meaning, (a.k.a., stop words)
are typically removed, including words like “the,” “and,” “is” (Han et al.,
2011). Depending on the specifics of a project, this step may also include
lemmatization or stemming, strategies to reduce multiple forms of a word
down to its base form (for example, “running,” “runs,” “ran” all to “run”),
and the removal of special characters or numbers (Manning et al., 2008).

Once pre-processing is complete, the BoW model converts the corpus
into a document-term matrix (Bishop, 2006). In this matrix, the rows rep-
resent the documents (in this case, individual tweets), and the columns cor-
respond to the unique terms or words obtained from all the documents.
Each cell in the matrix represents the frequency of a term in a particular
document (Hastie et al., 2009).

Supervised Machine Learning with BERT for Content Analysis  49

Let’s consider the following tweets:

	 “Vaccines cause autism! #CDCWhistleblower”
	 “Mercury in vaccines is harmful”
	 “Vaccines are safe and effective”
	 “Autism is not caused by vaccines”
	 “Vaccines save lives, don’t believe the myths”

Here’s the corresponding document-term matrix:

an
d

ar
e

au
t-

is
m

be
lie

ve

by ca
us

e

ca
us

ed

cd
cw

hi
st

le
-

bl
ow

er
do

n

ef
fe

-c
ti

ve

ha
rm

-f
ul

in is liv
es

m
er

cu
ry

m
yt

hs

no
t

sa
fe

sa
ve

th
e

va
cc

in
es

0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1
2 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
3 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1
4 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1

In a BoW representation, the information about the order or structure of
words in the document is discarded. In effect, the model treats each docu-
ment as just a collection of words. We’ll address these major limitations with
deep learning in the next chapter (Bishop, 2006). By ignoring the context
in which a word is used and the order in which words are presented in a
story, we’re ultimately losing some information about the document. It’s
a trade-off we accept for simple problems in order to represent our data in
a document-term matrix.

This document-term matrix serves as an input feature set for the learning
algorithm (Hastie et al., 2009). The columns correspond to the “words”
we referred to in the initial article, and each word’s “weight” or importance
is the frequency of its appearance in the document. Could you simply fit a
multiple regression where the predictor (X) variables are the text columns,
and Y is the label of the tweet (anti-vax/vax)? Absolutely! That’s essentially
what we’re doing with the text processing, getting down to one very wide
tabular dataset. In reality, we’ll have way too many predictors to fit into a
simple multiple regression. Luckily, there are hundreds of models that were
designed to handle issues with many variables, like multicollinearity (Bishop,
2006). Once we’ve gotten our text data represented as a document-term
matrix, it becomes relatively simple to workshop these models, as we’ll see
in the code later in this chapter.

50  The Computational Content Analyst

Building a Supervised Machine-Learning Algorithm

The resulting matrix is often high-dimensional, containing a column for
practically every unique word in the corpus, which may number in the thou-
sands or millions. In this way, through the help of a BoW classifier, we were
able to turn a collection of texts into a structured numerical format suitable
for machine learning—vectors (Han et al., 2011). The vectors we end up
with represent a simplified snapshot of our corpus, reducing complex text
to a list of numbers, ready to be fed into our machine-learning algorithm
(Hastie et al., 2009). Each vector represents a unique document, with each
word in the document being a feature in that vector. As stated earlier, the
weight or importance of the feature comes from the frequency of its appear-
ance in the document (Bishop, 2006). Essentially, each vector is a numerical
representation of the contents of a document.

The machine-learning algorithm intuitively maps the vectors (documents)
with the labels or outcomes (in our case, “not anti-vax” or “anti-vax”). The
coefficients assigned to each term or keyword, as exemplified in the article
by a coefficient of –0.3 to “harmful,” +0.4 to “mercury,” and +0.5 to “#CD-
CWhistleblower,” come into play here. To sum scores for a document, the
machine-learning algorithm multiplies each word’s frequency by its corre-
sponding learned coefficient and then takes a sum of all scores (Hastie et al.,
2009).

For instance, if the word “harmful” appears three times in a tweet, its to-
tal contribution to the score is –0.3 (its coefficient) * 3 (frequency) = –0.9.
Similarly, the total contribution of the word “mercury” might be +0.4 *
1 = +0.4 if it appears once in the tweet. The score for the tweet is the sum of
these contributions from each word in the tweet (Bishop, 2006).

The summed score for each document (tweet) is then used to predict the
label or classification category. In our context, if the total score for a given
tweet is positive, it could be predicted as “anti-vax.” Conversely, tweets with
negative scores might be predicted as “not anti-vax.” This approach allows
us to use the frequency of individual words and their corresponding coef-
ficients to understand the underlying sentiment within the text based on the
scores computed, hence making an informed decision or prediction (Hastie
et al., 2009).

The actual specifics of how scoring is done and how predictions are made
can vary based on the specific machine-learning algorithm being used.
However, the general principle of using summed scores to make predictions
holds across different methods. In this study, we used a bag-of-words clas-
sifier through the machine-learning workbench, LightSide, an open-source
platform that performs feature extraction. We also used a model called Lib-
Linear (Fan et al., 2008). LibLinear is a machine-learning tool developed
by National Taiwan University to solve large-scale linear classification prob-
lems. It was born out of a desire to efficiently handle high dimensional data,

Supervised Machine Learning with BERT for Content Analysis  51

such as text, where the number of features can be in the order of millions.
Until its inception, the large size and high dimensionality of such datasets
proved a challenge for existing techniques, both in terms of computational
efficiency and the quality of solutions (Fan et al., 2008).

LibLinear employs a coordinate descent method that can be used for
solving linear Support Vector Machines (SVMs) and logistic regression
models (Fan et al., 2008). SVM is a commonly used machine-learning
model for classification and regression problems. In our study, the SVM
solves the challenge of high-dimensionality (e.g., lots of words) and large
volumes of text data while classifying tweets (Bishop, 2006). Similar models
to LibLinear that are still being used today include LIBSVM, SVMlight,
and SVMLIB. These libraries also offer tools for large-scale support vec-
tor machine (SVM) regression and classification, but they tend to be more
suited to smaller-scale problems where the number of features is less than
the number of instances, contrasting with the strength of LibLinear in han-
dling high dimensional data (Fan et al., 2008).1

Let’s consider an example of text classification in Python using Line-
arSVC from Scikit-learn. Remember, you can find the entire code for this
chapter in the corresponding Python notebook. Look at how few lines of
code are needed to do supervised machine learning:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split

Let’s assume we have some data
X = [‘vaccines cause autism’, ’vaccines don’t cause au-
tism’] # your text data
y = [1,0] # your labels

Splitting data into training and testing data
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Making a pipeline that will first turn our raw text into a
Bag of Words (BoW)
and then runs a Linear SVC on it
text_clf = Pipeline([(‘vect’, CountVectorizer()), (‘clf’,
LinearSVC())])

Training the classifier
text_clf.fit(X_train, y_train)

Testing the classifier
predicted = text_clf.predict(X_test)

52  The Computational Content Analyst

In this example, the “vect” stage of the pipeline performs the feature
extraction i.e., it turns the raw text into a document-term matrix similar to
the BoW method used in LibLinear. This is followed by the “clf” stage that
trains the LinearSVC model with the training data. Finally, predictions are
made on the test data. It really can be this little Python code, as Scikit-learn
does most of the heavy lifting for us.

Evaluating a Supervised Machine-Learning Algorithm

Once we build a machine-learning algorithm, we must evaluate it. When
classifying anti-vax tweets using a supervised machine-learning algorithm,
we’re essentially trying to create a model that can accurately and reliably
identify patterns that correspond to anti-vaccine sentiments. When we talk
about evaluating our model, we’re concerned with two main things: How
well does our model perform, and can we trust its predictions? This is where
cross-validation (CV; Kohavi, 1995) and metrics like accuracy and Kappa
(McHugh, 2012) come into play.

Cross-validation is a technique that helps us ensure that our model’s per-
formance is not just a fluke of the sample of tweets we used to test its per-
formance (Kohavi, 1995). By systematically splitting our data into different
training and testing sets, we can test how well our model generalizes to new,
unseen data. This is akin to testing a theory in different contexts to ensure
it holds up and isn’t just a product of specific circumstances. Without this
protection, it could be just due to chance that our test set is filled with very
blatant, easy-to-label data, thereby artificially exaggerating the true ability
of our algorithm, or vice versa with difficult examples.

Accuracy is a straightforward measure that tells us what proportion
of the time our model is getting things right. In the context of anti-vax
tweets, a high accuracy would mean that our model is correctly identifying
a high percentage of tweets as either anti-vax or not anti-vax. However,
accuracy doesn’t tell the whole story, especially if our data is unbalanced
(Fernández-Delgado et al., 2014).

Though accuracy seems like a straightforward and intuitive measure, it
can be misleading in cases where the dataset is imbalanced. For instance, say
we have 95 not anti-vax and five anti-vax tweets. Even a naive model that
predicts all tweets as not anti-vax would have an accuracy of 95%! It would
only be wrong five times out of 100, but it would totally miss the concept of
interest, here anti-vax tweets. To cope with such limitations, accuracy is often
used in conjunction with other metrics such as precision, recall, F1-score, and
Kappa, which provide a more balanced evaluation (Powers, 2011).

Kappa is particularly useful because it accounts for the accuracy that
would occur by random chance (McHugh, 2012). This is important in so-
cial science research because we want to be confident that our findings are

Supervised Machine Learning with BERT for Content Analysis  53

not due to random variation but reflect actual patterns in the data. A high
Kappa score means that the agreement between our model’s classifications
and the true labels is significantly better than what would be expected just
by guessing. This is why we use it to calculate the agreement between two
human coders, and it’s equally valid to use it here as well.

For example, let’s say we have a dataset of 1000 tweets with 100 of them
being anti-vax. If the model predicts 90 of the anti-vax tweets correctly but
also incorrectly labels 200 pro-vax tweets as anti-vax, the accuracy would
be (700 correct pro-vax + 90 correct anti-vax) / 1000 = 79%. However,
this doesn’t reflect the poor performance of the model on the majority class
(pro-vax tweets). The Kappa score would reveal this since it would be much
lower than the accuracy due to the high number of false positives (McHugh,
2012). There are 1000–100 = 900 pro-vax tweets. The model labeled 200
of them as anti-vax so the model would have labeled 700 correctly. The poor
performance is indeed more pronounced in the majority class, with a correct
classification rate of 700/900 = 77.78%, compared to 90/100 = 90% for
the minority class.

Now, let’s try to build a LinearSVC model with the data. This model is
similar to the one that I used to build the analysis on and is generally con-
sidered to be a better choice for big datasets of text. First, let’s import the
necessary libraries:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline
from sklearn import metrics

We can start by loading the dataset. Considering the article text above,
the data has been coded with two labels: (1) anti-vax and (2) not anti-vax.
For simplicity’s sake, we will use a basic dataset instead of loading one from
an external source. Let’s assume that you have the “forml.xlsx” file in
your current working directory. Here’s a basic way to load an Excel file into
Python using the pandas library:

import pandas as pd

Load the Excel file
df = pd.read_excel(‘forml.xlsx’)

Display the first 5 rows of the dataframe
print(df.head())

54  The Computational Content Analyst

In this code snippet, the pandas function “read_excel()” is used to load
the “forml.xlsx” file into a DataFrame object (df).2 A DataFrame is a
two-dimensional labeled data structure with columns of potentially differ-
ent types, similar to a spreadsheet or SQL table. The “head()” function is
then used to print out the first five rows of the DataFrame to the console,
allowing you to get a quick glance at your data.

Next, we split our data into training and testing sets. This is done us-
ing “train_test_split” from the sklearn.model_selection library.
We will use 80% of the data for training and 20% for testing. Remember,
the model learns from the trends, patterns, and relationships in the train-
ing data. That training data is labeled and came from our human content
analysis. It has both the input features (in this case, the text of the tweets)
and the corresponding output (the classification labels of “anti-vax” or “not
anti-vax”). This allows the model to form an understanding or mapping
from the input features to the output label.

The training phase is iterative, with the model repeatedly making predic-
tions on the training data and adjusting its internal parameters depending
on how accurate its predictions are with the help of a learning algorithm
(James et al., 2021). Over time, the model adjusts itself to minimize the
discrepancy, or the difference, between its predictions and the actual reality,
thereby improving its prediction accuracy.

Once the model has been trained, it must be tested to evaluate its gener-
alizability to unseen data. This is where the testing set, the remaining 20% of
the data, comes into play (Kuhn & Johnson, 2019). The testing set is data
that the model did not encounter during its training phase, and it’s used
to evaluate how well the model can generalize its learning to new, unseen
instances.

Holding back 20% of the data as the test set is how we know if this process
actually worked and the computer actually learned.3 By testing on unseen
data, we ensure an unbiased measurement of the model’s true performance
and its capability to generalize learning (Provost & Fawcett, 2013). If we
only measure its performance on the training data, we risk over-optimism in
the model’s predictive power due to what is known as overfitting, where the
model learns the training data too well, to the point where it is not able to
generalize well to unseen data (Goodfellow et al., 2016). An overfit model
becomes so well-adjusted to the training data that it fails to generalize well
to new, unseen data. Overfit models essentially memorize the training data
and perform poorly when confronted with new situations that they haven’t
seen during training. It reacts to the “noise” and randomness in the training
data, mistaking these for useful information.

While both social science research and machine learning aim to decipher
patterns within complex data and make meaningful inferences, the
methodologies they typically employ have some key differences, particularly

Supervised Machine Learning with BERT for Content Analysis  55

when it comes to the use (or non-use) of hold-out data for evaluation
(Provost & Fawcett, 2013). In traditional social science research, hypothesis
testing is often the objective. Models are fit on all available data to estimate
the parameters of interest (such as coefficients in a regression model), and
the statistical significance of these parameters is used as an indication of
the presence or absence of certain effects. In this paradigm, the primary
concern is developing a comprehensive understanding of the relationships
within the data at hand and statistically justifying these relationships. The
focus is less on the model’s ability to generalize its findings to unseen data.
Consequently, there is usually no practice for setting aside a portion of the
data to test the model’s predictive accuracy.

Conversely, the core aim of most machine-learning tasks is predictive
accuracy. Given this objective, it is imperative to assess how a trained model
performs on unseen data. This concern is addressed by the practice of
holding out a subset of the training data as a “test set” (James et al., 2021).

Consider a class of students studying for an exam. Throughout the
semester, they go through several topics, completing different exercises
and practice problems related to those topics—let’s say this is the “training
data.” When studying for the exam, a wise strategy would be to understand
the underlying principles and methods taught in class, so that they can
apply them to any problem, be it one they have seen before or a new
one. The students who do this are like a well-trained machine-learning
model—they’ve learned from the training data, but they’re also able to
generalize their knowledge to unseen problems on the exam (Kuhn &
Johnson, 2019).

However, suppose some students opt for memorization. They memorize
every single practice problem seen throughout the semester, without trying
to understand the principles behind them. They are banking on the hope
that the exam questions will be the same as the training data. These students
are taking the risk of “overfitting” their study: they are perfect at reproduc-
ing the problems they’ve seen but may fail when faced with new, unseen
problems (Goodfellow et al., 2016).

The actual exam, in this case, can be likened to the “test set.” It evaluates
how well students—or, in the machine-learning context, models—can apply
what they’ve learned to new, unseen problems. By including questions that
students have not directly seen before, the teacher ensures that students’
understanding is not narrowly fitted to the practice problems given
throughout the semester, thereby avoiding overfitting and encouraging
genuine understanding.

Splitting data into training and testing data
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

56  The Computational Content Analyst

Next, we use sklearn’s TfidfVectorizer to convert our text data into
numerical form. We then use those text features to train a LinearSVC classifier.

Making a pipeline that will first turn our raw text into a
Bag of Words (BoW)
and then runs a Linear SVC on it
text_clf = Pipeline([(‘tfidf’, TfidfVectorizer()), (‘clf’,
LinearSVC())])

After creating our pipeline, we are then going to use the fit function to train
our classifier.

Training the classifier
text_clf.fit(X_train, y_train)

Now that our classifier has been trained, we can use the predict function to
classify our test data.

Testing the classifier
predicted = text_clf.predict(X_test)

Finally, we measure the performance of our algorithm by checking its
accuracy with metrics from sklearn. This is the model’s performance on
data it’s seen, so we should hope for this value to be high if it’s a good
“memorizer,” as we said in our student and test-taking example earlier.

Calculating and printing accuracy
accuracy = metrics.accuracy_score(y_test, predicted)
Converting it to a percentage and rounding it to 2 deci-
mal places
accuracy_percent = round(accuracy * 100, 2)
print(f’Accuracy: The “accuracy_percent” variable repre-
sents the accuracy of our machine learning model imple-
mented using scikit-learn. This variable is helpful in sum-
marizing the overall performance of our model in terms of
correctly predicting the target output for our input data.

We just used scikit-learn’s LinearSVC model to classify tweets as
either “anti-vax” (label 2) or “not anti-vax” (label 0). By training our model
with a predefined set of tweets that were manually labeled, we enabled it to
learn the context, tonality, and usage pattern of certain keywords within tweets.

Evaluating a Supervised Machine-Learning Algorithm

After training and evaluating how well the model did on predicting the
answers it already saw in the training set, the next step is to use our model
to predict the labels of our test data, data it has not encountered before.

Supervised Machine Learning with BERT for Content Analysis  57

These predictions are then compared against the actual labels. These per-
formance metrics will likely be worse than the metrics we got for the train-
ing data and is a better test of how well the model generalizes to unknown
examples or, to borrow a phrase in content analysis, the degree to which the
machine-learning algorithm is externally valid.

Accuracy

Let’s start with the basics, the ratio of correct predictions to the total num-
ber of predictions, multiplied by 100. This gives us the accuracy percentage.
In Python, “metrics.accuracy_score()” is a function that calculates the
accuracy of a machine-learning model. The “accuracy_score()” function
takes two arrays as parameters:

1.	“y_true”—This parameter contains the correct labels.
2.	“y_pred”—This parameter contains the predicted labels by our model.

For example, in the code snippet below:

accuracy = metrics.accuracy_score(y_test, predicted)
accuracy_percent = round(accuracy * 100, 2)

The ‘y_test’ would be our ‘y_true’ and ‘predicted’ would be
‘y_pred’.

The “accuracy_score()” function returns a float value between 0.0 and
1.0 indicating a proportion of correctly predicted labels to the total labels. To
convert this into a percentage, we multiply the “accuracy” value by 100.
Finally, to make our output more readable, we round off our “accuracy_
percent” to two decimal places using Python’s built-in function “round().”

Avoid the accuracy trap. In industry, especially in ad tech, I hear folks throw
around phrases like “94% accurate” and, while that may sound amazing, that’s
not enough evidence. Remember, accuracy is only appropriate to report
when all classes are balanced. If we knew that approximately half of the tweets
were “anti-vax,” then accuracy makes a good bit of sense. Otherwise, other
metrics, such as precision, recall, and F1 score, provide better insights into
a model’s performance. If we were looking for a rare behavior, like political
talk in a corpus of Facebook posts, approximately 99% of the content would
be not political. This means that if my machine-learning algorithm predicted
that every post was not political, it would be 99% accurate, but completely
worthless, as it would surface no political talk.

Recall

Recall, also known as sensitivity or true positive rate, is a performance metric
used in machine learning to evaluate the capability of a classification model

58  The Computational Content Analyst

to correctly identify all relevant instances (Powers, 2011). In other words,
out of the total true positives, how many instances were correctly labeled
by the model?

Mathematically, recall can be defined as the ratio of true positives (TPs) to
the sum of true positives and false negatives (FNs; Sokolova & Lapalme, 2009).

Recall = TP / (TP + FN)

In this formula, a true positive (TP) means that the model correctly pre-
dicted a positive case as positive. On the other hand, a false negative (FN)
signifies that the model incorrectly predicted a positive case as negative
(Kuhn & Johnson, 2013).

For instance, in our text classification example of identifying “anti-vax”
sentiment in tweets, a true positive would mean that the model correctly
identifies a tweet as “anti-vax.” A false negative would mean that a tweet
that is actually “anti-vax” is incorrectly classified by the model as “not
anti-vax.” High recall, therefore, reveals that the model is adept at finding
all the “anti-vax” tweets (Chawla et al., 2002).

The recall metric is particularly useful in situations where the cost of
false negatives is high. Consider the Apple Watch and its electrocardio-
gram. It never ceases to amaze me what these watches can do. Apple uses
a machine-learning model to identify heart anomalies in a user’s daily life.
Unlike typical machine-learning problem scenarios, in this particular use
case the potential consequences of false negatives are grave—a person with
a heart condition is not alerted if the condition is falsely predicted as a
non-anomalous heart rate pattern, potentially leading to devastating health
consequences or, in severe cases, even death (Powers, 2011). On the other
hand, a false positive (predicting a heart anomaly where there is none) could
lead to unnecessary anxiety and medical intervention, but it would ulti-
mately be less disastrous.

In this instance, recall becomes critically important. Recall, in the context
of this scenario, determines the proportion of actual heart anomalies that
the model correctly identifies out of all the actual heart anomalies (Kuhn &
Johnson, 2013). A high recall means that most heart anomalies were iden-
tified, and users were adequately alerted, thereby potentially saving lives
through early detection and treatment (Chawla et al., 2002).

Imagine there are 1,000 Apple Watch users who actually have heart
anomalies, and the model only predicted 800 correctly as having heart
anomalies, while it reported the remaining 200 users as healthy. The recall,
in this case, would be 800 / (800 + 200) = 0.8 or 80%. The remaining 20%
that the model failed to recall represents the people who had heart anoma-
lies but were not alerted by their Apple Watch.

Supervised Machine Learning with BERT for Content Analysis  59

Precision

Precision is a performance metric used in machine learning that evaluates
the ability of a classification model to correctly label an instance as positive
from all the instances it has labeled as positive (Fawcett, 2006). In other
words, it is the ratio of correctly predicted positive instances to the total
predicted positive instances.

Mathematically, precision can be defined as the ratio of true positives
(TPs) to the sum of true positives and false positives (FPs; Powers, 2011).

Precision = TP / (TP + FP)

In this formula, a true positive (TP) refers to a positive class instance that
the model correctly predicts as positive. False positive (FP), on the other
hand, refers to a negative class instance that the model wrongly predicts as
positive (Sokolova & Lapalme, 2009).

For example, in our text classification task for identifying “anti-vax” sen-
timent in tweets, a true positive would mean the model correctly identifies
an “anti-vax” tweet. A false positive, however, would mean a tweet that’s
actually not “anti-vax” is incorrectly classified by the model as “anti-vax.”
A high precision, therefore, implies that most of the tweets the model labels
as “anti-vax” are indeed “anti-vax.”

Precision becomes particularly important in scenarios where the cost of
false positives is high. For instance, in a spam-detection system, a false positive
would mean a legitimate (non-spam) email being incorrectly classified as spam,
potentially causing the user to miss crucial information. High precision, in this
case, ensures that most of the emails flagged as spam are indeed spam, minimizing
the chances of useful emails ending up in the spam folder (Fawcett, 2006).

Nevertheless, precision alone does not paint the complete picture of a
model’s performance. A model might achieve high precision by only pre-
dicting a positive class when it is completely sure, leading to many positive
instances going undetected (e.g., low recall). As such, precision is often
used in conjunction with other metrics like recall and accuracy to get a more
holistic view of the model’s performance (Sokolova & Lapalme, 2009).

F1

To address this trade-off, the F1 score provides a single value that represents
the harmonic mean of precision and recall. It effectively captures both false
positives (those incorrectly labeled as positive) and false negatives (actual
positives that the model missed), giving a consolidated view of the model’s
performance (Powers, 2011).

60  The Computational Content Analyst

Mathematically, the F1 score is defined as

2 * (precision * recall) / (precision + recall)

(Sokolova & Lapalme, 2009).

The F-score is referred to as a blended metric because it combines precision
and recall into a single number. It gives equal weight to both measures and
maximizes when both precision and recall are high. It is useful when you need
a balance between precision and recall and there is an uneven class distribution
in the dataset. In situations where both false positives and false negatives are
costly, an F1 score serves as a more suitable evaluation metric (Powers, 2011).

The F1 score ranges from 0 to 1 where a score of 1 indicates perfect
precision and recall, and 0 indicates that either the precision or the recall (or
both) is zero. Hence, the higher the F1 score, the better the performance
of the model. To calculate the precision, recall, and F1 score metrics in Py-
thon, we can use the respective functions provided by the sklearn.metrics
module (Pedregosa et al., 2011).

Here’s a simple example:

from sklearn import metrics

Let’s assume that y_test are the true labels and predict
ed have the labels predicted by the model
y_test = [0, 1, 1, 0, 1, 1]
predicted = [0, 1, 0, 0, 1, 1]

Calculate Precision
precision = metrics.precision_score(y_test, predicted)

While precision offers critical insights into a model’s performance, it should
ideally be used in conjunction with other metrics like recall or F1 score.

Calculate Recall
recall = metrics.recall_score(y_test, predicted)

Calculate F1 Score
f1 = metrics.f1_score(y_test, predicted)

In our study, the use of the F1 score in evaluating the tweet classification
model would give us a balanced perspective on the model’s performance.
A high F1 score would suggest that the model is reliable in predicting an
“anti-vax” tweet (high precision) and is generous enough to catch most
“anti-vax” sentiments in the dataset (high recall). Conversely, a low F1 score
may suggest potential issues with the model’s precision and/or recall that
would require further investigation.

Supervised Machine Learning with BERT for Content Analysis  61

Interpreting Performance Metrics

Assessing the adequacy of precision and recall, like many tasks related to
model evaluation in machine learning, is largely problem-dependent and
strongly tied to the specific context and objectives of the analysis. However,
several common heuristics can serve as general guideposts:

1.	Understand the problem context: One of the first key steps is to fully
understand the problem at hand and the relative costs of false positives
(which impact precision) and false negatives (which influence recall). As
discussed in a previous chapter, political talk is a relatively rare thing to
observe on social media. Given that, it would make sense to prioritize
a system that uncovers as much of it as possible. If the actual number
of political posts/documents that your algorithm ends up surfacing is
quite low, you can manually review them and kick out the ones you
don’t like. This is better than missing posts/documents, and quite easy
to manage.

2.	Label, train, and repeat: Label a few hundred posts/documents by
hand and then try to train an algorithm. Odds are, it will be bad, but it’s
important to get a baseline of just how bad. There is no magic number
to say when an F1 score is good enough, but one thing you can do is la-
bel/code/annotate your data in batches and try building the model after
each additional batch. You should see an improvement. If not, you likely
have a poorly defined codebook/codes or poorly labeled data. At some
point, even after coding a new batch, your model will improve very little.
That’s a good time to call it a day on the manual labeling process.

3.	Industry/academic standards: Published studies in similar domains
may reveal precision and recall benchmarks, or “industry standards,” that
are considered “good enough.” These standards could serve as helpful
targets. In general, I try to only use machine-learning models with F1s
above .85, but this is absolutely a heuristic. More complex concepts will
invariably mean lower F1 scores.

Model evaluation metrics should always be considered in the context of
the problem and should not be seen as absolute measures of a model’s worth.
The choice between prioritizing precision or recall is a decision that requires
understanding the problem domain, the data, and the specific implications
of false positives and false negatives. Underlying any computational social
science research, especially when using machine-learning models for
classification tasks like the “anti-vax” sentiment analysis, is an important
consideration—the tolerance for error. This includes both the ability to
correctly identify true positives (precision) and to avoid false negatives
(recall). This trade-off is defined by not just the model’s capabilities but
also the implications of misclassifications.

62  The Computational Content Analyst

Imagine your model is being used to classify tweets as “anti-vax” or “not
anti-vax.” Each misclassification would skew your understanding of public
sentiment towards vaccinations. A high rate of false positives (classifying not
“anti-vax” tweets as “anti-vax”) would overestimate the anti-vaccine senti-
ment and might misinform policy decisions or public health communica-
tion strategies. Therefore, understanding and deciding an acceptable error
threshold upfront becomes vital.

This threshold is sensitive to the behavior in question’s rarity. If
anti-vaccine sentiment is indeed very rare, a model with moderate or even
high recall but lower precision might be a reasonable choice. The model
would cast a wide net to capture most of the rare “anti-vax” instances, even
at the risk of including some false positives.

Reporting Best Practices

To ensure effective communication and reproducibility in scientific report-
ing of machine-learning classification models, it is important to follow cer-
tain best practices when writing up your method section.

1.	Data and preprocessing: Always describe the source of your dataset and
justify its relevance to the problem you are trying to address. Include
details about how the data was collected, the size of the dataset, and
its distribution. Preprocessing steps such as handling missing data, fea-
ture engineering, and text preprocessing (if applicable) should be clearly
documented (García et al., 2015; Kuhn & Johnson, 2019).

2.	Model description: Detail the type of model that you used, including
the reasons for your choice. Explain the model’s architecture and work-
ing principles as simply as you can without getting into mathematical
formulas or complex discussions.

3.	Training procedure: Explain how the model was trained. Details such
as the division of data into training, validation, and test sets, the use of
specific optimization algorithms, batch size, learning rates, the number
of epochs, regularization techniques, and early stopping criteria should
be included. I’ll discuss these things more in the deep-learning chapter
(Bengio et al., 2017).

4.	Performance metrics: Clearly define the metrics used to evaluate your
model. Common metrics for classification problems are accuracy, preci-
sion, recall, F1 score, and Area Under the Receiver Operating Charac-
teristic Curve (AUROC). Furthermore, the reasons for choosing these
metrics should be well articulated. If custom metrics are used, provide a
detailed explanation of their computation (Chicco & Jurman, 2020).

5.	Model evaluation: Discuss your model-evaluation methodology. It could
include techniques like cross-validation, bootstrapping, or holdout valida-
tion. Also, the choice of a particular methodology should be justified.

Supervised Machine Learning with BERT for Content Analysis  63

6.	Discussion: Reflect on your model’s performance. Discuss the possible
reasons behind the observed results and compare them with the existing
state-of-the-art models. Offer insights on the strengths and shortcom-
ings of your model, any observed trends or peculiarities, scopes for future
work, and the implications of your findings.

7.	Ethics and bias: Address potential ethical considerations and biases in
your model, specifically when dealing with sensitive data. Discuss the
steps taken to safeguard privacy and fairness, and critically evaluate the
possible societal impacts of your work.

Remember, the purpose of following these best practices is not merely to
comply with editorial or peer-review requirements but to enhance the trans-
parency, credibility, and usability of your work. By clearly reporting your
machine-learning models, you are responsibly and effectively contributing
to the progression of science.

Model Workshopping

Each model has its strengths and weaknesses, as well as assumptions that
may or may not align well with the structure of your dataset. As such, the
concept of “one size fits all” does not apply. Identifying the most appropri-
ate model for your problem is not a straightforward task, and it should be
treated as an integral part of the machine-learning pipeline.

Model workshopping involves the comparison and examination of differ-
ent models on your dataset. It’s a process that includes planning, executing,
analyzing, and iterating various model families, hyperparameters, feature se-
lections, and even preprocessing methods. This iterative approach makes it
possible to find the model that provides the best fit for your data according
to the performance metrics you consider most relevant.

The goal is not merely to improve prediction accuracy but to enhance
the generalizability of your model and better understand the underlying pat-
terns within the data. Therefore, investing time in model experimentation is
not only about improving the performance metrics but also gaining valuable
insights into your data and the learned model itself. This is particularly signifi-
cant in computational social science research, where the aim is not merely to
predict outcomes but to deliver insights into social behaviors and phenomena.

I strongly encourage you to workshop several machine-learning mod-
els to adopt the one that fits your data the best. In the past, I have used
machine-learning workbenches with easy-to-use interfaces like DataRo-
bot4 and Alteryx.5 These tools make it easy to try different supervised
machine-learning algorithms with little effort. I still recommend using these
tools if you’re new to Python because it gets you quickly to statistical bench-
marks. The models that you build and use should perform approximately as
well as these workbenches.

64  The Computational Content Analyst

However, if I may assume that you are a brave Python coder, in the next
portion of the chapter, let’s use sci-kit learn to workshop models that are
easily applied in Python. We can easily workshop and discover what models
work best for us, that is the one that labels the data most like the train-
ing data.

Luckily, when it comes to Python code and machine learning, there are a
ton of readily available notebooks you can use to get started.6 If you’re a bit
more advanced in Python, take some time to review the lecture notebook
entitled ‘sci-kit_text_classification_workshopping’ for this chapter
and try to adapt it to one of your problems.

Closing Thoughts on Supervised Machine Learning

As you will soon find in the chapters that pertain to deep learning, another
major factor when selecting a supervised machine-learning model is the
training and prediction times. Luckily, most CPUs are quite good enough
to run these basic models quickly, and a notebook environment like Google
Colab’s basic CPU instance should be fine.

In scenarios where quick results are necessary look no further than us-
ing sci-kit learn models like the ones we’ve workshopped here. Later in this
book, we’ll try more powerful generative artificial intelligence. While those
models generally classify text better, they are 10–100x slower and require
specialized GPU computing.

The process of model selection should also account for the complexity of
the model. Simpler models are often preferred because they’re easier to un-
derstand, interpret, and communicate. They’re also less prone to overfitting.
This is known as the principle of Occam’s razor (Sober, 2015): among com-
peting models that explain the data equally well, choose the simplest. You
may be tempted to use an “ensemble” or “blender” model that combines a
myriad of algorithms and slightly outperforms others, but understand that
the more complex the model, the more things that can go wrong.

As we transition to the next stage of our computational journey, we will
focus on more powerful models that have successfully transcended many
of the challenges we’ve grappled with thus far. These models come with
an unprecedented advantage—an existing knowledge of English-language
intricacies.

These models have been pre-trained on massive text corpora, enabling
them to implicitly understand the nuanced patterns, structures, and rules of
English. In essence, they encapsulate a “computer brain” that has already
been subjected to rigorous language training, equipping them with a deep
and sophisticated understanding of English.

Harnessing these pre-trained models can significantly streamline our
machine-learning process. Instead of starting from scratch, we are leverag-
ing a model that’s already familiar with the language’s complexities. This

Supervised Machine Learning with BERT for Content Analysis  65

paradigm makes the learning process more efficient, often resulting in im-
proved model performance.

In the upcoming chapter, we will delve into the world of these pre-trained
models. We will unpack how they are created, why they work so well, and
how we can fine-tune them for our specific tasks.

Notes

1	 Similar models for text classification can be implemented using the Scikit-learn
library. Scikit-learn provides LinearSVC and LogisticRegression which have simi-
lar functionality to LibLinear’s linear SVM and logistic regression respectively.
Scikit-learn has a strong integration with the Python scientific stack and places a
heavy emphasis on ease of use, making it a convenient choice for data scientists
and researchers.

2	 Please note that you need to have the “forml.xlsx” file in your current work-
ing directory, or else you’ll need to specify the appropriate path to the file.

3	 A typical proportion in practice, though a rule of thumb is that as you increase
your n, you may decrease your training set percentage, like we would in sampling
a big dataset.

4	 For a free trial: https://www.datarobot.com/trial/
5	 For a free trial: https://www.alteryx.com/alteryx-analytics-cloud-platform-trial
6	 It has been adapted from the work of authors Prettenhofer et al. (n.d).

References

Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.
Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern information retrieval: The con-

cepts and technology behind search (2nd ed.). Addison-Wesley.
Bengio, Y., Goodfellow, I. J., & Courville, A. (2017). Deep learning. MIT Press.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:

Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16, 321–357. https://doi.org/10.1613/jair.953

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coef-
ficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC
Genomics, 21(1), 6. https://doi.org/10.1186/s12864-019-6413-7

Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008). LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning
Research, 9(Aug.), 1871–1874.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,
27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we
need hundreds of classifiers to solve real world classification problems? The Jour-
nal of Machine Learning Research, 15(1), 3133–3181.

García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining.
Springer. https://doi.org/10.1007/978-3-319-10247-4

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
http://www.deeplearningbook.org

Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques (3rd
ed.). Morgan Kaufmann.

https://www.datarobot.com/trial/
https://www.alteryx.com/alteryx-analytics-cloud-platform-trial
https://doi.org/10.1613/jair.953
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007/978-3-319-10247-4
http://www.deeplearningbook.org

66  The Computational Content Analyst

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning:
Data mining, inference, and prediction (2nd ed.). Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to
statistical learning: With applications in R (2nd ed.). Springer. https://doi.
org/10.1007/978-1-0716-1418-1

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. Proceedings of the 14th International Joint Conference on
Artificial intelligence, 2, 1137–1145.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification
techniques. Informatica, 31(3), 249–268.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer. https://
doi.org/10.1007/978-1-4614-6849-3

Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical ap-
proach for predictive models. CRC Press.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information
retrieval. Cambridge University Press.

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica,
22(3), 276–282. https://doi.org/10.11613/BM.2012.031

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12(2011),
2825–2830.

Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness & correlation. Journal of Machine Learning Technolo-
gies, 2(1), 37–63. https://doi.org/10.9735/2229-3981

Prettenhofer, P., Grisel, O., Blondel, M., Amor, A., & Buitinck, L. (n.d.). Classifica-
tion of text documents using sparse features. Scikit-learn. https://scikit-learn.org/
stable/auto_examples/text/plot_document_classification_20newsgroups.html

Provost, F., & Fawcett, T. (2013). Data science for business: What you need to know
about data mining and data-analytic thinking. O’Reilly Media.

Sober, E. (2015). Ockham’s razors: A user’s manual. Cambridge University Press.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures

for classification tasks. Information Processing & Management, 45(4), 427–437.
https://doi.org/10.1016/j.ipm.2009.03.002

Tomeny, T., Vargo, C., & El-Toukhy, S. (2017). Geographic and demographic cor-
relates of autism-related anti-vaccine beliefs on Twitter, 2009–15. Social Science &
Medicine, 191, 168–175. https://doi.org/10.1016/j.socscimed.2017.08.041

https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.9735/2229-3981
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.socscimed.2017.08.041

DOI: 10.4324/9781003514237-5

Chapter 5

Text Classification of News
Media Content Categories
Using Deep Learning

In the previous chapter, we classified tweets related to vaccines based on
whether they propagated “anti-vax” or “not anti-vax” sentiment. This
exercise, while challenging, unearthed the potential of supervised machine
learning and its capacity to decipher intricate patterns in unstructured data
like text.

As we continue our computational journey, let’s turn our attention to a
new classification task, that of contextual advertising. Imagine working at
a media buying company, Chrishare, catering to a client, Theragun. Thera-
gun has an acute understanding of its market—it knows that consumers
who value health and wellness are likely to buy their product. Therefore,
their marketing strategy is aligned to target this specific consumer segment.
The aim? To identify as many news articles that mention health and well-
ness as possible and display their advertising content alongside them. This is
contextual advertising: tailoring advertisements based on who the consumer
but the context in which the advertisement is displayed.

You, a computational scientist at Chrishare, have been tasked with the
objective of building a deep- learning algorithm that can scan news stories
and accurately predict the probability that the story is about health and
wellness. Drawing upon an open-sourced dataset of approximately 200,000
news headlines between 2012 and 2022 from HuffPost, your challenge is
not just about harnessing a machine-learning model for prediction but also
about contributing towards an efficacious marketing campaign for Thera-
gun (Misra, 2022).1

This classification task, however, comes with its unique challenges and
requirements. Unlike the previous exercise where the category of interest
was quantitatively balanced with the other category, the current task deals
with an imbalanced dataset. Health and wellness articles constitute only a
fraction of the wide array of categories found in the news and therefore are
a minority class in this dataset. This imbalance may introduce bias in our
machine-learning model, compelling it to predict largely in favor of the

https://doi.org/10.4324/9781003514237-5

68  The Computational Content Analyst

dominant class. Therefore, addressing this issue becomes central to building
an accurate and trustworthy model.

Moreover, the scope of this task extends beyond precision. Hypothetically,
it might be tempting to lean towards a model that labels more articles as
health and wellness, thus providing a larger pool of articles for Theragun to
advertise on. Nonetheless, irrelevant or inaccurate labeling can harm Thera-
gun’s credibility and may not yield the desired marketing outcome. Thus, a
model that maintains a balance between finding enough relevant articles and
ensuring that the articles identified are indeed appropriate is what we want.

In this chapter I will utilize the power of deep learning and modern li-
braries like TensorFlow and Keras with a wrapper library, ktrain, to develop
our text-classification model (Maiya, 2023). The ktrain library simplifies the
process of building and tuning deep-learning models. By using it, I aim
to find a delicate balance between various evaluation metrics, specifically
precision and recall, to ensure that our model not only identifies a sufficient
number of health and wellness articles but also identifies predominantly
includes genuinely relevant articles.

In the previous chapter, I employed supervised machine-learning tech-
niques, such as SVC and various linear classifiers for document classification
(James et al., 2013). While the algorithm successfully classified tweets based
on their sentiment, we found that these models had limitations, especially
when dealing with linguistic nuances found in natural language (Brownlee,
2017). The two previous methods we’ve discussed—keyword spotting and
traditional bag-of-words models—often fall short of capturing the rich con-
text embedded in language, leading to potential misclassifications.

From Bags of Words to Deep Learning

Given what we’ve learned, a tempting approach for contextual advertising
would be to create an extensive list of health- and wellness-related keywords
and define features based on their presence or frequency in the documents.
Yet, such an approach might lead to suboptimal results given the complex-
ity of language and the diverse ways health and wellness topics can be dis-
cussed. It’s unlikely that we could easily arrive at a list that would represent
all the different ways health and wellness are talked about in today’s news.

Let’s tackle these complex language intricacies and capture appropriate
contextual meanings, using a better approach—using pre-trained models, spe-
cifically word embeddings. Word embeddings are a type of word representa-
tion that allows words with similar meanings to have similar representation,
thereby capturing semantics, morphological, syntactical, and co-occurrence
information of words in a language (Mikolov, Chen, et al., 2013).

Word embeddings are learned in an unsupervised manner from large
amounts of text data, which means they can represent a wealth of latent

Text Classification of News Media Content Categories  69

linguistic information present in the data (Lecun et al., 2015). Therefore,
they are highly versatile and can be applied to a variety of tasks in natural
language processing, ranging from text classification and clustering to en-
tity recognition, sentiment analysis, and machine translation, performing
significantly better than traditional methods.

One of the most prevalent and efficient techniques to generate word
embeddings is using pre-trained models such as Word2Vec, FastText, and
BERT. These models have already been trained on massive text corpora
and can encode comprehensive semantic and contextual information about
words. Their advantage in the current context lies in the fact that these
pre-trained models “understand” English and its intricacies, transferring
this understanding to text classification tasks (Mikolov, Chen et al., 2013).

In simple terms, word embeddings map words in the vocabulary to
vectors of real numbers (Pennington et al., 2014). Unlike the traditional
bag-of-words (BoW) techniques, the strength of word embeddings lies in
their capacity to capture and retain numerous dimensions of information
about a word, including its meaning, context, or relationship with other
words.

Word embeddings are based on the distributional hypothesis, which
postulates that words occurring within similar contexts possess similar
meanings. By leveraging this idea, word embeddings can capture multiple
dimensions of a word, including its semantic meaning, syntactic role, and
contextual usage (Harris, 1954). Instead of treating words as independent
units, word embeddings capture contextual and semantic similarities among
words (Mikolov, Sutskever, et al., 2013). In our current application, using
word embeddings will allow the model to understand, for instance, that
“exercise,” “workout,” and “yoga” are related concepts and belong to the
context of health and wellness, even without explicitly programming such
associations (Devlin et al., 2018). This also enables the model to consider
nearby contexts. For instance, given the word “warrior,” it can understand
the meaning based on surrounding words, and recognize that it refers to a
yoga pose rather than the more common definition.

They also exhibit interesting algebraic properties. They can be manipu-
lated mathematically to reveal meaningful semantic relations between words.
For instance, if we take the embedding for “king,” subtract the embedding
for “man,” and add the embedding for “woman,” we get a result very close
to the embedding for “queen” (“king” – “man” + “woman” = “queen”),
signifying the gender relation between the words (Mikolov, Sutskever,
et al., 2013).

All things considered, word embeddings offer a continuously valued,
dense, and low-dimensional representation of words, which can lead to
more nuanced and context-aware natural language processing models (Pen-
nington et al., 2014).

70  The Computational Content Analyst

Bag-of-Words Approaches vs. Deep-Learning
Approaches

The bag-of-words (BoW) model involves representing the text data as a
“bag” of its words, disregarding grammar, part of speech, and word order
but keeping the multiplicity of words. The initial steps include text preproc-
essing methods like tokenization, stop word removal, and lemmatization.
After that, the words in the document are represented as feature vectors (see
Chapter 4 for a review).

To label a document as “politics” or “not politics,” we first need to label a set
of training documents, and then feed them to a supervised machine-learning
algorithm like the many contained in scikit-learn. From that, the algorithm
would surmise a list of politics-related keywords such as “government,” “elec-
tion,” “#election2020,” “democracy,” “republic,” and “president,” based on
their co-occurrences with positive examples from our training dataset. To
classify new documents, we simply add up the likelihood of each word in the
document correlating with our class of interest, and if the article mentions
these keywords above a certain threshold, the document is labeled as “poli-
tics”; otherwise, it is categorized as “not politics” (Harris, 1954).

While this approach works decently for our task, it has limitations. Firstly,
the BoW model does not consider the semantics and context of the words.
Moreover, rare words or unique expressions used in political discourse can
be overlooked (Harris, 1954).

Word embeddings offer a solution to these challenges. Here, words are
represented as vectors in high-dimensional space where the semantic rela-
tionships between words are preserved. Words with similar meanings are lo-
cated close to each other in this vector space (Mikolov, Chen, et al., 2013).

Unlike the BoW model, the word embedding approach is dynamic and
flexible. It can adapt to the evolving linguistic styles in news articles, un-
derstand synonyms, and detect politics-related content even when it is not
explicitly mentioned using standard political keywords.

Training a Deep-Learning Algorithm

Training a deep-learning model involves the same basic idea of supervision
that was discussed in the last chapter. The model, like a student, starts with
little knowledge about the subject at hand. The training process involves
“teaching” the model by providing it with a large amount of labeled data
(Goodfellow et al., 2016).

This process is repeated iteratively on all the examples in the training
set. Over time, the model “learns” from the data and gradually improves its
predictive accuracy by minimizing the discrepancy between its predictions
and the actual labels.

Text Classification of News Media Content Categories  71

Fine-Tuning Models

Pre-trained models that are smaller and older, like BERT, are typically
not used as-is but are fine-tuned or adapted to a specific task. Fine-tuning
involves continuing the training process on the specific task data so that the
model can adapt its previously learned knowledge to the new task (Chollet,
2015). Fine-tuning is particularly advantageous when the new task has
limited labeled data, and as such this is generally how I approach using
them for content analysis.

In a nutshell, pre-trained models embody a form of transfer learning,
wherein the knowledge gained from one machine-learning task is used to
solve another related task. These models have revolutionized many fields in
artificial intelligence, particularly in natural-language processing and com-
puter vision, by providing robust, ready-to-use models capable of achieving
high performance with lesser amounts of task-specific data.

TensorFlow and Keras

In this chapter, we’ll leverage packages built on top of the deep-learning
framework TensorFlow. One major forte of TensorFlow is its ability to
leverage hardware acceleration technologies like GPUs for computation,
making it highly efficient and scalable for diverse computational tasks.
Furthermore, thanks to its Python-friendly API and vast community sup-
port, TensorFlow is a go-to for training these types of networks (Chollet,
2015).

Within the TensorFlow ecosystem, Keras emerged as a high-level Python
library designed to simplify the process of building, training, and deploy-
ing neural networks. Developed by Francois Chollet in 2015, Keras acts as
an interface for the TensorFlow library and offers a more user-friendly and
intuitive approach to deep-learning models (Chollet, 2015).

Bidirectional Encoder Representations from
Transformers (BERT)

This chapter will focus on using the pre-trained model Bidirectional En-
coder Representations from Transformers (BERT). It’s been heralded as a
revolutionary step in the field of natural-language processing (Devlin et al.,
2018).

Following its introduction, BERT has spawned a series of spinoff models
designed for specific languages, applications, or constraints. These include
ALBERT, an optimized version of BERT that is lighter, faster, and performs
better, and RoBERTa, a robustly optimized BERT model that uses a dif-
ferent training approach and has more training data (Devlin et al., 2018).

72  The Computational Content Analyst

Transformers

BERT is built upon the Transformer model. Transformers were introduced
in the paper “Attention Is All You Need” by Vaswani et al. (2017), and
quickly revolutionized the field of NLP by proposing an entirely new
approach for processing language.

Suppose we have a news article about a political campaign. The article
starts by discussing the candidate’s early life and experiences, then moves
on to their political career, and finally ends with their current campaign
promises and strategies. In this article, there might be a sentence in the
last paragraph like, “The candidate’s commitment to affordable healthcare
is deeply rooted in their early experiences.” Here, the phrase “early experi-
ences” refers to information provided way back in the first few paragraphs
of the article. For older machine-learning models, it would be challenging
to make this connection if the article is long and the reference is several
sentences or paragraphs away. This is because these models process language
word by word, and their ability to retain information diminishes as the dis-
tance increases.

BERT and all Transformer models can handle this type of long-term
dependency much better (Vaswani et al., 2017). They process the entire text
at once and pay attention to all parts of the input simultaneously, allowing
them to maintain the context and make connections between distant parts
of the text (Devlin et al., 2018). This makes them particularly effective for
tasks like text classification, sentiment analysis, and, from my experience,
computational content analyses (Sun et al., 2019).

The fundamental building block of a Transformer is the “attention
mechanism,” which decides which parts of the text the model should focus
on at any given time (Vaswani et al., 2017). At each step of training, the
model employs multiple self-attention heads that scrutinize the entire text
and determine the importance of every other word in understanding the
current word’s context. This multiplicity allows Transformers to learn con-
textual relations between words and deal with subtleties of language such as
pronoun-antecedent relationships, irrespective of the distance between the
words (Clark et al., 2019).

Implementing Transformers in our text classification workflow trans-
lates to simpler preprocessing pipelines. The whole concept of feature
selection used to be a daunting choice for me as a researcher. What fea-
tures should I include in my bag of words model? Unigrams (e.g., hous-
ing), bigrams (e.g., housing policy), or trigrams (e.g., proposed housing
policy)? Should we attach the part of speech that goes with each word to
help the model disambiguate between different uses of words? Tensor-
Flow eliminates this type of feature selection workshopping by providing
an authentic understanding of language owing to lesser intervention in
its natural form.

Text Classification of News Media Content Categories  73

Building a Contextual Advertising Classifier

Now that we’ve defined the various terminologies we’re going to use, let’s
use deep learning to predict the probability of a news article being about
health and wellness for the media-buying company Chrishare. The data we
will be using for this project comes from the HuffPost, sourced from Kaggle,
and contains around 210,000 news headlines from 2012 to 2022.2

The data consists of news headlines from various categories such as
“POLITICS,” “WELLNESS,” “ENTERTAINMENT,” “TRAVEL,”
“STYLE & BEAUTY,” “PARENTING,” “HEALTHY LIVING,” and
more. To address the goal of our problem, we primarily need to identify
those news articles that belong to the “HEALTHY LIVING” category.
This is our “target class.”

I’m choosing to show you ktrain here (Maiya, 2023). It’s essentially Keras
for dummies but it is not without its downsides. Over time, as Keras up-
dates, if ktrain is not maintained, it could break. Invariably, we lose a lot of
control by using a package that is so abstract. However, I’ve workshopped
ktrain against BoW approaches for years and it always fits the best text clas-
sification model. Moreover, I haven’t managed to break it yet, which is a
very good bar to pass. Remember, ktrain is a lightweight Python wrapper
for TensorFlow’s Keras API, to make the use of BERT less daunting. Ktrain
streamlines the process from loading and preprocessing data to building and
training models, and finally making predictions.

Let’s start with importing the necessary libraries and setting the direc-
tories to store and access different datasets and models. Next, we load the
dataset into a pandas DataFrame; a DataFrame is a two-dimensional labeled
data structure that is most used in data-manipulation tasks in Python.

import os
import ktrain
import pandas as pd
ROOT_DIR = ”/1_text_classification”
DATA_DIR = ”%s” % ROOT_DIR
EVAL_DIR = ”%s/evaluation” % ROOT_DIR
MODEL_DIR = ”%s/models” % ROOT_DIR #find the data here:
https://www.kaggle.com/datasets/rmisra/news-category-dataset
reviews = pd.read_json(‘%s/news_category_trainingdata.json’
% DATA_DIR)

Once the data is loaded, we need to combine the “headline” and “short_
description” columns into a single “combined_text” column because the
machine-learning model will be learning from this text.

reviews[‘combined_text’] = reviews[‘headline’] + ’ ’ +
reviews[‘short_description’]

74  The Computational Content Analyst

Next, we create a new column “healthy” and classify an article as
“non-healthy” or “healthy”, with “1” representing a healthy article and “0”
capturing non-healthy ones.

reviews[‘healthy’] = np.where((reviews[‘category’] ==
’HEALTHY LIVING’), 1, 0)

The distribution of articles across these categories is not evenly balanced.
The “HEALTHY LIVING” category, which is of sole interest to us, only
forms a small part of the entire dataset. This means we have an imbal-
anced classification problem on our hands, where one class (in our case,
“HEALTHY LIVING”) is underrepresented. This can potentially bias our
model towards the majority classes, resulting in suboptimal identification of
our target class (He & Garcia, 2009).

To address this, we can adopt certain techniques such as undersampling
the majority classes, oversampling the minority class, or synthetic minority
over-sampling (SMOTE) to balance our classes before feeding them to the
model. Here, I’m simply ensuring that the dataset is balanced by ensur-
ing that 50% of the training instances are positive examples and 50% are
negatives.

healthy = reviews[reviews[‘healthy’] == 1]
sample_amount = len(healthy)
#we’re balancing the classes here by ensuring that 0/1 are
the same sample size
not_healthy = reviews[reviews[‘healthy’] ==
0].sample(n=sample_amount)
review_sample = pd.concat([healthy,not_healthy])

Here, we utilize the “text.Transformer” utility from ktrain to use the
BERT model. To ensure our model doesn’t get overwhelmed with ex-
tremely long texts, we set a maximum length (maxlen) of 512 tokens, a
technical limitation of BERT. Tokens are essentially pieces of the whole
text. Generally, they are about four characters, not quite a whole word. So,
BERT can handle ~385 words. It’s not great when labeling longer texts, but
it should work for news articles, which are generally around this size.

t = text.Transformer(‘distilbert-base-uncased’, maxlen=512,
class_names=target_names)

Converting text data into a format that the model can understand is termed
preprocessing. Here, the data is split into “train” and “val” sets for model
training and validation purposes, respectively. The majority of the data is
used for training and 10% is used for validation.

Text Classification of News Media Content Categories  75

train, val, preprocess = text.texts_from_df(review_sample,
’combined_text’, label_columns=[‘healthy’], val_df=None,
max_features=20000, maxlen=512, val_pct=0.1,
preprocess_mode=‘distilbert’, verbose=1)

Deep-Learning Evaluation Metrics

In deep learning, we hear the term “loss” mentioned as a measure of how
well an algorithm either 1) fits a training set or 2) fits a test set. While loss
can be operationalized to be an array of different statistics, in general, it
can be thought of as we would think of error in fitting a regression model.
A high loss would mean that the model’s predictions of whether a news ar-
ticle is about health and wellness are far from the actual categories of the ar-
ticles. This would imply that the model is not performing well in identifying
relevant articles for Theragun’s advertising campaign. On the other hand, a
low loss indicates that the model’s predictions align closely with the actual
categories, suggesting that the model is accurately classifying the articles.

While the loss gives us an idea of how well the model is learning from
the training data, the validation loss tells us how well the model generalizes
to new, unseen data, that 10% or so we held out earlier (Goodfellow et al.,
2016). The validation loss is calculated using a separate set of data (the vali-
dation set) that the model has not been trained on.

A model that performs well on the training data but poorly on the valida-
tion data is said to be “overfitting.” Overfitting is a common problem in ma-
chine learning where the model learns the training data too well, including
its noise and outliers, and performs poorly on new data (Hawkins, 2004).

In the context of machine learning, and more specifically in training neu-
ral network models, an epoch is a term used to describe one complete pass
through the entire training dataset (Brownlee, 2017). When you are train-
ing a model on your dataset, the model sees and learns from the data in
batches. Once the model has seen all the batches once, it has completed
one epoch.

During an epoch, the neural network’s weights are updated multiple
times through an optimization algorithm, such as gradient descent, based
on the loss function defined for the problem. With each batch, the model
makes predictions, compares them with the actual targets using the loss
function, and then adjusts the weights in a way that would reduce the loss.
When the model goes through all batches, and hence all the data, it com-
pletes the learning cycle, i.e., an epoch.

The number of epochs is a hyperparameter that you, the researcher, man-
ually set. It defines the number of times that the learning algorithm will work
through the entire training dataset. Too few epochs can result in an under-
fit model, whereas too many can lead to overfitting. The ideal number of

76  The Computational Content Analyst

epochs is such that the model learns the general patterns in the data without
capturing the noise. Monitoring validation loss in addition to training loss is
important to avoid overfitting. The moment when the validation loss stops
decreasing and starts increasing is often the point at which the model begins
to overfit, and typically where we stop training our model. This is known as
early stopping, because regardless of how many epochs we define, when early
stopping is implemented, the model with the lowest validation loss is consid-
ered best and used as the final fit for the model (Prechelt, 1998).

Here we have set “early_stopping” to true, which means the model train-
ing will stop if the model’s performance on the validation set stops improv-
ing for two consecutive epochs. Most basic models will reach a point where
the decrease in loss starts to slow down significantly, forming an “elbow” in
the loss curve. Beyond this point, the model’s performance on the training
data may continue to improve slowly, but its performance on the validation
data may start to deteriorate. This is a sign that the model is starting to
overfit the training data and is losing its ability to generalize to new data. By
using early stopping, we can prevent the model from reaching this point and
ensure that it maintains its ability to make accurate predictions on new data.

history=learner.autofit(1e-4,checkpoint_folder=‘checkpoint’,
epochs=12, early_stopping=True)

TensorFlow fitting output includes the “loss” and “accuracy” for each ep-
och in the training phase as well as the loss and accuracy for the validation
data. “Loss,” or “log loss,” stands for a common loss function for binary
classification, also known as “Binary Cross-Entropy loss” (Chollet, 2017).
The loss function calculates the disparity between the algorithm’s predic-
tion and the actual label. The goal of the model is to minimize this loss
value, which implies the model is improving in making accurate predictions
(Goodfellow et al., 2016).

Imagine we have two predictions made by our model for a binary clas-
sification task. The first sample is class 1 (positive), and the model predicts it
with a high probability of 0.9. The second sample is class 0 (negative), and
the model predicts it with a probability of 0.2, meaning it leans towards the
negative class, which is correct. We calculate the loss for each sample using the
binary cross-entropy formula, which involves taking the negative log of the
predicted probability if the actual class is 1, and the negative log of the com-
plement of the predicted probability if the actual class is 0 (Nielsen, 2015).

So for the first sample, the loss is the negative log of 0.9, and for the
second sample, the loss is the negative log of (1–0.2), which is the nega-
tive log of 0.8. If we use rough estimates for these logs (log(0.9) ≈ -0.11
and log(0.8) ≈ –0.22), the losses would be approximately 0.11 and 0.22,
respectively. To find the average loss across both samples, we just take the
mean of these two numbers.

Text Classification of News Media Content Categories  77

Therefore, in our simple example, the average loss for the two predic-
tions would be around 0.17, where a lower number indicates better accu-
racy of the predictions. This gives us a quick sense of how well our model
is doing: the lower the loss, the more accurate our model is at classifying
samples (Zhang & Wallace, 2017).

“Accuracy,” on the other hand, represents the percentage of correct pre-
dictions made by the model. An accuracy of 0.8 or 80% suggests that the
model is predicting the right class 80% of the time. In the case of training
accuracy, it signifies the model’s performance on the training dataset, while
validation accuracy is the performance metric for the validation dataset
(Sokolova & Lapalme, 2009).

Finally, we validate the model using the “learner.validate()” func-
tion. This function uses the validation dataset to assess the performance of
the trained model. It outputs the precision, recall, and F1-score, giving a
comprehensive understanding of the model’s ability to identify “healthy”
articles accurately and exhaustively (Powers, 2011).

validation = learner.validate(val_data=val, print_
report=True)

Given this was a binary classification problem, we should report preci-
sion, recall, and F1 scores when writing this up for a manuscript. Remember:

1.	Precision: Precision is a metric that quantifies the ability of a model to
identify only the relevant instances. Simply put, it calculates the propor-
tion of correctly predicted positive observations out of the total pre-
dicted positives. Precision is a good metric to use when the cost of a false
positive is high.

2.	Recall: Recall, also known as sensitivity or true positive rate, measures
the ability of a model to find all the relevant cases within a dataset. It
calculates the proportion of actual positives that were correctly predicted
by the model. Recall is a good metric to use when the cost of missing a
positive instance (false negative) is high.

3.	F1 score: The F1 score is the harmonic mean of precision and recall. It
acts as a balance between the precision and the recall. F1 reaches its best
value at 1 (representing perfect precision and recall) and worst at 0.

Model Interpretability

Model interpretability, a critical aspect of any prediction system, becomes
complicated with neural networks due to their “black-box” nature. One of
the things that may keep us up at night as social scientists is the idea that
we have no idea what these deep-learning algorithms are doing under the
hood. While I’ve gone to a bit of length to explain how TensorFlow and its

78  The Computational Content Analyst

corresponding packages work, with deep learning, we’ve lost the ability to
directly inspect our model. In the linear BoW models we unpacked in the last
chapter, we can clearly see the coefficient weight of terms. This allows us to
qualitatively understand how the machine arrives at its classifications. A BoW
prediction is as simple as adding up a bunch of weights of words. Words with
large coefficients drive prediction for the positive class, and as such, a quick
scan to make sure they intuitively align with our concept is a good practice to
ensure your model is classifying the ways you would expect it to.

Unfortunately, the high dimensionality of deep-learning data makes it im-
possible to intuitively represent simple coefficients. To address this concern,
SHapley Additive exPlanations (SHAP) are a unified measure of feature im-
portance that allocates the contribution of each feature to the prediction for
each instance. In other words, SHAP values interpret the impact of having a
certain value for a given feature in comparison to the prediction we’d make
if that feature took some baseline value.

The challenge with interpreting a deep-learning model, such as BERT, in
a similar manner, is that the impact of a feature (like a specific word in our
case) on the model’s prediction is context-dependent and nonlinear (Vaswani
et al., 2017). The impact of a word cannot be measured in isolation as it can
vary depending on the context, that is, other words present in the text.

SHAP values attribute to each feature the change in the expected model
prediction when conditioning on that feature (Lundberg & Lee, 2017). For
example, consider a SHAP value for the word “exercise” in a news article
categorized under “HEALTHY LIVING.” The SHAP value for “exercise”
assesses the contribution of this word to the final prediction, conditioning
on the presence of other words in the article. A high SHAP value would
suggest that the word “exercise” plays a crucial role in classifying a news
article as “healthy” or “non-healthy.” Therefore, similar to a regression co-
efficient, the SHAP value provides a numerical value signifying the “impor-
tance” or “weight” of a feature in the final prediction.

However, unlike a simple linear model where the coefficient remains the
same for all instances, the SHAP value for the word “exercise” would accu-
rately capture its varying importance in different articles. In an article about
fitness regimes, “exercise” might have a higher SHAP value than in an arti-
cle about mental health, thereby encapsulating the context-dependent and
intricate nature of language.

article = “Boulder, CO – The University of Colorado,
Boulder’s own Professor Pat Ferrucci was honored this week
with a prestigious award recognizing him as the top fitness
enthusiast on campus. Ferrucci, renowned for his scholarly
accomplishments and teaching excellence, stunned people
with his dedication to fitness. He logged an astonishing

Text Classification of News Media Content Categories  79

300 hours at the university gym in just one semester.
Evidence? The BuffCard’s numerous swipe-ins, making the
turnstiles dizzy. According to the BuffCard data, Ferrucci
single-handedly accounted for nearly 10% of total gym
check-ins. Stay healthy, train hard, be like Ferrucci!”

Load the predictor from the trained model and preprocessor
predictor = ktrain.get_predictor(learner.model, preprocess)
Use the predictor to explain the article’s classification
predictor.explain(article)

You can interpret the output as the influence of each word on the model’s
prediction. Just as coefficients exhibit the magnitude and direction of the
relationship between an independent variable and the dependent variable
in a traditional regression analysis, SHAP values allow us to understand the
contribution of each word in driving the model’s predictions in our text
classification task.

However, if we’re honest, deep-learning models do often act as
“black boxes,” providing very little interpretability or insight into their
decision-making processes at scale. SHAP values can’t really be generalized
for a model like we can coefficients due to their context dependency. This
lack of transparency could be problematic in scenarios where interpretability
is critical, such as in healthcare, finance, or legal settings where stakeholders
may require understandable explanations for predictions. For us social sci-
entists, I put forward that the intercoder reliability checks that we conduct
from human to machine address the bulk of this concern. We have “gold
standard data,” that is data that has ground truth labels. If we can be sure
that we’ve compared a robust enough sample of our data between humans
and computer, and we see no odd or unusual misclassifications, we can rest
easier knowing the computer is doing what we set it out to do.

Deep Learning, Big Data

BERT is pre-trained and has some pre-baked knowledge of the human lan-
guage, but that does not mean it works well with small data. Once, a senior
FAANG engineer told me that TensorFlow models with BERT required
“tens of thousands” of training documents to fit a problem well. In my
experience, if the data is well labeled (that is, if you’ve done a good content
analysis), it’s more like thousands, not tens of thousands. However, it still
takes quite a bit of time to label a few thousand news articles.

Also, be warned that all deep-learning involves a training process that
is computationally intensive and time-consuming. Linear BoW models
may take seconds to train and use, BERT is currently minutes to hours.

80  The Computational Content Analyst

High-end graphic processing unit processors (GPUs) are required to use
ktrain promptly. You could buy an NVIDIA RTX 4090 (MSRP $1,599)
and run these on a desktop computer in your office. Or, you could be sane
and buy a $10 to $50 monthly subscription to access similar GPUs on
Google Colab. Be warned, Google Colab now essentially charges per hour,
and runtimes are limited to about a day—meaning, you can’t train for more
than a day. In my experience, smaller, hand-labeled datasets are not going
to take this amount of time but understanding that GPU computing is the
precious resource that everyone pays for, one way or another, is important.
I’ve tried running basic TensorFlow algorithms on my M2 Max Macbook
with little success. Integrated consumer graphic chips, no matter how nice
they are, are just not built for these types of problems. This becomes evident
when you see that the size of a 4090 card is about the size of a loaf of bread.

Understanding Probabilities

As we talked about in the evaluation section of this chapter, machine-learning
algorithms, whether they are BoW or deep learning, rarely ever return la-
beled data. Instead, they return probabilities that a text matches a specific
class or a set of classes. I’ll close this chapter by introducing an automated
content analysis that we did and showing you the probabilities that were
generated for that data as they pertain to incivility, broadly.

In 2018, the U.S. House of Representatives Permanent Select Commit-
tee on Intelligence released roughly one gigabyte of Portable Document
Formats (PDFs). Each file contained one advertisement (a social media post
that was given additional impressions in exchange for money). These adver-
tisements garnered some press coverage because they were uncovered to be
orchestrated by the Russian government as an attempt to spark outgroup
incivility (Vargo & Hopp, 2020). In other words, the Russians did a bunch
of “othering” in the 2016 election on Meta’s platforms, trying to sow dis-
cord among U.S. citizens. In all 2,603 ads were downloaded.

To perform data science techniques on the data, the data needed to be
converted to a structured format. Unfortunately, and perhaps intentionally,
the PDFs were not encoded in a way that would allow the text from the
documents to be easily extracted. Textract extracts “information embed-
ded in . . . PDFs, etc—so-called ‘dark data’— . . . without any irrelevant
markup” (Malmgren, 2014, p. 1). I used Textract to convert the PDFs of
an advertisement to text. String and regular expression matching were then
used to extract specific fields from the ads, including the body copy (a.k.a.,
text) of an ad and its metadata (e.g., clicks, cost, impressions, and so on).

In addition, we ran the text of the social media ad through the toxic-
ity classifier that we mentioned in Chapter 3 from Jigsaw’s Perspective API,
which is built on TensorFlow and Transformers very much like the model we
built earlier in this chapter. We have the actual probabilities for each one of

Text Classification of News Media Content Categories  81

Perspective’s models, including “TOXICITY,” “IDENTITY_ATTACK,” and
“INSULTS” (see Chapter 3 for definitions and a discussion of these models).

Validating a TensorFlow-like Classification Model for Use

I’m always of the disposition that even black-box tools like Perspective are
not OK by default, as it is a black box. If I see a reviewer use a tool like this
without some effort to externally validate the tool, I get worried that they
are just throwing hammers around a room to see if things stick. In these
cases, I ask reviewers to introduce at least one, and preferably more, hu-
man coders, and have them label a small sample. For the study at hand, my
trusted colleague, Toby Hopp, and I independently labeled 255 randomly
selected ads (~10% of the analytic sample). Using the codebook provided
in Appendix A, we scored any advertisement containing one or more of the
attributes of interest as a 1. If the advertisement did not contain any of the
incivility attributes, it was scored as a zero. Here, the coders agreed in 239
of the 255 coded cases (pairwise agreement = 93.7%; Cohen’s kappa = .87).
This step didn’t assess the algorithm, but instead gave us some evidence that
our incivility concept and its subconcepts had good validity. That is, two hu-
mans could independently review the codebook and make similar decisions.

Having shown that the coding scheme was reliable for human anno-
tators, one of the original coders (me) next re-coded each advertisement
in the sub-sample specifically for the presence of identity-based negative
language, inflammatory language, obscene language, and threatening lan-
guage (1= present, 0 = not present). A given advertisement could feature
more than one negativity element. These annotations were subsequently
compared to the annotation scores generated by the Perspective API. The
Perspective API scores text on a probability basis, ranging from 0 to 1.

The interpretation of this probability is grounded in the concept of condi-
tional probability in statistics. In the context of text classification, for instance,
when an algorithm outputs a probability of 0.8 for a news article belonging
to “health and wellness,” it is indicating that given the features of this article
(which could be its words, phrases, or other textual characteristics), there is
an 80% chance that it belongs to the “health and wellness” category.

Welch independent samples t-tests were used to assess the average scores
of those advertisements coded as containing the attribute relative to those
that were determined not to contain the attribute. The idea is simple, if the
algorithms were generally picking up on the concepts, their mean probabil-
ity scores would be much higher for the set of documents labeled by hu-
mans to contain that attribute (e.g., identity-based threats), than documents
that do not contain that attribute (e.g., ads with no identity-based threats).
Given the significant differences across groups and the large effect sizes as-
sociated with each conducted test, we determined that the Perspective API
performed in an externally valid manner.

82  The Computational Content Analyst

The results of the t-tests showed that this was indeed the case for all
four attributes.3 The advertisements that were manually coded as contain-
ing each attribute had significantly higher average scores from the Perspec-
tive API than those coded as not containing the attribute. The effect sizes
(d) were also calculated for each test. Effect sizes provide a measure of the
magnitude of the difference between two groups. In this case, the effect
sizes were all fairly large, indicating that the differences in scores between
the advertisements containing each attribute and those not containing the
attribute were not just statistically significant, but also practically significant.

Turning Probabilities into Classifications

Our study was ultimately interested in whether uncivil content would get
more engagement. We opted to directly use the raw probabilities generated by
the model for further statistical analysis. These probabilities lie between 0 and
1, and therefore eliminate the need to use logistic regression, while also avoid-
ing the step of losing the confidence associated with the probability scores.
In general, the Perspective API is quite good at spotting blatant examples
of incivility and associates those classifications with higher probability scores.
Transforming a probability score into a binary classification (e.g., hate speech
or no hate speech) loses that granularity and treats all content the same.

Setting Thresholds for Binary Classification

However, there will invariably come times when you will want to transform
the probabilities into binary classifications by setting a decision threshold.
After all, turning back to our contextual advertising example at the start of
this chapter, we either can choose to advertise on a website, or not. There
is no benefit to a probability, and in fact we must use the algorithm to de-
cide, so a cutoff is necessary. Choosing this threshold is very important and
largely up to your discretion.

A common threshold is 0.5. If the model estimates the probability of an
article being in the “health and wellness” category as greater than 0.5, you
might classify it as a “health and wellness” article; if the estimated probability
is less than 0.5, you might classify it as a “non-health and wellness” article.

Such binary classifications can facilitate further analysis. For example, you
could compute the confusion matrix, which provides a comprehensive sum-
mary of correctly and incorrectly classified articles. Metrics such as accuracy,
precision, recall, and F1 score can be derived from the confusion matrix and
used to evaluate the performance of the classification. These calculations
can’t be done with probability scores themselves.

Remember that any transformation of the probabilities into binary clas-
sifications involves a loss of information. For example, two articles, one with
a probability of 0.51 and the other with a probability of 0.99, would both

Text Classification of News Media Content Categories  83

be classified as “health and wellness” articles, even though the model is far
more confident about the second than the first.

Determining an appropriate cutoff is not always straightforward and
largely depends on the cost trade-off between false positives and false nega-
tives. For instance, suppose we are using machine learning to label a rare
occurrence, such as whether a Facebook ad contains a racial slur. A false
negative (missing a genuine case) may have significantly more severe conse-
quences for Facebook than a false positive (a post being temporarily deleted,
which could be appealed). In this case, we might opt for a lower threshold,
like 0.4, favoring sensitivity over specificity.

A good practice for rare behaviors is to set your threshold low, and simply
review the edge cases yourself. If you have your predicted data in a spread-
sheet, find the column associated with the concept of interest, and sort that
column by probability score from high to low. You should be able to quickly
scan the documents and progress down the range of probability scores until
you start to see blatant misclassifications. Manually finding and inspecting
that probability score will best separate the wheat from the chaff, as you will
be able to visually see precision decay as your probability range drops. See-
ing where that approximate range is with your own two eyes is often best.

If we increase the probability cutoff from 0.5 to, say, 0.7, what we are
essentially doing is making our model more conservative about assigning
instances to the target class. In effect, we are increasing the stringency for
class assignment, leading to fewer instances being classified as positives.

This will likely increase precision because we are only classifying instances
as positive when the model is more certain (above 0.7 probability), thereby
reducing the chance of false positives. However, this comes at the cost of
reducing recall because by being more stringent, we are likely to miss in-
stances of the target class that the model is less certain about. So, we could
end up with more false negatives, which lowers recall.

Beyond Transformers to Large Language Models

As discussed earlier in this chapter, deep-learning models like BERT have
some general sense of what words come next. This general understanding of
context helps us label documents better. In the next chapter, we will explore
the latest iteration of these models, large language models (LLMs). These
models take this concept of masking, or knowing what words best come
next, and don’t just classify or distinguish between different categories, they
can generate entirely new data instances like the data they’ve been trained
on. It’s kind of like smashing the most likely button on the auto-suggest
texting feature on Android and iOS but with much higher precision and
understanding of context. These models learn the underlying probabilistic
distribution of the data, enabling them to generate new data that is statisti-
cally like their training data.

84  The Computational Content Analyst

For tasks like ours, involving text classification and understanding, LLMs
open up a whole new array of possibilities. As we’ll see soon, these models
can potentially help us in “unsupervised” classification tasks. This is the abil-
ity to classify or categorize text data when we do not have predefined labels
for training, a common challenge in real-world settings where obtaining
labeled data can be expensive or impractical.

Not only that, LLMs have shown incredible results in understanding
context, capturing sentiment, performing language translation, and even
producing creative content like poetry or art, rendering them an exciting
field of study in the realm of computational text analysis.

In the next chapter, we will unpack the theory behind these models, how
they are constructed, why they work so well, and how we can fine-tune
them to suit our specific text classification tasks. We will explore some of the
most popular generative models available today and learn how they have
begun to redefine what machines can create.

Notes

1	 You can review the Kaggle page for the data here: https://www.kaggle.com/
datasets/rmisra/news-category-dataset. The data is available to share and adapt
under license CC BY 4.0.

2	 Rishabh Misra, a machine-learning engineer from San Francisco and a Kaggle
Expert, is the author of this data, and I thank him greatly for his generous data
sharing license (Misra, 2022).

3	 In the case of identity-based negative language, the average attribute score for
advertisements coded as 1 (M = .62, SD = .17) was significantly larger than the
average attribute scores for those advertisements coded as 0 (M = .29, SD = .23),
t = 7.38, df = 174.42, p < .001, d = 1.51. Similarly, advertisements determined
by the human coder as featuring inflammatory language had significantly higher
mean scores (M = .60, SD = .20) than those determined to not possess the attribute
(M = .36, SD = .22), t = 8.81, df = 190.66, p < .001, d = 1.13. The same pattern was
true for the threat variable: posts coded as 1 by the human coder (M = .49, SD = .19)
had higher computer-assigned scores than those coded as 0 (M = .23, SD = .15),
t = 9.61, df = 75.57, p < .001, d = 1.68. Finally, for the obscenity variable, posts
scored as 1 by the human coder had higher mean scores (M = .69, SD = .33) than
posts scored as 0 (M = .14, SD = .19), t = 4.91, df = 8.20, p < .01, d = 2.74.

References

Brownlee, J. (2017). Deep learning for natural language processing: Develop deep
learning models for your natural language problems. Machine Learning Mastery.

Chollet, F. (2015). Keras. https://keras.io
Chollet, F. (2017). Deep learning with Python. Manning.
Clark, K., Khandelwal, U., Levy, O., & Manning, C. D. (2019). What does BERT

look at? An analysis of BERT’s attention. arXiv. https://doi.org/10.48550/
arXiv.1906.04341

https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://keras.io
https://doi.org/10.48550/arXiv.1906.04341
https://doi.org/10.48550/arXiv.1906.04341

Text Classification of News Media Content Categories  85

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training
of deep bidirectional transformers for language understanding. arXiv. https://doi.
org/10.48550/arXiv.1810.04805

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Harris, Z. S. (1954). Distributional structure. Word, 10(2–3), 146–162. https://

doi.org/10.1080/00437956.1954.11659520
Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Informa-

tion and Computer Sciences, 44(1), 1–12. https://doi.org/10.1021/ci0342472
He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transac-

tions on Knowledge and Data Engineering, 21(9), 1263–1284. http://doi.
org/10.1109/TKDE.2008.239

House Permanent Select Committee on Intelligence. (2018). Exposing Russia’s effort
to sow discord online: The Internet Research Agency and advertisements. https://
intelligence.house.gov/social-media-content/

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to sta-
tistical learning. Springer.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444. https://doi.org/10.1038/nature14539

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model
predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan & R. Garnett (Eds.), Advances in neural information processing
systems 30 (pp. 4765–4774). Neural Information Processing Systems Foundation.

Maiya, A. (2023). ktrain: A low-code library for augmented machine learning. [Com-
puter software]. GitHub. https://github.com/amaiya/ktrain

Malmgren, D. (2014). Textract documentation: Release 1.1.0. Read the Docs.
https://textract.readthedocs.io/_/downloads/en/v1.1.0/pdf/

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv. https://doi.org/10.48550/arXiv.1301.3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In C. J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, & K.Q. Weinberger (Eds.), Advances neu-
ral information processing systems 26 (vol. 2, pp. 3111–3119). Neural Information
Processing Systems Foundation.

Misra, R. (2022). News category dataset. arXiv. https://doi.org/10.48550/
arXiv.2209.11429

Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for

word representation. In A. Moschitti, B. Pang, W. Daelemans (Eds.), Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP; pp. 1532–1543). Association for Computational Linguistics. https://
doi.org/10.3115/v1/D14-1

Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness & correlation. Journal of Machine Learning Technolo-
gies, 2(1), 37–63.

Prechelt, L. (1998). Early stopping—but when? In G. Montavon, G. B. Orr, & K. R.
Muller (Eds.), Neural networks: Tricks of the trade. Lecture notes in computer science:
Vol. 7700 (pp. 53–67). Springer. https://doi.org/10.1007/978-3-642-35289-8_5

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4), 427–437.
https://doi.org/10.1016/j.ipm.2009.03.002

https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1021/ci0342472
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://intelligence.house.gov/social-media-content/
https://intelligence.house.gov/social-media-content/
https://doi.org/10.1038/nature14539
https://github.com/amaiya/ktrain
https://textract.readthedocs.io/_/downloads/en/v1.1.0/pdf/
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.2209.11429
https://doi.org/10.48550/arXiv.2209.11429
https://doi.org/10.3115/v1/D14-1
https://doi.org/10.3115/v1/D14-1
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1016/j.ipm.2009.03.002

86  The Computational Content Analyst

Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune BERT for text
classification? In M. Sun, X. Huang, H. Ji, Z. Liu, & Y. Liu (Eds.), Chinese com-
putational linguistics. CCL 2019. Lecture notes in computer science: Vol. 11856
(pp. 194–206). Springer. https://doi.org/10.1007/978-3-030-32381-3_16

Vargo, C., & Hopp, T. (2020). Associations between advertisement negativity and
political advertisement engagement: A computational case study of Russian-linked
Facebook and Instagram content. Journalism & Mass Communication Quarterly,
97(3), 743–761. https://doi.org/10.1177/1077699020911884

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kai-
ser, L., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.)
Advances in neural information processing systems, 30 (pp. 5999–6009). Neural
Information Processing Systems Foundation.

Zhang, Y., & Wallace, B. (2017). A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification. arXiv. https://doi.
org/10.48550/arXiv.1510.03820

https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1177/1077699020911884
https://doi.org/10.48550/arXiv.1510.03820
https://doi.org/10.48550/arXiv.1510.03820

DOI: 10.4324/9781003514237-6

Chapter 6

Leveraging Generative AI for
Content Analysis

Krippendorff (2022) argues that texts do not merely map or indicate fea-
tures of an existing world but construct worlds for competent speakers of
a language to see, enact, and live within. As you will soon find, generative
AI in and of itself contains a world of knowledge. To extend his metaphor,
I believe we are still the competent speakers. That is, for a good content
analysis, we still must provide the specific language and instruction that we
can use to make our analysis come alive.

Large language models (LLMs) and generative AI were born out of the
desire of computer scientists to have computers learn the distribution and
natural propensities of words (Bengio et al., 2003). All the generative AI we
enjoy today, like ChatGPT, runs some type of model (e.g., GPT-4) that was
trained on vast datasets, from Wikipedia to news content, and everything in
between that can be found on the web (Brown et al., 2020).

LLMs have learned to predict the subsequent item in a sequence, whether
it’s the next word in a sentence or the next frame in a video (Vaswani et al.,
2017). The premise is simple: if the model can be certain what single token
comes next, all it must do is repeat this task over and over until a sufficient
response has been generated. This “next word problem” is how all LLMs
are trained. Imagine I give you a sentence and withhold a single word. You
would then have to guess what that word might be based on the context
provided by the rest of the sentence. Given that you’re a smart person and
have read millions of words in your lifetime, you probably can guess what is
likely to come next. This is essentially what LLMs do at a much larger scale
and with a far more complex array of sentences and contexts. They continu-
ously predict and adjust based on the probabilities of what the next word
should be, based on what they’ve seen in the past from their training data.
It turns out, for many simple problems, the best guess of what comes next
is usually right.

The uniqueness of generative pre-trained transformer (GPT) models is
their capacity to predict the probability of a word given its predecessors

https://doi.org/10.4324/9781003514237-6

88  The Computational Content Analyst

in the text, known as autoregression (Radford et al., 2019). As we talked
about with pre-trained word language models like BERT, LLMs generate
new sentences by predicting the subsequent word based on the context of
the past words (Devlin et al., 2019).

While we know less about the training of GPT-4, training GPT-3
was a massive task due to its unprecedented scale. It consists of 175 bil-
lion tunable weights that the model uses to make accurate predictions
(Brown et al., 2020). To put this into perspective, its predecessor,
GPT-2, comprised 1.5 billion parameters whereas BERT consists of
340 million (Devlin et al., 2019; Radford et al., 2019). The incredible
size of newer GPT models is one of its defining features and a crucial fac-
tor in its impressive ability to understand context and produce accurate
language output. Considering the tremendous size of the GPT-4 model
and the sheer volume of data it processed, it is safe to assume that the
training spanned months, even when run on hundreds or thousands of
high-performance GPUs that cost Microsoft an absolute fortune to use
(Brown et al., 2020).

Last chapter we talked about BERT, Google’s pre-trained brain that is
good at beating BoW approaches to classification (Devlin et al., 2019).
Since then, GPT models have burst onto the scene. OpenAI introduced
GPT-3 in June 2020 (Brown et al., 2020) and currently GPT-4 is the latest
addition to the GPT series, with GPT-5 due possibly even before this book
is published (OpenAI, n.d.).

Running Your Own GPUs

With the advancements in technology, graphic processing units (GPUs) that
can run these models locally and on the cloud are attainable. NVIDIA, the
leading designer and manufacturer of GPUs, recently introduced its latest
professional-grade offering: the NVIDIA A100 Tensor Core Graphics Card
(NVIDIA, 2020). This GPU can offer up to 80 GB of high-bandwidth
memory (HBM2), a memory type specifically catered to high-performance
computing. However, this power comes with a significant price tag. The
MSRP hovers around $11,000, presenting a considerable expense that isn’t
feasible for most individual researchers or smaller institutions (NVIDIA,
2020).

Newer LLMs use somewhere between 6 and 72 gigabytes of storage.
These models can be, if the author of the model wishes, shared online, and
downloaded freely by anyone, including you. However, the kicker to these
free brains is that the model itself must fit into the RAM of your GPU. An
RTX 4090 can process data through an LLM quickly, but it only has 24 GB
of RAM. As a result, and at the time of writing this, it can only run models

Leveraging Generative AI for Content Analysis  89

that have 13B parameters, not ones that have 70B (NVIDIA, 2020). Can
you guess which model is generally better at doing content analysis? Bigger
is usually better. This means to fit a 70B model, you would have to pony
up $6,800 to buy a NVIDIA RTX 600 Ada. The big difference? 48GB of
RAM, which will just fit a properly quantized and fine-tuned 70B LLaMA
3 model, the model that we’ll use in a bit. I hope that as demand continues
to rise for computing like these, costs will drop.1

Given the drawbacks of owning this computing today, and the hope that
things may improve in the future, an effective counter option to the local
running of these models is cloud-based platforms. If you are at a university,
odds are you have access to some type of cloud computing, and you may be
able to schedule jobs to run that require GPU for little or no cost when that
computing is not being used by folks in STEM who brought in a grant to
pay for it (Zaharia et al., 2016).

Using a Notebook Service That Has GPUs Available

If I were a graduate student today, I would use Google Colab, which provides
various tiers of GPU resources for executing machine learning and deep learn-
ing research (Bisong, 2019). At the time of writing, the costs are quite reason-
able ($0–$100 a month). It’s built on top of Jupyter Notebook and allows
for real-time collaboration and easy sharing of project files with your team.
Google Colab offers a free tier with limited GPU access and the option to up-
grade for more resources. Similar services include Kaggle Kernels, which also
provide free and paid access to computational resources. For those with larger
budgets or enterprise needs, cloud providers like AWS, Microsoft Azure, and
Google Cloud offer powerful GPU instances that can be rented to run large
models. These services provide a wide range of machine types and configura-
tions to suit different computational requirements and budgets, allowing you
to scale up or down as needed, but in general are very costly (Li et al., 2020).

You can leverage Google Colab for running larger models, like a 7B or
13B model, without worrying about the local hardware limitations. Right
now, Google Colab only offers 40GB of video RAM maximum, and that
isn’t quite good enough to run 70B models (Bisong, 2019).

Using APIs

Another excellent option is to use OpenAI’s API or Anthrophic’s API which
allow you to leverage the latest GPT models on a pay-as-you-go basis with-
out worrying about the underlying hardware (OpenAI, n.d.).2 OpenRouter
takes this a step further and is an AI marketplace, where multiple vendors
and their models can be swapped in a single parameter of code.3 Using an

90  The Computational Content Analyst

API approach provides scalability and ease of use, as you can make API calls
to process your data and receive results over the internet.

ChatGPT is run by the parent company OpenAI. Under the hood, there
is a simple API that anyone can use to programmatically ask questions.
While it might be nice to use ChatGPT for one-off things, it’s even better to
build applications and scripts that handle daily digital chores. For instance,
I use OpenAI’s whisper API to automatically transcribe and summarize my
lectures. From there, I generate a bank of quiz questions. I review those
questions and edit them to my liking, and finally I generate lecture sum-
maries and send those to students alongside the recordings.4 The beauty of
this lies in the fact that new quizzes and transcripts can be generated at the
click of a button. The script runs, I programmatically ask GPT-4 to perform
a series of summarization and question-generating tasks, and out spits a
rough draft that I review. The last part, human review, is the most important
(OpenAI, n.d.).

The major downside here is cost. OpenAI and others charge per token.
This means that the cost can add up depending on the volume of text you
are processing. I have spent $250 on one job in one day, just classifying a
few thousand articles, but costs per token have dropped since then. Remem-
ber, each token typically represents a word or part of a word, so longer texts
require more tokens, and thus the cost increases. If you are processing large
amounts of data or require frequent interactions with the AI model, you
may incur significant expenses.

Also, be aware that when you send data to an external API, you are
transmitting potentially sensitive information to a third-party server. That’s
not something you should ever do with respondent data with sensitive data,
(e.g., something you gained IRB approval for). Be careful with models you
cannot directly control and treat the information you send as such.

Running Models Locally

While the days to come will almost certainly mean that more and more
LLMs will run locally on the devices we own, like our laptops and phones,
there is already a glimmer of immediate hope that some of these powerful
models can run on high-end personal computers. Just recently I have had
luck running LM Studio5 on my Macbook Pro M2 Max from 2023. It runs
smaller models at a slow, but usable speed. As Apple and other hardware
creators begin to see the value of LLMs, I am sure newer devices will be able
to do much more, but if you’re set on keeping everything on your device,
and you’re not in a hurry, it’s quickly becoming an option as well.

For the sake of this chapter, we’re going to assume that you’re going
to either run your model locally on your expensive desktop GPU, or via a
cloud notebook service like Google Colab.

Leveraging Generative AI for Content Analysis  91

Know Your Model

If you’re considering labeling your data using open-source models, start
with the Huggingface Model Library.6 One of the standout qualities is just
how user-friendly the library is. To discover models akin to the model we
will use today, which is entitled “casperhansen/llama-3–8b-instruct-awq”
on Hugging Face’s model hub, search for key terms such as “Llama 3 8B”
and “instruct.” Refine your results to only include text generation. Exam-
ine the model cards for detailed insights, to verify you’re using the model
right. For instance, different models may ask you to format your prompt
in differently. Also, be sure you’re using the newest version. Leverage the
“Similar Models” suggestions. Always ensure to review the documentation
and licensing before using a new model in your project. Don’t just use one
because you found it in someone else’s code, including mine. Models are
constantly innovated, with newer, better models released daily.

Moreover, Huggingface actively encourages contributions from the
community. Developers can train and share their own models on the plat-
form, fostering a collaborative space for NLP enthusiasts. The library is also
backed by an active open-source community, providing robust support and
continuous updates based on the latest research. I find myself using models
by the users TheBloke, or casperhansen. Why? Because these users focus on
taking models that are very large and quantizing them into smaller files that
can be run on cheaper GPUs (Wolf et al., 2020).

Each model in the library comes with detailed model cards, which include
a description of the model, its performance metrics, the details of the training
process, and the source code. This aids users in understanding the workings
of the model and reproducing or building upon it. The documentation also
provides instructions on how to customize and fine-tune the models based
on specific requirements. Here’s our model card: https://huggingface.co/
casperhansen/llama-3-8b-instruct-awq.

From reading about this model, we know that the model was initially
trained by Meta. LLaMA 3 is an open-source generative model initiative by
the parent corporation of Facebook. Unfortunately, we don’t know exactly
what Facebook trained their algorithms on, but they do tell us that it’s
about 2 trillion tokens worth, so approximately half a billion words. They
also let us know that they don’t train on Meta product data (e.g., Facebook
and Instagram posts) and that instead, the data comes from “publicly avail-
able sources” (Lewis et al., 2021).

Newer models like LLaMA 3 have, in my experience, closed the gap
between OpenAI’s GPT-4, with most leaderboards showing that the models
can solve similar problems. In my experience, these models are quite similar,
generally capable of talking and discussing basic problems and challenges.
However, they also fail to understand very specific things, like specific mass

https://huggingface.co/casperhansen/llama-3-8b-instruct-awq
https://huggingface.co/casperhansen/llama-3-8b-instruct-awq

92  The Computational Content Analyst

communication theories and the contemporary literature associated with
them. Remember that all these models are unlikely to have been trained
on paywalled journals due to copyright. They’re at best going to have a
surface-level understanding of detailed academic concepts as on Wikipedia,
which is almost surely inside these models (Lewis et al., 2021).

Turning back to our model card, we see this is an “instruct” model because
it was fine-tuned on open-source, long-context chats, and question-answer
data. Fine-tuning is a crucial concept in machine learning that allows for
pre-trained models to be effectively adjusted or “fine-tuned” to better serve
a specific task. It works by taking a pre-trained model—that is a model that
has already been trained on a large dataset and has developed an understand-
ing of the dataset’s features—and then training this model again, but this
time on a new, task-specific dataset. The principal idea behind fine-tuning is
to leverage and build on the already established knowledge and understand-
ing of the pre-trained model, thereby enhancing its performance for the
specific task (Houlsby et al., 2019).

In performing fine-tuning, the generative model is exposed to a smaller
and usually less diverse dataset so it can specialize in specific features or
characteristics. For instance, in the case of natural language processing, a
pre-trained model like GPT-4 might be fine-tuned on a dataset of medical
journal articles if the goal is to generate AI that can generate or understand
medical text (Raffel et al., 2020).

Finally, we see that our model is 8B, meaning it’s quite small as LLMs
go. It will take only 5GB of GPU RAM to load and should work on the
free version of Google Colab, provided you are connected to at least a T4
GPU. Note that the method we’ll cover below dictates our model must
be in Activation-aware Weight Quantization (AWQ) format (Hubara et al.,
2017). Changing models is just a one-line parameter, so it’s easy to try a few
out to get one that works well for your problem, and you should spend time
workshopping models before you label data.

Classifying Data Using Generative AI

In the previous chapter, we built an algorithm to address a contextual ad-
vertising problem with the aid of Keras and TensorFlow. We posed a clas-
sification task intending to identify news articles that delved into health and
wellness, a particularly relevant category for certain advertisers (Chollet,
2017). In this chapter, we are about to broaden our horizons towards a
goal that is more comprehensive and challenging. Our task now is to ex-
tend our classification algorithm capacity, not merely to discriminate health
and wellness articles but to identify and categorize news articles based on
the entire taxonomy of content provided by the Interactive Advertising
Bureau (IAB).

Leveraging Generative AI for Content Analysis  93

IAB is an advertising business organization integrating over 650 lead-
ing media, marketing, and technology companies. Its principal role in ad
tech is to develop industry standards, conduct research, and provide legal
support for the online advertising industry. One of IAB’s flagship contribu-
tions to this industry is the Content Taxonomy, a standardized classifica-
tion taxonomy devised to streamline the process of content categorization
(IAB, 2017). It represents a hierarchical arrangement of digital content into
conceptual categories and sub-categories, making it an effective tool for
contextual advertising.

By now, you should be thinking of this taxonomy as a set of codes in
some master codebook. One frustration I have with the IAB is they don’t
provide robust conceptual definitions and examples needed to create a
shared understanding of the content. Instead, they have ad tech companies
classify the content according to their own definitions. This lack of intercoder
reliability strikes me as problematic for advertisers. One ad tech company’s
contextual classifier is surely totally different from another’s if they do not
even share the same definitions.

We need to prompt our model to accurately map news articles to the
appropriate categories in the IAB taxonomy. We need a generative model
that is smart enough to understand, learn, and accurately predict a wide
array of categories. Also, the model must navigate these numerous categories
while still maintaining an acceptable level of precision and recall, ensuring
that classification is not just exhaustive but also relevant and precise.

The core task in any generative AI query is to generate coherent and con-
textually viable text given some initial input. However, for our problem of
content analysis using the IAB taxonomy, we need to transform this gener-
ated text into categorical labels that align with the specified IAB categories.
At the heart of this transformation process is the premise that the generated
response of the AI model will carry recognizable cues or keywords that can
map onto the predefined categories in the IAB taxonomy. To accomplish
this, we will implement a two-step process: model inference and response
parsing into labels.

1.	Model inference: In this step, we feed the news articles into the
generative model. The format of the input includes the text summary
of the article with some initial prompt that instructs the model about
the required task. In our example, we will instruct the model to read
the article content and identify the primary IAB category which the
article fits into. The output of the model would then be a generated text
snippet that explains the selected category and the reasoning behind the
selection.

2.	Response parsing: Once we obtain the generated response, we must
parse this response and map it onto labels that correspond to categories

94  The Computational Content Analyst

within the IAB taxonomy. This step requires careful prompt designing
to ensure accurate mapping between the model’s text output and the
categorical labels. One simple approach can be to use keyword matching,
where the presence of certain keywords in the model response selects a
certain category.

Building a Generative Classifier

Importing and using a model from The Hugging Face model library is simply
a matter of a few lines of code. The models can be directly downloaded and in-
stantiated in the code using the “from_pretrained” function. This stream-
lined process allows even beginners in the field of NLP to implement complex
models and experiment with different configurations (Wolf et al., 2020).

Switching between different models in the Huggingface library is equally
straightforward. Given the uniformity of the API across different models,
try out alternate models by changing the model’s name in the “from_pre-
trained” function. Remember, exact loading instructions for each model
can be found on its corresponding model card. Sometimes there are addi-
tional parameters you’ll need to get it to load. First, we need to import the
necessary libraries and initialize the LLM model.

To see how to initialize and run LLMs, I’ve included a working example in
this chapter’s notebook. We use vllm to serve the model. For the sake of this
chapter, let’s focus on the actual prompt that we use to get the LLM to respond:

{“role”: ”system”, ”content”: ”You are an expert at
contextual advertising and fully understand the Internet
Advertising Bureau’s 3.0 taxonomy. You only respond with
classifications”},

{“role”: ”user”, ”content”: Article:\n\n{document}\
n\n Return full article classification tree for the
article (e.g. ’Sports > Team Sports > Football > College
Football’). Return only the classification.”}

This prompt both clearly and plainly explains the task and also provides an
example output format for the LLM to respond with. The exact format of
the prompt is entirely dependent on the model, which again can be found
on the model card page on the model’s Huggingface site, with different
models having different formats. So be careful to review the model card to
ensure you’re generating the prompt right. When correctly formatted, the
prompt instructs the model. If your model responds with odd strands of
text, odds are it’s not getting the prompt in the correct format.

Here, we’re writing a straightforward and concise codebook to ana-
lyze the article and categorize it according to the IAB contextual video

Leveraging Generative AI for Content Analysis  95

categories. We don’t need to describe each IAB category, because there are
several documents on the open web describing the taxonomy. It’s already
in the generative AI’s brains, as it were, and as such we just need to give the
model enough context so it knows what it’s classifying. This is likely not
the case for obscure content analyses, so for your use case, you may need to
explain more and/or provide a few examples.

Interactively and Iteratively Building a Codebook
with Generative AI

In Chapter 5, we delved into the dataset released by the U.S. House of Rep-
resentatives Permanent Select Committee on Intelligence, which contained
advertisements orchestrated by the Russian Internet Research Agency (IRA)
during the 2016 election. These ads were designed to incite outgroup incivil-
ity and sow discord among U.S. citizens by targeting various identity groups.
The dataset, consisting of PDFs converted to text, provided a rich source
for analysis but also posed a challenge due to the unstructured nature of the
content and the difficulty in identifying specific instances of “othering” or
incivility (House Permanent Select Committee on Intelligence, 2018).

We can use generative AI to explore what groups are in the data and
eventually code the data as such. Remember, one of the key advantages of
generative AI is its ability to understand context and generate responses
that can help identify patterns or themes within the data. This is particularly
useful when dealing with propaganda or incendiary content where the lan-
guage used may be subtle or coded.

Generative AI can be employed to parse the IRA ads and extract men-
tions of specific outgroups without prior knowledge of which groups are be-
ing targeted. By crafting a generative query, we can instruct the AI to read
through the ad content and identify any groups or entities that are being
discussed in a potentially negative or divisive context.

Here’s an example of how we might use a generative AI model like vLLM
to extract such information:

Prepare the generative query
query = ”‘[INST] <<SYS>>
You are a highly knowledgeable AI assistant with a deep
understanding of social dynamics and language nuances.
<</SYS>>
Your task is to analyze the given text from social media
advertisements and identify any groups or entities that
are being mentioned in a context that may suggest outgroup
incivility or ’othering’. Extract these mentions and
provide them in a structured JSON format with the following
properties: ’ad_id’, ’text’, and ’mentioned_groups’.

96  The Computational Content Analyst

Advertisement Text:
{ad_text}
[/INST]”‘

Example ad text
ad_text = ”Join us to stop the invasion of illegal immi-
grants who are taking our jobs and threatening our way of
life. America for Americans!”

The AI might return a response like:

{
”ad_id”: ”12345”,
”text”: ”Join us to stop the invasion of illegal immigrants
who are taking our jobs and threatening our way of life.
America for Americans!”,
”mentioned_groups”: [“illegal immigrants”]
}

Note here that I am asking the generative AI to return JSON. In practice,
this sounds great because this is a native data structure that Python can read.
In reality, this can create many headaches, as generative AI models are infa-
mous for ever so slightly producing outputs that don’t conform to data struc-
ture standards. In these cases, your script will choke the over-malformed data.
When in doubt, use a simpler text-searching method like the previous exam-
ple to avoid these issues. Instead of using the JSON as-is, search inside of it.

Enhancing the Generative AI Query for Structured
Extraction

To refine the generative AI’s ability to extract specific groups of people ac-
cording to their ethnicity, race, and country of origin, we can enhance the
prompt to guide the AI towards a more structured and detailed output.
This will help the AI to understand the task better and avoid the need to
parse through coded or derogatory language used in the ads.

Here’s an updated version of the generative query that includes instruc-
tions for extracting groups by ethnicity, race, and country of origin:

Prepare the enhanced generative query
query = ”‘[INST] <<SYS>>
You are a highly knowledgeable AI assistant with a deep
understanding of social dynamics, ethnicity, race, and
country of origin.
<</SYS>>
Your task is to analyze the given text from social media
advertisements and identify any groups or entities that

Leveraging Generative AI for Content Analysis  97

are being mentioned in a context that may suggest outgroup
incivility or ’othering’. Specifically, extract mentions of
groups by their ethnicity, race, or country of origin. Pro-
vide the extracted information in a structured JSON format
with the following properties: ’ad_id’, ’text’, ’mentioned_
groups’, and ’context_of_mention’.

Advertisement Text:
{ad_text}
[/INST]”‘

Example ad text
ad_text = ”Join us to stop the invasion of illegal immi-
grants from [Country] who are taking our jobs and threaten-
ing our way of life. [Ethnicity or Race] do not belong in
our nation!”

The AI might return a structured response like:

{
”ad_id”: ”12345”,
”text”: ”Join us to stop the invasion of illegal immigrants
from [Country] who are taking our jobs and threatening our
way of life. [Ethnicity or Race] do not belong in our na-
tion!”,
”mentioned_groups”: {
”ethnicity”: ”[Ethnicity]”,
”race”: ”[Race]”,
”country_of_origin”: ”[Country]”
},
”context_of_mention”: ”The advertisement uses divisive lan-
guage to create a sense of invasion and alienation towards
immigrants from a specific country and of a certain ethnic-
ity or race.”
}

By providing a clearer definition of how the AI should return the outgroup
information, we can avoid the laborious task of parsing through all the
coded language in the ads. The AI is instructed not only to identify the
groups but also to contextualize the mention, which helps with understand-
ing the intent and impact of the advertisement.

If you find the AI returns a response where the context of mention is
ambiguous or the identified groups are too broad, you may need to refine
the prompt or codebook. Suppose the AI identifies “immigrants” as a men-
tioned group but does not specify the context in which they are mentioned.
In that case, we might adjust our prompt to ask for more detailed informa-
tion about the nature of the “othering” language used.

98  The Computational Content Analyst

Here’s how we might tweak the definition in our prompt to improve the
AI’s understanding:

Revised part of the generative query
query = ”‘. . .
Your task is to analyze the given text from social media
advertisements and identify any groups or entities that are
being mentioned in a context that may suggest outgroup inci-
vility or ’othering’. Specifically, extract mentions of groups
by their ethnicity, race, or country of origin, and describe
the context in which they are portrayed negatively or as a
threat. Avoid general terms and focus on specific language
that indicates targeted hostility or discrimination.
. . . ”‘

By refining the prompt, we guide the AI to provide more granular and con-
textually relevant information, which can significantly enhance the quality
of our codebook and subsequent analysis. Remember that being a “promp-
tician” is an iterative process.

Only as Good as the Human in the Loop

The output from the generative AI may be good enough for your content
analysis task if the problem is straightforward. However, we would be
violating all the tenets of content analysis if we accepted the computer
at its word. You must inspect the results manually and qualitatively. This
inspection helps to ensure that the AI’s interpretations align with our
research objectives and the nuances of the content. In a generative AI
content analysis, this is where I would expect researchers to spend most
of their time. Honing your prompt so it returns the results expected. In
areas of computer science, we call this a “human in the loop.” As the social
scientist and expert researcher, that must be you. You and your research
team must play an active role in ensuring that any black-box tool you use
works as intended.

This process could be as simple as reviewing a few hundred labels, gener-
ated by generative AI, and qualitatively adjusting the prompt and instruc-
tions until the AI performs as closely to humans as possible. At this point,
we could calculate intercoder reliability measures like Cohen’s Kappa, to
Coder A (generative AI), and Coder B (you, the expert researcher). If we
have reasonable agreement, we can rest easier knowing we’ve labeled the
data in a way that generalizes. Alternatively, if we are focused on a single,
relatively rare classification, such as whether an article is “misinformation,”
or not, the process could involve just reviewing the “positive” examples and
correcting the labels where necessary.

Leveraging Generative AI for Content Analysis  99

That said, the transformative potential of generative AI in content analy-
sis is just starting to be realized. We’ve seen how LLMs can parse complex
and unstructured data, extract relevant information, and provide structured
outputs that aid in our understanding of content. The ability of these mod-
els to generate contextually aware responses allows researchers to identify
patterns and themes within data, even when the exact targets of analysis are
not known beforehand.

As we close Chapter 6, recognize that generative AI is not just a tool for
classification but a partner in the research process, capable of uncovering
insights from data that might otherwise remain hidden. Its applications in
content analysis will be vast and varied, and as we continue to harness its
capabilities, we open up new possibilities for understanding and interpreting
the complex world of human communication.

Notes

1	 I hate to admit that I am too “I, me, mine” when it comes to owning computing,
so I prefer to build my own machines and have my university host them for me.
Which, they do! Go, buffs! I own several of the cards I’ve discussed so far and
have hated trying to manage the CUDA software that goes along with them. For
that, I could write a whole separate book.

2	 More about OpenAI’s API: https://platform.openai.com/docs/api-reference.
More about Anthrophic’s API: https://docs.anthropic.com/en/docs/intro-
to-claude#api-reference

3	 For more about OpenRouter: https://openrouter.ai/docs
4	 Yes, I even used OpenAI’s GPT-4 tool to generate the quiz and essay questions

in the supplementary files that accompany this book. The use of this tool was
intended to enhance idea generation and content creation. I have edited and
reviewed the generated content.

5	 The most capable model that I have had success with is LLaMA 3’s 8B variant.
Give it a try by downloading LM Studio here: https://lmstudio.ai

6	 Access the model hub here: https://huggingface.co/models

References

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilis-
tic language model. Journal of Machine Learning Research, 3(6), 1137–1155.
https://doi.org/10.1162/153244303322533223

Bisong, E. (2019). Building machine learning and deep learning models on Google
Cloud Platform: A comprehensive guide for beginners. Apress. https://doi.org/
10.1007/978-1-4842-4470-8_7

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . .
Amodei, D. (2020). Language models are few-shot learners. arXiv. https://doi.
org/10.48550/arXiv.2005.14165

Chollet, F. (2017). Deep learning with Python. Manning Publications Co.

https://platform.openai.com/docs/api-reference
https://docs.anthropic.com/en/docs/intro-to-claude#api-reference
https://docs.anthropic.com/en/docs/intro-to-claude#api-reference
https://openrouter.ai/docs
https://lmstudio.ai
https://huggingface.co/models
https://doi.org/10.1162/153244303322533223
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165

100  The Computational Content Analyst

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. arXiv. https://doi.
org/10.48550/arXiv.1810.04805

House Permanent Select Committee on Intelligence. (2018). Exposing Russia’s effort
to sow discord online: The Internet Research Agency and advertisements. https://
intelligence.house.gov/social-media-content/

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Ges-
mundo, A., . . . & Gelly, S. (2019). Parameter-efficient transfer learning for
NLP. Proceedings of the 36th International Conference on Machine Learning, 97,
2790–2799.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quan-
tized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1), 6869–6898.

Interactive Advertising Bureau. (2017). IAB Content Taxonomy. https://www.iab.
com/guidelines/content-taxonomy/

Krippendorff, K. (2022). Content analysis: An introduction to its methodology. Sage.
Lewis, M., Zettlemoyer, L., Stoyanov, V., & Riedel, S. (2021). Retrieval-augmented

generation for knowledge-intensive NLP tasks. arXiv. https://doi.org/10.48550/
arXiv.2107.07566.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., Long,
J., Shekita, E. J., & Su, B.-Y. (2020). Scaling distributed machine learning with
the parameter server. Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation, 2014, 583–598.

NVIDIA. (2020). NVIDIA A100 Tensor Core GPU Architecture. https://www.
nvidia.com/en-us/data-center/a100/

OpenAI. (n.d.). OpenAI API. https://platform.openai.com/
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Lan-

guage models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li.,

W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140), 1–67.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kai-
ser, L., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.)
Advances in neural information processing systems, 30 (pp. 5999–6009). Neural
Information Processing Systems Foundation.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Xu, C., Le Scao, T., Gugger, S., & Rush, A. M. (2020). Trans-
formers: State-of-the-art natural language processing. In Q. Liu & D. Schlangen
(Eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations (pp. 38–45).

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker,
S., & Stoica, A. (2016). Apache Spark: A unified engine for big data processing.
Communications of the ACM, 59(11), 56–65. https://doi.org/10.1145/2934664

https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://intelligence.house.gov/social-media-content/
https://intelligence.house.gov/social-media-content/
https://www.iab.com/guidelines/content-taxonomy/
https://www.iab.com/guidelines/content-taxonomy/
https://doi.org/10.48550/arXiv.2107.07566
https://doi.org/10.48550/arXiv.2107.07566
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://platform.openai.com/
https://doi.org/10.1145/2934664

DOI: 10.4324/9781003514237-7

Chapter 7

Topic Modeling as a Lens
for Discovery

When Should We Use Topic Modeling in Content
Analysis?

As I was coming up as a doctoral student and young professor, about a
decade ago, there was a bit of hype in the mass communication literature
about “big data.”1 I’m glad the hype has died down a bit as we all know
the saying “bigger isn’t always better.” As we discussed in earlier chapters,
when we’re looking at “big data,” that doesn’t give us carte blanche to apply
black boxes to the data and call it a day. Algorithms can help us make sense
of the data by reporting commonalities—the words tend to cluster and ap-
pear together in documents across a corpus. This initial understanding is
important if our research is to be truly inductive and receptive. At the core
of the social sciences lies the imperative to listen—to allow the data to speak
and to induct themes with minimal presuppositions. This endeavor aligns
seamlessly with the principles of topic modeling. Through topic modeling,
we invite the data to unveil its hidden narratives and themes in their most
unadulterated forms.

In the past examples we’ve looked at, we have known from the start what
we’ve been looking for, incivility, political talk, items from a contextual ad-
vertising taxonomy, and so on. When items are known they are somewhat
easy to extract from the data. There are only so many words you can use
when talking about politics, and only so many insults that can be levied.
However, what if we have a collection of data we know little about? For
instance, if we have a collection of Reddit posts from a collection of subred-
dits, we may know a bit about the interests of those subreddits, but if we
had to guess at a list of common topics, we’d have to manually review the
subreddit data for hours before we even begin to make sense of the most
recent posts on these subreddits, and that would just scratch the surface if
we wanted to look at Reddit across a long period.

At the heart of unsupervised machine learning lies the concept of discov-
ery without defined parameters—sifting through unstructured data to detect

https://doi.org/10.4324/9781003514237-7

102  The Computational Content Analyst

patterns, groupings, or structures without explicit instruction. This form of
machine learning is invaluable when the researcher does not have predeter-
mined categories or labels, essentially stepping into a room with no prior
knowledge of what’s inside and allowing the contents to reveal their own story.

This statistical method discerns clusters or “topics” defined by their dis-
tinctive vocabularies. Each topic emerges through an iterative process of
comparison and correlation, resembling themes that are consistently re-
flected across numerous documents within a dataset.

Topic models, particularly Latent Dirichlet Allocation (LDA) introduced
by Blei, Ng, and Jordan in 2003, initially gained traction within the domain
of information retrieval as a sophisticated method for organizing and assimi-
lating large archives of unstructured text. Before LDA, information retrieval
systems often relied on simpler techniques such as keyword matching and
simple text queries, which could not capture the nuanced relationships be-
tween words and documents. Topic models transcended these limitations
by extracting latent thematic structures from text, thus allowing for a richer,
more contextual understanding of content.

Today, topic models have built on their early promise and have been
adapted for a vast array of applications, ranging from enhancing recommen-
dation systems that consider user interests and content semantics to analyzing
social media trends for public sentiment and cultural analytics. By revealing the
underlying themes within massive datasets, topic models are currently used in
interdisciplinary research to unveil insights in fields such as digital humanities,
computational social sciences, and bioinformatics. Moreover, topic modeling
has grown in sophistication to handle multimodal data sets, including a mix
of textual, visual, and audio information, thus providing a multi-dimensional
perspective in the automated analysis of large, diverse datasets.

The utility of topic modeling is particularly prominent in mass communi-
cation research where scholars endeavor to grasp the complexities of public
discourse as mirrored in online platforms. For instance, in the analysis of news
website comment sections, topic modeling can parse out underlying topics of
public concern or contention, such as climate change or immigration, without
the researchers imposing their own interpretive frameworks. Similarly, within
the realm of social media analytics, topic modeling can illuminate trending
conversations on social media platforms around global events, providing a
pulse on collective sentiment and attention dynamically over time. However,
there are many times when topic models are not the best method to use.

Latent Dirichlet Allocation (LDA) Topic Modeling and
Its Limitations

It is my educated guess that the most popular topic modeling approach used
in mass communication is LDA, and for many years it was the best solution
to topic modeling on big data. The mathematical equation LDA uses is

Topic Modeling as a Lens for Discovery   103

quite simple and intuitive. When authors like you or I write, we have certain
topics in mind, and we choose words that are relevant to these topics. LDA
operates under the assumption that each document is a mixture of various
topics, and each topic is characterized by a set of words that frequently occur
together. The “Latent” part of LDA suggests that these topics are hidden
or not directly observable. “Dirichlet” is a reference to the type of statistical
distribution used to model the variability in the data, which in simpler terms
helps us account for the fact that not all topics are represented equally across
documents. Some topics might be more prevalent, while others are less so.
“Allocation” refers to how words are distributed across these topics.

The true power of LDA lies in its iterative nature. With each pass through
the data, LDA adjusts its guess of where the words should be allocated. It
does this by evaluating two key probabilities: first, the probability that a
document would contain a particular topic (given the current assignment
of words to topics across all documents); and second, the probability that
a topic would contain a particular word (given the current assignment of
topics to this and all other words in the documents).

Consider a corpus of articles from various news sections—politics, sports,
entertainment, and so on. LDA doesn’t know these categories; it only sees
words. In the beginning, it might place the word “ballot” in the same topic
as “football” simply because it doesn’t know any better. However, as it iter-
ates, it notices patterns: “ballot” often appears with words like “election”
and “vote,” while “football” appears with “game” and “team.” LDA uses
these co-occurrence patterns to adjust its guesses.

The algorithm asks, “Given that ‘ballot’ appears in this document, how
likely is it that the document is about politics?” and “Given that this docu-
ment is about politics, how likely is it to contain the word ‘ballot’?” By
repeatedly asking these questions for every word in every document, LDA
refines its topics. Words that frequently appear together move towards the
same topic, while those that don’t drift apart. In essence, LDA is a method
that mirrors the inductive reasoning process, starting with broad strokes
and gradually locking in on the finer details, allowing us to uncover the
latent structures that shape the content of our textual data.

LDA and all topic modeling approaches don’t give you the final answer
but rather a set of topics that are statistically likely. It’s then up to you,
the researcher, to interpret these topics. You might find that some topics
are exactly what you expected, while others are surprising. This is where
your expertise as a social scientist comes into play, as you interpret and give
meaning to these statistical findings, weaving them into the narrative of
your research.

LDA often overlooks the nuanced and overlapping nature of language.
For example, the word “bank” could be associated with topics of finance,
river ecology, or even a collection of items, depending on the context. LDA
lacks the sophistication to discern these distinctions on its own because it has

104  The Computational Content Analyst

none of the word embeddings or natural language context that we’ve dis-
cussed with deep learning. LDA doesn’t handle polysemy well. When a sin-
gle word has multiple meanings, LDA can’t disambiguate. LDA’s statistical
nature struggles to understand context at the complexity level that human
language demands. The words themselves don’t carry semantic meaning in
the model—only their distribution does, which can lead to erroneous or
overly broad topic assignments. In practice, despite spending hours fitting
topic models with fit statistics, word distributions of topic models often
need to be cleaned up by humans by removing words that were spuriously
correlated.

Over the years I have tried to fit various LDA implementations on various
media data sets. I have been consistently reminded that topic models are not
refined classifiers like those employed in deep-learning architectures, such
as we discussed with TensorFlow. Remember, supervised machine-learning
classifiers are trained on labeled datasets and become precise scalpels. They
learn representations of data at multiple levels of abstraction, allowing them
to capture complex patterns within the text, including context and word
order—something LDA is inherently unable to do.

Imagine you are trying to understand the topics discussed in a collection
of documents, let’s say a set of news articles. You want to know which words
are important for each topic, just like in regression analysis where you find
the important predictors for an outcome variable.

Topic models, such as Latent Dirichlet Allocation (LDA), are tools that
help us figure out which words are most important to different topics within
a large collection of texts. LDA works by itself to determine how likely each
word is to be part of a specific topic. This likelihood is based on how often
words appear in relation to each other throughout all the texts we’re study-
ing. Think of these likelihoods as scores that tell us how relevant a word is
to a topic—the higher the score, the more relevant the word. It’s like re-
gression coefficients: high scores can tell us that there’s a strong connection
between two things we’re interested in.

It’s crucial to understand that topic models, while having similarities to
regression and bag-of-words classifiers, are designed for exploratory data
analysis rather than prediction. Consequently, the “coefficients” (word-topic
probabilities) of a topic model do not serve the same function as those in
more deterministic models. They don’t predict an outcome but rather de-
scribe the underlying structure of the data set, which is the distribution of
words across inferred topics.

The inherent logic of advanced machine-learning techniques like
TensorFlow-based deep-learning models is that they excel in document-level
classification tasks. This specific superiority stems from their ability to cap-
ture complex patterns, semantic relationships, and nuanced contexts within
the text-critical factors that distinguish one document class from another.

Topic Modeling as a Lens for Discovery   105

Deep-learning networks go far beyond the surface-level patterns identified
through topic modeling by leveraging multiple layers of abstraction.

TensorFlow and deep-learning architectures are also adept at handling
the idiosyncrasies of human language, including context, order, and syntac-
tical nuances, which are often pivotal for accurate classification. For exam-
ple, in sentiment analysis, the phrase “not good” within a review carries a
distinctly negative connotation—a subtlety that deep-learning models can
discern but which might elude a basic topic model like LDA unless it in-
cluded bigrams as features. Furthermore, with the ability to learn from an-
notated data, these models can adjust weightings across complex neural
networks to optimize classification performance, a feat unattainable with the
rigid, generative assumptions of LDA.

Topic Modeling as a Starting Point to Excellent
Training Data

I do not intend to downplay the value of topic modeling in the inductive
research process. As a first step, topic modeling can quickly sift through
voluminous data, providing a macro-level view that identifies clusters of
content for closer inspection. It can guide researchers by unveiling thematic
signposts and illuminating areas of interest that might benefit from further,
more granular analysis.

Nevertheless, such an initial step should not be the endpoint, unless the
study aims to explore something unknown. For instance, in this chapter,
we’ll unpack how I used topic modeling to explore commonly deleted posts
on Reddit. I argue that it’s a valid research tool because the commonly
deleted topics have not yet been uncovered and discussed in the literature.

However, we didn’t exactly do a content analysis of the data. I didn’t ac-
curately classify the prevalence of each topic, nor did I take these topics as
specific measures of scientific concepts. When we have these objectives, a su-
pervised machine-learning approach, whether it be deep or linear, is the best
way to classify the data. I often think of what my colleague once said, sum-
marizing what we do as researchers in mass communication, “really, we are
just professional bean counters,” and if that is our aim in a study, we should
do it with precise tools. However, if our aim is to act as archeologists of me-
dia data, then topic models can certainly uncover unknown commonalities.

Preliminary insights from topic modeling can inform and fine-tune deep
learning models. The broad thematic landscapes revealed by topic modeling
can expedite the preparation of labeled datasets for supervised learning or
guide researchers in crafting more targeted neural network architectures.
Imagine you wanted to separate political talk from other types of discourse
on Reddit, to further study who shares it, what types of political talk get
more engagement, and so on. We could use a database like Pushshift.io to

106  The Computational Content Analyst

pull a list of submissions from popular subreddits.2 This might entail sam-
pling a significant and diverse array of submissions across a range of poten-
tially politically active subreddits over a defined period, say a year or two.

If you were to randomly sample posts for whether they were political
or not, you would find somewhere around one out of ten posts would be
political in nature. As a content analyst, there are two downsides here. First,
you’re wasting your time reading a lot of irrelevant (non-political) content,
and you’re also creating an imbalanced training set for a deep learning al-
gorithm—something that we’re going to have to fix by essentially throwing
out a bunch of negatively classified documents in the training process, any-
way. In this case, you need the needles in the haystack. Topic modeling can
help you find them. Remember, topic models are for uncovering the broad
thematic outlines within the collected data. This step helps identify which
documents are likely to contain political conversation without yet knowing
any specifics. We can then pull documents for topics that appear to have
political words in them and scrutinize them with our own eyeballs.

From here it’s easy to scan the topics produced and filter to only topics
that are likely to contain political talk. In preparing an analytical sample,
you can include likely documents from these topics. I encourage you to also
select a random sample of 10% or so of unfiltered data to ensure you’re not
missing something. Even if your unfiltered sample is much higher than this,
by selecting from likely topics, you will drastically increase the needles in
your haystack. This will create a much better training set for your supervised
machine-learning algorithm with fewer human annotations overall.

Provided you adhere to the principles of content analysis we discussed at
the beginning of the book, and your data is labeled validly and consistently,
you now have what you need for a great supervised machine-learning algo-
rithm. Recall that supervised machine-learning algorithms have clear train-
ing, testing, and validation processes that ensure the classifier is conforming
to the documents, and this is what we are gaining by going this route over
topic modeling.

In this chapter, we’ll cover how to build a topic model with BERTopic
over traditional LDA because it utilizes contextual embeddings to capture
the semantic meaning of words. This means it surpasses the constraint of
word-frequency patterns that LDA relies on, accommodating the context
in which words appear. BERTopic is gaining popularity over LDA not only
because of its semantic awareness and flexibility but also due to its compat-
ibility with large datasets and rigorous real-world applications like this one.
It leverages the same BERT we discussed in Chapter 5. Recall that BERT’s
prowess lies in its transformation of traditional bag-of-words approaches
into something significantly more dynamic, capturing the elusive essence of
language: its context-dependent meaning.

Topic Modeling as a Lens for Discovery   107

Building a BERTopic Model on Reddit Posts

Let’s walk through a topic model I recently published. In online communi-
ties like Reddit, posts are constantly in flux, subject to the editing whims
of users and the discerning actions of moderators. We were especially cap-
tivated by the questions lurking within the deletions: Were there discern-
ible patterns that could be gleaned from the removed content? Did specific
themes emerge that pointed to broader trends in community norms or
policy enforcement? These were not questions of a binary nature, but rather
of a thematic breadth—a perfect fit for the strengths of topic modeling.
Faced with the enormity of Reddit’s data and the intricate puzzle of content
moderation, we elected to employ topic modeling as our investigative tool.

We wanted to draw a representative sample of active subreddits. To do
so, we collected the top 100 “safe for work” subreddits as calculated by
redditlist.com. This list broadly represented subreddits that were known to
have relatively high levels of recent activity. To avoid seasonality issues, we
sampled a two-year period from January 1, 2021, to December 31, 2022.
With these research questions in hand, we trained our topic model on a set
of posts that were deleted, as evident from the metadata inside of the post.

We chose BERTopic for its ability to isolate topics within large text cor-
pora by leveraging contextual embeddings, providing a depth of under-
standing beyond the reach of mere frequency counts that traditional models
like LDA rely on. As we employed BERTopic to unravel the hidden threads
within the deletions, we hoped to illuminate the subtle contours of topics
that recurred within the removed content. The idea was not only to catalog
these topics but to engage with them, to understand the implicit rules and
spoken silences of the Reddit ecosystem.

The code provided in this chapter’s notebook creates a “represen-
tation_model” that is “KeyBERTInspired” (Grootendorst, 2020).
The term “KeyBERTInspired” suggests that the representation model is
influenced by KeyBERT, a keyword extraction algorithm that leverages
the BERT language model. Recall that BERT is designed to understand
the context of words in a sentence by looking at the words that come before
and after, rather than in isolation (Devlin et al., 2019). We then initialize
a “BERTopic” object, passing our representation model as an argument to
tailor the topic discovery process. Once our model is set up, we feed it our
“posts” list. The “fit_transform” method trains the model on our data
and assigns each document in “posts” to its most probable topic, return-
ing two arrays: “topics” and “probabilities.” The former gives us the
topic for each document, while the latter gives us the probability of each
document belonging to its assigned topic—a measure of how confidently
the model believes the assignment is correct (Blei et al., 2003).

108  The Computational Content Analyst

This process, as coded, embodies the very essence of topic modeling—it
is the critical algorithmic step where patterns are detected, themes emerge,
and the veil of large-scale data complexity is lifted. The resulting topics form
a base on which further qualitative and quantitative analyses can build, paint-
ing a clearer picture of the vast landscape of Reddit’s moderated content.

Interpreting Topics with Generative AI

Topic models like BERTopic are adept at grouping words statistically, but
they do not inherently provide insights into what these groups represent in
human terms. It’s akin to presenting someone with a bag of puzzle pieces
without the picture on the box—recognizably part of some whole but lack-
ing coherent meaning. To remedy this, a qualitative review of the docu-
ments will unlock meaning for the researcher, but again when we consider
very large datasets, manually reading a representative sample of documents
from each topic in a dataset may be too arduous. In these situations, gen-
erative AI can reconstruct the image on the box, synthesizing a coherent
picture from the disparate pieces.

Most topic models are entitled with the top n number of words that rep-
resent that topic. While we may be able to see a set of words and infer the
meaning in a qualitative sense—it is easy to infer what topic “musk,” “twit-
ter,” and “advertisers” are about for instance—other topics may be broader
and therefore obtuse to an immediate meaning.

As I’ve mentioned, generative AI is good at summarizing long things,
like video transcripts, textbooks, and so on. As such, in our study, we fed
large samples of Reddit posts from each topic to the generative AI model
GPT-4 and tasked it with interpreting the topics identified by BERTopic, in
a process reminiscent of a qualitative coding session. The generative model’s
capability to generate human-like text was directed to produce descriptions
and narrations that encapsulate the essence of each topic, which you can
find in Appendix 1. I include them because I think they show just how well
these models can understand and summarize large corpora.

Print major topics and their associated words
topic_words = topic_model.get_topic_info()
topic_terms = topic_words[‘Representation’]
topic_docs = topic_words[‘Representative_Docs’]

all_topic_notes = {}
for i, a_topic in enumerate(topic_terms):
topic_text = str(“%s %s” % (a_topic, topic_docs[i]))
response = gpt4_query(topic_text, 0, 50)
responses = response.split(<TAB>“)
print(“---------------------------”)
for a_response in responses:
print(a_response)

Topic Modeling as a Lens for Discovery   109

all_topic_notes[i] = responses

In the code, “get_topic_info” extracts the words and documents
associated with each topic generated by BERTopic. These are used to
construct prompts for the generative AI model. The “for” loop iterates over
these topics and documents, crafting a string that encapsulates both. This
string is then passed to GPT-4, which processes the information, provides
a human-readable summary of the topic’s contents, and posits reasons why
such topics may frequently be deleted by users or moderators.

These AI-provided descriptions and speculations fundamentally bridge
the gap between statistical analysis and human understanding. The AI’s out-
put is not just a compilation of words but a crafted narration that captures
potential community norms, editorial processes, and cultural contexts—an
interpretation that is easy for humans to engage with and scrutinize further.

Moreover, GPT-4’s ability to work with complex and nuanced language
means that it can handle the subtleties and ambiguities inherent in human
discourse. Its output provides a rich qualitative understanding that not only
identifies what the topics are about but also explores and provides pos-
sible reasons as to the “why”—why these posts may have been deleted or
moderated.

By integrating generative AI into the analytical process, we transformed
the quantitative data from BERTopic into narratives and interpretations that
could then be reviewed, questioned, or corroborated by human researchers.
This symbiosis of machine learning’s computational power and generative
AI’s linguistic agility illustrates a powerful new paradigm for qualitative data
analysis in the digital age.

To produce a similar workflow, you’ll need a set of OpenAI API keys,
which is necessary to authenticate and authorize interactions with OpenAI’s
services.3

openai.api_key = ”your-api-key”

Next, we define a function “gpt4_query” that takes a string of text “news_
article_text” and a temperature setting for randomness “a_temp.” In
content analysis, setting the temperature parameter to 0 when using LLMs
ensures that the output is deterministic and consistent. This is crucial for
maintaining the reliability and validity of the analysis, as it eliminates the
variability and unpredictability in the responses that a higher temperature
setting would introduce. By using a temperature of 0, researchers can be
more confident that the AI’s output is based solely on the most likely re-
sponse given the input data, without the influence of randomness that could
skew the analysis. We also specify a maximum token limit “max_tokens”
to control the length of the generated content, as we don’t want the AI to
ramble on forever.

110  The Computational Content Analyst

def gpt4_query(news_article_text, a_temp, max_tokens):
Instructions and codebook designed for guidance of the AI
query = [
{“role”: ”system”, ”content”: ”You are an expert qualita-
tive researcher. ”},
{“role”: ”user”, ”content”: ”%s” % CODEBOOK},
{“role”: ”user”, ”content”: ”%s” % news_article_text},
{“role”: ”user”, ”content”: ”%s” % INSTRUCTIONS},
]

Attempt to retrieve a response from GPT-4 with retry log-
ic for potential rate limits or API errors
for attempt in range(20):
try:
response = openai.ChatCompletion.create(model=“gpt-4”,
temperature=a_temp, messages=query, max_tokens=max_tokens)
response_text = response[‘choices’][0][‘message’][‘content’]
return response_text
except (openai.error.RateLimitError, openai.error.APIError)
as e:
if attempt < 19:
print(f”{type(e).__name__}: {e}. Retrying in {2 ** attempt}
seconds . . . ”)
time.sleep(2 ** attempt)
else:
print(f”{type(e).__name__}: Maximum retries reached. Giving
up.”)
raise

The “gpt4_query” function includes a query that contains a set of instruc-
tions for the AI; this is where you need to spend the most of your time. This
is our codebook, and it will be followed quite literally, for better or worse.
The query we are creating here is essentially modeled as a chat session that
you could have with ChatGPT, LLaMA 3, or any of the models available
on the Huggingface model library. Note the messages that specify the role
(either “system” or “user”) and associated content. The “system” message is
used to set the context, indicating that the AI should act as “an expert quali-
tative researcher.” The “user” messages include the provided “CODEBOOK”
for context, the text to analyze “news_article_text”, and the “INSTRUC-
TIONS” to guide the AI’s response.

In the main loop, the code builds up an “all_topic_notes” dictionary
to store the AI-generated responses:

all_topic_notes = {}
for i, a_topic in enumerate(topic_terms):
topic_text = str(“%s %s”% (a_topic, topic_docs[i]))
response = gpt4_query(topic_text, 0, 50)

Topic Modeling as a Lens for Discovery   111

responses = response.split(“<TAB>“)
print(“---------------------------”)
for a_response in responses:
print(a_response)
all_topic_notes[i] = responses

The loop iterates over the topics, sending each as input to “gpt4_query”
and processes the output by splitting it with “<TAB>.” This is because the
GPT-4 response structure is expected to follow a format where the sum-
mary is followed by “<TAB>” and then a speculated reason for content dele-
tion on Reddit. These results are printed and stored for further use.

Finally, once all the responses are gathered and stored, they are later used
to visualize topics and possibly refine the results:

pickle.dump(posts, open(“%s/all_topic_notes.p” % WORKING_
DIR, ’wb’))
Visualization functions are called to plot the topics in
different ways
topic_model.visualize_topics()
topic_model.visualize_hierarchy(top_n_topics=50)

This part of the code saves the “all_topic_notes” to a pickle file and then
calls visualization methods provided by BERTopic to scrutinize the model’s
topic clusters visually.

Appendix 1 provides a fascinating lens through which we can view the
often invisible forces that shape discourse within the diverse ecosystem of
Reddit. The generative topic summaries muster a narrative far richer than
what one might extract from a barren list of words typically associated with
each topic. Words without context serve as mere signposts, indicating po-
tential directions but not the nature of the journey taken, or the destina-
tion reached. For instance, a raw collection of words drawn from topics
related to “financial and economic topics”—cryptocurrency, stocks, invest-
ment—lacks the dimensionality to convey the underlying reason for a post’s
deletion, such as the propagation of questionable investment advice or the
potential harm from misinformation.

On the other hand, the generative topic summaries incisively cut to the
core of the matter. They delineate not only the essence of the deleted con-
tent but also the implicit societal, communal, and normative considerations
underpinning such action. For instance, when we read that a post about
“sensitive or distressing content” is deleted, we understand it’s not merely
the topic that’s at issue, but the potential emotional impact and spread of
fear that’s flagged as problematic (Chancellor et al., 2016).

Consider the contrast between the unembellished topic words “meme,
joke, humor” and the enriched understanding provided by the summary
explaining these are often deleted due to their low-quality or non-contributive

112  The Computational Content Analyst

nature to meaningful discussions. The AI-transformed topic summary might
read: “Removed Content: Frivolous Humor—Content generating more noise
than insight, falling short of communal aspirations for substantive dialogue.”

Furthermore, the AI’s qualitative summaries render otherwise abstract
concepts—such as “privacy concerns” or “inappropriate content”—into
tangible illustrations of community dynamics. A human analyst might inter-
pret a cluster of words like “HIV, transmission, sexual content” with clinical
detachment, but when it’s captured in the generative summary, it reveals
concerns about potential misinformation and user safety that resonate on a
more human level.

These narrative-rich insights provide an accessible foundation for further
investigation. They serve as the qualitative bedrock from which one could,
for instance, draft precise guidelines for content moderation or ethical consid-
erations in community management. In comparison to the raw topic words,
the generative summaries offer a bird’s-eye view of the social and emotional
landscapes that online communities navigate, emphasizing the importance of
interpreting data not just scientifically, but also humanely and ethically.

Summing Up Topic Modeling’s Role in Content
Analysis

Topic modeling emerges as both a lantern illuminating the vast and often
chaotic expanse of media data and a tool whose efficacy is contingent on
the contours of the research landscape. It’s a quintessential example of the
power and limitations inherent in unsupervised machine-learning meth-
ods—capable of drawing out patterns from the noise but constrained by the
very assumptions that underpin its statistical foundations (Blei et al., 2003;
Griffiths & Steyvers, 2004).

The very nature of topic modeling—that of a blunt instrument rather
than a scalpel—can also be a limitation. The topics generated, while direc-
tionally valuable, may lack the precision required for nuanced analysis or the
construction of predictive models. For instance, in settings where the ob-
jective is to make fine-grained distinctions between document classes, such
as identifying sentiment or specific content types like political rhetoric, the
unsupervised nature of topic modeling usually falls short. Here, the rough
thematic brushstrokes painted by LDA or even BERTopic, in my experi-
ence, fail to capture the subtleties needed for high-stakes decisions, such as
nuanced content recommendations or the identification of harmful content
meriting removal (DiMaggio et al., 2013).

Moreover, topic modeling, for all its virtues, cannot single-handedly
bridge the gap between detecting topics and understanding them. The in-
terpretative leap from a cluster of words to a thematic narrative requires a
qualitative touch that must be conducted with humans in the loop, and
those humans must provide qualitative scrutiny and nuanced contexts.

Topic Modeling as a Lens for Discovery   113

Thus, as an initial step in a larger research design, topic modeling can
demystify large-scale data, guiding subsequent, more refined analyses. It is a
tool for researchers to wield when the journey begins with questions rather
than answers when the paths through the textual woods are numerous and
the possibility of discovery is boundless. Yet, as the journey advances toward
the specific and the defined, researchers need to step beyond the threshold
that topic modeling provides and delve into more targeted and supervised
machine-learning techniques.

Notes

1	 As I put forward earlier in this book, “big data,” in terms of a content analysis, is
a corpus of data that is too big for a team of researchers to review a representative
sample of.

2	 Due to changes in reddit’s data policies, Pushshift is unavailable for academic
research as of March, 2023, but archives of data persist: https://academictorrents.
com/details/89d24ff9d5fbc1efcdaf9d7689d72b7548f699fc

3	 To get started with OpenAI and obtain an API key, you’ll first need to create an
account on the OpenAI website. Visit https://platform.openai.com/ and sign
up for an account by providing your email address and creating a password. Once
your account is set up, you can access the API section from your dashboard, where
you can apply for an API key. OpenAI will guide you through the process, which
may include agreeing to terms of service and possibly providing payment informa-
tion if you’re subscribing to a paid tier of service. After completing these steps,
you’ll be issued an API key, which you can use to authenticate your applications
and start interacting with OpenAI’s suite of AI tools and models.

References

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Jour-
nal of Machine Learning Research, 3, 993–1022. http://www.jmlr.org/papers/
volume3/blei03a/blei03a.pdf

Chancellor, S., Pater, J. A., Clear, T., Gilbert, E., & De Choudhury, M.
(2016). #thyghgapp: Instagram content moderation and lexical variation in
pro-eating disorder communities. Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing, 1201–1213. https://
doi.org/10.1145/2818048.2819963

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. arXiv. https://doi.
org/10.48550/arXiv.1810.04805

DiMaggio, P., Nag, M., & Blei, D. (2013). Exploiting affinities between topic
modeling and the sociological perspective on culture: Application to newspaper
coverage of U.S. government arts funding. Poetics, 41(6), 570–606. https://doi.
org/10.1016/j.poetic.2013.08.004.

Grootendorst, M. (2020). KeyBERT: Minimal keyword extraction with BERT. The
Journal of Open Source Software, 5(52), 2455<AQ: page span?>.

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of
the National Academy of Sciences, 101(Suppl 1), 5228–5235. https://doi.org/
10.1073/pnas.0307752101

https://academictorrents.com/details/89d24ff9d5fbc1efcdaf9d7689d72b7548f699fc
https://academictorrents.com/details/89d24ff9d5fbc1efcdaf9d7689d72b7548f699fc
https://platform.openai.com/
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://doi.org/10.1145/2818048.2819963
https://doi.org/10.1145/2818048.2819963
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1016/j.poetic.2013.08.004
https://doi.org/10.1016/j.poetic.2013.08.004
https://doi.org/10.1073/pnas.0307752101
https://doi.org/10.1073/pnas.0307752101

DOI: 10.4324/9781003514237-8

Chapter 8

Extending Deep Learning to
Image Content Analysis

In mass-media research, the profound influence of images on public con-
sciousness and discourse is increasingly acknowledged. Moreover, as more
digitally capturable experiences like the metaverse come to life, there will be
more opportunities to capture and annotate these experiences. As potent
conveyors of meaning, sentiment, and ideology, images not only transcend
linguistic and cultural barriers but also play a pivotal role in shaping narra-
tives and perceptions (Messaris, 1997).

As we can analyze and label text using machines, so can we with images.
Really, that’s the only other medium I can think of that we need to analyze
from a mass-media perspective. What about video? Videos are but many
images, and while there are new multi-modal models that handle video di-
rectly, they still are yet to be as accessible as image AI.

What about audio? Audio can be transcribed to text using free tools like
OpenAI’s Whisper.1 While currently, we may lose things like music, and the
context in which the audio is occurring (e.g., a live concert, a boardroom,
at a park), we can easily extract the information from audio and make it text.

Therefore to close this book I have chosen to explore how vision AI can
be harnessed to decode the complex interplay of visual elements, offering
researchers a powerful tool to quantify and interpret the subtle nuances that
influence public opinion, media effects, and consumer behavior (Zhao et al.,
2019).

Neural Networks and Images

Shockingly, I haven’t had to explicitly talk about neural networks yet in this
book. At the heart of supervised deep learning lies the concept of neural
networks, which are computational models designed to recognize patterns
in data through a process that mimics the way human brains operate (LeCun
et al., 2015). Neural networks consist of layers of interconnected nodes, or
neurons, each of which processes input data and contributes to the network’s

https://doi.org/10.4324/9781003514237-8

Extending Deep Learning to Image Content Analysis  115

output. Deep learning is almost always preferred when trying to classify im-
ages, because, unlike text, image features are hard to extract. While we can
easily interpret the meaning of words, the meanings behind the pixels and
bytes of an image, or a series of images (e.g., a video), are much more dif-
ficult. In a deep-learning problem designed to classify images, the first layer,
known as the input layer, receives the raw data, which, in the context of im-
age analysis, typically comprises pixel values of images. Subsequent hidden
layers extract features from this data, and the final layer, or the output layer,
provides the results of the analysis, such as the classification of images into
different categories based on their content (Goodfellow et al., 2016).

As we discussed with TensorFlow and Keras earlier, in deep learning the loss
function serves as a measure of how well the neural network is performing. It
calculates the difference between the network’s predictions and the actual data,
guiding the adjustment of the network’s weights through a process known as
backpropagation (Rumelhart et al., 1986). By iteratively minimizing the loss
function during training, the neural network learns to improve its predictions,
becoming more adept at analyzing and interpreting image data.

Datasets for Image Content Analysis

Global Database of Events, Language, and Tone (GDELT) stands out to me
as an invaluable resource for analyzing image content from different news
media sources around the web (Leetaru & Schrodt, 2013). Its automated
data-crawling techniques are very useful to mass-communication researchers.
Due to copyright restrictions. it cannot give researchers the text of articles;
however, it does provide all the hyperlinks to images it finds in news stories.

That means GDELT is a historical archive of news article images.2 I’ve
been using it to analyze and capture news-media images for social science
research. This collection is particularly useful for researchers interested in
the visual framing of news and the portrayal of events across different cul-
tures and media outlets. The visual data available in GDELT can be used to
track the evolution of news stories, identify patterns in media coverage, and
analyze the impact of visual representations on public perception (Kwak &
An, 2016). For instance, by applying image recognition algorithms to this
dataset, one can quantitatively assess the prevalence of certain visual themes
or subjects in news media over time.

The Internet Archive serves as a digital library, offering a historical
archive of web pages and their associated media, including images. For
researchers, this represents a treasure trove of historical web imagery
that can be used to study the evolution of internet culture, web design
trends, and the role of imagery in online communication. By examining
these historical images, scholars can gain insights into the visual dimensions

116  The Computational Content Analyst

of past online discourses, the aesthetics of information presentation, and
the shifts in cultural preferences over the years. The temporal depth of
the Internet Archive’s collection allows for longitudinal studies, which are
essential for understanding changes in visual communication strategies on
the web (Brügger, 2018).

Contemporary social media imagery, on the other hand, provides a
window into current societal values, interests, and behaviors. Platforms like
Pinterest and others that offer open APIs enable researchers to access a wide
array of user-generated images that reflect contemporary culture. These
images can be analyzed to discern patterns in visual self-representation,
branding strategies, and the diffusion of visual memes. Social media platforms
are particularly relevant for studying the role of images in peer-to-peer
communication and the viral spread of visual content. By leveraging these
APIs, researchers can create datasets that are not only large in scale but also
diverse in representation, encompassing a multitude of user demographics
and cultural backgrounds (Highfield & Leaver, 2016).

Kaggle, an online community of data scientists and machine-learning
practitioners, offers a plethora of datasets that are primed for immediate use
in research. These datasets often include a wide range of image categories,
such as those found in news articles or disseminated via social media plat-
forms. The inherent value in utilizing a dataset from Kaggle lies in its readi-
ness for analysis, often accompanied by pre-assigned labels that delineate the
content of the images across various categories. This pre-processing of data
is a significant boon for researchers, as it circumvents the labor-intensive pro-
cess of manual labeling, thereby accelerating the research workflow. How-
ever, when selecting a dataset from Kaggle for image content analysis, it is
also essential to consider the diversity and representativeness of the image
samples. Mass communication is a field that thrives on the examination of
varied perspectives and contexts. Hence, a dataset that encompasses a broad
spectrum of image sources, geographical locations, and cultural contexts will
likely yield more generalizable and insightful findings (Zook et al., 2017).

High-Level Python Packages for Image Analysis

Once you have a large collection of images, it is indeed possible to use
deep-learning models, particularly TensorFlow’s Keras API3 and PyTorch’s
torchvision to label images. Both of these abstract much of the complexity
inherent in model building and training. Keras simplifies tasks such as the
construction of neural layers, activation functions, and optimizers, allowing
for the rapid prototyping of computational models. Moreover, its compre-
hensive set of pre-trained models and weights can be leveraged for applica-
tions such as classification, segmentation, and feature extraction in image
analysis tasks, significantly reducing the time and effort required for model
development and training (Chollet, 2018).

Extending Deep Learning to Image Content Analysis  117

Parallel to TensorFlow’s Keras is PyTorch’s torchvision, a package that
consists of popular datasets, model architectures, and common image
transformations for computer vision. PyTorch, developed by Facebook’s
AI Research lab, is an open-source machine learning library based on
the Torch library and is used for applications such as natural language
processing. Torchvision, specifically, extends PyTorch’s capabilities to the
realm of image processing. It provides a rich collection of pre-trained
models that have been proven effective for various image-related tasks,
such as object detection and classification. These models can be seamlessly
integrated into existing codebases, allowing for the flexibility and ease of
use that is crucial for research experimentation and prototyping (Paszke
et al., 2019).

Evaluating Image Classification Models

Leveraging our understanding of precision and recall from the context of
text model evaluation, we can apply these metrics to the domain of im-
age classification with similar objectives. In image classification, precision
remains a measure of the model’s accuracy in predicting positive instances,
while recall indicates the model’s ability to capture all relevant instances
within the dataset. The balance between these two metrics is often repre-
sented by the F1 score (Powers, 2011).

In Python, using libraries such as scikit-learn, we can easily compute
these metrics for image classification models. The “precision_score,”
“recall_score,” and “f1_score” functions from the “metrics” module
allow us to quantify the performance of our models succinctly (Pedregosa
et al., 2011). Here’s a brief example of how one might calculate these
metrics:

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_true, y_pred)

To interpret the matrix, consider that the diagonal elements represent the
number of points for which the predicted label is equal to the true label,
while off-diagonal elements are those that are mislabeled by the classifier.
The higher the diagonal values relative to the off-diagonal values, the better
the model’s performance.

To calculate precision and recall, one can use the “precision_score”
and “recall_score” functions from scikit-learn:

from sklearn.metrics import precision_score, recall_score
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)

118  The Computational Content Analyst

Remember that the F1 score is the harmonic mean of precision and recall,
providing a single score that balances the two metrics. It is particularly use-
ful when seeking a balance between precision and recall, and there is an
uneven class distribution (large number of actual negatives). The F1 score
can be computed using the “f1_score” function:

from sklearn.metrics import f1_score
f1 = f1_score(y_true, y_pred)

Ethical and Practical Considerations in Image Analysis

The advent of sophisticated image-recognition models is tangible. How-
ever, these models are not without their ethical quandaries and practical
limitations. A particularly poignant aspect of this discourse involves the bi-
ases inherent in image recognition systems (Buolamwini & Gebru, 2018).
These biases can have far-reaching consequences, including altering how
your data are labeled in a content analysis.

The X image cropping controversy serves as a case study highlighting
the practical implications of such biases. In 2020, X users noticed that the
platform’s automatic image-cropping algorithm seemed to favor the faces of
white individuals over those of black individuals (Chowdhury, 2021). This
sparked widespread concern and debate over the biases embedded within
the algorithm. X’s cropping tool used machine learning to determine the
most “interesting” part of a picture to display in a user’s feed. However,
due to biased training data or flawed algorithmic design, the tool exhibited
a preference for lighter-skinned individuals, raising serious ethical questions
about fairness and representation in automated systems.

In terms of a content analysis, we can liken this to a spurious correlation.
If more images that were deemed “interesting” had white faces than black,
over time, a supervised machine-learning algorithm will lock on to that fea-
ture. Because our features in image AI are lazy in a sense, meaning specifically
that we extract them automatically without much supervision or intuition,
these biases are especially easy to occur (Zou & Schiebinger, 2018).

Another area where biases in image recognition models have profound
ethical implications is in the use of facial recognition technology for law
enforcement and surveillance. Studies have revealed that some facial rec-
ognition systems have higher error rates when identifying individuals from
certain racial and ethnic backgrounds (Garvie et al., 2016). This discrepancy
raises concerns about racial profiling and the potential for these systems to
exacerbate existing social inequalities. For instance, if a facial-recognition
system is more likely to misidentify people of color, it could lead to a dis-
proportionate number of false accusations or unwarranted scrutiny for these
communities.

Extending Deep Learning to Image Content Analysis  119

The consequences of such biases are not merely theoretical but have tan-
gible impacts on individuals’ lives and society at large. Biased image recogni-
tion models can perpetuate stereotypes, reinforce discriminatory practices,
and erode the trust necessary for the successful deployment of these tech-
nologies. Therefore, addressing these biases is not only a technical challenge
but also a moral imperative (Crawford & Calo, 2016).

Researchers and developers are exploring various strategies to mitigate bias
in image recognition models. These include diversifying training datasets,
implementing algorithmic audits, and developing more inclusive design
practices (Gebru et al., 2018). By incorporating a broader spectrum of human
diversity into the development process, the aim is to create image-recognition
systems that are fairer and more representative of the global population.

Engagement with stakeholders, including those from marginalized com-
munities, is essential in this process. Their perspectives can inform the de-
sign and implementation of image-recognition systems, ensuring that these
technologies serve the needs of a diverse society. Through interdisciplinary
collaboration, the integration of ethical considerations into the technical
development of image recognition models can be achieved, leading to more
equitable outcomes (Eubanks, 2018).

In the realm of mass-communication research, the examination of biases
in image analysis is not only a technical issue but also a reflection of broader
societal values and power dynamics. The case studies of X’s image cropping
algorithm and racial profiling in facial recognition underscore the importance
of vigilant and ongoing scrutiny of these technologies. As image-recognition
models continue to permeate various aspects of society, it is imperative to
confront the ethical and practical challenges they pose, ensuring that these
powerful tools do not become instruments of injustice (Noble, 2018).

Humans in the Loop

As we wind down this book, I hope one central theme I have put forward to
you is the necessity for a human in the loop, the human coder in the content
analysis. You must validate machine-learning models. It is a recognition that,
despite the leaps in artificial intelligence, human oversight remains indispen-
sable, particularly when it comes to the nuanced and context-dependent
task of content analysis (Holstein et al., 2019).

Remember, codebooks are structured guides that provide clear defini-
tions and examples for each category or theme that a model is intended
to detect within images. These documents serve as the backbone of con-
tent analysis, offering a transparent and standardized framework that guides
both human coders and machine learning algorithms (Neuendorf, 2017).
We must evaluate our machine-learning algorithms against the codebook
and treat it as if it were a human coder in a traditional content analysis.

120  The Computational Content Analyst

Guidelines for Incorporating Humans in the Loop

Data Annotation

Before a model can be trained, it requires a dataset labeled with the correct
annotations. As we discussed in Chapter 1, human coders are involved in this
initial phase to provide these annotations, which serve as the ground truth
for the model (Russakovsky et al., 2015). Annotators use the codebook as
a reference to ensure consistency and accuracy in labeling. The sample size
for annotation depends on the complexity of the task and the diversity of
the dataset. A common practice is to start with a small but representative
subset of the data, which can be gradually expanded. For instance, annotat-
ing several hundred to a few thousand images may provide a sufficient basis
for initial model training, depending on the variability within the dataset.

Model Training Oversight

As the model is being trained, human reviewers should periodically check its
performance against a validation set—a portion of the data reserved for test-
ing the model’s interpretations (Amershi et al., 2019). This involves review-
ing the model’s predictions and comparing them to the human-provided
annotations. The reviewers correct any misclassifications, providing feed-
back that can be used to further train and refine the model. This iterative
process continues until the model achieves a satisfactory level of accuracy
and reliability.

Limitations of Image AI

One of the principal limitations in the current landscape of automated-image
analysis is the issue of generalizability. Deep-learning models, especially
those trained on large datasets, have demonstrated proficiency in recog-
nizing and classifying images within the contexts in which they have been
trained. However, the performance of these models often deteriorates when
applied to new datasets or real-world scenarios that differ from the training
environment (Torralba & Efros, 2011). This lack of generalizability can be
attributed to overfitting, where models learn to perform exceedingly well
on the training data, but fail to maintain that performance on unseen data.

Another concern that warrants attention is the interpretability of
automated-image analysis models. Despite their efficacy, many deep-learning
models remain opaque, often described as “black boxes” due to the diffi-
culty in understanding how they arrive at specific outputs (Castelvecchi,
2016). This opacity is problematic, particularly in fields where understand-
ing the decision-making process is crucial, such as in medical diagnostics or
autonomous driving, but it also has implications for content analysis. The

Extending Deep Learning to Image Content Analysis  121

interpretability of these models is not merely a theoretical concern but a
practical one, as it affects trust and adoption by end-users who must rely on
the decisions made by these systems. Hence, there is a growing demand for
models that are not only accurate but also explainable, where the reason-
ing behind their conclusions can be comprehensively understood by humans
(Ribeiro et al., 2016). For content analysis, this means we can’t easily diagnose
mis-classifications, or understand why our images are being labeled correctly.

The black-box nature of deep-learning models also raises ethical consid-
erations, especially in terms of accountability and bias. The inability to fully
dissect and comprehend the decision-making process of these models can
lead to situations where biases present in the training data are perpetuated
and amplified without the ability to easily identify or correct them (O’Neil,
2016). This can result in discriminatory practices when applied to real-world
scenarios, such as facial-recognition technologies exhibiting racial or gender
biases. In these ways, our models, too, may misclassify our data.

Addressing these ethical dilemmas requires a concerted effort to design
models that are transparent and equitable, with mechanisms to identify and
mitigate biases within the algorithms. For us as content analysts, it doubles
the importance of humans in the loop. The only way we can detect these
issues is with a human qualitative review.

Considering these challenges, the field of automated-image analysis
stands at a pivotal juncture. As researchers and practitioners continue to
push the boundaries of what is possible with deep learning, it becomes in-
creasingly important to balance the pursuit of accuracy and efficiency with
the need for generalizable, interpretable, and ethical models. The future di-
rections of this field must include concerted efforts to develop methodolo-
gies that not only enhance the performance of these systems but also ensure
their reliability and trustworthiness in the diverse applications they serve
(Doshi-Velez & Kim, 2017). This will likely involve interdisciplinary col-
laborations, bringing together expertise from computer science, cognitive
science, ethics, and domain-specific knowledge to create holistic solutions
that address these multifaceted challenges.

Image-to-Text AI

I’d like to close the book with one final example of a method I think is ripe
for scholars wanting to study images in a communication context. Imag-
ine an image from a sports article depicting a female athlete in mid-stride,
sprinting down the track with a determined expression. The background
is a blur, emphasizing her speed. This image could be analyzed using
Google’s Vision AI to extract labels that describe the content (Google
Cloud, 2021). Google’s Vision AI might return labels such as “athlete,”
“running,” “track and field,” “competition,” “female,” and “motion.” These

122  The Computational Content Analyst

labels provide a high-level understanding of the image content, which can
be used for categorizing images, searching for specific types of visual con-
tent, or analyzing trends in sports media representation.

Google’s Vision AI is a powerful tool that allows developers to under-
stand the content of an image using machine-learning models. It can detect
objects, read printed and handwritten text, and even provide insight into
the emotional content of the image. The cost of using Google’s Vision AI
depends on the number of requests made to the service. Google offers a
free tier with limited usage and then charges per 1,000 requests beyond that
limit (Google Cloud Pricing, 2021).

Talking to Images with OpenAI’s Vision AI

Google’s pre-trained models work well and are massive, but in using a tool
like this, we would need to accept that the labels the model returns are
predetermined by Google, meaning we can’t create our own labels that per-
fectly match our concepts. Also, if we find that Google’s Vision AI is not
precise enough or has too low of recall, we cannot “fine tune” the vision
AI to perfectly fit our problem, like we can with large language models
(Radford et al., 2021). OpenAI’s new vision API introduces a novel way of
“chatting” with images. Unlike traditional image-recognition services that
return predefined labels, OpenAI’s Vision AI allows users to engage in a
dialogue with images by asking specific questions. This conversational ap-
proach provides a more nuanced understanding of the visual content and
can be tailored to the context of the image (OpenAI, 2021).

In the context of mass-communication research on gender and sport,
researchers such as Cooky et al. (2013) in their study “Women Play Sport,
But Not on TV: A Longitudinal Study of Televised News Media” examined
the representation of female athletes in media. They were particularly inter-
ested in the portrayal of women in sports imagery, differentiating between
images that depict female athletes in action, which emphasize their ath-
letic competence, and those that portray them in passive or sexualized ways,
which can undermine their athletic achievements.

Drawing from the conceptual definitions provided by Cooky et al.
(2013), OpenAI’s Vision AI can be prompted to classify images with more
nuanced questions. For example, instead of a binary action/glamorous shot
distinction, the prompts could be refined to ask, “Does this image depict
the female athlete actively engaged in a sporting event?” and “Does this im-
age portray the athlete in a manner that emphasizes non-sporting attributes
such as physical attractiveness?”

By aligning the prompts with the specific research questions and concep-
tual definitions from the literature, OpenAI’s Vision AI can provide labels
that are directly relevant to the study’s focus. This approach ensures that the

Extending Deep Learning to Image Content Analysis  123

automated-image analysis is grounded in established academic frameworks
and can contribute meaningful data to the discourse on gender representa-
tion in sports media.

GDELT: A Conceptual Overview for Image Content
Analysis

The Global Database of Events, Language, and Tone (GDELT) is an ex-
pansive repository that monitors the world’s broadcast, print, and web news
from nearly every corner of every country in over 100 languages. It uses ad-
vanced natural language processing, machine learning, and human curation
to create a structured database that captures a wide array of events, images,
and narratives (Leetaru & Schrodt, 2013). Researchers can leverage GDELT
to analyze trends in news coverage, including the visual portrayal of politics.

In our final notebook, to focus our analysis on images related to politics,
we can filter GDELT data for articles that mention politics by GDELT’s
pre-baked notion of themes. It’s a broad measure, but can quickly weed out
irrelevant news articles. This targeted approach increases the likelihood of
capturing images that are relevant to our research interest. In the notebook,
I use OpenAI’s Vision AI to get image descriptions that I could then parse
into several codes in a codebook.4

Conclusion and Future Directions

As we peer into the horizon of automated-image analysis technologies, it is
evident that the field is poised for significant advancements that promise to
reshape the landscape of mass-communication research. The rapid evolu-
tion of unsupervised learning algorithms presents a particularly intriguing
development. These algorithms have the potential to autonomously discern
patterns and features in image data without the need for human-annotated
training sets. This advancement could lead to a transformative reduction
in the time and resources required to process and analyze large volumes of
image content, thereby enabling researchers to tackle datasets of a scale pre-
viously deemed unmanageable. Remember, humans in the loop are always
necessary; we must review these labels to ensure they are of quality.

These anticipated developments in automated-image analysis technolo-
gies, however, are not without their challenges. The ethical considerations
surrounding the use of artificial intelligence in analyzing image content,
particularly regarding privacy and bias, require careful consideration. Fur-
thermore, the interpretive nuances that human analysts bring to the table
cannot be fully replicated by algorithms, underscoring the need for a bal-
anced approach that leverages the strengths of both human expertise and
computational efficiency.

124  The Computational Content Analyst

As the field of automated-image analysis matures, it is incumbent upon
researchers to remain vigilant to these challenges, fostering a research envi-
ronment that not only embraces technological innovation but also upholds
the ethical standards and critical thinking that are the hallmarks of rigor-
ous academic inquiry. The journey ahead is one of both excitement and
responsibility, as we navigate the complex interplay between technological
possibilities and the imperatives of sound, ethical research practices in the
realm of mass communication. In future versions of this book, I’ll be sure to
focus more on images and video classification, as there are sure to be more
innovations in the days to come.

With that, I close this book with an unbounded sense of optimism. While
we are living in a world that is recording more media data than ever, we are
now seeing for the first time that labeling and making sense of that data is
more attainable than ever, even when that data is “big data.”

Notes

1	 OpenAI’s Whisper is a deep-learning algorithm that has been trained to take
audio and generate amazing transcripts. I am particularly floored by its ability
to generate “any-to-english” translations. It is free, and can run inside of a basic
Google Colab notebook with GPU enabled at a decent speed: https://colab.
research.google.com/drive/1WLYoBvA3YNKQ0X2lC9udUOmjK7rZgAwr?us
p=sharing

2	 Older news-image URLs are likely to 404 due to paywalls and changes in web-
site architecture. I would consider capturing the images for a pre-mediated time
frame, like one would a streaming API.

3	 As we’ve discussed, TensorFlow, an open-source software library for dataflow and
differentiable programming across a range of tasks, is pivotal in the field of ma-
chine learning. Within TensorFlow, the Keras API emerges as a high-level neural
networks library, written in Python and capable of running on top of TensorFlow,
CNTK, or Theano.

4	 Remember to replace “your-api-key” with your actual OpenAI API key (https://
help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key).
This script will print out the response from OpenAI’s Vision AI, classifying the
image according to its relevance to politics. The filtering ensures that the analysis
is focused on articles related to politics, providing insights into how the media is
representing it at the moment.

References

Amershi, S., Cakmak, M., Knox, W. B., & Kulesza, T. (2019). Designing AI:
A human-centered approach to trustworthy AI. Proceedings of the 2019 AAAI/
ACM Conference on AI, Ethics, and Society, 117–123.

Brügger, N. (2018). The archived web: Doing history in the digital age. MIT Press.
Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy

disparities in commercial gender classification. Proceedings of Machine Learning
Research, 81, 1–15.

Castelvecchi, D. (2016). Can we open the black box of AI? Nature News, 538(7623),
20–23.

https://colab.research.google.com/drive/1WLYoBvA3YNKQ0X2lC9udUOmjK7rZgAwr?usp=sharing
https://colab.research.google.com/drive/1WLYoBvA3YNKQ0X2lC9udUOmjK7rZgAwr?usp=sharing
https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key

Extending Deep Learning to Image Content Analysis  125

Chollet, F. (2018). Deep learning with Python. Manning.
Chowdhury, R. (2021, May 19). Sharing our learnings about our image cropping

algorithm. X. https://blog.x.com/engineering/en_us/topics/insights/2021/
sharing-learnings-about-our-image-cropping-algorithm

Cooky, C., Messner, M. A., & Hextrum, R. H. (2013). Women play sport, but not
on TV: A longitudinal study of televised news media. Communication & Sport,
1(3), 203–230.

Crawford, K., & Calo, R. (2016). There is a blind spot in AI research. Nature News,
538(7625), 311–313.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable ma-
chine learning. arXiv. https://doi.org/10.48550/arXiv.1702.08608

Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and
punish the poor. St. Martin’s Press.

Garvie, C., Bedoya, A., & Frankle, J. (2016). The perpetual line-up: Unregulated police
face recognition in America. Georgetown Law, Center on Privacy & Technology.
https://www.law.georgetown.edu/privacy-technology-center/publications/
the-perpetual-line-up/

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé
III, H., & Crawford, K. (2018). Datasheets for datasets. arXiv. https://doi.
org/10.48550/arXiv.1803.09010

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Google Cloud. (2021). Vision AI. https://cloud.google.com/vision
Google Cloud Pricing. (2021). Vision API pricing. https://cloud.google.com/

vision/pricing
Grabe, M. E., & Bucy, E. P. (2009). Image bite politics: News and the visual framing

of elections. Oxford University Press.
Highfield, T., & Leaver, T. (2016). Instagrammatics and digital methods: Studying

visual social media, from selfies and GIFs to memes and emoji. Communication
Research and Practice, 2(1), 47–62. https://doi.org/10.1080/22041451.2016.
1155332

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., & Wallach, H.
(2019). Improving fairness in machine learning systems: What do industry practi-
tioners need? Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, 1–16.

Kwak, H., & An, J. (2016). Understanding news geography and major determinants
of global news coverage of disasters. PLOS ONE, 11(5), e0155295.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444.

Leetaru, K., & Schrodt, P. A. (2013). GDELT: Global data on events, language,
and tone, 1979–2012. International Studies Association Annual Conference, 2(4).
http://data.gdeltproject.org/documentation/ISA.2013.GDELT.pdf

Messaris, P. (1997). Visual persuasion: The role of images in advertising. Sage.
Neuendorf, K. A. (2017). The content analysis guidebook. Sage.
Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism.

NYU Press.
O’Neil, C. (2016). Weapons of math destruction: How Big Data increases inequality

and threatens democracy. Crown.
OpenAI. (2021). OpenAI API. https://beta.openai.com
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . & Chintala,

S. (2019). PyTorch: An imperative style, high-performance deep learning library.
Proceedings of the 33rd International Conference on Neural Information Processing
Systems, 721, 8026–8037.

https://blog.x.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm
https://blog.x.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm
https://doi.org/10.48550/arXiv.1702.08608
https://www.law.georgetown.edu/privacy-technology-center/publications/the-perpetual-line-up/
https://doi.org/10.48550/arXiv.1803.09010
https://doi.org/10.48550/arXiv.1803.09010
https://cloud.google.com/vision
https://cloud.google.com/vision/pricing
https://cloud.google.com/vision/pricing
https://doi.org/10.1080/22041451.2016.1155332
https://doi.org/10.1080/22041451.2016.1155332
http://data.gdeltproject.org/documentation/ISA.2013.GDELT.pdf
https://beta.openai.com

126  The Computational Content Analyst

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12(2011),
2825–2830.

Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness & correlation. Journal of Machine Learning
Technologies, 2(1), 37–63.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning
transferable visual models from natural language supervision. arXiv. https://doi.
org/10.48550/arXiv.2103.00020

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”:
Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining,
1135–1144.https://doi.org/10.1145/2939672.2939778

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representa-
tions by back-propagating errors. Nature, 323(6088), 533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Kar-
pathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vi-
sion, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
1521–1528.

Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2019). Face recognition:
A literature survey. ACM Computing Surveys, 35(4), 399–458. https://doi.
org/10.1145/954339.954342

Zook, M., Barocas, S., Boyd, D., Crawford, K., Keller, E., Gangadharan, S. P.,
Goodman, A., Hollander, R., Koenig, B., Metcalf, J., Narayanan, A., Nelson,
A., & Pasquale, F. (2017). Ten simple rules for responsible big data research.
PLOS Computational Biology, 13(3), e1005399. https://doi.org/10.1371/jour-
nal.pcbi.1005399

Zou, J., & Schiebinger, L. (2018). AI can be sexist and racist—it’s time to
make it fair. Nature News, 559(7714), 324–326. https://doi.org/10.1038/
d41586-018-05707-8

https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/954339.954342
https://doi.org/10.1145/954339.954342
https://doi.org/10.1371/journal.pcbi.1005399
https://doi.org/10.1371/journal.pcbi.1005399
https://doi.org/10.1038/d41586-018-05707-8
https://doi.org/10.1038/d41586-018-05707-8

Appendix A

Codebook and Conceptual
Definitions

Code attributes as “1” if present, “0” if absent. Follow the following definitions:

Identity-Based Negative Language. This category deals with language that
either uses identity features (e.g., race, sexual orientation, gender, immi-
gration status) in a negative manner or attempts to negatively situate two
or more identity groups. Positive mentions of identity are not considered
identity-based negative language (e.g., celebrating Gay Pride).

Inflammatory Language: This category speaks to the use of unnecessarily
negative emotional language that urges audiences to be upset and/or to
take action regarding a political or social issue.

Obscene Language: If a post contains any vulgar language, including any
known “swear” words, no matter how mild, including “hell” or “damn,”
this attribute is present. Even quoted language should be considered.
Identity labels used in positive ways (e.g., gay, or Muslim) are not obscene.
Attempts to censor swear words (e.g., bullsh*t) are still obscenities.

Threatening Language: If a potential threat is exposed to the audience,
then this attribute is present. For instance, warnings of police violence or
warnings of the risks associated with illegal immigration are all examples
of threats to the audience. Frequently, these threats will be suggested or
implied, not directly posed to the audience.

Appendix B

Deletion Themes

OP Themes

1.	Off-topic or repetitive content: not relevant to the subreddit’s main
theme or because they contain repetitive content that does not contrib-
ute to meaningful discussions.

2.	Sensitive or controversial topics: sensitive or controversial issues are of-
ten deleted due to their potential to incite heated debates or arguments
among users.

3.	Privacy concerns and personal information: deleted due to the personal
nature of the content and users’ desire to maintain privacy or protect
sensitive information.

4.	Violation of subreddit rules or guidelines: do not adhere to the specific
rules or guidelines of a subreddit and are often deleted to maintain a
respectful and inclusive environment.

5.	Promoting misinformation: promote misinformation, or conspiracy the-
ories are often deleted to maintain the integrity of the platform and pro-
tect users from potentially dangerous information.

Moderator Themes

1.	Controversial or sensitive content: controversial political figures, divisive
social issues, or sensitive events are often deleted due to their potential to
incite uncivil debates or violate platform policies.

2.	Promoting misinformation: promote misinformation, or conspiracy the-
ories are often deleted to maintain the integrity of the platform and pro-
tect users from potentially dangerous information.

3.	Off-topic or repetitive content: not relevant to the subreddit’s main
theme or because they contain repetitive content that does not contrib-
ute to meaningful discussions.

Appendix B: Deletion Themes ﻿  129

4.	Low-quality or repetitive content: low-quality, repetitive, or not con-
tributing to meaningful discussions are often deleted. For example,
meme-related content or humorous content and jokes.

5.	Explicit content: explicit or adult content is often deleted due to its po-
tential to violate Reddit’s content policies or subreddit-specific guide-
lines related to user safety. For example, sexual and explicit content or
discussions on intentional HIV transmission may be deleted due to their
explicit nature and potential to spread misinformation.

Accuracy: 52 – 57, 62, 76, 77; see also
Precision, Recall

Advertising: programmatic contextual
advertising 7

AI (Artificial Intelligence): fairness
2; bias in algorithms 2; supervised
machine learning 6; unsupervised
machine learning 68, 84; generative
AI 29, 44, 93 – 99, 108, 109; large
language models 9, 87 – 89; deep
learning 70, 73 – 75, 105, 114,
121 – 123; explainable models 78;
see also Machine Learning

Algorithms: bias 2; fairness 2;
supervised machine learning 6;
unsupervised machine learning
101 – 103; deep learning 70 – 75,
105, 114, 121 – 123; generative AI
29, 44, 93 – 99, 108 – 109; contextual
advertising 7; image recognition
118, 119; see also AI (Artificial
Intelligence)

Amazon: reviews 11; Mechanical
Turk 24

Annotators: human annotators 11 – 12;
data labeling 2; intercoder reliability
21 – 22, 27 – 28, 38; see also Coding

Anti-vax: sentiment 46; keywords 47;
training data 47 – 49; see also Vaccines

API (Application Programming
Interface): OpenAI API 89 – 90,
109 – 110, 113; Perspective API 24,
30, 80 – 82; Facebook Graph API 17

BERT (Bidirectional Encoder
Representations from
Transformers): 46, 65, 71 – 74,

78 – 79, 85 – 86, 100, 106 – 107;
supervised machine learning 46 – 49,
53 – 55; deep learning 70, 73, 75,
105; pre-trained models 65, 71;
fine-tuning 65, 71 – 72, 86, 92;
see also Transformers

Bias: in algorithms 2; in image
recognition 118 – 122; AI fairness 2;
see also Ethical Considerations

Big Data: analysis 32 – 34, 101, 113,
124; see also Data

Civic Engagement: 16 – 23; social
capital 20; ideological extremity 16;
political engagement 23; see also
Social Media

Coding: protocols 11; schemes 11, 20;
intercoder reliability 21, 23; human
annotators 21, 22; manual review 8;
see also Annotators

Computational Content Analysis: 9 – 12,
16 – 27; supervised machine learning
6; unsupervised machine learning
101 – 103; deep learning 70 – 75,
105, 114, 121 – 123; generative AI
29, 44, 93, 95, 96, 97, 98, 99; topic
modeling 101, 102, 103, 105, 106,
107, 108, 109, 111, 112, 113;
see also Content Analysis

Content Analysis: quantitative
techniques 3; qualitative content
analysis 3; coding 11, 20; patterns:
4 – 5, 8 – 9, 13 – 14, 45, 87; see also
Computational Content Analysis

Content Moderation: incivility 27 – 28;
toxicity 24 – 26, 30, 107; see also
Social Media

Index

Index  131

Contextual Advertising: 6 – 7, 67, 73,
82, 93; see also Advertising

Cross-Validation: 52, 62, 66; see also
Machine Learning

Data: annotation 1; labeling 2, 9;
retrieval 37; preprocessing 48 – 49,
53, 62, 63, 70 – 73, 74 – 75; training
data 6, 47 – 49; see also Big Data

Deep Learning: 67 – 79, 85, 105,
114 – 117, 121 – 123; neural networks
15, 114; generative AI 29 – 44,
93 – 99, 104; see also AI (Artificial
Intelligence)

Digital Trace Data: 19, 30 – 31; see also
Social Media

Ethical Considerations: AI fairness 2;
bias 2; transparency 63, 118 – 123;
see also Bias

External Validity: 7 – 8, 29, 42 – 43, 57,
81; see also Validity

Facebook: political expression 16 – 17;
social media activity 18; Graph API
17; see also Social Media

Facial Recognition: technology 118;
bias 118; ethical considerations 118;
see also Image Recognition

Feature Extraction: 118; see also
Machine Learning

Framing Effects: 8; see also Media
Research

Generative AI: 29, 44, 87 – 99,
108 – 109, 112; large language
models 9, 87, 88, 89, 91;
fine-tuning 65, 71 – 72, 86, 92;
see also AI (Artificial Intelligence)

Google: Vision AI 121 – 123; Colab 41,
64, 80, 89, 92; Perspective API 24,
30, 81, 82; see also API (Application
Programming Interface)

Graph API: Facebook 17; see also API
(Application Programming Interface)

Human Annotators: 1, 11 – 12; data
labeling 2, 9, 27 – 28, 81

Image Content Analysis: 114 – 123;
deep learning 118, 114 – 115, 117,

121 – 123; neural networks 15, 114;
see also Content Analysis

Image Recognition: algorithms
118 – 120; bias 118 – 122; ethical
considerations 118 – 122; see also
Facial Recognition

Incivility: political communication
26 – 28; toxicity 27 – 28, 34 – 35,
38, 41 – 43, 80; see also Content
Moderation

Information Retrieval: 32 – 39, 41, 45,
66, 102; see also Data

Intercoder Reliability: 21 – 23; coding
21 – 23; human annotators 21 – 22,
36 – 42, 45, 93, 98; see also Coding

Jigsaw: Perspective API 24, 30, 80,
81 – 82; see also Google

Kaggle: datasets 73, 84, 116;
see also Data

Keras: deep learning 22, 68, 71 – 73,
76, 115 – 116; TensorFlow
68 – 73, 92, 105; see also Deep
Learning

Keywords: anti-vax 35; see also Text
Classification

Krippendorff’s Alpha: 16; intercoder
reliability 21, 38, 39, 45; see also
Intercoder Reliability

Labeling Data: 2, 9; see also Data
Large Language Models (LLMs):

83 – 89, 90 – 92, 100, 112; generative
AI 29, 44, 87 – 99; BERT 46;
GPT–4 87 – 88, 108 – 110; see also AI
(Artificial Intelligence)

Latent Dirichlet Allocation (LDA):
topic modeling 101 – 107,
112 – 113; unsupervised machine
learning 101 – 104; see also Topic
Modeling

Lexicons: 35; see also Keywords
Logistic Regression: 51; see also

Machine Learning

Machine Learning: supervised 6;
unsupervised 101 – 103; deep
learning 67 – 79, 85, 105, 114 – 117,
121 – 123; feature extraction 118;
cross-validation 52, 62, 65; model

132  Index

experimentation 63; see also AI
(Artificial Intelligence)

Media Ecosystem: contemporary 1, 3,
5; see also Media Research

Media Research: framing effects 8;
bias 3; public opinion 4, 10; see also
Content Analysis

Misinformation: political 23
Model Performance: accuracy 52 – 57,

62, 76 – 77; precision 59 – 60; recall
58 – 60; F1 score 29, 59 – 60, 118;
see also Performance Metrics

Multicollinearity: 49 – 50

Natural Language Processing (NLP):
tokenization 29, 41, 44; text
classification 69; sentiment analysis
69; see also Text Processing

Neural Networks: deep learning
114 – 118; supervised machine
learning 15, 114; see also Deep
Learning

News Media: content categories 67,
73, 85; digital publication 7; see also
Media Ecosystem

OpenAI: API 89 – 90, 109 – 110,
113; GPT-4 88, 109, 110; see also
API (Application Programming
Interface)

Overfitting: 54 – 55, 75 – 76, 85, 120;
see also Machine Learning

Pandas: DataFrame 37 – 40, 73; data
manipulation 36, 44, 53 – 54; see also
Python

Performance Metrics: accuracy 52 – 57,
62, 76 – 77; precision 59 – 60; recall
58 – 60; F1 score 29, 59 – 60, 118;
see also Model Performance

Political Engagement: social media 18;
ideological extremity 16, 23; see also
Civic Engagement

Political Expression: Facebook 16 – 17;
social media 18; see also Political
Engagement

Precision: 59 – 62, 77; recall 58, 60 – 62,
77; F1 score 29, 59 – 60, 77; see also
Performance Metrics

Public Opinion: climate change 4, 9;
see also Media Research

Python: pandas 9; scikit-learn
51 – 66, 117; TensorFlow 71 – 73,
92, 105

Qualitative Content Analysis: 3;
Quantitative Techniques: 3; see also
Content Analysis

Recall: 57 – 62, 77; precision 58 – 62,
77; F1 score 29, 59 – 60, 77; see also
Performance Metrics

Regression Analysis: 49 – 50; see also
Statistical Analysis

Reliability: intercoder reliability 21;
external validity 7; see also Validity

Relevance: 62

Sampling: random 37; non-random 5;
see also Data

Scikit-learn: machine learning 51 – 56,
60, 64 – 66, 117; see also Python

Sentiment Analysis: 69, 105; text
classification 69; natural language
processing 69; see also Text
Processing

Social Capital: 16, 20; see also Civic
Engagement

Social Media: Facebook 18; Twitter
33; TikTok 4; political engagement
18; content moderation 107; see also
Media Ecosystem

Supervised Machine Learning: 6;
BERT 46 – 65, 74; deep learning 70,
73 – 75, 105, 114; see also Machine
Learning

Text Classification: BERT 46; sentiment
analysis 69; natural language
processing 69; see also Text Processing

Text Processing: tokenization 29, 41,
44; stop words 48; lemmatization
41, 48, 70; see also Natural
Language Processing

Topic Modeling: LDA 101 – 107,
112 – 113; BERTopic 106 – 112;
see also Unsupervised Machine
Learning

Index  133

Toxicity: 24 – 27, 30, 80 – 82
Training Data: 6, 47 – 56, 70, 75 – 76,

105, 120; test data 54;
see also Data

Transformers: BERT 46, 65, 71 – 74,
100; GPT-4 88, 109 – 110;
see also Deep Learning

Twitter: political engagement 20;
social media 33 – 34, 36, 45;
see also Social Media

Unsupervised Machine Learning:
LDA 101 – 103; topic modeling
101 – 113; see also Machine
Learning

Vaccines: anti-vax 46
Validity: external validity 7; reliability

21; see also Reliability
Visual Framing: image content analysis

114 – 117; see also Image Content
Analysis

Word Embeddings: BERT 46;
Word2Vec 68 – 70; see also Natural
Language Processing

Word2Vec: 69; word embeddings 69 – 70;
see also Natural Language Processing

YouTube: comments 24; see also
Social Media

	Cover
	Half Title
	Endorsements
	Title
	Copyright
	Dedication
	Contents
	Preface��������������
	1 Unveiling Content Analysis in the Contemporary Media Ecosystem
	2 Designing a Computational Content Analysis: An Illustration from "Civic Engagement, Social Capital, and Ideological Extremity"
	3 Basic Information Retrieval for Content Analysis���
	4 Supervised Machine Learning with BERT for Content Analysis
	5 Text Classification of News Media Content Categories Using Deep Learning
	6 Leveraging Generative AI for Content Analysis��
	7 Topic Modeling as a Lens for Discovery���
	8 Extending Deep Learning to Image Content Analysis��
	Appendix A: Codebook and Conceptual Definitions��
	Appendix B: Deletion Themes����������������������������������
	Index������������

